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SECTION 1

PRQJECT QVERVIEW

1.1 SUMMARY OF OBJECTIVES AND METHODOLOGY

The response of saturated soils and rocks to high intensity blast
loadings is a subject of intense concern to the United States Air Force.
Previous studies (Blouin and Kim, 1983; Blouin and Kim, 1984a; Blouin and
Shinn, 1983) clearly defined the role of blast induced liquefaction on the
cratering processes from both nuclear and high explosive charges and the
subsequent flow and consolidation of liquefied material surrounding and
beneath the crater. These studies have been used by the Air Force and the
Defense Nuclear Agency (DNA) to help explain the anomalously large, shallow
craters which were observed in the saturated genlogies of the Pacific Proving
Grounds where all U.S, high yield nuclear surface tests were fielded.

In addition, prediction of the ground shock transmitted by a surface or
shallow buried explosion to nearby surface or deeply buried hardened struc-
tures is a key element in the design and evaluation of such structures. In
order to make reliable ground shock predictions in saturated geologic media,
use of multiphase material models and numerical codes is needed.

This report summarizes results of a three year combined experimental and
theoretical study of the fundamental behavior of multiphase porous materials
subjected to high intensity dynamic loadings. The overall and specific objec-
tives of this study were:

1. To design and conduct laboratory experiments which identify key
response mechanisms and measure the behavior of saturated porous
materials. Specific areas of concentration under this task included:

a) design, fabrication and utilization of a device to measure fluid
friction and inertial flow resistance through ducts and soil and
rock samples at high pore pressure gradients including flow in the
laminar, transitional and turbulent flow regimes;




b) measurements of the compressibility of soil and rock grains,
including the influence of occluded porosity on the grain
compressibility;

c) documentation of the liquefaction process in both soils and porous
rocks under uniaxial strain loadings similar to those produced by
explosive loadings; measurement of the amount of consolidation of
the soil and rock specimens following liquefaction;

d) experimentally determine the amount and severity of grain breakage
as a function of both strain/stress path and stress magnitudes;
relate the microscopic grain crushing response to the degree of
shear and compression generated during the various types of
loadings; and

e) experimentally determine the drained skeleton response and the
undrained total stress, pore pressure and effective stress response
under various simple and complex loading conditions.,

2. The development of advanced fully coupled material moedels which
accurately represent the dynamic nultiphase response behavior of
saturated and partially saturated soils and rocks. Specific areas of
concentration under this task included;

a) formulation of a pore fluid flow relationship which describes the
pore fluid flow resistance under dynamic loading conditions in both
the laminar and turbulent regimes; and

b) development of a procedure to model the influence of occluded
porosity on the response of saturated and partially saturated
s011s and rocks;

3. Formulate and implement both the theoretical models and experimental
resuits into two-phase and multiphase cudes. Specific accomplishuents
under this task include:




a) development of the numerical code NKOCP which is used to numeri-
cally model the hydrostatic and uniaxial undrained response of
saturated porous materials;

b} development of the code TWAVE which provides rapid closed form
solutions of wave propagation and damping in saturated porous
materials having linear elastic skeletons, including definition of
compressional waves of the first and second Kind;

c) development of the numerical finite element code MPDAP which utili-
zes a single point stress calculational technique and an innovative
wethod of computing pore fluid flow to maximize computational effi-
ciency; features of MPDAP include:

e nonlinear fluid friction model for both laminar and turbulent
flow;

* a fully coupled compressibility model;

* 3 number of drained skeletan material sodels ranging from siaple
linear elastic to advanced elasto-plastic models with strain
hardening and softening;

* single, two and threa-phase capability;

» static, dynamic and quasi-static capability with pore fluid flow;

NI (Ye SR

d) development of modifications to our existing, but less sophisti-
cated two-phase finite element code TPDAPII. These modifications
were developed as a result of the NPDAP theoretical formulations
and were used in many of the numerical studies under this project.

4. Utilize numerical and theoretical codes to help analyze experimental
results, to predict laboratory and field behavior, and to conduct
numerically based experiments and parameter studies which will further
advance our understanding of complex multiphase phenomena. Specific
accoaplishments under this task include:

a) modeling of undrained iaboratory response of saturated soils and
rocks to a variety of load-unload conditions, including the




modeling of liquefaction in s0ils and rocks due to single
hydrostatic and uniaxial strain loading cycles;

b) numerically model wave propagation in saturated soils and rocks due
to dynamic loadings, including definition of the liquefaction front
and motion of the pore fluid as a function of position behind the
wave front;

¢) theoretical calculations of wave propagation, velocity and energy
damping as a function of the skeleton permeability and excitation
frequency; define the existence of compressional waves of the
first and second kinds and determine propagation velocities and
damping differences between the two wave types; and

d) numerically model the theoretical wave propagation results in "c"
above at specific values of excitation frequency and permeability
to determine the role of pore fluid motion on damping and wavespeed
and to isolate the physical éhenouena which govern propagation of
waves of the second kind,

An integrated experimental/theoretical/calculational approach has been
used to satisfy the above gbjectives. In this approach, each of these three
aspects of the program is mutually supported by the other two. For example,
in the shock consolidation laboratory tests reporied by Kim, Blouin and
Timian, 1987, liquefaction of porous limastone and apparent negative hystere-
sis in the pore pressure-volume strain curve were both cbserved. Numerical
simulations of those experiments utilizing the NKOCP code, developed frowm our
fully coupled two~phase mode), allowed us to duplicate the experimental
results and identify the governing two-phase phenomena which produced these
surprising results. On other occasions, we have identified theoretical uncer-
tainties, such as dynamic pore fluid friction, and designed and analyzed
experiments to define the controlling equations and material property parame-
ters used in the theoretical formulation and numerical implementation. When
used in thesc ways, the combined experimental/theoretical/numerical approach
has been a powerfu) technique for solving problems which aight prove intrac-
table to solution by any single element of these three.




This report is the third and final report on this study. There have been
two annual reports by Kim, Blouin and Timian, 1986 and 1987, summarizing deve-
loprents at the end of the first and second years, respectively. In some
cases, the material presented in those reports is complete and will not be
repeated in this report. Rather, a short summary of the significant findings
from these two reports is included in Subsection 1.2. In other cases,
material presented in these reports has been supplemented or finalized during
the last year. In these cases, the final development of these materials is

included as a section of this report, with the previous work incorporated into
this final presentation.

Key individuals respcnsible for this project at ARA include the
following:

e Dr. Kwang Jin Kim: Co-~Principal Investigator, Senior Engineer - theore-
tical analysis, numerical implementation and analysis, experimen-
tal analysis;

» Nr. Scott E, Blouin: Co-Principal Investigator, Principal Engineer -
experiment design and analysis, theoretical and numerical
analysis;

* Or. Douglas Merkle: Pringcipal Engineer -_theoretiaai analysis;

e Mr. Oavid Timian: Staff Engineer - experiment design and analysis;

o Mr. Daniel Chitty: Sanior Engineer - experiuent design and analysis;
e Ms. Elizabeth Saith: Staff Engineer - nurerical analysis:

* Mr. Lawrence Merkle: Technician - nuserical development and analysis;

e Nr. Kenneth HclIntosh: Staff Technician - experiment design, executicn
and analysis;

* M. Steven Quenneville: Technician - experisent design, execution and
analysis;




® Mr. Douglas McIntosh: Technician - experiment design, execution and
analysis.

A number of formal presentations have been given presenting work
accompliishment under this study or presenting results and analysis which were
strongly supported by this study. Amonrg these are:

1) “Fundamental Analysis of Wave Propagation and Liquefaction in Multiphase
Porous Media" by Scott E. Blouin, Kwang J. Kim, David A. Timian; Presented
at AFOSR Soil Mechanics Seminar, MIT, 14-15 September 1967.

2) "Strength and Deformation Properties of Salem Limestone" by Scott Blouin
and Daniel Chitty; Presented at DNA Material Piroperties Working Group,
Weidlinger Associates, Mew York, NY, 19 July 1988.

3) "Some Aspects of Two-Phase Modeling Investigated Under Spensorship of
AFOSR" by Kwang Kim and Scott Blouin; Presented at ONA Range to Effect EPW
Neeting, SAIC, Albuguerque, NM, 17-18 May 1988,

4) “Comparisons and Calculations of Laboratory Properties of Various
Limestones® by Scott Blauin, Kwang Kit and James Drake; Presented at ONA
Range to Effect Meeting, Los Alamos National Laboratory, 20 January 1988,

§) "Preliminary Comparisons of Salem and ORA Limestone® by Scott 8lovin, Kwang
Kim and Robert Walker; Presented at ONA Range to Effect Reeting, SAIG,
Albuguerque, NN, 17-18 May 1988.

In addition to the above and other formal presentations, research results
from this study have been supplied on a continuing basis to universities,
resgarch coapanies, natiocnal laboratories and government organizations in the
form of copies of briefings and anhual reports, and consultations. Government
organizations and national laboratories to which we have supplied informstion
include:

Defense Huclear Agency
Air Force Weapons Laboratory




Air Force Engineering and Services Laboratory
Los Alamos National lLaboratory

Sandia National Laboratory

Lawrence Livermore National Laboratory

1.2 SUMMARY OF SIGNIFICANT FINDINGS AND ACCOMPLISHMENTS

In Subsections 1.2.1 and 1.2.2, we briefly summarize the significant
findings and accomplishments which are fully described in our previous annual
reports and which are not updated and described in Sections 2 through 7 of
this report. References to appropriate sections in the previous annual
reports are included. In Subsection 1.2.3, we briefly summarize the findings
presented in Section 2 through 7 of this report.

1.2.1 Susmary of Laboratory Experiwents and Analysis from Previous Annual
Reports
a. OGrain Compressibility and Inflyenee of Occluded Porosity - Kim,
Blouin and Timian, 1986 Section 2.

The compressibility of the solid grains is an integral part of the
constitytive formulations for multiphase response (see Section 2). The
compressibilities of the mineral constituents such as quariz and calciua car-
bonate making up most of the soils of intorest are generally available in the
Vitarature from scurces such as Bridgman, 1931 and Simmons and Wang, 1971,
During a previous study 8louin et al,, 1984, observed that the grains of the
carbonate s0ils and rocks from Enewetak Atoll contained a high degree of
microporosity within the grains chemselves. The pervasiveness of these aicro-
pores explains why in situ densities of many carbonate soils and rocks are so
low. A porosity value of 50% is typica! of both the uncemented and cemented
sediménts at Eiewetak. In the case of Enowetak beach sand, perhaps a third of
the bulk porosity is due to the intragranular aicroporosity.

1f the micropore space in the carbonate sediments is not fully saturated,
resuitant undrained corpressibilities can be much greater than those predicted
using the solid grain compressibilities froam the literature. In essence, the




bulk moduli of the solid grains could be greatly reduced by the presence of
the unsaturated micropores, leading to a substantially more compressible bulk
aixture. Under a high stress load-unload cycle, such a mixture would exhibit
permanent compaction and high energy absorption, neither of which are charac-
teristic of fully saturated materials. Thus, it is important to characterize
the grain compressibility of materials with microporosity to insure that
appropriate relationships for grain compressibility are available.

A laboratory high pressure vessel was modified to enable us to measure
the compressibility of known volumes of fluid (kerosene) within the vessel.
By mixing predetermined amounts of soil or rock grains in the fluid, the
compressibility of the grains can be determined by measuring the compressibi-
lity of the fluid-grain mixture. There is no effective stress applied to the
grains in this test; the only stress acting on them is the fluid pressure.

The grain bulk moduli of the various soils and rocks examined in this
suite of tests are summarized in Table 1.1. The grains all exhibited essen-
tially linear elastic response to the peak applied pressure of about 5 kb.

© Quartz sand, steel ball bearings and solid limestone produced bulk moduli

- which agree well with published values. Most of the soils and rock grains had

bulk moduli of about 6.0 X 105 psi, about 55% of the modulus of the solid

limestone. While this is apparently a significant reduction, in reality it

- will have Tittle infiuence on the response of the Enewetak materials because

'.'ghe wa:eb making up 50% of the sample is more than an order of magnitude more
'fcdmpressible than the grains. Thus, it was concluded that the micropores are
.iqrobaply mostly saturated in these materials and result in a 20% to 46% reduc-

~ tion in grain modulus.

'b; Liquefaction of Saturated Soil and Rock Under Undrained Uniaxial
~ Strain Loadings - Kim, Blouin and Timian, 1986 Section 3, 1987
Section'V.

A series of uniaxial strain load-unlcad consolidation fests was run on
porous limestone and soils from Enewetak Atoll. The test specimens were sub-
Jjected to an undrained load-unload cycle in a high pressure oedometer during




which pore pressure was monitorsd. Following unloading, the pore pressure was
allowed to drain until the samples had consolidated to their original effec-
tive vertical stress at the start of each test.

Figure 1.1, parts a, b and c, show a typical data set on a saturated low
strength limestone having a porosity of 42%. Part a shows the total stress
response, part b the pore pressure response and part ¢ the effective stress
response. Point "a" at the start of the undrained loading shows the initial
conditions, i.e. effective stress of about 300 psi, pore pressure of about
300 psi and total stress of 600 psi. The sample is loaded undrained to point
“c". At point "b", early in the undrained loading, the cementation in the
skeleton breaks down. This is clearly shown by the effective stress response
of Figure 1.1c. Prior to the breakdown of cementation more than half of the
total applied stress is carried by the limestone sksleton; but following the
cementation breakdown only 5% of the additional applied stress is carried by
the skeleton. The balance of the total applied stress is carried by the pore
water. ;

From point “¢", the undrained sample is unloaded to a state of zero
stress at “e". As shown in Figure 1.1, the skeleton is strongly hysteretic
and unloads very rapidly until at "d" where the effective stress drops to zero
and a state of liguefaction is achieved. Note that at point "d" the overal)
volume strain is still 1,4% and the total stress is still over 11,000 psi.
From point "d" to noint "e" the sample is liguefied and the total stress
equals the pore pressure, AlsSo note that the hysteresis in the total stress
curve is positive, i.e. energy is being dissipated, while the apparent
hysteresis in the pore pressure load-unload cycle is negative. The negative
hysteresis results from the rapid drop in stress on the solid grains as the
skeleton unloads. The grains tend to expand rapidly in the pore fluid
resulting in additional pore pressure and the apparent negative hysteresis.

At point “a" the pore pressure line is opened and shortly thereafter
total stress is again applied and the sample 3is allowed to drain and con-
solidate untiil the effective stress reaches its pretest value at point "€,
The strain during consolidation to the original effective stress is nearly 80%




of the strain reached during the undrained loading. The average residual
strain, or subsidence, is 85% of the peak strain reached in the undrained
loadings. By computing the peak dyramic strain fields from explosive detona-
tions, this average consolidation can then be used to estimate the portions of
total crater volumes which can be attributed to post-liquefaction con-
solidation.

c. Grain Damage as a Function of Stress Path and Magnitude - Kim, Blouin
and Timian, 1987 Section 7.

A systematic study of grain crushing over a variety of stress paths to
several diffearent paak mean stresses was conducted. Relating the measured
grain crushing to the stress~-strain data from the variocus tests prowvides
insight into the similarities and differences batkean the different types of
loadings on the microscopic levels, and particularly into the differences and
similarities betwaen the microscopic response of granular materials under
shear and ccmpressive loadings. DOrained hydrostatic compression, uniaxial
strain, and triaxial compression tests were run on sieved cartonate beach sand
samples having a uniform grain size between 0,425 and 0.60 mm. The tests were
run to several peak mean stressas, thus providing a variation in the shear
strass component of the loading between the various test types.

The cosparison of grain damage for the 10,000 psi mean stress tests,
presented i\ Figure 1.2, shows a moderate to high degree of damage with 36% to
49% of the grains broken into a smaller size interval. The material loaded in
hydrestatic compression sustained the least damage, with 36.4% of the grains
reduced in size. [{amage from the combined hydrostatic and shear loadings
ranged from 42.2% for the TXC test to 49.1% for the Ko test. The differences
between the three tests is in proportion to the shear strain energy imparted
to each sample, with the hydrostatic serving as the zero shear baseline.

In order to amore clearly define the role of shear strain, an additional
triaxial compression test was run at the same conf ining pressure, but to a
nuch higher shear strain energy. Severe grain damage was sustained by this
triaxial sample Iaaded udd&r the same 8,400 psi confining pressure ar the
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10,000 psi mean siress sample, but carried to a maximum mean stress of

15,350 psi and a maximum stress difference of 20,900 psi. Nearly 80% of the
grains were reduced in size, with over half the total post-test weight having
grain sizes of less than .106 mm. Shear strain energy imparted to the 15,350
psi sample was about an order of magnitude greater than that of the 10,000 psi
triaxial comprassion test.

In order to concisely and quantitatively describe the grain damage we
dev-loped a *echriqua which uses the pretest and post-test log mean grain sizes
to compute a grain damage factor, D¢. The grain damage factor is a measure of
both the amount and severity of the grain damage. A sample with most of its
grains crushed to a fine powder has a muc’ larger grain damage factor than a
sample with the same percentag. of its grains broken into only slightly
smailer oieces. As shown in Table 1.2, the grain damage factor ranges from
G.C11 for the 1,000 psi hydrostati. sample to 0,743 for the 15,350 mean stress
triaxial compression sample. The maximum possible grain damage factor is 1.0.

1.2.2 Suamary of Theworetical Davelopment. Code Jmplementation and Huserical
Amalysis From Previous Annual Reports

Most of the theoretical modai development, its implagentation into the
codes, and verification problems and parametric vaalysis using the codes are
- summarized in Sections 2 through 5 of this report, with muuh of the detailed
development covered in Kim, Blovin and Timian, 1286 and 1987. The theoretical
formulations for the numerical code NXKOCP for the prediction of undrained
uniaxial strain and hydrostatic loadings is rot covered in these sections,
NKOCP code implementation and code verification, were fui.y described Ly Kim,
Blouin and Timian, 1986 Saction 5 and Kim, Slouin and Timicn, 1387 Sections 2
and 3 and Appendices A and 8, and will be briofiy susmarized here.

NKOCP models the undrained hydrostatic and uniaxial strain response of
satursted porous soils and rocks. It uses the measured drained skeleton
properties as input and provides the total stress response, cffective stress
response and pore pressure response as output. It employs an incremental
numerical technique to modei tne nonlinear fully coupled volumetric response
described in Sectian 2, u§ing a nonlirear compressibility of fresh water or
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sea water and a nonlinear compressibility model for the selid grains, both
described by Kim, Blouin and Timian, 1987 Section 3.

Comparison of an undrained uniaxial strain load-unload cycle on saturated
porous limestone computed using MKOCP with test data is shown in Figure 1.3,
parts a through ¢. The agreement between the numerical calculation and the
test data is quite good, especially considering that the calculated response
was developed from measured drained skeleton response on a similar, but not
identical rock sampie and from constitutive models for each of the components
which were developed independently of the test data.

During the current year, NKOCP was further modified to incorporate a
nonlinear unloading capability which duplicates the actual drained skeleton
unitoading, rather than the original bilinear approximation used in the 1987
version. This new capability is demonstrated against test data in Section 7
of this report.

1.2.3 Sumsary of Experimental, Theoretical and Nuserical Results From
Sections 2 Through 7

a. Section 2 - Formulation of Field Equations for the Multiphase Model

In Section 2 of this report, the theoretical and experimental two and
three-phase modeling work reported in the two previous annual reports is com-
bined with work performed during the past year to develop the final for-
mulation of the field equations which are incorporated intc MPDAP, the
multiphase code described in Sections 3 and d.

Features and advantages of the new formulations over the previous
multiphase formulations in VYPDAPII include:

1. generalized nonlinear fluid friction equation which models dyna-
mic pore water flow in both the laminar and turbulent flow
regimes; and

2, Tully coupled continuity relationships in which volusetric strain
compatibility and pressure/stress equilibrium between the pore
fluid, solid grains and porous skeleton are maintained.

12
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The six governing field equations used in MPDAP are summarized at the end
of Section 2.

b. Section 3 - Dynamic Multiphase Finite Element Formulations for MPDAP

The field equations in Section 2 represent the fundamental gaverning
equations for an infinitesimal element of saturated porous medium. Global
equilibrium equations for specified boundary conditions are derived in Section 3
by applying the principles of virtual work to the field equations.

Innovative aspects of these formulations include:

1. formulation of the global equilibrium equations for stresses in
the bulk medium and for pore fluid flow based on the principals
of virtual work and complimentary virtual work, respectively; and

2. use of pore pressure at the element nodes to represent relative
motion of the pore fluid which eliminates one degree of freedom
in two-dimensional calcularions and two degrees of freedom in
three-dimensional calculations, resulting in significant
reductions in computational running time and storage require-
ments.,

The MPDAP global equilibrium equations are summarized in Section 3.9.
C. Section 4 - MPDAP Verification Problems

The features and capabilities of the multiphase code, MPDAP, are
described in Section 3 and a number of verification problems presented which
compare the NPDAP output to vstablish@d closed form solutions of simple
probliems or to previcus YPDAP solutions for more complex problems. The four
verification problems presented in Section 4 include comparison of MPDAP solu-
tions with;

1. the closed form solution for an undrained uniaxial strain
loading;

2. the closed form solution for spherical elastic wave propagation
in a single phase medium;

13




3. Terzaghi's closed form solution for quasi-static flow and con-
solidation under a uniaxial strain loading; and

4., TPDAPII solutions for one-dimensional wave propagation resulting

from simulated explosive loadings of both a saturated soil and
rock.

d. Section 5 - Numerical and Theoretical Treatment of Waves of the
First and Second Kind

In Section 5, theoretical development and coding of a solution for wave
propagation in saturated porous elastic media is reviewed. This work,
reported in detail by Kim, Blouin and Timian, 1987 Sections 4 and 5§, resulted
in the code TWAVE which uses the closed form solutions to rapidly compute
wavespeeds and damping over a wide range of material properties. Significant
findings from TWAVE include the following:

1. Existence of two types of ‘compressional waves in saturated porous
media; conventional compressional wavas analogous to those in
a single phase material, termed waves of the first kind, and

much slower highly damped compressional waves termed waves of the
second kind.

2. Wavespeeds of both types of waves have a lower and upper bound
wavespeed which is dependent on the excitation frequency and/or
the material permeability. Wavespeed increases with increasing
excitation frequency and with increasing permeability.

3. In waves of the first kind, the rate of wavespeed increase is

greatest at frequencies and permeabilities around which damping
is a maximum.

In Secvitn 5 of this report, TPDAPII solutions for wave propagation
having skeile .on properties and permeabilities chosen to highlight the
wavespeed and damping differences are compared to the TWAVE solutions and
analyzed to determine the factors governing the damping variations and
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wavespeed changes and to determine the phenomena behind propagation of waves
of the second kind. Conclusions from this comparison include the following:

1.

Both the material skeleton and pore water are in compression
during passage of waves of the first kind. Pore fluid friction
is at a maximum where damping and wavespeed increases are at a
maximum. At the lower bound wavespeed, there is no relative

motion between the pore water and the porous skeleton.

Waves of the second kind appear to be associated with a surge of
pore fluid moving through the skeleton. Pressure in the pore
water is compressive, while stress in the porous skeleton is ten-
sile during passage of waves of the second kind. The pore water
is moving in the direction of wave propagation while the porous
skeleton is moving in the opposite direction.

e. Section 6 - Experimental Evaluation of Fluid Flow in Ducts and Soils

A series of filuid flow test data is reported by Kim, Blouin and Timian,
1987 Section 8 and in Section 6 of this report. Flow velocities of up to 3700
in/s, fluid acceleration to nearly 1000 Gs and pressure gradients of up to 350
psi/in were achieved in some of the dynamic flow tests. Results of this study
were as follows:

1.

2.

Recommendation of a fluid flow equation which models flow in
both the laminar and turbulent flow regimes;

Development of an apparatus and experimental techniques for the
determination of the flow coefficients in the above equations
for porous soils and rocks: and

Dsmonstration that pore fluid flow for explosive loadings will be
largely in the turbulent flow regime where the pore pressure
gradient is proportional to the square of the pore fluid velocity
relative to the skeleton. It was also demonstrated that Biot's
theoretical formulation foir the increase in fluid friction with




increasing excitation frequency can be ignored in the turbulent
regime.

f. Section 7 - Two-Phase Response of Saturated Limestone

In Section 7, a series of drained and undrained test data on Indiana

limestone are analyzed using NKOCP and two-phase constitutive properties.

Orained and undrained hydrostatic, uniaxial strain, triaxial compression under

constant confining pressure and specified strain path tests were conducted.
Analysis of the four test types showed that:

1.

Undrained hydrostatic and uniaxial strain response was in
excellent agreement with calculations using the revised version
of NKOCP. Total stress, effective stress and pore pressure
response closely matched the test data over the entire
load-unload cycle.

Undrained triaxial strength and deformation prior to failure
were in good agreement with predictions based on effective
stress theory and two-phase models., However, strengths and
pore pressure response during the latter stages of shearing
appear to contradict the response predicted by effective stress
theory and two-phase models, We belfieve this apparent contra-
diction is due to inherent shortcomings of the test itself,
caused by lateral constraint from the steel end caps. Use of
such test data could lead to gross inaccuracies in modeling in
situ response,

Drained and undrained strain path tests that imposed a variety
of strain paths on the test specimens following unifaxial strain
compression will prove to be a real challenge to material
modelers. These strain path tests, which are typical of strain
paths from explosive loadings, point up the need for an advanced
single element two-phase code which can exercise various
saturated skeleton models over arbitrary strain and stress
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paths. Test results were generally consistent with response that
would be predicted with two-phase models, though the effective
stress response may be difficult to match with existing skeleton
models. The test results highlight the dependence of strength

on the strain path (as predicted by effective stress theory and
two-phase models) and cleariy demonstrate the inadequacy of using
equivalent single-phase calculations for predicting response

to explosive loadings in saturated porous materials.

17

Pl




Table 1.1 Bulk modulus values obtained from grain compressibility tests.

Material Bulk Moduius
(psi x 106) (MPa x 104)
Steel Ball Bearings 22.2 15.31
Quartz Sand 5.2 3,58
Solid Limestone 11.0 7.59
Enewetak Beach Sand A 9.1 6.27
S11t-sand-Gravel from KAM-2 5.6 3.86
Ground Silt-Sand-Gravel from KAM-2 6.1 4.21
Vugular Limestone 5.7 3.93
Cemented Material from XSA-2 6.1 4,21
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SECTION 2

FORMULATION OF FIELD EQUATIONS
FOR THE MULTIPHASE MODEL

2.1 INTRODUCTION

The initial theoretical formulations to be incorporated into the
multiphase code MPDAP were originally presented by Kim, Blouin and Timian,
1986 and 1987. During the past year the original formulations have been
revised to provide more efficient and accurate computational algorithms
including the modification of the dynamic flow equation based on the results
of our dynamic flow tests described in Section 6.

The revised theoretical formulations have been incorporated into the
MPDAP code during the past year and verification problems have been run.
Features and advantages of the new formulations over previous multiphase for-
mulations include the following:

1. Generalized nonlinear fluid friction equaticn which models dynamic
pore water flow in both the laminar and turbulent flow regimes;

2. Fully coupled continuity relationships in which volumetric strain
compatibility and pressure/stress equilibrium between the pore fluid,
solid grains and porous skeleton are maintained;

3. Formulation of the global equilibrium equations for stresses in the
bulk medium and for pore fluid fiow based on the principals of
virtual work and complimentary virtual work, respectively; and

4. Use of pore pressure at the element nodes tc represent relative
motion of the pore fluid which eliminates one degree of freedom in
two-dimensional calculations and two degrees of freedom in three-
dimensional caiculations, resulting in significant reduction- in
computational running time and storage requirements.
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2.2 THEORETICAL FORMULATICNS
Z2.2.1 HNotation

Note that positive signs have beer used for elongation and tension. A
comma denotes differentiation with respect to the subsequent indices and the
superposed dot denotes time rate. Prime indicates effective stress or

pressure.

{u} : skeleton displacement

(u} : absolute fluid displacement

{w} : apparent fluid displacement relative to the soliv skeleton
{0} : total stress

{0'} : effective stress

p : total pressure

p' : effective pressure

n : pore fluid pressure

{r,;) : pore fluid pressure gradient vector

{e) : skeleton strain

€y : skeieton volumetric strain

€f : pore fluid volumetric strain

€g : solid grain volumetric strain

€F : volumetric diffusion of pore fluid

{u}g : element nodal skeleton displacement vector
{nr}lg : element nodal pore fluid pressure
{u} : global nodal skeleton displacement vector

18:9] : global nodal fluid pressure

{T) : applied boundary traction

Q : specified boundary flow velocity (flux)

{b) : body force vector (generally equals gravity force)
K : Darcey's coefficient of permeability

(D®P] : elasto-plastic stress-strain matrix for skeleton
{1+ vnit vector (1})T =<1 1100 0>

n ¢ porosity

Cs¢ : pore fluid compréssibi11ty
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Caw : compressibility of air-water mixture

Cg : compressibility of solid grains

a : compressibility of soil-water mixture with zero effective stress

Km : bulk modulus of soil water mixture with zero effective stress

Ks : bulk modulus of skeleton

K¢ : bulk modulus of pore fluid

Ms. : constrained modulus of skeleton

p : bulk mass density of mixture

Pd : dry density of skeileton

Pf : fluid mass density

Pq : mass density of solid grains

nq : mass of solid grains in volume Vi

Vg : total skeleton volume

Tf : unit weight of the pore fluid

r : mass increment factor (approximation of Biot's fluid viscosity
parameter)

B¢ : Ward's fluid friction coefficient for turbulent flow

B,y : parameters in Newmark's 8 numerical time integration method

0 : parameter in Wilson's 9 numerical time integration method

8ij : Kronecker's delta

[My]  : Mass Matrix

(Ky] : tangent skeleton stiffness matrix

(€] : coupling matrix between solid skeleton and pore fluid

{E] : pore fluid compressibility matrix

[H] : fluid friction energy dissipation matrix

{F}) : nodal force vector
{R} : internal resistance force vector
(5) : equivalent boundary flow vector

2.2.2 Field Equations

Effective Stress Law

Terzaghi's effective stress equation is fundamental to the development of
the fully coupled model. It relates the total applied stress, g, to the pore
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pressure, n, and the effective stress, ¢', according to

Oij = 0'4y + & (2-1)
where oij = total stress
0';; = effective stress
85j = Kronecker's delta

Gij =0 if i #j
6ij =1 if 1= j

Constitutive Equation for Skeleton Deformation

The deformation of the porous skeleton is related to the applied effec-
tive stress and the pore pressure acting on the solid grains. The stress-
strain relationship is given by

Edo'} = [0®P] ({de} - gﬂ {I}dn)-l (2-2)

The last term in Equation 2-2 is the strain in the skeleton resulting from
compression of the solid grains by the pore pressure.

Continuity Equation of Pore Fluid Flow

The continuity equation for pore fluid flow is derived from mass conser-
vation relationships. The volumetric strain of the pore fluid, €¢, is given
by

de¢ = - g%ﬁ = C¢ dn (2-3)

where C¢ = pore fluid compressibility
n = pore fluid pressure
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_ _deg . Cg  gor i
deg = 559 = Cg dr + Igﬁ dp (2-4)

where Cg

p!

bulk compressibility of solid grains

effective mean pressure

The dry density, pq, is given by

Pd = 3% = (1 - n)pg (2-5)

where mg is the mass of the solid grains in skeleton volume Vy. The change in
dry density is given by

dpd = -pq dey (2-6)

where ey = is the volumetric strain of the skeleton., Differentiating
Equation 2-5 with respect to n and pg aives

dpd = (1 - n) dpg - pgdn (2-7)

Equating 2-6 and 2-7 yields

dey = P - g£a (2-8)

9

Conservation of mass for the pore fluid within a specified initial volume
of saturated porous material is given by

npg Vg = n Bf Vt (2-9)

where as illustrated in Figure 2.1, the terms to the left of the equal sign
represent the fluid mass under the initiul conditions and the terms to the
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right represent the same fluid mass under deformed conditions. Equation 2-9
may be expressed in infinitesimal incremental form as

npeVy = (n + dn)(pg + dpg) (1 + dep) Vi (2-10)
where
€g = volumetric diffusion of pore fluid as depicted in Figure 2.1.

Solving Equation 2-10 for deg and discarding second order terms yields

dep = - 90 . 90f (2-11)

Equation 2-11 is combined with Equation-2-8 by elimination of dn to yield
(1 - n)dey + ndep + (1 - n) 24 4 o 90F o g (2-12)
[ Pf
Combining Equations 2-3 and 2-4 with 2-12 gives
n(deg ~ dey) + dey - é; dn - Cgdp’ = 0 (2-13)

where Kp is the bulk modulus of the solid/fluid mixture which is expressed by

1 -
Kp = nCe¢ + (1 = n)Cq (2-14)

The change in effective mean pressuire is given by
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dp' = Kg (dey - Cqdm) (2-15)

Substituting Equation 2-15 into 2-13 gives

n(deg - dey) + (1 = CgKg) dey + (CqZKg - %;) dn=0] (2-16a)

ng Cq _
or | n(des - dey) = (a - —§~{1}T[D°P]{1l) dr - ({1]T - 3~{IIT[039]) {de}

(2-16b)

Equation of Motion for the Bulk Mixture

The differential equation of motion governing the bulk mixture is
expressed by equating the stress gradient to the inertial resistance as

%j,j = (1 - nlpg Uy + npg Uy (2-17)

744, is the total stress gradient applied to an infinitesimal element
of saturated material at some given time. @yj,;j is expressed in tensor
notation and represents the stress gradient in each of thres mutually perpen-

dicular coordinates (e.g. see Mendleson, 1968). For instance, in the x
direction,

ag
L KX Xy Mz - N Y -
Oyj,j ® 3 v 3y v 5, ° {1 - n)pguy + ngg Uy {2-18)

The term (1 - n)pg is the mass of the soil skeleton per unit voluse of
saturated waterial, where n is the porosity and gy is the mass density of the
solid grains. u; is the displacement of the skeleton in the i direction and

Uj 15 the acceleration of the skeleton in the i direction. The term npg is the




mass of pore fluid per unit volume of saturated material where p¢ is the mass
density of the pore fluid. Ui is the absolute displacement of the pore fluid
in the i direction.

The bulk mass density of the saturated material, p, is given by

p=(1-n)pg + np¢ (2-19)

Substitution of the value for {1 - n)pg from Equation 2-19 into Equation 2-17
gives

9ij,; = (p - npg)iiy + npsl; (2-20)

A term w; is introduced which is the apparent ¥luid displacement in the i
direction relative to the soil skeleton and is given by

wi = n(Uy - uy) ' (2-21)

In seepage prablems, w;, is referred to as the discharge displacement. It
describes the discharge of fluid through a soil mass of unit area. Ths
discharge velocity, or apparent relative velocity, w;, between the soil par-
ticles and pore water is the velocity of water in a discharge duct of unit
area needed to maintain the sctual relative velocity in the porous soil of the
same uhit area. The actual relative velocity between the skeleton ang the
pore water is given by wi/n. Finally, w; is the apparent relative accejera-
tion Letwedn the soil skeleton and pore water given by

wy = n(ls - i) (2-22)

EqQuution 2-20 can be expressed in terms of the apparant relative fluid acce-
leration as siaply
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%ij,j = pl; + pewy (2-23)

Equation of Motion for Pore Fluid

Over the past several years our equation describing the motion of the
pere fluid relative to the skeleton has undergone several evolutionary revi-
sions. The original version, described by Kim and Blouin, 1984, utilized an
approximation to Biot's fluid friction equations given by

mog = pgly + B Wy TE G+ BEr il (2-24)

g, s’ o, v’

Inertial Frictional
Compcnents Components
where Ty = pore pressure gradient

iy = absolute skeleton acceleration

w; = apparent fluid velocity relative to the
skelaton

w; = apparent fluid acceleration relative to
the skeleton

4]

p¢ = pore fluid mass density
y¢ = unit weight of the pore fluid

n = porosity

]

k = Darcy's coefricient of permeability
r = mass increment factor

The first two terms to the right of the equal sign, the inertial com-
ponents, represent the portion of the pressure gradient resulting from acce-
leration or deceleration of the pore fluid. The last two terms represent the
portion of the pore pressure gradient due to fluid friction associated with
the relative motion between the pore fluid and solid skeleton. The two fluid
friction terms are based on Biot's work and are proportional to the relative

" . 5 N A L L H TNy - PR
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fluid velocity and acceleration, respectively. The first friction term is
identical tc Darcy's law for steady state flow conditions. The second fric-

tion term is a generalization of Biot's frequency dependent friction term.

Biot expressed the pore pressure gradient, x,, as
m.q = pely + D4 (2-25)

where p¢l; is the inertial force per unit volume of pore fluid and D; repre-
sents the viscous friction force between the pore fluid and the soil skeleton
per unit volume of pore fluid. Solving Equation 2-22 for Ui and substitution
into Equation 2-25 gives

oy o= BE Wy ¢ pgly ¢ 0y (2-26)

Biot showed that the viscous friction term, D;, is a function of the
excitation frequency, w, the pore geometry, the dynamic viscosity, i, ard the
apparent relative velocity between the pore fluid and the skeleton, Qi. In an
actual soil the flow of pore water would follow very complicated paths which
are difficult to describe. These flow paths would involve numerous variations
in direction and in cross sectional area. Biot employed models of the flow
paths which are gross simplifications of the actual paths. He assumed two
simple flow geometries; flow through a series of parallel circular ducts and
flow through a series of parallel flat ducts., Flow conditions in the flat
duct are depicted schematically in Figure 2.2.

For dynamic laminar flow, Biot (1956) derived the exact expression for
the viscous friction term, D;, for both circular and flat ducts which is given
by

0y = yfﬁéﬁl Y (2-27)
where y¢ is the unit weight of pore fluid, F(x) is the viscous friction

correction factor, and k is the coefficiant of permeability, Ff{k) is a
complex function given by
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F(k) = fy{k) + i fa(k) (2-28)

The magnitudes of the real part, fy(x), and imaginary part, fp(x), are plotted
in Figure 2.3 as a function of nondimensional parameter, k, which is defined
as

k=P Ko (2-29)

%
where Ko = (EQE) w K (2-30)

In Equations 2-29 and 2-30, g is the gravitational acceleration, w is the
excitation frequency, and the factor, r, is the constant which is dependent on
the shape of the flow path. For Generalized Darcy's Flow (also called
Poiseuille Flow), fi(x) and fa(k) are independent of k and r=0. For the
circular duct, r is unity. And for the flat duct, the value of r is approxi-
mately equal to ¥273.

An approximation of Equation 2-27 was developed by Kim and B8louin (1984)
and is given by

Dy = éﬁ by o+ %ﬁ r oWy (2-31)
where 7§ = unit weight of pore fluid

= epirical mass increment factor which treats
the dynamic fluid friction as though it
was an increase in inertial mass of r

The theoretical value of r is 1/3 for the circular duct and 1/6 for the flat
duct, Equation 2-31 is a good approximation when the nondimensional para-
meter, k, is lass than 2.
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Substitution of Equation 2-31 into Equation 2-26 gives

mq o= B8 (14 r) Wy o+ ogiiy + XE Wy (2-32)

which has been rewritten as Equation 2-24 to separate the frictional terms
from inertial terms.

In order to better understand the influence of Biot's dynamic frictional
resistance the normalized relative flow velocity distribution in a flat duct
given by Biot (1956) is plotted in Figure 2.4 as a function of the fluid
viscosity and excitation frequency. The shape of the velocity profile is a
function of the nondimensional parameter B8 which is defined as

8= ay /g— (2-33)

where aq = half height of flat duct
w = excitation frequency
v = kinematic viscosity

Figure 2.4 illustrates the influence of excitation frequency on the shape
of the flow velocity distribution in the flat duct for a constant fluid visco-
sity. For low excitation frequencies the distribution is parabolic, the same as
that for steady state laminar flow. As the excitation frequency increases,
the velocity distribution is pinched toward the center of the duct, indicating
widening static boundary layers along the duct walls,

The next addition to the equation of motion for the pore fluid was an
additional term to account for frictional energy losses during turbulent flow
conditions. Figure 2.5 shows theoretical velocity distributions in a flat
duct in both the laminar and turbulent flow regimes. Laminar flow occurs at
Reynolds numuers of less than 2000. For steady state laminar flow the velocity
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distribution is parabolic about the center of the duct (Pouiseuille flow). For
nonsteady state flow, Biot's theoretical analysis indicates a change in the
flow velocity profile such as sown in Figure 2.4 and 2.5. In this flow state
fluid friction increases, but flow remains laminar.

When the Reynolds number is greater than approximately 2000, the flow
becomes turbulent with a velocity distribution in the direction of flow simi-
lar to that shown in Figure 2.5, where there is a very sharp velocity gradient
adjacent to the duct walls. The flow lines in the turbuient regime are no

longer parallel and there are random particle motions transverse to the direc-
tion of flow.

As described in Section 6, we have experimentally verified a generalized
turbulent flow relationship of the form

M5 = awy + b}‘l-iz + CWy + pely (2-34)

where m,y = pore pressure gradient

wq = apparent flow velocity relative to the
solid skeleton

Wi = apparent relative pore fluid acceleration

a,b & ¢ = flow parameters which are a function of microscale

parameters including pore sizes and geometries,
overall porosity, viscosity, etc.

p¢ = fluid mass density

U; = skeleton acceleration
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In the laminar flow regime the parameters in Equation 2-34 are given by

= If

R

b =0 (2-35)
= Pt

c = {1+r) o

"

where y¢ = fluid unit weight

pf = fluid mass density

x
1}

coefficient of permeability

-
]

mass increment factor which approximates
the influence of excitation frequency

(r = 1/5 for flat ducts and

r = 1/3 for circular ducts)

In the turbulent flow regime the flow parameters of Equation 2-34 are
given by

a"‘r
B¢ -
bam > (2-36)
= Pf
¢ = - /
where B¢ = Ward's turbulent flow constant which is

a function of the pore geometry and pore fluid
viscosity and which is determined experiment-
ally from steady state turbulent flow tests
(see Kim, Blouin and Timian, 1967).

Note that in the tu,bulent regime the random transverse particle motions
result in elimination of the mass increment factor r from the flow parameter
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Cc. Section 6 presents validation of Equation 2-36 for flow in a flat duct
with velocities up to 4000 in/s and fluid accelerations to nearly 1000 g's.
Flow parameters a and b have alsc been validated for steady state turbulent
flow in porous soils.

The experimental results in Section 6, along with the previous experimen-
tal work (Kim, Blouin and Timian, 1986 and 1987), demonstrate that the tur-
bulent pore water flow regime will dominate the fluid friction response i’
explosive loadings of saturated soils and rocks at stress levels of interest
to civil engineering problems. Turbulent flow develops nearly simultaneously
with arrival of the dynamic stress wave from an adjacent explosion. Laminar
(or Darcy) flow is relevant only at late times after passage of the dynamic
stress waves. The experimental and theoretical results demonstrate that
Biot's theoretical work (1956, 1962A, 1962B), which is used by some investiga-
tors to describe transient flow, is not applicable in the turbulent flow
regime. ’

Partial Saturation

In numercus geologic sattings the soil or rock is not fully saturated.
Rischbieter et al. (1977) demonstrated that even a minute amount of entrapped
air drastically alters the pote pressure response in multiphase pérous
materials. Thus, a complete treatment of multiphase media should include the
capability of calculating stress wave propagatfon‘and pore fiuid response in
three-phase porous matarials. '

Kim (1982) developed a unigue formulstion for the compressibility of the
air-water mixture in partially saturated porous media. This formulation has
been extensively applied in quasi-~static problems and verified against experi-
mental data,

The compressibility, Cuy, of thy air-water mixture in partially saturated
media is given by
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Caw = (1 - Sp + HcSg) GL:Q-T_)? (2-37)

where So = initial degree of saturation
He = coefficient of solubility (Henry's constant)
Tao = initial pore air pressure (absolute)
T = current pore water pressure (absolute)
T = pressure difference between the air and pore
water due to surface tension

As indicated by Equation 2-37, the compressibility of the air-water mixture is
nonlinear with respect to the current pore water pressure. This relationship
has been shown to be applicable when the degree of pore water saturation is
above approximately 85%, and the air water mixture is thought to exist in an
occluded state with the air contained as small bubbles within the pore fluid,

The pressure difference, T, in Equation 2-37 is determined experimentally
from undrained hydrostatic tests on partially saturated samples with a known
degree of saturation (Kim, 1982).

The treatment of partially saturated materials utilizes the same flow
field equations as described in the preceding discussion. However, the
compressibility of the pore fluid, C¢, is given by Equation 2-37. In other
words, the porous skeleton is assumed to be filled with an equivalent fluid
which has the same compressibility as the air-water mixture.

At some value of pore fluid pressure the air bubbles undergo a complete
collapse and the compressibility of the air-water mixture becomes approxima-
tely equal to the compressibility of the pore water.

Summary of Field Equations

A summary of all the field equations implemented in MPDAP includes:
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1, Effective Stress Law,

gij = O"U- * 65w (2-1)

2. Skeleton Deformation Relationship,

(do') = [0°P] ((de) - 39 (1}dn) (2-2)

3. Pore Fluid Continuity Equation,

1
n{deg - dey) + (1 = CqKe) dey + (Cq2Ke - =) dm = 0 (2-16)
F v ghs v ( g Rs Kn
4. Bulk Mixture Motion,
gij,j = (p - npgluy + npr-i (2-20)
5. Pore Fluid Relative Motion,
M4 = aWg + b2 + ciNy + peliy (2-34)

where as=s %ﬁ

and b=0

24

L]
{}

= i
(1+r) =L

for laminar flow conditions, and

= Bf
b=

= Pf
Rl

for turbulent flow conditions
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6. Partial Saturation
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Conservation of Fluid Mass

npg V¢ =2 n' pf' V!

Ve = apparent fluid volume before -compression

Ve¢' = (1 + €f) Vy: apparent fluid volume after compression
€y = volumetric strain of porous skeleton

eF = volumetric diffusion of pore fluid

Before Compression After Compression

Figure 2.1. Schematic illustration of conservation of pore
fluid mass in saturated porous materials.
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Figure 2.2 Schematic view of fluid flow in a flat duct.
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Figure &.3. Viscous friction correction factor, f(x), as a function of x.
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SECTION 3

DYNAMIC MULTIPHASE FINITE ELEMENT FORMULATIONS FOR MPDAP

3.1 INTRODUCTION

The field equations in Section 2 represent the fundamental governing
equations for an infinitesimal element of saturated porous medium. Using the
finite element method, the values of the field variables at any point within
the element can be computed from the element nodal values. Global equilibrium
equations for specified boundary conditions can then be derived by applying
the principles of virtual work. These global equations are incorporated into
MPOAP as described in this section.

As noted in the previous section, pore pressure at the element nodes is
used to compute pore pressure gradients, which are in turn used to compute the
relative flow of the pore fluid. This approach is used in place of the more
conventional technique whereby relative fluid displacement vectors are defined
at each element node. This eliminates one degree of freedom per node in two-
dimensional calculations and two degrees of freedom per node in three-
dimensional calculations, resulting in large reductions in running time and
storage requirements.

3.2 SPATIAL DISCRETIZATION

Within each element, field variables can be expressed in terms of the
elemerit nodal values using the assumed shape functions.

{u} = [N] {me

{e} = {B] ‘0,9
(3-1)

m = <G> [ﬂ}e

(w51 = [A) (r)q

where the above notation is described in Section 2.2.1.




3.3 INCREMENTAL FORM OF TOTAL STRESS VECTOR
The total stress vector at time step n can be expressed as
{on) = {on-1} + {aa'p} + {1} amy (3-2)

Substitution of Equation 2-2 into Equation 3-2 yields

lon} = lon-1} + [0%P]then} + (1) - 52 [ooP] {1} amy (3-3)

3.4 APPROXIMATION OF ABSOLUTE FLUID MOTION

In the previous section, we presented Equation 2-35 describing pore fluid
flow in the laminar regime and Equation 2-36 describing flow in the turbulent
regime. As shown in Section 6, our experimental work demonstrated that pore
fluid transitions rapidly into the turbuient regime under only modest pore
pressure gradients. For practical purposes, in large amplitude dynamic
loadings, any influence of the mass increment factor, r, is completely
obscured by the transition from laminar to turbulent flow.' We, therefore, can
use Equation 2-36 to represent flow in both the laminar and turbulent regimes.

Substituting the flow parameters for Equation 2-36 into Equation 2-34
gives

Moy o= gE g ¢ Of i v BTy v ol (3-4)

Equation 3-4 can be exprassed in the following simple form by using Equations
2-19 and 2-22

Moy s pfly v pr Wy (3-5)
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and
k

k' = v¢ (1 + g{ k% |Wi|) (3-6)

where k'ye is an equivalent permeability applicable in the turbulent flow
regime,

To simplify mathematical derivations, the k' in Eguation 3-6 is evaluated
at time step n-1 and this value is used at time step n. k' is then recomputed
at time step n for use during the next time step, n+l.

For time step n

k's k'n-1 (3-7)

At this point we are ready to express the absolute fluid velocity in
terms of the pore pressure gradient and skeleton displacement. The apparent
fluid velocity, Wi, can be expressed in terms of absolute fluid velocity, Ui,

and skeleton velocity, Ui, by differentiating Equation 2-21 with respect to
time.

Wy = n(Uy - 0§) (3-8)

Substitution of Equation 3-8 into Equation 3-5 yields
pri + ﬁ—; l‘li‘ BN, + fa—; 'R (3-9)
By defining the above fluid flow equation at time step n-k,

pfu“n'k + -ET O.in'li = n":""l‘ * !'k"'," ﬁin'l‘ (3-10)

The field variable at time step n-% can be approximated by the field variables
at time steps n-1 and n as: follows;
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U'i n"‘ =
Uin-k = K (Uin + ﬁin-l)
m,i"% = % (7,50 + @, 0

a7+ L (augmy

(3-11a)

(3-11b)

(3-11c)

(3-11d)

Substituting Equation 3-11 into Equation 3-10 and solving for the absolute

fluid velocity at time step n, we gbtain

Qin = ay Qin-l +ag (m,""len, M+ ag AugN

where

2k'pg - n At \

315..........._.........._...,...
2'pg + n At

ag = kLAt ,

2k'pg + n At

_2n
K'pg + n At }

43 =

(3-12)

(3-13)

Now combining Equations 3-11b, 3-1lc, 3-11d, 3-12, and 3-10 and s0lving for

the absolute fluid acceleration at time step n-%, we obtain

pfu‘n-k = ag 0‘«""1 + ag (Wr'in-l + “oiﬂ) + ag AUin
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where

ag = -5% (1+aq) )
ag = % (1 - 7 ag) > (3-15)
n At

aezm(l-z—aa) )

At this point, we have defined the motion of the pore fluid in terms of
the pore pressure gradients and skeleton motion and can determine all aspects
of the skeleton and pore fluid behavior. We are now ready to derive the
globa) equilibrium equations for the bulk mixture and the pore fluid.

3.5 GLOBAL EQUILIBRIUM EQUATION FOR THE.BULK NEDIUM

Shown schematically in Figure 3.1 are the total stresses and virtual
displacements on the boundary of an infinitesimal element. The total stresses
are in equilibrium with the applied boundary tractions. Taking the solid
skeleton movement as the virtual displacement, 6uy, the internal and external

virtual work must be equal. The internal virtua)l work at time step n (t = tp)
is given by

oWy = Ivlae}T(an) dv {3-16)

Substituting Equations 3-1 and 3-3 into Equation 3-16,
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sWp = {&a}T {(2 jV[B]T[DeP][B]dv){Aﬁ}n (3-17)
+ (Z J (817({1} - gﬂ foery{1}) <G>dv){Aﬁ}n
\"

. [V[B]T{an_l} dv]

LS
The external virtual work at time step n is given by

Wg -Iv{au}T{FI}n + [ {6u}T{T}, ds (3-18)

s

{aﬁ}T[-(Z j 1T (p = npg) IN] &) (i}
v

(T [, 00 nogl0ln o) + 1 | Ty as ]

S

The absolute fluid acceleration term in Equation 3-18 can be explicitly
expressed using the approximate relationships in Equation 3-14.

L[ N7 0 g (Ul av o (Reslnety (3-19)

where

(Reatn-1% = 2 Iv[NlTn (aa {O}n-2 + a5 ({n/iln-2 + {mii)n-1) + 26 {Bu}n-y )dV

(3-20)

Substituting Equation 3-19 into 3-18,
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oW = {6u)T [-(X IV[N]T (p-npg) [N]av ){5}n

(3-21)
= (ealnegg + (T [, NT(7)0 os) |
Since internal and external virtual work are equal,
oWy = OWg (3-22)

Now, global equilibrium equations for the bulk mixture are obtained by substi-
tuting Equations 3-17 and 3-21 into Equation 3-22.

M (T}, + [Kelfan}y + [cl{aR}y = {Pyln (3-23)

where

{Pu}n = {F}n -1 IV[B]T{‘?n-l} av - {Rfl}n-lk

(M = 2 IV[N]T(p -np¢) [N] dv

[Kr] = I [ (817[D€P](B] dv (3-24)
v

, c
ce; =¥ [ (87 ({1] - 32 [0691{1})<G> dv
(A"

(Fly = I [ tNIT{T}, ds
LA

3.6 GLOBAL EQUILIBRIUM EQUATIONS FOR PORE FLUID

Figure 3.2 shows schematically the complementary virtual pore pressures
and skeleton and fluid velocities on the boundary of the infinitesimal
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element. The internal fluid movements relative to the solid skeleton are
compatible with the specified boundary flux. Thus, taking the complementary
virtual stresses as the pore pressure field at a certain time, t, the internal
and external complementary virtual work which is done between time tp_q and tp
must be the same. That is,

oWI* = oWg* (3-25)

where the internal compliementary work is given by

th

th
S* = I I on n Sfep - e) av dt + [ {6m, ;JT{W} av dt  (3-26)
v

th-1 tn-1 [V

and the external complementary work by

th .
SH* = I [ 6 Q ds dt (3-27)
th-1 7

Substitution of Equations 2-16 and 3-5 into Equation 3-26 yields

t Cal .
aHy* = I " l { onT (a - -§~(1}7[D°p]{1})ﬂ dv (3-28)
tn-l v

- T T..Eg 1T ep o d
[ orm (1T - 57 (alTroePa 1) o
.I (6,4} k' {m ;) av
v
- ] {6, ;)T pek’ {U) dv] dt
v

The absolute fluid acceleration term in Equation 3-28 can be explicitly
expressed using Equation 3-14 as follows;
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tn

I J { )7 pekt {0} dv dt = I {om, i} Tk'pe{ii} -1y dv « At (3-29)
tn-1 v

And the third term in Equation 3-28 can be integrated with respect to time as
below;

Itn I {om 1T k' {m 4} av « dt = | {om, )Tk’ (K{Aﬂin + (w1 av - At
tn-1 ‘v

iy \
(3-30)

Now, substituting Equations 3-29 and 3-30 into 3-28 and discretizing by
Equation 3-1, we have the following expression;

Wr* = {om}T [[E]{An}n - [c]T{an},

+ [H] (xAt {ar}, + at {n}nul) (3-31)

-1 IV[A]TK‘ pf {U)p-1x * -dv « At ]

where

(€] =} ]

2
<G>T (a - E§~ {1}T(oap]{1]) <G> dv (3~32)
v

(W) =} ] (AT k'{A) dv

v

For the external complementary virtual work, discretizing Equation 3-27 by
Equation 3~1 yields

tn
oWe* = {67} T [ ] {a) dt] (3-33)
the1
where
Q) =} I <G>T 6 ds (3-34)
S
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Assuming a linear variation of {Q} between time th-1 and t,, Equation 3-33
can be expressed as

oHg* = (o7} T [g—s ({ahp-g + {o;n)] (3-35)

Now, substituting Equations 3-31 and:3-35 into Equation 3-25, the

following global equilibrium equations for the pore fluid are obtained:

(e {agln + (-[€) - 55 141 ) (el = (Paln (3-36)

where

{Prln = at [H]+{R)noy - {Re2dn-gy - 3 (la}n-1 + lo}n) (3-37)

and

{sz}n-lls 2} I (A]Tk'at - ( adia)n-Z (3-38)

+ag ([miyln-z + (miiln-1) + 96 leu}ny ) dv
3.7 CONBINED GLOBAL EQUILIBRIUM EQUATIONS

Equations 3-23 and 3-36 can be combined in the following matrix form;

M {d)g + (K]{ad), = {Pl, (3-39)

where the mass matrix [M] is
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Mg | (o]
M= j----1--- (3-40)
|
(o] | (o]
the stiffness matrix [K] is
l 1
kel 1 [c]
(S O PR
! o
| (c]” |~[E]-§3[MIJ
the force vector (P}, is
- {(Puln
{P’na - - -
{Px)n

the acceleration vector (d, is
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3.8 LINEARIZED GLOBAL EQUILIBRIUH EQUATIONS

Introducing a time integration method which incorporates both Newmark's
B method and Wilson's 6 method, the generalized acceleration vector is
expressed as

{dlp = cy{ad}n + C2{d}n-1 + C3ld}n-1 (3-41)
where
1
Cy =
17 ge3at2
Cp = = =i (3-42)
£02at
.
€3 = 1" 759
and tie generalized velocity vector is expressed as
{d)y = 8y {ad)p * 87 {dlney ¢ 83 {dlp-y (3-43)
where
=d—L-~n
' podat
By = 1 - =iz {3-44)
2 pod

8a = - L
83 1 266 At

Substituting Equation 3-41 into Equation 3-3% and rearranging, we can
tain the following linearized global equilibriuam equations which can be
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coived simultaneousiy at each step:

[R1{ad}, = (ﬁ}n}

~

where the generalized stiffness matrix [K] is

[K] = cyM] + [K]
and the generalized force vector {P}, is
(Bln = (Pl = ] Cpldlny + Caldln-g
3.9 SUMMARY OF GLOBAL EQUILIBRIUM EQUATIONS

A summary of the global equilibrium equations includes:

1. Bulk Mixture Equilibrium

Med {0}, + [Kel{an), + [cl{an}y = {Pylq

2. Pore F1uiq Equilibrium

[c]T{aa}p + -[E] - %ﬁ [H]  {ar}p = (Prln

3. Combined Equilibrium Equation

[K1{ad}, = (B},
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(3-36)
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Figure 3.1, Schematic depiction of total stress and virtual displacement
field in x-direction,
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Figure 3.2. Schematic depiction of relative fluid velocity and complementary
virtral fluid pressure field in x-direction.
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SECTION 4

MPOAP VERIFICATION PROBLEMS

4.1. INTRODUCTION

The formulations described in Section 3 have been implemented in the two-
dimensional multiphase finite element code MPDAP, Features of MPDAP include:

1.

3.

4.

Special configurations to solve plane strain, axi-symmetric and
spherically symmetric problems;

Both decoupled and fully coupled compressibility models. The simpler
decoupled model treats the mixture and skeleton compressibilities
independently (analogous to parallel springs). The fully coupled
model includes the influence of grain compression due to pore pressure
and the influence of effective stresses on the compressibility of the
skeleton (see 8louin and Kim, 1984).

Nonlinear pore water and solid grain compressibility models (Kim,
8louin and Timian, 1°2.).

A variety of availapnle material models describing the drained skeleton
response. These include:

* linear e'astic;

s decoupled noniinear material model which treats volumetric and
deviatoric shear response as independent (i.e. no dilatency)

( Kim, Blouin and Timian, 1986);

* elasto-plastic material model with a nonlinear strength envelope
(models dilatency with an associated flow rule (Kim, Blouin and
Timian, 1986); and

o ARA three invarient plasticity model with strain hardening and
softening (models dilatency with a nonassociated flow rule)
{Merkle and Dass, 1986).

. Single phase, two~phase (fully saturated) and three phase (partially

saturated) capability;
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6. Static, dynamic and quasi-static (consolidat.on) capability;
7. Calcutation efficiency features including:

¢ a single point stress calculational technique for rapid computation
of stresses, strains, and nonlinear constitutive properties (Kim,
Blouin and Timian, 1986); and

¢ use of pore pressure at nodal points to efficiently cempute relative
pore fluid motions;

8. Nonlinear fluid friction model for both laminar and turbulent pore
fluid flow conditions.

A users manual for MPDAP is included in Appendix A, This describes
available options and input format.

In this section, we describe four problems used in the initial verifica-
tion of NPDAP to check both the theoretical formulations and their numerical
implementation. These include:

1. an undrained compressibility problem;
2. spherical wave propagation in an elastic single phase material;
3. a linear quasi-static consolidation problem;

4, two phase wave propagation in saturated s0il and rock having linear
elastic skeletons.

In these problems, the NPDAP calculations are compared with closed form
solutions and/or numerical solutions generated with the code TPDAPII. TPDAPLI
is our previous two phase code, described by Kim, Blouin and Timian (1986),
which does not have most of the advanced features incorporated into NPDAP.
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4.2. VERIFICATION PROBLEM 1, CONSTRAINED COMPRESSIBILITY OF UNDRAINED

SATURATED GRANULAR SOILS.

The first verification problem is to demonstrate analytically that the
MPDAP formulations in Section 3 degenerate to the fully coupled solution
(Blouin and Kim, 1984) for undrained uniaxial strain loadings as schematically
shown in Figure 4.1.

To simplify the analytical derivation, three degrees of freedom are
introduced; the first degree of freedom represents the solid skeleton
displacement and the second and third degrees of freedom represent pore fluid
pressures. Under uniaxial strain static undrained loading conditions, the
general MPDAP formulation (Equation 3-39) degenerates to the following simple

equation:
| )
kel | [c] {40} {Py]
IR RIEEE ~"--‘>a (4-1)
©F | -l (an) (py)
L ’

X
Hg I ‘53 l -%a uy Oy
U .- - -
1 1 1
0 | e’ | -0 mpemg \ © o\ (8-2)
T | - - - R - -
1 1 1
R "s=" 0
where
a =1-5%s " (4-3)
Kg
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e
i
I
¥

Ks (4-4)
Kn  Kg?

Mg = constrained modulus of skeleton
uy = skeleton displacement
ng = pore fluid pressure

oy = applied total stress

Solving Equation 4-2 for the pore fluid pressure, we have

1
Ko = Oy —
a+ —"au Ms (4-5)

Substitution of Equation 4-3 and 4-4 into 4-5 yields

1
~Rg = Oy -i—-:-E;* . (4-6)
where
2 . ¢ -
By = Kg%Ms ¢ KmKs? - MgKaKg - KgKnKg (4=7)
Kakg(Kg - )

Equation 4-6 is identical to the closed form solution derived by 8louin and
Kim (1984).

4.3. VERIFICATION PROBLEN 2, ELASTIC SPHERICAL WAVE PROPAGATION IN A SINGLE
PHASE REDIUNM.

The purpose of this verification problem is to check the global
equilibriua equations for the bulk mixture (Equation 3-23) in the one-
dimensional spherical coordinate system when the pore fluid is not present.

Figure 4.2 shows a 12 inch hollow spherical hole in an infinite elastic
wedium subjected to a 100 psi internai step load. Material properties and
time-steps used for the calculations are included in Figure 4.2. In Figure
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4.3, radial stress profiles at 5.5 msec are plotted. The MPDAP calculations
give good agreement with the closed form solution except for some smearing of
stresses at the shock wave front. This smearing could be minimized by
reducing the element and time step sizes.

4.4. VERIFICATION PROBLEM 3, ONE-DIMENSIONAL LINEAR CONSOLIDATION.

This verification problem is used to check the quasi-static flow portion
of the MPDAP formulations against Terzaghi's closed form consolidation solu-
tion.

A fully saturated soil deposit is assumed to overlay a rigid impermeable
base. The soil deposit is subjected to a step loading at the ground surface,
which is assumed to be a free-draining boundary. The initial excess pore
pressure distribution is assumed to be constant throughout the deposit.

Twenty equally spaced 4-node eiements are used with a non-dimensional time
increment factor AT = 0.005. Plotted in Figure 4,4 is the profile of the nor-
malized excess pore water pressure at t%he factor T = 0.5, at which time

about 75% of the excess pore pressure is dissipated on average throughout the
s0i1 deposit, The calculated excess pore water pressures show close agreement
with Terzaghi's exact solution.

4.5, VERIFICATION PROBLEM 4, ONE-DIMENSIONAL WAVE PROPAGATION IN SATURATED

LINEAR ELASTIC SOILS AND ROCKS.

Two series of one-dimensional calculations of a vertically propagating
planar compression wave were perforumed using MPDAP on idealized saturated soi)
and rock. The input loading, as shown in Figure 4.5, was a short rise time
triangular pulse with a peak stress of 5,000 psy and a positive phase duration
of 10 msec. The loading pulse was applied to the saturated sand and rock
having the properties listed in Figure 4.5. The load was applied to an imper-
meable boundary at the ground surface.

Three permeability values were used in each series of calculations on the
two materials, 0,001, 0.1, and 1.0 in/s. Results of the MPDAP calculations
are compared to identical calculations using TPDAPII in Figures 4.6 through
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4.8 for the rock and 4.9 through 4.11 for the soil. Each series of calcula-
tions compares pore pressure and effective stress profiles from the TPDAPII
and MPDAP calculations at times of 10 msec and 20 msec after application of
the boundary stress. Each figure (parts a through d) shows the profiles for
one of the three assumed permeabilities. The decoupled compressibility option
in MPDAP was used because TPDAPII does not have a fully coupled compressibi-
lity model.

Overall, the comparisons between the two sets of calculations is
excellent. As would be expected, effective stresses in the soil are very
small compared to the pore pressures because of the high compressibility of
the soil skeleton. The effective stresses in the rock are higher than the
pore pressures because the rock skeleton is stiffer than the solid grain-pore
water mixture.

The only major discrepancy occurred in the highest permeability soil
calculations shown in Figure 4.11. In the MPDAP calculation, both pore
pressure and effective stress profiles showed high frequency oscillations,
These are believed to occur because of the high contrast between the soft ske-
Teton stiffness and the stiff bulk mixture modulus. The high permeability, in
effect, creates an even higher contrast between these two. Further analysis
will be required to better define and correct this problem. For practical

values of permeabilities {less than 0.1 in/s), the oscillations are not a
problem.

The high frequency oscillations in some of the calculations at the imper-
meable ground surface may be associated with waves of the second kind. They
occur in both the MPDAP and TPDAPIX calculations and are most noticeable at
the highest permeability, as would be expected for waves of the second kind.
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Figure 4.2. Verification probiem 2, elastic spherical wave propagation
in one-phase medium.
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SECTION 5

NUMERICAL AND THEORETICAL TREATMENT OF WAVES
OF THE FIRST AND SECOND KIND

5.1. INTRODUCTION

Kim, Blouin and Timian (1987) presented both a theoretical and numerical
treatment of wave propagation and damping in saturated porous media. In
Section 4 of that report, a closed form solution for wave propagation velocity
and damping in fully saturated porous media having elastic skeleton properties
was derijved for a fully coupled model with linearly compressible solid grains
and pore water. This solution demonstrated the existence of two types of
compression waves, termed waves of the first and second kinds. It also pro-
vided a means of benchmarking and verifying multiphase code calculations and a
means of planning and guiding a further investigation of these two types of
waves using our finite element two-phase codes.

During the past year, we have expanded on this initial study. We per-
formed a numerical investigation of waves of the second kind in saturated
porous rock to determine some of the characteristic properties of waves of
the second kind. In addition, the method of characteristics was used to
verify and expand our previous theoretical derivation for a general, rather
than a harmonic, loading function. Results of these numerical and theoretical
~ studies are described in this section.

5.2. NUMERICAL CALCULATIONS OF WAVES OF THE FIRST AND SECOND KIND

The general theoretical solution for compressional wavespeeds and damping
was incorporated into the numerical code TWAVE, described by Kim, Blouin and
Timian (1987). TWAVE was used in a perametric study of the influence of exci-
tation frequency and ‘-ariations in material properties on propagation velocity
and damping. Compressional wave velocity for waves of the first Kind, as
shown in Figure 5.1, was found to vary as a function of the frequency-
permeability product, with a zone where wavespeed transitions from a lower
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bound value to a higher bound value with increasing values of the product.
Damping is seen to be at a maximum where the rate of change in wavespeed 1is
greatest. As shown in Figure 5.2, waves of the second kind also have & tran-
sition in wavespeed from near zero at low values of tne frequency-permeability
product to an upper bound value at higher values of the product.

These theoretical predictions were also observed in a set of numerical
calculations performed by TPOAPII. A series of 3 one-dimensional calcula-
tions, similar to those described in Section 4.5, for a vertically propagatina
planar compression wave were performed for three different permeabilities.
Permeabilities were selected sc that the frequency-permeability product fell
in the lower bound, upper bound and transitional wavespeed regimes. The input
loading was the same ss described in Figure 4.5 and consisted of a short rise
time triangular pulse with a peak stress of 5,000 psi and a positive phase
duration of 10 msec. The loading pulse was applied to saturated soil having
the properties also listed in Figure 4.5. Snapshots of the pore water
pressure profiles at four different times, from 10 to 40 msec, ore showh in
Figure 5.3, Three calculations are shown for permeabilities of (.001, 0.1 and
10 in/s.

The trends in these calculations are similar to those predicted from the
TWAVE closed form solution. The wavespeed increases substantially with
increasing permeability, For the lowest permeability, the velocity of the
wavefront is about 5300 ft/s and for the highest permeability, it is about
5900 ft/i5. The wavespeed computed for this material according to the decoupled
undrained modulus described by Blouin and Kim (1984) is about 5200 ft/s which
agrees very well with the low permeability calculation,

There is a dramatic alteration of the wave shape for the intermediate
permneability calculation. The wavefront is smeared and the amplitude is
significantly attenvated relative tu the calculations in the less permeable
and in the more permeable materials. This is a clear indication that excess
damping occurs in the transition region hetween the lower bound and upper
bound wavespeeds, as predicted by the TWAVE closed form solution.
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An additional calculation was performed using TPDAPII which was tailored
to highlight the phenomenology associated with compressional waves of the
second kind, In order to accentuate the wave of the second kind, a permeabie
rock skeleton was used having properties listed in Figure 5.4, The saturated
rock was loaded with a downward sinusoidal pressure pulse having a peak
pressure of 5000 psi and a frequency of 50 Hz and a half sine duration.
Figure 5.4a (Kim and Blouin) shows the pore pressure prefiles for both the
waves of the first and second kinds at 20 msec. The pore water is in
compression in both instances, with the lower amplitude wave of the second
Kind lagging well behind the wave of the first kind. The effective stress in
the rock skeleton, shown in Figure 5.4b is in compression in the wave of the
first kind, but in tension in the wava of the sscond kind. The combined wave-
forms are shown in Figure 5.4c whare it is obvious that the compressional
stresses in the pore water of the second wave are balanced by the tensile
stresses in the porous skeleton.

Examination of the TPDAPII output for the pore water and skeleton motion
shows that in the wave of the first kind, both the pore water and skeleton are
moving in the direction of the wave propagation and are both in compression,
However, in the wave of the second kind, the motion of the skeleton and pore
water are out of phase. The pore water {s in compression and is moving in the
direction of the wave propagation. The skeleton is in tension and is moving
opposite of the direction of propagation. Thus, waves of the second Kind
appear to consist of a surge of pore water moving through the porous skeleton.
It would be very desirable to obtain experimental verification of the waves of
the second kind, as well as verification of the dependence of wavespeed for -
waves of the first kind on the frequency-permeability product.

5.3. THEORETICAL DERIVATION OF FIRST AND SECOND KIND WAVESPEEDS BY THE METKOD
OF CHARACTERIZATION

5.3.1. Introduction

Kim, Blouin and Timian's (19887) derivation of wmavespeed and damping for
waves of the first and second kind utilized a harmonic excitation function,
In order vo further verify the theoretical existence of waves of the second
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kind, we have developed an alternate derivation using the method of charac-
teristics which doesn't rely on a harmonic excitation function. This solution
confirms the existence of waves of the second Kind in saturated porous media
Wwith no fluid friction damping. The wavespeeds obtained in this solution are
identical to the upper bound wavespeeds from the more general 1987 soluticn
where the frequency-permeability product tends toward infinity,

5.3.2. Derivation of Wave Propagation in Saturated Media

The four governing field equations for uniaxial strain loading from Kim,
Blouin and Timian (1987) (Equations 4-35, 4-36, 4-40 and 4-46) are:
.he governing differential equilibrium equation for the bulk mixture:
3u, N, 30y

— ¥ pg— - — -
o foo 32 =0 (5-1)

the governing differential equation for motion of the pore fluid:

iy, ¢ pF W, om
pf's"{“ 4 E"“ Wy ¢ ;\“ (1+r) -5-{* - -é—i a (5-2)

the governing differential equation for continuity of flow:

+

Wy Al . 1 an

‘the governing differential equation for the effective stress law:

802 ar aaz
Mg * (1-Cgke)gg - 5 = O (5-4)

NB:. o and n are both positive ih tension

Equaiion 5-1 through 5-4 are four linear, first order, partial differential
equations involving the quantities uy, Wz, 0z, and m, each of which has par-
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tial derivatives with respect to z and t. Since we have eight partial deriva-
tives, but only four equations, we need four more equations, which are:

[

duz-—'a—z— :.+—a-t—dt
. 3wz . N, . (5-6)
Wz =57 92 g ot
90, ] aag, 4 (5-1)
Wzrag e @
and
an an
dn = 37 dz + 3o dt (5-8)

Equations 5-1 thirougit 5-8 can be written in matrix form as follows:

0 0 ) oy ' 0 0 0 ,‘}I.l (" \
0¢ ¥ \ R
0 o¢ 0 iter) 0 ° “1 0 Ver (g
Gty O 1 0 0 0 0 :q’l.'{; a1 0
W, b 0 0 o -1 0 3Gy IR 0
ST
d qt 0 ] 0 0 o o G2 Ty
0 0 & at 0 v 0 ] 9, g4y
0 9 0 0 dx de 0 0 L oay
0 0 0 0 0 0 o 9 " \cu /
L. -
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Equation 5-9 provides a means of determining the eight partial derivatives,
Uz,z» Uz, ¢+ Wz,2/ Wz ¢+ Oz 72/ 07,4, M,z and m 4 at a point, when w, is known
at the point and the differentials di,, dw,, do, and dn are specified in a
given direction

dz = cdt (5-10)

except when the value of ¢ renders the coefficient matrix singular,

For convenience, let

gf(1+r) = a (5-11)
1 - CgKS = b (5-12)
1. -

then the coefficient matrix in Equation 5-9 is

0 p 0] P¢ -1 0 0 0
0 Py 0 a 0 0 -1 0
b 0 1 0 0 0 0 d
Mg 0 0 0 0 -1 0 b
A = (5-14)
cdt dt 0 0 o 0 0 a
0 0 cdt dt 0 0 0 0
0 0 0 0 cdt dt 0 0
0 0 0 a. 0 0 cdt dt
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Multiplying each even column of | A | by ¢, and subtracting it from the previous
column leaves the values of |A| unaltered, so that

—

-c9 P -Cp¢ Pf -1 0 0 0

-Cpg pPf -ca a 0 0 -1 0

b 0 1 0 0 0 -cd d

Mg 0 0 0 c -1 -cb b
[Al= A = (5-15)

0 dt 0 0 0 0 0 0

0 0 0 dt 0 0 0 0

0 0 0 0 0 dt 0 0

0 0 0 0 0 0 0 dt

L —

Using the elements dt in the 5th through. 8th rows as the pivotal elements in a
Laplace expansion yields

-Cp -CpR¢ -1 0
-Co¢ -ca 0 -1
A= (dt)d
b 1 0 ~cd
Mg 0 c -cb
*Cpg *ca +1 +Cp +Cp¢ 0
s (dt)d (+1)] b 1 -cd | ¢(c) | -co¢g ~-ca -1
Mg 0 -cb b 1 -cd
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(1}

(dt)4 [(-czpfb - cladMg + c2ab2 - M)

+ c(c3pad - cpgb + cp - c3pf2d)]

(dt)4 [(pad - pe2d)cd + (-pgb - adMg + ab2 - pgb + p) c2 - Ms}

= -(dt)4 [(prd - pad)cd - (ab? + p - 2psb - adMg) c? + Mg ] (5-16)
If we set
pgd - pad = -d(pa - pgl) = A’ (5-17)
ab2 + p - 2p¢b - adMg = 2B (5-18)
Mg = C (5-19)

then the condition that A vanish, which renders A singular, reduces to:

Alcd - 2Bc2 + C = 0 (5-20)
which means that
B % ¥Be - 4A'C
c2 = ZA' (5'21)

This wavespeed solution is identical to the upper bound wavespeed derived by
Kim, Blouin and Timian (1987) given in Equation 4-111. The plus sign produces
upper bound velocities of waves of the first kind in an undamped medium and

the minus sign produces uppetr bound velocities of waves of the second kind in
an undamped medium.
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As compatibility checks, we consider two cases: where there is no pore

fluid and when there is no skeleton (water only). When there is no pore fluid

P = 0 a=
r=20 b=
Cg=0 d=
p= (1‘n)Pg
and Equation &£-2 reduces to
pc? - Mg
s0 that
22 Ms
c 2
p

0 A' =0

1 2B = ps

0 C = Ms

=0 {5-22)

which is the compressional wavespeed in a single phase dry medium.

When there is no skeleton

n=1

a = pf

b =1
I

d= K¢

and Equation 5-20 reduces to

p¢
(R%czjl Mg = 0

(5-23)
A =0
28 = g; Mg
chs
(5-24)
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so that, besides the trivial solution Mg = 0,

2 = Kf (5-25)
Pf
P which is the compressional wavespeed in a pure fluid.
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SECTION 6

EXPERIMENTAL EVALUATION OF FLUID FLOW IN DUCTS AND SOILS

6.1. INTRODUCTION

As described in Section 2.2.2, the equation of motion of the pore fluid
(Equation 2.34) is one of the four field equations required to describe
multiphase dynamic response. Nearly all previous analysis in this subject
area was hased con, or heavily influenced by, Biot's pioneering theoretical
work on laminar flow (1956, 1962a, 1962b). The experimental findings pre-
sented in this section warrant a move away from Biot's formulation of fluid

friction, simply because turbulent flow is found to govern the fluid friction
equation for the range of pore pressure gradients generated by explosive or
rapid dynamic loadings. The consequences of these experimental findings on
the theoretical work and its implementation in MPDAR are described in Sections
2 and 3.

Two éets of experimental results are presented in this section: a sum-
mary of the steady state and dynamic test results in idealized flat ducts (the
experimental analog to Biot's theoretical formulation) and a set of steady -
state flow data for uniform grained sand over a wide range of flow velocities
and pore pressure gradients.

6.2. DYNANIC FLOW TESTS IN FLAT ODUCTS

In order to conduct the dynamic flow tests on the ducts and granular
s0ils, a device was fabricated for conducting high pressure steady state and
dynamic flow tests on both ducts and soils. This device, shown schematically
in Figure 6.1, is capable of forcing pore fluid through a soil sample or duct
with a pressure difference of up to 5000 psi. Originally, the device was
designed to be operated by a servo-controlled puwp which could produce flow
through the sample at a controlled rate or change in rate. Ouring the past
year, the device was modified to utilize high pressure nitrogen to propel the
piston which forces the pore fluid through the test specimen. In this way,
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higher flow velocities could be generated and very rapid changes in flow could
be created. Through use of a fast acting valve, pressure gradient rise

times as short as 10 msec could be generated. Additional details of this
device are presented by Kim, Blouin and Timian (1987).

Using the gas powered modified permeability device, an additional series
of 11 steady state flow tests were run at high flow velocities of up to 3700

in/s in the flat duct. The flat duct has a height of 0.04 inches, a width of
0.28 inches and a length of 8.71 inches. These data are shown in Figure 6.2

as pressure gradient normalized by the steady state flow velccity plotted ver-
sus the steady state flow velocity. They have been combined with the lower

velocity data from Kim, Blouin and Timian (1987) which were mostly run at less
than 1800 in/s velocity. The original data fit is also a good match to the
higher velocity data. The intercept of the data fit (a = .00Z5) can be used
to compute the coefficient of permeability, k, according to Egquation 2.36 as

k=X (6-1)

as described by Kim, Blouin and Timian (1987). A value of k for kerosene used

in these tests is 11.85 in/s. This compares closely to the analytical value
of 11.92 m/s computed in the above report.

The slope of the fit to the data in Figure 6.2, b, can be used to compute
the turbulent fluid friction coefficient, B¢ from Equation 2-36 as

B¢ = bk (6-2)

For the measure siope of 1.5 x 10~5 1b-$2/inb, a value of B¢ = 5.16 x 105
1b-sl.-5/in8:5 is obtained.

Thus, the steady state flow tests provide us with the first two coef-
ficients )f the general dynamic flow Equation 3-4 which can be rewritten as

122




Moo= Xy e -ﬁ—E Wi2 + pel (6-3)

N s’ R e

Frictional Inertial

Component Component

In order to completely validate the above flow equation, a series of 12

dynamic flow tests were conducted on the flat duct. Representative data from
five of these tests are preéented in Figures 6.3 through 6.7. During these
dynamic tests, a pore pressure gradient is rapidly applied by the piston
driven by the compressed nitrogen. Both the pore pressure gradient and flow
are monitored as functions of time as shown in the measured pressure gradient
and flow displacement plots of part a of Figures 6.3 through 6.7.

From the measured displacement, the fluid velocity and acceleration are
obtained by differentiating with respect to time, as shown in the bottom plot
of part b of Figures 6.3 through 6.7. The velocity profile is then substi-
tuted into Egquation 6-3 to compute the frictional component of the pore
pressure gradient using the previously measured friction coefficients, a and b
of Equations 6-1 and 6-2. This result is expressed in normalized form as the
frictional component of the pressure gradient in the top plot of part b of
Figures 6.3 through 6.7.

Using the measured acceleration from Figures 6.3 through 6.7, part b, the
inertia force from the last term of Equation 6-3 is computed. The normalized
inertial component plus the normalized friction component combine to equal the
normalized pressure gradient of unity shown in the plot of Figures 6.3 through
6.7, part b, The total normalized gradients computed from the velocity and
acceleration data compare to within about 20% with the actual measured
pressure gradients, providing experimental verification of our dynamic pore
fluid flow equation (Equations 6-3 and 3-4).

Both the measured pressure gradient and computed frictional component of
the pressure gradient are normalized by the measured pressure gradient com-
puted from the velocity and acceleration data in Figure 6.3 through 6.7. Note
that during the high early time acceleration, the pressure gradient is
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dominated by the inertial component, and as accelerations diminish, the fric-
tional component (dominated by the second term of Equation 6-3) governs. The
agreement between the measured pressure gradient and that computed from the

velocity and acceleration data is generally within 20% throughout the entire
test »

6.3. FLOW TESTS IN SATURATED UNIFORM GRAINED SOIL

A series of flow tests was conducted on a uniform carbonate sand which
duplicated the test procedures used for the flat duct flow tests. The objec-
tives of these tests were to:

1. measure the fluid friction flow parameters in actual soil samples;

2. determine where the transition from laminar to turbulent flow occurs
in a uniform sand;

3. determine whether Biot's frequency dependent laminar flow parameters
are a significant factor in determining the fluid friction in uniform
sand; and

4. validate the pore fluid flow equation (Equation 6-3) in saturated
soil.

In order to make the appropriate fluid flow measurements in soil, the
flat duct was replaced by a cylindrical soil specimen container having a
diameter of 0,434 inches and a length of 7.5 inches. A uniform grained car-
bonate beach sand (Enewetak beach sand) was obtained by sieving so that all of
the pretest material was retained on a number 40 sieve and had a grain size
ranging trom 0.425 to 0.60 mm. This is the same sand used in the grain
crushing experiments described by Kim, Blouin and Timian (19687), Section 7.
The sample specimens had the following average properties:

dry density, vq = 106.0 1b/ftS
specific gravity, Gg = 2.81 gm/cm¥
porosity, n = 39.5%
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A series of 33 steady state flow tests were run on the uniform beach sand
at apparent fiow velocities ranging from .4 in/s to 100 in/s and pressure gra-
dients ranging from less than 1 psi/inch to about 250 psi/inch. Data from
these tests are presented in Appendix B as apparent flow displacemert and
pressure gradient both plotted as functions of time. These data are sum-
marized in Table 6.1, where the pressure gradient is also normalized by the
absolute flow velocity. Figure 6.8 is a plot of normalized pressure gradient
as a function of the absolute flow velocity. The flow data are conveniently
fit by a linear relationship, indicating that flow is in the turbulent regime
over essentially the entire range of pore pressure gradients. Values of the
intercept, a, of Equation 6-1 and the slope, b, of Equation 6-2 were:

a

1.380 1b-s/ind

b = ,2018 1b-s/in®

From Equation 6-1, with y¢ for kerosene of 0.0291 1b/in3
k = .0211 in/s

and from Equation 6-2,
B¢ = .0293 b-sl.-5/4nd.5

As a check against the steady state test data a conventional constant
head permeability test using water as the pore fluid was conducted on a
cylindrical Enewetak beach sand sample with a length of 5.35 inches and
diameter of 2.50 inches. A value of k = 0.0383 in/s was obtained from this
test. In order to convert the steady state flow data to the equivaient pei-
meabilility for water, the following equation is appiied.

Qkerosene

k 3| tmm———— ] k (6-4)
water ("water ) kerosene

For values of dynamic viscosity of ng = 2.26 x 10~3 Pa-s and
Nw = 1.0 x 10°3 Pa-s, we obtain

ky = 0476
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which is in good agreement with the value measured in the standard per-
meability test.

Note that at the highest apparent fluid velocity attained in the soil
tests (32 in/s), the equivalent permeability k'y¢ from Equation 3-6 is about
15% of Darcy's laminar permeability, k. This sharp reduction in permeability
illustrates the importance of the influence of turbulent flow on fluid friction.

Several attempts were made to perform dynamic tests on Enewetak sand
sampies, similar to those reported in Section 6.2 on the flat duct. However,
since the apparent flow area c¢* the soil sample was more than 13 times that of
the flat duct, we were not able to generate sufficient accelerations in the
pore fluid to make meaningful measurements of the influence of inertia.

In order to make meaningful inertia measurements on the soil samples, two
modifications to the test apparatus are required. First, a faster acting
valve would increase the rate of application of the pore pressure gradient and
second, a direct measurement of flow on Lhe low pressure side of the soil

sample could increase accuracy of the flow measurements by more than an order
of magnitude.
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Table 6.1. Summary of steady state flow through Enewetak Beach Sand.

Test No, Absoiute Pressure m,4/U,4 Pressure
Flow velocity Gradient Level
Ui (in/s) n,{ (psi/in) {psi)
U30As 1.1523 0.66 0.573 5.
u3oss 1,159 0.662 0.571 5.
u3ocs 1.156 0.662 0.573 5.
u3oos 2,198 1.32 0.60 10.
U30E8 2.195 1.32 0.601 10.
U30F8 2.166 1.33 0.614 10.
u3loes 4.90 3.34 0.681 25,
U3oH8 4.93 3.34 0.678 25,
u3o1s 4.93 3.33 0.676 25,
U2308 4,968 3.48 0.7 25,
U23E8 4.83 3.38 0.694 25.
U23F8 4.52 3.33 0.737 25,
v2768 8.16 6.8 0.834 50.
U27Ha 8.0 6.6 0.825 0.
u2r1s 8.09 6.6 0.816 50.
uz108 13,31 13.3 1.0 100.
U27E8 13.4 13.2 0.96 100.
U27F8 13.31 13.3 1.0 100.
U27a8 21.184 268.5 1,25 200.
u2Tes 21.663 26.7 1.238 200.
u27cs 21.372 26.6 1.24 200.
G9F8 21.28 26.5 1.248 200.
u21J8 34.26 53.4 1.559 400.
. u2xe 34.5 §3.6 1.55 400.
u27s 34.5 53.4 1.548 400,
u2oes 49.79 106.4 2.137 800.
vzocs §0.74 106.8 2.108 800.
uzop8 §0.31 106.8 2.12 800.
U21A8 69.0 187.0 2.7 1400.
uz2188 69.0 187.0 2.7 1400.
vaics 67.08 185.0 2.76 1400,
V2448 76.47 225.0 2.98 1690.
U2488 80.5 245.0 3.04 1840,
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SECTICN 7

TWO-PHASE RESPONSE OF SATURATED LIMESTONE

7.1. INTRODUCTION

Applied Research Associates is conducting a series of laboratory tests on
Indiana limestone, under sponsorship of Defense Nuclear Agency. The testing
program was planned to provide data to formulate and validate two-phase models
of the limestone response. In this section, we review these test data in con-
junction with the two-phase modeling formulations we have developed under
AFOSR sponsorship. The Indiana limestone tests provide a data set against
which to evaluate the two-phase model in a much less porous material than we
have previously had available.

In addition, a substantial portion of the Indiana limestone testing has
been performed along nonconventional specified strain paths. These strain
paths are, however, typical of strain paths induced by explosive loadings, and
the resulting stress paths provide test data which will challenge modeling
efforts.

7.2. LIMESTONE PROPERTIES AND TESTING OUTLINE

The limestone selected for these tests was quarried from the Salem
limestone formation by the Elliott Stone Company of Bedford, Indiana. The
Salem limestone is a widely used building stone. Table 7.1 lists typical
index properties of the Salem limestone. The porosity of the limestone
averaged about 13.5%, which is significantly lower than the 36% porosity'of
the typical Enewetak limestones reported in our previous studies. :

Four basic types of tests were run on nominal 2 inch diameter by 4 inch
Tength cylindrical samples of the Salem limestone. These included:

1. Hydrostatic

2. Uniaxial strain

3. Triaxial compress%on at constant confining pressure

4, Specified strain paths following compression under uniaxial strain,
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Both drained and undrained tests with pore pressure measurements were con-
ducted for each test type.

The following subsections highlight the test results and show comparisons
to two-phase test simulations using our two-phase models.

7.3. HYDROSTATIC TESTS

A typical drained hydrostatic compression test is shown in Figure 7.1.
This is actually a composite of several hydrostatic tests to show unload-
reload response. The hydrostat typifies the compression response of the Salem
limestone. There is an initial, nearly linear, portion of the loading curve
which is essentially elastic and has a high modulus. Bulk moduli of 235 kb
are typically measured on the initial part of the loading. At a pressure of
over 1 kb, the cementation begins to break down and the pore space begins to
be crushed out during a much softer portion of the loading curve. The incre-
mental tangential bulk modulus during this portion of the loading is nearly an
order of magnitude softer than the initial modulus. At pressures approaching
4 kb, the limestone begins to show stiffening as approximately half the pore
space has been crushed out. Over the 0 to 4 kb pressure range, the initial
unloading modulus is approximately equal to the initial loading modulus, and
there is a pronounced hook, or heel, as the pressure drops toward zero.

A typical cyclic undrained hydrostatic loading of Salem limestone is
shown in Figures 7.2 through 7.4, The test data are compared to a numerical
simulation computed using an improved version of the code NKOCP described by
Kim, Blouin and Timian, 1987. Ouring the past year, we have modified NKOCP to
include a nonlinear unload capability in addition to the original bilinear
unload. The NKOCP simulation used the porous skeleton properties obtained
from a previous drained test as input. These are combined with our fully
coupled two-phase model as described in Section 2.

Figure 7.2 shows the total pressure as a function of volume strain. The
initial undrained modulus is significantly higher than the drained modulus,
having a value of about 340 kb. Once the sample is loaded beyond the pressure
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at which cementation hreaks down, there is significant hysteresis due to the
nonlinear hysteretic nature of the skeleton. The numerical NKOCP simulation
is an excellent match to the test data.

The effective stress response is shown in Figure 7.3. Note that only
about half the total pressure is carried by the porous skeleton. The hystere-
tic nature of the skeleton is apparent, but liquefaction does not occur during
the unloading as it did in the more porous Enewetak limestone. However, we
would expect liquefaction to occur if the loading had been carried to a
higher pressure. Examination of the drained response in Figure 7.1 indicates
that above an effective pressure of more than 1.5 kb the unload becomes much
more hysteretic which would produce liquefaction in an undrained test,

Future tests will be conducted at higher pressure to validate this prediction.
The agreement betweer. the measured effective stress response and that simu-
lated by the NKOCP model is again excellent.

Figure 7.4 shows the measured and simulated pore pressure response during
the hydrostatic tests. Again, agreement between the two is excellent. There
is an apparent negative hysteresis in the pore pressure response which is a
result of the rapid unloading of the skeleton and resulting rapid release of
compressive strains in the solid grains. This phenomenon is fully explained
by Kim, Blouin and Timian, 1987, and highlighted in Section 1 of this report.

T.4. UNIAXIAL STRAIN TESTS

A typical drained uniaxial strain test is plotted in terms of axial
stress versus axial strain in Figure 7.5, The skeleton response is similar to
that of the hydrostatic drained test (Figure 7.1) but the initial elastic
constrained modulus, M, is correspondingly higher at about 420 kb, The cemen-
tation breaks down at an axial stress between 1.5 and 2 kb and a nearly
linear, but softer portion of the loading occurs as the porosity is crushed
out of the sample. The incremental tangential constrained modulus along this
portion of the lnading, about 50 kb, is nearly an order of magnitude less than
the initial modulus. At an axial stress of about 3.5 kb the skeleton begins
to stiffen as a significant volume of the pores have bean crushed out. The
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initial unloading modulus tends to about equal the initial elastic loading
modulus, for peak axial stresses of less than about 4 kb. At higher peak
stresses, the initial unloading modulus appears to be increasing with
increasing peak axial stress. Also note that the uniaxial unloading cannot be
maintained back to zero axial stress because of plastic strains occurring
during loading of the sample. At some point in the unloading., the axial
stress drops to the confining pressure. In order to continue the unlocad and
maintain no lateral strain, it would be necessary to apply axial expansion to
the samples, a condition which could not be achieved during these tests.

Thus, as noted in Figure 7.5, the last portion of the final unload is actually
hydrostatic, rather than uniaxial.

The relationship between the axial stress and the confining stress during
the drained uniaxial strain test is shown in Figure 7.6. Ouring the initial
elastic loading the apparent Poisson's ratio, v, defined as

AKg . -
Va = TR (7-1)
or
_ Aoy , -

where AK, = the incremental coefficient of lateral earth pressure
40, = incremental change in confining stress
Aoy = incremental change in axial stress

is equal to about 0.25, ODuring the portion of the loading bey¢§$ tre break-
down of cementation, the material responds more nearly hydra%tét%ca?\y. and

the apparent Poisson's ratio increases to 0.42. Ouring the uniaxial unload,
the apparent Poisson's ratio drops to 0.32. The hydrostatic portion of the

final unload begins at a confining stress of about 2 kb.

Stress differente versus axial {or volume) strain is plotted for the
uniaxial test in Figure 7.7. At a stress difference of about 1 kb, the
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cementation collapses and there is only 4 slow further increase in stress
difference. In terms of stress difference, the unloadings reach a value of
zero at which point the sample is under a hydrostatic compressive load, as can
be seen in Figure 7.6.

The mean stress versus volume strain from the uniaxial test is shown in
Figure 7.8. It is compared to the drained hydrostat from Figure 7.1. Ouring
the elastic portion of the loading, and at mean stress above about 3.5 kb, the
response is essentially identical to the hydrostat. However, the collapse of
the cementation occurred at consistently lower mean stresses in the uniaxial
tests because the material is subjected to an additional component of shear
stress. This results in a deviation between the two data sets over the inter-
mediate mean stress range.

An undrained uniaxial strain loading of Salem limestone is shown in
Figure 7.9 through 7.11. In Figure 7.9, parts a through ¢, the total axial
stress, effective axial stress and pore.pressure are plotted against axial
strain, respectively. A numerical simulation was generated using NKOCP in
which a set of drained uniaxial test data were used as inputs to NKOCP. The
agreement between the total stress response of the test and the numerical
simulation is excellent. There are, however, differences in the effective
stress response and the pore pressure response between the test and
simulation. These are primarily due to differences in the skeleton properties
of the two samples being coampared, as is apparent in Figure 7.9b. The softer
skeleton in the undrained test resulted in a higher portion of the tota)
stress being carried by the pore pressure in that test.

The relationship between the axial and radial stress during the undrained
uniaxial strain loading is shown in Figure 7.10 in terms of both effective and
total stress. Because of the stress component carried by the pore fluid, the
apparent values of K,, in terms of total stress, are significantly higher than
values in terms of effective stress.

The stress paths for the undrained uniaxial loading are shown in Figure
7.11 in terms of both effective stress and total stress. The effective stress
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closely matches those from drained uniaxial strain tests. It falls just below
the drained ultimate strength envelope obtained from triaxial compression
tests. The total stress path is much flatter than the effective stress path
because of the significant portion of total stress carriad by the pore fluid.

7.5. TRIAXIAL COMPARISON TESTS

Data from the drained triaxial compression tests on Salem limestona at
constant confining pressure are presented in Figures 7.12 through 7.15.
Figure 7.12 shows stress difference versus axial and radial strain for a
series of tests at six different confining pressures ranging from 0 to 4 kb.
At confining pressures of X kb and less the samples fail in a brittle manner.
At higher confining pressures the samples fail in a ductile mode with stress
difference continuing to incr2ase with increasing axial strain. The initial
modulus indicated by the slopes of the stress-strain curves is comparatively
high for zamnles in the brittle failure regime at low confining pressures.
Above the point where cementation has been crushed by the initial confining
pressure, the initial moduli are softer than those in the brittle regime. The
tests at 2 and 3 kb confining pressure exhibit lower initial moduli than the
tests at lower confining pressures. As the initial confining pressure is
increased further, the modulus increases due to crush out of the pore space by
the hydrostatic pressure applied prior to starting the triaxial shearing.

The volume strain response during the triaxial shear portion of the
loading is shown in Figure 7.13 for the six testy. In all cases, the samples
undergo cozpressive volumse strains during the initial portion of the shearing,
As the uitimate failure stress is approached, the rock begins to dilate, as
indicated by the incremental volume expansion. The sample at 2 kb confining
pressure shows the greatest amount of compression during shear. At higher
confining pressures the compressive volure strain tends to decrease, with the
samplie at 4 kb experiencing nearly a constant volume shear.

The ultimate strength of the Salem ligeston2 from the triaxial tests is
plotted in Figure 7.14. For purposes of this figure, ultimate strength is
defined either as the maximum stress difference reached during the tests for
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samples which failed in the brittle regime, or as the stress difference at 15%
axial strain for samples at higher confining pressures in the ductile regime.
We have a21so inciuded test data from Salem limestcne obtained by the Waterways
Experiment Station (WES) from Zelasko, 1988, The test data define an ultimate
failure envelope which is linear below about 2 kb stress difference and has a
cohesion of ¢ = 0.16 kb and a friction angle of 49° (¢ = 29°, in the tradi-
tional Mohr-Coulomb stress space). Above a stress difference of 2 kb, the

envelope is concave downward toward the mean stress axis.

By plotting the stress difference at which the incremental volume strain
changes from compressive to dilatent (i.e. where the slopes become infinite in
Figure 7.13), we can plot a contour which defines the onset of dilatency.

This is shown in Figure 7.15, and lies just beneath the ultimate failure sur-
face plotted in Figure 7.14. In other words, to reach the ultimate failure
surface, the rock must incrementally dilate and the incremental dilation
begins when the rock reaches the stress contour shown in Figure 7.15.

The undrained triaxial compression test data are presented in Figures
7.16 through 7.19. The stress difference as a function of axial and radial
strains is shown for tests st four confining pressures in Figure 7.16. All
samples exhibit very similar behavior with a rapid increase in stress dif-
ference until failura at an axial strain ranging from 0.6 to 1.0%, The
strength is only slightly dependent on the total confining pressure. There is
no further increase in stress difference with increasing axial strain.

The effective stress paths for the four undrained tests are shown in
Figure 7.17. The initial effective stresses following the hydrostatic portion
of the test are approximately half of the total confining pressure. The maxi-
mum effective stress difference in each test agrees reasonably well with the
drained ultimate strength envelope from Figure 7.14, In terms of total
strass, the strength envelope would exhibit a friction angle of only about
10°, as indicated in Figure 7.17 (vs 49° for the drained envelope). Note that
the effective stress paths tend to be concave toward the mean effective stress
axis at low confining pressures, but concave toward the stress difference axis
at higher confining pressures. This difference in stress indicates that pore
pressures are increasing more rapidly in the higher confining pressure tests.
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Stress difference as a function of volume strain for the undrained tests
is shown in Figure 7.18. As would be expected, there is a slightly
compressive volume strain occurring during the initial portion of the loading.
Once the effective stresses reach the strength envelope, however, there is a
sudden failure and the samples begin to dilate strongly. Dilation occurs

throughout the remainder of the test, with no further increase in stress dif-
ference.

A corresponding plot of pore pressure as a function of volume strain is
shown in Figure 7,19. There is an increase in pore pressure during the ini-
tial loading, followed by a sudden leveling off once failure occurs. During
the dilatent portion of the test the pore pressure remains nearly constant for
the tests at the higher confining pressures and decreases slowly for the
0.5 kb confining pressurg test,

The behavior demonstrated by the test data in Figures 7.18 and 7.19 and
contradicts what we would expect from effective stress theory and demonstrates
a shortcoming of undraired triaxial strength tests. The volume strain is
measured at the midpoint of the cylindrical test specimen. At the midpoint,
where the shear failure is occurring, the sample is dilating rapidly. Local
pore pressures within this shear zone should be dropping rapidly as volume
expansion occurs. As pore pressures drop, effective stresses and the stress
difference should both increase. Figures 7.16 through 7.19 clearly
demonstrate that this does not occur during the latter stages of the undrained
tests. We believe the reason that pore pressure doesn't decrease is that
total volume strain of the specimen remains nearly constant during shearing.
For the total volume strain to remain constant, the ends of the sample,
constrained radically by the steel end caps, must be undergoing volumetric
compaction while the center is experiencing the measured volumetric expansion,

In essence, we believe that the radia) constraint imposed by the sample
end caps prevents the sample strangth from increasing during the later stages
of shear. This is a serijous shcrtcoming of the undrained triaxial test which
underestimates the samplé strength at higher shear strains and could lead to

gross errors in predicting the late time in situ response of saturated porous
media.
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7.6. STRAIN PATH TESTS

A series of drained and undrained load-unload cycles was performed on
Salem limestone following predesignated strain paths., The strain paths were
chosen to be representative of strain paths from various depths beneath
shallow buried explosive detonations as predicted by finite difference calcu-
lations performed by several of the national laboratories. Figure 7.20 is a
schematic view of the strain paths. All paths undergo an initial compression
under uniaxial strain conditions, then from a designated point on the uniaxial
loading curve, one of four paths is followed:

1. Path A: a constant volume path in which axial strain continues
in compression while radial strain is allowed to expand at half the

rate of axial compression resulting in a constant volume shearing;

2. Path B: a constant axial strain path in which axial strain is held
constant while radial expanags;

3. Path C: an iso-unloading path in which both axial and radial strains
expand at the same rate;NS

4. Path D: a uniaxia) strain unload which is the same as that used in
the uniaxial strain tests described in Section 7.4.

The actual drained strain paths and resultant stress Puths for paths A,
8., and C are plotted in Figures 7.21a, 7.22a and 7.23a, respectively. The
Type A constant volume stress paths, shown in Figure 7.21b, show increasing
shear stress with decreasing mean stress, approaching the ¢onstant volume
strength contour (from Figure 7.15) along a path nearly perpendicular to it.
Similar tests run by WES to larger shear strains showed some further gain in
shear strength as the stress path turned upward and toward the right as it
aoved along the constant volume contour.

The Type B, constant axial strain stress paths, are shown in Figure
7.22b. These tend to move laterally toward the ultimate strength envelope
without further increase in stress difference. In all cases, the stress paths
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extend slightly beyond the strength envelope, which indicates that the
material has been strengthened somewhat by the compaction process during
uniaxial strain loading.

The Type C, iso-unloading stress paths, are shown in Figure 7.23b. These
tend to unload down the uniaxial loading stress paths without the sample
reaching failure.

Figure 7.24 is an idealized schematic representation of the stress paths
resulting from the four prescribed strain paths. The stress paths represent a
range of material response which wiil be difficult to match with most existing
models.

Undrained strain paths for samples loaded along Path B (constant axial
strain) and Path C (iso-unload) are shown in Figures 7.25 and 7.26. In the
stress path for the Type B loading of Figure 7.25b, the effective stress
response is very similar to that of the drained tests in Figure 7.22b. Note
that both the effective stress path and the total stress path converge on the
strength envelope indicating that pore pressure has dropped to zero at this
point. Thus, the drained strength enveiope serves both the effective stress
and total stress response for the Type 8 strain path.

The effective stress response for the Type C strain path, shown in

' Figure 7.26b, is also very similar to that of the drained tests shown in
Figure 7.23b. Note that pore pressure also drops to zero for this load path
prior to complete unloading and that the sample does not undergo failure,

Figure 7.27 shows hypothesized strength envelopes in terms of both effec-
tive and total stresses for undrained Type A and 8 strain paths and triaxiail
compraession tests, These were constructed using NKOCP numerical simulations
of the initial hydrostatic and uniaxial strain portions of the loadings, then
approximating the shear loadings using effective stress theory and adaptation
of our two-phase model. This figure demonstrates that:

1. strength envelopes expressed in terms of effective stress do not vary
with the strain path and match the envelopes determined from drained
tests; and
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2. strength envelopes expressed in terms of total stress vary dramati-
cally, being dependent on the strain path.

Because of the dependence of undrained strength on the strain paths, the
appropriateness of using equivalent single-phase models for ground shock
calculations in saturated media (a common practice) is questioned. Such
models cannot make direct compensation for the influence of various strain
paths on strength and post failure response.
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Tabie 7.1. Typical Salem Limestone Properties.

Ory Density (1b/ft3) (kg/m3)
Porosity
Specific Gravity of Grains

Permeability (cm/s)

Ultrasonic P Wave Velocity (ft/s) (m/s)
Yield Stress (unconfined) (1b/in?) (kb)- .
Ultimate Stress (unconfined) (1b/ind) (kb)
Young's Modulus (1b/in?) (kb)

Yield Strain (unconfined) (Axial, %)

Ultimate Strain (unconfined) (Axial, %)
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Salem Limestone

{Avg. 6 samples)

147.4
.135
2.728

5.3 x 1075
(1 sample)

14806
5540
7752
3.9 x 100
.168

L] 261

2359

4514
.382
.535
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Figure 7.12. Bxial-radial strain response of drained Salem limestone in triaxial compression
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CARD 1
IBATCH (I5)

iIBATCH = 0 Terminal interactive job
1 Batch job

CARD 2

Main Title (up to 80 characters)

CARD 3

- Subtitle (up to 80 characters)
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CARD 4

General Options
NF, NTCSF, ISFG, IP, NLNR, NFG, ICOPL (7I5)

Options in Dynamic Analysis

N = 1 One-phase solid dynamic analysis
2 One-phase fluid dynamic analysis
3 Multiphase dynamic analysis

Analysis Type
NTCSF = 1  Static analysis

2 Consolidation analysis
3 Dynamic analysis

" Initial Stress Conditions

IGFG = 0 No initial stress:

1 Specified effective stress and pressure
2 Specified offective stress
3 Specified pore pressure
4 Imposed excess pore pressure

Stress and Strain Conditions
iIP =1 Plane stress

2 Plane strain

3 Axial symmetry

4 Spherical syametry

Skeleton Material Mode?l

NLNR = 0 Linear elastic material model
Decoupled elesto-plastic model
Uniaxial strain mode)

Ganaralized Hoek and 3rown rock amodel
ARA 3-Invariant model

[« B4R - o

Loading Type
NFG = 1 Specified base accelerations (not available)
2 Specified pressure time history
3 Specified velocity time history (not available)
4 Both pressure and veiocity time histories (not available)

Fluid - Grain - Skeleton Conpressibility model

ICOPL = 0 Qecoupled model
1  Fully coupled model
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CARD 5

CARD 6

CARD 17

Global Calculaton Parameters

NCYCL, DT, NUPDAT, ITER (I5, F10.0, 2I5)

NCYCL:
OT:
NUPDAT :

{TER:

NUMNP :
NUMEL :
NUMMAT :
NHSIZE:

NPSIZE:

Number of cycles (total number of time steps)

Global time step (duration of each cycle)

Number of cycles between updates to global stiffness matrix
(ITER = 0 for NUPDAT > 1)

Number of updates of global stiffness matrix within each
cycle (NUPDAT = 1)

. Mesh and Material Parameters

. NuMNF, NUMEL, NUMMAT, NHSIZE, NPSIZE (5I5)

Number of nodes

Number of elements

Number of different materials

Maximum number of histeretic variables (for ARA 3-Invariant
model, use NHSIZE = 14)

Maximum number of material parameters (for ARA 3-Invariant
model, use NPSIZE = 100)

Pressure Loading Functions

NUMLP, NUMLH, NUNTP, NTYPE, OTXX (415, F10.0)

NUMLP

NUMLH:
NUNTP:

Total number of degrees of freedom at which input pressure
time history are specified

Number of input pressure time histories

Number of pressure time pairs in every input prassure tiue
history

NYYPE = 0: Constant time increments in pressure time history

DTXX:

1: Specified times in pressure time history
Constant time increment in the input pressure time
history (NTYPE = 0)
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CARD 8 OQutput Stress and/or Motion Profile Specifications
A. NPFL, NDC, NSG, NPRINT, NPEL, NPMT (615)
NPFL = 0 Both motions at all nodes and stresses at all eiements
1 Motions and stresses at specified nodes and elements
respectively
2 Motions at all nodes

Stresses at specified elements
4 Stresses at all elements

u

(&)

NDC = 6 Write stress/displacement profile output to hard disc

1 Write stress/displacement profile output to floppy disc
NSG = 0 Write stress/displacement profile output in one file
1 Write stress/displacement profile output in specified

files
NPRINT:  Number of cycles between each output profile
NPEL: Number of elements in output stress profile
NPMT:  Number of nodes in output motion profile

NOTE: If NOC = 1 and NSG = 0, the program writes displacement/stress
profiles on hard disk under the name "DISTR"

8. If NPFL = 1 or 3, otherwise go to Card 8C.

NPRT(I), I = 1, NPEL (free format)

NPRT(I); List specified element numbers in sequential order
C. If NPFL = 1, otherwise go to next card

NNP{Y), I = 1, NPMT (free format)

NPN(I): List specified node numbers in sequential order
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CARC 9

Output Stress

and/or Motion Time History Specifications

A. NTHS, NHPEL, NHPMT (315)

Time history options

NTHS = 0
1
2
3
NHPEL:
NHPMT :

B. If NTHS =
NHPRT(I),
NHPRT(I):

C. If NTHS =

Do not print time history data, go to next card
Motion time histories

Stress time histories

Both motion and stress time histories

Number of elements at which stress time histories are
required

Number of nodes at which motion time histories are
required

2 ar 3, otherwise go to 9C.
I = 1, NHPEL (free format)
List specified element numbers in sequential order

1 or 3, otherwise go to next card

NHPN(I), I = 1, NHPMT (free format)

NHPM(1):

List specified node numbers in sequential order
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CARD 10 Numerical Time-Integration QOptions

TETA, BETA, GAMA, ALPA, (4F10.0)

TETA: ©
BETA: 8 Refer to Table 1.
GAMA: vy
ALPA: ¢

TABLE 1. Values of § and @ for y = 1/2* (a = 0 by Default)

Integration Method B 8

(1) (2) (3)

Explicit second central difference 0 1.0
Fox-~Goodwin 1712 1.0
Linear Acceleration i/6 1.0
Newmark's constant acceleration 1/4 1.0
Wilson A 1/6 2.0
Stiff Yinear acceleration 1/¢6 1.5

*y = 1/2 indicates no damuping

Y > 1/2 introduces numerical damping and 8 = (y + 1/2)2/4

@ Nethod available soon
For more information, see: Ghaboussi and Wilson, "Variational

Formulation of Oyanmic of Fluid Saturated Porous Elastic Solids,”
ASCE Engineering Mechanics Journal, August 1972.
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CARD 11 Nodal Coordinates and Degree of Freedom Specifications

For each node:

NODE, ISX, ISY, IFP, XA, YA (415, 2F10.0)

= <

ISY | Node

IFP! ISX

NODE: Node Number
ISX: Specifies skeleton X Degrees of Freedom (DOF)
ISY: Specifies skeleton Y DOF
IFP: Specifies DOF for pore fluid pressure

ISX, ISY = 0 Free to move in specified direction
1 Fixed in gpecified direction
IFP = 0 uUnknown pore ¢luid preéessure
1 Zero pore fluid pressure

XA: X Coordinate
YA: Y Coordinate;: Note for IP = 4 (1-D spherical analysis) set the
wesh height egual to 1.0,
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CARD 12 Element Specifications
For each element;

NEL, MAT, KS, KF, INTR, INTS, I, J, K, L, M1, M2, M3, M4 (141I5)

S
'
!
Y J M1 1
‘ [ T T2 Node
[
12 lq !6
!
Element 1
Mz ¢ Cemer\&__ — _d.yi—--.r
x! ¥’ - < intagration Paint
K M3 L
- X
KEL: Element numbes
NAT: Material property number
KS #» 0 Element has solid phase
' 1 Elemont has no solid phage
K& v 00 k1emant has fluid phase
R O Eisment has no fluid phase
INTR: Runber of integration points in r-direction
INYS: Nuttber of integration points in s-direction
1,d.K,L: Nade numbers at element corner

M1,M2,R3.H4: Node numbers at olement midside
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CARD 13  MATERIAL PROPERTIES

A. Title (up to 80 characters)

8. General Property
POR, GF (Free Format)

POR: Initial porosity
GF: Unit weight of pore fluid

C. Permeability Property

NP, RK, BETHF (free format) -

NP = 0:

RK :
BETHF:

1:

Constant permeability

Nonlinear permeability

Darcy's coefficient of permeability

Ward's fluid friction coefficient for turbulent flow

0. Grain Property

NG, BKG, ROG, CO, VO, S, PB (free format)

NG = 0:
1:

8KG:
ROG:
CO:

VO :

S:

P8

Constant grain-modulus

Nonlinear grain modulus

Initial bulk modulus of grain =
Initial mass density of grain

Initial wave velocity at relatively low pressure
Initial Poisson's ratio

Experimentally determined constant relating
loading wave velocity to peak particle velocity
(generzlly about equal to 1.5 for most rocks and
minarals)

Threshold pressure beyond which materiais tend %o
behave like fluids

E. Fluid Property

NW, BKW, ROF, SO, H(, PAQ, T (free format)

NW = 0:
1:
BKW:
ROF:
S0:
HC:
PAO:

T:

Constant fluid modulus

Noniinear modulus

Initial bulk modulus of pore fluid

Initial mass density of pore fluid

Initial degree of saturation

Coefficient of solubility {Henry's constant)
Initial pore air pressure (absclute)

Pressure difference between the air and pore water due to
surface tension
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F. Skeleton Property
a. General Property
NS, BKS, GS, TENS, STIFAC, SHEFAC, PMN (free format)

NS = 0: Linear elastic modulus
1: Nonlinear medulus
BKS: Initial buik modulus of skeleton
GS: Initial shear modulus of skeleton
TENS = 0.0: No tension cut-off
1.0: Tension cut-off
STIFAC: Factor which reduces normal stiffness once tensile
strength is exceeded (example: reduced modulus =
original modulus/STIFAC)
SHEFAC: Factor which reduces shear stiffness once shear
strength is exceeded (see example above)
PMN: Tensile strength (tensile stress is positive;j

b. Material Model Specifigation
NODNO (free format)
HODNO = 0: Linear elastic material model
1: ODecoupled elasto-plastic model
4: Uniaxia) strain model
5: QGeneralized Hoek and Brown rock model
6: ARA 3-Invariant model
c. UOecoupled Elasto-Plastic Model (DCOUR)
if HODNO is not equal to 1, go to next card group.
1. Shear Stress-Strain Behavior
GP, A, B (free ¥ormat)
GP: Plastic shear modulus
A: a (constant defining proporitonal elastic limit)
B: b (fraction of plastic shear modulus afte failure)

(refer to Model DCOUP by Kit, Blouin and Timian,
1986) '
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2.

3.

4.

5.

Lasduny Butk Lodoves

togadieg Btk Mudulsy

**DESCRIBE VOLUMETRIC BEHAVIOR#*

NLPC (15)
Py, BLI
Po, B2
- - 3 “NLPC" cards with format (2F10.0)
for each card
Pn BLn /
NUeC {15)
P2, By
- - \ “NUPC" cards with format (2F10.0)
for each card
Pre Bun
r B
a\l
i
t
2, 1
] i
i {
i i
4 i
? A ? B
Haca Prysyuea '
8,
(1]
{ 1
! 8, i
fr————y |
; | {
) i |
. ] l
9 2 3 P
Yetn Pressure
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NLPC:

BLj:
NUPC:

Number of- pressure/moduius pairs describing
the loading bulk moduius .

Loading bulk modulus at mean pressurs Pj
Number of pressure/modulus paris describing.
*he unloading bulk modulus ‘
Unloading bulk modulus at mean pressure P;
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**DESCRIBE DEVIATORIC BEHAVIOR**

6. NTPC (I5)

7- Plp TY]_I TFl

Pae Ty2r Tgg
"NTPC" cards with format (3F10.0) for

- - - each card

Octchedral Shear Stress

At

,
V-

Meon Pressure

NTPC: Number of presure/yield stress/failure stress
points describing the yield and failure
envelopes as a function of mean pressure

Tyi, Tgq: Octahedral shear stress at yieldl and
failure, raspectively, at mean pressure
Py

d. Uniaxial Strain Model (UNIAX) Reference: Kim and Blouin, 1986

202




If MODNO is not equal to 4 go to next card group
1. POSNR, EQNO, C, D, SVMALL (free format)

POSNR: Poisson's ratio
EQNO = 1: Unloading modulus as a function of effective
vertical stress
2: Unloading modulus as a function of previous
maximum effective vertical stress (oy'max)
3: Unloading modulus computed by M, = C (o' max )0
C,0: Materigi parameters defining unioading modulus
when EQNO =

2. NLPC (I5)

3. SI' M‘l
- - "NLPC" cards with format (2F10.0} for
each card
Sne MLn -
4, NUPC {I5)
5. Sy, My
.- = “NURC" cards with format (2F10.0) for
each card
Sne Mun

NLPC: Number of vertical stress-loading constrained
modulus pairs

M i: Loading constrained modulus at vertical s:ress §;

NUPC: Number of vertical stress-unloading constrained
modulus pairs

Myi: Unloading constrained modulus at vertical
stress S;

e. Generalized Hoek and Brownh Roclk Model
If MODNO is not aqual to 6§, go to next card group.

RN, ALPHA, BETA, RLKAPA, RLK {free format)
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RN:
ALPHA:
BETA:
RLKAPA:
RLK:

AXATBRI

Note that the strength parameters, n, &, 8, K, and K are
described in detail by Kim and Blouin, 1986.

f. ARA 3 - Invariant Model, Reference: Merkle and Dass, 1985)
If MODNO is not equal to 6, go to next card group.

1. APEX, ATMO (free format)

APEX: Tensile strength measured along the octahedral
normal sterss axis

ATMO: Atmospheric pressure (0.1013 MPa)

2. AKUR, AN, APOI1 (free format) Elastic Constants

AKUR: Constant for Young's modulus (Kyp
AN: Constant for Young's modulus (n)
APOI: (Poisson's ratio (v)

3. AR, ACRV (free format} Compressive Yielding and
Nardening Parameters

AR: CLCap axas ratio
ACRV: Number of ¢ and p data set

4, AACC{1), AAPC(1)
AACC(2), AAPC(2) Free Format "ACRV" cards

AACC: Hardening constant (c)
AAPC: Haroening constant (p)

5. AEY, AMY, AETA1 (free format) Expansive Yielding
and Herdaning Paremeters

AEY: VYield constant (F)
AMY: Yield exponent (m)
AETAL: Failure constant (ny)

6. ATG, ARG, ASG (free format) Flastic Potential Constant
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ATG: t
ARG: R
ASG: S
7. APBAR, AL (free format) Work Hardening Constant

APBAR: P
AL: &

Note that the peak expansive plastic work, Wp,peak,
is related to initial confining stress as

-, ]
Wp,peak = p * Py (ggg)

8. AALPH, ABETA (frae format)

AALPH: Work hardening constant (a)
ABETA: Work hardening constant (8)

Note “.nat the hardening purameter, q, is related to the
initial confining stcess as

q=a+ 6 (Y3
"’5")

and the program MPOAP computes the hardening parameters
a and b as follows:

(2)

& . Py  \g!
; . q
a e '}1 (Np'pedk)
and
R
q * Wp,peak
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CARD 14

CARD 15

Initial In Situ Erfective Stress Conditions

If ISFG from Card 4 equals 1 or 2, otherwise go to next card
For each element

SXX, SYY, SZ7, SXY (4F10.0)

Initial effectie skeleton stresses

SXX

L]

oyx' (normal stress in x direction)

SYy

ay’ (normal stress in y direction)

Sz

oz' (normal stress in z direction)

SXY

n

Txy {shear stress in xy plane)

Initial Pore Fluid Pressures
If ISFG from Card 4 equals 1, 3, or 4, otherwise go to aext card
PRE(I) I = 1, NUMEL (F10.0)

FRF: List of initial pore fluid pressures in each element, specified
sequentially from 1 to NUNEL.

Note that tensile stresses are positive,
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CARD 16 Input Loading: For specified pressure and flow time histories
(Card 4, NFG = 2)

A. Header (80 characters)

B. For each of the NUMLP nodes (Card 7) at which a load is applied:
NODE, IDOF, LHNO, CINT (315,E10.3)

C. TD(I), I =1, NUMTP (7E10.0) for (NTYPE = 1)

0. For each of the NUMLMH (Card 7) loading time histories:
DYL(I), I = 1, NUMTP (7E10.0)

E. Comment Card (80 characters} - to separate loadings

A

Y
e 3
Node ‘ﬁl
IDQF —
——
X
NODE : Node number

I00F = 1 Total force acting on a given node in the x direction
2 Total force acting on a given node in the y direction
3 Flow at the given node

LHNQ : Load history number (one of NUMLK load histories)

CINT: Load intensity factor (used to convert pressure or fiow on a
given node, based on contributing area)

TD{I): Set of specified times used in all the pressure loading
histories

DYL(I): A set of pressure/flow magnitudes input for each Yoading
history at corresponding times TO(I)
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APPENDIX B

STEADY STATE FLOW DATA THROUGH
ENEWETAK BEACH SAND
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