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ABSTRACT controlled by c. Using L'Hospitals rule, the limit of

Model-critical procedures provided a means to L (0) as c approaches zero is Lo(e) the usual log

scrutinize an assumed parametric statistical model by likelihood for 9. Differentiating Lc(e) with

varying the way the data is processed for repeated respect to 0 and setting the result equal to zero

fits to the model. The criticism of the data is

iccomplished using the generalized likelihood
function for the assumed probability density of the
lata. The degree of criticism is controlled by a 3Lc(e )
-ser specified constant c. The model-critical 0 (3)
3arameter estimates are obtained by maximization of 80
the generalized likelihood function. When c 0 0, no
:riticism is performed and maximum likelihood
estimates are obtained. These procedures can ao f(y 1 ; 0) logf
indicated if any model assumptions have been a alog 0(
violated. Model critical estimation procedures are Qa(0) 80 (1+c) 80

)resntedforautoregressive (AR) models.. The
inalysis of an AR example is preseated . which is a necessary condition that must be satisfied

INTRODUCTION ' by 9(c). For the models discussed here, equation (3)
is used to obtain 0(c). From (3) It can be seen that

S each term in the sum is weighted by the c-th power ofSignal models are as the name implies only models the assumed probability density of the data evaluated

?f reality. As such, they only approximate the true
Process and in general, more than one model can be at yi- The value of c determines the amount and
used to describe a given set of data. Under these type of weighting used in (3). Positive values of c
conditions, the experimenter must determine models downweight outlying observations and negative values

data. of c downweight inlying observations. This weightingDhich adequately describe the observed da ot. produces a criticism of the data and the assumed modelcandidate models is chosen. The selected moel is f(y;e) that can indicate if any model assumptions have
canddat moelsis hosn. Te sleced ode isbeen violated.

then analyzed as to how well It describes the
observed data. In this paper, the term model refer% Outliers are an example of a violation of the
to the structural and distributional description of model assumptions on the data. It iS noted that an
the data. The nominal distributional model is the mdlasmtoso h aa ti oe htaGausstan distribution; the structural models are observation is an outlier only with respect to the
parametric modebs such as an autoregresson. This assumed underlying model; if a different model is
paprxamirc model csu icha a toregres . Thish used, the observation may no longer be an outlier.
paper examines model-critical procedures which Unlike unstructured data, where an outlier Osticks
scrutinize the data and the assumed model by varying outl, the structure of a model can hide the outlier.
the way the data is processed during model fitting. If multiple outliers are present, they can compensateISome aspects of model-critical analysis have beeneahoer(] Intmsriswrehebevtos
Presented in [11. 12. 13. 14, 15, 16]. each other [2). In time series where the observations

are not independent, outliers need only be large with
Model-critical analysis is based on the respect to the error process to seriously affect thede-raled anke l ysisd [12] bado t e parameter estimates [8]. With outliers of this

generalized likelihood [12] for a random sample yl, magnitude, they may not show up in plots of the data.
Y2 ... Yn Fox (4] considers two outlier models for time series.

The additive outlier is a gross error at a single
n observation. The innovations outlier is a large value

C a in the error process due to a heavy tailed error
Lc (/c) E1 fC(y;)/a(0) _ (1) distribution. It is noted that both types of outliers

7 can occur with independent as well as dependentobservations. With dependent observations, the
innovative outlier will affect subsequent observations

where due to the correlation between observations. A host
of robust or resistant procedures are available to

a - c/(l+c), f(yi;e) is the assumed probability reduce the effect of outliers on the parameter
density of the data evaluated at observation estimates (1,10]. The previous discussion has focused
Yi, 0 is a parameter vector that characterizes on outlying contamination; however, inlying or
the data and the density f, short-tailed contamination can also be a concern (6].

. f yFrom the above discussion, it can be seen that
robustness and goodness of fit are related.

Q( e) dy (2) Model-critical analysis uses this relationship to
Rp examine models for a given set of data. The analysis

compares maximum likelihood and robust parameter
estimates. Clearly, the robust and maximum likelihood

is the information generating function for fCy;e) estimates must estimate the same quantity if they are
[5, 12], and c is the model-critical parameter. The to be comparable. From the dorivatton of Lc(e), the
model-critical estimate for 0 is the value of e(c) estimate 0(c) is a consistent estimate of 0 [3].
which maximizes (1). The estimate 9(c) is a robust Thus, 9(c) and 9(o) are two consistent estimates of 9.
estimate for S with the degree of robustness If the data and the assumed model are internally



consistent. then 0(o) and 9(c) should be approximately The errors ci are assumed to be independent and
equal over a range of c values. However, if the data identically distributed Gaussian random variables with
and the assumed model are not consistent, then e(c) zero mean and covariance matrix 0. For the model
will change considerably as c increases. Large given by (9), the generalized likelihood without the
changes in parameter estimates 0(c) indicate that the constant term denoted L(c) is
model requires closer examination. As an M-estimator
(7], robust weights are obtained as part of the
estimation process. For c o 0, these critical weights n
can be used to flag questionable observations.e- 1
Examination of the weights aids the analyst L(c) - (1/c) Aexp (- c e D ei/2) (10)
in evaluating the model. For example, small weights 1
indicate outlying contamination when c > 0.

MODEL-CRITICAL ESTIMATION where

Let the density f(y;e) in (1) be the r-variate
Gaussian density A - 1(l+c)/2O 0.5c/(1+c),

ei - yt - h(xi;e).

f(y) i -1/2 exp[- (y-m)T 01 (y-m)/2] (4)
For the proposed model h(x;e) in L(c), the

with mean vector m and covariance matrix 0. For the model-critical estimates of 0 and 0 are obtained by

Gaussian density in (4), it is straight forward to maximizing (10) over e and 0. For many models,
evaluate (2) and obtain setting equal to zero the derivatives of L(c) with

respect to 0 and 0 yields a set of implicit equations
which can be solved via a fixed point algorithm.

Q(m.O.c) - [12,01 (!+c)r]-/2 c > - 1. (5) ANALYSIS OF AUTOREGRESSIVE MODELS

Using (3), (4) and (5), the Following set of implicit For the multivariate autoregressive (AR) model of
estimation equations for m and 0 are obtained, order p, (9) can be expressed as

nP

m - ~wi Y (6) "i" Yi Ak Yi-k
1=1 k-l

n for i - p+l. p 2, .... n. The model-critical
D(yc) -W)(y - - m)T (7) estimates for 0 and Ak, k-. 2, ... , p are obtained

by differentiating L(c) with respect to 0 and Ak,

t-1 k-l, 2, ..., p; setting the derivatives equal to zero;
and solving for D and Ak, k-l, 2, ...., p. The

where model-critical estimation equations are

n A(c) - 1 b (12)

wk - fc(yk)/lfc(y1) (8)
i-1 and

The estimates for m and 0 are the values m(c) and D(c) n
which satisfy (6) and (7). Clearly, when c - 0, m(O) w et(c)Tand D(O) are the usual mximum likelihood estimtes. D(€) -((l+c)/w.) 2:w et~e(c) (13)

The specification of the user-provided constant c is t-p+l
based on sample size n, dimension r, and the character
of the sample.

where
For models with structure in addition to a mean

vector and covariance matrix, the errors can be

expressed as A(c) = [A1(c), A2(c). .... Ap ()1 , and (14)

ct a yi - h(xi;e) (9)

where 
e (c) " (y 1  - A k(c ) Yi-k

) "  (15)

The block matrix entries ot b are
gj is a r w 1 vector of errors,

yt is a r x I vector of observations,
xt is a p x 1 vector of concomitant variables,andand -1 w T i, j 1 2

9 is a p x 1 vector of parameters. gk k i, j - 1,2 ..... p
k P+l



For c - 0.4, Figure 4 is a plot of theand the block matrix entries of b are model-critical weights

n p
T i - 1.2. p 2 2

-" WkYkYk- 2. wt - exp(- c(zt E ak(cztk) /2 s ()

k-p+1 k-i

where where s2 (c) and ak(c) are calculated using (12)
and (13). Since the critical weights are a measure of
fit between the data and the model, analysis of the

wk - exp(- c ek(c)T D(c) "1 ek(c)/ 2 ) (16) weights is an integral part of the modeling process.
In Figure 4, the small weights at observations 5, 6.
11, and 25 indicate that the model which describes the

and bulk of the data does not give a good fit to these
observations. In fact, some of the subsequent weights

n are small due to the dependence between observations.
W .k - Small weights alert the experimenter to the fact that

, wkfurther analysis of the data and model may be
k-p+l necessary.

The estimates A(O). D(O) and A(c), D(c), c o 0 are CONCLUSION
conditional maximum likelihood and conditional
model-critical estimates since they are conditioned on Model-critical procedures have been presented for
the first p observations; however, the estimates will analyzing the joint character of the data and the
still be referred to as maximum likelihood or assumed model. The critical estimation equations for
model-critical estimates. multivariate autoregressive models were presented.

The model-critical weights which are obtained during
As an illustration, model-critical estimates are parameter estimation can be used to identify

presented for a simulated univariate, Gaussian AR(4) observations which violate the model assumptions. It
process with representation given by (11) where is noted that model-critical procedures can be applied
Al - 2.0625, A2 - -2.4325, A3 - 1.5845, to wide variety of models. These procedures can
A4 a -0.652, and the ct are independent assist the engineer in model identification, and
identically distributed with zero mean and unit analysis of the error process.
variance. Figure 1 is a plot of the realization used
to the obtain parameter estimates. Table I contains REFERENCES
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Figure 3. The Maximum Likelihood and Model-Critical
(c - 0.4) Spectrum Estimates for the

Los 1.2 ma L" , 4 K V1.21 Met f I K= Simulated AR(4) Process with Four Outliers,WLC VuWR and the True Spectrum.
Figure 1. A Simulated AR(4) Process with Innovations

Distributed Normal(O,1).
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' Figure 4. The Model-Critical Wleights for the
Simulated AR(4) Process with Innovations
Distributed Normal(0,I) and Four Outliers;
c- 0.4.
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