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1 INTRODUCTION

1.1 Background Review

Airborne measurements of gravity were initiated back in the late fifties when the concept
of airborne gravimetry was first tested by Thompson (1959). Although the possibility
of success seemed rather remote at that time considerable work continued in airborne
gravimetry by Nettleton et. al. (1960), Coons et. al. (1962), Gumert and Cobb (1970),
Szabo and Anthony (1971), La Coste et. al. (1977). Only recently, however, airborne
gravity survey. havc met with considerable success as reported by Hammer (1982, 1983)
and Brozena (1984). The major advantages of airborne gravimetry include speed, efficiency,
uniformity of data quality and coverage over otherwise inaccessible areas. The major
problem with airborne gravimetry, however, is the inability to separate gravitational forces
from inertial forces (Meis.sl, 1970).

The problem of separating inertial and gravitational forces motivated the development
of airborne gravity gradiometry where the inertial and gravitational forces are separated
by mounting three gravity gradiometer sensors on an inertially stabilized platform (Moritz,
1967, 1971). A gravity gradiometer measures the six second order gravity gradients. By
eliminating the effect of the earth's normal gravity field from these six gravity gradients,
one obtains the gravity gradients of the anomalous potential. These second-order gravity
gradients provide short -wavelength (high frequency) information particularly suitable for
a precise determination of the anomalous gravity field in a local area. In addition, the
high frequencies of the anomalous gravity field provide useful information for geophysical
prospecting (Jordan, 1978; Brown, 1981).

Hardware development for the gravity gradiometers began towards the end of the six-
ties and has continued since then. During the seventies four gravity gradiometers were
under development: the Rotating Gravity Gradiometer of Hughes Research Laboratories
(Forward, 1971), the Spherical Floated Gravity Gradiometer of Charles Stark Draper Lab-
oratory (Trageser, 1970, 1975), the Rotating Accelerometer Gravity Gradiometer of Bell
Aerospace/Textron (Metzger and Jircitano, 1977, 1981) and the Superconducting Grav-
ity Gradiometer of the University of Maryland (Palk, 1976, 1981, 1985). Of these four,
only two are currently under development, the Bell Rotating Accelerometer Gravity Gra-
diometer system now known as the Gravity Gradiometer Survey System (GGSS) and the
Superconducting Gravity Gradiometer developed by Paik and his coworkers at the Uni-
versity of Maryland. The Superconducting Gravity Gradiometer is planned to be used for
satellite gradiometry. (Paik et. al., 197S) The GGSS is the one which will be employed
for airborne gradionmetery.

1.2 Purpose and Scope

The purpose of this research is to develop a methodology for processing GGSS survey
data. The GGSS consists of three gravity gradiometer instruments (GGI's) mounted in an
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'umbrella' configuration of 35 degrees as shown in Figure 1 aboard a stabilized platform
together with the associated electronics, GPS receiver, and a Rolm computer. The platform
contains gyros and accelerometers and operates as a navigator using GPS position updates,
thus establishing a coordinate frame for gradiometer measurem-its. To define the complete
gravity gradient field requires three GGI's. The umbrella configuration was chosen so that
each GGI will be in the same inertial environment. A total of six gradient measurements
are made in the orthogonal system of the umbrella angle, which is sufficient to define the
total gravity field.

Gravity gradients are sensed by differencing the accelerations measured by two high
precision Bell Aerospace accelerometers. Two pairs of accelerometers are mounted along
the edge of a nine inch disk, with their sensitive axes tangent. Outputs of opposite pairs,
with sensitive axes 180 degrees out of phase, are summed, and the outputs of the pairs
are differenced. With this arrangement, any linear accelerations to the disk will not be
registered by the combined output. However, if an acceleration field exists with the specific
force higher on one side of the disk than the other , an unbalance will result and the slope
of the acceleration field will be the output.

In the Bell Aerospace GGI's, the disk is slowly rotated. When rotation occurs, the
combined output becomes sinusoidal with the amplitude proportional to the magnitude
of the gradient and the frequency equal to two times the rotation rate. This procedure
has the effect of shifting the frequency of the gradient signal from DC to twice the wheel
rate. It now becomes possible to bandpass filter the gradient outputs, eliminating much of
the noise. When the signal is demodulated, we get inline and cross gradients. Thus, the
outputs of the GGSS, recorded on the data tape, are six gravity gradient elements in the
umbrella angle reference frame.

The data processing falls naturally into two stages. The first stage is temporal wherein
the data processing demodulates the survey system output, compensates the output for
the effects of pressure, temperature, drift rate and self gradients and low pass filters the
data to produce a data tape with one second samples of the gradients. Gradients are still
in the instrument coordinate system, the umbrella angle. The second stage is spatial and,
therefore, two dimensional in nature and consists of gridding, terrain correction, interpo-
lation, smoothing, integration, downward continuation, and incorporation of astrogeodetic
tie points. The compensated, demodulated, and filtered gradient signal after Stage I pro-
cessing will be lined up with time synchronized position data from the aircraft on-board
computer and sampled spatially at 1 Km intervals corresponding to the survey grid. Ide-
ally, the 1 Km data obtained from the Stage I processing will coincide with the survey grid.
However, due to navigation and aircraft control errors, the actual tracks flown will deviate
from the ideal survey tracks by up to a few tenths of a kilometer. The initial operation
in Stage II processing will be a data gridding exercise where an interpolation algorithm
(a local least sqiiares coilocator) will be used to line up the actual gradient data with the
survey grid.

Stage I data processing as well as the initial data gridding of Stage II are not within
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the scope of this effort and henceforth not discussed in this report any further. Hence,
it is assumed that Stage I processing and Stage II data gridding have been successfully
performed with the end product being regular two-dimensional grids of gravity gradient
measurements of the anomalous potential. Furthermore, it is assumed that the altitude of
the survey airplane is constant within small bounds.

1.3 Problem Statement

The objective of this research effort was to devise a methodology to process two-dimensional
grids of gravity gradients at survey altitude to yield gravity disturbance vector estimates
at the surface of the earth.

1.4 Research Objective

The measured gravity gradients are the six elements of the gradient tensor. An actual
airborne gradiometer survey over an area 300x300 Km consisting of bidirectional flight
paths 5 Km apart with along-track sampling intervals of 1 Km will result in approximately
220,000 measurements. The main problem with the determination of the gravity field from
airborne gradiometery is the huge amount of gradient data collected during a gradiometry
survey. The primary objective of this research effort was to solve the problem of process-
ing all the airborne gravity gradient measurements simultaneously in a computationally
efficient manner without neglecting gradiometer measurement noise.

1.5 Survey of Techniques

GGSS data processing methods proposed to date are primarily based on least squares
collocation, an excellent review of which is presented in Moritz (1980). The method of
least squares collocation was employed by Schwarz (1977) for the computation of the
vertical gravity disturbance vector from simulated gravity gradient data. Due to the limited
extent of the survey data a low frequency part had been subtracted which resulted in the
estimation of the residual gravity field. His simulation results showed that 15' x 15' mean
disturbance could be estimated to an accuracy of 2.2 mgals with a profile spacing of 20'.
In th- same study it was found that the estimates wil. get worse if the gradient data are
corrupted by systematic errors.

Least squares collocation involves the inversion of a matrix of order equal to the number
of measurements. Since the number of measurements collected during the airborne GGSS
test is expected to be approximately 2 x 105, a full scale least squares collocation approach
is presently impractical. A template method (Goldstein and White, 1985) exploits the
attenuation with distance in the correlations between gravity gradients. By averaging the
measurements over compartments whose sizes increase with distance from the estimation
point the number and density of observations are reduced significantly. Thus, the short
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wavelengths of gradients in distant zones which signify local density contrasts and have

minimal correlation with the estimate are averaged out, while the longer wavelengths
are retained. The averaging compartments form a template centered directly above the
estimation point, hence the name 'template method'. Once the data set with large numbers
of points has been transformed to a much smaller set of averages the gravity disturbance
vector is estimated using space domain least squares collocation. This method requires

generation of covariances between gravity gradient averages implying the necessity of a
covariance model that is amenable to analytic integration. The covariance function used
for the template method is the Attenuated White Noise (AWN) model (Heiler and .Jordan,
1979). The template method is simplest for uniformly spaced data, since a fixed template
design can be utilized. However, for non uniformly spaced data the template needs to be
restructured and the weights for each template zone recomputed again for each estimation
point. To redefine the zones and recompute the optimal weights a matrix of order equal
to the number of template zones needs to be inverted.

Another space-domain method for processing GGSS data is based on Rummel' (1982)
technique of developing an integral formula estimator that is optimized for the effect of

measurement noise. This method was developed as an alternative to the inverse Stokes
integral for processing large, densely spaced satellite altinietry data without ignoring mea-
surement errors. Assuming flat earth approximation Jekeli (1984) extended the idea to
incorporate heterogeneous gravity gradient data sets at altitude. The appropriate Ker-
nel function is expressed as a Fourier transform of its spectrum which in the fiat earth

approximation is fitted by pieces of powers of spatial frequency and thereby amenable to
analytical integration. Thus, from each set of measured gradients the whole gravity distur-
bance vector can be recovered. Gravity disturbance vector estimates from different sets of
gravity gradient measurements can be combined in a least squares adjustment to provide
the final estimate (Jekeli, 1984). A further enhancement to the estimator was proposed by
Jekeli (1985) wherein a method to integrate isolated surface tie-point data was described.
However, the estimator assumes infinitely extended gradient data and does not assign suf-
ficient weight to the tie-point data. Thus, there is no reproducibility at the tie-point data
as with optimal least-squares collocation. Hence, the incorporation of tie-point data is not
optimal in this estimator. On the other hand, without incorporating tie-points Jekeli's
(1985) simulation results show that a noticeable bias and trend could not be estimated
from the given gradient data. Also, because of the lack of data outside the survey area.
est inates near the edge are distorted and unreliable. One limitation of this method is the
requirement that the data, be on a plane of constant altitude. Furthermore, to recover the
gravity disturbance vector at the surface of the earth downward continuation has to be
performed.

Another technique based on Stokes' theorem has been proposed by Rufty (1986) wherein
the connection between cross products of vector fields and lint, integrals of gradients is

exploited. For conservative fields, the constraint of zero cross product of the vector field
is equivalent to zero closed line integrals of the gradients. This fact is exploited in this
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method to recognize that due to the presence of noise these gradient line integrals are
path dependent. The method computes the best estimates of segment integrals and then
combines the estimates from the various paths. Thus, the algorithm simultaneously weights
all possible path integrals of the gradient to yield an optimal estimate of the disturbance.
The method considers all paths simultaneously but does not include any modeling of the
statistics of the field. The gravity estimates are obtained at the survey altitude from
gradient track data at altitude. Thus, to recover the gravity disturbance vector at the
surface of the earth downward continuation has to be performed.

A combination of least-squares collocation in the space domain and Wiener filtering
in the frequency domain has been proposed by Bell Aerospace/Textron (Hutcheson, 1985;
Hutcheson and Grierson, 1985). The least squares collocator is used to estimate the low
frequency component of gravity disturbance on a sparse grid. This is then combined in the
frequency domain with the complementary high frequency disturbance estimate obtained
from the Wiener smoother. The resulting map is then transformed back into the space
domain. For both the low and high frequency parts of the spectrum, plane integration at
flying altitude and downward continuation are carried out in one step. The instrument red
noise part of the measurement error is filtered by the Wiener smoother in the frequency
domain. Thus, the gradient data needs to be on a two-dimensional grid. The application
of this method for the estimation of the gravity disturbance vector at the surface of the
earth from gradient data at survey altitude does not provide accurate results at the edges
of the area due to spectral leakage.

Another method that is based completely or. frequency domain approach was proposed
by Vassiliou (1985, 1986). The method is based on the application of multiple input-single
output filtering equations, using as inputs the linearly correlated second-order gravity
gradients and as output the first-order gradients. In this way, each first-order gradient
is estimated from a combination of its gradients in the frequency domain. The method
uses all the gradient measurements at once for the whole area. To make the method
computationally efficient, the Fast Fourier Transform (FFT) is employed. In this method,
gradient plane integration and downward continuation are performed in one step using
FFT techniques. This method, as in any frequency domain technique, suffers from spectral
leakage. Additionally, it requires the data points to be on a regular two-dimensional grid
and assumes flat earth approximation.

Parametric least squares estimation is the key to another method where the measured
gravity gradients are represented as a set of parameters pre-multiplied by a design matrix
observed in additive noise (Peacock, 1985; Center and Peacock, 1985). The parameters can
be point masses, spherical harmonics, two-dimensional Fourier coefficients or Hankel trans-
form coefficients. In practice, the parameters used are Fourier series coefficients. Thus.
the design matrix contains sampled values of the Fourier series basis functions evaluated
at the measurement points. Singular value decomposition (Lawson and Hanson, 1974) is
used to decompose the design mat.ix into a product of a left orthogonal matrix, a middle
diagonal matrix and a right orthogonal matrix. The elements of the diagonal matrix are
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the singular values of the design matrix. For large sets of measurements a single singular
value decomposition is computationally impractical. Therefore, a sequential singular value
is applied. With this sequential singular value decomposition algorithm, measurements
are processed in a sequence of relatively small batches. At each stage, previous measure-

ment and prior probability distributions are compressed into an equivalent measurement
vector. After processing the new set of measurements, the parameter space is orthogo-

nally decomposed into three sets of linear combinations: those that are well estimated,

those that are partially estimated and those that are essentially unobserved based on the

magnitudes of the signal-to-noise ratios. When this sequential operation is complete, the
optimal estimates of the sequential singular value decomposition states are formed and the
states can be used to form optimal estimates of the disturbance vector at selected points.
The application of sequential singular value decomposition makes the solution of least
squares problems with large data sets computationally efficient. However, to implement

a parametric least-squares algorithm, a set of basis functions must be explicitly chosen.
The parameters then become the coefficients of a functional expansion in terms of these
basis functions. Since the number of computations grows as the cube of the number of

parameters, the choice of parameters becomes the critical design issue.
A data processing technique that transforms a gradiometer survey network into an

electrical network was proposed by Eckhardt (1986). In this method GGSS survey data
is analyzed by analyzing an electrical network that is isomorphic to the survey network.
The integrated gradients between the nodes where the survey lines cross correspond to

the applied voltages between the nodes of the network: the gradient variances correspond
to the internodal resistances; the elements of the adjusted gravity vector correspond to
the nodal voltages; and the solution variances correspond to the resistances to ground.

Solving the electrical network is then equivalent to making a least squares adjustment
of the survey network. The initial step is to process the raw GGSS signals to extract
the elements of the gravity gradient tensor; next ground-truth measurements are upward
continued to the network tie points; then the internodal adjustment is done; finally the
gravity vector is calculated along the tracks between the nodes and the field is interpolated
and downward continued to the reference surface. This method differs from most other
techniques proposed in that it is not based on the least squares collocation and thus does

not use expected correlations of the gravity field and measurements.

1.6 Technical Approach

Several different methods of GGSS data processing was discussed. Clearly the straightfor-
ward application of least squares collocation is not a practical proposition. Therefore, all

the methods approach the problem with the idea of making the computations tractable.
The methods are then not optimal. Some of the methods do not use any gravity field

model for the survey region and those that do are restricted to homogeneous and isotropic
covariances. But as Rummel and Schwarz (1977) has shown the homogeneous model may
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not always be satisfactory and the structure of the anomalous potential is more realistically
represented by non-homogeneous weighting functions. Morrison (1975, 1977) has shown
that the assumption of isotropy is not always valid and Kearsley (May 1977, July 1977) has
investigated non-stationary estimation where he shows the superiority of two-dimensional
non-isotropic covariances.

Another fundamental assumption in the frequency domain techniques is the require-
ment of stationarity for the gravity quantities and for the measurement noise. But as Nash
and Jordan (1978) pointed out, "Gravity anomalies are neither stationary nor isotropic;
some areas are rough, other smooth, and most areas contain linear (non-isotropic) fea-
tures corresponding to a mountain range, continental shelf, fault, etc. The non-stationary,
non-isotropic character of gravity anomalies is hardly surprising since approximately 90
percent of the energy in gravity anomalies is caused by terrain (and the associated isostatic
compensation at the Mohorovicic discontinuity), and most terrain contains obvious linear
features." Thus the frequency domain approach, through computationally attractive really
does not address the nonstationarity and nonisotropy of local gravity modeling.

Nash and Jordan advocate the application of random process theory to the problems
of geodesy particularly in the modeling and estimation of the fine structure of the earth's
gravity field. They state that: "The theoretical basis for statistical models of gravity
anomalies is somewhat tenuous. 'Ensembles' and 'probability distributions' are difficult
to define, since there is only one earth, and gravity at a particular point is a fixed, deter-
ministic quantity (excluding transient effects such as tides) . . . . Nevertheless, statistical
geodesy has survived (flourished!) because of the powerful conceptual, mathematical, and
computational tools afforded by the statistical approach." Random process models of
gravity were first used by Hirvonen (1956, 1962) and Kaula (1957, 1959) in the late 1950's.
These models take the form of autocovariance functions (acf's) and spherical harmonic
power spectral densities (psd's). Statistical models for the deflections were proposed by
Levine and Gelb (1969) without considering the associated anomaly models. Shaw et.
al. (1969) recognized that the Vening-Meinesz formulas provide a constraint between the
anomaly and deflections; they used this constraint to derive statistical models for the de-
flections from theoretical anomaly models. In Particular, Shaw and his coworkers proposed
the 'exponential anomaly model' and the 'Bessel anomaly model' and determined the as-
sociated deflection models. In a similar paper, Kasper (1971) proposed a 'second-order
Markov anomaly model' and determined the associated deflection models. The models
proposed by Shaw et al. and Kasper are 'self-consistent', since the anomaly and deflection
statistics satisfy compatibility conditions that are based on the Vening-Meinesz equations.
However these models were somewhat incomplete since even "hough the constraints be-
tween the anomaly and deflections were recognized, but the constraints relating to the
undulation were ignored. Jordan (1972) took into account these constraints and proposed
the 'third-order Markov undulation model' and derived 'necessary conditions' that must
be satisfied in order for the anomaly, deflection, and undulation correlation functions to be
physically reasonable. Other self-consistent models have also been proposed (Tscherning

8



and Rapp, 1974; Tscherning, 1976). Some of these self-consistent models are also mathe-
maticaily convenient insofar as the covariance functions aloft can be expressed analytically
(Bellaire, 1971, 1972, 1977; Heller and Jordan, 1979).

Self-consistent models are usually more complex because they involve two or more
gravimetric uncertainties (vertical deflections, gravity anomaly, undulation) as opposed to
ad hoc models involving only one gravimetric uncertainty. The complexity of the self-
consistent models has a blessing in that it makes possible to infer a statistical model for
one gravimetric uncertainty (e.g. deflections) from data pertaining to another gravimetric
uncertainty (e.g. gravity anomaly). However, even in the case of self-consistent models
the autocorrelation function (acf) of one of the gravimetric uncertainties is required to be
hypothesized and the others derived via the constraining equations.

Some of these ad hoc or self-consistent models can be expressed in state-space form
where the gravimetric uncertainties along a line (trajectory) in space can be viewed as a
function of time, rather than space. By definition, a 'state-space' model is one that can
be expressed as a set of linear ordinary differential equations excited by white noise. Such
models are convenient and useful for covariance simulation and Kalman filtering. The
"third-order Markov undulation model' of Jordan (1972) is such a model. However, this is
only possible because of Jordan's assumption of an isotropic acf for undulation.

As Nash and Jordan (1978) admit: "All of the above mentioned models assume sta-
tionarity and isotropy, both of which are unrealistic assumptions. One critic has said
facetiously, "Statistical gravity models are nice but they disagree with the data." This
criticism is embarrassingly valid. Hopefully, new models will be developed in the near
future that account for nonstationarity and nonisotropy." As a result they state that the
first major problem in statistical geodesy as: "Nonstationary nonisotropic models need to
be developed to replace the simple models used heretofore." They further go on to advo-
cate the application of modern estimation and control theory to geodesy acknowledging
though that: "The application of modem estimation theory (Kalman filtering) to gravi-
metric uncertainties is complicated by the fact the the quantities of interest are two or three
dimensional random processes, in the sense that two or three coordinates (e.g., north-east,
north-east-down) arc needed to specify them." They further state that: "The normal re-
cursive approach ... is difficult to pursue directly for geodetic uncertainties because they
are not time series, but rather they are two and three dimensional spatial random pro-
cesses. For such processes it is generally not possible to write down linear differential
equations ... that describe the dynamic evolution of the process. Rather it is necessary
to develop partial differential equations, which when excited by two-or-three-dimensional
white noise, 'produce' the desired statistics. This is a difficult theoretical problem; even if
done correctly, it is not clear how to solve the estimation problem."

Motivated by these remarks the approach taken here is to exploit the marriage of
physical geodesy and random process theory. We shall solve Laplace's equation with the
unknown mass distribution below the surface of the earth modelled as a two-dimensional
white noise layer representing the vertical derivative of the disturbance potential to any
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pre-specified order. This results in a series solution of the disturbance potential wherein
the unknown coefficients of the expansion are forced to be uncorrelated by invoking the
Karhunen-Love condition. It is shown that the disturbance potential covariance obtained
from this model is both non-stationary and non-isotropic.

Next, the six (6) gravity gradient measurements are represented in terms of the Karhunen-
Loive series expansion of the disturbance potential resulting in six basis functions. These
basis functions are shown to be orthogonal. A linear mean square estimator utilizing all the
gravity gradient measurements simultaneously is obtained in continuous domain by solv-
ing an integral equation involving the estimator gains which are represented by the same
orthogonal basis functions. The discrete implementation of the estimator is facilitated
by exploiting certain orthogonality relationships of the transformation matrices such that
matrix inversions are not necessary at all. The gravity disturbance vector is obtained in a
two-dimensional grid which can be denser than the measurement grid and also at any al-
titude, including the surface of the earth. Thus, interpolation and downward continuation
are performed automatically.

1.7 Overview of Report

This report is organized as follows. Chapter 2 presents the gravity model, whereas Chapter
3 discusses the gravity measurement model. The estimation algorithm is derived in contin-
uous domain in Chapter 4. Discrete implementation of this continuous domain estimator
is shown in Chapter 5. Chapter 6 concludes with a brief summary of research performed,
highlights of research achievements and suggestions for future research.

10



2 GRAVITY MODEL
2.1 Introduction & Summary

In this chapter a local gravity model for the survey region is developed. The basis of the
model is to represent the unknown mass distribution below the surface of the earth as a
two-dimensional white noise layer representing the vertical derivative of the disturbance

potential to any pre-specified order. After defining a rectangular survey region, the gravity
field in this region for this local white noise layer model is shown to be a linear superposition
of a particular solution and a complementary solution. The particular solution involves the
solution of Laplace's equation with zero boundary conditions but non-zero sources specified
as a two-dimensional white noise layer below the surface of the earth. The complementary
solution, on the other hand, involves solution of Laplace's equation with zero sources but
non-zero boundary conditions. The contribution from the complementary solution is zero
if the boundary conditions are zero. Only the particular solution is addressed since it is
assumed that the boundary conditions are zero. The particular solution of the disturbance
potential is represented as a series solution, where in the horizontal coordinates the solution
involves sine functions due to the zero boundary conditions and in the vertical coordinate
it has the form of an exponential function due to the disturbance potential vanishing at
infinity. The unknown coefficients of the series expansion represent the random variation,
independent of any spatial variation. The condition of uncorrelatedness of the random
variables is invoked thereby making the series representation of the disturbance potential
a Karhunen-Lo~ve series. An expression for the autocorrelation of the Karhunen-Lo~ve
coefficients is obtained from the expression of the white noise layer model representing the
vertical derivative of the disturbance potential. Finally, an expression for the covariance of
the disturbance potential is obtained which shows that the disturbance potential covariance
obtained from this model is both non-stationary and non-isotropic.

2.2 Local Region Spatial Domain

A local region of interest is shown in Figure 2 where x and y coordinates are on the surface

of the earth and the z coordinate is vertical above the surface of the earth. The local
region of interest is specified by the spatial domain D given as

D(x,y) = {x,y; O<x<A, O<y B} (1)

where

A - length of the survey region
B - width of the survey region

The survey measurements are taken at an altitude H above the surface of the earth.
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2.3 Local White Noise Layer Model
The gravity field in this local region is completely specified if the following are known:

1) The boundary conditions of this region in terms of the potential values on the
boundaries of this region, and

2) The mass distribution density below the surface of the earth within this region.
The model proposed here assumes that the boundary conditions are either known or

can be estimated, i.e.

T(x, y = 0,z) = f,(x) (2)

T(x, y = B, z) = f 2 (x) (3)

T(x = 0,y, z) = gi(y) (4)

T(x A, y, z) = g2(y) (5)

T(x, y, z = ±oo) = 0 (6)

where T(x, y, z) is the anomalous potential or disturbance potential
With respect to the unknown mass distribution below the surface of the earth, the

model proposed here is that of a two-dimensional white noise layer representing the kth
vertical derivative of the disturbance potential as shown in Figure 2 such that

E f-&T~xl, ( Y1,, z)10.=-D x 9 kT-(X 2 ,Y2 ,Z) IO.=-D =o,6(xi -x 2 )6(Y, Y2) (7)

0 < xi,x 2 < A 0 < Y1 ,Y2 < B z =-D
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where

a0
2 - variance of white noise layer

k - order of vertical derivative of T

D - depth of white noise layer

2.4 Linear Superposition Solution

The solution of the disturbance potential with boundary conditions specified by equa-
tions (2) through (6) and mass distribution modelled as in equation (7) can be broken
up into two parts: the particular solution and the complementary solution (Boyce and
DiPrima, 1969).

The particular solution involves the solution of the three-dimensional Laplace's equation
satisfied by the disturbance potential:

0 2  
2 9 2  0(8)-OX2 + -y2 + - Z2 8

with zero boundary conditions

T(x = Oy, z) = 0 (9)

T(x = A,y,z) = 0 (10)

T(x, y =0, z) = 0 (11)

T(x,y = B,z) = 0 (12)

T(x,y,z = ±oo) = 0 (13)

13
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Figure 2: Local White Noise Layer Model
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but non-zero sources specified as a two-dimensional white noise layer such as

E{-g-(xx, Y z) I a=-D X-x 2 ,Y-,z)lIo=-} =06(xi -- Y2) (14)

O < x1 ,x 2 < A O < y,y 2 < B z = -D

The complementary solution involves the solution of the three-dimensional Laplace's equa-
tion satisfied by the disturbance potential:

02 02 02
-x2 + -y 2 + z 2 T (15)

with zero sources

T =0 (16)

0<x<A 0<y<B -oo<z< +00

but non-zero boundary conditions

T(x,y = 0,z) = f,(x) (17)

T(x,y = B, z) = f 2(x) (18)

T(x = O,y, z) = g,(y) (19)
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T(x = A, y, z) = 92(y) (20)

T(x,y,z = ±oo) = 0 (21)

In the sequel, only the particular solution is addressed. The complementary solution is

zero if the boundary conditions are assumed zero. The rest of this development assumes

zero boundary conditions thereby eliminating the need to address the complementary
solution any further.

2.5 Series Representation of Potential Function

The basic approach to the solution of the problem is obtained by representing the scalar
field T(x, y, z) in a series expansion as follows

T(x, y, z) = E E ammn(x, Y, Z) (22)
m=1 n=1

The above representation of T(x, y, z) implies that

M N

T(x, y, z) = .i.m. E E amnmn(x, y, z) (23)
M -0 0 m=1 n=1

N .oo

where L.i.m. is the limit in the mean square sense such that

(~ MN

l.i.m. E T(x,y,z) - E amnq¢mn(x,y,Z)1 2  0 (24)
M 0-*0 m=-1 n=2-
N -. cc

where E is the statistical expectation operator and the functions On(X, y, z) are complete

and square integrable.

Reflecting on equation (22), we observe that by this representation we have separated
the random variation from the spatial variation of T(x, y, z). The randomness of T(x, y, z)
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is included in a .... which is a random variable but independent of any spatial variation.
The spatial variation of T(x, y, z), on the other hand, is completely included in 0.mn(x, y, z)
which is spatially varying but statistically a deterministic function.

2.6 Particular Solution Spatial Functions

The solution of equation (8) with zero boundary conditions given by equations (9) through (13)
is given by using the representation of equation (22) as

T(x, y, z) = E a,,,,n sinaxsin b,ye-'c" +DI (25)
rn=I n=1

where

m 7ram - (26)
A

b, = r - -(27)

Cn = (am + n 2 (28)

and an are the unknown random coefficients of the series solution.

2.7 Karhunen-Loeve Uncorrelatedness of Series Coefficients

The series representation of the disturbance potential given by equation (25) is represented
as a Karhunen-Lo~ve Series (Davenport and Root, 1958). by enforcing the condition of
uncorrelatedness of the random variables cmn implying that (Papoulis, 1965).

E(amnak) = \mn6mk6nl (29)
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where \ mn is the correlation of the random variables a, and the Kronecker delta function
is

4j (30)

2.8 Autocorrelation of Random Variables

An expression for the correlation of the random variables is now obtained by utilizing the
condition of uncorrelatedness of the random variables and the two dimensional white noise
layer source at depth D.

From equation (25)

.9kT = 2(- sgn(z + D))k z s (31)
'j Z-kV'A-- .,=n= 1 Mn (31

Substituting equation (31) in the left hand side of equation (7) yields

E j[Zk~z,,z z- -fZk (X21,Y21 Z) 10z=-D

4 00 00 ° 00 00k "k •
- A-'E L J E(amnaki )cctsinamxl sin bny, sin akx2 sinbiY2

m=1 n=1 k=1 1=1

(32)

Substituting equation (29) in equation (32) reduces the quadruple summation to double
summation such that

EfkT ( \ OkT" 10-kT

{ k (,zI=-OD x -5(X2,Y2,z) Z=-D

18



I I _I I I i-i,

= A--'B Z C sin axl sin b,,y sin amx2 sin b y2  (33)
m=1 n=-1

4 2k0C 00

A .. k n sin amxi sin amx2 E sin by, sin by 2  (34)
m=1 n=1

where AmnC2' is assumed constant. Now, using the series representation of Dirac delta
functions

2 00
b(xI - X2 ) - Z sinamxl sin amx2 (35)

A m=1

and

2 00
6 (yi - Y2)= sin b yI sin b, Y2  (36)

n=1

in equation (34) yields

E {I' (x, y,, z) I.=-D x (X2, Y2,Z)Iz=-D}

_2k 6(X

- ,AmneCmn, - x2)6(yI - Y2) (37)

Substituting equation (37) in equation (7) gives

),cmn5(xi - x2 )6(yI - Y2) = ao6(x1 - x 2 )6(y, - Y2) (38)

which leads to

=mn (39)
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This is a consequence of assuming a white noise layer. In principle, this assumption could
be relaxed to permit any covariance representable in the form given by equation (33). It
should be obvious, however, that bounded stationary covariances are ruled out by the zero
boundary condition.

2.9 Non-isotropic, Non-stationary Covariance

An expression for the covariance of the disturbance potential is easily obtained by using
equations (25) and (29) as follows:

RTT(Xl, Y1, zI; X2 , Y2, z2 )

SE {T(x, y, z)T(x2 ,y2,z 2 )}

2

E, -_ E 1 ' mn sin amx1 sin b,,yjei.... +Dl

x ZZ aki sin akx2 sin bi 2 e- ck l z +

k=1 1=1

4 0'0 00 00 0 _ DjC j2

=A-B E -E E(a,ak) sin ax, sin b,,yl sin akx2 sin by+
m=1 n=1 k=1 1=1

- , Z 1\ ..n sin amx, sin bny1 sin ax2 sin bny 2 eC- ' (I +D,+1z2+D,) (40)ABm=1 n=1

0 < x 1 ,x 2 < A 0 < yi,y 2 < B - D < z 1 ,z 2 < +oo

Note that for z 1, z 2 > -D the vertical variation is given as (zi + z2 + 2D) which has the
right form as shown by Moritz (1980) [page 1711.
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3 SENSOR MODEL

3.1 Introduction & Summary

In this chapter the mathematical model of the gradiometer sensor is examined. Beginning

with the basic definition of the three (3) inline and three (3) crossline gradiometer out-

puts in terms of the disturbance potential a set of six (6) basis functions are defined in
terms of the Karhunen-Love series expansion of the disturbance potential. These basis

functions are shown to be orthogonal within the survey region both individually as well

as cumulatively. An expression for the autocorrelation function of the six (6) gradiometer
signals taken together is obtained in terms of the basis functions and the autocorrelation
of the Karhunen-Love coefficients. This is then used to derive an integral equation for the

gradiometer signal autocorrelation function. The measurements of the inline and crossline

gradients are contaminated with additive noise whose autocorrelation function is assumed
to be a diagonal matrix.

3.2 Gradiometer Signal Representation

The gradiometer sensor signal S(x, y, z) has six (6) components: three (3) inline signals
and three crossline signals. The six (6) signals of the gradiometer are given below

S,(x,y,z) I ( _ -2 T (41)

1 (a2 T _ 42)T
S 2(x,y,z) - (42)

1(a 2 T a 2T
2 z2 ax2J

S 4 (X,Y, Z) -(44)
q9 zoy

S 5(x,y,z) - 2T (45)
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S6(x,y,z) - 8zT (46)
Ozax

3.3 Definition of basis functions

Taking the appropriate partial derivatives of equation (25) and substituting in equa-

tions (41) - (46) gives

00 00 1 'I-c nzD

Si (x, y, z) = Cm Z a.,sinamx sin b,y -- (am. - b.)ec .. z+Dl (47)
rn=l n=l A-B

0" 0012 -- zD

S 2 (x, Y, Z) E E &_mf sin ax,,sin by (c, +b (48)
m=l n=lrABm 

n

S3 (x,y,z) = a sinasinb y -- (c.n. + a2e -c lz+ D l (49)

m--1 n=l

S 4 (x,y,z) = Z mncosamxcosbnYj2abncmn z+Dj (50)
m=l n=lI

"0 00 ~ ~ -2 gn(z + D) zD

s(x, Yz) = E E .i sin a so x n D bnCmnec-c+'} (51)
m=l ~

00 
}m o .2snz ) -m zD (52)

56 (x, Z) = E 0 E o ax sin bn { AB -2 (z+D
m=2 n=l2
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at z =H these become

00 00

S, (x, y) E 1: a. in aflx sin b,,y ( ,Cnl l(3

m =1 n=1 
__ __ __ __ __ __ __m_ __n_

00 00 1 1H D

S 2 (X, Y) = am7 n sin a. x sin b,, y j C n + b)e-c-I+D (54)

,ii1 n=1 ____________________m_______ I__

S 3 (X, Y) = Z mn sinamx Sin bny - n+a ,cnH (55)

S4(X, Y) F Z : Z mncos amx cos bnY 2 mn-- HD (56)
m=1 n=1 ________________________

S5 (~y = 00 00 (-2 sgn(H + D)b ec IH+D'

S5(,Y Z :F Zmn sin amxcos bid y if???bcme- (57)
m=?1 n1=1 f_______________________I___________

S6(X,Y) = w1 Z mn cosamxsin bnY 2 sn +Damcmne-c" IH+D1 5  (58)

Representing all six (6) signals of equations (53) through (58) as a vector signal S(r, y)

such that

S(X,Y) [SI(X,Y) S2(X,Y) Sa(X,y) S4(X,Y) S5(XY) s(Xt, )T (59)
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we obtain

c 00 6

S(XY) = FI Z emn,,,.,(x, Y) (60)
,nl n=l i.- l

= amntkmn(x, Y) (61)
m=l n=l

where the individual basis functions Omni are defined as

O/mnl - sina,m xsinbny I-A (amb 0 0 0 0 0 (62)

tkrnn2 = 0 sina.,xsinb, y { (A,(c + b )e -c " IH+DI}00 (63)

22)ec-nH+D}

Vmn2 = 00 sinamxsinbnY 1{=B-n + a 
"  000

m,3 0 0 0cos a x cosn b {y n 0a]

2Ymn
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q

0 0 0 0 sinamxcosbny -2sgn(H+ D) IH+D} 0 (66)

0000 0 cos amx sinbny 2 sgn(H + D) amcmn - c " H+DI (67)

L Tmn6

and the cumulative basis function Omn is the sum of the individual basis functions mni

6

011.(XIY) = O.n,(X,y) (68)
i=1

3.4 Orthogonality of Basis Functions

The particular choice of basis functions given by equations (62) - (67) is particularly
desirable because they are orthogonal. Orthogonality of these basis functions is examined
by evaluating the integral

rx=A[=
=0O (X=0 TJxY)Om"i (X, y)dxdy

for each combination of i,j where i = 1,2,3,4,5,6 and j = 1,2,3,4,5,6. For example,
consider j = 1 and i = 2, then

0

-Ymn2 sin amx sin bny
[x=A j,=B [,yk, sinakXsinbty 0 0 0 0 0] 0 dxdy

z =0 Y=o 0

0
0

=0 (69)
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But, when i = = 1, then

^Ymni sin amx sin biy
0

= A (h'kIsin akx sin bly 0 0 0 0 01 dxdy

0
0

= A JyB 7ku1 mni sin akx sin bty sin amx sin bnydxdy

=kilW0mnl sin akx sin amxdx j=o sin by sin bnydy

=Il^(n AB 6m t(70)

"Ykll rrlmkn

4

The above results can also be shown to be true for other i, j values using the following
identities:

(,A sin , A,

JXAsin am x snak xLx = A2m (71)
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B B
sin b,,y sin bydy = 6. (72)

x=A A
=O cosamxcosakxdx = .t mk (73)

y=B B
=0 cos by Cos blydy = 2&j (74)

where am, ak, b,, b, are defined in equations (26) - (27). Thus, individual basis functions
defined in equations (62) through (67) are easily seen to be orthogonal satisfying the
orthogonality condition given by

=A fy=B ' (xy)O,,.i(x, y)dxdy =A (75)
k~~jy>Yk~I'Ymnt~mk 6nL6 :(75

The orthogonality of the cumulative basis functions is examined as shown below.

[=J'II=B',T~ lPdxdy

=:A jy=B [-ymni sin amx sinl b,,y -Ym,,2 sin am x sin b, y Yn3 sin amx sinl b,,y

^Imn4 Cos a,x cos bny YmnS, sin am x cos by Y,,,6 cos am x sin b.y]

7yk1 sin akX sin bly
7kt2 sin akx sin bty
y 43 sin akx sin bly dxdy
Yk14 cos akx cos bly
7ki5 sin akx cos bly
7tk:r cos akX sin bly
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xJA sin amx sin akxdx j~Bsin b,,y sin biydY

+'Ymn^fkl2 sin mx sin akxdx sin b,,y sin bi ydy

+Tmni37kl3 1 zA si a,,,x sin akxdx jY=B sin b,,y sin bi ydy

+^fmn4^fk(4 J( =A csax cos Gkxdx Y cos b,1Y COS bLydy

2R

+7Ymn567kL6 sinA a,,,x csi akxdx coBsi b,,y Cs bydy

2 2

^mnlYklI AB 65k
6 .l + 7mmn21'k12 -B 

6 mk 6 ni
4 4

+^fmn'Ykl3AB bkbnl + 'Ymn4'fk14 AB bmt
6

n
+Yn 4kL 4
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AB AB+Ymn5S')kJ5S----kinL + Ymn67kL6 -
6 m 6,ii

4 - {~7, 1 + 7rn2 + r,2n3 + 72n4 + 7Ins + 7,nn6 bmk 6 n

AB 6  (76)
E Zfmni----6mk6ni

where the -'s are defined in equations (62) - (67). Thus, the cumulative basis functions

are also orthogonal satisfying the orthogonality condition given by equation (76).

3.5 Measured Signal Autocorrelation Function

An expression for the autocorrelation function of the gradiometer signals can be obtained

using equations (60) and (29) as shown below:

Rss(xi, yI; X2, Y2)

= E {S(X1 (, )ST(X2, ,2)}

n l i=1 L ij ---I11=----I

co 6 cc 6 Z Zm )t/(x2, Y2)

m=I n=1 i=1 k=1 1=1 j=1 =1
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o0 co 6 6

- ,.,ZZ tmi(XtYl) M j(X2,Y 2 ) (77)
m=1 n=1 i=1 j=1

where Amn was defined in equation (39) and nmni is defined in equations (62) - (67).

3.6 Signal Autocorrelation Integral Equation

An integral equation for the measured signal autocorrelation function Rss can be obtained
using equations (77) and (75) as shown below:

I 2 =A2 =B Rss(xiyi; X2, Y2 " ,'ni(X2,)y2)dX2dY2

.' 2=0 =0 kl= l l

= o
2 = A - B c 6 6

Yz0 32= Ai~ Z)k10Ik~t(X1 , YIiV) ),(X 2 , Y2)lkmnh(X2, Y2)dX2dy2

Z LL .,k~x,,,.,:,Y,)I I _ V..' j(x 2 ,y 2 )?,,,,,.Tx,,y2)dxedy2
k=l /=I i~ =1 J Z=0 JV2 =

cc,,6 6 AB

k= 1=1 t=l j=l

AB 6 (8
= myn E O"m"nt '"(x" YO) (78)

4 t=1

3.7 Measurement Noise Representation

The measurement Z(x, y) at z = H of the gradiometer signal S(x, y) is contaminated with
an additive noise V(x, y) such that
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Z(x,y) = S(x,y) + V(x,y) (79)

The autocorrelation function of the additive noise is assumed to be a diagonal matrix such
that

R~v (X1, Y; X2 ,Y2 ) = {V(X,,y,)VT(X 2 ,y2 )} (80)

0 0 0 0 00

o 0 a3 0 0 0 6(xri - '2)6 (yl - y2) (81)
0 0 0 07 0 0

0 0 0 0 a2 0

0 0 0 0 0 a2

The vector signal S(x, y) and measurement noise V(x, y) are assumed to be uncorrelated,
i.e.

E {S(XI,YI)VT(x 2 , Y2 ) = {V(X1,y, )ST(x, Y2)} 0 (82)
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4 ESTIMATION ALGORITHM

4.1 Introduction & Summary

In this chapter an estimation algorithm is developed in the continuous domain. Thus,
herein it is assumed that measurements are available in continuous form throughout the
survey region. A linear mean square estimation is proposed from which it is shown that
estimating the disturbance potential or any functional of the disturbance potential such as
the gravity vector or the gravity gradients is equivalent to simply estimating the Karhunen-
Leove coefficients. Exploiting the orthogonality principle of linear mean square estimation
and the uncorrelatedness of measurement noise and signal leads to a vector integral equa-
tion involving the matrix autocorrelation function of the signals to be estimated. This
vector integral equation involves the estimator gains which are represented by means of
the same orthogonal basis functions with the unknowns being the coefficients of the ex-
pansions. An explicit solution of the vector integral equation is then obtained which leads
to a closed form solution of the coefficients in the estimator gains. Thus, the estimates of
the Karhunen-Love coefficients are expressed in terms of the coefficients of the estimator
gains and measurements integrals of the six (6) gravity gradient measurements. A key re-
sult is that the Karhunen-Lo~ve coefficients are estimated utilizing all the gravity gradient
measurements simultaneously. Once the Karhunen-Love coefficients are estimated, the
disturbance potential, gravity vector components or gravity gradients can be estimated by
utilizing their functional relationships to the Karhunen-Lo~ve coefficients.

4.2 Linear Mean Square Estimation

The desired smoothed estimate S(x, y) for the six-dimensional vector signal S(x, y) given
by equation (59) is obtained by minimizing the mean square error between the signal
S(x, y) and its estimate S(x, y) under a performance index J(x, y) defined as

J(x,y) = E {IS(x, y) - S(X y)1'} (S3)

The optimal estimate S(x, y) which minimizes the performance index defined by equa-
tion (83) for every point (x, y) in the domain D defined in equation (1) at the measurement
altitude z = H is given by (Papoulis, 1965)

S(x, y) = E {S(x, y)fZ(u, v)) (84)
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O<u<A O<v<B

where the measurements Z(u, v, H) are taken over the entire domain D(u, v) at altitude
H. From equation (60) we deduce that

oo oo) 6

XY) = E &mnOns(XY) (85)
m=1 n=1 i=1

from which we conclude that obtaining S(x, y) is equivalent to simply estimating &mn from
the given measurements Z(u, v). If we assume a linear estimator this can be written as

O Jmn = I=ZT(XY)Kmn(xy)dxdy (86)

where &,, is a scalar and Z(x, y) and IKmn(X, y) are each 6 x 1 column vectors representing
the survey measurements and the estimator gains respectively. In the case of Gaussian
statistics, the linear estimator given by equation (86) is equivalent to the general estimator
given by equation (84).

4.3 Application of Orthogonality Principle

For linear mean square estimation the orthogonality principle is given by (Papouliq, 1965)

E{fZ(xi, yj) [S(X2 9Y2 ) - -(X 2,7Y2 )] T} = 0 (87)

Substituting equations (60) and (85) in the left hand side of equation (87) leads to

E {Z(xi,Y0 [S(X2.y 2) - §(X Y2),T}

E0 ' oo oo 6
= n=1 i----1 = n=1-- i=3
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-E {Z(x1~yi) [~ 00 o 6m),mn
2 ?2)1

-~~~ E: { Z(xOyi) - 6mT.)/)ni(x2, Y2)}

m=1 n=1 i=

= E IZ(x,) ( - &m.)i.i(x 2 , y2)}

- Z Z E Daiyi(mn mn)} (X 2 , Y2)

m=1 n=1 i=l

ZZ(X, y )(a Zi)( -&mn Y2)
km=l n=1 i=1

,j j: jZ x,y -c...-& ,(X2,Y2)
m=1 n=1 i=1l

=E {Z(l, y)(Qnn, - 5.m)}

which implies

E {Z(x,yI)am.n} = E {Z(x,,y,)&m.} (88)

4.4 Uncorrelatedness of Measurement Noise and Coefficients

Substituting the signal representation given by equation (60) into the left hand side of
equation (82) leads to

E {V(XI, YI)ST (X 2 Y2))

EV(X1 , 1 ZO Zamnikmn(X 2, Y2)~

34



E E{V(xi, yi) 6E Z amn m n:X2, Y2)}

0 06

1:1 Z : Z E{V(XI, YI)mn)PmniX 2 , Y2 )
m=1 n=1 i=1

= E {V(xi, y, )a,.n

which implies

E {V(xl, yl)oam. = 0 (89)

4.5 Integral Equation of Estimator Gains

A vector integral equation involving the matrix autocorrelation functions of the vector
signal S(x, y) and the vector estimator gains K.,(x, y) can be obtained as follows:

Using equations (79), (89), (60) , and (29), the left hand side of equation (88) simplifies
to

E {Z(xi1, yi)am.

E {fS(xi, yi) + V(xi, yi)1&].a,

E {S(xi,y,)amn} + E {V(xi,yl)a,

{5 61 a-

E E ZZ akOkII(XI,y) Y m

[k= =, 1 )=
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00 oo 64 E= OI,.jVkjXY
k=1 1=1 j=1

oo cc 6
E : A k1 6

,kbnttkktl(XI, Y')
k=1 1=1 j=1

6

=Amtn E mp.j(xl, yi (90)
j=1

Using equations (86), (79), (82) , and (80), the right hand side of equation (88) simplifies
to

E { ZXI, Y1 )61.n I

~E{IZ(x, y')L f/B ZT(X,, Y2)-Kmn(X 2, Y2)dX2dY2}

(~z 2 =0 Y2=0.

-E j__Zx, i), 2 y 2 )Km.n(X 2 , Y2)dx2dy2}

z2=jY 2  Vx, 2 ]TC0nxY)rd 2

-E jjx= y [S(XI, Y1 ) + V(XI, Y1 ))[S(X2,Y2 )+ (2Y2]TI.XY)dd2

'r = I B E{S(XIyi VTYx ,y 2)
x =0 [E{S ~iS(X2 , Y2 )} + Ef(, IVX2Y))+ Ef(ry S(2 2
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+ E{fV(X1 , Y1 )VT(X 2 , Y2 )1] Km.(X2, Y2)dX2 dY2

1 JA {2-BRss(x, Y;X2, Y2) + Rvv(xl, yI; X2, y2)} K,(X 2, y 2)dX2dy2  (91)
JX2 0 dY2 =0

which is known as the Wiener-Hopf equation. Equating equations (90) and (91) yields

S{Rss(xi, y,; x 2 , Y2) + Rvv(xi, yi; X2 , y 2 )} Kmn(X 2, Y 2 )dX2dY2 = Amn E ¢knj(xyi)d.r2 =0 dy2=O j=l

(92)

4.6 Orthogonal Representation of Estimator Gains

The vector estimator gains Km.(x, y) of the linear estimator given by equation (86) can be
represented by the orthogonal basis functions given by equations (62) through (67) such
that (Morse and Feshbach, 1953)

Ii.,, xy)= k,3 Oktj(X, Y) (93)

k=1 1=1 --1

4.7 Solution of Estimator Gains Integral Equation

The estimator gains Km,(x, y) given by equation (93) have the basis functions kkl,(x, y)
which are known as given in equations (62) through (67) but the 1 's are yet to be

determined. An explicit expression for the f3lj's is obtained by solving the vector integral
equation (92) as follows.

Using equations (93) and (78) in the first half of the left hand side of equation (92)

yields

z,=Afv=Bd

Rss(x, Y; x, y2) X)2, 9 y2 )dx2 y

= Zf2 = 0 k =l 1= 1 j =
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00 00 6 2z=A ,y 2 -B

- Z ,6 k*- j_ Rss~xi,y; X2, Y2)04l1 (X2, Y2 )dX2aY2
k=1 1=1 j=1 12 =0

00oca 6 6A
-J! AB-Aki7kIj~kkU(X4Y1)J

k=1 1=1 j=1t=

AB 0o 00 66 -~Ik
-4 E E E E,k, -ftk (X1,IYO 94

k= ,= =1 t=1

Using equations (81) and (93) in the second half of the left hand side of equation (92)
yields

1
Z2=A = Rvv(xi, Yl; X2, Y2)Kn(X2, Y2)dX2dY2

O2 0 0 0 0 0 0
o O.2 0 0 0 0 0

= 1,,A 4,=B 0 0 g3 0 0 0 0

]2110 0 0 0 0,2 0 0 0 b(X1-X 2)6(yi-Y 2)Kn(X2 , Y2 )dX2dy 22 00 0 2 0 0
0 0 0 0 01u

0 0 0 0 2 0

a~00 0 0 0 0 001
0 ~0 0 0 0 0 0 Or

00 0 0 000 0 06

0 2 0 0 0i 0 0 k==11

02 0 0 a0 0 w 0

0 0 0 0 0 0 U
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, ~ ~ ~ I YII Ii

oo 6

= .2 o nj,/3T 4,,(x,.yli) (95)
k=I 1=1 j=1

The necessity of a diagonal representation for the measurement noise covariance Rvv
is clear in the derivation of equation (95). Unless, Rvv is diagonal, the last step of
the derivation of including the variances aJwithin the summation is not possible. This
ability to include the variances within the summation sign greatly enhances the analytical
tractability of the estimator gains. Substituting equations (94) and (95) in equation (92)
leads to

AB 0 0- 6 6

k=l L=1 j=l t=I

o 6 6

+ EI E EI 0'fl0k7I/"'k 1(XI, YO) = A., Z /mn(i, ) (96)
k=1 1=1 j=l j=1

which can be written as

00 00 16 [ABa -t~2~ / 6 + ,20,-n4 6

k=1,=1 j=l --' ' 4 v, j¢,( ., +m E],7 ~, Omn ¢ (XI,.,)
t=l. j=

(97)
Since the right hand side of equation (97) contains no summations on k or 1, a unique..
solution to equation (97) exists if and only if m = k and n = I such that

I3m7 = flmnjfimk6nl = { fl mn, when rn = k and n = 9
kj 0 when mn k or n: 1 (98)

Using equation (98) in equation (93), the estimator gains Kn(x, y) reduce to

0oo 6
K.n(X,y) = ZZPfj7,J(x, Y)

k=l 1=1 j=l
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00 oo 6

-: E Z : Zk~ flni~kv? (X, Y)
k=1 1=1 j=1

6

- , , j ) (99)
j=

An expression for the fl,j's in equation (99) is obtained by substituting equation (98) in
equation (97) and solving the resulting equation given by

6 1 AB nj 6 }6

4 jnni)lm) n Eikmnt(Xi,Yi) +C mni'nn1 Xj i) Amn Zt nj(xi, yi)
=t= j=1

(100)
Multiplying the second term of the LHS by E'1 6 t, renaming the dummy index j to t on
the RHS, and rearranging yields

4 Z Amn Inni + firOnn,\.~n} Oknnt(XI,Y)=0 (101)

By the linear independence of the 2Pmnt(XI, yi) equation (101) reduces to

6 AB \,_2 + o2

4 Innio~ fly.n = \n(102)

which can be written in matrix form as

AB , 2 mAB n 2 AB nn M

4 "n'Mn2 ... mn mn Omni

AB 2 B.,2 BOr2 AB A n,,2mn6 /3 mn2
4 "',---,nn- -Tm 7,,,,2 2 -4... .,S 3,,2A,

AB\n -f2 .ABmnn^2 - + Imn6 (103)
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By using the method of Gaussian elimination, equation (103) can be solved to yield

Omni , (104)
ea? + LAn 6(' 4 m ~1G

which can be also written as

Omni = TA( 1rnnYIj=l,j=i) (105)

rJ6, 0n,2, + ABA (F : r16=,+# ) 0,2(05

where the -my,,'s are given in equations (62) - (67), Amn is defined in equation (39) and
the i's are introduced in equation (81).

4.8 Continuous Domain Measurement Integrals

The estimates of the Karhunen-Lo~ve coefficients cmn are given in terms of the measure-
ments Z(x, y) by equation (86). Using equations (99) and (62) through (67) in equa-
tion (86) yields

,n,= ZT(X, )Kmn(Xy)dxdyx=0 "=O

= r=A ,y=B ZTX )6

L=0 ~=~ZT~, I) x /3nj0nj(XT, Y)dXdYX=O Y=O j=1

= x=A j'=B ZT(r, Y) mni 0,nnI (x, Y) + In.2tn 2 (., Y) +± ,/n0n.3(, y)

+/3mn4 k.n 4 (X, Y) + /3mn 5 'k n5 (, Y) + 3mn61.mn6(X, y) } dxdy
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fn syin a. xsin b,iy 0
0 Ymn2 sin am x sin bny

J=J=Z xY) fln 0 + Omn 0

I0 0
0 0

0 0 0
0 0 0

+,Omn3 'Ymn3 sin am x sinl bn + 0imi +, ..mn5 0
0 ^tn4 Cos am, x Cos b 0
o 0 fmn5 sinfamxcos b, y
o 0 0

0
0

+ Omn6 0 dxdy
0
0

7mn6 cos a~x sinl bnY

I'=" ]y= [Z (X, Y) Z2(X, Y) Z3(X, Y) Z4(X, Y) ZS(X, Y) Zs(X, Y)]

A~nni T(mni sinl am x Sin bnY

/3mn2-Ymn2 sin am x sinl bnY

x / 3mn3-tmn3 sin amx sin bnY dxdy
/ 3mn4'tmn4 Cos am x Cos bn y
)3mnStmnS sin amx cos bnY

An7-mn6 cos am x sin b. yj

"" jA B f Zi(X, Y)flmnl mnl sin amx sinlbnY+ Z2 (X, Y)#3 mn27rnn2 sin amx sin b,,y
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+Z 3 (X, Y)/3 mn3-fmn3 sin amx sinl bnY + Z 4 (X, Y)/3 mn4'Vmn4 cos amx cos y

+ZS(X, Y)/ 3 mnS)'mn.5 sin amx cos b,~y + Z6(X, Y)/
3 mn67fmn6 cos amx sin b,,y

iOmnlgYmni f= yBZi (x, y) sin am xsin bn ydxdy

+/3 mn2Ymn2] ]xAf= Z 2 (X, y) sin amx sin bnydxdy

jA , yB

+flmi3'Ymn3 1 z0 
1 Y= Z 3(X, y) sin amx sin b,,ydxdy

+/ 3 mn4Ymn4 jxA JIFB Z 4(X, y) cos amx cos bnydxdy

+f3m1 5symn5 jx= Jy=B Zs(x, y) sin amx cos bnydxdy

+) 3 mn6Yfmn6 jx= JyA9 Z6,(X, y) cos am x sinl bnydxdy

/3mnlfmni~j(mnjfn) + flmn2l7m.2Z2(m,fn) + / 3 m7n3yfmn3Z3(m, n) + flynn4mn4Z4(m,fn)

+I#mn57rmn5ss(m, n) + ImneS'mls2s(M, n) (106)
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where

ZI(m, n) = f j= Z,(x, y) sin a,, z sin bnydxdy (107)
.=-O J=O

2 2 (mn)= Z 2(x, y) sin a, x sin bydxdy (108)
JX=O V1=O

23(m, n) = v= A j-B Z3(x, y) sin amx sin b,,ydxdy (109)

2 4(m,n) = Ay= Z 4(X,y)cos ax cosbnydxdy (110)

Z 5(m, n) = j Z 5 (X, y) sin a, x cos bn ydxdy (I11)

2 6 (m, nz) = j,= jy Zr,(x, y) cos amx sin b,ydxdy (112)

Thus, it is clear that if equations (107) through (112) can be evaluated and substituted in
equation (106) along with the /m,,'s from equation (105) and the 7",i's from equations (62)
through (67) then the estimates 5.mt of the Karhunen-Lo(ve coefficients can be obtained
from equation (106).

4.9 Signal Estimates from Coefficient Estimates

Once the Karhunen-Lo~ve coefficients are estimated, the signal estimates are easily ob-
tained from the basic representation of the disturbance potential T(x, y, z) given by equa-
tion (25). Thus, at any spatial point (x, y) in the local region defined by equation (1) and
any altitude h, the estimates of the scalar disturbance potential, the three components of
the gravity vector and the six elements of the gravity gradients are as given below:
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Disturbance Potential Estimate:

00 0-. ,+ D, (113)

T(x,y,h) = -&,, sina, -xsin by -(
m=1 n=1 ______________

Gravity Vector Estimates:

000 ( 2 _ h+D(1OT (x,y,h) E E &,n cosa,, xsinb.y ae(114)
Mn=l n=1 7A -----

6
mn2

5T00 00 { 2 e-mnh+DIl

WY(x, y, h) = E E &m sin acx Cos bnY 
(115) b

m=1 n=1

00n f -22sgn(h + D) C.e cmndh+DIl (116)

=x ,h E Zam sin amx sin InY Ij - Cm
6 (116

m=1 n=1

Gravity Gradient Estimates:

00 00

82To -2 2 -Cmn.lh+Dl (17

07T" h)=E E &mn sin a. sinbuy -2 (118)"qx, (x, y, -h m= lI n=1 'rA B

" 2 (x, y, h ) =  6 1m & , sin anx sin bn , fA B n (118)

ayml n=1 vw,
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-a 2( 2 -C,,nl.h+D(19

a-(z, y,h) ~ &mn sin ax sin bny V CmnC (119)

,9T mnosamx obn 2 mn-CnhD (120)
-Oc(x, y, h) E FZ &m cs mzco

82T f -r2 sgn(h + D) hD
=x y, h) mn snaxcos bnyj -B bnne-c-nhD1 (121)

4OY4z m1l nflI V

00 00

,92~~h = f -2noaxsni~ sgn(h +D) -c (122)

jz4X m~l nl ac
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5 DISCRETE IMPLEMENTATION

5.1 Introduction & Summary

In this chapter the practical problem of discrete measurements is addressed. The measure-
ments are assumed to be on a regular two-dimensional grid in the survey region. The data
samples are assumed to be evenly spaced in each direction although there is no restriction
that the sampling interval in either direction need be the same. This is particularly desir-
able since the measurement samples in airborne gravity gradiometry survey are obtained
at a much closer spacing (i.e. 1 Km) on each track even though the spacing between the
tracks is further apart (i.e. 5 Km). Since the measurement integrals involve sine and co-
sine functions a simple application of the Fourier transform formulas result in conversion
from integrals to summations. Restricting the spatial frequencies to finite values these
double summations are converted to simply left and right transformations involving sine
and cosine functions. Assuming that the number of coefficients in the Karhunen-Lo~ve
domain is equal to the number of measurements in the spatial domain then an obvious
and brute force approach to inverting the measurement integrals is by simply inverting the
sine and cosine transformation matrices. The obvious drawback of this approach is the
necessity to perform several large matrix inversions. An alternate approach which avoids
this drawback altogether is presented. This approach is based on the observation that the
sine transform matrices are orthogonal and that the cosine transform matrices also enjoy
an orthogonal relationship involving a Toeplitz circulant matrix of alternating ones (1)
and zeroes (0). Utilizing these properties the continuous domain measurement integrals
are easily discretized for the discrete grid of measurements without any necessity of large
scale matrix inversions. It should be pointed out that by this approach the transition
from the continuous domain to the discrete domain is exact and not merely a discrete ap-
proximation to a continuous algorithm. After this, the estimation of the Karhunen-Lo~ve
coefficients becomes a simple matter of point-by-point matrix multiplication (not row-by-
column matrix multiplication) and point-by-point matrix summation of the coefficients of
the estimator gains, the discretized measurement integrals and observation matrices asso-
ciated with each of the gradient measurements. Of particular interest, is the fact that all
the Karhunen-Lo~ve coefficients are estimated simultaneously using all the discrete two-
dimensional grid measurements of all the gradients. Once the Karhunen-Lo~ve coefficient
estimates are obtained two-dimensional grid estimates of the disturbance potential, gravity
vector components and gravity gradients are easily obtained by point-by-point multipli-
cation of the Karhunen-Lobve coefficient estimates with za observation matrix depending
on the type of signal to be estimated and subsequently performing appropriate left and
right sine and cosine transforms. As before, these transformations involve no matrix inver-
sions. In addition, the two-dimensional grid of signal estimates need not be based on the
measurement grid. A finer interpolated or densified grid can be used to obtain the grid
of signal estimates. Also this finer grid can be located at any altitude, not necessarily at
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the survey altitude by simply specifying the altitude parameters in the observation matrix.
Thus downward continuation is performed automatically.

5.2 Definition of Survey Grid

In order to obtain the vector signal estimates for all the spatial points of interest a definition
of the two-dimensional grid is necessary. For the present development the two-dimensional
grid of data points is defined to be equally spaced in each direction with K data points in
the x - direction and L data points in the y - direction. With Ax and Ay the grid spacing
in the x and y directions respectively the spatial domain D is given as

(K + 1)Ax = A 1<k<K (123)

(L + 1)Ay = B 1<1<L (124)

5.3 Application of Fourier Transforms

Applying the theory of Fourier Transforms to the continuous domain measurement integrals
given by equations (107) - (112) yields (Brigham, 1973)

4 ( ) Zl(m, n) sin amx sin b.,y (125)
AB m=1 ni=1

4 co 00

Z2 (X, Y) - E F, 2 2 (m, n) sin amx sin b. y (126)
m=1 n=1

4 00 00

Z3(x, y) E A: 2 3(m, n) sin amx sinb, y (127)
m=1 n=1

Z4 XY) 4 00 0
Z4(x,y) F (m, n) cos amX COs b. Y (128)

m=1 n1=1
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Z 5 (x,y) = Z Z Z(mn)sinamxcosby (129)
AB=I n=1

Z(xY) = 4 E E26(m, n)cosamxsinby (130)Z6(, y -AB , =I n=1

Limiting the spatial frequencies to

1<M<M (131)

l<n<N (132)

equations (125) through (130) become

4M N

Z,(xy) -B E E (m.,n)sina,xsinbY (133)
_= n=1

4 M N

Z'2 (XrY) AB E E Z2 (rn,n)sin a, x sin by (134)
I~ n--1

4 A N

Z3(.rY) = X F_ E Z 3 (rn)sina,.rsinbnY (135)

ml Nl

4 AM N

Z 4 (x,Y) = - 4 1: ' 24(rn, n)cosa.xcosbny (136)
m=1 n=l

4 Al N

Z s(x,y) = E 5Zs(,n)sinamxcosby (137)
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Z6 (x, y) = - Z 6 (m, n)cosaxsinby (138)
AB.I=1 n=l

Discretizing as per equations (123) and (124) such that

X= Xk <k<K (139)

y = 1<1<L (140)

and writing in matrix form equations (133) through (138) appear as

[Z,] -4 [SAX] [2i] [SAY]T (141)
KxL AB KxMMxNNxL

[Z,] -4 [SAX] [2,] [SAY] T  (142)
KxL AB KxMMxNNxL

[Z3] 4 [SAX] (2,] [SAyT
K A x A Nx (143)

1 KxL AD KxMMxNNxL

[Z41 -4 [CAX] [24] [CA]T(1
KxL A KxMMxNNxL(144)

[Z4 - 4 fSAXJ [2S [CA yjT (145)
KxL AB KxMMxNNxL
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[z6] - 4 CX] [] [SAY] T  (146)
KxL AB KxMMxNNxL

where

K, L - Number of measurements in spatial domain x, y plane
M. N - Number of coefficients in Karhunen-Lo&ve domain

and

[Z(X],w) ZI(X],Y2) ... ZZ(X(,yL)
Al Zl(X 2, Y) (148)

KxL : 3x~,L

Z 4(x-,y1 ) ...y ... Z 4(X,,yL)

Z2(xl,Yl) Z2(--r,Y2) ... Z 2(xI,YL)

[Z21 Z2(x2,y) 1 (148)

Z2(xK,yI) "' Z2(XK,YL)

Z3(XI,yl) Z3(XI,y2) ... Z(xIYL)

[Z31 Z3(X2,, YO (149)

Z3(XK, I) ... .. Z3 (X K, L)J

Z4(xI, Yl) Z4(XJ, Y2) ... Z4(XI,YL)

Jz4] = z4(X2, YO :(1o

Z4(xK, YI) .. ... Z4 (X K, L)
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Z5(Xl,Yl) Zs(XI,Y2) .. Z5 (X1, YL)

[zKJ ] (151)

Z5(xK, yI) -.. Zs(X,, yL)

Z6 (xI,yi) Z6(X,,y 2)... Z(X,YL)

[K] = Z(x2,yi) x (152)
KxL :

Z6K, ) ... Z6(XK,YL)

sin7r(1 x 1)L_ sinir(1 x sinir(1 x M)A x

[SAX] = sin r(2x1) sinr(2x2)- .-. sin7r(2xM)-- (153)

sin 7r(K x 1)AX- sinir(K x 2)-- sinir(K x M)A--

cos r(1 x 1)- cosir(1 x 2 )-x ... cos7r(1 x M)- 1
[CAX] = cos7r(2 x 1)- cos r(2 x 2)- .- cosr(2 x M)(

cos r(K x 1)-" cos7r(K x 2)4- - cos7r(K x M)--

sin 7r(2 x 1)- sin r(2 x 2) - sin 7r(2 x L)2- (155)

sinir(N x 1)-Ay sin7r(N x 2)- -.. sinir(N x L) -

cos 7r(1 x 1)A -  cosir(1 x 2) " cosyr(1 x L 1l
[CAy)T cos7r(2 x 1)A cos7r(2x2) .. cos7r(2 xL (156)

NxL 
B

cosir(N x 1)- cos(N x 2) A ... cos(NxL)-J
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Thus,

AX 1<i<K
[SAX(i,j)] =sin r(i x j) A 1 < j <M (157)

[SAY(i,j)]T = sin ir(i x j)AY 1 < i < N (158)B I1<j:5_L

A X I<i<K 19

[CAX(i, j)]=cosir(I xJ) AX 1 < < (159)

AY 1 <i! <N

[CAY(i,j)IT = cos7r(i x J)-AY 1 < i< N (160)1<j L(10

5.4 Brute Force Approach Requiring Matrix Inversions

Assuming that the number of coefficients in the Karhunen-Lo~ve domain is equal to the
number of measurements in the spatial domain satisfying the conditions

M=K (161)

N=L (162)

then an obvious and brute force approach to inverting equations (141) through (146) is by
simply inverting the matrices such that

4A I-1 [z'] ((g,~y]T)' (163)
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[Z] AB

AB] [SAX]- 1 [Z31 ([SAy]T) 1' (165)

AB [A II [Zl ([sA lT)-1
[251 AB (A ]'[5 [ yT) (167)

[26] = 4 [CZAI11 (Z6 1 (1 S~yIT)-l (168)

The obvious drawback of this approach is the necessity to perform several large matrix
inversions. In the next section an alternate approach is outlined which avoids this drawback

altogether.

5.5 Alternate Approach Avoiding Matrix Inversions

Bose et. al. (1988) have recently shown that the particular matrices under consideration

here given by equations (153) through (156) enjoy the following properties outlined below:

1) Sine Transform matrices given by equations (153) and (155) satisfy the condition

[SAXIT [SAX] K + 1 (169)
KxK KxK 2

where [I] is a K x K identity matrix. The above condition leads to

([SAX]T[SAX])-l = K 2
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or

[SAX]-' 2 [SAX]T (170)

2) Cosine transform matrices given by equations (154) and (156) satisfy the condition

[CAX]T[CAXI K + 1 [(171)
KxK KxK 2

provided K is even and not odd and [C] is a K x K Toeplitz Circulant matrix of alternating
one's (1) and zeroes (0), a 4 x 4 example of which is

1 0 1 0
0101

[C]= 1 0 10 (172)
1C=' 0 1 0
0 1 0 1

The properties of Toeplitz Circulant matrices are such that

(2-I- (cI)- W - + (I] + 2[CI) K -even (173)

which leads to

([C A X IT [C A X I)_ = 2 ([ 1] + 2[ Q

K + 1

or

2
[CAX- K + ([I] + 2[CJ)[CAX]-' (174)

Using the assumptions given by equations (161) and (162) and the properties given by
equations (170) and (174) and the domain definition given by equations (123) and (124)
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in equations (141) through (146) yields

K xL =(K+l1)(L+l1) KxK KxL Lx L

[221 - AB [SAX] T[Z2 IfSAYI (176)
K xL (K +1)(L +1) K xK K xL L xL

[231 AB [SLXX]T(Z 3j(SAY (77
K x L (K +1)(L±+1j Kx K KxL Lx L

[241 AB [I + 2C] [CAXV[jZ4 [CAXY1[I + 2C] 18
K xL (K+1)(L±1) KxK KxK KxL LxL LxL(1)

[25 1 AB [SAX] T[Z 51[C~y1[I + 2C] (179)
K x L (K+ 1)(L+ 1) Kx K KxL Lx L LxL

[261 - AB [1 + 2C][CAXT[Z 61[SAy] (180)
K xL (K + 1)(L +1) Kx K KxK KxL LxL

5.6 Discrete Estimation of Karhunen-Lo -ve Coefficients

Representing ® as point-by-point matrix multiplication and not row-by-column matrix
multiplication, equation (106), under the assumptions given by equations (161) and (162)
can be written in discrete matrix form as

K xL K xL K xL K xL K xL K xL K xL
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±,3m,,3 0,93(m, n) 0 -mn,3 +±#,mn4 0 Z4(n, n) (9 mn-4
KxL KxL KxL KxL KxL KxL

+,3m5 0 25(m, n) 0 m.5 + A1nI6 0 Z 6 (m, n) 0 mn6 181)

KxL KxL KxL KxL KxL KxL

where the 0,mi's are given in equation (105), -ymnn's are given in equations (62) through (67)
and the Z(tn, n)'s are given in equations (175) through (180).

5.7 Two-dimensional grid estimates of signals

From equations (113) through (122) it is obvious that the signal estimates are available at
any altitude h. However, since the estimates of the Karhunen-Lo~ve coefficients are given
by equation (181) wherein &,,,, is available in a K x L matrix form, therefore, in order to
obtain the signal estimates the conditions given by equations (161) and (162) are necessary.
But the two-dimensional grid of signal estimates need not be based on the measurement
grid defined by equations (123) and (124). A finer interpolated grid defined by

(P + 1)EX = A EX < AX (182)

(Q + 1)EY = B Y < AY (183)

can be used to obtain the grid of signal estimates. Thus, utilizing this grid definition
along with necessary conditions given by equations (161) and (162) in equations (113)
through (122) yields the following two-dimensional grid of signal estimates.

Disturbance Potential Estimate:

[t) = [SEX]([& .] 0 [OmnI)[S rYIT (184)
PxQ PxK KxL KxL LxQ

Gravity Vector Estimates:
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P xQ PxK KxL KxL LxQ

T S2X(tmn 0 O])[C~2y] T  (186)
P xQ PxK KxL KxL LxQ

[ j [SrX([&mnl 0 [m I)SYT(187'.
P xQ PxK KxL KxL LxQ

Gravity Gradient Estimates:

(SEXI( [""1i0 [9mn5 J)(S~ryj (188)
P xQ PxK KxL K xL LxQ

[r = [SrXJ( [amnl &0,,,6 6 )[SrlYIT(S9

P xQ PxK KxL KxL LxQ

[aaTY3[~I &n OnI[~] (190)

P xQ PxK KxL KxL LxQ

5-T- ] = [CrXI([lmI [Om 8 )[C~yIT(1)

P xQ PxK KxL KxL LxQ



aazj = [S2X]([ ,] 0 (192)
PxQ PxK KxL KxL LxQ

[o Ej(Ir] [03 loo )[Sr~yjr
(13a8a~z = [CEX](&mn,, 0 ® v 1 DSY (193)

PxQ PxK KxL KxL LxQ

where 0 has been defined earlier as point-by-point matrix multiplication, 0,,'i's are defined
in equations (113) through (122) and

sin r(l x 1)1 x  sin r(1 x 2) .. sinir(1 x K) 1
[SEX] sin 7r(2 x 1)- - sin 7r(2 x 2) sin 7r(2 x K) -
PxK A: :4

sinir(P x 1) - sin7r(P x 2)1A- .. sin r(P x K)-i-

cos7r (1×x1) cos -(1×x2) 111 ¢ os -(1×,,K)
[CEXI _ cos7r(2 x 1) cos7r(2 x 2 ) ... cos7r(2 x K)-(1

PxK -:oi(x) oi(x) oi(x)

cos r(P x 1)-1- cos 7r(P x 2) cos r(P x K) EX

sinir(1 x 1)11 sin r(I x 2)- sinr(lxQ)

[SrY]T sin7r(2x1)-A sin7r(2x2) sin7r(2 x Q) (196)LB B: 16
sin7r(L x 1)1 sin r(L x 2)- sinr(L x Q) J-

cos r(1 x 1) --  sin r(1 x 2) -y -. cosr(l x Q)-]y
[CEy]T - cos7r(2 x 1)2F sin 7r(2 x 2)-i "'" sin r(2 x Q)B (197)

cosrr(L x 1)l sin r(L x 2) L .-. sin (L x Q) -
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6 CONCLUSIONS

6.1 Summary of Research Performed

A need to devise a methodology to process two-dimensional grids of gravity gradients at
survey altitude to yield gravity disturbance vector estimates at the surface of the earth,
motivated this research. The measured gravity gradients are the six elements of the gra-
dient tensor. An actual airborne gradiometer survey over an area 300x300 Km consisting
of bidirectional flight paths 5 Km apart with along-track sampling intervals of 1 Km will
result in approximately 220,000 measurements. The main problem with the determination
of the gravity field from airborne gradiometry is the huge amount of gradient data collected
during a gradiometry survey. The primary objective of this research effort was to solve
the problem of processing all the airborne gravity gradient measurements simultaneously
in a computationally efficient manner without neglecting gradiometer measurement noise.

The approach taken here is to exploit the marriage of physical theory of geodesy and
random process theory. The gravity signal model used is obtained by solving Laplace's
equation with the unknown mass distribution below the surface of the earth modelled as
a two-dimensional white noise layer representing the vertical derivative of the disturbance
potential to any pre-specified order. This results in a series solution of the disturbance
potential wherein the unknown coefficients of the expansion are forced to be uncorrelated
by invoking the Karhunen-Lo~ve condition. This resulting disturbance potential covariance
obtained from this model is both non-stationary and non-isotropic.

The six (6) gravity gradients being functionals of the disturbance potential were rep-
resented in terms of the Karhunen-Lo~ve series expansion of the disturbance potential
resulting in six basis functions. These basis functions were shown to be orthogonal. The
measurement model was chosen to be these six gravity gradients in the survey region con-
taminated by additive white noise. The estimation problem was to take all the six gravity
gradient measurements in the survey region and obtain estimates of the gravity vector
components at the surface. This estimation problem was shown to be equivalent to simply
estimating the Karhunen-Lo ve coefficients from all the gradient measurements.

Under the assumption of gaussianness of noise statistics the optimal estimator was
represented by expressing each Karhunen-Love coefficient as a linear functional of all
the measurement data. Each of these linear functionals was specified by an associated
weighting function. The form of each weighting function was found by employing the
orthogonality principle of linear mean square estimation theory.

The practicality of discrete measurements motivated discretization of the continuous al-
gorithm. Only equally spaced discrete points were considered. Continuous two-dimensional
measurement integrals were converted to summations by utilization of special orthogonal-
ity properties of sine and cosine transforms discovered during the course of this research.
The discrete algorithm turned out to be expressible as a sequence of matrix multiplications
without any necessity of matrix inversions whatsoever. It was shown that for evenly spaced
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data points the discrete algorithm derived is exact and not merely an approximation to a
continuous algorithm.

Once the Karhunen-Lo~ve coefficient estimates were obtained from discrete data, two-
dimensional grid estimates of the disturbance potential, gravity vector components and
gravity gradients were easily obtained by point-by-point multiplication of the Karhunen-
Lo~ve coefficient estimates with an observation matrix depending on the type of signal
to be estimated and subsequently performing appropriate left and right sine and cosine

transforms. As before, these transformations involve no matrix inversions. In addition,
the two-dimensional grid of signal estimates need not be based on the measurement grid.
A finer interpolated or densified grid can be used to obtain the grid of signal estimates.
Also this finer grid can be located at any altitude, not necessarily at the survey altitude
by simply specifying the altitude parameters in the observation matrix. Thus downward
continuation is performed automatically.

6.2 Highlights of Research Achievements

A methodology of post-mission data processing for the gravity gradiometer survey system
is presented. The highlights of the technique include:

1. The model is derived from the physical theory of geodesy and is not based upon
empirical assumptions of correlation functions or power spectral densities.

2. Model can accommodate multiple two-dimensional white noise layers below the sur-
face of the earth.

3. Each layer can model the vertical derivative of the disturbance potential to any order.

4. Non-zero boundary values for the disturbance potential on the exterior of the survey

region permitted.

5. The model is such that at any given spatial point the gravity field's correlation with
neighboring points is preserved and correlation in any direction is not ignored.

6. The correlation of the gravity field with increasing distance is not ignored.

7. The estimation algorithm does not enforce any unnecessary limitation of causality
on the data inasmuch as no one-dimensional scanning is performed.

8. Each coefficient in the series expansion for the gravity field is estimated using all the
six inline and crossline gravity gradiometer data simultaneously.

9. The estimation algorithm can handle gradient data given in two-dimensional grids
at the same or different altitudes on or above the surface of the earth.
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10. Downward continuation of the gravity field from measurements at the survey height
above the surface of the earth is automatically done without any loss of accuracy.

11. Interpolation of estimates between grid measurements performed automatically by
employing a denser grid for prediction.

12. Different apriori accuracies can be assigned to measurements from different gradiome-
ter inline and crossline measurements.

13. Correlated noise sources can be accommodated to the extent that they can be rep-
resented by the basis functions.

14. The estimation algorithm requires no matrix inversions.

15. The discrete algorithn is exact and not merely an approximation to a continuous
integral.

16. Measurement data must be in planar gridded form.

6.3 Recommendations for Future Research

Listed below are suggestions for future work to enhance this method of post-mission data
processing for the gravity gradiometer survey system:

1. The White Noise Layer (WNL) model used in the algorithm is based on a single layer
of white noise below the surface of the earth. Multiple layers can be accommodated
and should be investigated to examine its effect on the modeling sensitivity.

2. Other sensors particularly those providing long wavelength information should be
incorporated in the estimation algorithm.

3. Measurement error models more elaborate than the present simple white noise model
may be worth investigating to better model the measurement errors.

4. Develop implementable algorithms to take care of the non-zero boundary conditions
in a manner consistent with survey data.

5. Examine the relationship of this estimator with that of Wiener filtering, Fourier
transforms and Least Squares Collocation.

6. Develop algorithms to obtain a theoretical error covariance by using Kronecker matrix
products to the discrete algorithm.

7. Use error analysis algorithms to perform combination solution trade-off analysis.
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8. Investigate the performance of the algorithm for modeling error both for signal model

and for noise models.

9. Investigate optimization of the discrete algorithm from the standpoint of minimizing
number of operations as is done in Fast Fourier Transform techniques.

10. Exploit parallel processing techniques to implement the algorithm by means of special

purpose microprocessors specifically designed for this algorithm.

11. Investigate applications of the algorithm to fields other than geodesy such as mag-

netics, atmospheric sciences, topography, image processing, etc.
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