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Abstract

A new relaxation algorithm for circuit simulation that combines the advantages of Iterated TimingAnalysis (ITA) and waveform relaxation (WR) is described. The method is based on uing an iterative

stepsize refinement strategy with a waveform-relazation-Newton (WRN) algorithm. All three relaxation
techniques, ITA, WR, and WRN, are compared and experimental results that indicate the strengths and
weaknesses of the methods are presented. In addition, a new convergence proof for the waveform-Newton
method for systems with nonlinear capacitors is provided. Finally, it is shown that the step-refined WRN
algorithm can be implemented on a parallel processor in such a way that not only can different subsystems
be processed in parallel but, in addition, the solution at different timtpoints of the same subsystem can
be computed in parallel.

1 Introduction

The implicit multistep integration algorithms used in general-purpose circuit simulation programs, like

SPICE2[NAG75] and ASTAP[WEE73], have proven to be reliable but are computationally expensive when

applied to large systems. This is because each step of the numerical integration requires the implicit solution

of a large nonlinear algebraic system. If the circuit simulation program is intended for the simulation of

mostly MOS digital circuits, then it is possible to exploit the properties of these types of circuits to improve

the simulator's efficiency. In particular, the fact that MOS digital circuits can be partitioned into loosely or

unidirectionally coupled subsystems can be exploited by using iterative decomposition algorithms, and the
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fact that the different nodes in an MOS digital circuits often change at very different rates can be exploited

by using multirate integration techniques[GEASO].

A variety of algorithms have been applied to the simulation of MOS digital circuits that attempt to ex-

ploit its loosely coupled and multirate nature(for a comprehensive list of references see(NEW83] or [WHI86]).

We will focus on three relaxation-based methods, the Iterated Timing Analysis (ITA) method used in the

SPLICE programs [SAL83, KLE84, SAL87A], the waveform relaxation(WR) algorithm used in the RE-

LAX programs[LEL82, WHIM], and a third new algorithm based on combining a waveform-Newton algo-

rithm(Wil86, GUA85] with an iterative refinement timestep selection strategy.

Section 2 begins with a brief description of the classical circuit simulation algorithms used in programs

like SPICE and ASTAP. In Section 3, the Iterated Timing Analysis and waveform algorithms are presented,

along with a short discussion of their relative merits. In Section 4, the waveform relaxation-Newton (WRN)

algorithm and the iterative refinement strategy(WHI85] for selecting the numerical integration timesteps are

described, and the advantages of the combined algorithm on a parallel processor are mentioned. In Section

5, a brief description of the implementation of the relaxation algorithms is given, and experimental results

that indicate the strengths and weaknesses of the three techniques are presented.

2 Classical Circuit Simulation

In this section we will describe the direct methods used in circuit simulation programs like SPICE(NAG75]

or ASTAP[WEE73]. These methods are referred to as standard or classical methods, partly because SPICE

and ASTAP are extensively used, and partly because in this area, any method more than ten years old is

considered to be a classical method.

The behavior of a noninductive electrical circuit can be described by a system of equations involving

node voltages, resistive currents, and capacitor charges. This system of equations can be constructed from

a circuit description using the technique referred to as nodal analysis(DES89], which involves applying the

Kirchoff Current Law (KCL) to each node in the circuit, and applying the constitutive or branch equations

to each circuit element. Systems of equations so generated have the following form,

d
ut)) = g( (t)) (1)

where n is the number of circuit nodes excluding the reference, q(v(t), u(t))eR" is the vector of sums of

capacitive charges at each node, (v(t), u(t))eR' is the vector of sums of resistive currents at each node,

u(t)er is the vector of input voltages, and v(t)e' is the vector of node voltages.
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It is possible to extend the nodal analysis technique to include circuits with inductors and voltage sources

by using modified nodal anaysis(O75], while still preserving the form of (1)[WHI86]. The unknowns then

become a mixture of node voltages and element currents, and the left-hand side of (1) becomes a vector of

charges and inductor fluxes. In order to simplify the notation used in this paper, we will refer to the above

nodal analysis form with only node voltages as the unknowns. However, many of the comments made in the

following about these systems apply to any system in the form of (I).

The trapezoidal numerical integration algorithm is frequently used to approximate the system of (1) by a

sequence of implicit algebraic equations. Given a timestep, h, the trapesoidal integration algorithm applied

to (1) yields:

q(v(Q + h), uO + h)) - (v(t), u(t)) = 0.Shg(v(t + h), u(t + h)) + g(V(t), u(t))] (2)

where v(t) is known, and the equation must be solved to compute v(9 + h). The iterative Newton-Raphson

algorithm is usually used to solve the implicit nonlinear algebraic system given by (2). The Newton-Raphson

iteration equation for solving a general nonlinear system of the form F(z) = 0 is J,(z)(zk+l -*z) = -F(zk)

where F(zh) is referred to as the Newton residue and Jp. is the Jacobian matrix of F with respect to :.

If the Newton algorithm is used to solve (2) for v(t + h), the residue, F(v 5 (t + h)), is:

F(v&(t + h)) = q(v'(t + h), u(t + h)) - q(v(t), u(t)) - 0.5h(g(vk(t + h), u(t + h)) + O(v(t), u(t))) (3)

and the Jacobian of F(vh(t + h)), Jr(vk(t + h)) is:

JF(t" (t + h)) = aq(v6(t + h), u(t + h)) 0.5hOg(V(t + h), u(t + h)) (4)

Then vk+l(t + h) is derived from vb(t + h) by solving the linear system of equations

JF(V"(t + h))[tk+'(t + h) - v*(t + h)] = -F(vk(t + h)) (5)

using some form of Gaussian elimination. The Newton iteration is continued until sufficient convergence is

achieved, that is I1v5'+(t + h) - vh(t + h)fj < e and F(vi(t + h)) is close enough to zero.

3 Relaxation In Circuit Simulation

As is clear from (5), using classical techniques to simulate large circuits implies solving large linear systems,

usually with some form Gaussian elimination. In general, matrix solution by Gaussian elminta on Srows

in complexity Like 0 z where n is the number of unknown in the system. This rapid growth in complexity
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has focused attention on finding other approaches for solving large linear systems. Since the matrices that

describe the linear systems in circuit simulation problems are usually sparse, that is, most of matrix entries

are zero, clever data structures and careful reordering algorithms have been used to reduce the complexity of

Gaussian elimination for sparse matrices to less than n 2[KUNS61. However, sparse matrix techniques based

on Gaussian elimination still grow superlinearly with the number of unknowns, and therefore researchers

have continued to seek matrix solution methods that do not grow as rapidly.

Relaxation methods comprise one class of iterative matrix solution methods that tend to have a slower

computational growth than sparse Gaussian elimination. In particular, the computation per iteration grows

linearly with the number of nonzero matrix entries. The disadvantage of relaxation is that each iteration oniy

produces an approximate solution to a linear system, and repeated relaxation iterations do not necessarily im-

prove the approximation. For circuit simulation problems, relaxation methods work well because, in general,

repeated relaxation iterations do converge to the exact solution(NEW83]. As an example, consider solving

the linear problem Ar -b = 0 where x = (zx,...,z)T, b = (b1,..., b,)',z,bicD?, and A = (an), AeR".

One could attempt to solve this problem by solving the equations one row at time, guessing values for the

z,'s that have not been computed. This leads to Algorithm 1, the Gauss-Seidel relaxation algorithm, which

will be referred to several times in the following text.

Algorithm 1 - Gauss-Seidel Algorithm for solving Az - b = 0.

The superscript k is the iteration count and e is a small

positive number.

k -0.

Guess some F °.

repeat {

k --k + 1.

for each (i, ..n)z = -b -• 4 z + j+1 ajjZ].

} until (II=z - XII-11 < C)

The linear Gauss-Seidel relaxation in Algorithm I could be used instead of Gaussian elimination to solve

the linear matrix problem of (2), and this might reduce the computation time for the matrix solution in a

circuit simulation program. However, if the circuit being simulated has fewer than several thousand nodes,

at least half of the computation time is spent evaluating the Jacobian and the Newton residue. For this
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reason, other relaxation schemes have been applied to circuit simulation problems, ones that attempt to

both avoid Gaussian elimination and reduce the time to evaluate the Jacobian and Newton residue.

Historically, the first approach to using relaxation in a circuit simulation program was to substitute a

relaxation method for the Newton method to solve the implicit nonlinear algebraic systems generated by

the discretisation method. Early programs based on this approach attempted only to produce approximate

resuts, and performed only one relaxation iteration for each timestep. The techniques used in these programs

were referred to as "timing analysis", and when the relaxation iteration was carried to convergence to produce

accurate results, the algorithm was referred to as Iterated Timing Analysis (ITA) [CHA75, NEW83]. A

second, more recently developed approach, applied the relaxation directly to the differential equation system,

replacing solving a large differential equation system with solving a collection of small differential equation

subsystems(LEL82]. This second approach is referred to as waveform relaxation(WR) because the iterates

are functions or waveforms over the simulation interval. In the following two subsections we describe the

ITA and WR approaches in more detail.

3.1 Iterated Timing Analysis

The above linear Gauss-Seidel relaxation "recipe" can be applied to directly to solving the nonlinear algebraic

system F(v(t + h)) = 0 given in (3). The nonlinear system can be rewritten as F(v(t + h)) = (fi(v(t + h))

f,(V(t + h)))T where fjr . R. Following the Gaus-Seidel approach for linear systems, at each step

of the relaxation, the vi(t + h) element is updated by solving the implicit algebraic equation

f,( ','(t + h)) = 0 (6)

for .,+l where tA'" (tk , -1 .V-)T.

It is possible to use the Newton-Raphson algorithm to solve the implicit algebraic system of (6) accurately

at each step, and algorithms so generated are referred to as relaxation-Newton methods. However, in this

application, the Newton iteration is not usually carried to convergence as it has been shown that the rate of

convergence of nonlinear relaxation is not reduced if, rather than solving the implicit algebraic systems at

each step, only one iteration of the Newton method is used [OR170). Such a Gauss-Seidel-Newton algorithm

-applied to systems of the form F(v) = 0 is (using the notation of(6)),

V,'+,(f + h) = vi(t + h) - 8fj(V+.' -1(t + h)) ] (v5+,,_(i + h)). (7)

Applied to the system in (3) we get

tie' = Vj-
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q,(i+l-l(t + h), u(t + h)) - qi(v(t),u(t)) - 0.5h(g,(v 1+.'-I(t + h), u(t + h)) + g,(v(t), u(t))) (8)

The following convergence theorem is a minor modification of the result in [ORT70,WHI86].

Theorem I Let the Guss-Seide-Neuton relaxation algorithm be used to solve for v(t-+ h) in (3). If g(v, u)

is continuously differentiable with respect to v uniformly in u, u(t) is continuous with respect to t, .(V, u)

is strictly or irreducibly diagosally dominant uniformly over all v and u, and v(t) + 0(h) (where 0(h) is

continuous in h and lim_..o 0(h) = 0) is used as the starting point for the relaxation, then there exists an h

such that for all hm < h the relaxation converges to the solution of (3) a

The relaxation-Newton methods are popular for circuit simulation problems for two reasons. The first is

that for a broad class of circuits the capacitance matrix, given as ;V(v, u), is strictly diagonally dominant.

This is the case if the circuit contains two-terminal positive capacitors (linear or nonlinear), or any other

elements whose charge function has a diagonally dominant Jacobian with positive diagonal entries, and there

exists some nonzero capacitance to ground or a voltage source at each node in the circuit. Therefore, for

these circuits, the relaxation-Newton algorithms are guaranteed to converge if the integration timestep is

made small enough.

The second reason for the popularity of relaxation-Newton methods is that with proper application they

can be used both to avoid solving a large matrix problem by Gassian elimination and to avoid computing

portions of the Newton residue and the Jacobian. As can be seen in from (7), only the diagonal terms of

the Jacobian, VA, need be computed. In addition, the computation of the Newton residue and the Jacobian

can be further reduced using two bypassing schemes [SAL83] that skip the computation of portions of the

Jacobian and the residue. One type of bypassing is implemented by noting whether the components of v

on which f, depends have changed significantly in a relaxation-Newton iteration, and if none of them have,

then f, is not re-evaluated. Bypassing in time can also be implemented by checking if ii is close enough to

0 and, if so, then v1(t + h) will be equal to v,(t) and therefore vt need not be recomputed at t + h. Note that

the effect of bypassing in time is to exploit waveform latency, that is, if a node in the circuit is not changing,

then the contributions to the Jacobian and Newton residue of the devices connected to that node need not

be computed at subsequent points in time.

3.2 Waveform Relaxation

-J
TheocMhsical approach and the ITA approach without latency exploitation suffer a loss of efficiency because

they apply the integration method to the entire system simultaneously. This forces every differential equation
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in the system to be discretised identically, and this discretization must be fine enough s that the fastest-
changing state variable in the system is accurately represent. If it were posible to pick different timesep

fo each differential equation in the system, so that each could use the largest timestep that would accurately

reflect the behavior of its associated state variable, then the efficiency of the simulation would be greatly

improved. This is referred to as the multirate problem[GEAO], and numerical integration methods that

allow for different state variables to use different timesteps are called multirate integration methods.

Circuit simulation programs that use ITA with latency exploitation do exhibit some of the characteristics

of a multirate integration method. If, at a given timestep, the v, variable is at its equilibrium (or stationary)

point, and the vj variables on which vi depends do not change, then vi will retain the value it had before the

timestep. In fact, v, will never be recomputed until some vj on which it depends changes. If vi is bypassed

for several timesteps the effect is the same as if a large timestep were used to compute vi. Therefore, a

bypassing algorithm exploits the kind of multirate behavior that stems from a system in which most of of

the variables remain at equilibrium. The ITA approach with latency exploitation does not, however, take full

advantage of a system for which the state variables have different rates of motion but are not at equilibrium.

It is possible to create a full multirate integration method for solving (I) by applying the Gauss-Seidel

recipe for relaxation directly to the differential equation system before introducing discrete approximations.

If such an approach were applied to (1) then at each step of the relaxation, the waveform vi(t) for all tc40, 7]

is updated by solving the differential iteration equation

u(t)) - g,(vk+l+(t),u(t))- 0 V ()= V(9)

for v +1 (t) on (0, TI. In this approach, each differential equation in system is solved independently, and

each can use an independent set of integration timesteps. Therefore, the waveform relaxation algorithm is

inherently a multirate integration method.

The convergence of WR is guaranteed for most examples of practical interest by the following theorem

(1) [LEL82, WHI8].

Theorem 2 If, in d system of the form of (1), g(v, u) is Lipschitz cotinous Wth respect to v uniformly in

u, u(t) is continuous with respect to t and .(v, u) i strictly or irredsuvbl diaegonall dominant uniforml

over aill v and u, then the Gesea-Sesdel waveform relaxation algorithm applied to such a slstem will converge

to the solution to the system R

Theorem 2 guarantees the convergence of WR for the continuous case, but does not directly apply if

a discretization integration formula is used to solve for the iteration waveforms. It is possible to prove
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a convergence theorem for the discretized WR algorithm, but only by assuming some conditions on the

timesteps. In particular, one can show that if multistep methods are used to solve the iteration equations,

then the discretised WR algorithm converges provided the integration timestep. are smaller than some

bound[NEV86]. Not surprisingly, the bound on the integration timestepe to insure WR convergence is

similar to the bound on the timesteps required to insure the ITA algorithm above converges. In fact, for

linear systems and nonmultirate timesteps, the timestep constraints for ITA and waveform relaxation are

identical(WHI86].

4 Waveform-Relaxation-Newton Algorithm

The advantage of the standard WR algorithm is that it fully exploits multirate behavior by solving the

differential equations in a decoupled fashion. However, each iteration involves solving nonlinear differential

equations accurately, and is therefore computationally expensive. Although ITA can not fully exploit multi-

rate behavior easily[SAL87AJ, it is, in many cases, more efficient than standard WR. This is partly because

each relaxation iteration for the ITA method is much cheaper, as the nonlinear relaxation iteration equations

are solved approximately with a single Newton iteration. Perhaps it is the obvious next step to try a similar

approach with the standard WR algorithm. That is, use a single iteration of some kind of waveform-Newton

algorithm to approximately solve the WR iteration equations.

It is reasonably straight-forward to derive the waveform-relaxation-Newton (WRN) algorithm [GUA83,

BOK83] and show that WRN has similar convergence properties to standard WR. In addition, the iteration

equations for WRN are time-varying linear differential equations and are easier to solve than the nonlinear

differential iteration equations of WRL However, WRN does not prove to be much more efficient than WR

when applied to simulating most digital circuit examples, because whereas WR usually converges in fewer

than five iterations, and WRN may take many more.

The fact that the WRN algorithm may take many iterations to converge makes it possible to improve the

algorithm's efficiency by solving the iteration equations crudely at first, and then increasing the accuracy

with each iteration. With WRN, it is particularly efficient to use coarse timesteps in the early iterations, and

then refine as the iterations approach convergence. Note that such a technique is not so helpful with WR

because WR usually converges so rapidly that there are not enough iterations to do meaningful refinement.

Also, the Newton method used at each timestep in the WR iterations may not converge if very large timesteps

are used.

In this section, a WRN algorithm that incorporates timestep refinement is described. In Section 4.1 the
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waveform-Newton (WN) [KAN64] is derived and some of its limitations are described. In Section 4.2, WN is

combined with WR to produce the waveform-relaxation-Newton (WRN) algorithm. The iterative timestep

refinement strategy used with WRN is described in Section 4.3, and its suitability for parallel computation

is mentioned in Section 4.4.

4.1 Derivation of the Waveform Newton Algorithm

In order to derive the waveform-Newton algorithm it is helpful to think in general terms. Finding a solution

to (1) can be thought of as finding a v such that F(v) = 0, where v E w, the space of continuous and

differentiable functions that map the interval (0, TI into R, and F is a function derived from (1) that takes

w - w. The iteration equation for the Newton-Raphson algorithm for finding a solution v such that

F(v) = 0 is,

Jr(V -V '] = -F(vk) (10)

where Jr(v) is the Frechet derivative of F(v) with respect to v. The Frechet derivative is defined [ORT70]

as the linear operator on w such that

lhn1
Urn -LIIF(v + 6) - F(v) - JF(V)6ll = 0. (11)
6-0111

As mentioned above, the function F is derived from (1) so that F(v) = 0 implies that v solves (1). A

pointwise in t description of F is then given by

(F(v))(t) = dq(v(t), u(t)) - g(v(t)). (12)

This pointwise description of F, and the definition of the Frechet derivative given above, can be used to

evaluate the derivative of F, denoted as Jr. A convenient norm on w in which to evaluate JF(v) from (11)

and (12) is

HlV11 = I1v(O)llI + maz.'o.,il'(r)II '', (13)

where vew, 6(t) is the usual derivative of v(t) with respect to t, and II I1R is any norm on 1W'.

To begin, consider that

(F(v + 6))(t) - (F(v))(t) = ,(q(v(t) + 6(t), u(t)) - q((W, U()] - [(v(0) + 6(i), u(t)) - g(v(t), u(t)]

v(0) = vO 6(0) = 0. (14)

Expanding and approximating to order (116112,

(F(v + 6))(t) - (F(v))() = d q(v(t), (f) 6(t)] - 6ii(t) + 0(11611) (15)
dit OV fi)2
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From the definition of the Frechet derivative, (15) implies that

(Ji(4)6)(t) dt a t (16)

Substituting the computed derivative (16) and F given by (12) into (11) and rearranging yields

d [(v'(t), (t)) + (t) u( + = g(v(t), U(t)) + 80(0,u(t))bk+1  (17)
Tt v &,V

where 6k+l(t) = vk+1(t) - vk(t). Note that if vk(O) = vo then 6(0) = 0. We will refer to (17) as the

waveform-Newton(WN) algorithm for solving (12).

The above formal derivation of the WN algorithm has a very simple interpretation. The differential

equation is linearized about an initial guess waveform whose value at time zero matches the given initial

condition for the differential equation. Then, the guess waveform is updated by solving the resulting linearized

differential equation (with an initial condition of zero). The original differential equation is then relinearized

about the updated guess, and the process repeated until convergence is achieved.

As WN is just the function-space extension of the classical Newton-Raphson algorithm, it will converge

quadratically when the iterated value is close to the correct solution[KAN64]. The WN algorithm also has

the attractive property that it converges globally when applied to equations of the form of (1), given mild

assumptions on the behavior of the charge and current functions, q(v) and g(v), and provided the initial

guess waveform matches the initial condition for the differential equation. In particular, we have the following

theorem about the convergence of the WN algorithm whose proof is given in the appendix.

Theorem 3 For any system of the form of (1) in which i is differentiable, Lipschitz continuous, and has

a uniformly bounded inverse with respect to v for all u; g is differentiable and Lipschitz continuous; and

v°(t) is a continuous, differentiable function such that v°(O) = vo; then the sequence of waveforms, {vl},

generated by the WN algorithm converges uniformly to the solution of (1) L

The iteration equations for the WN algorithm are time-varying linear differential equations that are

easier to solve numerically than the original system of nonlinear differential equations. For example, if WN

iteration equations are solved with the same discretization techniques as used for the classical direct method,

then since the equations are linear, only a single matrix solution need be performed at each timepoint. Also,

linear time-varying systems can be solved with a variety of efficient numerical techniques other than the

standard discretization methods, such as collocation and spectral methods[GUA83].

Note that the disretized WN algorithm is as ill-suited to the simulation of large problems as the classical

direct methods, because it still requires the solution of large linear equation systems, and can not easily
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Figure 1: Resistor-Diode Example

exploit multirate behavior. But as the discretized WN algorithm and the classical direct methods are of such

a similar nature, it is perhaps useful to compare their relative efficiencies. Clearly, for linear problems, the

classical direct and the discretized WN methods are identical. However, the discretized WN can be much less

efficient than classical direct methods when used to simulate circuits containing highly nonlinear elements

such as diodes. This is due to the difference in how the classical and WN methods get the initial guesses

for their respective Newton methods. In the classical approach, generating an initial guess for the Newton

method implies projecting the behavior of the system forward by one timestep. In WN, one projects the

behavior of the system forward for an entire waveform. Therefore, in the classical method the initial guess is

almost certainly in or near the region of quadratic convergence for the Newton method, whereas that would

rarely be true for WN.

To demonstrate this difficultly with WN, consider the problem illustrated in Fig. (1), a simple resistor-

diode circuit with a grounded capacitor. Fig. (2) shows the waveform iterations obtained using WN to

solve the circuit, given an initial guess of v0 (t) = 0 for all tc[0, 1]. Note that the first computed waveform

V1(t) is quite far from the correct solution, and subsequent iterations move very slowly back to the correct

solution. This slow convergence is common when applying Newton methods to exponential nonlinearities,

given a poor initial guess. In this case, over 50 iterations are necessary to achieve satisfactory convergence.
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Figure 2: Waveform Newton Iterations for the Resistkjr-Diode Example
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A wide variety of limiting techniques can be used to improve the convergence of WN in this cae. For ex-

ample, the change in the waveform from one iteration to the next could be limited, in a way analogous to step

limiting in the standard algebraic Newton method[NAG75]. There is a well-known strategy that is particu-

larly useful for MOS circuits, where the only diodes in the circuit are associated with the source-to-substrate

and drain-to-substrate junctions, and are usually reverse-bised. Instead of using the correct derivative of

the diode current with respect to the voltage across the diode, the derivative can be approximated by the

diode current divided by the voltage across the diode, an approximation known as "line-through-the-origin".

Since only the Jacobian is altered, if the so crested pseudo-Newton method converges, it converges to the

correct result. The danger is that if the diode is substantially forward biased, an unlikely event for MOS

circuits, this pseudo-Newton method may not converge no matter how close the initial guess.

4.2 The Waveform Relaxation Newton Algorithm

One useful application of the WN algorithm, and the main focus in this paper, is to combine it with the WR

algorithm to construct the waveform extension of the relaxation-Newton algorithms presented in Section 3.1,

as in Algorithm 2 below.

Algorithm 2 - (WRN Gauss-Seidel Algorithm)

The superscript k denotes the iteration count, the subscript i{1, ..., N)

denotes the component index of a vector and c is a smaH positive number.

k .- 0.

Guess waveform v°(t); tc[O, 71

such that v°(0) = vo (for example, set v(t) vo, t [O, 71);

, repeat {

for all (i in N) {

solve

(mq(v h+I(t), u(t)) + tt't'" b+1(g) "

-if",1+"(t),()) + . -, ( .,- W =

for (v'*+(t); te[O, TJ), with the initial condition v'+(0) = vo.

} until (llv1+1 - 011 < e)
4.1
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In the waveform relaxation-Newton algorithm (WRN) [BOK83, GAU83, WHI86] above, the WR itera-

tion equations are solved approximately by performing one step of the waveform-Newton method with each

waveform relaxation iteration. This is analogous to the single Newton iteration strategy of the nonlinear re-

laxation methods used in Iterated Timing Analysis. And like the WR algorithm, each equation in Algorithm

2 is a differential equation in one unknown variable vi, but in this case the nonlinear differential iteration

equations have been replaced by simpler time-varying linear differential equations.

Given the global convergence properties of both the original WR and the WN algorithms, it is not

surprising that the WRN algorithm has global convergence properties, and the proof for this is quite similar

to the proof of the WR and WN convergence theorems.

Theorem 4 If the assumptions in Theorem I and Theorem 3 are both satisfied, then the sequence {v k}

generated by the WRN algorithm converges to the solution of (1) on min bounded interval [0, 7] K

4.3 Timestep Control Strategy for WVRN

As mentioned above, the amount of computation performed in the early iterations of the WRN can be reduced

by using coarse numerical integration timesteps to solve the differential relaxation equations initially, and

then refining the timesteps as the iterations progress. Specifically, the first relaxation iteration is computed

with a user-supplied maximum allowed numerical integration timestep. For subsequent relaxation iterations,

the integration timesteps are chosen to be the same as those in the previous iteration unless the a posteriori

local truncation error estimates for the timestep from the previous iteration is too large. In that case, half

the previous iteration timestep is used.

To demonstrate this idea, consider the sequence of waveforms in Fig. 3. For the first iteration the

maximum timestep is used, which produces the waveform in Fig. (3a), In this case, the computed LTE at T

is too large, and therefore on the second iteration, the window interval is divided in half and two time-steps

are taken, as shown in Fig. (3b). In the second iteration, the LTE is too large at time point T/2 but

acceptable at time point T. Therefore, on the third iteration, only the first half interval is divided, as shown

in Fig. (3c).

The iterative refinement strategy has the advantage that, in general, the timesteps will be placed more

efficiently to control truncation error than if the standard predicted truncation error criteria is used. This

is because the timestep selection is based only on more accurate a posteriori error estimates available from

previous relaxation iterations. However, there are situations where too many time points will be placed. In

particular, if, in some region of time, a "wavefront" moves through as the iterations progress (see Fig. (4)),
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Figure 3: WRN Time-Step Control.

many timesteps will be placed in the wavefront's path. A way to overcome this problem is to remove time

points on subsequent iterations if the LTE is small at a time point. This is not as simple an optimization

as would seem, as such an approach can be unstable. That is, time points which are added on one iteration

are removed on the next iteration, and then added again on the third iteration, etc.

4.4 Parallelizing WRN with Timestep Refinement

The WRN algorithm combined with the timestep refinement strategy has several advantages that make it a

good algorithm for use on parallel processors(SAL8TBI. As with any decomposition method, the decomposed

subsystems can be solved independently on parallel procesors[WH186]. And as with any waveform relaxation

method, solving the decomposed subsystems is a significant computation involving numerically integrating

the independent differential equations over some interval of time. Therefore, in comparison, communication

overhead is negligible.

The above WAN algorithm has an additional advantage for parallel computation. As the discretizations

times are selected by a timestep refinement strategy, they are therefore known a priori, before beginning

the calculation of the next iteration waveform. And since the iteration update equations for WRN are

t based on linearization about a previous iteration waveform, once the discretisation times are known, the
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linearized system at each of the discrete times can be computed in parallel. The result is that not only can

the decomposed subsystems be computed in parallel, but most of the computation for each of the timesteps

for each of the decomposed subsystems can be computed in parallel.

In order to see how the timestep parallelism can be exploited, consider using WN to solve the simple

equation

i(t) = f(z(t)) z(0) = Z0, (18)

where z(t) 6E , and m :Krm - A". The WN iteration equation is then

zh(l') =f)(&+) + ( Z (t) - zk(t)) z'+ 1(0) = zk(0) = zo (19)

where z(t) is the Puh Newton iterate. Discretizing (19) with backward-Euler leads to a sequence of M linear

equations, where M is the number of timesteps. The equation that must be solved to compute zk+1(ij),

where rj is the time of the j'h timestep, is given by

(7,) -I +1(r.-) =f (z(Ti)) + 8.(Z'(r))( +L(') - ? (n)) (20)
r j -rj1a

Reorganizing (20) leads to

I I -(z"(r+)), , _,+, = 1 z+"(T_) + f(z(t,)) - of(()) (21)
[j I rj- t (,)) - - rjz 8(

where I is the identity matrix in R1. The parallelism that can be exploited by simultaneously evaluating

M timesteps can be seen by examining (21). Clearly, the evaluation and LU decomposition of the matrix

on the left-hand side of (21), and the computation of all the terms on the right-hand side of (21) except the

IZh+t(rj_ ;) term can be performed for all M tirnestepe simultaneously.

Once the parallelizable portion of (21) is complete, there is still some computation that must be performed

serially to update the zk+l(r,) values. This serial computation involves a matrix backsolve to compute

zk+1(i?), which is then used to complete the rigt-hand side for the equation for zh+'(r2 ), from which

Zk+1(r2) can be computed with a matrix backsolve, which is then used to complete the right-hand side of the

equation for zb+l(r), etc. In total, this serial section involves M matrix backsolves and M - 1 multiplication

and additions to complete the right-hand sides. However, the backolves are by far the smallest part of the

timestep cakulation, so this serial section is not too computationally expensive, and therefore processing

timesteps in parallel can be effective.
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5 Program Implementation and Simulation Results

In this section, we compare the basic algorithms used in three programs, SPLICE3.1, based on ITA, RE-

LAX2, based on waveform relaxation, and a new program, SPLAX, based on WRN with iterative timestep

refinement. The two aspects common to the three relaxation algorithms, that of partitioning a large prob-

lem into loosely coupled subcircuits and ordering the subcircuits for the relaxation, is presented in the next

subsection. Then, the aspects where the three programs differ are described. In the last subsection, the

comparison results are presented and interpreted.

5.1 Partitioning and Ordering

Relaxation algorithms have been applied in several programs for the simulation of MOS integrated cir-

cuits(NEW83, DUM86]. These programs do not use the relaxation algorithms exactly as described in earlier

sections, but employ two important modifications to improve the speed of relaxation convergence. MOS

circuits tend to have small subsystems that are very tightly coupled. In order to avoid the slow relax-

ation convergence that would result from trying to decompose such subsystems into single equations in one

unknown, the circuit is decomposed into blocks. The blocks are solved using some form of Gaussian elimi-

nation, and the relaxation is applied to the block-decomposed system. Another feature of MOS circuits is

that they tend to be directional. That is, it is possible to order the equations such that the system is almost

lower-triangular, and finding this ordering can accelerate the convergence of the Gauss-Seidel relaxation.

Grouping together tightly coupled equations or blocks in a system, is referred to as partitioning the

system. The partitioning algorithm used for the above three programs is based on trying to directly estimate

the coupling between pairs of equations to determine which equations should be grouped together[WH186].

In particular, the algorithm amounts to removing the coupling between two nodes, and then for each node

replacing the remaining circuitry connected to each of the nodes by Norton equivalent conductances to

ground. The coupling is then added back to the circuit, yielding a two node problem. The speed at which

a relaxation algorithm applied to the two node problem will converge can be computed exactly, and if the

speed is too slow, the two nodes are placed in the same partition or subcircuit.

Once the system has been partitioned, the resulting blocks are ordered so that the relaxation is applied

to a problem that is as block lower triangular as possible. In some sense, partitioning and ordering the sub-

system of equations are performing similar functions. They are both attempting to eliminate slow relaxation

convergence due to two nodes in a large circuit being tightly coupled. There is, however, a key difference. If,

for example, v, is strongly dependent on vj, and vj is strongly dependent on vi, then a partitioning algorithm
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should lump the two nodes together into one subsystem. However, if vi is strongly dependent on vj, but ti is

weakly dependent on vi, then node i and node j should not be lumped together, but the ordering algorithm

should insure that the system is block lower triangular by ordering the equations so that tj is computed

before computing tti.

Resistors and capacitors do not exhibit the kind of unidirectional coupling that is of concern to the

ordering algorithm. In fact, the only element type of concern to the ordering algorithm is the transistor,

because it exhibits unidirectional coupling. That is, the drain and source terminals of an MOS transistor are

strongly dependent on the gate terminal of the transistor, but the gate is almost independent of the drain

and source. Therefore, the ordering algorithm used in our three programs attempts to order subsystems so

that a subsystem containing a given transistor's drain or source is solved after the subsystem containing the

given transistor's gate. If the circuit contains global feedback loops, this may not always be possible, and

such loops are broken in a somewhat ad hoc fashion.

5.2 Differences Between Programs

In order to make meaningful comparisons between the effectiveness of the three algorithms, we tried to

keep algorithms used in the programs as close to the same as possible. For example, all three programs are

written in C, and as mentioned above, all three programs use the same ordering and partitioning algorithms.

However, the nature of the three algorithms do force certain differences between the three programs.

Both SPLAX and RELAX2 use waveform relaxation-based algorithms and, because of the nonuniform

way in which WR converges, it is much more efficient if the simulation interval (0, 71 is broken into subinter-

vals, or windows, [0, t1, [t1 , t2] , ... , [t,., 71. It is difficult to determine a good window size a priori, and the

two programs do not use the same strategy for picking these windows. In RELAX2, an adaptive windowing

algorithm is used, as the interaction between window size and converge speed is reasonably well understood

for WR. However, in the case of V/RN, a good window size tends to be a function of the equation nonlin-

eaities rather than the differential equation dynamics. Since we did not have a good idea on how to adapt

window sixes in this case, the SPLAX program uses relatively small window sizes compared to RELAX2.

The SPLAX program does not use the same trapesoidal discretization method, described in Section 2, as

used in SPLICE3.1 and RELAX2. This is because the iterative timestep refinement technique used in SPLAX

can use very large timesteps for early WRN iterations, and if the trapezoidal method were used, it would

produce spurious oscillatory solutions(see [NAG75]). Although the timestep refinement would eventually

remove the spurious oscillation, it might cost extra relaxation iterations.

19



To avoid this problem, the more stable second-order backward-difference method is used to solve the time

varying linear iteration equation given in Algorithm 2. Specifically,

Av .i( + + h ,), tt + h1 )) + '(t + hj), u- + he))i+(t + h) _ + h1 ))]

+a [q,(h+'it ), t) )) + q.(Vk+ls(t) (t -V+,

++[q ihj+"(t ), u(t + h6)) + "it +'i(t + h#), (t + h)) &+'(t + hb) - + A.))]
Oy,

-[',(Vk+1',(t + hj), u(t + hf)) + 8fJ(V+4 "i(t + h), U(t + hl)) (!+( t + h1) - v,(t + hf))] = 0

where 01, &2, &3 are functions of the forward and backward timesteps, hf and h6 (for the exact formulation,

see [GEA74]). This would seem to put the SPLAX program at a slight disadvantage, as the second-order

backward difference method does have larger truncation error than the trapezoidal method, and would

normally require more timesteps for comparable accuracy. This does not seem to be the case however,

perhaps because the backward-difference method is being used in combination with the a posteriori LTE

control described above.

5.3 Simulation Results

In Table 1, the classical direct, ITA, standard WR, and WRN methods are compared using a number of

example circuits. The examples are: a critical path from a microprocessor control circuit, Microc, the logic for

a successive approximation register, Scdac, a dynamic memory cros-section, Dram, a static memory cross-

section, Srsm, and a digital filter, DigL In Microc, the waveforms exhibit multirate behavior mostly in the

form of latency, and the trade-offs in WR and ITA balance to produce similar run times, but WRN is faster

than either method since it exploits multirate behavior completely using relatively inexpensive iterations.

The circuit is too small for relaxation methods to be of significant benefit though, and the classical direct

method performs best. The circuits Scdsc and Dmss exhibit latency and are coupled, and therefore ITA

is faster than WR, but WRN with its combined benefits is again faster than either. The Wit algorithm is

fastest for the circuit DiIA because the partitioner breaks the circuit in'o completely unidirectional blocks,

and therefore WR converges in one iteration. Note that for DgA WRN is 6 times slower than WR, and

WRN proved to be even slower than direct methods! In Srsi, Wit is again the fastest, because although

there is some localized coupling due to the gate-source and gate-drain capacitance (which are not included

in the Digfi example), Srsm is essentially unidirectional.

The above results imply that WRN is not very effective when used to simulate idealized MOS circuits

20



which ignore gate-source and gate-drain capacitances. To provide stronger evidence of this behavior, Srem

was simulated a number of times with a range of gate-source and gate-drain capacitances, as controlled by

the thin-oxide thickness, toz, values. As Table 2 demonstrates, as the value of toz increases, and therefore

the gate-source and gate-drain capacitance decreases, the ratio of the runtime of WRN to WR also increases.

An area of future work suggested by these results is to consider an algorithm which combines both the

standard WR and WRN methods in one simulator. The choice of which method to use for a given circuit

would then be based on the unidirectionality and linearity characteristics of the subcircuits that comprise

the circuit. The portions of the circuit that contain elements with highly nonlinear device characteristics

or exhibit predominantly unidirectional signal flow could be solved using WR while the remaining portions

that feature moderate coupling or weakly nonlinear device characteristics could be solved using WRN. This

modified WR method is expected to be even more effective as it exploits the advantages of standard WR and

WRN. However, such an approach will require a method te automatically select the appropriate algorithm

for each portion of the circuit and this will likely be the key research activity for this composite algorithm.

TA tLE ir vs.SPIE v RELAX2 vPLAX
name Nodes IDirect ITA I WR WRN
Mcroc 56 31.3 47.1 47.7 41.8
Scdac 150 290.1 302.1 355.8 278.5Dram 30 6o 50.2 582.3 861.7 1535.9ISram 129 333.9 238.7 178.8 331.3

DLgfI 378 641.1 323.8l 167.0 749.5

TABLE 2 - Runtime Ratios of SPLAX to RELAX2 as tox varies
toI 125A I 25 0A I I o 1000A I0
SplazRe a 1.7 1 1.85 1 2.3 1 2.4 .9 I

6 Conclusions and Acknowledgements

A new circuit simulation algorithm, based on combining waveform-relaxation-Newton with an iterative step-

size refinement scheme has been described and a new convergence proof for the WN has been presented.

It has been shown experimentally that the new algorithm is effective for simulating MOS digital circuits,

and compares well with with other relaxation algorithms when simulating moderately coupled, multirate

circuits. It is not as well-suited to the simulation of unidirectional circuits, for which the standard WR is

more appropriate, and has difficulty on certain highly-nonlinear problems. However, the WRN algorithm has

21



certain features that can be exploited on parallel processors and this aspect provides an additional advantage

over other methods.
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A Proof of Theorem 3

The proof of Theorem 3 is somewhat complicated in detail. To avoid an unnecessarily lengthy presentation,

but still convey where the necessary conditions stem from, several not quite obvious lemmas will presented

without proof

The following norm on the space of functions that map (0, 7] -- lRf will be used throughout the proof.

Definition I The 0 norm on a function v : [0,T7 - R' is defined 48 maz?,[o,T]Ce- 38Iv(t)IIlj " where B is

some positive number. The 3 norm is denoted by hllvl.

Note that the 0 norm is really a continuous family of vorms, one for each positive number B. On the space

of continuous differentiable functions that map (0, T - R", the 8 norm is equivalent to the norm used in

the WN derivation.

Lemma 1 I f : J" - B?" has a derivatie J1 : W -. E RX, which is Lipschitz continuous with some

Lipschitz constant 11, then

11f(y) - f(Z) - J/(Z)(Z - )II < I1l1Z - Y112  (22)
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Lemma I can be thought of as a remainder theorem for the Taylor series, the detailed proof can be found in

[STO].

Lemma 2 Given F(v) is in (1) and Jr(v) as in (16), it follows that

II F(z)(-) - F(y)(r) - JF(Y)(Z - y)(r)drja < (l + BT-g)Ilz - yIs (23)

for any z, y in the space of continuous differentiable functions that map [0, 2] -. Rn, where !4 is the Lipschitz

constant for ;. and I is the Lipschit: constant for .

Lemma 2 can be derived by exploiting properties of the 6 norm[LEL82], and applying Lemma 1.

Lemma 3 Let vk,vk+1 be two iterates generated by (17), and F(v) be as given in (It), then

IIv'~ - vkIj < 14-j(l + "1)jJ' F(v*)(r)drII' (24)

where li-I is the 6ound on (a)-
Lemma 3 can also be shown using 4? norm properties.

To prove the theorem, let vk, and v' +1 be the k and k + l"' WN iterates. Then

IIj F(v+l)(r) - F(v')(r) - JF(vk)(Vk+l - v')(r)drIl8 < (1, + TI)lVk+ - V' 12 (25)

by Lemma 1. By definition of the WN algorithm,

F(vh)(r) - Jr(vI)(vtk+ l - vk)(r) = 0, (26)

and therefore (25 ) can be reduced to

1110 F(v5 +')(i)jdrl < (14 + B )Ilv, '  - Vk12(7

By Lemma 2,

1- IlVhk+2 - vk+IIIB < i F(Vk)(r)drIlI. (28)

4- 1( + Y)

Substituting into equation (27) leads to

-II+ V'1 lI1B < (1,(l + 1T_1))( 1 , + L.)I~Vh+1 - 0112~ (29)

The theorem follows by noticing that the 0 norm of Ijvy+l - .JlIB can be made as small as desired by

increasing B, because vt+l(0) - vk(0) = 0. The result is that by picking a B large enough, (29) can be

written as

IIV+ 2 - vh+IlIl < YIIvk+ l - vkjID (30)
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where-y < I snd is a functio oB, 1 - i IadTItteeore follws that vh is a cauchy sequence and

therefore converges
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