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Response Surface Analysis of Experiments

With Random Blocks

A.I. Khuri

Department of Statistics

University of Florida

Gainesville, FL 32611

ABSTRACT

-- This article is concerned with the analysis of experiments arranged in blocks chosen at random.

Estimates of the polynomial parameters in the associated response surface model are obtained free of

blocks. Tests concerning the polynomial and random block effects are presented. Furthermore, the

power of the test for the block effect is obtained using a certain approximation by Hirotsu (1979). A

numerical example is given to illustrate the implementation of the proposed analysis.

KEY WORDS: Design moments; Fixed and random effects; Mixed model; Orthogonal blocking;

Polynomial and block effects; Response surface model.
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1. INTRODUCTION

Model fitting in response surface methodology is usually based on the assumption that the

experimental runs are carried out under homogeneous conditions. This, however, may be difficult to

achieve in some experiments. For example, the runs may be obtained over a period of time or in

batches among which the experimental conditions can vary appreciably. Such an extraneous source of

variation should, therefore, be accounted for by introducing a block effect into the response surface

model.

Box and Hunter (1957) introduced the concept of orthogonal blocking so that estimates of the

polynomial parameters in the model can be obtained free of the block effect. This concept was

developed under the presumption that the block effect was fixed, that is, represented by a constant

parameter in the model. In this case, "the effect of carrying out a particular trial in one block rather

than another is merely to change the expected value of the response by a fixed amount which depends

only on the particular blocks involved," as was stated in Box and Hunter (1957, p. 228). Quite often,

however, the blocks are selected at random. For example, the blocks can be batches of raw material

used in a chemical process. In this case, it would be more appropriate to regard the block effect as

random.

In the present article, the analysis of a blocked experiment will be discussed under the

assumption that the block effect is random. This analysis does not require that the design blocks

orthogonally.

2. SOME PRELIMINARIES

Consider a model of order d (21) in k input variables, xl, Y2 . . xk . The experimental runs

are arranged in b blocks. The model can therefore be written as

y 0=01n + *SO- + _Z + f, (2.1)
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where y is a vector of n observations on the response, '0 and 0 = (01, 72"'" P) are unknown

parameters associated with the polynomial portion of the model, 2 = (7I, 72' ..... 7b1 where -t

denotes the effect of the eh block (I = 1, 2,..., b), and c is a random error vector. The matrices, X

and Z are known and-are of orders nxp and nxb and ranks p and b, respectively. The matrix Z is

actually of the form
Z = I (2.2)t~ Ine'

where ne is the number of observation in the Ith block, In is a vector of ones of order n1 xl

(t = 1, 2,..., b) and ( denotes the direct sum of matrices. In particular, if d = 2, that is, the model is

of the second order, then (2.1) can be expressed as

k k 9 b
- 0 + i i ui + liixui + i6jxuixuj + 1 zue + cu, u 21,2..., n, (2.3)

ui i i u- +__j 1U
tht

where xui denotes the u level of the A- input variable and Zut is a "dummy" variable taking the

value one if the uth trial is carried out in the Ith block and zero otherwise (i 1, 2,..., k;

1=1,2,..., b;u= 1,2,..., n).

Box and Hunter's (1957) conditions for orthogonal blocking for model (2.3) are

xui = 0, i = 1, 2,..., k, (2.4)
u( 1)

x .j=O, ij =1, 2,..., k; igj, (2.5)
u(1)

2 nt

u u xui, i = 1, 2,..., k, (2.6)

where E denotes summation over the I-h block (I = 1, 2,..., b). Note that conditions (2.4) and (2.5)
u(e)

presume that the sum of the elements in each column of the design matrix and the sum of the cross

products of the elements of each pair of columns are zero (see also Khuri and Cornell 1987,
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Section 4.7).

If the block effect is fixed, that is, if the -ye's in (2.3) are unknown constant parameters, then

estimates of the polynomial parameters in the model can be obtained in the usual fashion as if the -ye's

do not appear in the model. In general, for a model of order d, an element of the matrix X in (2.1)

6162 6 k
can be written as xul x 2 ... x ,where the 6i's are nonnegative integers such that=16. =6 and

I <6<d. In order for a design to block orthogonally we must have

n Xubl Xu2 ... Xuk(Zul - 1= , e = 1, 2,..., b; (2.7)
u= = ,2 .. d.

It follows that

Xu , .XulXu2 ... uk =1 , 2,..., b; (2.8)

u(i) u=1 d,

which can be written as

I u) x u  62 6k [61 62 kk, = 1, 2,..., b; (2.8)
fit Xu u2 uk

U() - 1, 2,... , d,

where

.kk] n 61 b2 6k

[16122... n E ul u2***xuk(29u=1

k
is a design moment of order 6 = E 6.. In particular, if the odd design moments are zero (a design

i=l i

moment is odd if at least one 8i, i = 1, 2,..., k, is an odd integer), then condition (2.8) requires that

u X62 .. Xuk I = 1, 2,..., b. (2.10)

U(1) uXA Xu.k =O0

Condition (2.8) is therefore a generalization of conditions (2.4) - (2.6). It can be noted that the

quantity on the left side of (2.8) does not depend on subscript e and is thus invariant with respect to

blocks if the design blocks orthogonally. In this case, if X denotes the portion of the matrix X

corresponding to block £ (= 1, 2,..., b), then from (2.8), the 1 xp vector,
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nL. = X t ! -  (2.11)

does not depend on subscript I and is therefore the same for all the blocks.

3. THE ANALYSIS OF EXPERIMENTS WITH RANDOM BLOCKS

Let us assume that the block effect in (2.1) is random such that -y is distributed as N(q, 0!b)

independently of c, which has the normal distribution N(0, o21n). Model (2.1) is therefore a mixed

model since 0 is a fixed parameter vector. In this case, the expected value and variance-covariance

matrix of y are

E(y) = fon + X , (3.1)

Var(y) = o.2zz' + 02In (3.2)

2 2n (3.3)
= -fnt

where In, is the matrix of ones of order nixne. The eigenvalues of J-nC are nj and 0 of multiplicity

ne-1 (1 = 1, 2,..., b). By the Spectral Decomposition Theorem, Jnt can be expressed as

.ne = .P AeP, I = 1, 2,..., b, (3.4)

where A is the diagonal matrix, diag(ni, 0) with 0 being a zero matrix of order (ne-I)x(ne-l), and

e is an orthogonal matrix of the form

Ve= [in : Q , I= 1, 2..... b. (3.5)

Note that for I = 1, 2,..., b,

lntge = 0 (3.6)
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(3.7)

n= II - intnr (3.8)

Formula (3.3) can then be written as

2

Var(y) =2PAP + acln, (3.9)

where
b

P E) p e  (3.10)

b
A = D Ae. (3.11)

Now, let u be defined as

U = Ply. (3.12)

Then,

E(2) = ',(2in.n +

Var(u) = e2 + 2

We note that the elements of u are independent. By rearranging these elements, it is possible to

partition u into u 1 and u2 of orders bx 1 and (n-b)x 1, respectively, such that

U .= j "y (3.13)

t2 q .(3.14)

From (3.1) and (3.3), the expected value and variance-covariance matrix of u'2 are

E(2 )  [ Q]Xi (3.15)

Var(u 2 ) = 2! -b" (3.16)
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3.1 The Analysis Concerning the Polynomial Effects

From (3.15) and (3.16), the vector u 2 can be represented by the model

2 = #_ + q, (3.17)

where

T =[ b (3.18)

and q is a random vector distributed as N(9, ,2l1Ib). Since X is of full column rank equal to p, then

T, which is of order (n-b)xp, is also of rank p provided that n-b>p and the matrix S - X: Z] is of

full column rank (see Appendix A). The least squares estimator of / is therefore given by

-1

= (T'T) T'u2,

which can also be written as

-1

where b

!n - Jn (3.20)

Formula (3.20) is true because

e~i(9e9i) -( n)

as can be seen from (3.8). In particular, if the design blocks orthogonally, then 4 can be shown to be

identical to the least-squares estimate of 0 obtained for model (2.1) when 7 is fixed. The proof of this

assertion is given in Appendix B.

The regression and residual sum of squares for model (3.17) are
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SSpRg = (3.21)

-1

.y'W (.X(XWx) XWy, (3.22)

SSE = 2u2 -SS (3.23)

yy w (Vwx)I w . (3.24)

It is interesting to note that SSFReg is in fact equal to R(q 100 - the increase in the regression sum

of squares due to adding j3 to a model that contains the intercept '0 and the block effect '. This can

be clearly seen from the fact that

yly = Ulu

= yfl+ it2

b 2 d ssI +SSE

e~i~ Reg +SEl

where re is the total for block f ( = 1, 2,..., b). Hence, the total sum of squares, SSTot, for model

(2.1) is

SSToL = ( 2 _ n (3.25)

2

b r 2  ir

W - + SSReg + SSE* (3.26)

But, 2

lb r 2  EI L R(- 100) (3.27)

e=1

- ,nl m n mnl u ium i-8-•m umm



is the increase in the regression sum of squares due to adding 7 to a model that only contains the

intercept. This is the usual sum of squares for blocks, SSBlock , used in the analysis of orthogonally

blockea experiments with fixed blocks. From (3.26) and (3.27) we then have

SSTot = i ) + SS + SSE, (3.28)

which indicates that SS;eg = R( 10, 1). In particular, if the design blocks orthogonally, then

SSp1g = R(q 1I 0), which is the regression sum of squares for the polynomial effects obtained by

ignoring the block effect in model (2.1).

When replicate observations on the response are available within the blocks, the residual sum

of squares can be partitioned into a lack of fit sum of squares, SSLOF, and a pure error sum of squares,

SSPE. The latter is obtained by pooling the pure error sums of squares from the blocks. Tests

concerning the polynomial effects can then proceed using SSPE as the error term in the denominators

of the F test statistics.

3.2 The Analysis Concerning the Block Effect

The sum of squares for blocks given in (3.27), namely R(2 ) is not appropriate to test the

hypothesis

H0 : 0,2 = 0 (3.29)

versus the alternative hypothesis

Ha: 2 9 0,

if the design does not block orthogonally. This is because the expected value of R(71 30) is not free

of the fixed polynomial effects. Since model (2.1) is basically a mixed model, a more appropriate sum

of squares to use to test the block effect is R(j 13 0 , i), which represents the increase in the regression

sum of squares due to adding - to a model that contains the intercept 00 and the vector of polynomial

parameters, 3. The expected value of the latter sum of squares is free of all fixed polynomial effects

(see, for example, Searle 1971, Chapter 10). More specifically,
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E[R~j I 3) go Ctr{Z i (fI~''Z + (b - I)o, (3.30)

II [i IO S fp I

where IC [in: X]. Formula (3.30) follows from applying formula (79) in Searle (1971, p. 445).

Furthermore, under Ho0' R( 7 1 3, 0-)/o has the chi-square distribution with b-i degrees of freedom.

Thus, an appropriate test statistic for the hypothesis H0 is

R(vj13o0,-)
F = " (3.31)

(b- I)MSpE'

which under H0 has the F distribution with b-i and P degrees of freedom, where v and MSPE are the

number of degrees of freedom and mean square for the pure error, respectively.

3.2.1 The Power of the Test

Under the alternative hypothesis Ha, R(I 1 0, q)/o'2 does not have the chi-square

n
distribution. Instead, R(j 1 0, 3) is distributed as E AiVi, where the Vi's are independent chi-

i-iI i

square variates with one degree of freedom each, and the Ai's are the eigenvalues of the matrix

)[S( - -1 (3.32)

where S = [X: Z]. See Johnson and Kotz (1970, p. 151). This fact can be used to obtain approximate

power values for the test by using Hirotsu's (1979, pp. 578-579) approximation (see also Khuri 1987,

pp. 308-310). More specifically, the power can be computed using the approximation

P(F > F crb-lW I Ha ) _- P(Ff, > h) +

iA/{3(f + 2)(f + 4)B(, )] V (f+ /2

Sf/2 f 2)(f+-4) + v)(f+4) (f+ v + 2)(f+ (333)

I 4 + V/(f h) +)j
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where

FhI,, denotes the F distribution with b-I and v degrees of freedom and Fa,b-l V is its upper

a100% point, B(f, ) denotes the beta function with parameters f/2 and P/2,

h = a2(b - 1)Fa,bl'V/tr(!),

f = [tr()] 2/tr(g2),

A = tr(g)tr(g
3 )

[tr(n2)]2

Formula (3.33) was derived from formula (3.5) in Khuri (1987, p. 309).

4. A NUMERICAL EXAMPLE

The yield, y, of a chemical process was measured at various levels of temperature, catalyst

concentration, and reaction time. The coded levels of these input variables are denoted by xl, x2 , and

x3 , respectively. The mean response was represented by a second-order model of the form

3 3 )E(y) = i0 + =0ixi + O12x1 x2 + O1 3x1 x3 + 02 3 x2 x3 + i=1ix" (4.1)

Three batches of raw material were randomly selected and used in this experiment. Each batch was

only large enough to permit a maximum of eight runs to be made. Some variation was suspected to

exist among the batches since they were received at different times. The batches were therefore

considered as blocks. The design used was a central composite design consisting of the three blocks

shown in Table 1. This design is rotatable since a, the value of the axial distance, is equal to 1.682,

which is the fourth root of 8, the number of factorial points (see, for example, Khuri and Cornell 1987,

p. 118). The design, however, does not block orthogonally since an ca value of 1.512 would be needed
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for this purpose as can be verified by invoking formula (2.6). The observed response values are also

given in Table 1.

Using formula (3.19), the least-squares estimate of 6, the vector of nine coefficients in formula

(4.1), is given by

0 = (1.496, 1.145, .382, -2.734, -1.701, -1.037, 1.860, -. 958, 1.409)'.

The regression and residual sum of squares defined in (3.22) and (3.24), respectively, have the values,

SSReg = 240.695, SSE = 7.4792 with 9 and 10 degrees of freedom, respectively. The pooled pure error

sum of squares from the replicates at the center point in each of the three blocks is equal to

SSPE = 2.0127 with 5 degrees of freedom. Hence, the lack of fit sum of squares is SSLoF = 5.4665

with 5 degrees of freedom. Consequently, the lack of fit test statistic has the value

F = 5.4665/5=2.72,2.0127/5 = 2.,

with a corresponding p-value of .148 (see also Table 2).

The linear and quadratic effects associated with the three input variables are displayed in

Table 2. Their sums of squares form a partitioning of R(q I 30 , 7), which is equal to

SSReg = 240.695. On the other hand, the sum of squares for blocks adjusted for the polynomial

effects, that is, R(7 I 00, ) is equal to 121.4246. Hence, the test statistic given in (3.31) for the

hypothesis H0 in (3.29) concerning the block effect has the value

F = 121.4246 - 150.82,
2(2.0127/5)

which is highly significant (the p-value is .000034).

5. CONCLUDING REMARKS

The conditions for orthogonal blocking impose certain constraints on the settings of the input

variables. Some of these settings may not be feasible from the experimental point of view. The

analysis described in this article can be applied whether the design blocks orthogonally or not. It can
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be conveniently carried out by using standard statistical computer packages such as SAS. This

provides the researcher with more flexibility in the choice of design.
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APPENDIX A: THE RANK OF THE MATRIX

T DEFINED IN FORMULA (3.18)

Let r(.) denote the rank of a matrix. Then

r(T) = r(T'T)

= r{[ Ui(nt - -Ii} by (3.8),b in

-- _ 19,, (! ., - ,
= T-1ne

Now, suppose that r 1(int - jn,/n .)]X is not of full column rank. Then there exists a7O such

that [ (Ins- ,/nt)]Xa .= . It follows that

x= a) (n,/nj)Xa. (A.1)

The matrix X can be partitioned as : [X I X: ... : X where X, corresponds to block t

- 13-



(= 1, 2,..., b). From (A.1) we then get

= z(, by (2.2), (A.2)

where = (C1 C2 .... Cb) and Ct is defined by

C = (In, .t/n,), 1 1, 2,..., b. (A.3)

From (A.2) we conclude that

s.[': - C , (A.4)

where S = [X: ?]. This means that the columns of S are linearly dependent, which contradicts the

assumption that it is of full column rank. Hence, the columns of T must be linearly independent and

its rank equal to p, the rank of X.

APPENDIX B: FORMULA (3.19) UNDER ORTHOGONAL BLOCKING

Consider formulas (3.19) and (3.20). If the design blocks orthogonally, then by (2.11) 3 can

be written as

= (I) l[ + n(< ' [,y n
-- 1

=E +

(XX-. .') IX'y ( n u l_

S1- d (B.1)
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-1

where d-- n'(X' ) .

Now, let r denote the least-squares estimate of 6 when - is ignored in model (2.1). This is

the usual least-squares estimate obtained under orthogonal blocking when the block effect is fixed. In

this case (r can be determined from the equation

[ r J .L n XX Xi/]

Hence,

( ,-SIXI - d

which is identical to 3 in (B.1).
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Table 1. The Design Settings and Response Values for the Numerical Example

Uncoded Variables Coded Variables Response

Temperature Concentration Time x 1  x2  x3  y (oz)

('C) (9) (h)

170 20 3 1 -1 -1 75.505

150 26 3 -1 1 -1 72.623

150 20 7 -1 -1 1 69.377

170 26 7 1 1 1 70.024

160 23 5 0 0 0 70.171

160 23 5 0 0 0 69.574

160 23 5 0 0 0 70.179

150 20 3 -1 -1 -1 57.202

170 26 3 1 1 -1 68.801

170 20 7 1 -1 1 69.686

150 26 7 -1 1 1 69.460

160 23 5 0 0 0 63.850

160 23 5 0 0 0 63.787

160 23 5 0 0 0 65.136

176.82 23 5 1.682 0 0 75.300

143.18 23 5 -1.682 0 0 72.281

160 28.05 5 0 1.682 0 67.752

160 17.95 5 0 -1.682 0 63.885

160 23 8.36 0 0 1.682 72.752

160 23 1.64 0 0 -1.682 72.278

160 23 5 0 0 0 67.146

160 23 5 0 0 0 68.253
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Table 2. Analysis of Variance Table for the Numerical Example

Source Degrees of Sum of Squares F Value p-Value

Freedom (Type 1)

Blocks 2 126.592

Linear regression

xI 1 30.566 75.93 .00033

x2  1 17.915 44.50 .00114

x3  1 1.900 4.94 .07688

Quadratic regression

XlX2  1 59.787 148.52 .00007

XlX3  1 23.147 57.50 .00063

x2 X3  1 8.603 21.37 .00572

x2 1 52.429 140.46 .00008

1 15.798 33.95 .00210
2
x2  1 30.550 83.80 .00026

Residual

Lack of fit 5 5.4665 2.72 .148

Pure error 5 2.0127
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