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Abstract

Fine-grain concurrent computers, by operating at a fine grain, increase the amount of
concurrency that can be efficiently exploited in a given problem. Programming is
simplified because programs may be partitioned into natural units of methods and
objects and these objects are addressed uniformly whether they are local or remote.
The construction of these machines poses challenging problems in reducing overhead,
increasing communication bandwidth, and developing resource management
techniques. This paper describes this class of machines, the challenges posed by their
construction, and recent progress toward meeting these challenges. ¢ A,
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Abstract

Fine-grain concurrent computers, by operating at a fine grain,
increase the amount of concurrency that can be efficiently
exploited in a given problem. Programming is simplified
because programs may be partitioned into natural units of
methods and objects and these objects are addressed uni-
formly whether they are iocal or remote. The construction of
these machines poses challenging problems in reducing over-
head, increasing communication bandwidth, and developing
resource management techniques. This paper describes this
class of machines, the challenges posed by their construction,
and recent progress toward meeting these challenges.

1 Introduction

The grain size of a program refers to the size of the tasks and
messages that make up the program. Coarse-grain programs
have a few long (% 10ms) tasks, while fine-grain programs
have many short (= Sus) tasks. With more tasks that can
execute at a given time - viz. more ccncurrency - fine-
grain programs (in the absence of overbead) result in faster
solutions than coarse-grain programs.

The groin size of a machine refers to the physical size and the
amount of memory in one processing node. A coarse-grain
processing node requires hundreds of chips (several boards)
and bas = 107 bytes of memory while fine-grain node fits

1The ressarch described in this paper was supported in part by the
Defense Advanced Renearch Projecta Agency under contracts NOOO14-
80-C-0622 and N00014-85-K-0124 and o part by s Natiomal So-
ence Foundation Presidential Young Investigator A ward with matching
funds from General Electric Corporation.
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Figure 1: In the area of a 1Mbit DRAM chip one can con-
struct & processing sode with a 32-bit processor, a float-
ing point uait, » communication controlier, and 512Kbits of
memory.

on a single chip and has & 10* bytes of memory. Fine
grain podes cost less and have less memory than coarse-grain
nodes, however, because 90 little silicon ares is required to
build a fast processor, they need not have slower processors
than coarse-grain nodes.

At MIT we are developing the J-Machine [12] as a research
vehicle to investigate problems invoived in the design and
programming of concurrent computers with fine-grain pro-
cessing nodes that efficiently execute fine-grain programs.

Processors are Inexpensive

VLSI technology makes it possible to build smail, powerful
processing elements. A 1M-bit DRAM chip bas an area of
256MA? (A is balf the minimum line widtb {23].). In the same
ares we cap build & single chip processing node as shown in
Figure 1. The chip includes

A 32-bit processor 16MA?
A flosting-point unit 2MA?
A communication controller  8MA?
512Kbits RAM 128MA?
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cessing power & a board-sised sode but significantly less
- memory. We refer to & machine built from these nodes as &
jellybesn machine as it is built with commodity part (jelly-
bean) technology.

A fine-grain processing node has two major advantages: den-
sity and memory bandwidth. Several hundred single-chip
nodes can be packaged oa » single priated circuit board per-
mitting us to exploit bundreds of times the concurrency of
machines with board-sised nodes. With ca-chip memory we
can read an eatire row of memory (128 or 256 bite) in a single
cycle without incurring the delay of several chip cromings.
This high memory basdwidth allows the memory to simul-
taneously buffer messagen from a high bandwidth setwork
and provide the processor with instructions and data.

Fine grain machines are quite efficient. We measure off-
ciency as

i K

ey = 1/AT 1)
(where A is area and T is time) ratber than

en = 1/NT @)

(where N is the aumber of processors). Propoaents of coarse-
grain machines argue that a machine coustructed from sev-
eral thousand single-chip nodes would be inefBcient because
many of the processing nodes will be idle. N is large, hence
ey is small. A user, however, is not concerned with N, but
rather with what the machine costs, A, and bow long it takes
%o solve a problem, T. Fine-grain machines have a very high
€4 because they are able to exploit more concurreacy in a
smalier area.

Concurrency is Plentiful

Many computationally demanding problems have an abun-
dance of concurrency. This concurrency exists at many lev-
els: at the coarsest grain we iterate over the gridpoints of
a problem. For each gndpoint we may perform some vector
operations that can be carried out in parallel. Each op-
eration may involve the evaluation of some expressions or
method that can be performed simultaneously. Withio ooe
expression. several arithmetic operations can be performed
in parallel.

At the level of methods (subroutines), the natural grain-
size of & computation is 10 instructions [S]. The message
transmission and reception overbead (the time for coe edge in
Figure 2) on existing message-pasting computers is in excass
of 500 instruction times. As a result these machines operate
at a grain sise of 2000 instructions. Conceptually 100 vertices
of the fine-grain computation graph are grouped together to
amortise the communication and synchronization overbead.
By reduciag communication and synchronisation overbead to
permit efficient execution at a grain size of 10 instructions
we can exploit 100 times as much concurrency.

Figure 22 The computaticn graph of & coacurrent program.
The vertioss repressnt & local computation being performed
at & sode of a concurrent computer. The edges represent
to perform the computation is bounded below by the sum of
edge and vertex times aloug the critical path for the compu-
tation.

A Global Address Space Simplifies Program-
ming

A fine-grain machine with s global address space simplifies
peogramaming. Because the machine exscutes programs at
their natural partition of methods and objects, the problem
of partitioning the program into appropriate sised pioces (the
groupiag of vertioss in Figure 2) is eliminated. Each object is
& separsts partition and each method is ssparately scheduled.
A global address space eliminates much of the bookkesping
required in & system with pos-uniform saming. In many
existing concurrent computers local objects are referenced
through s pointer while global objects require an explicit
ssnd and receive {30). Providing a global address space al-
lows objects to be referenced via a single mechanism (the
virtual address) regardless of their location, and relieves the
programmer of the bookkesping required to keep track of
nods sumbers. Programs become both easier to write and
more portable.

Background

The J-Machine builds oo previous work in the design of
tmessage-passing and shared memory machines. Like the Cal-
tech Coamic Cube [28], the Intel iPSC [18}, and the N.CUBE
[24], each sode of the J-Machine bas & local memory and
communicates with other nodes by passing messages. The
J-Machine can exploit concurrency st a much finer grain
than these early message passing computers. Delivering a
memsage and dispatching & task in respoase to the message
arrival takes Sus on the J-Machine as opposed to Sms oo an
iPSC. Like the BBN butterfly [4] and the IBM RP3 [25] the
J-Machine provides a global virtual address space. The same
IDs (virtual addresses) are used to reference on and off node
objects. Like the InMOS transputer {17] and the Caltech
MOSAIC (22] a J-Machine node is & single chip processing




element integrating & processor, memory, and & communi-
cation unit. The J-Machine extends these previous efforts
by providing efficient mechanisms for supporting fine-grain
concurrent programming systems.

Outline

The major chalienge in building a machine to exploit fine-
grain concurrency is to reduce the overbead associated with
message sending and task switching to a level that is small
compared with the task size. This overbead has two com-
ponents, Tou, the latency due to networks, and Toug,. the
latency due to task switching in a node. Low latency com-
munication petworks are described in Section 2. It is shown
that low-dimensional k-ary n-cube setworks outperform bi-
pary n-cubes (bypercubes). To exploit the low-latency of
these petworks requires processing elements that can react
quickly to the arrival of messages. The architecture of such
a message-driven processor is described ia Section 3.

2 Interconnection Networks

VLSI systems are wire limited. The cost of these systems
is predominantly that of conpecting devices, and the per-
formance is limited by the delay of these interconnections.
Thus, an intercounection network must make efficieat use of
the available wire. The topology of the network must map
into the three physical dimensions so that messages are pot
required to dowble dack on themseives, and in a way that
allows messages to use ali of the available bandwidth along
their path. Also, the topology and routing algorithm must
be simple 30 the network switches will be sufficiently fast to
avoid leaving the wires idle while making routing decisions.

Qur recent findings suggest that low-dimensional k-ary n-
cube interconnection networks (7] using wormhole routing
[27) [19] and virtwal ch ls [8] are capable of providing the
performance required by fine-grain concurrent architectures.
To test these ideas, we bave constructed two prototype VLSI
routiag chips, the torus routing chip (TRC) [6], and the net-
work design frame (NDF) [10). The mesh routing chip MRC
[14]. based on similar principles, has been applied in a com-
mercial product [2].

Wormbhole Routing

With wormhole rosting (Figure 3B) as soon as each flit (low-
control digit) of a message arrives at a node it is forwarded to
the next node. With store-and-forward rosting (Figure 3A),
the metbod used by most existing concurrent computers, the
entire message is received before forwarding the packet to the
next node. Using wormhole routing gives a network latency,
Twp, that is the sum of a component due to message length
pormalised to channel width ., and a component due to
the distance the message must travel, D. With store-end-
Jorwerd routing, on the other hand, the latency, Ty, is the
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Figure 3: The latancy of store-end-forward routing (A) com-
pared to wermAele resting (B). Wormbole routing reduces
latency trom the product of f and D to the sum of these
two compousnts.

product of these two components.
Twn = Tc (5 + D). @
Ter = Tc (rl;,- XD). (4)

where T¢ is the channel transmission time, L is the message
length in bits, W is the channel width in bits, and D is the
oumber of channels the message must traverse (distance).

Coasider a concurrent computer with 64K nodes connected
a8 8 16-ary 4-cube with 8-bit wide chanpels (W = 8). Assum-
ing 0o locality, the average distance & message must travel in
this machine is D = 13. For 256-bit messages, Twn-47Tc
an order of magnitude less than Tgp = 480Tc.

Low-Dimensional k-ary n-Cubes

Maay concurrent computers have been built using binary
n-cube (hypercube) interconnection networks because these
petworks are optimal when all channpels are considered equal.
However, considering a channel in & bipary n-cube to be
equal to a chanpel in » low-dimensional petwork is not a
reasonsble assumption. Because binary n-cubes bave long
wires and high bissction widths their channels are typically
narrower and slower than the channels in » low-dimensional
sstwork. When these factors are taken into account. the
low-dimensional petwarks out-perform the high-dimensional
oetworks.

Counsider the networks shown in Figure 4. Suppose the bi-
nary 6-cube has 4-bit wide channels (s in the Caltech Cos-
mic Cube {28]). An 8-ary 2-cube with 16-bit wide channels
bas the same wiring complexity. With wormhole routing and
256-bit messagee the 6-cube has a latency of 67Tc while the
2-cube has & latency of only 207c. Increasing the radix. k.
of & k-ary n-cube while holding wiring complexity (bisection
width) constant increases both W o k and D o kn. This de-




creases the component of latency due to message leagth. ¥,
while increasing the compooent due to distance, D. The min-
imum latency occurs when these two compooants are nearly
equal (Figure 3). For L % 200 the optimum dimensiog, n. is

Figure 4: Two 64-ode k-ary n-cubes: an 8-ary 2-cube (A)
and & bigary 6-cube (B). Network A has a bisection width
dlsdnmllwhihBhunbiucﬁcAvidthdMM.
ThuthechmchinAmbchunin-n'ideu
the chanpels in B for the same wiring complexity.
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Figure 5: Latency as a function of dimension for networks of
copatant bisection width (B=N, L=150). Low-dimensional
networks (left) are distance limited, while high-dimensional
networks (right) are message-length limited. .

two for up to 1K nodes and three for 1X to 32K nodes, and
four for 32K to 1M nodes.

The throughput of a network is the maximum pumber of
Mthtunbedelimedperuitﬁm. It is often ex-
preseed as a {raction of the petwork’s capacity, the number
of messages that would be delivered if every channel of the
petwork was fully used. As the amount of traffic in the net-
work increases, the latency of a message is increased. The
latency given by (3) assumes an unloaded network.

We have developed & queueing model of k-sry n-cube worm-
hole petworks that accurately predicts the latency as a func-
tion of netwoek traffic, and allows us to calculate the maxi-
toum throughput for a given network configuration (7). Fig-
ure 6 shows bow latency varies with trafBic for & 32-ary 2-cube
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Figure §: Latency vs. Mh.ﬂ-uvm. L=200bits.
Solid line is predicted latency, poists are measurements taken
from a simalator.

(1024 nodes). The solid live is the predicted latency. The
muaqmuhbvnu-‘nhm.mmej
”mﬁ&iﬂh&hﬁ&hiﬁ.ﬁﬁﬂnmﬁbﬁu
elightly pessimistic, until the network approaches saturation.
Latency increases less than 20% as traffic is increased from
sero to 0% capecity. Ssturation (maxitnum throughput)
occurs st & 40% capacity.

Low-dimensional sstworks bave several other advantages.

. lmv'immda\c.ﬁcdnwinumeuz.
works typically operate faster than in high dimensional
networks, incressing throughput and further decreas-
ing latency.

o Low-dimensiosal networks bave better queusing per-
formance. If one thinks of channeis as beium'::.
these petworks have fewer servers with greater capacity
resuiting in & Jower average service time.

. Bm_thcm&nl logic for & network switch typically
.ul-. with .m owmber of dimensions, the switches for
lw-dmd setworks are simpler than those for
high-dimensional aetworks.

Virtual Channels

Until recently there was po known algorithm for deadlock-
free routing in k-ary n-cube, wormhole networks. The cop-
ventional strectered buffer pool algorithma that are uged in
store-and-forward networks are not applicable to networks
that use wormbole routing. These algorithms interleave the
items being buffered (packets in & store-and-forward get-
work), but wormhole networks buffer flits that cannot be
interieaved.

We have developed & new class of algorithms for deadlock
free routing based on the concept of wirtual channels. Shown
in Figure 7, virtual channel algorithms operate by restrict-
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Figure 7: Considering routing to be a function C x N — C
rather than the conventional N x N — C deadlock corre-
spouds to cycles in the channel dependency graph (right)
rather than the interconnection graph (left). By multiplex-
ing two virtral channels on each physical channel, we can
restrict the routing function to eliminate deadlock (bottom).

ing routing rather than by restricting buffer allocation. To
do this requires that routing be a function of the channel a
message arrives oo and the destination node, C x N — C,
rather than the node a meseage is on and the destination
pode, N x N — C. Projecting this function gives a de-
pendency relation among channels. By multiplexing several
virtual channels oo each physical channel we can restrict
routing in & manner that avoids deadiock witbout loosing
strong connectivity. A set of virtual channels all share the
same physical wires. Each virtual channel requires only a
single flit buffer. The virtual channel method can be used to
route deadlock free i any strongly connected network [8].

The Torus Routing Chip

The Torus Routing Chip (TRC), shown in Figure 8, is a
self-timed [26] VLSI chip that performs wormbole routing ia
k-ary n-cube networks, and uses virtual channels to prevent
deadiock [6]. A single TRC provides 8-bit data channels in
two dimensions and can be cascaded to add more dimensions.
A TRC network can deliver a 150-bit message in a 1024 pode
32-ary 2-cube with an average latency of 7.5us.

The Network Design Frame

The Network Design Frame (NDF) [10] incorporates a parti-
tioned switch architecture [14], bidirectional data channels,
and low-voltage output drivers to achieve a worst-case la-
tency of Sus in a 4K node 64-ary 2-cube. In the partitioned

switch architecture, shown in Figure 9. the routing logic is
partitiosed into two-way switches. The partitiosed switch's
dats peths and control logic are simpler (and thus smaller
aad faster) than the centralived crossbar design used in the
TRC. A signal passes through caly 10 gate delays from input
to output for & propagation delay of 20ms (estimated).

Bidirectional data channels are used in the NDF to reduce
latency and to exploit locality. Because wire density is &
major limitation, the two directions of communication will
share the same data wires. While the NDF is constructed us-
ing CMOS technology, communication oa these bidirectional
data wires uses ECL signal levels to improve speed, reduce
power dissipatica, and reduce soise. The NDF uses low-
voltage swing output pads bassd oo & design by Knight [20).
Reducing the voltage swing by & factor of 5 makes these pads
S times as fast as convestional pads. Also, because power
goes as the square of voltage, P = CV?/, these pads dissi-
pate 1/25 (4%) as much power as conventional pads. Since

~ touch of the power in the machine goes into driving the inter-

node wires, this savings represents a considerable reduction
in total power dissipation.

Adaptive Routing

The TRC and NDF are oblivious routers - viz. the route
sslected for & message is determined caly by the source and
destination nodes. In particular, they route & message first
in the X divection and then in the Y direction. As shown
in Figure 10 if several sources baving the same Y coordipate
transmit messages to several destinations baving the same X
coordinate only ooe message can proceed at a time?,

As sbown in Figure 11, simply relaxing the X-Y routing or-
der could result in deadlock. The deadlock can be avoided by
doubling the virtual channels in the north and south direc-
ticns to separate eastbound messages from westbound mes-
sages [21]. We have recently undertaken the desige of an
adaptive router chip (ARC) based on this technique.

3 A Message-Driven Processor

Conventional instruction processors are ill-suited to serve as
processing nodes in a concurrent computer. Their [/O sys-
tems are designed to handie high-lstency peripherals (e.g.,
disks) and thus they respond slowly (s 100 instruction times)
to messages arriving over the network. Also, their register-
oriented instruction sets, designed to match a fast processor
with a slow memory in programming environtments where
context switches are infrequent (1 in s 25000 instructions),
are oot appropriate in a processing node coataining & fast
local memory and in an environment where context switches
happen every 10 instructions.

20uly one of the two conditions (i Y coordi ord

X coordinates) must be pressst 10 caase cOBgWItION .
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:‘;(;ée& Pbotomicrograph of the Torus Routing Chip
).

Figure 9: By using a pastitioned datapath (right) the NDF  Figure 10: A patbological message pattern. Three sources
requires less ares and runs faster than the TRC which uses  ¥ith the same Y coordinate transmit massages to three des-
» centralized crossbar switch (left). tinations with the sams X coordinstes. With oblivious X-Y
routing (solid lines) only one message can proceed at a time.
An adaptive router (dasbed lines) can make use of alternate
paths to route the messages without interference.




Enlbound
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Figure 11: (A) Relaxing the X-Y routing order results in
cycles in the channel dependency graph and thus a potential
deadlock. (B) To prevent deadiock we can add additional
virtual channels to separate eastbound messages from west-
bound messages.

The solution adopted in many machines is to increase the
memory size of the node 50 & larger part of the prublem can
be performed in each node. This bas the effect of reducing
the concurrency to a point where the number of instructions
executed between messages exceeds 10°. This increases the
perceived efficiency from 10% to 90% when measured in
terms of enx (2). This measure of efficiency, bowever, ignores
the cost of the node. If instead we measure efficiency in
terms of e, (1), the actual efficiency bas been reduced by
making the node larger. To truly increase the efficiency, we
must build small, efficient nodes.

At MIT, we are developing the message-driven processor
(MDP), a small, efficient processing node for a message-
passing concurrent computer (9). It is designed to support
fine-grain concurrent programs by reducing the overhead and
latency associated with receiving a message, by reducing the
time necessary to perform a context switch, and by providing
hardware support for object-oriented concurrent program-
ming systems.

The MDP provides the following mechanisms

1. A send instruction to inject short messages into the
petwork with a minimum of delay.

2. A message unit that controls the reception and buffer-
ing of messages.

3. A scheduling mechanism that decides when to preempt
execution and selects & message to be executed when
a method suspends.

4. A geperal transiation mechanism.

S. A small processor state and two sets of processor reg-
isters to support fast task switches.

Send Instruction

The MDP injects messages into the network using a send
instruction that transmits coe or two words (at most one
from memory) and optiosally terminates the message. The
first word of the message is interpreted by the network as
an absolute node address (in x,y format) and is stripped off
before delivery. The remainder of the message is transmit-
ted without modification. A typical message send is shown
in Figure 12. The first instruction sends the absolute ad-
dress of the destination sode (contained in R0). The second
ioatruction seads two words of data (from Ri and R2). The
final instruction sends two additional words of data, one from
R3, and one from memory. The use of the SENDE instruction
marks the end of the message and causes it to be transmit-
ted into the network. Il a Coucurrent Smalltalk message,
the first word is & message beader, the socond specifies the
receiver, the third word is the selector, subsequent words
coatsin arguments, and the final word is a continuation. Oa
our register-transfer simulator, this sequence exacutes in 4
clock cycles.

Early in the design of the MDP we considered making a mes-
sage send & single instruction that took a message template,
filled in the template using the current addressing environ-
ment, and transmitted the message. Each template entry
specified one word of the message as being either a constant.
the cootents of s data register, or & memory reference offset
from an address register (like an operand descriptor). The
template approach was abandoned in favor of the simpler

SEND RO ; oend aet address
SEND2 Rt.R2 ; header and receiver
SIND2E  R3,[3,A3); selector and comtizustion - end

Figure 12: MDP assembly code to send a ¢ word message
uses three variants of the SEND instruction.

ote or two operand SEND instruction because the template
did not significantly reduce code space or executioa time. A
two operand SEND instruction results in code that is pearly as
dense as a template and can be implemented using the same
control logic used for arithmetic and logical instructions.

Message Reception

Message reception overhead is reduced to & lus by buffer-

ing, scheduling, and dispatching messages in hardware. The
MDP maintains two message/scheduling g (correspond-
ing to two priority levels) ip ite on-chip memory. As messages
arrive over the network, they are buffered in the appropriate
queue. The queues are implemented as circular buffers. It is
important that the queue have sufficient performance to ac-
cept words from the petwork at the same rate at which they
arrive. Otherwise, messages would backup isto the network
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causing congestion. To achieve the required performance,
special addressing hardware is used to enqueue or dequeue
& message word with wraparouad and full/empty check in
a single clock cycle. A queue row buffer allows enqueuing
to proceed using ooe memory cycle for each four words re-
ceived. Thus & program can execute in parallel with message
reception with little loss of memory bandwidth.

The MDP schedules the task associated with each queued
message. At any point in time, the MDP is executing the
task associated with the first message in the highest prior-
ity non-empty queue. If both queues are empty, the MDP
19 idle - vis., executing & background task. Sending a mes-
sage implicitly schedules a task on the destinatioo node. The
task will be run when it reaches the head of the queue. This
simple two-priority scheduling mechanism removes the over-
bead associated with a software scheduler. More sophisti-
cated scheduling policies may be implemented on top of this
substrate.

Messages bocome active either by arriving while the node is
idle or executing at s lower priority, or by being at the head
of a queue when the preceding message suspends execution.
When a message becomes active, s bandler is dispatched in
one clock cycle. The dispatch forces execution to a physical
sddress specified in the message beader. This mechanism is
used directly to process messages requiring low latency (e.g.,
combining and forwarding). Otber messages (e.g., remote
procedure call) specify s handler that locates the required
method (using the translation mechanism described below)
and then transfers coatrol to it.

For example, the call handler code is shown in Figure 13 and
its execution is depicted in Figure 14. The first instruction
gets the method ID (offset 1 into the message). To facili-
tate access to the message arguments, hardware initializes
register A3 to coatain an address descriptor (base/length)
for the current message. The next instruction trapslates the
method ID into an address descriptor for the method. If
the translate faults, because the method is not resideat or
the descriptor is not in the cache, the fault handler fizes
the problem and reschedules the message. If the traaslation
succeeds, the final instruction (resume) transfers control to
the method. The method code may then read in arguments
from the message queue. The argument object identifiers are
translated to physical memory base/length pairs using the
translate instruction. If the method needs space to store lo-
cal state, it may create a context object. Whesn the method
has finished execution, or when it needs to wait for s reply,
it executes a SUSPEND instruction passing coatrol to the next
message.

MOVE  (1,A3],R0; get metdod id
XLATE RO,20 i traaslste to address descriptor
RES 2 i traasfer ceatrol to sethod

Figure 13: MDP assembly code for the CALL message.
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Figure 14: The CALL message invokes a method by transiat-
ing the method identifier to find the code, creating a cootext
(if ascessary) to bold local state, and transisting argument
identifiers to locate argumentas.

An early versicn of the MDP had a fixed sot of message han-
dlers in microcode. An analysis of these bandlers showed
that their performance was limited by memory accemss. Thus
there was little advantage in using microcode. The mi-
crocode was eliminated, the handlers were recoded in as-
sambly language, and the message opcode was defined to be
the physical address of the bandler routine. Frequently used
bandiers are contained in sn oo-chip ROM. This approach
simplifies the control structure of the machine and gives us
flexibility to redafine message handlers to fix bugs, for in-
strumentation (e.g., to count the number of sends), and to
implement new message types.

The message queue originally allocated storage from the heap
for each incoming message. This aliminated the need to copy
messages when & method suspended for intermediate results.
However, the cost of allocating and reclaiming storage for
each mensage proved to be prohibitive. Instead, we settled
oa the preallocated circular buffer. When a method suspends
for intermediate results, message arguments are copied into
» context object. The overbead of this copying is small since
the context must be created anyway to specify a continuation
and to bold live variables. The fixed buffer also provides a
convenient layering. Priority sero messages are sent when the
memory a'ocator runs out of room and priority one messages
are sent when the priority sero queue fills.

Translation

The MDP is an experiment in unifying shared-memory and
measage-passing paraliel computers. Shared-memory ma-

- chines provide a uniform global name space (address space)
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that allows processing elements to access data regardiess of
its location. Message-passing machines perform communica-
tion and synchronization via node-to-node messages. These
two concepts are not mutually exclusive. The MDP provides
a virtual addressing mechanism intended to support a global
same space while using an execution mechanism based on
message passing.

The MDP implements a global virtual address space using
a very general translation mechasism. The MDP memery
allows both indexed and set-associative access. By baild-
ing comparators into the column multiplexer of the on-chip
RAM, we are able to provide set-associative access with only
& small iocrease in the sige of the RAM’s peripberal circuitry.

The translation mechanism is exposed to the programmer
with the ENTER and XLATE instructions. ENTER Ra,Rb aseo-
ciates the contents of Ra (the key) with the contents of Rbd
(the data). The association is made on the full 38 bits of the
key 50 that tags may be used to distinguish different keys.
XLATE Ra,Ab looks up the data associated with the contents
of Ra and stores this data in Ab. The instruction fauits if
the Jookup misses or if the data is oot an address descrip-
tor. XLATE Aa,RD can be used to lookup other types of data.
This mechanism is used by our system code to cache ID to
address descriptor {virtual to physical) translations, to cache
ID to node number (virtual to physical) transiations, and to
cache class/selector to address descriptor (method lookup)
translations.

Tags are an integral part of our addressing mechanism. An
ID may translate into an address descriptor for a local object,
or a node address for a global object. The tag allows us to
distinguish these two cases and a fault provides an efficient
mechanism for the test. Tags also allow us to distinguish an
ID key from a class/selector key with the same bit pattern.

Most computers provide s sat associative cache to accelerate
translations. We have taken this mechanism and exposed
it in a pair of instructions that a systems programmer can
use for any translation. Providing this general mechanism
gives us the freedom to experiment with different sddress
translation mechanistns and different uses of translation. We
pay very little for this flexibility since performance is limited
by the number of memory accesses that must be performed.

Context Switches

Context switch time is reduced by making the MDP & mem-
ory rather than register based processor. Each MDP in-
struction may read or write one word of memory. Because
the MDP memory is on-chip, these memory references do
not slow down nstruction execution. Four geperal purpose
registers are provided to allow instructions that require up
to three operands to execute in a single cycle. The entire
state of a coatext may be saved and restored in less than
12 clock cycles. Two register sets are provided. one for each
of two priority levels, to aliow low priority messages to be
preempted without saving state.

Synchronization using Tags

An MDP word is 36-bits: a 4-bit tag and a 32-bit datum.
Tags are used both to support dysamically-typed program-
ming languages and to support concurrent programming con-
structs such as relocatabie objects and futures.

For example, consider the case where an object, A, sends
s message to an object, B, instructing B to perform some
computation and then to return the result in & reply message
to update A's local variable 2. To synchronise with the reply,
A, first tags = aa & C-FUT (for context future) then sends
the message and procesds without waiting for & reply. If the
reply arrives before A uses z execution simply continues. An
attempt to use z before the reply, however, results in a trap
that suspeads execution ustil the reply arrives.

The Effects of a Small Memory

Because the MDP maintains a global name space, it is not
necessary to kesp a copy of the program code (and the op-
erating system code) at each pode. In fact, a copy of the
entire operating system will not fit into & node's memory.
Each MDP keeps a method cache in its memory and fetches
methods from a single distributed copy of the program on
cache misses.

Some may argue that the MDP is unbalanced according to
the rule of thumb stating that a LMIP processor should bave
a 1MByte memory. The MDP is an s 4MIP processor and
only has & 36KByte memory. We argue bowever that it is
pot the size of the memory in a single node that is important,
but rather the amount of memory that can be accessed in
a given period of time. In & 64K node machine coastructed
from MDPs and using » fast routing network, a processor
will be able to access a uniform address space of 2% words
(2% Bytes) in loss than 10us.

The MDP provides many of the advantages of both message-
passing multicomputers and shared-memory multiprocessors.
Like & shared-memory machine, it provides a single global
pame space, and needs to keep only a single copy of the ap-
plication and operating system code. Like a message-passing
machine, the MDP exploits locality in object placement, uses
messages to trigger events, and gains efficiency by sending a
single message through the network instead of sending mui-
tiple words. While we plan to implement an object-oriented
programming system oo the MDP, we also sse the MDP as
an emulator that can be used to experiment with other pro-
gramming models.

4 Conclusion

The J-Machipe efficiently executes fine-grain concurreat pro-
grams by providing mechanisms that reduce the overhead
of message-passing, transistion, and coatext switching to
%= Sus. Reducing overhead to a time comparsble with the
natural grain size of many concusrent programs allows the




programmer to exploit all of the coacurrency present in these
programs rather than groupiog many grains together - re-
ducing the concurrency to improve the efficiency.

Low-dimensional k-ary n-cube networks that use wormbhole
routing and virtual chanuels can send a 6-word message
across the diameter of a 4K-node concurrent computer in
4us. These low-dimensional networks (8 < & < 64 and
2 € n £ 4) outperiorm binary n-cubes (k = 2) because
they balance the compoaent of latency due to message leagth
with the component due to distance. These networks are im-
piemented with VLSI chips such as the TRC (6], the NDF
{10}, aod the MRC [14] that perform all routing and buffer-
ing internally using no memory bandwidth or CPU time on
intermediate nodes. Adaptive routers are being developed
that will further improve routing performance by reducing
contention.

The Message-Driven Processor (MDP) can perform a task
switch on message arrival in lus. The MDP performs mes-
sage reception, buffering, and scheduling in hardware to elim-
inate the software overhead of 100us or more associated with
these functions. Task switches are performed quickiy because
the MDP is memory rather than register based. The MDP
memory provides both associative and indexed access. The
associative access is used Lo support a global virtual address
space needed to support concurrent programming systems.

The MDP provides very general hardware mechanisms that
can support maony different concurrent programming mod-

els including conventional message-passing [30], actors {1}
(3], futures (13), communicating processes {16}, and dataflow
{13]. All of these programming models require the same ex-

ecution mechanisms: communication, synchronigation, and
translation. Specializing a machine for a particular model of
computation results in only a small increase in performance.

Concurrent programming is not difficult if suitable abstrac-
tions are used. Programmers should use the natural parti-
tion of the probiem and not be concerned with placement.
Synchronization can be performed by aliowing the data flow
of the program to sequence the required operations. As this
technology matures. we expect to see abetractions for con-
currency that will make concurrent programming no more
difficult than sequential programming.

Maay challenging problems in the design of hardware and
software for concurrent computers remain. A major research
area is the design of fault tolerant systems. While we can
construct a 4K node machine with an MTBF of 2400 hours
(4K chips at 100FITS), future machines may have MTBFs
of only a few hours and will require architectures that can
survive node and link failures without loss of data.

The mechanisms described here efficiently execute concur-
rency at a grain size of 3us. Many numerical programs,
however, have potential concurrency at the level of single op-
erations. Architectures must be developed that can exploit
this concurrency without incurring the overhead of message
delivery or synchronisation.

Another critical problem is the development of (communica-
tion, processor, and memory) resource management policies
for concurrent operating systems. It is quite easy to write a

program with sufficient coacurrency to swamp any concur-
rent machine. A concurrent operating system must provide
a means to throttle back such massively concurrent applica-
tions to match the concurrency to the available resources.

Concurrent programming systems are still quite primitive.
Abstractions for concurrency that express common patterns
of computation while hiding the details of implementation
are required {11]. Compilers should perform optimisations
that expose concurrency in programs and automate the place-
ment of objects onto processing nodes. Concurrent software
tachoology must mature for these powerful machines to see
widespread use.
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