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REFOCUSING A RADIO TELESCOPE TO IMAGE SOURCES
WITHIN THE NEARFIZLD OF THE ANTENNA ARRAY

1 THREE FRAUNHOFER APPROXIMATIONS FOR THE PROPAGATION OF FIELD
AMPLITUDE

1.1 Introduction

The Fraunhofer approximation is one of the most useful mathematical tools used in optics. It is
widely used by optical engineers to model systems and by researchers to model physical phenomena.
The Fraunhofer approximation is also widely used by physicists in connection with radiation prob-
lems, and by electrical engineers to deal with antennas and electromagnetic wave propagation. How-
ever, it is not so well known that the Fraunhofer approximation as usually used in these different dis-
ciplines is different in some important ways. These differences and the resulting capabilities to model
phenomena have given rise to their different use.

In Section 1 we examine applications of three Fraunhofer approximations to simple field theory,
where we deal with the propagation of a (generally complex) scalar field amplitude from sources to
detectors. In Section 2 we extend the study to applications of the Fraunhofer approximations to
second-order coherence theory.

The present section derives these three forms of the Fraunhofer approximation by using similar
notation to simplify comparison. Then each of the three kinds of Fraunhofer approximations are
examined and compared to the others to point out the differences in the conditions for validity,
mathematical structure, and unique capabilities in application.

1.2 Detector in the Farfield of the Source Distribution

First we will briefly review the Fraunhofer approximation as it usually appears in radiation
problems in mathematical physics [1, Section 9.1]. Here we establish a specific set of conditions and
notation to contrast this formulation with different, but similar Fraunhofer approximations frequently
used in optics and in electrical engineering.

Consider the configuration shown in Fig. 1 with a three-dimensional source distribution local-
ized to a region about the origin and radiating an electromagnetic field toward a detector located a
distance R from the origin in any direction. We assume that the source is a primary, three-
dimensional source distribution so that a typical scalar, monochromatic, Cartesian component of the
electromagnetic field y(x) (with suppressed exp (—iwt) time dependence) is related to the source dis-
tribution p(x) by the scalar Helmhoitz equation

(V2 + kH(x) = —4xp(x) (1)

Manuscript approved April 25, 1988.
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DETECTOR
HEMISPHERE

/
~~ — "SOURCE
REGION

Fig. 1 — Configuration for the Fraunhofer approximation of the
first kind with the detector in the farfield in any direction from a
three-dimensional source distribution about the origin

[2, Eq. (2.8)], where k = 2x/\ = w/c. The solution to Eq. (1) that represents an outgoing wave at
infinity is

vx) = [ff oxi) exp Gk | vy )/ |1y | dxi, )

where x; and x, represent radius vectors from the origin to the source and field points respectively
and r, represents the vector x; — xi, as shown in Fig. 1. Following a well-known procedure we
expand |r|| into the binomial series

Ir | =V —x)? + 0y +yD? + @ — 29
~R - (x;- x})/R + O(|x{|*/R), 3

where R = |x;|. If the source distribution is confined to a spherical region within a radius a of the
origin and the detectors are all far outside the Rayleigh range of the source so that

R >> ka?, @)
then we may approximate the value of |r;| in the denominator of the kernel of the integral in Eq. (2)

by the first term in Eq. (3) and the value of |r;| in the phase by the first two terms to obtain the
Fraunhofer approximation of the first kind given by

¥(Rs) = exp (ikR)/R [ff p(x}) exp (—iks - x{}d’x], 6))
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where s is the unit vector from the origin to the field point at x; and x| is the three-dimensional radius
vector from the origin to a point in the source distribution.

Equation (5) gives the Fraunhofer approximation for the radiation field from a primary, three-
dimensional source distribution about the origin as it often appears in physics problems [1, Eq. (9.8)].
In optical diffraction problems a similar but somewhat different form of Fraunhofer approximation is
usually used [3, Section 8.3.3). Instead of a primary, three-dimensional source distribution a planar,
secondary source distribution is usually assumed and the field is limited to the z = O half space. In
such problems we assume that the primary sources are distributed over the z < 0 half space and radi-
ate toward the z = 0 plane. We assume that owing either to the nature of the source distribution or
to an aperture in the z = O plane the field in this plane vanishes outside of some domain within a
radius b of the origin, as shown in Fig. 2. Then this boundary condition for the field over the z = 0
plane ¢ O(x)) is treated as a secondary source distribution.

DETECTOR
xy-PLANE HEMISPHERE
2
X2
Y=
b Xé —/—/
+ ¢ .
[s) r4
SECONDARY Fig. 2 — Configuration for the Fraunhofer approximation
SOURCE R of the second kind with the detector in the farfield in the
\ z = 0 half space of a two-dimensional source distribu-
tion over the z = 0 plane near the origin

/

For a secondary source distribution the homogeneous Helmholtz equation describes the field
over the z > O half space [4, Section 3.2]. A well-known solution [4, Section 3.4] of this equation
for the field over the detectors is given by the Rayleigh integral

v(x) = —172x §f ¥Ox5)a/9z,lexp (ik |1y 1)/ | x| }d?xs, (6)

where x, and x) are the radius vectors from the origin to the field point at the detectors and the
source point in the z = 0 plane, respectively, and r;, is the vector x, — xj, as shown in Fig. 2. If we
assume that k |r, | is sufficiently large, then we can make the approximation

—a/3z5lexp ik |ry|)/ vy |) = (—2a/ w3 | )ik — 17|15 ])exp (ik | vy ])/ | 15])

~(—ikzy/ | vy |)lexp (ik [ry|)/ |1y |1 @)
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It is useful to expand

Ira| = Vi, — x)? + (2 ~ y? + 23
~R — (%, X)/R + O(|x3|%/R), ®

where R has the same meaning as in Eq. (3). If we also assume that the secondary source in the
= 0 plane is confined to the interior of a circle of radius b around the origin and that the detectors
are all located outside of the Rayleigh range of the source distribution so that

R >> kb?, )

then upon substitution from Eq. (7) into Eq. (6) and replacing the value of |r,| in the denominator
of the kernel with the first term in Eq. (8) and the value in the phase by the first two terms in Eq. (8)
we have the Fraunhofer approximation of the second kind given by

V(Rs) = (—ik /27) cos 8 (exp (kR)/R) [f ¥Ox;)exp (—iks - xp)d*x3, (10)

where xj is a vector within the z = 0 plane, i.e., X3 = (x}, y3, 0), s is the three-dimensional unit
vector from the origin in the direction of x;, and 8 is the angle that s makes with the +z axis.

The Fraunhofer formula Eq. (10), for the field owing to a secondary source, is frequently
employed in optics to deal with diffraction problems {4, Eq. (4.13)]. The relation given in Eq. (5)
for a three-dimensional, primary source differs from Eq. (10) more than one might suppose in view
of the similarity of their derivations. The main mathematical differences, which will be examined in
more detail in the next subsection, arise from the fact that the integral appearing in Eq. (5) is three-
dimensional unlike the integral that appears in Eq. (10) and that s is a unit vector so that the three-
dimensional Fourier transform appearing in Eq. (5) is evaluated only on a sphere of unit radius in
(s;, Sy, 5;) space. It is well known that these mathematical properties give rise to some very impor-
tant properties of radiating source distributions, and are of particular interest when dealing with
inverse problems. This subject will be discussed further in Subsection 1.4.

A third form of the Fraunhofer approximation exists that is frequently used by electrical
engineers in dealing with antenna problems. It is also closely related to the Fraunhofer approxima-
tions appearing in Egs. (5) and (10) but employs a significantly different set of assumptions and,
therefore, has very different applications. We present a brief derivation of this Fraunhofer approxi-
mation to establish a precise set of conditions and notation before we consider these different formula-
tions in more detail.

1.3 Source Distribution in the Farfield of the Detector Array

Figure 3 shows a configuration with a distribution of detectors located near the origin in the
z = 0 plane that receive electromagnetic radiation from sources located a distance R from the origin
in the z = O half space. Consider only a secondary source distribution (i.e., a boundary condition
for the field over the hemisphere) rather than a true primary source distribution. Comparison of Figs.
2 and 3 shows that the two configurations are identical except for interchanging the positions of the
sources and the detectors. Because of this similarity the fields at the sources and detectors can be
related by using Eq. (10) and a well-known reciprocity theorem from antenna theory.
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ARRAY Fig. 3 — Configuration for the Fraunhofer approximation
of the third kind with the sources outside of the Rayleigh
range in the z = 0 half space of a two-dimensional
detector array over the z = 0 plane near the origin

This reciprocity theorem (S, Section 10.2] leads to the well-known conclusion that the transmit-
ting and receiving patterns of any antenna are the same. This theorem can be applied directly to
transmitting patterns such as that given by Eq. (10) to give the equivalent receiving pattern of a detec-
tor array over the z = 0 plane. Thus, if we assume that the detectors are all confined to a region of
the z = 0 plane within a circle of radius b’ from the origin and that the sources of the field all are
outside of the Rayleigh range of the source distribution, i.e.,

R >> kb, an

then Eq. (10) can be reinterpreted as an inverse propagation integral (after taking the complex conju-

gate of the kernel as discussed in Appendix A). Thus we obtain the field at a particular source point

¥(x3) in the farfield of the detector as a function of field distribution y®(x}) over the detectors in the
= 0 plane.

It is well known that the Fraunhofer approximation of the second kind cannot simply be inverted
to completely determine the source distribution over the z = 0 plane from measurements of the far-
field. As discussed in detail in Subsection 1.4, this results from the fact that s is a unit vector that is
only defined in Eq. (10) for directions from the origin into the z = 0 half space. However, this
inversion problem disappears when Eq. (10) is reinterpreted by use of the reciprocity theorem to be a
receiving, rather than a transmitting, antenna pattern and the sources of the field are defined to be
located only in directions from the origin to the z = O half space, instead of on the z = 0 plane.
Since the integral in Eq. (10) is a Fourier transform and since the function y(Rs) is defined to be
nonvanishing only for s into the z = 0 half space (see Subsection 1.4), Eq. (10) can be easily
inverted to give the Fraunhofer approximation of the third kind

VO(xy) = (—ik/2x) [§  [V(Rs) exp (ikR)/R] exp (—iks - x;)R%(ds,ds, /s;) (12)

:,2+:,25 1
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where s = (s;, 5,,.5;) is the radius vector from the origin to the source point at X, and xj is the
radius vector from the origin to a point within the detector array. In Eq. (12) R is generally a func-
tion of s since we have had to make no mathematical restriction that the surface containing the
sources be exactly hemispherical. Thus R(s) cannot be taken outside of the integrals in Eq. (12).

The Fraunhofer formulas (Egs. (5), (10), and (12)) do not have the same conditions for validity.
The Fraunhofer. approximations given by Egs. (5) and (10) require that the source distribution be
localized about the origin of coordinates and that the detectors all be in the farfield of the source dis-
tribution. For Eq. (5) the detector may be in any direction from the source; however, in Eq. (10) the
detector must be located in the z = O half space. The different Fraunhofer formulation given by Eq.
(12) requires that the detectors all be localized about the origin of coordinates and that the sources all
be in the farfield of the detector array within the z = O half space. Thus the conditions for Eq. (10)
are reciprocal to those for Eq. (12). Sometimes both the source distribution and the detector array
are localized and are each in the farfield of the other so that these formulas differ only by a coordi-
nate transformation from the origin within the source distribution to the origin within the detector
array. However, this is generally not the case. Usually only one set of conditions is met so that only
one of the Fraunhofer approximations is valid.

1.4 Differences Between Fraunhofer Approximations

As we noted, the three kinds of Fraunhofer approximations that we derived are different in some
significant respects. We now consider them one at a time and point out some of their unique
features.

Only the Fraunhofer approximation of the first kind in Eq. (5), involves a three-dimensional
Fourier transform, which has some interesting consequences. Although the transform is three dimen-
sional, the domain of Y(Rs) in Eq. (5) is only two dimensional. Since s = (s,, s,, §,) is a unit vec-
tor, its components are related by

s2+st+st=1 (13)

Thus the Fourier transform in Eq. (5) has clear physical meaning only for values of (s2, 52, 52 ) over
the surface of a sphere in s space. As a consequence, the farfield radiation from a three-dimensional
source distribution is completely specified by only the spatial Fourier components of the source that
have a period of one wavelength {6, Theorem I). This property has proven useful in studying the
question of nonradiating source distributions [6-10], scattering problems [11], and inverse scattering
{12]. It appears likely that similar formulations could also be applied to phase matching problems.
These physical properties of three-dimensional source distributions are not described by the
Fraunhofer approximations of the second or third kinds.

Another interesting consequence of the three-dimensional integral in Eq. (5) involves an impor-
tant class of inverse problems. These inverse problems employ measurements of farfield data to calcu-
late the source distribution. We noted from Eq. (5) that farfield measurements give the Fourier
transform of the three-dimensional source distribution only over the sphere of unit radius from the
origin in a three-dimensional s space. To determine the source distribution for an arbitrary source by
Fourier inversion of this data, the data would have to be known everywhere over s space. Some spe-
cial cases are known for which farfield measurements are sufficient to reconstruct the source distribu-
tions. In scattering problems using the first Born approximation, for example, the source distribution
represents a product of the known incident field and the scattering potential of the scatterers. There-
fore, the scattering potential can be computed from a series of farfield measurements with different
incident fields [13, 14].
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The Fraunhofer approximation of the second kind given by Eq. (10) is different in two obvious
ways from Eq. (5). Equation (10) contains constant and angle factors that result from the use of a
secondary source distribution and a two-dimensional Fourier transform.

In Eq. (10) the Fourier transform is from the source plane (x5, yj) to the plane (s,, s,), where
the third component of the unit vector s is given by

s; =cos0 =V1—-52—s2ifs?+s?s1. (14)

Fourier components of ¢(°)(x§) inside of the unit circle in Eq. (14) for which s, is defined are called
low-frequency spatial frequency components of the source and those outside are called high spatial
frequency components.

This difference in dimensionality gives rise to the description of some interesting physical
phenomena that are not described by the Fraunhofer approximation of the first kind in Eq. (5). An
arbitrary source distribution contains high spatial frequency components outside of the unit radius in
(s, 5y) space for which s, is defined in Eq. (14). These high-frequency spatial frequency com-
ponents have no effect on the farfield in any direction from the origin into the z > 0 half space.
They are associated with evanescent plane waves that do not propagate into the farfield. It is possible
to reconstruct the source distribution by using only the low-frequency spatial frequency components
that are available from farfield measurements. However, the use of only low-frequency components
results in a spatial resolution limit similar to that imposed by a diffraction limited lens (NA = 1) to
detail within the source distribution separated by intervals larger than a wavelength.

The Fraunhofer approximation of the third kind in Eq. (12) is different from that of the second
kind in Eq. (10) in that the Fourier transform is from the s space to xj space instead of the other way
around. In Eq. (12) it is the sources that lie in directions away from the origin in the z = 0 half
space and the detectors of the field that are in the z = O plane. The range of integration in Eq. (12)
is only over real angles into the z = 0 half space so that the x and y components of s are bounded to
the interior of the unit circle, as given by Eq. (14). Thus from Eq. (12) we see that the field over the
z = 0 plane contains no spatial frequency components with periods smaller than a wavelength.
Furthermore, by using a well-known theorem of Fourier analysis we know that the field over the
z = 0 plane can be extended as an entire function of complex xj. Since the secondary source distri-
bution is only defined physically for x and y components of s within the unit circle we can define the
function to be zero elsewhere. With this definition there is no problem in inverting the Fourier
transform in Eq. (10), which is interpreted as a receiving antenna pattern, to obtain Eq. (12). A
consequence of these properties of the Fourier transform in Eq. (12) is that there appears to be no
limitation in the angular resolution to which the source distribution can be calculated other than that
arising from the limitation on the size of the detector array in the z = 0 plane.

Both the Fraunhofer approximations of the first and second kinds are valid only if the detectors
are in the farfield of the source, i.e., the source distribution must be bounded so that it has a well-
defined Rayleigh range, and the detector must be well outside of this Rayleigh range. In many
important applications the source distribution is either not bounded or too large for this approxima-
tion. A radio antenna is an example. Here, the domain for the source distribution might completely
surround the antenna. However, if the detector, like a radio antenna, is bounded, then it has a Ray-
leigh range itself and for sources outside of this Rayleigh range the Fraunhofer approximation of the
third kind holds.

An important difference in the application of the Fraunhofer approximations of the second and
third kinds, which both involve calculating the field from a known planar source distribution, can be
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shown by use of an example. Consider a planar source distribution localized within a circle of radius
b about an origin at O ir (he plane P in Fig. 4. Assume that it is radiating toward a planar detector
array localized withir 2 radius b’ of an origin O’ in the plane P’ a distance D from P.

j- O
ree
sl

——1 .T
4
(o]

N
L =4

Fig. 4 — Notation for the example contrasting calculations per-
formed using the Fraunhofer approximations of the second and
third kinds

If b and R satisfy Eq. (9) so that Eq. (10) is a valid approximation, then to calculate the field
over the detector array from a known source distribution, we perform a two-dimensional Fourier
transform of the source distribution data, muitiply the data by the constants and s-dependent factors

outside of the integral in Eq. (10), and finally transform from angular to linear coordinates £' within
the P’ plane, i.e.,

& =D, /N1 -5t -3)
& =D, /N1 -5} -5 (15)

Figure 5(a) summarizes these steps.

If instead b’ and R satisfy Eq. (11) so that Eq. (12) is a valid approximation, then to calculate
the field over the plane P’ from a known source distribution we must use a different procedure. First

we transform the source distribution from linear coordinates £ in the P plane into the angular coordi-
nates from the origin at 0', i.e.,

Sy = &/ Dz+£3+53
and

sy = &,/ND? + £ + g (16)

Next we muitiply the data by the s-dependent factors, and finally we Fourier transform the resulting

data over the (s,, 5,) plane to obtain the field over the £’ plane. Figure 5(b) shows this procedure.
Study of this figure readily shows the differences in the two procedures.

Finally we consider the interesting case for which b, b’, and R satisfy both Eqgs. (9) and (11) so
that Eqs. (10) and (12) are both valid approximations. For this case either processing scheme shown
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DIRECTLY 2 = BY EQ. (4.3)

(a) Field computation if detectors are in the farfield of the source

MEASURE THE SOURCE TRANSFORM MULTIPLY BY
DISTRIBUTION - COORDINATES L -ik  Re*R e FOUR'ERDE:NSFORM |
DIRECTLY 8Y EQ. (4.4) 27 cosd

) Fiéld co;npumion if sources are in the farfield of the detector array

Fig. 5 — Differences in propagation calculations using the Fraunhofer
approximations of the (a) second and (b) third kinds

in Fig. 5 should work. Examination of the nonlinear coordinate transformations given by Egs. (15)
and (16) indicate that in the limit as R gets very large relative to both b and b’ we get

¢ ~ Ds,,

§ ~ Dsy, (in
and

s, ~ &/D,

s, ~ §/D, (18)

so that in this limit the transformations represent only a linear scaling. Substitution from Egs. (17)
and (18) into Eqs. (10) and (12) while setting R = D gives

¥(F) = —ik/2xlexp (ikD)/D] §f ¥(®lexp (—ikE - E'/D)dE d,), (19)

for either case which shows that they are identical in this limit.

The Fraunhofer approximations of the second and third kinds have another interesting difference
when they are applied to inverse problems. As we discussed, the Fraunhofer approximation of the
second kind can be inverted for use in computing the source distribution from measured farfield data,
but only to within the resolution limit of a diffraction-limited lens with a numerical aperture of unity.
The Fraunhofer approximation of the third kind can also be inverted and applied to inverse problems,
but because of the requirement that the detector array be limited to circle of radius where Eq. (11) is
satisfied, the field cannot be measured outside of this region. This restriction leads to a different
resolution limit on the calculations for the source distribution. In this case the fundamental resolution
limit is equivalent to that of a diffraction-limited lens with a numerical aperture of b'/R, which,
because of Eq. (11), is much poorer than the best resolution possible when using the Fraunhofer
approximation of the second kind.
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Table 1 summarizes the different properties of the three kinds of Fraunhofer approximations dis-
cussed in this section.

Table 1 — Differences Between Fraunhofer Approximations

First Kind Second Kind Third Kind

Source domain Near origin z = 0 plane z = 0 half space

Source dimen. 3-D, linear 2-D, linear 2-D, angular

Det. domain Far from origin Far from O,z =2 0 2z = 0 plane
{ Det. dimensions  2-D, angular 2-D, angular 2-D, linear

FT domain Sphere Plane Plane

FT dimensions 3-D 2-D 2-D
i Large parm. (Source radius) 2R (Aperture dia.) /R (Det. dia.) 2R
P 1.5 Conclusions

The Fraunhofer approximation can take at least three forms that are very different and are useful

in different applications. The Fraunhofer approximations of the first, second, and third kinds, defined
in this section are well known in radiation physics, optics, and electrical engineering, respectively.
This appears to be because their different properties best suit them for important applications in these
fields. However, each is not as well known outside of its respective field. Since occasionally prob-
lems arise in optics that can be best analyzed by a Fraunhofer approximation other than that of the
second kind, it would seem useful to be aware of all three of these forms.

2 THREE FRAUNHOFER APPROXIMATIONS FOR THE PROPAGATION
OF THE CROSS-SPECTRAL DENSITY FUNCTION

2.1 Introduction

Section 1 (also Ref. 15) shows that at least three different kinds of Fraunhofer approximations in
scalar diffraction theory have important differences in both conditions for validity and mathematical
structure.

In the next three subsections we apply each of these approximations to coherence theory to
describe the propagation of the cross-spectral density function from the sources of the field to detec-
tors far away. As was the case in diffraction theory we find significant differences between the three
approximations. In the fourth subsection we show that in two of these approximations the propaga-
tion equations can be easily inverted to deal with inverse problems. The inverse propagation equa-
tions suggest a method for refocusing a radio telescope to observe objects in the nearfield of its
antenna array.

2.2 Fraunhofer Approximation of the First Kind

Consider Fig. 6 that shows a three-dimensional source distribution localized to a region about
the origin and radiating an electromagnetic field in all directions. We consider the typical mono-
chromatic, Cartesian components of the field ¥(x, w) and the charge-current distribution p(x, w),
which are related by the inhomogeneous Helmholtz equation

(V2 + kHY(x, w) = —4xp(x, w), 20)

where w is the radial frequency and k = 2x/\ = w/c.
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Fig. 6 — Configuration for the Fraunhofer
approximation of the first kind

In this section we assume that the source fluctuates in an irregular manner and treat Y(X, w) and
p(x, w) (for each frequency w) as random variables. The second-order statistical properties of these
random variables will be characterized in a manner conventional in coherence theory by the cross-
spectral density functions W, and W defined by

<p(Xy, W)p*(Xy, w') > = W (X, X3, w)d(w — &) (21a)

<¢(xl, w)W"(xz, w’) > = Ww(xl, Xy, (1))6(0) - w’), (21b)

which represent the ensemble average of the random variables at two different points X, and x, and at
two different frequencies w and ’.

We found in Subsection 1.2 that if the source is completely contained within a sphere of radius

a centered on the origin and if the field point is at a distance R from the origin that is outside of the
Rayleigh range of the source, i.e.,

R >> ka?, (22)

then from Eq. (5) the field amplitude at x is given as a function of the three-dimensional Fourier
transform of the source distribution over the source points x’' by the Fraunhofer approximation of the
first kind, viz.,

V(Rs) = [exp (ikR)/R] [f p(x') exp (—iks - x)d’x’, (23)

where R = |x| is the distance and s is a unit vector in the direction from the origin to the field point
at x. Upon substitution from Eq. (23) into Eq. (21b) and then by using Eq. (21a) we find that the
cross-spectral density function in the farfield of the source is given by

Wy(R 81, Ry8y) = lexp [ik(R; — Ry))/R|R,)
x §ff §§f w.xi, xp) exp [—ik(s, - X} — 5, - xp)d’xjd>x5, (24)
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where we drop the argument w from here on (for a similar result see Ref. 2, Eq. (3.3)). Equation
(24) is the second-order (in the field amplitude) form of the Fraunhofer approximation of the first
kind that gives the field cross-spectral density function in the radiation zone of a three-dimensional
source as a double three-dimensional Fourier transform of the cross-spectral density function of the
source. In Eq. (24) s, and s, represent unit vectors from the origin toward the field points at x, and
X,, respectively, R, = |x;|, R, = |x;]|, and the two volume integrals are over the source points at
x; and x3, as shown in Fig. 6.

Let us now consider the important special case for which the source is quasi-homogeneous {16,
Eq. (3.5)] so that

Woxi, X)) = L[(xj + x3)/2]u(xi — x3), @25

where I, is a slow function relative to x. By this we mean that y is zero outside of some domain in
which |x{ — x}| is smaller than some fixed constant d' and /, is constant over any domain where
| x{ + x| /2 varies by no more than 4’ [16, Section 3]. The function u(x_) appearing in Eq. (25) is
a normalized correlation coefficient that has a maximum value of unity that always occurs when
x| = 0. By substitution from Eq. (25) into Eq. (24) we obtain

WyRs), R;8p) = lexp k(R — RDV/R R (s, — 8)il(s, + 5)/2], (26)

where the caret indicates three-dimensional Fourier transforms

I,® = ff 1,x,)exp (—ikx, - B!, @
and
i® = fff wxl) exp (—ikx” - Bd’x’ 28)

(16, Eq. (2.3.10)].

Equation (26) is an important result. It applies to the usual thermal sources and to most other
nonlaser sources. It leads to a pair of reciprocity theorems that are very important in radiation theory
(see Ref. 16, Section 3 for a detailed discussion of these theorems).

2.3 Fraunhofer Approximation of the Second Kind

Assume that the source is a planar, secondary source in the z = O plane, as shown in Fig. 7,
instead of the three-dimensional, primary source distribution discussed in the last subsection, and
assume that it radiates only into the z = O half space. We found in Subsection 1.2 that if such a
source is completely contained within a circle of radius b about the origin and if the field point is at a
distance R from the origin that is outside of the Rayleigh range of the source, i.c.,

R >> kb?, (29)
then from Eq. (10) the field in any direction s from the origin into the z = 0 half space can be given

as a function of the two-dimensional Fourier transform over the source distribution by the Fraunhofer
approximation of the second kind, viz.,

V(Rs) = (—ik/2x) cos 0 exp (ikR)/R ﬂ' vO’) exp (—iks - x")d*x’, 30)

12
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where @ is the angle that x makes with the +z axis, R = |x|, and s = x/R. By substitution from
Eq. (30) into Eq. (21b) and then by using Eq. (21b) we have

WyRs), Rysy) = (k/27)? cos 6, cos Bfexp [ik(R, — R,))/RR;)
- - ]
x §f §§ W&, xp) exp [—ik(s; - x| — 5, - xp)}d*x{dx). 31
- —oo
Equation (31) gives the field cross-spectral density function in the radiation zone of the two-
dimensional source distribution as a double two-dimensional Fourier transform of the cross-spectral
density function of the field between the source positions x; and xj in the z = O plane. This is the

second-order form of the Fraunhofer approximation of the second kind.

Now we will consider the special case for which the two-dimensional source distribution is
quasi-homogeneous, i.e.,

WO xi, x3) = I1(x] + x)/2] u(x; — x3), (32)

where again / is a slow function relative to u and u is a correlation coefficient. Upon substitution
from Eq. (32) into Eq. (31) we have

W‘(R,sl, Rz&z) = (k /2")2 cOos 0] cos Oz[exp ik (Rl - Rz)/R |R2]

x I(s; — sy)il(s, + $,)/2], (33)

where the tilde represents a two-dimensional Fourier transform

i® = [f Ix})exp (—ikx), - Bdx), (34)
and
i® = ff wxl)exp (—ikx. - Bdx". 3S)
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Equation (33) is very important in coherence theory. It applies to thermal as well as most other
nonlaser sources. It leads to the van Cittert Zernike theorem as well as to a closely related, recipro-
cal theorem. This has been discussed in detail elsewhere [17, Section IV].

Equation (31) appears to be mathematically similar in form to Eq. (24) except for two differ-
ences. The first difference is that the cross-spectral density function inside of the integral in Eq. (31)
is between values of the field amplitude in the source plane rather than values of the source distribu-
tion itself. This gives rise to some additional (obliquity) factors appearing in Eq. (31). The second
difference is that the Fourier transform in Eq. (31) is two dimensional rather than three dimensional.
As we shall see later, this difference in dimensionality has important consequences.

The conditions for validity of Egs. (24) and (31) are of course quite different. Equation (24)
applies to the field outside of the Rayleigh range in any direction from a three-dimensional primary
source distribution about the origin. Equation (31) applies to the field outside of the Rayleigh range
in the z = 0 half space of a secondary planar source in the z = 0 plane.

2.4 Fraunhofer Approximation of the Third Kind

For the last case, we assume that the detector array, not the source, is distributed over the
z = 0 plane near the origin as shown in Fig. 8. Then we assume that it is the source of the field that
is located in the z = O half space away from the origin. Comparison of Figs. 7 and 8 shows that
these two cases are the same except that the positions of the source points and field points have been
interchanged. In Subsection 1.3 it is shown that if the detector array is completely contained within a
circle of radius b’ from the origin and that every point in the source at a distance R from the origin
is outside of the Rayleigh range of the detector array, i.e.,

R >>kb"?, (36)

then from Eq. (12) the field measured by the detector at x’, can be given as the two-dimensional
Fourier transform over the source distribution by the Fraunhofer approximation of the third kind,
viz.,

vO) = —ik/2x  [f  [WRs) exp (ikR)/R) exp (—iks - x')R*(ds,ds, /s,), (37

52 +s,2 =1

where s = (s, s,, 5;) is the unit vector from the origin in the direction of the source point at x.
Upon substitution from Eq. (37) into Eq. (21b) and by using Eq. (21a) we find that

W (xi, x3) = k207 [ [ (WyR s, Rys)) fexp [ik(R, — Ry))/R,R,)
D, D

X exp [~ik(s, - x{ — 8, x3)] (Rlzdslxdsly/slz) (Rzzdsz:dszy/szz), (38)

where 8; = (s, Sy, 51,) and 8 = (53, 53, 52,) are the directions from the origin to the source
points at x, and X;, R, = |x,|,R; = | x|, and D, and D, are the domains of integration where
st + s} =< 1and s +s} < 1, respectively. Equation (38) gives the field cross-spectral density
function between points x| and x; within the detector array in the z = 0 plane as a double two-
dimensional Fourier transform over the field cross-spectral density function between the source posi-
tions at R8s, and R,8, . This is the second-order form of the Fraunhofer approximation of the third
kind.

14
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Fig. 8 — Configuration for the Fraunhofer
approximation of the third kind

We will consider the special case for which the source distribution is quasi-homogeneous so that
Wyx1, x2) = I[(x; + X5)/2] (%) — Xp), (39)

where / is again a slow function relative to x4 and u is a correlation coefficient. Then upon substitu-
tion from Eq. (39) into Eq. (38) we have

WXy, Xp) = (k222G (x| — %) al(x] + x3)/2], (40)

as shown in Appendix B, where

G® = {| IRs)exp (—iks - HR¥ds ds, /s}) @1)
2z
and
i® = §f wRs.)exp (~iks_ - Bds_.ds_,. 42)

Reference 18, Eq. (2.11) contains a different derivation of Eq. (40) for the special case where the
source is completely incoherent.

Equation (40) is different from Eqs. (26) and (33) in that it gives the cross-spectral density func-
tion for the field over a detector array if the sources are outside of the Rayleigh range of the detector
array. The results in the earlier sections give the cross-spectral density function for detectors outside
of the Rayleigh range of the sources, i.e., in the farfield. These are very important differences.
Usually if one condition applies the other does not.

There are two formal differences between Eqs. (40) and (33). The first, and most important,
difference is in the coordinates. In Eq. (33) the Fourier transformation is from linear coordinates
within the source plane at z = 0 to angular coordinates from this origin to the field points far away.
In Eq. (40) the Fourier transform is from angular coordinates that the source points subtend from an
origin within the detector array within the z = 0 plane to linear coordinates within the plane of the
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detector array. This is a very important difference as we shall see when dealing with inverse prob-
lems in the next subsection.

The second formal difference between Eqgs. (40) and (33) is the additional factors appearing in
the kernel of Eq. (41). In general R and s, are functions of s and cannot be removed from the
integral. However, for the special case where the sources are all located on a hemisphere of a con-
stant radius R centered at the origin and the sources are localized within a region that subtends such a
small angle from the origin that s, can be approximated by unity, then Eq. (40) becomes

Wy(xi, x3) = (R /20 (x] — x5)al(x] + x3)/2)). @3)

Equation (43) differs from Eq. (33) because of the different conditions required for their validity, the
location of the origin of the coordinates, and the different use of linear and angular coordinates.

2.5 Applications of the Fraunhofer Approximations to Inverse Problems

An important example of the application of the Fraunhofer approximations is in their use in
inverse problems. In an inverse problem source parameters are calculated from measurements made
of the field that they radiate or scatter. Fraunhofer approximations are especially useful in this work
since the relationship between source and field parameters appears as easily inverted Fourier
transforms. Leaving the more complicated case of the Fraunhofer approximation of the first kind to
another study, the intensity distributions describing the sources for the Fraunhofer approximation of
the second and third kinds, respectively, are given by inverting Egs. (33) and (40), as shown in
Appendix C, to get the source intensity

I(x') = Io/N [§ g &) exp (kE - x{)d &dn, 44)
if Eq. (29) is valid, or
I(Rs) = Gg (cos® 8/N°R?) {f gu(x) exp (iks - x_)d%x", (45)

if Eq. (36) is valid, where Iy and G, are constants,

gyxi = x3, y1 — y9) = Wyx{, x)/NWy(x{, X)W (x3, x3),
iffi x?+y?t<b?andx?+yi=<bh?
= 0 otherwise (46)

is the normalized correlation coefficient measured with the detector array over the z = O plane, and

By(S1x = S2,S1y — Say) 4 W (R s, Rysy)exp[—ik (R, _Rz)]/‘\[W¢(R,S],R]S|) W (R28;, Rs)),
iffi 57 +sf standsd +s3 <1,

8 0 otherwise, @7
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is a normalized, phase-shifted correlation coefficient measured over the detector array away from
z = O plane. In Eqs. (46) and (47) the correlation coefficients are spatially stationary.

Note that the main formal difference between Eqs. (44) and (45) is the different coordinates in
the two Fourier conjugate spaces and the obliquity factors. In Eq. (44) the transform is from a space
linear with the difference in angle subtended from the origin at the sources by the points at which the
field correlation function is measured into a space linear with the source plane coordinates, as shown
in Fig. 7. In Eq. (45) the transform is from coordinates linear with the position of the detectors in
the z = 0 plane into angular coordinates linear with the angle that the source point subtends from the
+z axis. Since the transformation from linear to angular coordinates is not a linear transformation
(see Egs. (15) and (16)), this difference is important in the processing of field correlation function
data to obtain source intensity.

An important example of this inverse problem is radio astronomy where correlations of the field
radiated by astronomical sources are measured by an array of antennas at the surface of Earth and
then are used to calculate the secondary source distribution over a hemisphere outside of the Rayleigh
range of the array. Equation (45) is the basis for the present radio telescopes that image sources out-
side of the Rayleigh range of the antenna array [18]. Equation (44) could be used as the basis of a
new application of a radio telescope to image a compact source distribution that is within the Rayleigh
range of the antenna array but for which the antenna array is in the farfield of the source. However,
because of the formal differences between Egs. (44) and (45) the data from a radio telescope, used to
image a small source distribution inside the Rayleigh range of the antenna array, will require different
processing to image sources outside of the Rayleigh range of the array. Because the coordinate
transformation from linear to angular coordinates, required in Eq. (44) before Fourier transformation,
is dependent on R(x,) (the range from each antenna to the origin within the source distribution), the
resulting image will be accurate only for the sources that are near enough to the origin (in agreement
with the condition in Eq. (29)). It therefore appears that this transformation of the correlation func-
tion data to angular coordinates before the Fourier transformation refocuses the telescope on the local-
ized source distribution and is apalogous to focusing a camera on an object that is too close to be in
focus when the camera is focused at infinity. This procedure is discussed in Section 3 (see also Ref.
19).

2.6 Differences Between Fraunhofer Approximations

This subsection summarizes and discusses some of the more important differznces discovered
between the Fraunhofer approximations of the first, second, and third kinds.

A major mathematical difference between the Fraunhofer approximation of the first kind (Eq.
(24)) and the others is that it represents a Fourier transform from a six-dimensional space to a four-
dimensional space. This is because x; and x; in Eq. (24) are ordinary vectors with three independent
components each, while s; and s, are unit vectors with only two independent components each. It is
therefore not clear that Eq. (24) can be generally inverted to apply to inverse problems. It appears
likely, however, that inversion is possible for some special cases. The Fraunhofer approximations of
the second and third kind in Egs. (31) and (38) are not as difficult to invert. Appendix C shows how
this can be done for quasi-homogeneous sources when certain approximations are made.

The important differences in the Fraunhofer approximations of the second and third kinds are
both in form and in conditions for validity. The difference in conditions for validity were described
during derivation. The Fraunhofer approximation of the second kind is valid only if the domain of
the source distribution is small enough that the detectors can all be located outside of the Rayieigh
range of the source distribution. On the other hand, the Fraunhofer approximation of the third kind is
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valid only if the detector array is small enough that the sources can all be placed outside of the Ray-
leigh range of the detector array. Usually if one approximation applies the other does not. In cases
where both approximations apply the formal differences between them can be removed by small angle
approximations (see Subsection 1.4).

The formal differences between the Fraunhofer approximations of the second and third kind are
twofold, differences in both the coordinate systems and the obliquity factors. It has been pointed out
(Eq. (16)) that the coordinate transformations from linear to angular coordinates in Egs. (38), (41),
(43), or (44) needed to prepare the data for Fourier transformation are in general nonlinear transfor-
mations and do not commute with the Fourier transformation. No such coordinate transformations
are required for Egs. (24), (26), (31), (33), or (45), for which the transformed data come out
automatically in angular coordinates and need to be transformed into linear coordinates only if
desired. Thus the formal differences in processing data by using different Fraunhofer approximations
is nontrivial (viz, Section 3).

2.7 Conclusions

The differences between Fraunhofer approximations of the first, second, and third kinds, which
are discussed in terms of scalar diffraction theory in Section 1, are also found to exist when these
theories are extended to describe the propagation of the cross-spectral density function. The
Fraunhofer approximation of the third kind leads to the formulas that are usually used in radio astron-
omy to process the data from a radio telescope to image sources in the farfield of the antenna array.
The use of the Fraunhofer approximation of the second kind, instead, leads to modified formulas. It
appears that these formulas show how to process these data differently so that the radio telescope is
refocused to image objects in the nearfield of the antenna array.

3 REFOCUSING A RADIO TELESCOPE TO IMAGE SOURCES IN THE
NEARFIELD OF THE ANTENNA ARRAY

3.1 Introduction

Radio telescopes have been used since the 1950s to image radio sources that are very far from
the antenna arrays. There has been some interest at the Naval Research Laboratory in building new
radio telescopes with very large space borne antenna arrays to improve resolution. Some of these
arrays would be so large that some sources within the solar system would be within their nearfield so
that the usual methods for forming images fail. Some experimental work has already been done
toward refocusing a radio telescope to look at nearby objects but without the support of any detailed
theoretical understanding. This work has been done principally by use of optical analogies.

In the present section a theoretical foundation is provided for understanding the refocusing prob-
lem in a more systematic way by use of optical coherence theory. The first subsection describes the
operation of a conventional radio telescope focused at infinity. The second subsection extends this
theory to describe some methods for refocusing the telescope to image objects that are much closer to
the antenna array. This study is based on the formulation derived in Sections 1 and 2 (also see Refs.
15 and 20).

3.2 Conventional Farfield Imaging
Conventionally a radio telescope is used to image radio sources that are in the farfield of the

antenna array of the instrument. This is analogous to a camera focused at infinity. If the radiation
source is in the farfield of the antenna array, it makes no difference to the adjustment of the telescope
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or to the computation of the image just how far the source is from the telescope. All objects are in
focus simultaneously if they are in the farfield of the antenna array. It is important to remember that
in radio astr~omy the term farfield refers to the source being in the farfield of the antenna array. As
we shall soon see this is quite different than having the antenna in the farfield of the sources just as
discussed in Sections 1 and 2. The conventional method by which a radio telescope images radio
sources in its farfield is described in this subsection for comparison to the new technique for refocus-
ing the telescope to image sources in its nearfield.

Consider an antenna array for a radio telescope arranged over the z = 0 plane near the origin,
as shown in Fig. 9, irradiated by radio waves from sources in its farfield. Since the sources are all in
the farfield of the antenna array, to image them we need only calculate the intensity over a hemi-
sphere of radius R from the origin.

SOURCE
HEMISPHERE

Fig. 9 — Conventional radio telescope focused at infinity

The antennas measure the amplitude of one component of the transverse electric field at points
indicated by the position vector X’ from the origin as shown in Fig. 9. The signal from each antenna
is then processed as shown in Fig. 10. The signals are detected by a receiver, reduced to a con-
venient IF, and bandlimited to a narrow frequency spectrum. Then the signals are passed through
delay lines that point the array toward the source so that the normal to the plane of the antenna array
points in the direction of interest. The resulting signals are then multiplied together and the product
time averaged to form correlation functions between signals from antenna pairs, viz.,

T
I'(x;, X3, 0) = T]ﬂ 1/2T j_r ¥(x,, 1) ¥ (X, t)dt, 48)

where ¥(x, t) represents the complex field amplitude of the traveling wave propagating from the
source to the antenna array, after it has been detected and bandlimited by the telescope.

We represent the second-order statistical properties of the field by use of either the mutual
coherence function or the cross-spectral density function of optical coherence theory (for general

description see Refs. 3 and 21, and for applications to radio astronomy see Ref. 18). The second-
order statistical properties of the field are completely specified by the mutual coherence function

T
T(x). X, 7) = lim 1/2T j_r ¥(x;, t + 1) ¥ (x,, 1)dt, (49)
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Fig. 10 — A typical radio telescope

which is usually defined by using an ensemble average instead of the time average used in radio
astronomy. These are equivalent if the statistics of the source are assumed to be ergodic. Note that
Eq. (49) is a simple extension of the function described by Eq. (48), which is measured by the radio
telescope. The cross-spectral density function is then defined by the equation

W (x,, X3) = S:, I'(x,, X, 7) e'“" d 7, (50)

as the Fourier transform of the mutual coherence function.

The procedure for forming an image depends critically on some important assumptions. First
we must assume that the antenna array is bounded so that all antennas are within a circle of radius a
from the origin within the z = O plane. Second, we must assume that all of the sources are in the
farfield of the antenna array so that

R >> ka?, 51)

where & = w/c. And third, we assume that the sources of the field are quasi-homogeneous [17].
Then it is well known (see Eq. (45) and the preceding derivation) that the intensity associated with the
measured component of the electric field over the hemisphere at infinity (or equivalently at fixed dis-
tance R from the origin) is given by the Fourier transform of the normalized cross-spectral density
function, i.e.,

I(Rs) = G cos? O/NR? [ g(ue ~*"*d%, (52)
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where

g(xj — x}) & W (x{, x5)/NW (x{, xDW (x}, X3),

iffi |x;] <aand |X;| < a,

4 0 otherwise, (53)

is a spatially stationary correlation coefficient, s is the unit vector pointing from the origin in the
direction of an intensity point on the hemisphere, 6 is the angle that s makes with the +xaxis,
u = (u, v) where

v=yi-y:, 4

are difference coordinates between antenna pairs on the z = O plane, and G is a constant. If some
important restrictions are made on the operation of the radio telescope (see Ref. 18, Section II for a
detailed discussion), we can approximate the cross-spectral density function in Eq. (52) by the mea-
sured correlation function defined by Eq. (48), i.e., we can use

g = I'(x{, x3, 0)/ VI'(x, x1, 0) I'(x3, x3, 0)
iffi |x{| < aand |X}| < a,

= 0 otherwise, (55)

in the kernel of Eq. (52), as shown in Appendix D. Therefore, the image may be obtained by using
Eq. (52) by normalizing the data and then performing a Fourier transform from the two-dimensional
uv plane of antenna position differences to the two-dimensional angular space given by

sy =x/R

sy = y/R, (56)

where x is a position vector from the origin to a point on the hemisphere as shown in Fig. 9.

If the sources are nearer to the antennas so that they are not in the farfield of the array, then,
under some circumstances, there is still a way to refocus the telescope to image these sources.

3.3 Nearfleld Imaging
Consider Fig. 11, which shows a localized, planar, secondary, quasi-homogeneous source distri-

bution over the z = 0 plane radiating radio waves toward an antenna array of a radio telescope that is
located in the z = D plane.
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- o Fig. 11 — Radio telescope focused on a localized
source in the nearfield
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We assume that the sources are not in the farfield of the antenna array so the D is 100 small to
satisfy Eq. (51). Even so a method exists to form an image by using the same radio telescope
described schematically in Fig. 10 but slightly modifying the processing procedure to refocus the tele-
scope onto the nearby sources.

This process requires some important assumptions. First, we assume that the sources are
bounded so that they are all contained within a circle of radius b from the origin in the z = 0 plane.

Second we assume that the antenna array is in the farfield of the sources (it is the other way around
for conventional farfield imaging) so that

R >> kb (57)
Then as shown in Eq. (44), the intensity over the z = 0 plane is given by

1) & 1N | g'(® exp (ikx' - BT, (58)

where

g (X;/R; — X)/R) & W (x{, x3) exp [~ik(R; — Ryl/ VW (x|, xW (x}, x3),

4 0 otherwise, (59)

must be calculated from the experimental correlation data.
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Inspection of Eqs. (58) and (59) suggests a straightforward computational method for refocusing
the telescope to image nearby objects. As shown in Appendix E, under almost the same conditions
used with the telescope focused at infinity, the correlation coefficient in Eq. (59) can be approximated
by

g,(xllRly XZ/RZ) = F(X], X, 0) exp [-lk(Rl - Rz)]/\/F(xl, X;, O)F(Xz, X7, 0),
iffi x? +y} < R andx? + y? < R},
= 0 otherwise, (60)

by using the measured correlation function in Eq. (48). Then to form an image of the fields over the
hemisphere, g’ must be transformed from linear u,v coordinates within the antenna plane to the new,
angular coordinates given by

£ =x;/Nx? +y? +D? - x;Nx} +y? + D?,
7 =y/Nx} +y} + D? — y}/Nx? +y? + D?, 61)

and then Fourier transformed. Equation (61) is a nonlinear coordinate transformation that has a non-
trivial effect on the data after Fourier transformation.

Inspection of Eqs. (58) and (59) suggests that it might perhaps be useful to refocus the telescope
electronically. This could be done by adjusting the delay lines in Fig. 10 so that the antenna array is
electronically moved from the plane to a hemisphere of radius R from the origin as shown in Fig. 11.
This can be done since the antennas are in the farfield of the sources and the farfield amplitude is
constant along any direction from the origin except for a 1/R decay and the usual exp (ikR) phase
shift. This use of the delay lines has the effect of refocusing the antenna array onto the sources in
analogy to a refocusing a camera on a nearby object. With refocusing the function in Eq. (59)
becomes the same normalized correlation coefficient given in Eq. (53) and it can be calculated from
the measured correlation function by using Eq. (55) just as for the case when the telescope was
focused at infinity.

If we adjust the delay lines as suggested so that in Eq. (58) R, = R, = D a constant, then Eq.
(61) reduces to

E=u/D
and
n =v/D, (62)
so that Eq. (58) becomes
I(x') = Io/N*D? { g(u) exp (ikx' - w/D¥du dv, (63)
23
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which is essentially the same as Eq. (52) except for the trivial cos 6 factor and the fact that the u,v
coordinates in Eq. (63) correspond to the antenna position differences after they are projected onto the
hemisphere, not those on the actual physical antenna plane. As shown in Appendix E, the correlation
coefficient in the kernel can be approximated by using the measured correlation function as given by
Eq. (60) but with exp (—ik(R; — R;)) = 1. Thus the data can be processed essentially as before
when the telescope was focused at infinity.

In appears clear from these results that we have to either refocus the telescope physically by use
of the phase shifters or refocus it mathematically by use of a modified data-processing procedure. In
either case we should be able to form an image of the nearby object in a similar manner to an object
in the farfield.

3.4 Conclusions

It appears possible to refocus a radio telescope to image radio sources within the nearfield of the
antenna array if the antenna array is in the farfield of the source distribution. This is done by
refocusing the telescope onto the sources in analogy to a photographic camera. Refocusing can be
done either electronically by curving the antenna array into a portion of a hemisphere with a center at
the source, or by processing the correlation function data obtained from the antennas in a somewhat

modified manner. Neither of these techniques would require any modification to most existing tele-
scopes. The modifications to the data-processing software should not be extensive.
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Appendix A
RECIPROCITY THEOREM

The reciprocity theorem used in antenna theory treats antennas as circuit elements and usually
relates only the input and output currents and voltages for coupled antennas. Some work has been
done to obtain reciprocity theorems for electromagnetic fields (A1, Chapter 9] but this work is diffi-
cult to relate to field propagation as discussed here. Therefore, a generalized field reciprocity
theorem is derived in this appendix in the form needed to obtain Eq. (12) from Eq. (10).

First, consider the outgoing field in Fig. 2. Assume that the field arises from primary sources
in the z < O half space and propagates to the right into the z = 0 half space. Let the z = 0 half
space contain only a homogeneous, isotropic, source-free medium. We also assume that the sources
are far enough from the z = O plane that the effects of evanescent plane waves on the fields in the
z > 0 half space can be neglected. Then we can always expand the scalar amplitude of the field in
this half space into an angular spectrum of homogeneous plane waves in the form

i) = | Ay(p2 g2 exp [ik(paxy + g2y, + myzp)ldpadg,, (A1)

pi+eisi

where

my=~N1-p} —q}, p} +¢} < 1. (A2)

The angular spectrum is found by taking the Fourier transform of Eq. (A1) after setting z = 0 to get

AP, g2) = 1N [ ¥{O(x}) exp [—ik(paxs + qydldxsdys, (A3)
-

and the field over the hemisphere of radius R from the origin is found by integrating Eq. (Al) by use
of the method of stationary phase to get

¥i®)xX) ~—iNzy/R Ay(x2/R, y,/R)e™ /R, (A4)

asymptotically as kR becomes large.

Next consider the reciprocal field illustrated in Fig. 3. Assume that this field arises from pri-
) mary sources to the right of the hemisphere in Fig. 3 and propagates to the left toward the z = 0
plane. We assume that the region to the left of the hemisphere contains only a homogeneous, isotro-
pic, source-free medium. We also assume that the primary sources are far enough away from the
hemisphere that we can neglect the effects of evanescent plane waves on the field to the left of the
hemisphere. Then over the region between the z = 0 plane and the hemisphere we can always
{ expand the scalar amplitude of the field into an angular spectrum of homogeneous plane waves in the
form

P L

i Vaxs) = §f  Ax(p3. q3) exp lik(p3xs + qays — myzy)ldpadgs, (AS)

pi+eisi
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my=~N1-p? +q%, p} +4f s 1. (A6)

The angular spectrum is obtained from Eq. (AS5) as
Ax(p3, q3) = I/ [f WOk exp [—ik(pyxi + qay3)ldxidy; (AT)

and the secondary source distribution over the hemisphere is found from Eq. (A5) to be
¥™)x;) ~ iNz3/R Ay(—=x3/R, — y3/R)e ™R /R, (A8)

asymptotically as kR becomes large.

Let the outgoing field in Fig. 2 be called field one and the incoming field in Fig. 3 be called
field two. We assume that field one has an arbitrary secondary source distribution given by

vOx) & G(xd), (A9)

over the z = 0 plane. Then by substitution from Eq. (A9) into Eq. (A3) we obtain the angular spec-
trum

AP, 92) = G(py, g2) = 1/N [ G(x) exp [—ik(pax} + qaypldxidys. (A10)

By substitution from Eq. (A10) into Eq. (A4) we find the field distribution over the hemisphere to be

(X)) ~ —iNzo/R G(x3/R, y,/R)e™® /R. (Al1)

We now define field two in Fig. 3 to be the reciprocal of field one by requiring that the secondary
source distribution over the hemisphere in Fig. 3 be the complex conjugate of the field distribution
given in Eq. (A11) for field one over the identical hemisphere in Fig. 2, i.e.,

V) & [W{™(x)]* = ihzy/R G*(x3/R, y3/R)e*R /R. (A12)
By comparing Eq. (A12) with Eq. (A8) it is clear that field two must have the angular spectrum
Ay(p3, 99 = G*(=p3, —q3). (A13)
Upon substituting from Eq. (A10) into Eq. (Al) we find that

W) = [f  G(pa o) exp [ik(pyxy + gy, + myz))ldpdqy, (A14)

pi+ei st
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and then by substituting from Eq. (Al3) into Eq. (AS), taking the complex conjugate, setting
P3 = —p;yand g3 = —q,, we find that

Wx) = [ G(ps, g3 exp [ik(paxs + qays + myz)ldpsdgs. (A15)

p}+eisi

By comparing Eqs. (A14) and (A1S) it is obvious that at equivalent points in the two spaces,
where x, = x; = x, the fields take on values that are compiex conjugate to each other so that

Vi(X) = Y (x). (A16)

Thus if we derive a forward propagation integral for field one in the form
') = ﬂ ViR, X)X, (A17)
-

from any plane z = z' to any later field point x'’, both contained within the region between the
z = 0 plane and hemisphere in Fig. 2, then by substitution from Eq. (A16) into Eq. (A17) and taking
the complex conjugate we have

') = ff ", x)d>x’, (A18)
for the inverse propagator for field two from the corresponding z = z' plane back to the earlier field
point at x'’.

Thus we have proved a useful reciprocity theorem that can be summarized as follows: If two
electromagnetic fields, propagating in opposite directions, taken one at a time, within a source-free,

isotropic, and homogeneous medium, are composed only of homogeneous plane waves such that their
angular spectra are related by

Ap,q) & A5(-p, -9,

then they are reciprocal so that the forward propagator for one field (i.c., the kernel k& in Eq. (A17))
is the complex conjugate of the inverse propagator (i.e., the kernel A* in Eq. (A18)) for the other
field.
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Appendix B
DERIVATION OF EQUATION (40)

Substituting from Eq. (39) into Eq. (38) and transforming variables by using

S_ =8 — 8y, Sy = (81 +8)/2,

$; =8, +8_/2, s, =8, —s_/2, (B1)
and

XL = x] — x3, X, = (x| + x3)/2,

X] = x, +x./2, ) = x4, — X_/2, (B2)

3
I

then defining R , and R _ such that

Xy = R,sl = R+S+ + R_S_/Z,

X, = R8s, =R,s, — R_s_/2, B3)

v

we obtain

Wyxi, x3) = /22 ff ff UR,s.)nR_s.) [exp kR, — R)I)}

—00 —o0

x exp [~ik(s, - x_ +s_ - x;)](RlR2ds+xds+y/slzs21,)ds-xds~y- (B4)

We must assume that /(x,) = 0 outside of the domains where s, and s, point into the z = O half
space so that we can extend the bounds of integration in Eq. (38) to infinity before we transform
coordinates to get Eq. (B4).

3 We now make use again of our previous assumption that u(x_) = 0 outside of the domain
where |x_ | < d. First, we can assume that d is small enough tkat R (x,), Ry(X;), 5., and s,,, like
I(x,), do not vary appreciably over the domains where x, and x, vary by d, so that we have the rela-
tions

R, =R, 4 R,

R, =R, 4 R,




P

ey

G

51, = Sy 4 Sz, (BS)

where the geometrical significance of these parameters are shown in Fig. Bl. Second, we assume
that because of the small d, the angle between s, and s, in Fig. Bl is small enough, for all values of

X, — X, for which the kernel of the integral in Eq. (B4) does not vanish, that we can treat s, as a
unit vector §.

o S2 R2§-2 "Pz

. Fig. Bl — Coordinate transformation in Eq. (44)

By substituting from Eq. (B5) into Eq. (B4) and separating the independent integrations we find
that

Wyxi, x3) = (k/27)* [ I(Rs) exp (—iks - x_)R¥(ds,ds, /s2)

X f§ uwR_s_)exp (—iks_ - x,)ds _.ds_,. (B6)

Now, since I(Rs) = 0 outside of the domain where (s2 + syz) =< 1, we can reset the range of

integration over s so that Eq. (B6) becomes the same as Eq. (40) with the two-dimensional Fourier
transforms defined as given by Eqs. (41) and (42).
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Appendix C
DERIVATION OF EQUATIONS (44) AND (45)

To derive Eq. (45) from Eqgs. (40) and (41) we first normalize the correlation function in Eq.
(40) to form the correlation coefficient defined by

ryxi, x3) A W xi, x)/NWxi, xDW (x5, X3, (1)
to obtain
py(xi, x9) = G(xi — x)l(x] + x3)/2)/ [6(0) \/ﬁ(xi)mxé)]. (€2)

Since I(x,) in Eq. (39) (as well as Ry, R,, s5y;, and s5,) is a slow function relative to u(x_), we
know from Fourier theory that ji(x’,) is a slow function relative to G(x_) in Eq. (40). Thus we can
assume that G(x] — x}) = O except over some domain where |x] — x5| =< d’, and that within any
domain where x; and x; differ by no more than d’ we have

axp) = p(xy) = pl(x; + x3)/2], (C3)
so that, upon substitution from Eq. (C3) into Eq. (C2) we have
wolxi, xp) & guxi — xp) = Gxj - x})/G,, (C4)

where Gy = G(O) is a constant.

Since the source distribution is defined physically only for points in directions from the origin to
the z = 0 half space we can define /(Rs) in Eq. (41) to have a value of zero for (sx2 + syz) > 1.
Thus we can define the Fourier inverse of Eq. (41) in the usual way. Upon substitution from Eq.
(C4) into this inverse, we obtain Eq. (45).

The derivation of Eq. (44) proceeds in a similar manner. Upon substitution from Eq. (33) into
Eq. (C1) we have

pyR ), Roysy) = I(s; — 8,) i [(s; + $)/2) exp [ik(R, — Ry)/ [1\0) \/ﬁ(sl)ﬁ(sz)]. (C5)
Because u is a slow function relative to I we have
i(s) = p(s) = gl(s) + 8p)/2], (C6)
within the domain where |s, — s,| < d/R, so that Eq. (C5) becomes
mRis1, Rys;) = (s, — sy)/lg exp [ik (R, — Ry)], (o)
where 1, = I(0) is a constant.
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Equation (C7) has physical meaning only for unit vectors s,, and s,, that point from the origin
to the z = O half space; therefore, if we define

8y(S1x = 521, S1y — Say) a my(R sy, R3S;) exp [—ik (R, — R,)],
iffi s +s12y < 1and 53 +s22y <1,

= ( otherwise, (C8)

substitute Eq. (C8) into Eq. (C7), solve for /, and then substitute the result into the Fourier inverse
of Eq. (34) we obtain Eq. (44).




Appendix D
CALCULATION LEADING TO EQUATION (55)

The cross-spectral density function over the antenna plane in Fig. 9 is given by

WP (xi, x) = (k222G Vx) — x5, WA N(x + x3)/2, o], (D1)
where
Gx,w) & ff RU(Rs)/cos? 8 exp (iks - X_)ds, ds,, (D2)
s2+s2s1
and
A, ) 8 5}» 1 =) Rs) exp (iks - X', )ds, ds, (D3)

1 (see Eqs. (40), (41), and (42)), i‘"’(x) is the intensity distribution over the hemisphere in Fig. 9, and
] #{®)(x_) is the complex degree of spectral coherence over the hemisphere. The field over the hemi-
sphere is assumed to be quasi-homogeneous so that /(®)(x) is a slow function relative to p(*)(x_),
i.e., u®X(x; — x;) = 0 except within the domain where |x; — x,] =< d, and I‘™((x, + x)/2) is
essentially constant over any domain in which | (x; + Xx;)| /2 changes by no more than d.

Upon substitution from Eq. (D1) into the Fourier inverse of Eq. (50) we find that

IO, x3, 7 = 1/@x) |__ (k2226 x; - %, )

x Bx] + %372, wle “dw. (D4)

The signals received by the antennas are filtered so that only those radio waves with frequency w
within a narrow bandwidth Aw centered on a median frequency contribute to the data. Thus upon
transforming Eq. (D4) by setting w = ' + @ we have

- Aw -
) rOx, x3, ) = e /@) |_ G} — x5, 0" + @)

X BN + x)72, o' + @) (@ + @)/cle U dw. (DS)
{ Next we make the quasi-monochromatic approximation
Aw << , (D6)
35




WILLIAM H. CARTER

so that &' << @ over the range of integration in Eq. (D5). We can set (0’ + @)/c = @/c =k
where the left-hand side of this expression does not appear in an exponent in Eq. (D5S). Now con-
sider
G®x| + x5, ' + @) =
-]
§§ R (Rs)/cos? 6) exp li[(w' + D)/c]s- (x| — xp)}ds. (D7)
-

If we restrict the size of the antenna so that

|x{ — x3] << 2xc/A w), (D8)

then we may neglect the effect of ' in Eq. (D7) so that, if we assume that /(*)(x) is independent of
w', and we can write Eq. (DS) as

rO®;, 5, ) = (/202G x| - x5, @i [xi + X372, 7] exp (i), 09)
where
;_;(m)(x;’ ) 8 1720 I:., B, @+ w)e e, (D10)

To eliminate the effects of partial coherence of the source on the data we normalize the mutual coher-
ence function in the usual way to obtain the complex degree of spatial coherence

YO(xi, x3, 1) ATV}, x5, D/VTOix;, xi, HTO(x3, x5, 7)

=@, , = (e , Afw)n =y Af2(®) ,  a(e) .
= GV — x5, D (] + x3)/2, 71/ [G‘ 0, 3 Vi, ni Vs, r)].mu)

Since 1™ (as well as Ry, R, and 6) is a slow function relative to u(™, then it follows from the prop-
erties of Fourier transform pairs that ™ is a slow function relative to ~®). The temporal Fourier
transform in Eq. (D10) does not change this relationship so that we can assume that
G™)(x] — x3) = 0 except over very small domains in which

), , e e
B +%)/2,D =5 KLD=q (o . (D12)
Upon substituting from Eq. (D12) into Eq. (D11) we have

O, x5, » = vOxi, x5, 0) = G™x{ - x5, @)/G'™0, @), (D13)

so that upon substituting from Eq. (D2), and inverting the Fourier transform Eq. (D13) becomes

I(Rs) = Gy(cos® 8/NR?) f g(x'., w) exp (—iks - x_)d’x., (D14)

36




! NRL REPORT 9141
where G, = G®)(0, w) is a constant and

gxi — x5, w) & 1O, x5, 0),
iffi |xj} < aand |x}] < a,
= 0 otherwise, (D15)

is a stationary correlation coefficient. Equation (55) follows by comparing Eq. (D14) to Eq. (52) by
using Eqs. (D11) and (D15). Since the function @ can be measured only over the portion of the
z = 0 plane that is inside of the circle of radius a it is necessary to define g to be zero for
|x; = x3| > a to invert the Fourier transform in Eq. (D13) to obtain Eq. (D14).
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Appendix E
CALCULATION LEADING TO EQUATION (60)
The derivation of Eq. (60) is virtually identical to that of Eq. (55) except for one slightly dif-

ferent assumption and some different coordinates and factors. The cross-spectral density function
over the antenna hemisphere in Fig. 11 is given by

W V(R s, Rysy) = (k72x)*(cos 0, cos 0,/R Ry exp [ik(R, — R,)

x IG5y = 85, @) & [51 + 872, wl, (E1)
where
i%._, w) = _ﬁ 19%x’, w) exp (—iks_ - x")d*x’, (E2)
and
isy, @) = _Swj pOx_, w) exp (—iks, - x_)dx_ (E3)

(see Section 2, Egs. (33), (34), and (35)), where I'¥ is the intensity distribution over the z = 0
source plane, and 4@ is the complex degree of spectral coherence over the source plane. Equations
(E1) through (E3) are different from Eqgs. (D1) through (D3), but this does not affect the derivation of
Eq. (60) in general.

Again as in Appendix D we assume that the source is quasi-homcgeneous so that /¥ is a slow
function relative to u@. The derivation then proceeds just as in Appendix D, with the same assump-
tions, until we come to the requirement that the antenna plane be restricted so that Eq. (D8) is satis-
fied. Instead of the assumption given by Eq. (D8) we must make the similar assumption that /? van-
ishes outside of the domain where

Ix'| << (xc/Aw). (E8)

With this assumption, and with the assumption that the source intensity 9 is effectively constant over
the frequency domain passed by the receivers, we may remove / ©)(s, @) from the integration over w’
as we removed G‘® from a similar integral in Appendix D.

The derivation then proceeds as before until we finally obtain instead of Eq. (D14)

19x', w) = Ig/N [ g'(s-) exp (iks_ - x)d%s_, (E14)
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where, instead of Eq. (D15),

g'(sy — s)) A T™(Rs,, R8s, 0) exp [—ik(R, — RV NT®R s, R;s,, OT™XR,8,, Ry8,, 0),
iffi 5%, +s5 < tandsd +s53 <1,

49 otherwise,

(E15)
is a stationary correlation coefficient, and where I, is a constant given by
o
Iy = {{ 19, wyd'. (E16)

By comparison of Eqs. (E14) and (E15) with Eqs. (58) and (59) it is clear that they are equivalent if
g' is given by Eq. (60). Because g’ is defined physically only for unit vectors s, and s, pointing

from the origin toward the z = 0 half space so that s, + slzy < 1, and 53 + szzy < 1, it is neces-
sary to define g’ = O for all other values of s,,, 5|, and s,,, 55, as indicated in Eq. (E15) to invert
a Fourier transform to obtain Eq. (E14).




