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ABSTRACT

The vertical discretization in a linearized baroclinic prediction model was analyzed

by comparing various finite element and finite difference solutions following Jordan

(1985) and Shapiro (1987). The baroclinic instability experiments of Shapiro (1987) were

augmented to include the unstaggered vertical scheme from Jordan (1985). Two basic

wind profiles were used and the experiments were run with different resolution models

and horizontal wavelengths. For a given wind profile and vertical resolution, different

models performed better. The finite element models for the staggered vertical grids did

not perform up to their possibilities due to the boundary elements. However, for the

unstaggered vertical grid. the finite element model did better than the finite difference

model in most cases.
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I. INTRODUCTION

At the present time, most numerical weather prediction models use finite differences
to accomplish the vertical discretization even though they use finite difference, finite el-
ement, or spectral horizontal discretizations. The Canadian regional and hemispheric
models (Staniforth and Daley, 1977 and 1979) which use finite elements in the vertical
are an exception. The successful numerical prediction of synoptic evolutions requires a
proper representation of the vertical variation of the predictive fields. Since smaller scale
features such as fronts (Hoskins and Bretherton, 1972 and Williams, 1967) and the large
scale planetary waves (Gall, 1976) are forced by energetic synoptic-scale features, it fol-
lows that all predictive scales of motion may be sensitive to the vertical discretization
used in the numerical mdels.

Most of the finite difference vertical discretizations use a staggered arrangement of
variables. Winninghoff (1968), Prakawa and Lamb (1977) and Schoenstadt (1980)
demonstrated that staggering of variables in the horizontal improves geostrophic ad-
justment and the response to small scale forcing. Most quasi-geostrophic models
(Charney and Phillips, 1953) use vertical staggering where the vertical motion and the
temperature are carried between the levels which carry horizontal velocity and pressure,
This arrangement will be referred to as grid B. Lorenz (1960) introduced a different grid
for the balance equations which was designed to conserve energy. This arrangement
places only the vertical velocity between the levels which carry the other variables (hor-
izontal velocity, pressure and temperature) and will be referred to as grid A. Tokioka
(1978) analyzed a number of vertical grids with linearized equations and found that grid
A has a computational mode in the temperature field. Arakawa (1984) compared
baroclinic instability for grids A and B in the linearized quasi-geostrophic equations.
He found a false short wave instability for grid A which did not occur with grid B. This
problem is related to the computational mode in the temperature field. Another diffi-
culty with grid B is that the matrix which must be inverted to find the temperature from
the pressure is singular. This is especially important for initialization. Many operational
primitive equation models use grid A for energy conservation (Shapiro, 1987).

The use of finite elements for the vertical discretization can be expected to give a
more accurate representation of vertical variations. The finite element method is a spe-
cial case of the Galerkin procedure which represents the dependent variables with a



weighted sum of basis functions that have a prescribed spatial structure. The finite cle-

ment method employs basis functions which are zero except in a limited region where

they are low-order polynomials. This method has been used in engineering statics (e.g.,

Zienkiewicz, 1977) and it has been applied to fluid dynamics and hydrology (see Gray

and Pinder, 1976). The finite element method has been successfully applied to

meteorological prediction with the shallow water equations by Cullen (1973), Hinsman

(1975) and Staniforth and Mitchell (1977, 1978). Cullen (1973), Neta er al (1986), and

Neta and Williams (1986) demonstrated that finite element formulations with piecewise

linear basis functions are more accurate than second order finite differences.

Jordan (1985) compared six linear, baroclinic, vorticity-divergence equation models

using three grid schemes, grid A, grid B and an unstaggered grid. The three grids are

depicted in Fig. 1. Shapiro (1987) improved the models for grids A and B, and corrected

several problems in the heating and mountain forcing experiments. He also ran a

baroclinic instability experiment without heating or mountain forcing using linear verti-

cal shear in the mean wind profile. With the ever-increasing density of observations and

the advent of satellite-based cloud pictures, transient disturbances of subsynoptic scales

have been observed in certain preferred locations such as polar lows (Satyamurty el al.

1982). Satyamurty et al (1982) found that unstable modes can be generated at smaller

horizontal wavelengths using hyperbolic tangent profiles. Farrell (1985) suggests that

for backward tilting initial states the waves can experience rapid growth in the early

stages and then settle into the most unstable growth.

The purpose of this study is to augment the baroclinic instability study by Shapiro

(1987) by including the unstaggered models from Jordan (1985) and by looking at

smaller resolution models anG smaller wavelengths. Various hyperbolic tangent vertical

profiles of the mean wind field are used to focus on more difficult baroclinic instability

situations with smaller horizontal wavelengths and vertical scales, and with greater sen-

sitivity to large local shears. This study also experiments with initial states which have

a backward tilt with height in an effort to investigate the enhanced initial growth due to

the tilt. The results of the experiments are given in Chapter Ill.

2
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11. MODEL DESCRIPTIONS

A. MODEL FEATURES
Jordan (1985) developed six numerical models with several features to make easy

modifications for a wide range of experiments. Shapiro (1987) modified the A and B
models to improve the performance of the models near the boundary and used numerical
integration to evaluate the entries of the matrices. He also added menus to make the
transition between four experiments simple. The user is able to prescribe heating,
mountain topography, velocity perturbation, or baroclinic experiments and the model
will make the prescribed changes in the variables governing these cases. The vertical
velocity vector in finite element model B has been corrected to include an additional el-
ement in an attempt to eliminate the oscillation in the temperature profile from Shapiro
(1987). The two models for grid C have been modified to run baroclinic instability ex-
periments and to include the same menus as the A and B models. Another menu has
been added to all six models to select between linear and nonlinear wind shear profiles.
The models are written in modular structure using FORTRAN 77. There is parallel
construction between models. The subroutines used in one model are very similar to
those used in the other models. The models can run quickly on an IBM-3033
mainframe, For example, a 96-hour forecast for a 6-layer finite element model uses less
than six seconds of computer processing time; however, the same forecast for 60 layers
can take up to 220 seconds.

B. GOVERNING EQUATIONS
Each model approximates the same set of governing equations. The vorticitv

equation (2.1), the divergence equation (2.2), the surface geopotential equation (2.3).
and the first law of thermodynamics (2.4) are the prognostic equations for the forecast
variables vorticity, divergence, surface geopotential and potential temperature. The
surface geopotential equation is the lower boundary condition on the vertical velocity.
The vertical coordinate Z = - ln(p/p0) is used, but the non-boussinesq terms involving
e-z are replaced by one. The prognostic equations in the coordinates x, y, Z and t are

dwar . aw av w au 0, (2.1)
+ +D ax aZ ay aZ

14



dD + u ) ( )2 2 +u V rw Cu w vd'-T-+ ( ~ r )2x + 2'v x
c ex cx e7Z + y e3Z

+ pu- fg + V2 0 . 0, (2. 2)

d- MTS and (2.3)
dt

dT Q  (2.4)

In these equations,
v au

r is the vertical component of vorticity, O a uOu av

D is the horizontal divergence, D = au + a-ax ey'
4' is the geopotential, (k = gZ,

4), is the surface geopotential.

T is the potential temperature,

u is the :-component of velocity,

v is the y-component of velocity,

w is the vertical velocity,

Q is the diabatic heating per unit time per unit mass,

MTS is the forced vertical velocity due to flow over mountain topography,

f is the Coriolis parameter,

ft is dfdy,

d( ) () 0(( ) 0 0 a
-=t+u-7+ v+w- -- and

V, is the horizontal Laplacian operator.

The prognostic equations are linearized by expanding the variables into their mean

and perturbation states, as in Jordan (1985). The resulting linearized forecast equations

are

-fD - - #v', (2.5)

t ~ ~ ~ a ax INn I

ox5



8D' - - f au' 0w' dU (2.6)*3' = 2 '-
fi (26

cx - ex dZ ax
2  '

= _ . v'0---s - RT + MTS' and (2.7)at ax V' y

T' _ T' _ aT a (2.8)

where R is the gas constant for air, (') denotes perturbation quantities and ( ) denotes

mean quantities. The use of Xbar in the text will be used to denote mean quantities of

a variable X (Shapiro, 1987).

The diagnostic variables, u', v', w' and C', are calculated from the forecast variables

using the definitions of divergence, vorticity, the hydrostatic equation and the continuity

equation. The relationships are given in equations (2.9) through (2.12).

-u' U. (2.9)ax

='7 ,,(2.10)

- RT'. (2.11)

D' +--= 0. (2.12)

The use of primes to denote perturbation quantities will be discontinued. All quantities

used in the remainder of the paper will be perturbation quantities unless otherwise noted.

The mean state is assumed to be in hydrostatic and geostrophic balance. The term

aTbar,8y in the first law of thermodynamics can be evaluated by taking 8/8y of the

hydrostatic equation and substituting for a4bar/oy from the geostrophic relation,

d0bar/8y - fubar. Thus,

aT f au (2.13)
ay R aZ

Geostrophic balance of the mean state at the surface implies

6



= -f fc. (2.14)

The expressions (2.13) and (2.14) are substituted into equations (2.8) and (2.7), respec-

tively.

A singlewave spectral representation is used in the x-direction, with wave number

g= 2ni/L, where L is the wavelength in the x-direction. The perturbation quantities have

the form

C(x,Z,t) = A,(Z,t) cos ax + A2(Z,t) sin tx, (2.15)

D(x,Z,t) = D1(Z,t) cos px + D2(Zt) sin jux, (2.16)

T(x,Z,t) = T,(Z,t) cos tax + T2(Z,t) sin lix, (2.17)

Os(x,Z,t) = S(Z,t) cos Ax + S2(Z,t) sin tx, (2.18)

u(x,Z,t) = U 1(Z,t) cos Ax + U2(Z,t) sin ux, (2.19)

v(x,Z,t) = V1(Z,t) cos x + V2(Z,t) sin jx, (2.20)

w(x,Z,t) = W1(Z,t) cos pUx + W2(Z,t) sin pAx, (2.21)

O(x,Z,t) = H1(Z,t) cos jgx + H2(Z,t) sin px, (2.22)

Q(x,Z,t) = Q1(Z,t) cos px + Q2(Z,t) sin tx and (2.23)

MTS(x,Z,t) = MTS1 (Z,t) cos Ax + MTS2(Z,t) sin gx. (2.24)

The relations (2.15) through (2.24) are substituted into equations (2.5) through

(2.12). The prognostic and diagnostic equations are separated into equations for the

cosine and the sine terms. The resultant prognostic equations are

O = -fD1 - UgA 2 - V (2.25)
t

-A, = -fD, + UgA, - IV2 , (2.26)

tot



-DI d fAj - gD2 - flU1 - A d W2 + A2H 1 , (2.27)
8D 2  d2

D fA2 + utiD 1 - ,8U2 + p W, + p H2, (2.28)

T uT2 + - du VW + Q, (2.29)
aT2 R dZ az

aT2 Tf+ v -. U V2 T (2.30)
at R dZ 2 az

I= - tAS 2 + fUSfCVl - RTWI + MTS and (2.31)
at

S2 = iuS + fUfCV 2 - RTW2 + MTS2. (2.32)

at

The resultant diagnostic equations for u and v are

SD2  (2.33)

A2

D,
U 2 _- A (2.34)

VI = - A2 and (2.35)
At

V2  A = (2.36)

Geopotential values above the surface are obtained by integrating the hydrostatic

equation from the surface (Z = Z) to height Z.

H, = RJ T1(Z,t)dZ + S, and (2.37)

H2 = RJ T 2(Z,t)dZ + S2. (2.38)

4l i



The vertical velocity is calculated by integrating the continuity equation from the top

of the atmosphere (Z - ZT) down to height Z. The upper boundary condition, w = 0
at Z = ZT, is used. The diagnostic equations for the vertical velocity are

ZT
W, = D,(Z,t)dZ and (2.39)

W2 f D2(Zt)dZ. (2.40)

Equations (2.25) through (2.40) are the prognostic and diagnostic equations that

govern all six numerical models. Using the given basic state and the one-wave spectral

perturbation quantities, the governing equations reduce to functions of Z and t. The

models are effectively one-dimensional (Shapiro, 1987).

To display the results of each model, the sine and cosine amplitudes of each variable

are combined to determine the amplitude and phase of a single cosine wave in the x-

direction. A typical variable has the form:

Y(x,Z,t) = A(Z,t) cos(jux - 6), (2.41)

where the amplitude is A(Z,t) and the phase is b(Z,t). The amplitude and phase are

calculated at each level for all variables.

C. TIME DIFFERENCING

Two forward time steps are taken to start each model and then leapfrog time dif-
ferencing is used. The leapfrog scheme is a higher order scheme than forward differ-

encing and is the one used in many numerical models. A Robert filter is used to reduce

the amplitude of the computational mode generated by the leapfrog time differencing.

The filter is discussed by Haltiner and Williams (1980). For a prognostic variable F,
calculate Fbar,, the average value of F at time step (n-I)At, using equation (2.42),

F = F,-I + y(F, - 2Fn-i + F.- 2), (2.42)

where y is a weighting function. Using the unaveraged values at time step nAt, compute

the tendency (aFIat), from its predictive equation. The predicted value at time step

(n+ l)At is then calculated using equation (2.43),

9



Fn+i ' F,_ 1 + 2At( O )F . (2.43)

In all the experiments, y = 0.05 is used. The time step for each experiment is calculated

in the model by requiring, for computational stability,

1
vAt = 2 (2,44)

where v =guc and c is the typical phase speed of an external gravity wave.

D. VERTICAL GRIDS

Each of the models uses one of three vertical grids. The three methods for distrib-

uting the variables over discrete levels are depicted in Fig. 1. The staggered levels are

represented by the dashed lines in Fig. 1. Notice that the heights at which the variables

are defined change between the three grids. The notation used in this paper to denote

the staggered and unstaggered levels is consistent with the conventions used in the coded

models. The height of the unstaggered levels is denoted as Z'. The height of the stag-

gered levels is denoted as Z. In the models, both Z,' and Z, are defined to be the surface

of the earth. It is assumed that the staggered level Z, is exactly in the middle of the layer

between Zj_' and Z,'. This distinction is important because the models can have layers

with unequal depth. Thus, the height of the staggered levels is defined relative to the

height of the unstaggered levels.

A finite difference model is written for each of the grid structures. The models are

denoted as FDM-A, FDM-B and FDM-C. Similarly, finite element models using the

three grids are indicated by FEM-A, FEM-B and FEM-C.

E. FINITE DIFFERENCE MODELS

The only differences in the equations between the three FDM models are the ap-

proximations of terms involving dubar/dZ and aTbar/OZ in the prognostic equations and

the approximations of the integral in the diagnostic geopotential equation. Centered

difference approximations are used, except at the boundaries where one-sided differences

are used. The finite difference approximations used in the prognostic equations are

listed in Appendix A.
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F. FINITE ELEMENT MODELS

1. FEM-A

The FEM-A model defines vertical velocity (w) at the unstaggered levels in

terms of the basis functions 0,(Z). The other variables are defined at the staggered levels

in terms of the basis functions 0,(Z). The expansion for a typical term is

n+1 Wi+

A, (Z,t) -EA(t)fj(Z) or ZA()Oj(Z). (2.45)

The basis functions for this model are depicted in Fig. 2. The basis functions O(Z) are

defined for the unstaggered levels (solid lines at height Z') and the basis functions O(Z)

are defined for the staggered levels (dashed lines at height Z).

Z'l.. 1  0-

ZI.?

Z°., - -.- ,

Fi.2ZBssfucin fo rd AadB

zin 011

Z3 - 03

Z'2 0#2

Z', 0,

Fig. 2. Basis functions for grids A and B.

The finite element approximations for the vorticity, divergence and

thermodynamic equations are derived by substituting the expansion for each dependent

variable into equations (2.25) through (2.30). Each equation is multiplied by 0,(Z) and



integrated with respect to Z from the bottom to the top of the atmosphere. Each term

in the equations is the finite sum of separate integrals. Only the integrals of overlapping

basis functions are nonzero. The resultant equations, listed in Appendix B, are matrix

equations. For an n-layer model, the vectors A, A2, D., D2, HI, H2, Q1, Q, TI, T2, U1,

U2, V, and V2, contain n + 2 components. The vectors W, and W2 contain n + I com-

ponents. The matrices M, K, and 0, defined below, are (n + 2) x (n + 2) matrices. The

matrix P, defined below, is an (n + 1) x (n + 2) matrix. The mass matrix M for this

model is defined by

Mij= f4j(Z) ,(Z)dZ for li- jl 1. (2.46)

The matrix K is defined for terms multiplied by U,

li

KJU() U, Tk ji(Z)0kk(Z)0i(Z)dZ for Ii - Ji< 1. (2.47)
k=i-l

The matrix P is defined for terms multiplied by _41 W, or by - - W,dZ a

i+1

Pi(x) -- LdZ j(Z)Oi(Z)dZ for Ii-il 1, (2.48)

k=i-I 4

where R is U or T.

The matrix 4 is defined for terms multiplied by du V,

dZ'

41(Z) and @ .2(Z) are defined in the model atmosphere but the physical meaning of

contributions from those terms is unclear. The contributions are included in the first

1204... Us- ki [mmillidmi0i '0mmmmmimm~ d or I i - j :!- 1.(.9



two rows and the last row of each matrix. Second, only portions of basis functions

0 2(Z) and 0.-.(Z) are defined in the model atmosphere. To describe the incomplete sides

of both basis functions an assumption must be made about the value of 02 at the surface

and 0,,,, at the top of the atmosphere.

Assumptions are made and procedures are developed in an attempt to resolve

these problems. In this model, the mean state variables, ubar and Tbar, are defined only

at the n staggered levels. However, ubar and Tbar values defined at the nodal points

of 0,(Z) and .,,2(Z) are important in the Galerkin formulation of the dubar/dZ and

8Tbar/aZ terms. In these experiments, the values of ubar and Thar are defined at the

surface and top of the atmosphere. Jordan (1985) did not define them at the nodal

points of 0,(Z) and O,, 2(Z). One of Shapiro's (1987) major modifications of these ex-

periments was to define ubar and Tbar at the nodal points of 0,(Z) and ,.. Z). For

constant shear with height, ubar and Tbar are defined at the boundaries such that the

shear in the two half layers at the boundaries is the same as the shear in the other layers.

To evaluate the staggered basis functions defined in the layers between the surface and

Z2, and Z,, and the top of the atmosphere, it is assumed that the value at the boundaries

of those basis functions is one-half. Thus, three-fourths of the basis functions

2(Z) and Ob. 1(Z) are delined in the model atmosphere.

The equations for the general elements of the four matrices are evaluated by

substituting into equations (2.46) through (2.49) the formulas for 0.,(Z), 0,(Z). 0,(Z),

,i,(Z), 0,(Z), 0,'_(Z), and ?',_2(Z), in terms of the local coordinate = Z - Z,. The

equations for these basis functions defined for levels 1, 2, i, and n+ I are listed in Ap-

pendix C. The matrices were evaluated by integrating numerically using 2 point

Gaussian Quadratures as in Shapiro (1987).

The vorticity, divergence and thermodynamic equations, written in matrix and

vector form, are

dA1
M -- M( -fD 1 - flV) - pK(1)A2, (2.50)

dt

dt M f2-fV)+1KuA,(2.51)

M M(fA - pU + p 2HI) - pJK()D 2 - #P(U)W 2, (2.52)
dt

13



dD +2N1 dD M(fA2 - OlU2 + 2H2) + AK(U)D, - pP(ti)W,, (2.53)

MdT -_K(-u )T2 + -L O()V1 - P(T)WI + MQj and (2.54)

dt R

M r K T, + L O V2 - P(T)W 2 + MQ2. (2.55)

Equations (2.50) through (2.55) are simplified by multiplying each equation by

M-' and applying the Robert filter. Actually, one should not compute the inverse of

M. Instead, at t - 0 one should obtain the LU factorization of M. Thus, at each time

step one only needs to forward and back solve a triangular system. The matrices

M-K, M-1P and NI-10 are constants. They are constructed in the initialization sub-

routine and stored for use in the forecast subroutine. The matrices are multiplied by the

appropriate vectors with values for time level nAt. The resultant forecast equations are

vector equations and the forecast value for the i-th vertical level is the sum of values in

the i-th location of each vector equation. The prognostic equations for the vorticity,

divergence and potential temperature vectors are

AI(n+1 ) = Al(n. 1 ) + 2At( -fD, - flV1 -gM'K(u)A 2)(n), (2.56)

A 2(n+1 ) = A2(no + 2At( -IT2 - #V2 + gM-tK(u)A)(n), (2.57)

DI(ln+ I =DIln-)

+ 2At(fA, - fU1 + A2 H, - AM-'K(-u)D 2 - M_1P( U)W2 )(n), (2.58)

D2(n+l) - 120-1)

+ 2At(fA2 - V 2 +A H, - uM-K(-u)D1 +uM-P(u)Wt)(n), (2.59)

TI(n+,) --, Tt(n_ 0)

+ 2,&t( - AM'Ku)T2 + _LM V M
- ' M ()V 1 - M'P(T)W + Q)(n) and (2.60)

14



T 2(n+l) T2(n_1

+ -~~'~1  f i Ma+2At(AI K(u)T + M-4V(u)V2 - M P(T)W2 + Q2)(n). (2.61)

where the subscripts (n+ 1), (n) and (n-I) refer to the values of the vectors at time step

(n+ l)At, nAt and (n-l)At, respectively. The surface geopotential and the diagnostic

variables are calculated using the corresponding equations in model FDM-A (see Ap-

pendix A).

2. FEM-B

The FEM-B model defines vertical velocity, potential temperature, mean state

potential temperature and diabatic heating at the unstaggered levels in terms of the basis

functions ql,(Z). The other variables are defined at the staggered levels in terms of the

basis functions 0,(Z). The basis functions are the same as defined for the FEM-A model,

shown in Fig. 2.

The finite element approximations for the vorticity, divergence and

thermodynamic equations are derived by substituting the expansion for each dependent

variable into equations (2.25) through (2.30). The vorticity and divergence equations

are multiplied by 0,(Z) and integrated with respect to Z from the bottom to the top of

the atmosphere. The resultant Galerkin formulation of the vorticity and divergence

equations are the same as those derived for model FEM-A. The matrices in those

equations, M, K and P are given by equations (2.46) through (2.48) as defined for

FEM-A. The thermodynamic equations are multiplied by 0,(Z) because potential tem-

perature is defined at the unstaggered levels. As before, the equations are integrated

through the depth of the atmosphere. The resultant equations are listed in Appendix

D. Four additional matrices are defined for the two thermodynamic equations. The

mass matrix nI is

Ij-- = J ,(Z)O,(Z)dZ for ji - il 1. (2.62)

The matrix r is defined for terms multiplied by U,
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j +) UkfZT j(z)Ok(z)Oj(z)dZ for Ji -j)-< 1. (2.63)
k =i-1

Terms multiplied by - V, give rise to the transpose of the matrix P, defined by (2.48).
dZ

The matrix IF is defined for terms multiplied by - W,
az

1+1

z T
,yTZ k t " dZj (Z)O(Z)dZ for ji - j <- 1. (2.64)

As discussed in the FEM-A model description, the staggered finite elements

present problems for evaluating the elements of the matrices. In this model, ubar is de-

fined at the surface, the top of the atmosphere and at the n staggered levels. The mean

state temperature, Tbar, is defined at the unstaggered levels so special definitions for it

are not needed. Jordan (1985) did not include the contributions from the perturbation

quantities defined at the nodal points of 01(Z) and 0,, 2(Z). They were included in this

model as part of the Shapiro (1987) modifications. The staggered basis functions,

0,(Z), ar. evaluated at the boundaries using the assumptions discussed in the previous

section.

The elements of matrices 11, r, and 'I are evaluated by substituting formulas

for ),-2(Z), OI(Z), (Z), k_1(Z), O1'-(Z), Oj(Z), and 0',, (Z) defined in terms of the local

coordinate = Z - Z,, into equations (2.62), (2.63) and (2.64). Formulas for these basis

functions are listed in Appendix C. As in FEM-A, the matrices are evaluated by inte-

grating numerically using 2 point Gaussian Quadratures.

The forecast matrix equations for vorticity, divergence and temperature are as

described for model FEM-A. The final form of the vorticity and divergence vector

equations are the same as for model FEM-A, equations (2.56) through (2.59). The

thermodynamic vector equations are

Ti(n+i) = T1 (n.1)

+ 2At( -"-rITr()T 2 + I pT(U)V 1 - i'P(T)Wi + Ql)() (2.65)
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T2(n+l) = T2(n-1)

+ 2At(u (u)T i R -pT()V 2 - fl-'P(T)W2 + Q2)(n), (2.66)

In this model, the vectors A1, A2, Di, D2, Hi, H 2, Ul, U2, V1 , V2, W, and W2,

contain n+ 2 components. The vectors Q,, Q2, T, and T2 contain n+ 1 components.

Shapiro (1987) defined vectors W, and W2 with n+ 1 components; however, since W, and

W 2 are derived using vectors D, and D2 (which have n+2 components) in equations

(2.39) and (2.40), W, and W2 have been increased to n+ 2 components. The matrices

I, F, and I, are (n + 1) x (n + 1) matrices and the matrix pT is an (n + 2) x (n + I)

matrix. The surface geopotential and the diagnostic variables are calculated using the

corresponding equations in model FDM-B.

3. FEM-C

The unstaggered FEM model is the simplest of the three FEM models. Each

of the dependent variables is expanded in terms of the basis functions 0,(Z). The ex-

pansion for a typical term is

n+I

AI(Z,t) = ZA (t)OJ(Z). (2.67)

The basis functions for this model are depicted in Fig. 3.

The finite element approximations for the vorticity, divergence and

thermodynamic equations are derived by substituting the expansion for each dependent

variable into equations (2.25) through (2.30). Each equation is multiplied by 0,(Z) and

integrated with respect to Z from the bottom to the top of the atmosphere. Each term

in the equations is the finite sum of separate integrals. Only the integrals of overlapping

basis functions are nonzero. The resultant equations, listed in Appendix E, are matrix

equations. The matrices M and K are given by equations (2.46) and (2.47) as defined for

FEM-A. The matrix E is defined for terms multiplied by L V, by - W, or by

OTWdZ' dZ
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Z'L ,

Fig. 3. Basis functions for grid C.

+ 1 -

E, )= /, x Z' k 0,(Z)O,(Z)dZ for ii - ji < 1, (2.68)

where R is - or T.

Note that this is the same as equation (2.49) which is only defined for 'R - and is an

(n + 2) x (n + 2) matrix. It has been given a new name because it combines equations

(2.48) and (2.49) and is now an (n + 1) x (n + 1) matrix. The matrices M, K and E are

evaluated using the same procedures as models FEM-A and FEM-B except only the

formulas for 0,(4) are needed from Appendix C.

The vorticity and divergence equations, writtcn in matrix and vector form, are

given in equations (2.50) through (2.53) as defined for model FEM-A. The

thermodynamic matrix equations are

M d-T" = - pK(u)T2 + E(U)VI - E(T)W + MQj, (2.69)
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"dT2

M = =/K(u)T1 + - E(U)V 2 - E(T)W 2 + MQ 2. (2.70)
dtR

These forecast matrix equations are simplified as described for model FEM-A.
The final form of the vorticity and divergence vector equations are the same as for model

FEM-A, equations (2.56) through (2.59). The thermodynamic vector equations are

Ti~n+i) = TI(n_)

+ 2At( - uM- K()T 2 + - M- E(-i)V - M-'E(T)WI + Qi)(n) and (2.71)

f T-

T2(n+t) =2(n-1)

+ 2At(tM-'K(-u)T1 + -L M-1 E(u)V 2 - M- E(T)W 2 + Q2)() (2.72)

In this model, the vectors A, A2, D1, D2, Hi, H2, Q1, Q, Ti, T, 1, U 2, V1, V2,

W, and W2 contain n+ 1 components. The matrices M, K and E are (n + 1) x (n + 1)

matrices. The surface geopotential and the diagnostic variables are calculated using the

corresponding equations in model FDM-C.
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III. EXPERIMENTS AND RESULTS

Several experiments are performed for baroclinic instability with all or some of the
models. The first results use the linear wind profile which was used by Shapiro (1987).
Most of the experiments use a hyperbolic tangent vertical wind profile with three vari-
ations. The basic experiments use an initial v-field which is independent of Z with no
temperature perturbation. These experiments are integrated for 96 hours to determine
the exponential growth rate. The basic experiments use two-, four-, six- and sixty-layer
models. The next to last experiment uses the finite difference method of calculating the
thermodynamic variables in the finite element model for grid A. The last experiment
uses an initial v-field which tilts backward (toward negative x) with height. The temper-
ature is chosen to satisfy the thermal wind relation. These profiles are integrated out to
72 hours to investigate the enhanced initial growth due to the tilt (Farrell, 1985). The
last two experiments use only the sixty-layer models except for the thermodynamic ex-
periment which includes six-layer models. The analytical solution of each experiment
does not exist except for the Eady (1949) solution for the linear shear solutions.

As in Jordan (1985) and Shapiro (1987), the sixty-layer model results are intercom-
pared to determine if the models are converging to the same solution. The standard of
comparison for the two-, four- and six-layer models is the consensus sixty-layer solution.
The v-component and temperature profiles are examined in each experiment. Expo-
nential growth rates are calculated to help compare the models.

Several parameters are defined identically in each experiment. The vertical coordi-
nate, Z, is defined between zero and one (1000-368mb) and the vertical levels are equally
spaced. The Coriolis parameter is defined at 45 degrees latitude. The mean state po-
tential temperature increases with height from its surface value of 310.0 degrees Kelvin.
The vertical shear in the ubar field is defined in each experiment as a function of Z
multiplied by STRGTH, where STRGTH defines the strength of the wind at the top of
the atmosphere in m/s. In all experiments, STRGTH is defined as 40 m,!s. There is no
diabatic heat source and no mountain topography. Unless otherwise indicated, all
forecast experiments are terminated at 96 hours.
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A. LINEAR VERTICAL SHEAR IN THE UBAR FIELD

The wind profile in these experiments is a linear function of Z, with ubar =
(STRGTH)Z. Waves are generated in each model using an initial perturbation of V =

5.0 m,!s in the cosine term. Wavelengths (in x) of 4000, 3000 and 2000 km are used for

each model for two, six and sixty levels.

1. Sixty-Layer Models

For an x-wavelength of 4000 kin, the sixty-layer FEM-C and FDM-C models

both converge to the same solution as the FDM-A and FDM-B models from Shapiro

(1987) for the v-component amplitude and phase (Fig. 4) and the temperature amplitude

(Fig. 5). All figures will be found at the end of the chapter. As in Shapiro (1987), the

phase is defined between zero and 360 degrees and a discontinuity occurs in the phase

profile if the phase passes through zero degrees. FDM-A, FDM-B, FDM-C and FEM-C
represent the same physical solution, which is called the consensus solution. These sol-

utions all have the same patterns which were derived by Eady (1949) for the quasi-
geostrophic model. The v-field has a maximum amplitude on the boundaries and tilts

backward with height. The FEM-B amplitudes in Fig. 4 and Fig. 5 are less than the

consensus which indicates a smaller growth rate. The FEM-B temperature field (Fig.
5) also has an oscillation near the surface similar to what was found by Shapiro even

though an additional element is added to the vertical velocity. The FEM-A scheme has

a slightly larger growth rate than the consensus. This suggests that the FEM-A and

FEM-B models need further improvement to take full advantage of their possibilities.

For an x-wavelength of 3000 kin, the sixty-layer profiles for the v-component
and temperature show the same results as the 4000 km case except that the magnitude

of the amplitudes are smaller and the profiles appear to contain some oscillation (Fig.
6). The reduced amplitude agrees with the Eady (1949) theory which gives smaller

growth rates for this wavelength.

At a smaller wavelength of 2000 kin, the v-component and temperature ampli-

tudes show very little growth at all but have several oscillations throughout the atmos-

phere (Figs. 7-8). The finite difference models and FEM-C converge to the same

consensus solution. FEM-A is very close to the consensus profile, but has a slightly

smaller amplitude in the middle layers of the temperature profile and a slightly larger

amplitude in the v-component profile. FEM-B has a smaller amplitude than the con-

sensus profile for the v-component and oscillates between having a smaller amplitude to

having a larger amplitude in the temperature profile. The phase profiles show that all

the models except FEM-A and FEM-B converge to the same phase solution (Fig. 7).
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FEM-A is very close to the consensus solution but changes from being slightly greater
in the lower layers to being slightly less in the upper layers. FEM-B is smaller than the
consensus in the lower layers and larger in the upper layers. The lack of growth in this
case agrees with the Eady theory which gives only neutral modes for this scale. Farrell
(1985) has shown that a given initial state can funnel energy into the neutral modes of
the problem. In this case, the most likely neutral waves which appear in the solutions

are the two quasi-geostrophic solutions and internal gravity waves with small vertical

scales.

2. Six-Layer Models

For the 4000 km wavelength, all the models except FEM-B and FEM-A con-
verge to the consensus for the v-component amplitude (Fig. 9) and all the models except

FEM-B are converging to the consensus solution for the temperature amplitude (Fig.
10). FEM-B has the same shape as the consensus profile but has a smaller amplitude
for temperature and the v-component. FEM-A has a much smaller v-component than
the consensus. The v-component phase profiles show that all the models except FEM-A
and FEM-B converge to the consensus phase profile (Fig. 9). The six-layer FDM-B

model is closest to the consensus.

At 3000 kin, the difference among the six-layer models and between the six-layer

models and the consensus profile for v-component and temperature amplitudes becomes
more pronounced (Figs. 11-12). In general, the finite difference models are closer than
the finite element models to the consensus profile for schemes B and C. The opposite
is true for grid A except in the lower layers of the temperature amplitude profile.

FEM-B has a much smaller amplitude than the consensus. The phase profiles show the
models are still converging to the consensus phase profile except for FEM -B (Fig. 11).

At 2000 km, the models appear to be a little chaotic (Figs. 13-14). However,
all the models depict the overall shape of the consensus profile except for the oscillations
in the temperature amplitude profiles. FDM-B appears to represent the consensus better
than the other models although FEM-B gives the same surface temperature prediction
as the consensus profile. In the v-component amplitude profiles, the finite element

models are closer then the finite difference models to the consensus profile for grids A
and C but not B. However, the surface prediction for FDM-C is closer than the pre.
diction for FEM-C. FDM-B is closest to the consensus profile for the v-component
amplitude. The phase profiles show that the models for scheme A are closer to the
consensus phase profile than are the models for schemes B and C (Fig.13). Clearly, the

small oscillations can not be reproduced in any six-layer scheme.
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3. Two-Layer Models

The curves for the two-layer models are not shown to save space. For an x-

wavelength of 4000 km, FDM-C represents the shape of the consensus profile of tem-

perature and v-component better than the other models, but it has the benefit of an

extra prediction level for these variables. FEM-C gives the best surface prediction for

both the temperature and v-component. In the v-component amplitude profiles, the fi-

nite difference models are closer to the consensus amplitude than are the finite element

models for schemes A and B. However, these two schemes do not have enough resol-

ution to depict the shape of the consensus profile. The phase profiles for the v-

component show general agreement among the models in representing the shape of the

consensus.

At 3000 km, FDM-C again represents the shape of the consensus amplitude

profile for temperature and v-component well. FEM-A is also close to the magnitude

of the consensus profile. The other models give poorer results.

At 2000 km, the magnitude of FDM-C overshadows all the other models.

FEM-C and FDM-A also show a tendency for growth. In the v-component phase

profiles, all the A and B models have a negative tilt instead of the positive tilt of the

consensus profile. FDM-C has a positive tilt in the lower atmosphere and FEM-C has

a positive tilt in the upper atmosphere.

B. NONLINEAR VERTICAL SHEAR IN THE UBAR FIELD

The nonlinear vertical shear is created by using a hyperbolic tangent function of Z

similar to the one used by Satyamurty et at (1982). In this experiment, ubar =

(STRGTH) tanh(aZ+ K) where a and K are given different values to control the magni-

tude and location of the shear. Fig. 15 illustrates the three ubar profiles used in this

experiment which are referred to as Type I, Type II and Type III. Waves are generated

in each model using an initial perturbation of v' = 5.0 m's in the cosine term. The x-

wavelengths of 4000, 3000 and 2000 km are used for each model.

1. Hyperbolic Shear Type I

For this part of the experiment, a - 2.0 and K = 0.0. This increases the mag-

nitude of the low level ubar shear and forces the largest gradient to occur near the sur-

face.

a. Sixty-Layer Models

Table 1 contains the exponential growth rates for all the sixty-layer models.

For an x-wavelength of 4000 km, the growth rates for Type I indicate that the sixty-layer
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finite difference models and FEM-C all converge to the same growth rate after 96 hours.

This is similar to the results from the linear wind profile.

Table 1
Exponential Growth Rates ( x IO-S)

Hyperbolic Shear

60-layer Models

FDM-A FDM-B FDM-C FEM-A FEM-B FEM-C
Type I

4000 km 1.45 1.45 1.45 1.46 1.43 1.45
3000 km 1.53 1.53 1.53 1.54 1.48 1.53
2000 km 1.33 1.33 1.33 1.35 1.28 1.32

Type I I
4000 km 1.82 1.81 1.82 1.82 1.78 1.82
3000 km 2.14 2.14 2.14 2.14 2.09 2.14
2000 km 2.46 2.46 2.46 2.46 2.40 2.47
Type III ________ ________

4000 km 2.89 2.89 2.89 2.89 2.83 2.89
3000 km 3.21 3.22 3.22 3.21 3.14 3.22
2000 km 3.02 3.03 3.03 3.01 2.90 3.04

The growth rate for FEM-A is slightly larger and the growth rate for FEM-B is slightly

smaller. FDM-A, FDM-B, FDM-C and FEM-C all converge to the same solution for

the v-component and temperature amplitudes and represent the consensus solution. The

FEM-A model has a slightly higher amplitude than the consensus profile and the shape

is the same as the consensus profile. The FEM-B model has a lower temperature am-

plitude than the consensus profile, but the shape is the same except for an oscillation in

the lower layers similar to the linear shear case. The difference between FEM-B and the

consensus profile is greater in the lower layers than in the upper layers. For the v-

component amplitude, the amplitude for FEM-B is again lower than the consensus

profile, but there is no oscillation in the lower layers of the atmosphere. The profiles for

the v-component phase are the same for all six models. The profiles are not shown be-

cause the consensus profile is included with the lower resolution curves.
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For an x-wavelength of 3000 km, the growth rates show the same the results

as 4000 km except the growth rates are greater. The v-component and temperature

profiles also show the same results as 4000 km. Again, the amplitudes are larger for the

smaller wavelength. The v-component phase profiles show that FDM-A, FDM-B,

FDM-C and FEM-C are identical, but FEM-A and FEM-B have a slightly larger phase.

For an x-wavelength of 2000 kin, the growth rates show the same results

as 4000 km except the growth rates are smaller. The v-component and temperature

profiles also show the same results as 4000 kn, but the amplitudes are smaller. The

amplitude profiles also appear to contain some oscillation. The v-component phase

profiles are identical for all the models except FEM-A which has a slightly larger phase.

This profile clearly has the instability shifted to smaller wavelengths than the linear

profile due to the vertical wind shear being larger near the surface.

b. Six-layer Mfodels

The profiles for the six- and two-layer models are not shown to save space.

Table 2 contains the exponential growth rates for six-, four- and two-layer models for

Type I. For an x-wavelength of 4000 km, the growth rates show that all the models
except FEM-B are converging to the growth rate of the consensus profile. The v-

component amplitude profiles support the convergence of the models to the consensus

profile. The finite difference models are closer to the consensus solution than are the

finite element models for grids A and B, but FEM-C is closer than FDM-C. All models

represent the low level shear well. Although the growth rates show that both FDM-A

and FEM-C are closest to the consensus, the amplitude profiles show that FEM-C is

closest to the consensus profile. The temperature amplitude also shows the convergence

of the models to the consensus solution except for FEM-B. In this case, the surface

prediction for both FEM-B and FDM-B is considerably less than the consensus. The

v-component phase profiles show a moderate amount of negative tilt in the lower half

of the atmosphere corresponding to the low level shear region. All the models have the

same phase profile shape, but scheme C is closer to the consensus solution than are

schemes A and B. This difference is due to a difference in phase speed between the

schemes.
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Table 2
Exponential Growth Rates (x 10-1)

Hyperbolic Shear Type I

Models

Consensus FDM-A FDM-B FDM-C FEM-A FEM-B FEM-C
6 Layers_
4000 km 1.45 1.44 1.42 1.49 1.43 1.36 1.46
3000 km 1.53 1.52 1.48 1.54 1.49 1.41 1.55
2000 km 1.33 1.37 1.41 1.46 1.37 1.52 1.54
4 Layers
4000 km 1.45 1.35 1.36 1.58 1.32 1.33 1.51
3000 km 1.53 1.40 1.48 1.66 1.31 1.46 1.64
2000 km 1.33 1.50 1.48 -0.20* 1.15 1.55 1.43
2 Layers
4000 km 1.45 1.29 1.03 1.49 1.09 1.07 1.36
3000 km 1.53 1.51 1.00 1.83 1.13 0.98 1.51
2000 km 1.33 1.75 0.24* 2.66 1.10 -0.87* 2.07

* These cases do not converge to a steady growth rate

The growth rates for an x-wavelength of 3000 km give results similar to
those for 4000 km except that FDM-C is closer than FEM-C to the consensus solution.
The v-component amplitude and phase profiles are also similar. In this case, however,
FDM-A is closest to the consensus amplitude profile instead of FEM-C, but FEM-B is

still farthest from the consensus. The phase results are identical to the results for the
4000 km wavelength case.

At an x-wavelength of 2000 kin, a few more changes are observed from the
longer wavelengths. For this wavelength, the growth rates indicate that all the six-layer
models are growing faster than the consensus solution. Although the growth rates for
FDM-A and FEM-A are the same, the difference between the finite difference and finite
element models for grids B and C is much greater at the smaller wavelength. These dif-
ferences are also observed in the v-component and temperature amplitude profiles. Al-
though the growth rates for FDM-A and FEM-A are the same, the amplitude profiles

show that FEM-A is slightly closer to the v-component consensus solution, but FDM-A
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is slightly closer to the temperature amplitude consensus. This may occur because the

growth rate is computed at the first layer above Z = 0 and the differences between

FDM-A and FEM-A occur above this level.

c. Four-Layer Models

In the 4000 km wavelength case, the growth rates show that the four-layer

models do not converge to the consensus solution as well as the six-layer 4000 km

models. Otherwise, the results are basically the same. The finite difference models are
closer than the finite element models for grids A and B, but not grid C. However, the

v-component amplitude profiles indicate that FEM-C is closest only at the second layer,

where the growth rate is computed, and the top layer (Fig. 16). The amplitude profiles

also show the lesser convergence of the four-layer models to the consensus solution.

The v-component phase profiles give the same results as the six-layer models, but with

a slightly greater difference between the four-layer models and the consensus.

For the 3000 km wavelength, the growth rates for the four-layer models

again indicate results similar to the six-layer models. The finite difference models are

closer to the consensus solution than are the finite element models, but FDM-B is clos-

est to the consensus growth rate instead of FDM-A. FEM-A has the worst growth rate

in this case. Also, the four-layer models do not converge to the consensus solution as

well as do the six-layer models (Fig. 17). The v-component amplitude profiles support

the growth rate results. The phase results for the four-layer models are similar to the

results for the six-layer models. The primary difference is that except for FEM-C the

four-layer model phase profiles are not as close to the consensus phase profile as are the

six-layer models.

For the 2000 km wavelength, the growth rates indicate much less conver-

gence of the four-layer models to the consensus solution. In fact, FDM-C fails to con-

verge to a steady growth rate altogether. For this case, the finite element model growth

rates are closer than the finite difference model rates to the consensus solution for

schemes A and C, but not scheme B. All the models except FEM-A and FDM-C grow

much faster than the consensus. FEM-C is closest to the consensus growth rate.

FEM-C also reflects the shape of the v-component amplitude consensus profile better

than the other four-layer models (Fig. 18). All the models except FDM-C depict the

same shape as the phase consensus and FEM-C is again closest to the consensus sol-

ution. Note that the shorter waves also have smaller vertical scales.
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d. Two-Layer Models

For the 4000 km wavelength, the growth rates indicate that the two-layer
finite difference models are closer to the consensus solution than are the finite element

models for grids A and C, but not grid B. FEM-C is closest to the consensus amplitude
profile for v-component and temperature. Schemes A and B do not have enough resol-

ution to depict the low level shear in the v-component amplitude profile. The grid C

models attempt to reflect the low level shear, but the surface predictions are considerably

less than the consensus solution. All six models reflect the negative tilt of the consensus

phase profile even though they have only two levels. FEM-C is closest to the consensus

phase profile.
The growth rates for the 3000 km case indicate that the finite difference

models are closer than the finite element models to the consensus growth rate for grids
A and B, but FEM-C is closer than FDM-C. The scheme B models and FEM-A have
much -lower growth rates than the consensus and FDM-C has a larger growth rate.

FEM-C is closest to the consensus amplitude profile for the v-component, but FDM-A
is closest in the middle and lower levels of the temperature profile. Although grid B also

predicts the temperature at the surface, its prediction is much poorer than the consensus

solution. The two-layer A and B models do not have enough resolution to depict the
shape of consensus v-component phase profile but they still reflect the negative tilt.

For the 2000 km wavelength, the growth rates for FDM-A, FDM-C and

FEM-C are much greater than the consensus growth rate, and FEM-A is slightly less
than and closest to the consensus. FDM-B and FEM-B grow very little and their growth

rates do not converge to a steady growth rate. The finite element models are closer than

the finite difference models to the consensus v-component and temperature amplitude

profiles for schemes A and C, but not for scheme B. FEM-A is closest in magnitude to

the consensus solution.

2. Hyperbolic Shear Type II

For this part of the experiment, a = 4.0 and K = 0.0. This increases the mag-
nitude of the low level ubar shear but keeps the largest gradient near the surface.

a. Sixty-Layer Models

For an x-wavelength of 4000 kin, the growth rates for Type Ii indicate that
the sixty-layer A and C models all converge to the same growth rate after 96 hours

(Table 1). The growth rate for FDM-B is nearly the same but slighly smaller and the
growth rate for FEM-B is the smallest. FDM-A, FDM-C, FEM-A and FEM-C all

converge to the same solution for the v-component and temperature amplitudes and
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represent the consensus solution. The FDM-B model has a slightly smaller amplitude

than the consensus profile, but the shape is the same as the consensus profile. The

FEM-B model has a lower temperature amplitude than the consensus profile and the

shape is the same except for a similar oscillation to that of the linear shear case in the

lower layers. The difference between FEM-B and the consensus profile is greater in the

lower layers than in the upper layers. For the v-component amplitude, the amplitude

for FEM-B is again lower than the consensus profile, but there is no oscillation in the

lower layers of the atmosphere. The magnitudes of the growth rates and the amplitude

profiles are greater than for the Type I case. The profiles for the v-component phase

are the same for all six models. The sixty-layer profiles are not shown because the con-

sensus profile is included with the lower resolution curves.

For an x-wavelength of 3000 kin, the growth rates for all the sixty-layer

models are identical except for FEM-B and are greater than the 4000 km growth rates.

The v-component and temperature profiles show results similar to the 4000 km case, but

with larger amplitudes. The v-component phase profiles show that all the models have

identical phases at 96 hours except for FEM-A which has a slightly larger phase.

For an x-wavelength of 2000 km, the results are the same as for the 3000

km case except FEM-C has a slightly larger growth rate. However, the v-component

and temperature profiles show the same results as for 4000 km except the amplitudes are

larger for 2000 km. The v-component phase profiles are identical for all the models ex-

cept FEM-A which has a slightly larger phase.

b. Six-Layer Models

To save space, the profiles for the six- and two-layer models are not shown.

Table 3 contains the exponential growth rates for six-, four- and two-layer models for

Type II. For an x-wavelength of 4000 km, the growth rates indicate that the finite ele-

ment models are closer to the consensus growth rate than are the finite difference models

for grids B and C, but not for grid A. The growth rates for grid C are closer than the

rates for grids A and B to the consensus. FEM-C is closest to the consensus growth

rate. All the models represent the shape of the consensus profile well except for the grid

B temperature prediction. FEM-C is closest to the consensus amplitude profile. The

v-component phase profiles show the negative tilt in the lower half of the atmosphere

corresponding to the region of low level shear. All the six-layer models have the same

shape as the consensus phase profile, but scheme C is closer to the consensus than are

schemes A and B.
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Table 3
Exponential Growth Rates ( x 10-1)

Hyperbolic Shear Type II

Models

Consensus FDM-A FDM-B FDM-C FEM-A FEM-B FEM-C

6 Layers
4000 km 1.82 1.68 1.63 1.93 1.66 1.67 1.87
3000 km 2.14 1.95 1.95 2.26 1.89 1.99 2.23
2000 km 2.46 2.29 2.43 2.14 2.05 2.45 2.54

4 Layers

4000 km 1.82 1.63 1.36 1.82 1.51 1.35 1.78
3000 km 2.14 1.97 1.61 1.89 1.70 1.59 2.05
2000 km 2.46 2.48 1.82 2.47 1.98 1.84 2.25

2 Layers
4000 km 1.82 1.16 0.57 1.80 1.17 0.49 1.58
3000 km 2.14 1.38 1.42 2.32 1.23 0.56* 1.90
2000 km 2.46 1.72 0.25* 3.16 1.30 -0.34* 2.57

* These cases do not converge to a steady growth rate

For the 3000 km wavelength case, the growth rates indicate results similar

to the 4000 km case. For grids A and C, the finite difference models are closer to the

consensus profile than are the finite element models although the diflerences are greater

in the low level shear region than in the upper levels. FEM-B is closer than FDM-B to

the consensus amplitude profile except at the midpoint of the temperature profile.

FDM-C is closest to the consensus profile except in the lowest levels of the temperature

profile above the surface where FEM-B is closest. The phase profiles show the same

results as the 4000 km case. For the 2000 km wavelength case, all the results are the

same as the results for 4000 km.

c. Four-Layer Models

The growth rates for the four-layer 4000 km wavelength models indicate the

finite difference models are closer than the finite element models to the consensus growth

rate. Schemes A and B have much smaller growth rates than both scheme C and the
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consensus solution. FDM-C has the same growth rate as the consensus. Overall. the
v-component and temperature amplitude profiles show that the finite difference models
are closer to the consensus profile than are the finite element models (Figs. 19-20).

However, for scheme B the finite element model is closer to the consensus amplitude
profile for the temperature. For scheme C, the finite element model is closer to the
consensus at the surface and at Z = 0.25 for the v-component profile. Otherwise,

FDM-C is closest to the consensus profile. The v-component phase profiles show the

negative tilt in the lower half of the atmosphere corresponding to the region of low level
shear (Fig. 19). All the six-layer models have the same shape as the consensus phase

profile, but scheme C is closer to the consensus than are schemes A and B.
For the 3000 km wavelength, the growth rates for the four-layer models in-

dicate results similar to the 4000 km case, except that FEM-C is closer than FDM-C to
the consensus solution. FEM-C is also closest to the growth rate for the consensus.

Overall, the finite difference models are closer than the finite element models to the
consensus amplitude profile for schemes A and B, but not for scheme C in the v-
component profiles (Fig. 21). The finite element models are closer than the finite dif-

ference models for grids B and C, but not grid A for the temperature profile (Fig. 22).
FEM-C is closest to the consensus except in the middle layers of the temperature profile
where FDM-A is closest. For the phase profiles, the results for this case are the same

as the results for the 4000 and 3000 km cases (Fig. 21).
Growth rates for the four-layer models in the 2000 km case indicate that the

finite difference models are closer than the finite element models to the consensus sol-
ution for grids A and C. FDM-B and FEM-B are nearly identical. FDM-C is closest
to the growth rate for the consensus solution. In this case, the finite element models are

closer than the finite difference models to the consensus amplitude profile for scheme B
in the lower half of the atmosphere and Cor scheme C, but not for scheme A except in
the upper levels of the v-component amplitude profile (Fig. 23). FEM-C is closest to the

consensus profile.
d. Two-Layer Models

For the 4000 km wavelength, the growth rates indicate that the two-layer

finite difference models are closer to the consensus solution than are the finite element

models for grids B and C, but not for grid A. FEM-C is slightly closer than FDM-A to
the consensus. FDM-C is closest to the growth rate for the consensus solution, but

FEM-C is closest overall to the consensus amplitude profile for v-component and tem-
perature. Schemes A and B do not have enough resolution to depict the low level shear
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in the v-component amplitude profile. The grid C models attempt to reflect the low level
shear, but the surface predictions are considerably less than the consensus solution. All

six models reflect the negative tilt of the v-component even though they have only two

levels and FEM-C is closest to the consensus phase profile.
For the 3000 km case, the growth rates show that the finite difference

models are closer than the finite element models to the concensus for schemes A and

C, but not for scheme B. FEM-B appears to be closer than FDM-B to the consensus

growth rate, but FEM-B does not converge to a steady growth rate. The growth rate

for FDM-C is closest to the consensus. The amplitude profiles for scheme C are also

closest to the consensus amplitude profile for the v-component and temperature, and

schemes A and B have much smaller magnitudes than the consensus. The finite differ-

ence models are closer than the finite element models to the consensus for schemes A
and C except for FEM-C at the top layer. FEM-B is closer than FDM-B. For the v-

component phase, all of the models depict the negative tilt of the consensus profile.

At 2000 kin, the growth rates for grid C are greater than the consensus, and

the growth rates for grids A and B are much less than the consensus growth rate. The

growth rates for grid B do not converge to a steady growth rate. The growth rate for

FEM-C is closest to the consensus. The finite element models are closer to the consensus

amplitude profile for temperature and v-component than are the finite difference models
for grids B and C, but not for grid A. Scheme C has a greater magnitude than the con-

sensus, especially FDM-C. FDM-A is closest to the consensus in magnitude but does

not have enough resolution to depict the low level shear.

3. Hyperbolic Shear Type III

For this part of the experiment, a = 4.0 and K = 1.0. This causes the strongest

shear to occur at about Z = 0.25 instead of at the surface, and provides a variety of

responses that are less sensitive to the lower boundary conditions.

a. Sixty-Layer Models

At the 4000 km wavelength, all the growth rates are identical except for

FEM-B which has a smaller growth rate (Table 1). All of the sixty-layer models except

FDM-B and FEM-B converge to the same solution for the v-component and temper-

ature amplitude profiles. FDM-B is identical to the consensus profiles except at the

surface of the temperature profile. FEM-B shows the same results as the Type II case,

but the temperature oscillations are smaller (Fig. 24). The magnitudes of the growth

rates and the amplitude profiles are larger than those for Type I and Type II. The phase
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profiles of all the models converge to the same solution except FEM-B which has a

slightly larger phase.

For 3000 km. FDM-B, FDM-C and FEM-C have identical growth rates.

FDM-A and FEM-A also have identical but slightly smaller growth rates and FEM-B

has the smallest growth rate. The v-component and temperature amplitude profiles

show small differences between the models, especially near the strongest shear region at

Z = 0.25 (Figs. 25-26). For the v-component amplitude profiles, the finite difference

models converge to the same solution and represent the consensus solution. FEM-A

has a slightly smaller amplitude and FEM-C has a slightly larger amplitude in the shear

zone. In the temperature profiles, the differences are slightly larger for FEM-A and

FEM-C. The results for FEM-B are the same as the previous cases, but again the os-

cillations are smaller. For the v-component phase profiles, all the models converge to

the same phase except FEM-A and FEM-B which are slightly larger (Fig. 25).

At the 2000 km wavelength, the growth rates show a little more variation

than in the other cases. FDM-B and FDM-C are identical and represent the consensus

growth rate. Although very close to the consensus, the growth rate for FDM-A is

slightly smaller and FEM-C is a little larger. FEM-A has a slightly smaller growth rate

than FEM-A and FEM-B has the smallest growth rate. The v-component and temper-

ature amplitudes also show more variations among the models in the region of the

stongest shear than in previous sixty-layer cases (Figs 27-28). FDM-B and FDM-C are

identical and represent the consensus profile. FDM-A is very close to the consensus,

but slightly smaller in magnitude. FEM-A has a smaller magnitude than the consensus

and FDM-A. FEM-C has a larger magnitude than the consensus. FEM-B has a much

smaller magnitude than the consensus. The differences among the models are slightly

greater for the temperature profiles than the v-component profiles. However, for the

phase profiles, the finite difference models and FEM-C converge to the same phase.

FEM-A is slightly greater and FEM-B is slightly smaller (Fig. 27).

b. Six-Layer Models
To save space, the profiles for the six- and two-layer models are not shown.

Table 4 contains the exponential growth rates the six-, four- and two-layer models for

Type Ill. For a wavelength of 4000 km, the growth rates for the finite element models

are closer to the consensus than are the growth rates for the finite difference models for

schemes A and C, but not B. FDM-B is closest to the consensus growth rate. Overall,

the finite element models are closer than the finite difference models to the consensus

amplitude profile for v-component and temperature for grids A and C. For grid B, the
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finite difference model is closer to the consensus than the finite element model except
at the lowest level above the surface. In general, grid B is closest to the consensus am-
plitude profile. For the phase profiles, all of the models are close to the consensus pro-

file, but grid B is closest.

Table 4
Exponential Growth Rates ( x 10-s)

Hyperbolic Shear Type III

Models

Consensus FDM-A FDM-B FDM-C FEM-A FEM-B FEM-C
6 Layers ______ ____ ____ ____ ____ ____

4000 km 2.89 2.56 2.80 2.60 2.71 2.78 2.71
3000 km 3.22 2.70 2.96 2.55 2.99 3.02 2.89
2000 km 3.03 2.08 2.38 0.98** 2.98 2.91 1.31**
4 Layers

4000 km 2.89 2.26 2.93 2.48 2.48 2.93 2.48
3000 km 3.22 1.81 3.40 2.44 2.49 3.45 2.68
2000 km 3.03 1.65 3.76 1.95 1.54 3.95 1.77
2 Layers I
4000 km 2.89 2.23 2.13 2.53 1.61 2.37 2.24
3000 km 3.22 2.55 2.13 3.23 1.63 2.44 2.76
2000 km 3.03 2.68 1.02* 4.20 1.41 0.27* 3.59

* These cases do not converge to a steady growth rate
** These models are still converging to a steady growth rate

For the 3000 km case, the growth rates indicate that all the models are at
least 8 percent less than the consensus growth rate. The finite element models are closer

than the finite different models to the consensus and FEM-B is closest. Overall, the fi-

nite element models are closer than the finite difference models to the consensus ampli-

tude profile for v-component and temperature. The only exceptions are at the top layer

of the v-component amplitude profiles and at the midpoint of the temperature profiles
where FDM-B is closer. In general, FEM-B is closest to the consensus. For the phase

profiles, the A and B profiles are closer than the C profiles to the consensus, and

FDM-A is closest to consensus phase profile for the v-component.
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For a wavelength of 2000 km, the growth rates for the finite element models

are closer than the growth rates for the finite difference models to the consensus growth
rate with FEM-A being closest. The growth rates for the finite difference models and

FEM-C are much less than the growth rate for the consensus. The growth rates for the
C models are still converging at 96 hours, but even after 192 hours the growth rates in-

crease only slightly. The amplitude profiles for the v-component and temperature also
show that the finite element models are closer than the finite difference models to the
consensus. FEM-A is closest to the consensus amplitude profile. For the phase profiles,
the scheme A models are closer to the consensus phase profile than are the scheme B
and C models.

c. Four-Layer Models

At an x-wavelength of 4000 kin, the growth rates for FDM-B and FEM-B
are the same and closest to the consensus growth rate. For schemes A and C the growth

rates for the finite element models are closer to the consensus than are the growth rates
for the finite difference models. The growth rates for schemes A and C are much less

than the consensus. The finite element models are closer than the finite difference

models to the consensus amplitude profile for grids A and C (Fig. 29). For grid B,
FDM-B is closer than FEM-B and is the closest overall to the consensus profile. For

the phase profiles, all the models follow the shape of the consensus profile well (Fig. 29).

FEM-C is closest to the consensus phase profile.
For 3000 km, the growth rates for the finite element models are closer than

the finite difference models to the consensus for schemes A and C, but not B. FDM-B
is closest to the consensus and schemes A and C are much less than the consensus. For
grids A and C, the finite element models are closer than the finite difference models to

the consensus amplitude profile for the v-component and temperature (Figs. 30-31). For
grid B, FDM-B is closer than FEM-B to the consensus profile except in the upper layers

of the v-component profile. Otherwise, FDM-B is closest to the consensus profile for
this case. For the phase profiles, FEM-C is closest to consensus phase profile (Fig. 30).

For 2000 kin, the growth rates show that none of the four-layer model

growth rates are close to the consensus. The growth rates for the finite difference models
are closer than the finite element models to the consensus growth rate. The growth rates

for the grid B models are much greater than the consensus and the growth rates for the

grid A and C models are much less. The growth rate for FDM-B is closest to the con-
sensus growth rate. The amplitude profiles for the v-component and temperature show

the same results as the growth rates (Figs. 32-33). The phase profiles show that all the
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models except FDM-C have the same shape as the consensus profile and that scheme

C is closest to the consensus (Fig. 32).
d. Two-Layer Models

For the 4000 km wavelength, the growth rates indicate that none of the

models grow as rapidly as the consensus model for this case. For grids A and C, the

growth rates for the finite difference models are closer than the rates for the finite ele-

ment models to the consensus growth rate. FEM-B is closer to the consensus than

FDM-B, and FDM-C is closest to the consensus. The finite element profiles are closer

than the finite difference profiles to the consensus for scheme B and equal to or slightly

closer to the consensus for scheme C. FDM-A is closer than FEM-A. FEM-B is closest

to the consensus in this case except at the surface for the temperature profile where

FEM-C is better. However, all the surface predictions are considerably less than the

consensus prediction. For the phase profiles, all six models reflect the negative tilt of the

v-component even though they have only two levels. FEM-C is closest to the consensus

phase profile.

For the 3000 km case, the growth rates indicate the same results as the 4000

km case. The amplitude profiles show that except for grid B, the finite difference models

are closer than the finite element models to the v-component and temperature amplitude

consensus profile. FDM-C is closest to the consensus profile. For the phase profiles,

all the models follow the shape of the consensus phase profile except FDM-C. FEM-A

is closest to the consensus phase profile for this case.

At the 2000 km x-wavelength, the growth rates indicate that the grid C

models have a much greater growth rate than the consensus model and that FEM-A and

the grid B models have a much smaller growth rate. FDM-A also has a smaller growth

rate than the consensus, but it is closer to the consensus than are the other models.

Overall, the finite element models are closer than the finite difference models to the

consensus amplitude profile for grids B and C, but not grid A. FDM-A is closest to the

consensus profile in magnitude, but does not have enough resolution to depict the low

level shear. For the v-component phase profiles, the models have a negative tilt similar

to the consensus profile, but do not have enough resolution to depict the shape of the

consensus profile. FDM-C is closest to the consensus phase profile.

C. USING FINITE DIFFERENCE METHOD IN FINITE ELEMENT MODEL

In this experiment, the finite difference equations and coefficients for the

thermodynamic predictive equations are used in the finite element model for scheme A
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instead of the matrix equations. The model is run with linear vertical shear in the ubar

field for sixty-layer models and with hyperbolic Type III vertical shear in the ubar field

for six- and sixty-layer models. Waves are generated in the model using an initial per-

turbation of v' = 5.0 m/s in the cosine term. Horizontal wavelengths of 4000 and 2000

km are used. The results are compared with the unmodified FDM-A and FEM-A pro-

files.

1. Linear Vertical Shear in the ubar Field

For both 4000 and 2000 km wavelengths, the temperature and v-component

amplitude profile of the modified FEM-A model is identical to the unmodified FEM-A

model (Figs.34-37). The phase profiles show the same results.

2. Hyperbolic Type III Shear in the ubar Field

a. Sixty-Layer Model

When the x-wavelength is 4000 kin, the v-component amplitude shows that

the modified sixty-layer FEM-C model has a greater amplitude than the unmodified

models throughout the entire atmosphere (Fig. 38). The temperature amplitude of the

modified FEM-C model is greater than the amplitudes of the unmodified models in the

region of greatest vertical shear in the ubar field (Fig. 39). The phase profiles show that

the phase for the modified model is identical to the unmodified FEM-A model (Fig.

38-39). For the 2000 km wavelength, the results are the same, but the difference between

the amplitudes for the modified and unmodified models is greater (Fig. 40).

b. Six-Layer Model

For the 4000 km wavelength, the temperature and v-component amplitudes

of the modified FEM-A model are nearly the same as the profiles for FDM-A (Figs.

41-42). The phase profiles show the modified FEM-C model is closer to the unmodified

FEM-C model except in the middle layers of the temperature phase profile (Figs. 41-42).

When the x-wavelength is 2000 kin, the temperature and v-component am-

plitude profiles show that the modified model lies between FDM-A and the unmodified

FEM-C but is slightly closer to the finite difference model (Figs. 43-44). The phase

profile of the modified FEM-C is closer to the unmodified FEM-C than to the finite

difference model.

D. BACKWARD TILTING INITIAL VALUES

For this experiment, the initial phase in equation (2.41) is set to give a negative tilt by

letting 6 = bZ for the vorticity and temperature initial conditions. The experiment is

run for the sixty-layer FDM-C model with linear ubar shear and with hyperbolic Type
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III ubar shear. Each case is run with b = 7r and b = 4at which are called phase I and

phase II respectively. The x-wavelengths of 4000, 3000 and 2000 km are used in each

case.

I. Linear Vertical Shear in the ubar Field

a. X-wavelength of 4000 km

The growth rates for this case do not converge to a steady growth rate al-

though they appear to be converging for the 3000 and 4000 km wavelengths for phase

I (Table 5). The phase profile for phase I shows a negative tilt of about 110 degrees at

12 hours which becomes less negative by 72 hours (Fig. 45). For phase 11, the phase

profile has a much stronger negative tilt at 12 hours which also becomes more vertical

with time.

Table 5
Exponential Growth Rates ( x 10-s)

Linear Shear (Negative Initial Phase)
Sixty-layer FDM-C Model

X-wavelength (kin)

4000 3000 2000

Phase I
12 hours 2.51 2.81 2.85
24 hours 1.50 1.60 0.91
36 hours 1.48 1.34 -0.37
48 hours 1.29 1.00 -0.23
60 hours 1.24 0.92 0.76
72 hours 1.21 0.87 -0.43

Phase II
12 hours 1.07 1.35 1.88
24 hours 0.89 1.82 3.49
36 hours 2.28 3.20 2.62
48 hours 2.58 2.37 0.87
60 hours 2.03 1.64 -0.59
72 hours 1.64 1.21 0.01
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b. X-wavelength of 3000 km

The growth rates show the same general results as the 4000 km results ex-

cept the growth rates are smaller for phase I and slightly greater until 36 hours for phase

II. The phase profiles give the same results as the 4000 km case (Fig. 46).

c. X-wavelength of 20OOkm

In this case, the growth rates show no apparent convergence to a steady,

growth rate. The amplitude profiles show there is growth for about 24 hours and then

the profile oscillates back and forth without growing (Fig. 47). This is expected because

the Eady solution is not unstable for this wavelength. Phase 1I has the same Fpttern

except it increases in magnitude for 48 hours before decreasing slighity. For the phase

profiles, phase I has a slightly negative tilt at 12 hours which becomes positive by 72

hours (Fig. 48). Phase 11 has a greater negative tilt than phase I at 12 hours, but it is

less than the tilt for the 4000 and 3000 km cases. The tilt for phase II becomes positive

by 48 hours and then becomes negative again at 72 hours.

2. Hyperbolic Type III Shear in the ubar Field

a. X-wavelength of 4000 km

The growth rates for the first 12 hours are much greater than the growth

rates for the linear case, but converge quickly to a steady growth rate for phase I (Table

6). For phase II, the early growth rates are larger and converge slower than the rates

for phase 1. However, the growth rates for both phase I and phase II converge to the

same value. The phase profiles show less negative tilt than the linear case (Fig. 49).

Phase I I has a larger negative tilt than phase I at 12 hours in the region of the strongest

vertical shear in the ubar field (Z = 0.25). This negative tilt becomes less negative with

time but the change is less pronounced than in the linear case.

b. X-wavelength of 3000 km

In this case, the results are similar to the results for 4000 kin. The growth

rates are greater than at 4000 km. The phase results are also the same as the 4000 km

case except for less negative tilt at 12 hours (Fig. 50).
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Table 6
Exponential Growth Rates ( x 10-1)

Hyperbolic Shear Type III (Negative Initial Phase)
Sixty-layer FDM-C Model

X-wavelength (km)

4000 3000 2000
Phase I
12 hours 4.33 4.50 3,93
24 hours 2.89 3.25 3.20
36 hours 2.84 3.23 3.06
48 hours 2.88 3.21 3.03
60 hours 2.89 3.21 3.04
72 hours 2.89 3.21 3.03
Phase II
12 hours 4.44 5.46 6.37
24 hours 4.24 4.30 3.47
36 hours 3.12 3.29 3.06
48 hours 2.90 3.22 3.04
60 hours 2.88 3.21 3.04
72 hours 2.89 3.21 3.03

c. X-wavelength of 2000 km

At 2000 kin, the same trend is still evident although the growth rates de-

crease slightly from the 3000 km case after 12 hours. The growth rates do not oscillate

as they did in the linear case. The phase profiles show the negative tilt at 12 hours is less

than the previous cases (Fig. 51).

The results of this experiment agree with the findings of Farrell (1985) that

large initial growth rates can occur in the early time steps and converge to the most

unstable growth. In the future, this type of time evolution should be used to test the

various schemes for various wavelengths.
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UINEAR SHEAR (60-L 4000KM)
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Fig. 4. 60-layer, 4000 km linear shear experiment at 96 h comparing v-component
amplitudes (top) and phases (bottom).
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LINEAR SHEAR (60-L 40010KM)
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Fig. 5. 60-layer. 4000 km linear shear experiment at 96 h comparing temperature
amplitudes.
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LINEAR SHEAR (60-L 3000KO)
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Fig. 6. 60-layer, 3000 km linear shear experiment at 96 h comparing v-component
(top) and temperature (bottom) amplitudes.
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Fig. 7. 60-layer. 2000 km linear shear experiment at 96 h comparing v-component
amplitudes (top) and phases (bottom).



LINEAR SHEAR (60-L 2000KM)
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Fig. 8. 60-layer. 2000 km linear shear experiment at 96 h comparing temperature
amplitudes.
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LINEAR SHEAR (6-1, 4000KM
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Fig. 9. 6-layer, 4000 km linear shear experiment at 96 h comparing v-component

amplitudes (top) and phases (bottom).
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LINEAR SHEAR (6-1, 4000KM)

----------- MODEIS

:4 c CONSENSUS
FDM-A
FDM-B

/ FDM-C__
f FEM-A _

6 FEM-B
t, FEM-C

0 20 40 8O 80 100 M2 140J
TEMPERATURE AMPLnTUDE (KEVIN)

Fig. 10. 6-laver, 40001 km linear shear experiment at 96 h comparing temperature
amplitudes.
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LINEAR SHEAR (6-1. 3000K-M)
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Fig. It. 6-layer, 3000 km linear shear experiment at 96 h comparing v-component
amplitudes (top) and phases (bottom).
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LINEAR SHEAR (6-1,. 3000KM)1
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Fig. 12. 6-layer. 3000 km linear shear experiment at 96 hi comparing temperature
amplitudes.
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Fig. 13. 6-layer. '000 km linear shear experiment at 96 h comparing v-component
amplitudes (top) and phases (bottom).
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LINEAR SHEAR (6-L 2000KM)
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Fig. 14. 6-layer. 2000 km linear shear experiment at 96 h comparing temperature
amplitudes.

51



HYPERBOLIC TANGENT UBAR PROFILES
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Fig. 15. Hyperbolic tangent ubar profiles.
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HYPERBOLIC SHEAR TYPE I (4-L 4000KM)
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Fig. 16. 4-layer. 4000 km Type I shear experiment at 96 h comparing v-component
amplitudes (top) and phases (bottom).
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HYPERBOLIC SHEAR TYPE 1 (4-1. 3000KM)
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Fig. 17. 4-layer. 3000 km Type I shear experimen t at e,6 h comparing v-component
amplitudes (top) and phases (bottom).
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HYPERBOLIC SHEAR TYPE 1 (4-L 2000KM)
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Fig. 18. 4-layer. 2000 kin Type I shear experiment at 96 h comparing v-component
ampiltudes (top) and phases (bottom).
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HYPERBOLIC SHEAR TYPE 11 (4-1. 4000KM)
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Fig. 19. 4-layer, 4000 km Type II shear experiment at 96 h comparing v-component
amplitudes (top) and phases (bottom).
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HYPERBOLIC SHEAR TYPE I1 (4-. 4000KM)
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Fig. 20. 4-layer. 4000 km Type II shear experiment at 96 h comparing temperature
amplitudes.
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HYPERBOLIC SHEAR TYPE 11 (4-1, 3000KM)
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Fig. 21. 4-laver. 3000 km Type II shear experiment at 96 h comparing v-component
amplitudes (top) and phases (bottom).
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HYPERBOLIC SHEAR TYPE II (4-L. 3000KM)
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Fig. 22. 4-layer, 3000 km Type 11 shear experiment at 96 h comparing temperature
amplitudes.
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HYPERBOLIC SHEAR TYPE II (4-L 2000KM
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Fig. 23. 4-layer, 2000 km Type 1I shear experiment at 96 h comparing Y-component
amplitudes.
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HYPERBOLIC SHEAR TYPE III (60-1. 4000KM)
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Fig. 24. 60-layer. 4000 km Type III shear experiment at 96 h comparing temper-
ature amplitudes.
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HYPERBOLIC SHEAR TYPE 111 (60-1 3000M
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Fig. 25. 60-|ayer, 3000 km Type III shear experiment at 96 h comparing v-
component amplitudes (top) and phases (bottom).
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HYPERBOLIC SHEAR TYPE 111 (60-1. 3000KM
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Fin. 26. 60-layer. 3000 km Type IlI shear experiment at 96 h comparing temper-
ature amplitudes.
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HYPERBOLIC SHEAR TYPE 111 (60-1, 2000KM)
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Fig. 27. 60-layer. 2000 kmn Type III shear experiment at 96 h comparing V-

component amplitudes (top) and phases (bottom).
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HYPERBOLIC SHEAR TYPE III (60-L, 2000KM
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Fig. 28. 60-laver. 2000 km Type III shear experiment at 96 h comparing temper-
ature amplitudes.
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HYPERBOIIC SHEAR TYPE III (4-L 4000KM)
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HYPERBOUC SHEAR TYPE 111 (4-1. 3000KM)
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Fig. 30. 4-layver, 3000 km Type III shear experiment at 96 h comparing v-
component amplitudes (top) and phases (bottom).
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HYPERB0O1C SHEAR TYPE Il (4-L 3000KM)
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rig. 31. 4-layer, 3000 km Type III shear e~periment at 96 h comparing temper-
ature amplitudes.
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HYPERBOLIC SHEAR TYPE III (4-L 2000KM)
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Fig. 32. 4-1ayer, 2000 km Type III shear experiment at 96 h comparing v-
component amplitudes (top) and phases (bottom).
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LINEAR SHEAR (60-L, 4000KMA)
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Fig. 34. 60-layer. 4000 km linear thermodynamic modification at 96 h comparing
v-component amplitudes (top) and phases (bottom).
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UINEAR SHEAR (60-1. 4000KM)
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Fig. 35. 60-layer, 4000 km linear thermodynamic modification at 96 It comparing
temperature amplitudes (top) and phases (bottom).
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LINEAR SHEAR (60-1 2000KM)
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Fig. 36. 60-laver, 2000 km linear thermodynamic modification at 96 h comparing
v-component amplitudes (top) and phases (bottom).
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LINEAR SHEAR (60-L 2000KM)

- - - - - -- - - -

MODELS

cFEM-A(MOD)

TEPEATFEAPLMUE(KL.N

Cl

- d-

--------- MODELS

. FEM-A

o FEM-A(MOD)

a6-

Fig. 37. 60-la',er. 2000 kmn linear thermodynamic modification at 96 h comparing
tempe'rature amplitudes (top) and phases (bottom).
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HYPERBOLIC SHEAR TYPE III (60-4. 4000KM)
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Fig. 38. 60-layer, 4000 kmi Type I II thermodynamic modification at 96 hi comparing
V-coMponent amplitudes (top) and phases (bottom).
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HYPERBOLIC SHEAR TYPE 111 (60-1. 4000KM)
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Fig. 39. 60-layer. 4000 km Type III thermodynamic modification at 96 h comparing
temperature amplitudes (top) and phases (bottom).
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HYPERBOLIC SHEAR TYPE 111 (60-1, 2000KM)
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Fig. 40. 60-layer. 2000 kmn Type III thermody'namic modification comparing v-
component (top) and temperature (bottom) amplitudes.
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HYPERBOLIC SHEAR TYPE III (6-L, 4000KM)
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Fig. 4 1. 6-layer. 4000 kmn Type III thermodynamic modification at 96 h comparing

V-component amplitudes (top) and phiases (bottom).
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Fig. 42. 6-layer, 4000 km Type III thermodynamic modification at 96 h comparing
temperature amplitudes (top) and phases (bottom).
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Fig. 43. 6-layer. 2000 km Type III thermodynamic m~odification at 96 h comparing
Y-component amplitudes (top) and phases (bot tom).
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HYPERBOUC SHEAR TYPE III (6-L 2000KM)
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Fig. 44. 6-Iav'er. 2000 kmn Type III thermodynamic modification at 96 h comparing
temperature amplitudes (top) and phases (b~tton).
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Fig. 45. 60 layer, 4000 km initial value modification (linear) comparing phase I (top)
and phase 11 (bottonm) negative phase tilt.
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LINEAR SHEAR (60-1, 3000KM4)
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Fig. 46. 60-laver, 3000 km initial value modification (linear) comparing phase I (top)
and phase 11 (bottomn) negative phase tilt.
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LINEAR SHEAR (60-L 2000KM)
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rig. 47. 60-layer, 2000 kin initial value modification (linear) comparing phase I (top)
and phase II (bottom) amplitudes.
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HYPERBOLIC SHEAR TYPE I1 (60-L 4000KM)
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Fig. 49. 60-layer. 4000 km initial value modification (Type 111) comparing phase I
(top) and phase i (bottom) negative phase tilt.
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HYPERBOLIC SHEAR TYPE 111 (60-1, 3000KM)
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Fig. 50. 60-layer. 3000 km initial value modification (Type III) comparing phase I
(top) and phase 11 (bottom) negative phase tilt.
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HYPERBOLIC SHEAR TYPE III (60-L 2000KM)
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Fig. 5 1. 60-Iaier, 2000 km initial value modification (Type 111) comparing phase I
(top) and phase 11 (bottom) negative phase tilt.
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IV. CONCLUSIONS

With a linear vertical ubar profile, FEM-B still has an oscillation near the lower
boundary of the temperature profile after correcting the length of the vertical velocity
vector and is the poorest of the six models. FEM-A is better than FEM-B but is still

not equal to the consensus profile. In the hyperbolic tangent vertical ubar profiles, the
finite element models do not perform as well as the finite difference models for Types I
and II except for the six-layer model for Type 11. Grid A is closest to the consensus for
most of the Type I and Type 11 cases. However, for Type III, the finite element models
are better than the finite difference models in many of the cases. FEM-B shows much
improvement in Type 11I. This may be because the maximum vertical shear in the ubar
field occurs near Z - 0.25, which may be far enough from the boundary to enable
FEM-B to overcome its earlier problems rear the boundary.

Overall. scheme C is often better than A and B, especially FEM-C. Scheme C may

have an advantage because it predicts the variables at one more level than the A and B
models except for the vertical velocity and temperature. However, even for the temper-
ature profile, where grid B predicts the same number of levels as grid C, scheme C often
has the better surface prediction. Grid A seems to perform surprisingly well in spite of
the analysis of Arakawa (1984).

Future research should concentrate on the boundary elements for FEM-A and
FEM-B. Perhaps new hybrid elements could be employed. Another approach would

be to continue the work of isolating the effects of the vorticity, divergence and
thermodynamic terms in the finite element models. This could be accomplished by using
the finite difference method for these equations in the finite element models and ob-
serving each term's contribution.

So far, all the baroclinic instability experiments have used a Tbar field that increases

linearly with height, which may not be too challenging for simple finite difference models
to solve. A vertical Tbar field that is not linear, such as the hyperbolic tangent profile
used for the ubar field in this study, may allow the finite element models to take full
advantage of their possibilities. Finally, future work should continue the initial value
growth experiments by evaluating all the models and by using smaller resolution models
and smaller wavelength in x. Smaller horizontal wavelengths may lead to a different type
of growth.
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APPENDIX A. FINITE DIFFERENCE APPROXIMATIONS

1. For terms of the form duW
dZ

a. FDM-A and FDM-B, at level Z Z

d - W( U+ 1 1 1 1 1 i u

dZ 2 'Z+1- Zi z i-I

b. FDM-C, at level Z = Zj

dZ- 2 Z~+ -Z Zi-I

2. For terms of the form c w

a. FDM-A, at level Z =Z,

,FT w [W1(T+ +w-( T 1 - Ti-
T 2 Zi+ - Z, j-z-

b. FDM-B, at level Z =Z,

aTw [ T1+1 - T1  ___-____

T 2 'Z+H1 z' - z'i-1

c. FDM-C, at level Z =Z,

aT WAT,+ - Ti- Ti - Ti-
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3. For terms of the formduV

dz

a. FDM-A, at level Z j

jT 2 Z,+,- i 1 i-Z-

b. FDM-B, at level Z = Z,

dU + i)(U,+ - U
dZ - 2 (Vz1 + 1+1 1 z

c. FDM-C, at level Z :

Z11i+1 - Z1 ui-I
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APPENDIX B. GALERKIN FORM OF FEM-A PROGNOSTIC

EQUATIONS

I. Vorticity Equations (2.25) and (2.26):

i+ i+1

Zdiz ,dZ= -fZ D4j 4I0,0dZ
j~i-1j=i-I

i+1 i+1 i+1

U k j~fZT00'0dZ_ V4jj 1 dZ. (.1
x Y, kZA Z O(A

k=i-l j=i-l i-

Y d4 A2zTZ

+ U Aj Z A 4 dZ- v/2f r TVjddZ. (B.2)

k=i-l j=i-I ;=i-I

Note that in these equations, and the equations that follow, the basis functions are

functions of Z (0i = 0,(Z) and , = 0,(Z)) . All of the other variables, A, D, H, Q, T, u,

U, V, and W, are functions of time (Ai = A(t), Di = Dt), H. = Hi(t), Q, = Q(t),

T, = T,(t), u. = ui(t), Uj = U,(t), Vi = V,(t), W, = W,(t)).
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2. Divergence Equations (2.27) and (2.28):

dt~± Oji = fZ Af 4,jIdZ

41i- 41 -W

U~- 'I 4jkA l I 00d

U ~ k Z j {ZT~ d~k OjdZ + ~2 Hj H4 Ojo1 dZ. (B. 3)

24- jT+1f

j~-Ij=l- Z

+ U k D4l Z OjbkkdZ -/ Z U4~fZTk~dZ

1+1 4+I 4+

-luj Z j -Lk 32 OZ+3H j~jidZ. (B.4)
k~i-l j=i-l ZO Z=-
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3. Thermodynamic Equations (2.29) and (2.30):

i+I +I 1+1

dTTJz k ZT

Zdt OJZTdZ U T2 .3 3jkA
k=i-I j~i-

+ 3L 41 3k f~ jIZT db -4)dZ
k=i-I j-1 4o

1+41 4I 1
- \ ZQf Zjd, YrZT B-5)
J'Z?"WJ Qk OTldz + fJ4

k=-I j=,l 1 4-

1+41 1 1 -Y JZ dZ f- 3 fz 3TiJ~k4ldZ

4~-~1 I 41

kv (Z T dk Y .JZT

R Y,2.w ,~ f dZ+ B6
k=i-I j=i- 1 4
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APPENDIX C. BASIS FUNCTION EQUATIONS FOR FENI-A

1. Notation:

Ai = Z, - Zi I

A'j = Z' I - Z'j-1

= z - Z'

2. For the general case:

. - A', + .5A'i I  A' A'
-A' 2  2 < 2.iA+ ' A't+2

-. + .5Ai+4  A'<

.S(A, + A,1+1) 2

for any i sufficiently far from the boundaries, 3 i n.

+A'¢'( ) = Al - A ':5 _< < 0

-0 <+ A'' +
A' 1+

for 2< i<_ n.

3. For special cases, ,. -l , o- , , :

- + 5A' 2

01w ,A' 2

02(0 + 1.5A' 2  A'2 -. 5A'2

-5 A+ 55A'3.(A' 2 + A' 3) ' .5A'3
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A'2
2

S+ A'n~l

= 5(A',+ 1 + A'.)2 - 2

'+ .5A'n~l
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APPENDIX D. GALERKIN FORM OF FENI-B PROGNOSTIC

EQUATIONS

1. The vorticity equations have the same form as the vorticity equations for model

FEM-A, equations (B.1) and (B.2).

2. The divergence equations are the same as the divergence equations in model FEM-A.

equations (B.3) and (B.4).

3. Thermodynamic Equations (2.29) and (2.30):

1+ 1 1-4- 1 i 1

d l T  
= Z Uk k Tj z ,Jk,dZ

= ,. _ k - - I j= i- I

1+1 i+1

F~ ~ \ k? ZTd+ ik  V. do" d JO~
R /, Y,1.d 1

k=i-I j=i-I

IETk7 J'.JfT dtk O ,dZ+ LQ1f ZT 0dZ. (D.l)
k=i-I j=i-1 J=1-1
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+-1 i-1 1+1

yZdT V ZT~d ~ k Z T

k- j=I -I

i+1 41l

k=i-I j=i-I Zo

j+1 J+1 i+I

-2_. f_- "' jz- Z jOidZ + 2Q Z OjO,dZ. ( 2

k=-I j=--I Z-

Note that in these equations the basis functions are functions of Z (5, = ,(Z) and

0, =,(Z)) . All of the other variables, Q. T, u, U, V, and NV, are functions of time

(Q, = Q(t), T, = T(t), u, = u,(t), U' = Uj(t), V, Vi(t), Wi = W(t))
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APPENDIX E. GALERKIN FORM OF FEM-C PROGNOSTIC

EQUATIONS

1. The vorticity equations have the same form as the vorticity equations for model

FEM-A, equations (B.1) and (B.2).

2. Divcrgence Equations (2.27) and (2.28):

i+1 i4l

Z dit f 0,dZ = f fJ POd
j=1-1

+ i+i+

k D ZT( ) k 4 ld - U L i U ZT J Id

U 4 jfOOd J4 O~
k=i- j=i-1

i4-1 1+1 i+1

I i 1 2 ZT LI k 0jidZ +j2ZHjJ 0j~dZ. (E. 1)

k=i- 1=-1=l-I
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1+1 1+11  dD, fZT, j ZZA Oj4 T dZ

=-1 j= -I

i+l i+1 i+1

+ gL ~ DlJ7 Ofk~idZ - Z U2
k~i-l j~il i-

i+1 i+1 i+1

rZ j d, 2Z
+ f u \ - dZ 41 dZ + H, fJOT (E.2)

k=t-1 --i

Note that in these equations, and the equations that follow, the basis functions are

functions of Z (0, = 0,(Z) and 0, = 0,(Z)). All of the other variables, A, D, H, Q, T, u,
U, V and NN', are functions of time (A, = A,(t), D, = D,(t), Hi= H,(t), Q, =Q(t),

T, = T,(t), u,-- u,(t), U, = U,(t), V, = V,(t) and W, = W,(t)).

3. Thermodynamic Equations (2.29) and (2.30):

1+1 i+1 +l

dTj, fzT 0,,Z G Tj2 0^04-

1+l i+I

+ f Z , ,- Z
k=i-1 j=-I
i+ 41li~

- U kW j- f QTf 9. kd. (E.
k - I j i- I "
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i+1 1 +

d~ ZT -OjOJ' ' TjfZT

~k=i- - j4 -

i+ 1+ +

I xk 'j fZ O4idZ + 2 Q4oidZ. (E.4)
k=i-I si-I 4
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