
rj C FILE COPY A 0UBLC RELASE

MASSACHUSETTS INSTITUTE OF TECHNOLOGY VLSI PUBLICATIONS

00 DTI0 IIELECTEn

o Oc t e o 19D88 -488

S D
EVALUAT1ING THE PERFORMANCE OF SOF IWARE CACHE COHERENCE

Susan Owicki and Anant Agarwal

Abstract

In a shared-memory multiprocessor with private caches, cached copies of a data item must
be kept consistent. This is called cache coherence. Both hardware and software coherence
schemes have been proposed. Software techniques are attractive because they avoid
hardware complexity and can be used with any processor-memory interconnection. This
paper presents an analytical model of the performance of two software coherence schemes
and, for comparison, snoopy-cache hardware. The model is validated against address
traces from a bus-based multiprocessor. The behavior of the coherence schemes under
various workloads is compared, and their sensitivity to variations in workload parameters is
assessed. The analysis shows that the performance of software schemes is critically
determined by certain parameters of the workload: the proportion of data accesses, the
fraction of shared references, and the number of times a shared block is accessed before it
is purged from the cache. Snoopy caches are more resilient to variations in these
parameters. Thus when evaluating a software scheme as a design alternative, it is essential
to consider the characteristics of the expected workload. The performance of the two
software schemes with a multistage interconnection network is also evaluated, and it is
determined that both scale well. <, _,, .,t, - 1 &-?, , !,

JJ

88 1t.2

Microsystems Massachusetts Cambridge Telephone
Research Center Institute Massachusetts (617) 253-8138
Room 39-321 of Technology 02139

Acknowledgements

To appear in proceeding. Architetura Supmrt for Pro m'mming Languaes and
_erating Sytems, March 1989. This work was supported in part by the Defense

Advanced Research Projects Agency under contract no. N00014-87-K-0825.

Author Information

Owicki: Systems Research Center, Digital Equipment Corporation, Palo Alto, CA.

Agarwal: Laboratory for Computer Science and the Department of Electrical Engineering
and Computer Science, Room NE43-418, MIT, Cambridge, MA 02139, (617) 253-
1448.

Copyright O 1988 MIT. Memos in this series are for use inside MIT and are not
considered to be published merely by virtue of appearing in this series. This copy is for
private circulation only and may not be further copied or distributed, except for
government purposes, if the paper acknowledges U. S. Government sponsorship.
References to this work should be either to the published version, if any, or in the form
"private communication." For information about the ideas expressed herein, contact the
author directly. For information about this series, contact Microsystems Research
Center, Room 39-321, MIT, Cambridge, MA 02139; (617) 253-8138.

Evaluating the Performance of Software Cache Coherence
ACCesiori ForSusan Owicki

Systems Research Center NTIS CRA&I
Digital Equipment Corporation DTIC TAB d

Palo Alto, CA J c

Anant Agarwal
Laboratory for Computer Science t .; I -

Massachusetts Institute of Technology

Cambridge, MA

September 29, 1988 O..

In a shared-memory multiprocesor with private caches, cached copies of a data item must be
kept consistent. This is called cache coherence. Both hardware and software coherence schemes
have been proposed. Software techniques are attractive because they avoid hardware complexity and
can be used with any processor-memory interconnection. This paper presents an analytical model
of the performance of two software coherence schemes and, for comparison, snoopy-cache hardware.
The model is validated against address traces from a bus-based multiprocessor. The behavior of the
coherence schemes under various workloads is compared, and their sensitivity to variations in workload
parameters is assessed. The analysis shows that the performance of software schemes is critically
determined by certain parameters of the workload: the proportion of data accemes, the fraction of
shared references, and the number of times a shared block is accessed before it is purged from the
cache. Snoopy caches are more resilient to variations in these parameters. Thu when evaluating a
software scheme as a design alternative, it is essential to consider the characteristics of the expected
workload. The performance of the two software schemes with a multistage interconnection network
is also evaluated, sad it is determined that both scale well.

1 Introduction

Shared-memory multiprocessors often use per-processor caches to reduce memory latency and to avoid
contention on the network between the processors and main memory. In such a system there must be
some mechanism to ensure that two processors reading the same address from their caches will see the
same value. Most schemes for maintaining this cache coherence use one of three approaches: snoopy
caches, directories, or software techniques.

Snoopy cache methods [11, 14, 17, 21, 30] are the most commonly used. A snoopy cache-controller
listens to transactions between main memory and the other caches and updates its state based on what
it bears. The nature of the update varies from one snoopy-cache scheme to another. For example, on
hearing that some cache has modified the value of a block, the other caches could either invalidate or
update their own copy. Because all caches in the system must observe memory transactions, a shared
bus is the typical medium of communication.

Another clas of techniques associates a directory entry with each block of main memory; the entry
records the current location(s) of each memory block (29, 41. Memory operations query the directory
to determine whether cache-coherence actions are necessary. Directory schemes can be used with an
arbitrary interconnection network.

t1

Both snoopy cache and directory scheme. involve increased hardware complexity. However, the caches
are invisible at the software level, which greatly simplifies programming these machines. As an alterna-
tive, cache coherence can be enforced in software, trading software complexity for hardware complexity.
Software schemes have been proposed by Smith (281 and Cytron [7] and are pat of the design or imple-F mentation of the Elxsi System 6400 [23, 221, NYU Ultracomputer (8], IBM RP3 [3, 10], Cedar [5], and
VMP [6].

Software schemes are attractive not only because they require minimal hardware support, but also
because they can scale beyond the limits imposed by a bus. We will examine two sorts of software
schemes in this paper. The simplest approach is to prohibit caching of shared blocks. Shared variables
are identified by the programmer or the compiler. They are stored in regions that are marked as non-
cachable, typically by a tag or a bit in the page table. Loads and stores to those regions bypass the cache
and go directly to main memory, while references to non-shared variables are satisfied in the cache. Such
a scheme was used in C.mmp [12] and the Elxui System 8400 (23, 22]. We refer to this approach as the
No-Cache scheme.

In another software approach, which we will call Soflware-Flesh, shared variables can be removed
from the cache by explicit lush instructions. These instructions may be placed in the program by the
compiler or the programmer. A typical pattern is to operate on a set of shared variables within a critical
section and to lush them before leaving the critical section. This will force any modified variables to be
written back to memory. Then the next reference to a shared variable in any processor will cause a miss
that fetches the variable from memory. A more sophisticated scheme might allow multiple read copies of
blocks, and have processes explicitly synchronise and flush cache blocks when performing a write.' If the
flush instructions are to be inserted by the compiler, it must be possible to detect shared variables and
the boundaries of execution within which a shared variable can remain in the local cache. Such regions
can be made explicit in the language or detected by compile-time analysis of programs [71. Except when
there is very little shared data, good performance from the Software-Flush scheme places considerable
demands on the compiler.

This paper analyses the performance of the No-Cache and Software-Flush schemes. For comparison,
we also examine a snoopy-cache scheme, which we call Dragon, and the Bae scheme, which does not
take any action to preserve coherence. The questions we address include: What sort of performance
can we expect from such schemes? How is their performance effected by scaling? Are there differences
in performance between systems based on a bus and a multistage interconnection network? How do
variations in the workload affect performance?

We define an analytical multiprocessor cache model, and use it to predict the overhead of the four
cache-coherence schemes over a wide range of workload parameters. We chose this approach, rather
than simulation, for several reasons. Trace-based simulation was impossible due to the lack of suitable
traces. Simulation with a synthetic workload was possible, and would have allowed us to model more
detailed features of the coherence schemes. However, there seems to be little benefit in doing this; we can
see significant variation among the schemes even without this detail. Evaluating the analytic model is
much faster than performing either type of simulation, which allows us to study the schemes over a wide
range of workload parameters. This is especially useful for software schemes, where there is as yet little
workload data. However, became the results of analytical models are always subject to doubt, we have
validated our model against simulation with real address traces from a small multiprocessor system.

We observed that the performance of the software schemes was most affected by the frequency of
data references, degree of sharing, and number of references to a shared datum between fetching and
flushing. These parameters impact the performance of software schemes much more dramatically than
the Dragon scheme. Software caching works wen in favorable regions of the above parameters, but does
badly in other regions. Therefore, it is critical to estimate the expected range of these parameters when
evaluating a software scheme.

Both the Software-Flush scheme and the No-Cache scheme scale to systems with general memory
interconnection networks. In such a system, the efficiency of the Software-Flush scheme drops heavily
when the workload is heavy, while the efficiency of the No-Cache scheme becomes abysmal even with
moderate workload.

Some schemm even allow tbmpamw mcomhatmey to ruce oakamSim perum m.

2

Previous cache-coherence studies have focused on the performance of hardware-based schemes.
Archibald and Baer [2] evaluate a number of snoopy-cache schemes using simulation from a synthetic
workload. A similar analysis using timed Petri nets was performed by Vernon et al. (31]. A mean value
analysis of snoopy cache coherence protocols was presented by Vernon, Lazowska and Zahorjan [32]. They
were able to achieve very good agreement between the earlier Petri net simulation and an analytic model
that was much leas computationally demanding. The approach taken in this last paper is the closest to
ours. Greenberg and Mitrani [151 use a slightly different probabilistic model to analyse several snoopy
cache protocols. A model characterizing multiprocessor references and their impact on snoopy schemes is
presented by Eggers and Katz [9]. Directory schemes are evaluated by Agarwal et al. [1] using simulation
with multiprocessor address traces.

The rest of the paper is organized as follows: Section 2 presents the cache model for bus-based
multiprocessors, and the following section describes its validation. Section 4 performs a sensitivity analysis
to determine the critical parameters in the various schemes. The results of the analyses for buses
presented in Sections 5. Section 6 gives the model and analysis of a multiprocessor with a multistage
interconnection network.

2 The Model

We wish to compare the cost of cache activity in the No-Cache, Software-Flush, Dragon, and Base
schemes. Cache overhead consists of the time spent in handling cache misses and implementing cache
coherence. Processor utilization U is the fraction of time spent in "productive (non-overhead) compu-
tation. An n-processor machine has processing power n x U, and we use processing power as the basis
for our comparisons.

An analytic model is used to estimate processing power. It has three components. The syutem model
defines the cost of the operations provided by the hardware. The workload model gives the frequency
with which these operations are invoked, expressed in terms of various workload parameters. From these
two models it is possible to determine the average processor and bus time required by an instruction.
Additional time is lost to contention for the shared bus or the interconnection network, and this is
estimated by the contention model. Only the bus model is defined in this section; the network model is
defined in Section 6.2.

2.1 System Model

Table 1 lists the operations in the model. In addition to instruction execution, clean miss, and dirty
miss, they include specific operations for each coherence scheme. For No-Cache, there are read-through
and write-through operations to access a word in main memory rather than a word in the cache. For
Software-Flush, a flush instruction invalidates a block in the cache and writes the block back to main
memory if it is dirty. Finally, the Dragon scheme has write-broadcast, a miss (clean or dirty) satisfied
from another cache, and cycletealing by the cache controller.

Table 1 also gives the CPU and bus time, in cycles, for each operation. Here CPU time is the total
time required for the operation in the absence of contention, and bus time is the part of that time during
which the bus is held. (Bus and CPU cycle time are assumed to be the same.)

The operation costs are based on a hypothetical RISC machine with a combined instruction and data
cache. Each instruction takes 1 cycle, plus the time for any cache operations it triggers. The cost of
cache operations is based on a block size of four words. Thus, for example, a load which causes a clean
miss from memory needs 7 cycles of bus time, one to send the address, two for memory access, and four
to get the 4 words of data. Processor time to detect and process the miss adds 3 CPU cycles for a total
of 10. Finally the load itself is performed, adding one more CPU cycle for instruction execution. The
times for other instructions are derived in a similar way.

3

Operation CPU Time Bus Time
Instruction execution

(except Bush) 1 0
Clean miss (mem) 10 7
Dirty min (mern) 14 11

Read through 5 4
Write through 2 1

Clean flush 1 0
Dirty fush 6 4

Write broadcast 2 1
Clean miss (cache) 9 6
Dirty miss (cache) 13 10
Cycle stealing 1 0

Table 1: System model: CPU and bus time for hardware operations

2.2 Workload Model

The workload model determines the frequency of the operations defined in the system model. The
operation frequencies are expressed in tern of the parameters listed in Table 2. The "shared data"
in this table means slightly different things in the software and Dragon schemes. For No-Cache and
Software-Flush, an item is shared if it is treated as shared by the cache coherence algorithm; this is
determined by the compiler or programmer. For the Dragon scheme, an item is shared if it is actually
referenced by more than one processor. These interpretations should not lead to widely differing values.

For all schemes
Is probability an instruction is a load or store
madat mira rate for data
mains miss rate for instructions
md probability a miss replaces a dirty block
shd probability a load or store refers to shared data
wr probability a miss is caused by store rather than load

For Software-Flush only
apt number of references to a shared block before it is flushed
mdshd probability a shared block is modified before it is flushed

For Dragon only
oclean on miss of a shared block in one cache, probability

it is not dirty in another
oapes on reference to a shared block in one cache, probability

it is present in another
nshd on write-broadcast, number of caches containing a shared block

Table 2: Parameters fir the Workload Model

Some of these parameters are functions of the underlying system as well as of the program workload.
For example, miss rates depend on block size, cache size, and so on. We don't try to model those effects,
since they are not relevant to cache coherence. It is enough to consider a range of values for those
parameters.

The remainder of this section describes the workloads of the four cache-coherence schemes. The
information here, combined with the system model, makes it possible to compute the average rate and
service time of bus transactions. Let o denote a hardware operation, freq(o, scheme) the frequency of
that operation in the workload model for scheme, ely/ee(o, epu) the CPU time for o, and cy/es(o, bus)

4

the bus time for o in the system model. Then an instruction takes an average of

C fireq(o, scheme) x eyces(o, cpu) (1)

CPU cycles and
S= freq(o, scheme) x cydea(o, bus) (2)

bus cycles. Thus b is the average transaction service time, and 1/(c - b) is the average transaction rate.
In other words, bus transactions are generated at an average rate of one every c- b CPU cycles, and each
transaction requires an average of b bus cycles.

2.2.1 Base

The Base scheme, which does not implement coherence, is included to give an upper bound on perfor-
mance. Its workload is characterized in Table 3.

clean miss (is x madat + mains)x (I -
dirty m (Is x nmadat + mains) x md

Table 3: Workload model: Base scheme

Some discussion of these formulae may be useful. A data miss occurs when a load or store instruction
(probability Is) refers to an address that is not present in the cache (probability msdat). An instruction
miss occurs with probability mains. In either case, if the block to be replaced is dirty (probability md)
the miss is dirty, if not (probability 1 - md) it is clean.

2.2.2 No-Cache

In this scheme, shared variables are identified by the programmer or the compiler. They are stored in
memory regions that are marked as non-cachable, typically by a tag or a bit in the page table. Loads
and stores to those regions bypam the cache and go directly to main memory.

Table 4 gives the frequencies of cache operations for the No-Cache scheme. The probability of a data
miss is reduced from the Base scheme by a factor of I - shd, because only unshared data is kept in the
cache. In addition, all loads (stores) to shared variables require a read-through (write-through) operation.

clean miss (is x msdat x (I - shd) + mains) x (1 -md)
dirty miss (is x madat x (1 - shd) + msin) x md
read-through Is x shd x (1 - wr)
write-through Is x shd x unr

Table 4: Workload model: No-Cache

2.2.3 Software-Flush

In this approach, shared variables can be removed from the cache by explicit flush instructions. These
instructions may be placed in the program by the compiler or the programmer. A typical pattern is to
operate on a set of shared variables within a critical section, and to flush them before leaving the critical
section. This will force any variables modified in the critical section to be written back to memory. Then
the first reference to a shared variable within the next critical section will cause a miss that fetches the
variable from memory. If the flush instructions are to be inserted by the compiler, it must be possible
to detect shared variables and the boundaries of execution within which a shared variable can remain
locally cached. Such regions can be made explicit in the language or detected by compile-time analysis
of programs [7].

5

Table 5 gives the frequency of operations for Software-Flush. Non-shared variables generate the same
number of clean and dirty mises as in the No-Cache scheme. Shared variables are handled by inserting
flush instructions at an average rate of one per apt references to shared variables, i.e. one per api x shd x Is
instructions. This increases the operation frequency in three ways. First, there is the cost of the flush
instruction itself; with probability mdshd this will be a dirty Aush. Second, there is approximately one
clean mis for each flush instruction, namely, the miss which brought the flushed line into the cache. This
approximation assumes that the probability of the line's being replaced in the cache before it is flushed is
low enough to be ignored. Finally, the added flush instructions increase the instruction miss rate. Note
that Table 5 reports operation frequencies per non-flush instruction. This is because flush instructions
are part of the cache-coherence overhead, and their cost is amortised over the other instructions.

clean miss (Is x medat x (1 - slhd) + mains) x (1 - rd)
+(Is x shd/apt) x main&

dirty miss (is x medag x (I - shd) + msins) x md
clean flush Is x shd x (1 - mdshd)/apl
dirty flush la x shd x mdshd/apl

Table 5: Workload model: Software-Flush

Both No-Cache and Software-Flush may be available on the same machine. On the Elxsi 6400 [23, 22],
the programmer determines whether a particular shared variable is kept coherent by the No-Cache or
Software-Flush scheme. In the MultiTitan [16], locks are not cached, and other shared variables are kept
coherent by Software-Flush.

2.2.4 Dragon

We have modeled one snoopy bus protocol to provide a comparison point for the software mechanisms. A
Dragon-like scheme [21] was selected because Archibald and Baer [2] found its performance to be among
the best.

The following is a slightly simplified description of the relevant aspects of the Dragon protocol. From
listening to bus traffic, a cache knows if an address is valid in another cache. When a store refers to an
address that is in another cache, the address and new value are broadcast on the bus, and any cache that
has the address updates its value accordingly. All stores to non-shared addresses are performed in the
local cache. On a cache miss, main memory supplies the block unless it is dirty in another cache; in the
latter case, that cache supplies the block.

Table 6 gives the frequency of operations for the Dragon model. There are three effects to consider.
First, the write-broadcast occurs once per shd x opres writes. Second, some misses will be satisfied from
a cache instead of from main memory; this happens on a miss with probability shd x (I - oclean). Finally,
a write-broadcast may cause other caches to steal cycles from their processors as they update their own
copy of the variable. This occurs with frequency nshd on each write-broadcast. As it happens, the last
two effects are small and could have been omitted from the model without significantly affecting our
results.

clean miss from memory is x msdat x (1 - shd x (1 -odlean) + msains) x (1 - md)
dirty miss from memory Is x medat x (1 - shd x (1 - oclean) + mains) x md
write broadcast is x shd x wr x opres
clean mis from cache Is x msdat x shd x (1 - ociean) x (1 - md)
dirty miss from cache Is x msdat x shd x (1 - odean) x md
steal cycle Is x shd x wr x opres x nshd

Table 6: Workload model: Dragon

2.3 Contention Model

An n-processor system can be modeled as a closed queueing network with a single server (the bus) and
n customers (the processors). Such a network is characterized by two parameters: the average service
time and average rate of bus transactions. 2 In our system, the average service time is b cycles and the
average rate is 1/(c-4) transactions per cycle, where c and b are defined in equations 1 and 2 respectively.
Solution of the queueing model [20] yields w, the contention cycles per instruction. Thus the total time
per instruction is c + w. In the absence of cache activity, an instruction would take 1 cycle, so the CPU
utilization is

U = 1/(c + w) (3)

This contention model is very similar to the one used by Vernon et al. [32] in analyzing snoopy-cache
protocols.

3 Validation

This section compares model predictions against simulation results for the Base scheme and Dragon
schemes. We developed a trace-driven multiprocessor cache and bus simulator, which can compute
statistics like cache miss rates, cycles lost to bus contention, and processor utilization, for a variety of
coherence schemes, cache sizes and processor numbers.

The address traces used in the validation were obtained using ATUM-2, a multiprocessor tracing
technique described in [26]. The traces contain interleaved memory references from the processors. Three
of the traces (POPS, THOR, and PERO) were taken on a four-processor VAX 8350 running the MACH
operating system. We also used an 8-processor trace of PERO, which was obtained from a parallel tracer
using the VAX T-bit. The four-processor traces include operating system references, and none of the
traces include process migration. Sites and Agarwal [26] describe the applications and details of the
traces.

We simulated 16K, 64K, and 256K-byte caches with a fixed blocksize of 16 bytes and the same transfer
block size. The hardware model used is summarized in Table 1. The model was validated only for the
Base and the Dragon schemes. Meaningfully validating the software schemes was not possible because
the trace are from a multiprocessor that used hardware for cache coherence. Because the multiprocessor
model used in the simulations is different from the traced machine model, the order of references from
different procesors may be slightly distorted in the simulation. However, we expect that this effect is not
large, because the timing differences between the two multiprocessor models affect the address streams
from all the processors uniformly. Also, the cache statistics we obtained matched those from simulating
a multiprocessor model that retained the exact order of the references in the trace.

For a multiprocessor cache model to be useful, it is important that the parameter values input to the
model are valid over the range in which the model is exercised. Variations in input parameters may be
modeled, or a parameter value must be input for each point under consideration. In general, we choose
parameters that are expected to be nearly constant as the number of processors increases, and verify
that they re nearly constant in the trace-driven simulations. The parameters of concern in our model
are odean and apre., which can vary with the number of processors in a way that depends on program
structure. In our traces, we did observe some random variations in these parameters, but they were small
enough that the model was still accurate. A comparative evaluation of snoopy caches should somehow
account for the variations in odean and opres.3 But our focus is on software cache coherence, and we
can safely ignore this issue.

The model results closely match simulations in most cases. Figures I through 3 present a sampling
of our experiments comparing the model predictions to simulations. We will address potential sources of
inaccuracies in the ensuing discussion.

Figure I shows the results for 64K-byte caches for the Base and Dragon schemes. While the model
2 fU multistarcWaM=cdo network is reed, the multister nAwork is rqespmuted as aioaddepemdmt mvice center

charactedssd by its marvice rate a& various lods
3For lnmfdation-bssed mopy cahms, the mim rate fals In s categ .

7

Figure 1: A performance comparison of the Base and the Dragon schemes using simulation and the analytical
model for 64K-byte cache.

exactly captures the relative difference between the performance of Base and Dragon schemes, it consis-

tently overestimates bus contention. This is because the bus model is based on exponential service times,
while the simulations use fixed bus service times for the different bus operations.

Figure 2 shows the model and simulation results for three cache sizes for the Dragon scheme. Minor
inconsistencies between the model and simulation results for single processors can be attributed to the
difference in the values of oclean and opres for one and four processors. The model shows similar accuracy
in the 8-processor plot depicted in Figure 3.

4 Sensitivity Analysis

The workload model uses a number of parameters to characterize the program's workload. One would
expect some of them to be quite important, and others to have little impact on cache performance. This
section describes the sensitivity analysis that we used to estimate the importance of each parameter.

The significance of a parameter was smsessed from the change in execution time when that parameter
was varied and all others were held constant. We chose low, middle, and high values for each parameter,
representing the range of values likely to be seen in programs. The ranges are given in Table 7. They
were derived from the minimum, average, and maximum values observed in the large-cache traces, except
as follows.

There was not enough data in the traces to determine api, so it was estimated by counting the number
of references of a cache-line by one processor (at least one of which was a write) between references by
another processor. This is an optimistic estimate, so the upper bound of I/api was taken to be 1, the
maximum possible. The values of md from the trace were artificially low, because the traces were not
long enough to fill up the large caches. The measured high value was 0.25, but 0.5 was used as the high
value in the sensitivity analysis; values of this magnitude have been measured by Smith (271. Finally, the
range for Is is typical for RISC architectures rather than the CISC machine on which the traces were

8

Si 51 4y

Figure 2: Impact of the cache size on the performance of the Dragon scheme for four or fewer processors.

51 2K Bys
-Sim

*-model

Figure 3: Impact of the cache uise an the perforzmce of the Dragon scheme for eight or fewer processors.

taken.

Parameter Low Middle High
is 0.2 0.3 0.4
msdat 0.004 0.014 0.024
mains 0.0014 0.0022 0.0034
md 0.14 0.20 0.50
shd 0.08 0.25 0.42
wr 0.10 0.25 0.40
mdshd 0.0 0.25 0.5
I/ap] 0.04 0.13 1.0
oclean 0.60 0.84 0.976
opres 0.63 0.79 0.94
nshd 1.0 1.0 7.0

Table 7: Parameter ranges

Table 8 shows the results of the sensitivity analysis. For each parameter, we computed the per cent
change in execution time when the parameter changes from low to high, with all other parameters held
constant. (Note that in all cases execution time is greater for the low value of the parameter.) This
computation was performed for three settings of the other parameters: low, middle, and high. The
maximum per cent change is reported in the table.

Base No-Cache Software-Flush Dragon
msdat 17 shd 65 1/apl 88 Is 19
Is 11 is 48 shd 74 rmsdat 17
msins 4 madat 10 Is 49 shd 11
md 4 mains 4 msdat 10 opr 4

md I mdshd 4 mains 4
wr <1 mains 4 md 4

md I nshd 4
wr 3
oclean <1

Table 8: Sensitivity to parameter variation, depicted by the per cent change in execution time when the parameter
changes from low to high, with all other parameters held constant.

The numbers from the sensitivity analysis must be interpreted with care. The choice of range affects
how important a parameter appears. For example, our traces show a small variation in miss rates, and
miss rate shows only a modest effect in the sensitivity analysis. Had our traces exhibited greater variation
in miss rate, it would have appeared to be much more significant. In addition, changing the miss rate
range can change the apparent significance of other parameters, because their effect is estimated at high,
low and middle values of miss rate. A wide range may represent a parameter that is observed to vary
widely in practice (e.g. shd) or a parameter about which we have little information (e.g. apl).

In spite of these caveats, certain parameters are clearly more important than others. For the Software-
Flush scheme, apt has a huge effect; this is due to both its central importance in the scheme and its wide
range. The impact of shd is almost as great, and Is is significant as well. Miss rate has a noticeably
smaller effect, and the other parameters are relatively unimportant. The No-Cache scheme is essentially
the same, except that apt is not relevant. In the Dragon scheme, the overall hit rate is more important
than the level of sharing, even though its range is quite small, because the cost of shared references is
relatively low.

In the next section we will analyze the effect of apt, Is and shd in more detail. The effect of I is
primarily as a multiplier of shd and madat; so the analyses of Is and shd will be combined by varying
them jointly. Parameters ndshd and wr, which are specific to the Software-Flush and No-Cache schemes,
were examined further in spite of their low showing in the sensitivity analysis. When allowed to vary

10

+ base
*soft"a

7 •

5. aitin mn CoeeceShm s

4

3

2 2 4 5 8 7 8 0 10 11 12 13 14 15 16
Processors

Figure 4: Performance of cache-coherence schemes with low shd and Is; all other parameters at medium values

over a wider range, mdshd had a small but noticeable effect on the Software-Flush scheme; but Wr was
unimportant even with a wide range.

5 Bus Performance

5.1 Variations among Coherence Schemes

Figures 4 through 6 show the relative performance of the four cache coherence schemes for three settings
of Is and shd. The dotted line is the theoretical upper bound on processing power. It represents the case
in which each processor is fully utilized, and there is no delay due to memory activity. All schemes fall
below this line, because a processor is delayed when it uses the bus in handling cache misses and references
to shared data. With multiple processors the cost of bus operations increases because contention can
add a significant delay. For this reason, the incremental benefit of adding a processor is smaller for large
systems than small ones.

Comparing the schemes, we find that Base performs best as long as Is > 0; this is to be expected, since
the others incur overhead in processing shared data. (If Is = 0 the schemes are identical.) In most cases
Dragon's performance is close to Base. It incurs sharing overhead only when data are simultaneously in
the caches of two or more processors, and then only on write operations, i.e. once every hd x opt x wr
references. Moreover, the overhead is relatively small, since only one word needs to be transmitted on
the bus. No-Cache is much more costly than Dragon, because the processor must go to main memory
on every reference to a potentially-shared variable, i. e. once very shd references. Software-Flush's
performance is drastically affected by the value of apt, because there is a main memory operation on
every I/api refere.aces to shared data. As will be illustrated in Section 5.3, Software-Flush's performance
is usually between Dragon and No-Cache, but it can be better than Dragon or worse than No-Cache.

II

J 14 + bow

12

11

10

values

74- + a

S

1 2 5 4 8 9 7 8 a le 11 is is 14 is 10
p-sessen

Figure 6: Performance of cache-coherence schems with hi ski and 8; all other parameters medium le

112

5.2 Effect of Is and shd

Parameter 18 has a significant impact on all schemes, and shd is important for al but Base. Both affect
the frequency of memory activity. Is determines the frequency of data references in the instruction stream,
while shd determines the proportion that go to shared data items. Thus increasing Is has a double effect
on overhead: it increases both the frequency of misses and the frequency of shared data references.

At low values of Is and shd (Figure 4), Base, Dragon, and Software-Flush perform well, and there is
not much difference between them. (Recall that the Software-Flush scheme is evaluated with a medium
apt value.) Even No-Cache performs well for a moderate number of processors. Low levels of sharing
can be expected in some situations: for example, if a multiprocessor is used as a time sharing system, so
that separate processors run unrelated jobs, or if communication is done through mesages rather than
shared memory [23]. In such environments No-Cache is a viable alternative.

Even with middle values of Is and shd (Figure 5), No-Cache performs acceptably with a small number
of processors. Dragon performs very well even with 16 processors. With medium apt, Software-Flush
does well with up to 8-10 processors; from then on, adding processors only slightly increases processing
power.

With high Is and shd (Figure 6), Dragon still gives good performance. No-Cache does badly; it
saturates the bus with a processing power less than 2. Software-Flush performs acceptably for a small
number of processors; it saturates the bus with processing power less than 5. Even in this high sharing
region, however, Software-Flush can perform well if apt is high.

5.3 Effect of api

The performance of Software-Flush is drastically affected by the value of ap[. Figure 7 illustrates the
variation that can occur. When apt = 1, every reference to a shared variable requires a flush (possibly
dirty) and a miss. This means that both CPU and bus demands are heavier than for No-Cache, and,
indeed, Software-Flush's performance is the worse. On the other hand, very high values of apl make
sharing overhead very small, especially if mdshd is not low. In this case Software-Flush can perform as
well as Dragon, or even better.

Figures 8 and 9 show the variation of processing power with api for two levels of shcring. With low
sharing, performance is very sensitive to apI at low values, but quickly reaches its maximum as api is
increased. With medium sharing levels, performance is sensitive to variations in apI even at relatively
high values.

The range for apt reported from our traces is optimistic: it assumes that data is flushed only when
absolutely necessary. As our measurements show, the number of uninterrupted references to a shared-
written object by a processor can be quite large in practice. It remains to be seen whether a compiler
can generate code that takes advantage of these long runs. Doing so is crucial if software schemes are to
be used in the presence of even moderate amounts of shared data.

6 Interconnection Network Performance

Unlike the snoopy schemes, the software schemes can be used in a network environment where there is
no mechanism for a cache to observe all the processor-memory traffic. In this section we explore the
scalability of software schemes in such an environment. Some of the questions we address are: Is caching
shared data in a network environment worthwhile? Can software schemes scale to a large number of
processors?

The analysis uses a multistage interconnection network model to evaluate the system performance of
a cache-based multiprocessor. The workload model is the same as before, and new models for hardware
timing and network contention are discussed in the next sections. As in our bus analysis, we first compute
the average transaction rate and transaction time for the network, then use the contention model to
compute the network delay. From these, system processing power can be computed a. before.

13

J+ bs
is

it
a'o-m

if

is14toi

Figure 7: Elect of varying spl; Other parameter, &t media= Yaes

114

i
IW

if to I

Figure 9: Elect of apt with medium sharing; other parameters at medium values

6.1 The Network

Our analysis applies to the general class of multistage interconnection networks called Banyan [13],
Omega [19], or Delta [25]. For our analysis we consider an unbuffered, circuit-switched network composed
of 2x2 crossbars, with unit dilation factor. The analysis can be extended easily to dilated networks or
crossbar switches with a larger dimension. A request accepted by the network travels through n switch
stages (corresponding to a system with 24 processors) to the memory; the response from the memory
returns on the path established by the request. If multiple messages are simultaneously routed to the
same output port, a randomly-chosen one is forwarded and the other is dropped. The source is responsible
for retransmitting dropped messages. A switch cycle is assumed to be the same as a processor cycle. The
network paths are assumed to be one word (4 bytes) wide,4 and a cache block is 4 words long, as before.

We have tried to keep the network timing model consistent with the bus where possible. Table 9 gives
the network timing model. The network delay (without contention) for a cache miss is 6 + 2n cycles, n to
set up the path, I to send the address to memory, 2 for memory access, a for the return of the first data
word, and 3 for the remaining 3 words. (We will sometimes refer to the network service time minus 2n as
the message size.) Similarly, a dirty miss costs 9 + 2n cycles, n to set up the path, I to send the address
to memory, 2 for memory access (overlapped with getting the address of the dirty block and one data
word), 3 cycles for the remaining dirty words, n for the return of the first word, and 3 for the remaining
3 words.

6.2 The Network Contention Model

Our network analysis uses the model due to Patel [24]. Patel's model has been used extensively in the
literature. We are not aware of any validation of this model against multiprocessor traces, although is

4The wide path i. one the reseam we us switchbe, becauem IaM. dimesion switchm win not ft emsily hato a
-e chip with current recimaiote.

15

Operation CPU Time Network Time
Instruction execution
(Except flush) 1 0
Clean fetch 9 + 2n 6 + 2n
Dirty fetch 12 + 2n 9+2n
Clean fush 1 0
Dirty flush 7+2n 5 + 2n

Write through 3+2n 2 + 2n
Read through 4+2n 3+2n

Table 9: System model fou a network with a stages

has been tested using simulations based on synthetic reference patterns 5

Our analysis requires certain assumptions for tractability; they are similar to the ones typically made
in the literature [24, 18]. We assume that the requests are independent and uniformly distributed over
all the memory modules. An average transaction rate m and an average transaction size t is computed
for each of the cache coherence schemes; these correspond to 1/(c - b) and b from equations 1 and 2 in
the bus analysis. The network delay can be estimated using the unit-request approximation, in which
the transaction rate is taken to be mt and the transaction size to be 1. It is as if the processor splits
up a t-unit memory request into t independent and uniformly distributed unit-time sub-requests. Patel
validates the accuracy of this approximation through simulation.

Let mj be the probability of a request at a particular input at the n ' stage of the network in any given
cycle. Then, the effective processor utilization U, and hence system processing power, can be computed
using the system of equations given below. The value of m in the equations is obtained recursively for
successive stages starting with the input request rate of mo. The equations can be solved using standard
numerical techniques.

U =

rnj+(= -(-M 0< n

mO = I-U

6.3 Network Performance Results

Before we analyze the network for various ranges of parameter values, it is instructive to compare bus
and network performance in small-scale systems (see Figure 10). As reported in the previous section,
the Dragon scheme attains near perfect bus performance relative to the Base scheme for fewer than
16 processors and middle parameter ranges, while the Software-Flush and No-Cache schemes saturate
the bus at 8 and 4 processors respectively. Because the network bandwidth increases with the number
of processors, network performance becomes superior to buses when the bus begins to saturate. Both
the Software-Flush scheme and the No-Cache scheme scale with the number of processors, though the
Software-Flush scheme is clearly more efficient. The No-Cache scheme is poorer despite its smaller
mess size due to its higher request rate. Still, it scales with the number of processors and is a feasible
choice if a designer wants to minimize hardware cost and software complexity. In a circuit-witched
network, the request rate plays a more important role than the messge size because of the high fixed
cost of setting up the path to memory.

Because the network bandwidth scales with the number of processors (to first order), plotting processor

$We als estimated multliPr m paformama in a maner alogous to omr bas salyns by repremling the network
as a Ioed-dspuidat env s Mw. The eastatim delay is omputed usin the qarning miodels deswibed in (20). This
=ad gave virtuall, the e reit . Patel's modeL

16

utilization for a network of a given size is more interesting than in a bus-based system. Let us consider a
network with 256 processors. Figure I I shows processor utilization with various request rates for several
choices of average message sizes. (Note that 2n must be added to the message size to get the network
time per message.) Nine points are marked on the figure; they correspond to the performance of Base,
Software-Flush, and No-Cache schemes with low, middle, and high parameter settings. The first letter
in the label (B, S, or N) refers to the scheme, and the second letter (I, m, or h) refers to the range.

& 0 -a Bass N"
0-0 Sofmwus.

so- o-a No-Oscsa Neo
& A Baese. Bu

Sj- o. Snoopy.Bus
o. -- o Sofbm. bagaf -D.. ...0 No- , mmSus

aAd

0 4 s is is a a14 a s2 3 40
Proofers

Figure 10: Buses versus networks in the small scale.

The first striking observation is the importance of keeping the network reference rate low. Even for a
cache-mis rate as low as 3% in the 256-processor system and a message size of 4 words (corresponding to
a unit-time service request rate of 3% x (16 + 4) = 60%), the processor utilization is halved. In a circuit-
switched network, a change in the reference rate impacts system performance more than a proportional
change in the blocksize. Of course, using a faster network, or using larger switches, will increase the
reference rate at which the network latency begins to increase sharply.

The nine points fall into two performance classes. The Base scheme in all ranges, the Software-Flush
scheme in its low and middle range, and the No-Cache scheme in its low range, fall into a reasonable
performance category, and the other combinations are much poorer. While the Software-Flush scheme is
usable even with medium sharing, the No-Cache scheme is efficient only if sharing is very low. Put another
way, a system that does not cache shared data (and more so a system that does not cache nl data)
will need to use a much faster network relative to the processor to sustain reasonable performance. The
performance of the Software-Flush scheme for the low range approximates the performance of hardware-
baed directory schemes. If Software-Flush schemes can attain a high value for api, they have the potential
to compete with hardware schemes in large-scale networks.

In the future we hope to examine reference patterns in large-scale parallel applications, both to
get a better understanding of different workloads, and to validate our methodology against simulation.
Ttaditionally, simulations have used synthetically generated traces, but a synthetic trace cannot capture
workload-dependent effects such as hot-spot activity (or lack thereof) or locality of references. We are
currently working on the generation of large multiprocesor traces for these studies. While we focused on
a simple network architecture in this paper, we are interested in extending our results to other network

17

U

A4

a2

Figure 11: flu. performance for wario-- requet rates and with ume sue of 1, 2, 4, 8 and 16 word-. The
performance of the Base, Software-Flush, mad No-Cache scheme ;- marked with two letter code., the first letter
(B, S, or N) correponda to the scheme, and the mecoad letter cceresponds to a low, middle, or hig (, m, or h)

18

architectures, such as buffered and unbuffered packet-witching, ans well.

7 Conclusion

Software cache-coherence schemes have been proposed and implemented because they have two advan-
tages over typical hardware schemes: they do not require complex hardware, and they do not have the
obvious scalability problem of a shared bus. However, to our knowledge, the performance of software-
caching has not been analysed before. In this paper we used an analytic model to predict caching
overhead for several coherence schemes. The model was validated against multiprocessor trace data, and
its sensitivity to variations in parameter values was studied.

First let us consider performance on bus-based systems. For almost all workloads, the snoopy cache
scheme had the lowest overhead. Its performance was good for all workloads, while the software schemes
showed great variation as the workload parameters changed. With a liHt workload (low memory reference
rate and little sharing), the Software-Flush scheme was almost as good as snoopy cache, and even the No-
Cache approach was feasible. Performance of the No-Cache method fell off dramatically as the workload
increased. The performance of the Software-Flush method also deteriorated, though not as drastically.

We also evaluated the software schemes on a circuit-switched multistage interconnection network.
Both software schemes scale well, as expected. Software-Flush does considerably better than No-Cache
because it causes fewer memory requests, although the requests are longer. Use of packet-switching would
be more favorable to No-Cache.

In both network and bus environments, the performance of Software-Flush is largely determined by
the number of references to a block before it is flushed from a cache. This is a affected by program
structure and by compiler technology. For example, the compiler can optimise performance by allocating
related variables to the same block, and by flushing data as infrequently as possible. But if a shared
variable is frequently updated by different processors, it is likely to have about two references per flush,
no matter how sophisticated the compiler. At present we lack the workload data and compiler experience
that would allow us to predict what is achievable here.

References

[1] Anant Agarwal, Richard Simoni, John Hennessy, and Mark Horowits. An Evaluation of Directory
Schemes for Cache Coherence. In Proceedings of the 15th International Symposiaum on Computer
Architecture, June 1988.

[2 James Archibald and Jean-Loup Baer. Cache Coherence Protocols: Evaluation Using a Multipro-
cessor Simulation Model. ACM Trausactions on Computer Systems, 4(4):273-298, November 1986.

(3] W. C. Brantley, K. P. McAuliffe, and J. Weis. RP3 Processor-Memory Element. In Proceedings
1985 Int'l Conference on Parallel Procemial, pages 782-789, 1985.

(4] Lucien M. Censier and Paul Feautrier. A New Solution to Coherence Problems in Multicache
Systems. IEEE 7Vonsactions on Computers, c-27(12):1112-1118, December 1978.

[5] H. Cheong and A. V. Veidenbaum. A Cache Coherence Schem with Fast Selective Invalidation. In
Proceedings of t e 15tk Intermatonul Symposium on Computer Architecture, June 1988.

[6] David R. Cheriton, Gert A. Slavenberg, and Patrick D. Boyle. Software-Controlled Caches in the
VMP Multiprocessor. In Proceedings o the 13(h Annual S mposum on Computer Architecture,
pages 367-374, June 1986.

(7 Ron Cytron, Steve Karlovsky, and Kevin P. McAuliffe. Automatic Management of Programmable
Caches. In Proceedings ICPP, August 1988.

19

(8] Jan Edler et al. Issues related to MIMD shared-memory computers: the NYU Ultracomputer
Approac' In Proceedings 1!2A Annual Int'l Symp. on Computer Ackitecture, pages 126-135, June
1985.

[9] S. J. Eggers and R. H. Katz. A Characterization of Sharing in Parallel Programs and Its Application
to Coherency Protocol Evaluation. In Proceedings of the 15th Internationl Synposium on Computer
Arckiteclure, June 1988.

[10] G. F. Pfister et. al. The IBM Research Parallel Processor Prototype (RP3): Introduction and
Architecture. In Proceedings ICPP, pages 764-771, August 1985.

(11] S. J. Frank. Tightly Coupled Multiprocessor System Speeds Up Memory Access Times. Electronics,
57, 1, January 1984.

[12] S. H. Fuller and S. P. Harbison. The C.mmp Muliprocesor. Technical Report, Carnegie-Mellon
University, October 1978.

[13] G. R,. Goke and G. J. Lipovski. Banyan Networks for Partitioning Multiprocessor Systems. In
Proceedings of the Ist Annual Symposium on Computer Architecture, pages 21-28, 1973.

[14] James R. Goodman. Using Cache Memory to Reduce Processor-Memory Traffic. In Proceedings of
the 10th Annual Symposium on Computer Architecture, pages 124-131, June 1983.

[15] Albert G. Greenberg, Isi Mitrani, and Larry Rudolph. Analysis of snooping caches. In Proceedings
of Performance 87, 12th lnt I Symp. on Computer Performance, December 1987.

(161 Norman P. Jouppi, Jeremy Dion, and Michael J. K. Nielsen. MultiTitan: four architecture papers.
Technical Report 86/2, Digital Western Research Laboratory, Palo Alto, California, September 1986.

[17] R. H. Katz, S. J. Eggers, D. A. Wood, C. L. Perkins, and R. G. Sheldon. Implementing a Cache
Consistency Protocol. In Proceedings of the 12th International Symposium on Computer Architecture,
pages 276-283, June 1985.

[18] Clyde P. Kruskal and Marc Snir. The Performance of Multistage Interconnection Networks for
Multiprocessors. IEEE Transactions on Computers, c-32(12):1091-1098, December 1983.

[19] D. H. Lawrie. Access and Alignment of Data in an Array Processor. IEEE 7ansactions on Com-
puters, c-24:1145-1155, 1975.

(20] Edward D. Laszowska, John Zahorjan, G. Scott Graham, and Kenneth C. Sevcik. Quantitative System
Performance. Prentice Hall, 1984.

[21] E. McCreight. Tke Dragon Computer System: An Earli Overvieu. Technical Report, Xerox Corp.,
September 1984.

(22] Steve McGrogan, Robert Olson, and Neil Toda. Paralleliuing large existing programs - methodology
and experiences. In Proceedings of Spring COMPCON, pages 458-46, March 1986.

[23] Robert Olson. Parallel Processing in a Message-Bied Operating System. IEEE Softwere, July 1985.

[24] Janak H. Patel. Analysis of Multiprocessors with Private Cache Memories. IEEE Transactions on
Computers, c-31(4):296-304, April 1982.

[25] Janak H. Patel. Performance of Processor-Memory Interconnections for Multiprocessors. IEEE
Tmsensctios on Computers, c-30(10):771-780, October 1981.

[26] Richard L. Sites and Anant Agarwal. Multiprocessor Cache Analysis using ATUM. In Proceedings
of the 15th International Symposium on Computer Architecture, June 1988.

(271 Alan Jay Smith. Cache Memories. ACM Computing Survel., 14(3):473-530, September 1982.

[28] Alan Jay Smith. CPU Cache Consistency with Software Support and Using One Time Identifiers.
In Proceedings of the Pacilic Computer Communications Symposium, October 1985.

20

(291 C. K. Tig. Cache Design in the Tightly Coupled Multiprocessor System. In AFIPS Conference
Proceedings, National Computer Conference, iVY, NY, pages 749-753, June 1976.

[30] Charles P. Thacker and Lawrence C. Stewart. Firefly: a Multiprocessor Workstation. In Proceedings
of ASPLOS II, pages 164-172, October 1987.

[31] M. K. Vernon and M. A. Holiday. Performance Analysis of Multiprocessor Cache Consistency
Protocols Using Generalized Timed Petri Nets. In Proceedings of SIGMETRICS 1986, May 1986.

(321 M. K. Vernon, E. D. Lasowska, and J. Zahorjan. An Accurate and Efficient Performance Analysis
Technique for Multiprocessor Snooping Cache-Consistency Protocols. In Proceedings of the 15th
International Symposium on Computer Architecture, June 1988.

21

