
IJFILE CoPY

R P1 Department of Computer Science
\~m Technical Report

Propagation of Data Dependency
through Distributed Cooperating

O Processes
0
N
< Kevin L. Spier

Project Advisor
Professor Boleslaw Szymanski

Submitted to Information System Program
Office of Naval Research

Under Contract N00014-86-K-0442

DTIC
'LEC L FE

OCT 2 5 1988

Rensselaer Polytechnic Institute
Troy, New York 12180-3590

Approved fkr puL

tzDifitziuionU .

88-24 September, 1988

88 10 4' 09ft

Propagation of Data Dependency through Distributed Cooperating
Processes

By

Kevin L. Spier

Project Advisor
Professor Boleslaw Szymanski

Technical Report

Department of Computer Science
Rensselaer Polytechnic Institute

Submitted to Information System Program
Office of Naval Research

Under Contract N00014-86-K-0442

Ift

ABSTRACT

-J EPL is an equational programming language based on MODEL. In EPL, a
computation to be performed by distributed cooperating processes is
described as a set of specifications. The interconnections between processes
are represented as a network graph. Processes' data dependencies are derived
from these interconnections. If cycles exist in the network graph (which is
the usual case) these dependencies would impose additional internal schedul-
ing constraints, created from a transitive closure of all the internal dependen-
cies in the processes in the cycle. Therefore there is a need to derive these
additional internal scheduling constraints from the internal data dependencies
of all the processes and the network interconnections between them. This
task requires careful analysis, which in previous versions of EPL had to be
performed by the user. This thesis describes an algorithm, and its imple-
mentation, to automatically derive the additional intra-process scheduling
constraints to generate the correct implementation for the target machine.
This algorithm can also be used in automatic repartitioning of a process
specification. -.5 ,

Table of Contents

Introduction .. 1

The EPL Approach .. 4

Wed for External Data Dependencies .. 9

Program A (EPL specification) [Figure 1] .. 10

Program A (implementation without dependency [Figure 21 10

Program A (implementation with dependency) [Figure 3] 10

Program B [Figure 4] ... 12

The External Data Dependency Analyzer (EDDA) .. 12

The new EPL system ... 14

Diagram of New EPL System [Figure 5] ... 16

E PL vs. A da 18

The Dining Philosophers Example .. 22

Configuration for Dining Philosophers Example [Figure 6] 23

Diagram of external data dependency in Philosophers [Figure 7] 23

T he A lgorithm .. 23

Function GetProcessIDDBIOPS [Figure 8] .. 23

Sample Input Port File Declaration [Figure 9] ... 24

Subgraph for equation B[i,j,k] = ...AU-l,kj... [Figure 10] 28

Reduced subgraph for equation B[i,j,k] = ...Ab-1,k]... [Figure 11] 28
Function S mbolic_Matcher [Figure 12].. .. 30

Function SymbolicMatcherRHSScalar [Figure 13] .. 30

Function SymbolicMatcher_RHS_Array [Figure 14] ... 31

Procedure TraceThru_ArrayGraph [Figure 15] .. 31

Function TypeThruEdge [Figure 16] ... 31

Function CombinedEdge List [Figure 171 .. 32

A graphical view of path typing [Figure 181 ... 38

Cycles in the Array Graph (example 1) [Figure 19] ... 41

Cycles in the Array Graph (example 2) [Figure 20] ... 42

IDDBIOPS Analyses for Dining Philosophers Example [Figure 21] 45

Procedure GetProcessEDDS [Figure 22] .. 47

EDDA Patch Files for the Dining Philosophers Example [Figure 23] 49

L im itations .. 50

The Implementation ... 51

A Sample C type definition using the extended union syntax [Figure 24] 53

Appendix I: Philosopher Process Specification in EPL ... 55

Appendix 11: Resource Allocator Process Specification in EPL 56

References Cited ... 59

Introduction

Real-time system programming is distinct from programming other parallel or dis-

tributed applications in that timing constraints are imposed on delays caused by real-

time programs. Conventionally, the programmer must take into account the computer

operations that cause delays, and then synchronize multiple parallel streams of data

and instructions. The complexity and diversity of the skills required for this task have

caused extended development times, difficulties in attaining reliable systems, and trou-

bles in even attempting to undertake maintenance and updating of real-time systems

[91.

Traditionally, every time the programmer repartitions and reorganizes his code, he

must manually reanalyze his program to ensure that both functionality and timing con-

straints are maintained. When the user must program the control structure of processes

at a low-level to handle the implementation details of communication and timing,

manual repartitioning and reorganization of code become highly involved. Furthermore,

the original algorithm becomes obscured by implementation details, making mainte-

nance of the system difficult. Clearly a higher level approach is called for, in which

implementation details such as synchronization and communication would be automati-

cally generated.

Recently, several specification languages have been proposed to provide a better

e

-2-

bridge between the requirements of real-time systems and their respective program-

ming [3,4,5,6]. Many of these languages support the assertive programming paradigm,

in which computations are specified as sets of assertions about properties of the solu-

tion, and not as a sequence of procedural steps. In this paradigm, solution procedures

are automatically generated from the assertive description of the computation. Thus,

users are not involved in the implementation, whose efficiency and correctness are

assured by the underlying language translator.

Depending on the type of assertions used as a basis for their notation, different

languages for assertive programming have been proposed. Perhaps the best known is

Prolog, in which assertions are expressed as Horn clauses. Assertive programming for

parallel and distributed processing is spported by equational languages in which asser-

tions are expressed as algebraic equations. Such languages have been proven to be an

effective tool for describing general computational tasks. Programs written in equa-

tional languages are concise, free from implementation details, and easily amenable to

verification and parallel processing [6]. Since the user specifies rather than prescribes

the computation, equational (as well as other assertive) programs shall be referred to as

specifications.

The equational language that will be discussed herein is EPLt. In EPL,

t EPL is based on the MODEL equational language [6] and is being developed at Rensselaer Po-
lytechnic Institute

-3-

computations are specified with equations. Computations are partitioned into processes

which are candidates for concurrent computation. Omitted from the computation

specification are implementation details such as sequences of programming events,

synchronization, and relative timing. The translation from the specification into a com-

putation to be performed by a target computer system is performed by the language

compiler.

In the EPL approach, there are two types of data dependency in a computation

performed by distributed cooperating processes. One type is internal data dependency

within each cooperating process. This type is identified by the EPL equational

language compiler through analysis of the equational specification of a process. They

are represented in the form of the array graph.

The other type of dependency, herein referred to as external, is derived from the

interconnections specified in the network graph given as input to the configurator. If

there are cycles in the network graph (which is the usual case), the external dependen-

cies would impose additional internal scheduling constraints, being a transitive closure

of all of the internal dependencies in the processes in the cycle. Therefore there is a

need for automatic derivation of those additional internal scheduling constraints based

on the array graphs of all the processes and the network interconnections between

them.

LS

-4-

This problem is important in automatic repartitioning and intra-process scheduling

of the computation. When repartitioning a computation expressed in an equational

specification, changing the scope of each process is simple. However, it is also neces-

sary to discover externally imposed data dependencies in order to produce a correct

schedule for each of the processes involved in the computation, thereby eliminating

deadlock. Therefore, when topologically sorting the nodes of a process's array graph,

the resulting schedule must satisfy all data dependency constraints.

This requires careful analysis, which in previous versions of EPL had to be per-

formed by the user. The user must derive the dependencies by hand and then expli-

citly add them to the process specification with the DEPENDS-ON pseudo function.

The goal of the implementation described in this report is to automatically derive addi-

tional intraprocess data dependency from interprocess connections in the configurator.

These additional data dependencies will enable the EPL system to generate appropriate

procedural programs for the target machine. Clearly, this makes the repartitioning of a

computation easier andt opens the possibility of building an automatic repartitioner.

The EPL Approach

The automatic implementation of a specified computation is performed by the

EPL system on two levels. On the local level, the compiler accepts as input an indivi-

dual process specification written by a user in the equational language. The compiler

- 51

performs completeness and consistency checks of a specification and generates a

corresponding optimized sequential program in a high level language. For these pur-

poses, the compiler builds a compact data dependency representation called an array

graph.

The array graph is a concise representation of the data dependencies in the

process's specification. A node in the array graph represents an entire array of data or

equations, and an edge an entire array of dependencies. The underlying graph of the

individual structure's elements, and their dependencies, may be derived from the array

graph based on the attributes of dimensionality, ranges and forms of subscript expres-

sions. These attributes are given for each node and edge in the array graph [8].

Typically arrays and data structures are two different ways to logically group and

organize data. In EPL, a data aggregate is used to specify data structures. There are

thr- e such aggregates in EPL: the file, the record and the group. A hierarchy of such

aggregates defines a structure. At the bottom of the hierarchy there should be arrays

which are the elementary data type in EPL. Arrays consist of elements with simple

types, such as integers, reals, strings, booleans, etc. Only arrays can be defined by the

equations in the EPL specification. The only other elementary data type referred to in

EPL equations is a subscript. In definitional interpretation of an EPL specification,

subscripts are universal quantifiers. In operational interpretation, they denote array

-6-

dimensions' ranges. Each range is a finite interval of the natural numbers. There are

also subscripts defined in terms of others, which are called sublinear subscripts [8).

The sublinear subscripts are convenient in defining sparse matrix operations. Subscripts

imply equality of dimensions of arrays which are indexed by them in equations.

Hierarchical and subscript information is interrelated, but can also occur independently

of each other.

A directed edge in the array graph represents all the instances of elemental depen-

dencies among the data elements of the nodes connected by that edge. The dependen-

cies show precedence relations imposed on the execution order of the respective

implied procedural subprocesses. Each edge in the array graph has information about

the subscripts appearing with the edge's data item. This information is stored as

dimension attributes, one for each subscript specified in the expression, which categor-

ize the type of subscript expressions used.

The dimension attributes for each edge are taken directly from the expression

from which the edge was derived. For each data item appearing on the right-hand side

(rhs) of the equation (including subscript data items), there is an edge making the

equation node dependent on the data item. Dimension attribute lists are formed from

the subscripts used with the rhs data items, and stored on the data item's edge. Addi-

tionally, for every equation, the defined data item will be dependent on the equation

-7-

node and any data items used to subscript it. The edges for these dependencies wi!l

contain the subscript attributes derived from the left-hand side (lhs) of the equation.

The attribute lists contain information categorizing the subscript expressions into one

of the following types:

0 a constant was used.

1 simple subscripts; (data item I of type subscript was used).

2 simple subscript with '-1' relationship; (I-i with I of type subscript).

3 simple subscript with '-k' relationship; (I-k With I of type subscript and k a con-
stant, k>l).

4 simple subscript with '+k' relationship; (I+k with I of type subscript and k a con-
stant, k>O).

5 sublinear subscript; (a sublinear subscript was used).

6 sublinear subscript with '-1' relationship; (H-1 with H of type sublinear sub-
script).

7 sublinear subscript with '-k' relationship; (H-k with H of type sublinear subscript,
and k a constant, k>l).

8 sublinear subscript with '+k' relationship; (H+k with H of type sublinear sub-
script, and k a constant, k>O).

9 unknown; none of the above relationships apply.

On the global level, the configurator accepts as input a computation as a directed

network graph, where processes are represented as nodes and their communication

interconnections are shown as edges. The configurator is a compiler for the overall

computation specification, written by the user in CSL (the Configuration Specification

Language). The configurator must validate the CSL specification, verify

1,

-8-

communications interfaces, synthesize the components of the network graph into an

integrated system to perform the computation, optimize the concurrency of processes,

and generate the procedural code necessary to implement the interprocess communica-

tions.

In EPL there are three types of files which can be used for communicating data

between processes. The specification of an interface between two communicating

processes is thus the structure of the interfacing file. The three file types are: sequen-

tial, direct and port. Each file has its own semantics which impose constraints on the

configurator in synthesizing the computation. [6]

Sequential

The sequential file is communicated as a single entity. It implies that the file can
be consumed only after it has been entirely produced. Such a file may have only
one producer process, but many consumers.

Direct

In a direct file each record has a key field which is used to define (access) the
record in the file. There are no restrictions on the number of producer or consu-

mer processes and no dependencies imposed among the related processes. If only
a single record is updated in a process at a time, then the EPL compiler incor-
porates code in the generated program to lock out other processes when updating

the critical data. However, if several records must be updated together by one
process, then the user is warned by the compiler and the queuing of update
requests will be generated.

-9-

Port

Port files are used to provide a concurrent interface between processes. There are
no restrictions on the number of producers or consumers of a port file. An entire
record is communicated at a time.

User drawn edges in the network graph connecting two processes' port files imply

the propagation data dependencies. When these additional data dependencies affect the

behavior of a process in the network, it is necessary to impose additional constraints

on the possible procedural implementation for the process to prevent deadlock in the

computation.

Need for External Data Dependencies

Let's consider the generation of procedural code from an EPL specification. In the

case where there is no internal data dependency of implied read on implied write, we

can have two seemingly independent statements, where one reads from an input port

file and the other writes to an output port file. Due to the lack of dependencies, the

semantics of EPL allow the compiler to decide the order in which to schedule the exe-

cution of these statements in a process. It is possible for the read to become scheduled

before the write. Now, let's assume that some external dependency exists, as expressed

in the configuration, causing the read to depend on the write. This would force the pro-

cess and subsequently the entire system into a state of deadlock.

I!

-10-

One might suggest that if the compiler always scheduled all port file writes before

all port file reads (except when an internal dependency of write on read exists) a

correct schedule would always be produced for each process. However, such a solution

is unacceptable for the following reasons.

Requesting that all port file writes must occur before reads, unless an internal

dependency exists, is equivalent to drawing an external dependency of read on write,

no matter whether it really exists. Since scheduling and optimization must preserve all

dependencies in the array graph, adding additional dependencies limits the space of

feasible solutions. Therefore accepting the suggested solution may limit the scheduler

and optimizer and thus lead to generating programs less efficient then without this lim-

itation.

As an example let's consider a specification as in Figure 1. If the scheduler is

free to order operations on files F1 and F2 independently of each other, then the pro-

gram consists of two parallel loops (see Figure 2). No synchronization is involved.

However, if we force all writes before reads then the program consists of one loop in

which evaluation of function func for two arguments is done in parallel (see Figure 3).

These parallel evaluations are synchronized in each loop step. To see that the second

solution is less effective, let's assume that function func is evaluated in one unit of

time for odd arguments and three units of time for even arguments. Let files Fl and F2

Fig. 1 Program A (EPL specification)

Process: M;
input Fl, F2;
output Fl, F2;

file: F1 (port),
2 record rl[*],

3 int il;

file: F2 (port),
2 record: r2[*],
3 int: i2;

subs: i;

if (i == 1) then out.il[i]=l; else out.il[i]=func(in.il[i-I]); end if;
if (i == 1) then out.i2[i]=l; else out.i2[i]=func(in.i2[i-l]); end if;

contain 2n numbers, n even and n odd, placed in such an order that even numbers in

F1 are opposite odd numbers in F2. If the function func's evaluation dominates the

execution time, then the first implementation will take 4n units of time and the second

one 6n units of time.

Now let us examine the case where the external dependency exists between two

communicating processes. The configurator would produce code that will deadlock,

instead of producing an error message (see Figure 4). Thus, the necessity for inferring

- 12-

Fig. 2 Program A (implementation without dependency

fork:
begin
i := 0;
while (!eof(F1)) loop

i := i+l;
if (i =-- 1) then il:=l else read(il); end if;
write(func(il));

end loop
end
begin
i :=0;
while (!eof(F2)) loop
i :- i+l;

if (i == 1) then i2:=1 else read(i2); end if;
write(func(i2));

end loop
end

:join

external data dependencies is evident.

The External Data Dependency Analyzer (EDDA)

The EDDA derives external data dependencies by performing two levels of

analysis. At the process (local) level, the internal data dependencies between input and

output port files (IDDBIOPS) are determined. These local port file dependencies

specify paths through which external data dependencies may be propagated based on

13-

Fig. 3 Program A (implementation with dependency)

il := i2 := 1;
while (!eof(Fl) && !eof(F2)) loop

fork:
write(func(il)); write(func(i2));

-join
fork:

read(i l); read(i2);
-join

end loop

the given configuration specification. At the configuration (global) level, the results of

the individual process analyses are combined with the configuration specification to

compute the external data dependencies for each of the processes of the computation.

Since external data dependencies are derived only after the local analysis of each

process participating in a computation has been performed, the overall operation of the

EPL system must change. Specifically, with the introduction of the EDDA comes a

new relationship between the compiler and configurator. A proposal for the reorgani-

zation of the EPL system follows.

S_

- 14-

Fig. 4 Program B

I* Configuration speciJcation "1
Ml.F1 -> M2.F2 -> Ml.F1;

/* Specification */
Process: MI; Process: M2;

input: Fl; input: F2;
output: F1; output: F2;

file: F1 (port), file: F2 (port),
2 record: rl[*], 2 record: r2[*],

3 int: i1; 3 int: i2;

out.il = in.il; out.J2 = in.i2;

/* Implementation *1
while (!eof(Fl)) { while (!eof(F2)) {

read(il); read(i2);
write (iI); write(i2);

} }

Both MI and M2 wait in read for message from the other process
resulting in a classical deadlock.

The new EPL system

External data dependencies influence the intra-process scheduling of equations,

and therefore must be derived before the high level language program which represents

the process is generated. Furthermore, it is necessary to produce a complete, correct

- 15-

array graph for each process before the IDDBIOPS can be derived. Given these

requirements a division of the compiler into two parts or phases, which are referred to

as Compl and Comp2, is necessary. Compl generates an array graph from process's

specification. The array graph is used in analyzing the process's IDDBIOPS. Comp2

generates the actual high level language program that implements the process based on

its array graph and its external data dependencies, once they have been computed

(compare Figure 5).

In Compl, the process specification is processed and then an analysis of the

process's IDDBIOPS is performed. Every process must go through this phase of com-

pilation before proceeding to phase Comp2. After every process has gone through

Compl, the external data dependencies for each process can be derived from the com-

bination of the configuration specification and all of the individual processes' IDD-

BIOPS.

The format of the input to Comp2 is an important issue. As previously stated, the

input to Comp2 is an array graph and external data dependencies for an individual pro-

cess. Before equation scheduling can occur the external data dependencies must be

added to the array graph as dependency edges. Having them recorded separately from

internal dependencies is advantageous for the following reason. Suppose we were to

allow the EDDA to directly alter a process M's array graph. Each time the

-16-

configuration specification or the specification of a process which previously caused an

external data dependency to be imposed on M is changed, it would be necessary to

force all the processes to go through Compl again. This would be necessary since we

could no longer have the original array graph for each process. Therefore the external

data dependencies are recorded as a patch to the array graph.

Given the requirements of the compiler, the automatic derivation of external data

dependencies also affects the operation of the configurator. The configurator must also

be divided into two parts or phases, called here Confl and Conf2. In Confl the

configuration specification is translated to a network graph description usable by the

EDDA and Conf2. In Conf2 the configuration specification is validated and the script

is generated to setup, invoke and oversee the entire computation. Confl and Conf2

must be separate phases since only after Comp 1 and Confl had run could Conf2 be

able to verify all interfaces and check that all the participating processes are correct.

After every process involved in the computation (participation is derived from the

configuration specification) has gone through Compl, and their respective external data

dependencies have been derived, their respective array graphs and patch files may be

passed on to Comp2. Figure 5 gives an overview of the new EPL system, showing this

interdependency between the configurator and compiler.

- 17-

Fig. 5 Diagram of New EPL System

, Compl Conf2,

Aray Graph Patch file --

Comp2 Con2

It is interesting to note that if the IDDBIOPS analysis following phase Compl

determines that the given process cannot be affected by external data dependencies it

may then continue directly onto Comp2. This is the case when the given process does

not have at least one input and one output port or, alternatively, a single input-output

port. Thus, a specification which contains only input, only output, or no port file

- 18 -

declarations may proceed directly onto Comp2.

EPL vs. Ada

Several features of EPL facilitate parallel and distributed programming, and espe-

cially real-time system development. There are, however, a number of languages

intended for the design, development and maintenance of real-time and other parallel

and distributed systems. The most prominent among them is perhaps Ada:. In this sec-

tion, EPL will be compared with Ada to contrast their respective paradigms and pro-

gramming idioms. It should be immediately noted that it is relatively easy to generate

Ada code from an EPL specification, but quite difficult to do it the other way around.

Many of the features of Ada software development can also be found in EPL.

EPL supports the notion of separate compilation for processes much the same way Ada

does for library units (packages, tasks and top-level procedures). In EPL, the

specification need only go through the entire compilation process once unless it has

changed, in which case the EDDA can be used to determine which processes' external

data dependencies have been affected, requiring them to go through Comp2 again. In

Ada, when a package specification is changed, the package and all dependent library

units must be totally recompiled. Although it is not possible to compare the effect of

changing a specification in EPL and in Ada, we can see that the declarative nature of

t Ada is a registered trademark of the U.S. Government (Ada Joint Program Office).

- 19-

EPL allows a more efficient response to the change.

While both Ada and EPL support real-time programming, the Ada approach is at

too low a level for many cases. When programming in Ada, the programmer has to be

concerned with low-level implementation details. In contrast, the EPL approach is

declarative, ie. no control structure information is supplied in the specification of a

process, it is instead generated from the explicit and implied data dependencies. The

Timing Constraint Analyzer [7] can be used with the scheduler and code generator to

generate a procedural implementation that meets the given time constraints while keep-

ing them out of the actual process specification.

Both Ada and EPL support top-down and bottom-up design of a computation per-

formed with communicating sequential processes. However, EPL automatically per-

forms deadlock detection, timing constraint analysis, synchronization, code generation

of communications details and configuration synthesis. In Ada these must be explicitly

coded and analyzed. Clearly, the EPL approach shows much promise in the area of

rapid prototyping.

In EPL, the configuration and process specifications may be developed indepen-

dently of each other. Thus, the user can test the configuration to see if a proposed

solution is correct even before writing any specifications describing the individual

processes. The opposite is also true, allowing the user to change the individual process

-20-

specifications without having to know the configuration. The user may also change the

configuration specification many times during development to see how it affects the

overall performance of the computation.

This level of independence cannot be achieved in Ada although both top-down

and bottom-up design are possible. This is because the concept of a configuration

specification in EPL is absent from Ada. Thus, configuration information must be phy-

sically encoded and distributed over the tasks in the computation described in Ada.

The specification of relationships between processes participating in a computation in

EPL are reflected by a straightforward network graph making debugging, reorganiza-

tion and prototyping simple. In Ada, these tasks require the user to perform careful and

tedious analyses. Furthermore, changing the configuration of a computation in EPL

only requires the process scheduling to be recalculated for processes whose external

data dependencies are affected. These processes are identified by the EDDA and then

pass through Comp2. The results of such a change in a computation described in Ada

are unpredictable! The Ada user must perform careful analysis to determine what

manual recompilation and process editing must occur.

In EPL synchronization is achieved by the unblocking send and blocking receive.

This method of synchronization can be used to implement the equivalent of the Ada

rendezvous, and visa versa. However, the EPL method allows for a simple pipelining

r
-21-

schema where writers always write to the receiver's input queue rather than having the

processes interchange data directly. In Ada, the programmer is allowed to specify the

information to be communicated between processes (tasks), as well as any computation

that can occur while the processes are locked during the rendezvous. While it might be

argued that this makes the rendezvous a more powerful mechanism, it also lessens the

independence of the computations described by each task.

The reason is that one of the processes involved in rendezvous can hold up the

others by not releasing them directly after exchanging data. In EPL, we can achieve

an effect similar to the rendezvous by requesting that the recipient of the message

sonds an acknowledgement to the sender. This will lock the sender until the recipient

receives (and possibly processes) the message. On the other hand, simulating the

blocking receive and unblocking send with the Ada rendezvous mechanism requires

the creation of additional tasks performing the buffering between communicating

processes. Clearly, the system overhead caused by (additional) acknowledgement mes-

sages is much less severe than that caused by the creation of additional tasks. In that

sense, we may argue that the EPL communications primitives are more efficient than

the Ada rendezvous.

- 22 -

The Dining Philosophers Example

The specification of data dependency in EPL differs greatly from that of conven-

tional procedural programming. The example described here is used to present how

data dependency is specified in EPL at the process (local) and configuration (global)

levels and the importance of the EDDA. The example is of a resource allocator and

processes requesting resources, such as found in operating and real-time systems.

Resource allocation captures the essence of many concurrent systems used in

real-time applications. Many strategies exist for allocating resources. The strategy

selected here avoids deadlocks by requiring that a process submit a request for all the

resources that it will need, and release them when not further needed. Indefinite post-

ponement is also prevented by preserving the order of arrival of requesting messages.

In order to make the example more specific and easier to follow, it is stated in

terms of the Dining Philosophers problem.

Five philosophers, who represent individual processes, share a circular dining
table where each has an assigned seat. There is one fork between each two
seats. A philosopher needs the forks to his right and left in order to dine. A
philosopher desiring to dine requests the forks. When available, the resource
allocator issues both forks and the philosopher proceeds to dine. When
finished, he releases both forks, which become available to his immediate
neighbors on a first-come-first-allocated basis. [5]

In the example, the five philosophers and the resource allocator form respective

processes naturally. Processes are producers and/or consumers of their respective port

.. . ..S m,,mi im lml Ii lm l llm l l |• - - . . .

- 23 -

files. The configuration for the Dining Philosophers problem is shown in Figure 6. The

consumer/producer relationship is represented by a directed edge in the network. Each

philosopher process (P[11 for I = 1 to 5) produces throughout its life a file of requests

and releases of resources (REQ_REL) and consumes a corresponding file of allocations

of resources (ALLOC). The resource allocator (R) has an output port file of alloca-

tions (ALLOC) and an input port file of requests and releases of resources

(REQREL). A description of the external dependency between the processes is given

in figure Figure 7. The EPL specifications for the philosopher and resource allocator

processes are given in Appendices I & II.

The Algorithm

As previously stated, the EDDA requires as input the IDDBIOPS for all of the

processes and the configuration specification. The purpose of the IDDBIOPS algo-

rithm is to find all the known read before write dependencies of output port files on

input port files. The function Get ProcessIDDBIOPS (see Figure 8) will determine

the IDDBIOPS for a given process and will have a return value which indicates

whether or not the compilation of this process may proceed directly onto Comp2 (such

is the case when either the number of input or output ports is zero). This is accom-

plished by collecting all input fields for each input and input/output port file and trac-

ing them through the array graph to the dependent fields of output or input/output port
0

0

-24-

files. If a path exists between an input and an output port, then the output port is said

to be dependent on the input port. The type of dependency will be the maxima, or

worst case, of dependency computed by the transitive closure of all possible paths

from the input port to the output port. Such edges can be used to propagate external

data dependencies in the super graph.

The super graph is a concise description of the inter-process data dependencies in

a computation. The nodes of the super graph are the processes participating in the

computation. The super graph's edges are taken from the configuration specification, in

which they are specified as the relation of an output port file to an input port file.

Although the analysis of dependencies described so far is performed at the field

level what is needed are record dependencies. For sequential files this is not relevant

since the entire file must be written before in can be read by another process. For port

and direct files, however, messages passed between processes are records and not

fields. Therefore, those dimensions of each array graph edge which relate to the parent

input record of the source input field need be considered. Thus, given the input port

declaration in Figure 9, when considering any edge on a path from input field Z (to

some output field), we only consider those edge dimensions which correspond to the

two record dimensions of Y. An edge dimension is said to correspond to another edge

dimension if and only if both dimensions belong to the same range set [2].

-25-7

Fig. 6 Configuration for Dining Philosophers Example

1* Configuration *
RANGEP =5;

R.ALLOC ->P.ALLOC;

P.REQREL -> R.REQREL;

ALLOC[ill I ALLOC[2] ALOC[31 ALLOC[41] ALLOCI 5]

- 26 -

Fig. 7 Diagram of external data dependency in Philosophers

The algorithm computes the type of dependency between input and output ports

by performing a data flow analysis through the set of assertions connecting the input

and output ports. Aside from actual assertions the only other EPL entities which must

be considered in this analysis are LAST and RANGE variables. The RANGE variables

which are defined by equations do not require special treatment since their defining

equations are already included in the data flow analysis. Other RANGE variables have

to be defined through a declaration or End Of File (EOF) condition. In the former case

they are just constants, and in the latter case they have to be scalars, therefore in both

cases they may not be considered at all. Only LAST variables has to be treated as

- 27 -

Fig. 8 Function GetProcess IDDBIOPS

Function GetProcessIDDBIOPS(process)
input_port_count := output_portcount := 0;
FOR out_pom_file IN Output Port Files(process) LOOP

output_portcount := outputjportcount + 1;
Output '0', FileName(outjport file), Dimensionality(out-port file)

END LOOP
FOR in_portfile IN InputPortFiles(process) LOOP

inputport count := input_portcount + 1;
Output 'I', File Name(injort file), Dimensionality(in_port_file)
field list:= NULL
FOR record IN Input Records(inportfile) LOOP

COLLECT GetFields(record) INTO fieldlist
END LOOP
dependentoutput_portfileslist := NULL
FOR field IN field-list LOOP

TraceThruArrayGraph(field);
END LOOP
FOR outjportfile IN dependentoutput_port fileslist LOOP

Output '0', FileName(out_portfile), HowDependent(out_port_file)
END LOOP

END LOOP
RETURN (input_.port count != 0 && outputport count != 0);

END GetProcessIDDBIOPS;

special cases. Note that since the analysis is starting and ending at the field level of

port files, hierarchical dependencies need not be considered.

In performing the data flow analysis through the set of equations which connect

- 28 -

Fig. 9 Sample Input Port File Declaration

file: IN FILE (port),
10 group: X[*],

20 record: Y[*],

30 int: Z[10];

input and output ports we must determine the correspondence between dimensions of a

rhs source and the lhs target. It is clear that this relationship may only be derived by

symbolically matching subscript references. Only those dimensions on the rhs source

which correspond to input port record dimensions need be considered.

For example, an equation B[ij,k] = ...AU-l,k]... generates the subgraph shown in

Figure 10. The first dimension of B would not be matched to any of the dimensions

of A, thus an Il dependency exists on this dimension of B (denoted <-,i+l>. The

second dimension of B would be matched to the first dimension of A, thus an I-I

dependency exists on this dimension of B (denoted by <l,i-l>). Finally, the third

dimension of B would be matched to the second dimension of A, thus an I dependency

exists on this dimension of B (denoted by <2,i>). This derived relationship between A

and B is shown in the reduced subgraph in Figure 11.

- 29 -

Fig. 10 Subgraph for equation B[ij,k] = ...AU-l,k]...

[A] <1> <2>

j-1,k

[equation] <i> <j> <k>

ii,j,k

[B] <1 > <2> <3>

It is important to understand three points being made here. First, this new direct

edge describes the equation implied dependency between the source (A) and the target

(B) and not an absolute one. Secondly, since the first dimension of B is unmatched this

means that the entire range input needed for computing the first dimension A must first

be read before B can be computed. Finally, the result of symbolic matching is a

reduced array graph which may be uniformly searched. This is true because the nodes

of this graph are the field nodes of the original array graph and its edges are labeled

with the dependency between dimensions of the rhs source and the lhs target of asser-

-30-

Fig. 11 Reduced subgraph for equation B[ijk] = ...AU-Ik]...

(A] <1, i> <2, -

<,i+1 > <1, i-1 > <2, i>

[B)

tions.

However, the symbolic correspondence may not always be so easily determined.

Such is the case when references to sublinear subscripts appear or when multiple sub-

scripts belong to the same range set. Thus, the algorithm for performing symbolic

matching must be able to handle these special cases. The way in which matching is

performed is determined by the type of the rhs source, ie. whether it is a scalar or an

array (see Figure 12).

When the rhs source is a scalar the equation must be in one of the following two

forms: (1) x = ...y... or (2) a[...] = ...y... Since a scalar may only be assigned a single

value at a time, the dependency of the lhs target on the such a rhs source must be of

type I. The algorithm for this case is given in Figure 13. When the rhs source is an

- 31 -

Fig. 12 Function Symbolic-Matcher

FUNCTION SymbolicMatcher(inedge, out-edge)
inndims := Dimensionality(in edge->srce node);
IF (in ndims == 0) THEN

RETURN SymbolicMatcherRHSScalar(in-edge, out-edge);
ELSE

RETURN SymbolicMatcherRHSArray(inedge, outedge, inndims);
END IF

END Symbolic Matcher,

array the complexity of the algorithm increases dramatically. The algorithm for this

case is given in Figure 14.

The other key components of the algorithm for data flow analysis are described in

the procedure TraceThru ArrayGraph (see Figure 15) and the functions

TypeThru Edge (see Figure 16), CombineMultDirect, AddOutDependency, and

CombinedEdge List. The procedure TraceThruArrayGraph is invoked recursively

to traverse the array graph and collect the dependent output ports for a given input port

into the list dependentouputport..iles.

The function CombinedEdgeList (see Figure 17) returns the list of unique

edges outgoing from the given data node to any data node defined by it (via an asser-

tion). Multiple direct edges between these nodes are combined into single edges

- 32 -

Fig. 13 Function SymbolicMatcherRHSScalar

FUNCTION SymbolicMatcherRHSScalar(inedge, out-edge)
outndims := Dimensionality(outedge->destnode);

/* case when lhs is scalar too */
IF (!out-ndims) outndims:=out.ndims+l; END IF

edge tok = mkdfatoken(outndims);
FOR i IN O..out ndims-1 LOOP

edge tok[O].indim = i;
edge tok[O.type = RANKI;

END LOOP

RETURN edge_tok;
END SymbolicMatcherRHSScalar;

labeled with the maximum type of each of their dimensions. Since all of this informa-

tion is static a simple caching mechanism is used to avoid expensive recomputation

each time the given data node is visited. Thus, three reductions on the search space for

the data flow analysis are performed: (1) elimination of edges and nodes in the array

graph which cannot contribute to data flow; (2) multiple direct edges between nodes

are combined into single edges; (3) direct edges are drawn between source and target

nodes for all assertions.

- 33 -

Fig. 14 Function SymbolicMatcherRHSArray

FUNCTION Symbolic MatcherRHS Array(in edge, outedge, in ndims)
in := Get_EdgeDimensionVector(in edge);
out ndims := Dimensionality(outedge->destnode);
edge tok := MkDFAToken(outndims);
i :=-0; last-match :=-1;

FOR p IN GetEdge_DimensionVector(out edge) LOOP
osub := osub2 := GetSubscript(p);
IF (osub != NULL) THEN

osubl := (Is Sublinear(osub) ? osub->sibling.l : NULL);
REPEAT

IF (osubl != NULL) THEN osub2=osubl->st, osubl=osubl->next; END IF
FOR j IN (lastmatch+ 1)..(inndims- 1) LOOP

isub := isub2 := GetSubscript(in]);
IF (isub != NULL) THEN

isubl := (IsSublinear(isub) ? isub->sibling.l : NULL);
REPEAT

IF (isubl != NULL) THEN isub2=isubl->st, isubl=isubl->next; END IF
IF (isub2 == osub2) THEN

edge tok[i].in dim := lastmatch j;
edge tok[i].type := New_Path_Type(Rank(inU]), Rank(p));
isubl := osubl := NULL;

END IF
UNTIL (isubl = NULL);

END IF
EXIT WHEN (last-match ==j);

END LOOP
UNTIL (osubl == NULL);

END IF
i := i + 1;

END LOOP
RETURN edgetok;

END Symbolic MatcherRHSArray;

0

-34-

I

Fig. 15 Procedure Trace Thru ArrayGraph

i PROCEDURE TraceTroughArray_Graph(node)
/* note that NODE is the last node reached in current path */
Mark(node);

REPEAT
FOR p IN Combined EdgeList(node) LOOP

IF ((next-node := TypeThru Edge(p)) -- NULL) THEN
CONTINUE;

ELSIF (next node == node) THEN
EXIT;

ELSE
TraceThruArrayGraph(next node);

END IF
END LOOP

UNTIL (p == NULL II next-node != node);

UnMark(node);
END TracethruArrayGraph;

In a correct array graph, multiple direct edges between two nodes must have

corresponding, and an equal number of, dimensions. Therefore, multiple direct edges

can be represented as a single edge with corresponding, and an equal number of,

dimensivns, the type of each dimension being the type of the maximum dependency ,:

each dimension over all the edges. The following order of dependency types is used:

I+1 (subscript types 0,4,8,9), 1 (subscript type 1,5), 1-1 (subscript types 2,3,6,7). The

- 35 -

Fig. 16 Function TypeThruEdge

FUNCTION TypeThruEdge(edge)

src._node := Source(edge);
destnode := Target(edge);
oldttok := GetDFAToken(dest node);
new ttok := ComputeNewDFAToken(src_node, edge);

IF (MarkedP(destnode)) THEN
/* a back edge exists, the question is how. if the back edge results

in a new 1+1 dependency for target we must reset trace in order
to correctly type all paths emanating from the target */

IF (! EdgeContributesNewBackEdge Relation(oldttok, newttok)) THEN
dest node := NULL;

END IF
ELSIF (oldttok == NULL) THEN

SetDFA_Token(destnode, newttok);
ELSE

/* No back edge and 'dest node' has been visited sometime during DFA */
old ttok := CombineDFATokens(old ttok, new ttok);

END IF

/* if target is an output field record its current token value */
IF (dest != NULL && IsOutField(destnode))

AddOutDependency(dest);
END IF

RETURN dest node;
END Type Thru Edge;

-36-

Fig. 17 Function CombinedEdgeList

FUNCTION CombinedEdge List(node)
IF ((cache := GetCombinedEdge ListCache(node)) = NULL) THEN

FOR q IN OutgoingEdgeList(node) LOOP
IF (NodeType(q->dest node) == ASSERTNODE &&

(EdgeType(q) == CONDEDGE II EdgeType(q) == VALUEEDGE)) THEN
/* Case of node being a rhs source in an assertion */

edge tok := SymbolicMatcher(q, Outgoing_EdgeList(q->destnode));
destnode := GetAssertionTarget(q->dest-node);

ELSIF (EdgeType(q) == PARAMEDGE &&
NodeType(q->dest node) == LASTNODE) THEN

/* Case of edge into LAST */
edge tok := Get LastRelationship(q);
destnode := q->destnode;

ELSE
/* DFA not interested in other edge types */
CONTINUE;

END IF
IF ((p := Find-EdgeWithTarget(cache, dest node)) == NULL) THEN

/* Add edge to cache */
Push(CreateNewDFAEdge(dest node, edgetok, q), cache);

ELSE
/* Combine multiple direct edges emanating from this node */
CombineMultDirect(p->dfa tok, edgetok);

END IF
END LOOP
SetCombinedEdge_ListCache(node, cache);

END IF
RETURN cache;

END CombinedEdgeList;

- 37 -

reasoning for this ordering is fairly straightforward. Consider the case where at least

one dimension of a direct edge has a dependency of the type 1+1. This requires that all

values on that dimension of the source node be computed before the current value of

the target node on that dimension can be computed, hence it has the highest rank. Next

consider the case where at least one dimension of a direct edge has a dependency of

the type I with none of the type I+l. This requires that previous values as well as the

current value on that dimension must be computed before the current value of the tar-

get node on that dimension can be computed. Hence, dimensions of type I have the

second highest rank and dimensions of type I-1 the lowest rank. This same criterion is

used when muljjle paths exist between unique input and output port file fields.

The substitution of a single combined edge for multiple direct edges between two

nodes need only be performed once since the information used creating this single

edge is static. The function CombinedDependedOnByEdgeList is used to com-

pute the combined edge list only once and caches the result for subsequent referenc- " -

The type of a single multi-edge path between two nodes in the array graph is the

maximum dependency of each dimension (being considered) over all the edges in the

path. The following order is used: 1+1 (subscript types 0,4,8,9), 1-1 (subscript types

2,3,6,7), I (subscript type 1,5). The reason for this ordering is slightly more complex

than that for multiple direct edges. It is possible for an individual edge to have a sub-

- 38 -

set of the dimensions inherited by the input field from its parent record. When there is

no dimension on a path's edge corresponding to a dimension of input field's parent

record, this results in the type of this dimension of the path being I+1. This is because

all values on this dimension are assumed to be needed to compute the current value of

the target node of the subpath where this occurred.

Given that the edges in the new array graph will reflect the correspondence

between dimensions of source and target in assertions, an explanation of the order may

now be given. The explanation will take the form of an inductive proof for one dimen-

sion of the parent input record (the same holds true for each of these dimensions). It is

obvious that a path of length 1 from an input field to another node in the array graph

satisfies the criteria. Let's assume that this is also true of all paths of length k. We will

show that the inductive hypothesis is true for a path of length k+l, thus proving it true

for all paths of length k >= 1. For the proof we need to define the following symbols

ano terms (alM s -T--" gure 18).

D refers to the edge dimension between (k) and (k+l) nodes in the path we
are examining.

old path refers to the subpath (1, k).

new path refers to the subpath (1, k+l)

cycle path refers to the subpath (p, k+l, p) where p <= k.

[Note: The functions TypeThru_Edge and NewPath Type are used to per-
form the path typing whose description follows.]

- 39 -

Fig. 18 A graphical view of path typing

IN

old path P

new path

K 0cycle path

D

K+1

P <= K

Case 1:

Consider the case where D is of type I+1. This requires that all values on that dimen-

sion be computed before the current value of the (k+ I) node can be computed with

-40-

respect to D. Thus, the type of new path must become I+ 1 regardless of the type of

old path. If a cycle path exists, via some p <= k, then all paths thru (p) become of

type 1+1 as well. Although this is implied from above, it is stated directly to

emphasize that a cycle may affect a previously typed subpath.

Case 2:

Next consider the case where D is of type I-1. If old path is of type I+1 then so is new

path (as explained in Case 1). The more interesting situation is when old path is of

type I or I-1. This requires that previous values on D must be computed before the

current value of node (k+l) can be computed with respect to D. Thus, when old path

is not of type 1+1, the type of new path must become type I-1. However, if a cycle

path exists then there are 3 possible scenarios:

Case 2a:

When the type of the cycle path is I+1 we have the same situation as in Case 1 when

a cycle path of type 1+1 is present.

Case 2b:

If new path is of type 1+1 then again we would refer back to Case 1.

-41 -

Case 2c:

If new path is not of type I+1 and cycle path is of types I or I-1 then no changes need

to be made. When the type cycle path is I-1 this is obvious. If the type of cycle path

is I then we are in effect saying that the (p) node requires that the current value of the

(k+l) node be computed and that the (k) node requires that some previous values of

the (p) node be computed as well. This condition will be satisfied naturally when the

required number of initial values of the (k) node are given (see Figure 19).

Fig. 19 Cycles in the Array Graph (example 1)

/* equation I */ A[I] = IN[I] + B[I];

/* equation 2 */ B[Ij = A[I-l];

Case 3:

Finally consider the case where D is of type I. Given cases 1 and 2, the type of new

path is obviously that of old path. However, if a cycle path exists then there are 3 pos-

sible scenarios:

Case 3a

-42-

When the type of the cycle path is 1+1 we have the same situation as in Case 1 when

a cycle path of type 1+1 is present.

Case 3b:

When the type of the cycle path is I or 1-1 and the type of new path is 1+1 then all

paths thru node (p) must become type I+1.

Case 3c:

In all other cases no changes are necessary. This is obvious when new path is of type

I-1 and cycle path is of type I. When new path and cycle path are both of type I then

there is a mutual value-for-value dependence between nodes (p) and (k+l) thus requir-

ing the EPL compiler to generate a solution in the form of solving simultaneous equa-

tions (see Figure 20). However, these simultaneous equations can be solved for each

input record. Thus, there is no need for any input record except the current one to be

present in order to proceed.

It is important to note that the above description of deriving types through the

symbolic matching of subscript references in an assertion is valid only after normaliza-

tion of subscript references on the lhs of the equation [1]. The following equations are

equivalent in saying that the 'next' occurrence is dependent on the value from a previ-

- 43 -

Fig. 20 Cycles in the Array Graph (example 2)

/* equation I */ A[I] = IN[1] + B[I];

/* equation 2 */ B[I] = A[11;

ous occurrence (they reference the array in ascending subscript order, ie. 1,2,3...).

Case 1 (before normalization):

A[i] = A[i-k];
A[i+k] = A[i];
A[i+k] = A[i+kl]; where k,kl > 0 and k > k1
A[i-k] = A[i-kl]; where kUkl > 0 and k < k1

The following equations are equivalent in saying that the 'previous' occurrence is

dependent on the next occurrence (the array must be calculated in descending subscript

order, ie; 10,9,8, etc.).

Case 2 (before normalization):

A[i-k] = A[i];
A[ij = A[i+kj;
A[i-k] =A[i-kl]; wherek,kl>0andk>kl
A[i+k] =A[i+kl]; wherek,kl >0andk < kl

From cases I and 2 it becomes clear that our rules for typing aren't consistent

before normalization. It is not enough to look at an edge and simply test for i - k or i

-44-

+ k, the subscript type must be analyzed with respect to what is happening to it on the

other side of the assertion. It must be found whether or not the lhs subscript expres-

sion is greater than or equal to the rhs subscript expression in order to determine the

order in which the array is defined.

After normalization we would have the following:

Case 1 (after normalization):

A[i] = A[i-k]
A[i] = A[i-ki

Afil = A[i-k2 where k2 = k-kl and k2 > 0
A[i] = A[i-k2] where k2 = kl-k and k2 > 0

Case 2 (after normalization):

A[i] = A[i+k]
A[i] = A[i+k]
A[i] = A[i+€k2] where k2 = k - kl, k2 > 0
A[i] = A[i+k2] where k2 = kl - k, k2 > 0

At this point testing whether the lhs subscript expression > the rhs subscript expression

or if the rhs subscript expression > the lhs subscript expression is easy. Edges of type

i - k imply that you are processing the array in ascending subscript order, and edges of

type i+k imply the opposite.

Complex subscript expressions will try to be normalized to one of the simpler

expressions from above. After normalization the presence of a complex expression in a

- 45 -

subscript then would imply that the complete array must be present. If a complex sub-

script expression occurs in a recursive assertion (ie: A[i] = f(A[cl]), where cl is a

complex expression), then this would be considered to be an unbreakable cycle.

The output of the IDDBIOPS algorithm is directed to a file, to be used by the

EDDA, whose name is the concatenation of the process name and the extension .idd.

The format of the file is a list of all the output port files followed by a list of all the

input port files and their dependent output port files. Note that since both port and

direct file types may have only a single record format it is enough to store the file

name and not the file name/record pair. The results of the IDDBIOPS analyses for the

process specifications in the Dining Philosophers example are shown in Figure 21.

Fig. 21 IDDBIOPS Analyses for Dining Philosophers Example

/* p.idd */

O:REQREL 1 /* has 1 dimension */
I:ALLOC 1 /* has 1 dimension, I dependent output port file */

O:REQ.REL 0 1 /* dimension dependencies: type I- I on 1st */

/ r.idd */

O:ALLOC 2 /* has 2 dimensions */
I:REQ_REL 1 /* has I dimension, 1 dependent output port file */

O:ALLOC 0 2 /* dimension dependencies: type I on 1st */

- 46 -

There are six possible relationships between an input port and output port of a

process which the EDDA must recognize and handle. These relationships are expressed

in terms of internal and external data dependencies between the input and output ports.

In the following enumeration of the cases the input port is called MSGIN and the out-

put port is called MSGOUT.

Case 1: No internal data dependency between MSGIN and MSGOUT.

(A) External data dependency of MSGIN on MSGOUT
An additional edge is added to the processes' array graph from MSGIN to

MSGOUT

(B) NO external data dependency of MSGIN on MSGOUT
Array graph needs no patching.

Case 2: Internal data dependency of MSGOUT on MSGIN

(A) External data dependency of MSGIN on MSGOUT
Error possible, depending on the types of internal and external dependencies. If
any of those dependencies is 1+1 or none is I-1, then this configuration will result
in a deadlock.

(B) NO external data dependency of MSGIN on MSGOUT
Just checking that configuration is error free.

Case 3: Internal data dependency of MSGIN on MSGOUT

(A) External data dependency of MSGIN on MSGOUT
Edge already in array graph because of internal data dependency, but the external
dependency may introduce a higher rank for the type of the edge. Thus, the patch
must be added to the array graph in this case.

(B) NO external data dependency of MSGIN on MSGOUT
Array graph needs no patching.

In cases A, 2A, and 3A a significant configuration dependent result has been

-47-

achieved. New configurations need only be reanalyzed by the configurator and EDDA

thus allowing fast prototyping of configurations. As stated earlier in the paper, in pre-

vious versions of EPL changing the configuration specification required the user to

reanalyze all the process specifications. It involved adjusting the specifications by

means of the DEPENDSON pseudo function, reinvoking the compiler on process

specifications and then reinvoking the configurator.

The goal of the algorithm is to identify both external data dependencies between

process' input and output port files as well as cycles in the super graph relative to the

process' output port files. The procedure GetProcessEDDS (see Figure 22) will

determine the external data dependencies for a given configuration and process. As in

performing the IDDBIOPS analysis for an array graph, the critical part of the external

data dependency analysis is tracing paths through the super graph. This tracing is per-

formed by the function TraceThruSuperGraph which uses an algorithm identical to

that of the function TraceThruArrayGraph.

The type of a path in the super graph is determined in exactly the same way as

used for typing paths in the array graph (see description of functions TypeThruEdge

and NewPathType). Multiple external data dependencies between input and output

ports are combined in the same manner as that described for combining multiple paths

between input and output ports in the array graph (see description of function

-48 -

Fig. 22 Procedure GetProcessEDDS

PROCEDURE GetProcessEDDS(configuration, process)
FOR a-Process IN ConfigurationProcessList(configuration) LOOP

CreateNodeIn_Super_Graph(a_process)
END LOOP
FOR edge IN ConfigurationEdgeList(configuration) LOOP

AddEdge To SuperGraph(edge)
END LOOP

FOR outyport IN Output Ports(process) LOOP

UnMark SuperGraph
dependencyjlist := NULL
TraceThru SuperGraph(outport)
FOR dependency IN dependencyjlist LOOP

Output dependency
END LOOP

END LOOP
End GetProcessEDDS;

CombinedEdgeList). However, if a cycle is found in the super graph which is not of

type I-I then it is reported as an error (ie. the given configuration and process

specifications would result in an unschedulable global computation).

One important difference, however, between the array graph and super graph is

that all edges in the array graph have explicit types while some edges in the super

graph have implied types. These are the edges which are taken from the configuration

specification. Since messages sent via port files are queued at the receiver, edges in

-49-

the configuration specification are always assigned type I.

It is important to notice that the EDDA performs an important semantic check on

the configuration specification. It determines if the message formats used by two com-

municating processes are compatible in terms of their dimensionalities. This is in addi-

tion to its primary goal of deriving external data dependencies.

As previously stated the EDDA generates a patch file for use by the intra-process

equation scheduler in the Comp2 phase of the compiler. This file's name is the con-

catenation of the configuration name, the process's name and the extension .edd. For

example, if the configuration's name is CONFIG_1 and the process' name is P1 then

the file would be named, config_l.pl.edd. Since the same process may be part of

several different configurations, then several different patch files may exist for the

same specification. The format of this file is a list of the additional internal data

dependencies (edges and their dimension types) that need to be added to the process'

array graph. The patch files generated by the EDDA for the processes in the Dining

Philosophers example are shown in Figure 23.

The TraceThruSuperGraph algorithm additionally provides several checks to

ensure that all processes named in the configuration have IDDBIOPS, and that they

have not been tampered with.

-50-

Fig. 23 EDDA Patch Files for the Dining Philosophers Example

/* patch file for P */
X:ALLOC REQREL 0 2 /* ALLOC depends on REQ REL by I */

/* patch file for R */
X:REQ_REL ALLOC 0 1 /* REQ_REL depends on ALLOC by I-i */

Limitations

Presently the algorithm to propagate external data dependencies has two limita-

tions. The first is crude analysis of 1+1 type dependencies. The algorithm assumes that

an I+1 type dependency on a path between input and output ports implies reading in

all messages before writing out any messages. This may prevent the best possible

schedule from being generated or cause no schedule to be generated. The author real-

izes that this is a problem and is currently investigating a more complete solution

where the specific values of constants in relations of subscript types 3,4,5,7,8 will be

considered.

The other limitation of this algorithm is that it regards all dependencies as uncon-

ditional. The array graph does not record conditions under which dependencies hold.

Therefore, when conditional data dependencies are traced through a process' array

graph to determine its IDDBIOPS, the algorithm will also treat them as always valid.

-51 -

This may prevent the best possible schedule from being generated or cause the detec-

tion of the possibility of a deadlock which, if the fact that the paths were conditional

was considered, would be found impossible.

The Implementation

The EDDA has been implemented in C under UNIX. However, as discussed in

the section "The New EPL System," there is a need for a facility to save/restore the

array graph and its supporting structures (symbol tables, equation trees) to/from disk.

With such facility the structures created by the Compl stage can be restored by the

Comp2 stage saving repeating processing of the same specification by Compl. This

facility was missing from EPL and neither the C language nor UNIX provide a

mechanism to save/restore arbitrary data structures created by a program to/from disk.

Since this is a reoccurring problem when programming in C under UNIX, the

need for a tool which could automatically add this capability to an existing C program

became immediately apparent. As a part of the reported EPL enhancement the author

developed the Data Structure Analyzer (DSA).

The DSA takes as input the C source file(s) that comprise a single program and

analyzes its data type and storage declarations. After completing a successful analysis,

the DSA will generate a C module which, when linked with other modules which

share these same definitions, allow that system to dump/restore any of its data

-52-

structures to/from disk. The DSA does have some limitations. However, these limita-

tions are not exceeded by the EPL compiler or typical C programs, so the DSA can be

safely used in the EPL system.

The DSA performs its analysis on data type and storage declarations. There are

four ways a new data type may be declared in C: ENUM, UNION, STRUCT and

TYPEDEF. The DSA compiles all type declarations into a digraph which represents

each type's hierarchical structure and its dependency on other types. If there are no

references to undeclared types, this graph is used to generate the dump/restore code.

The graph completely captures all static semantics of the system's type definitions. The

generated code must be able to access dynamic attributes for handling unions and

arrays without fixed dimensions.

To this end the DSA provides a substitute interface to the UNIX allocation and

deallocation routines. This interface maintains dynamic tables which, when used in

conjunction with the type hierarchy and dependency graph, provide the generated

dump/restore subsystem with all the necessary information to perform its task.

The DSA requires the user to make only minor modifications to the source pro-

gram. First, all references to the standard allocation and deallocation routines must be

changed appropriately. Second, the header file which is generated by the DSA must

be included in any source file which performs allocation/deallocation or the

- 53 -

dumping/restoring of data structures. Finally, the user must elaborate how the DSA can

dynamically determine which component of a union is in use. For this purpose the C

language syntax has been extended to allow for the following union declarator:

union { . }UTAG(expression) union declarator

where expression will evaluate to the position of the union component (starting from

0) which is presently in use. The user may reference the pseudo-variable $ to refer to

the type definition in which this union is contained (see example in Figure 24).

Fig. 24 A Sample C type definition using the extended union syntax

struct x {

short type; /* 1 if char, 2 if int, 3 if float */
union I

char a[101;
int b[10];
float c[10;

} UTAG(($.type - 1)) p; /* here $ refers to the instance of
struct x containing the union */

} example;

The system provided header file dsa.h has to be included in any source program

which uses the extended syntax (actually, dsa.h may be safely included in every

source program). Once the file containing the dump/restore routines has been

-54-

generated it is simply compiled along with the other files and the DSA run-time

library. The run-time library handles the machine-level dependencies the DSA needs to

be aware of when dumping/restoring structures to/from disk.

-55-j

Appendix I: Philosopher Process Specification in EPL

PROCESS: P[*];I

FILE: ALLOC (PORT),
10 RECORD: MSGA[*I,

20 [NT: PROC ID,
20 MN: CLOCKA;

FILE: REQREL (PORT),
10 RECORD: MSGR[*],

20 INT: PROCID,
20 LOGIC: RQOR-RL,
20 TNT: RES[5],
20 TNT: CLOCKR;

SUBS: I, J;
SUBS: IX SUBLINEAR (I) -RQ_ORRL[I];

RANGE.MSGR = F (RQ_ORRL[l] & RANDOMO >.99) THEN I ENDIF;

LASTALLOC[I] =CLOCKAIIIX]

PID = PROCID;

REQREL.PROCID[I] = PID;
RQ_ORRL[I] = -RQORRL[I- 1];
RES[Ij] = IF ((J==PID) I (J==PID+1) I (J==PID-4)) THEN 1 ELSE 0 ENDIF;
CLOCKR(I] = IF (1==1) THEN

TIMEO
ELSIF (RQ_ORRL[I]) THEN

LASTALLOC[I-1] - 1000 * LOG(RANDOMO)
ELSE

CLOCKR[I-1] - 10000 *LOG(RANDOMO)

ENDEF;

- 56 -

Appendix II: Resource Allocator Process Specification in EPL

PROCESS: R;
IN: REQ.REL;
OUT: ALLOC, QUEUE;

FILE: REQREL(PORT),
10 RECORD: MSGR[*],

20 INT: PROCID,
20 LOGIC: RQORRL,
20 INT: RES[5],
20 INT: CLOCKR;

FILE: ALLOC (PORT),
10 RECORD: MSGA[*,*],

20 INT: PROCID,
20 INT: CLOCKA;

FILE: QUEUE (SEQ),
10 RECORD: PROCC[*,*],

20 INT: PROCID,
20 INT: INIX,
20 [NT: OUTIX,
20 GROUP: RES[5],

30 INT: CLAIM,
30 INT: SUMCLAIM,
30 LOGIC: SAT;

INT: NUM RES[5];

SUBS: I, J, K, L;

RANGE(2).MSGA - 100; /* must declare # of msgs */

RANGE.PROCC[= IF (1=1) THEN
I

ELSIEF (RQOR RL[I]) THEN
RANGE.PROCC[I-]-1

ft -57-

ELSE
RANGE.PROCC[i- 11+1

ENDEF;

RANGE.MSGA(I] = IF (RANGE.PROCC[I] > 0) THEN LAST.OUTIX[I] ELSE 0 ENDIF;

NUMRES[JI = 1;

QUEUE.PROCID[I,K] = IF (- RQOR -RL[IJ & (K==RANGE.PROCC[I)) TMEN
REQ_REL.PROCID[I]

ELSE
QIJEXE.PROCID[I-1, INIXII, K])

ENDIF;

INIX(I,K] = IF (-RQORRL[JI) THEN
K

ELSIF (REQREL.PROC [D[I] - QUEUE.PROCID[I- 1, K]) THEN
INIXCI,K-11+1
ESE
IN_-IX[I,K-1]+2

ENDIF;

OUTIX[I,K] = IF RQ ORRL[I] THEN
IF (LAST.SAT[I, K] & -LAST.SAT[I-l, INLX[I,Kl]) THEN

OUT _IXI, K-11+1
ELSE

OUT _IX[I, K-l1
ENDIF

ELSE
IF (K=-RANGE.PROCC[1]&LAST.SAT[I, K]) THEN 1 ELSE 0 ENDIF

ENDIF;

CLAIM(I, K, J] = IF (-RQ_ORRLiI] & (K==RANGE.PROCC[I])) THEN
REQ_REL.RESIJ, J1

ELSE
CLAIM[I-l, INDC[I, K], J]

ENDIF;

SUM CLAIM[I, K, J] = QUEUE.CLAIM[I, K, J]+SUMCLAIM[l, K-1, J);

-58-

SAT[I, K, J] = SAT[I, K, J-11 &
(SUMCLAIM[I,K,J] <= NUMRES[J] I QUEUE.CLAIM[I, K, J]==-O);

ALLOC.PROCID[I, OUTIX[I, K]] = IF (OUTIX[I,K] > OUTIX[I,K-1]) THEN
QUEUE.PROCID[I, K]

ENDEF;

CLOCKAIJ, L] CLOCKR[I];

- 59 -

References Cited

[1] Bruno, J. M., "Notes from EPL group meeting on August 24, 1988," Department
of Computer Science, Rensselaer Polytechnic Institute, August 1988.

[2] Clarke, D. E., "EPL System Design -- Intermediate Processing Steps," Masters
Project, Department of Computer Science, Rensselaer Polytechnic Institute,
December 1987.

[3] Hoffman, C S. and O'Donnell, M. J., "Programming with Equations," ACM Tran-
sactions on Programming Languages and Systems, Vol. 4, No. 1, pp. 83-112,
January 1982.

[4] McGraw, J. R., "The VAL Language: Description and Analysis," ACM Transac-
tions on Programming Languages and Systems, Vol. 4, No. 1, pp. 44-82, January
1982.

[5] Ramamrithan, K. and Keller, R. M., "Specification of Synchronizing Process,"
IEEE Transactions on Software Engineering, Vol SE-9, No. 6, pp. 722-733,
November 1983.

[6] Shi, Y., Prywes, N., Szymanski, B., and Pnueli, A., "Very High Level Concurrent
Programming," IEEE Transactions on Software Engineering, Vol. SE-13, No. 9,
pp. 1038-1046, September 1987.

[7] Srinivasan, Mahesh, "A Timing Evaluator for C Programs Generated by the
MODEL System," Technical Report submitted to Information System Program,
Office of Naval Research, under contract N00014-86-K-0442.

[8] Szymanski, B., "Parallel Programming with Recurrent Equations," International
Journal of Supercomputer Applications, Vol. 1, No. 2, pp. 44-74.

[9] Tseng, J.S., Szymanski, B., Shi Y., Prywes, N., "Real-Time Software Life Cycle
with the Model System," IEEE Transactions on Software Engineering, Vol. SE-
12, No. 2, pp. 358-373, February 1986.

