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SIGNAL MODEL ANALYSIS VIA MODEL-CRITICAL METHODS

GERALD R. SWOPE
Naval Underwater Systems Center
New London, CT 06320

ABSTRACT

Model-critical procedures provided a means to
scrutinize an assumed parametric statistical model by
varying the way the data is processed for repeated
fits to the mode). The criticism of the data is
iccomplished using the generalized 1ikelihood
function for the assumed probadbility density of the
jata. The degree of criticism s controlled by a
yser specified constant c. The model-critical
sarameter estimates are obtained by maximization of
the generalized likelihood function. When ¢ = 0, no
:riticism is performed and maximum likelihood
astimates are obtained. These procedures can
indicated 1f any model assumptions have been
violated. Model critical estimation procedures are
oresented for autoregressive (AR) models. The
analysis of an AR example jis presented.

wTRooueTIon . - Y, (K0P
i

Signal models are as the name implies only models T
of reality. As such, they only approximate the true
process and in general, more than one model can be
used to describe a given set of data. Under these
conditions, the experimenter must determine models
«hich adequately describe the observed data.
Depending on how the mode} is to be used, one of the
candidate models is chosen. The selected model is
then analyzed as to how well it describes the
observed data. In this paper, the term model refers
to the structural and distributional description of
the data. The nominal distributional model is the
Gaussian distribution; the structural models are
parametric models such as an autoregression. This
paper examines model-critical procedures which
scrutinize the data and the assumed model by varying
the way the data is processed during model fitting.
Some aspects of model-critical analysis have been
presented 1n (11, 12, 13, 14, 15, 16).

Model-critical analysis is based on the
generalized likelihood [12] for a random sample y,,

Y2. -« ¥n

n
L(®) = (1/¢) ZE*‘(y,:o)/o‘(e) -1] )

i=)
where

a =c/(V+c), f(yy;0) s the assumed probability
density of the data evaluated at observation
¥{, © is 8 parameter vector that characterizes
the data and the density f,

ate) = I 1*(y:0) ty (2)

Rp

is the information generating function for f(y;e)
{5, 12], and ¢ is the model-critical parameter. The
model-critical estimate for ® is the value of 8(c)
which maximizes (1). The estimate @(c) is a robust
estimate for @ with the degree of robustness
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controiled by ¢c. Using L'Hospitals rule, the limit of
Lc(8) as c approaches zero is Lg(@) the usual log
likelihood for €. Differentiating L (@) with

respect to @ and setting the result equal to zero
yields

aL (o)
—S— -0~ (3)
2 (y,: @) [ﬂoe fly,:0) 1__ alog om)}
& o‘(e) 20 (1+c) 30

which is a necessary condition that must be satisfied
by &(c). For the models discussed here, equation (3)
is used to obtain e(c). From (3) it can be seen that
each term in the sum is weighted by the c-th power of
the assumed probability density of the data evaluated
at yi. The value of ¢ determines the amount and

type of weighting used in (3). Positive values of ¢
downweight outlying observations and negative values
of ¢ downweight inlying observations. This weighting
produces a criticism of the data and the assumed mode)
f(y;8) that can indicate if any model assumptions have
been violated.

Outliers are an example of a violation of the
model assumptions on the data. It is noted that an
observation is an outlier only with respect to the
assumed underlying model; if a different model is
used, the observation may no Tonger be an outlier.
Unlike unstructured data, where an outlier "sticks
out”, the structure of a model can hide the outlier.
If multiple outliers are present, they can compensate
each other [2]. In time series where the observations
are not independent, outliers need only be large with
respect to the error process to seriously affect the
parameter estimates [8). With outliers of this
magnitude, they may not show up in plots of the data.
Fox [4] considers two outlier models for time series.
The additive outlier is a gross error at a single
observation. The innovations outlier is a large value
in the error process due to a heavy tailed error
distribution. It is noted that both types of outliers
can occur with independent as well as dependent
observations. With dependent observations, the
innovative outlier will affect subsequent observations
due to the correlation between observations. A host
of robust or resistant procedures are available to
reduce the effect of outliers on the parameter
estimates [1,10}. The previous discussion has focused
on outlying contamination; however, inlying or
short-tailed contamination can also be a concern [6].

From the above discussion, 1t can be seen that
robustness and goodness of fit are related.
Hodel-critical analysis uses this relationship to
examine models for a given set of data. The analysis
compares maximum 1ikelihood and robust parameter
estimates. Clearly, the robust and maximum Jikelihood
estimates must estimate the same quantity if they are
to be comparable. From the derivation of Lc(@), the
estimate ©(c) is a consistent estimate of © [3).

Thus, ®(c) and ©(0) are two consistent estimates of e.
If the data and the assumed model are internally




consistent, then ©(o) and ©(c) should be approximately
equal over a range of ¢ values. However, if the data
and the assumed model are not consistent, then 6(c)
will change considerably as ¢ 1increases. Large
changes in parameter estimates ©(c) indicate that the
model requires closer examination. As an M-estimator
{7], robust weights are obtained as part of the
estimation process. For ¢ w 0, these critical weights
can be used to flag questionable observations.
Examination of the weights aids the analyst

in evaluating the model. For example, small weights
indicate outlying contamination when ¢ > 0.

MODEL~CRITICAL ESTIMATION

Let the density f(y;0) in (1) be the r-variate
Gaussian density

fy) = [200] V2 exsl- (y-m' 07 cy-ms2) (0

with mean vector m and covariance matrix D. For the
Gaussian density in (4), it is straight forward to
evaluate (2) and obtain

-1/2. ¢

a(m,D,c) = 20| € (1+c)") > -1, (5)

Using (3), (4) and (5), the following set of implicit
estimation equations for m and D are obtained.

n
me Z"iyi (6)
im]
n
D= (1) D wylyy = myy - m" (m
{=]
where
n
W = /Y vy (8
i=1

The estimates for m and D are the values m(c) and D(c)
which satisfy (6) and (7). Clearly, when ¢ = 0, m(0)
and 0(0) are the usual maximum 1ikelihood estimates.
The specification of the user-provided constant c is
based on sample size n, dimension r, and the character
of the sample.

For models with structure in addition to a mean
vector and covariance matrix, the errors can be
expressed as

€4 = ¥4 - h(xy;e) (9)
where

ey is a r v 1 vector of errors,

y{ is a r x T vector of observations,

x4 is a p x 1 vector of concomitant variables,

and

® is a p x 1 vector of parameters.

The errors ¢4 are assumed to be independent and
identically distributed Gaussian random variables with
zero mean and covariance matrix 0. For the model
given by (9), the generalized likelihood without the
constant term denoted L(c) is

ey = () 3 heww (- c ey (10)
=]
where
A= [(1+c)/240] 0.5¢/(1+c),

ey = y§ - h(xy;0).

For the proposed model h(x;®) in L(c), the
model-critical estimates of @ and D are obtained by
maximizing (10) over @ and 0. For many models,
setting equal to zero the derivatives of L(c) with
respect to ® and D yfelds a set of implicit equations
which can be solved via a fixed point algorithm.
ANALY OF AUTOREGR VE MODELS

For the multivariate autoregressive (AR) model of

order p, (9) can be expressed as

P
&4 Yy ’2 Ay Yiok

k=1

()

for 1 = p+1, p+2, ..., n. The model-critical
estimates for D and Ay, k=1, 2, ..., p are obtained
by differentiating L(c) with respect to D and A,

k=1, 2, ..., p; setting the derivatives equal to zero;
and solving for D and Ay, k=1, 2, ..., p. The
model-critical estimation equations are

A(c) = 67'b (12)
and
n
0(c) = ((V+e)/w.) Z v (0 e )] (13)
j=p+]
where
A(C) = [A (€), Ag(e), ..., Ap(:)]T . and  (14)
(15)

!1(6) - (y1 - XAk(c) yi-k)'

The block matrix entries ot & are

- T -
91" 2 Ukyk_iyk_j- 1- j 1'2' ceey P
k=p+]
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and the block matrix entries of b are

n

T
h1 - z WY Yyoy ¢ =12, ....p
k=p+1

where
wx = exp(- ¢ ex(c)T D(c)1 ey(c)/2) (16)
and
W, = Z Hk .
k=p+)

The estimates A(0), D(0) and A(c), D(c), ¢ » O are
conditional maximum 1ikelihood and conditional

model-critical estimates since they are conditioned on

the first p observations; however, the estimates will
sti1) be referred to as maximum Yikelihood or
model-critical estimates.

As an {llustratfon, model-critical estimates are
presented for a simulated univariate, Gaussian AR(4)
process with representation given by (11) where
Ay = 2.0625, Ay = -2.4325, A3 = 1.5845,

Ag = -0.652, and the ¢y are ?ndependent

identically distributed with zero mean and unit
variance. Figure 1 is a plot of the realization used
to the obtain parameter estimates. Table 1 contains
the parameter estimates for ¢ = 0, 0.1, 0.2, 0.3, and
0.4. It can be seen that the model-critical and
maximum 1ikelihood estimates are approximately

equal. Next, additive outliers were added to four
observations selected at random in the realization
shown in Figure 1. The outliers are independent,
tdentically distributed Gaussian random variables
with zero mean and variance 2; also, the outliers are
independent of y,. The additive outlier model (9]

is given by 2y = y¢ + v¢ where yg is the

AR(4) process and v¢ is the outlier. For this
example, v¢ » 0 for only four observations. Figure

2 1s a plot of the data in Figure 1 with outliers
added to four observations; without a priori
knowledge, one would not suspect that outliers are
present. Martin {9] notes that for time series, the
outliers need only be large relative to the
innovations process ¢t to seriously affect the
parameter estimates. With outliers of this magnitude,
they may not stand out as they do when the
observations are independent. This is clearly seen in
Table 2, which presents the maximum likelihood and
model-critica) parameter estimates for the data in
Figure 2. As ¢ increases, the model-critical
estimates approach the true values; the improvement in
the estimates follows from the downweighting of the
outliers in model-critical estimation. For the data
with outliers, Figure 3 contains plots of the
modei-critical and maximum 1{keiihood spectrum. The
critical spectrum is closer to the true spectrum (the
solid 1ine) than the maximum 1ikelihood spectrum
estimate. For the data with dutliers, the maximum
likelihood spectrum contains more high frequency
components than the critical spectrum. This is the
case because maximum 1ikelihood estimation fits all
the data, whereas critical estimation fits the bulk of
the data without outlfiers.

For ¢ = 0.4, Figure 4 is a plot of the
model-critical weights

p
Wy = exp(- c(z, -Z 2, ()2, 122530
kel

where s2(c) and ag(c) are calculated using (12)

and (13). Since the critical weights are a measure of
fit between the datz and the model, analysis of the
weights 1s an integral part of the modeling process.
In Figure 4, the small weights at observations §, 6,
11, and 25 indicate that the model which describes the
bulk of the data does not give a good fit to these
observations. In fact, some of the subsequent weights
are small due to the dependence between observations.
Small weights alert the experimenter to the fact that
further analysis of the data snd model may be
necessary.

CONCLUSION

Model-critical procedures have been presented for
analyzing the joint character of the data and the
assumed model. The critical estimation equations for
multivariate autoregressive models were presented.

The model-critical weights which are obtained during
parameter estimation can be used to identify
observations which violate the model assumptions. It
is noted that modei-critical procedures can be applied
to wide variety of models. These procedures can
assist the engineer in model identification, and
analysis of the error process.
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TABLE 1
Maximum Likelihood and Modei-Critical Parameter
Estimates for a Simulated Univariate AR(4)
Process with Sample Size = 100

c 2 ap a3 a, se

2.1346  -2.5685 1.713
2.1190 -2.5438 1.6906
2.0984 -2.5040 1.6527
2.0841 -2.4820 1.6353
2.0631  -2.4400 1.5962

~0.7092 0.9100
-0.7094 0.9137
-0.6981 0.8915
-0.6999 0.8663
-0.6914 0.8241
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TABLE 2

Maximum Likelihood and Model-Critical Parameter
Estimates for a Simulated Univariate AR(4)
Process with Four Additive Ouytliers, and
Sample Size = 100

c a3 Y a3 ag 52

1.7661 -1.7643 0.9633
1.8477 -1.9116 1.0798
1.9556 -2.1520 1.2968
2.0342 -2.3064 1.4354
2.0390 -2.3498 1.4765

-0.4409 2.0344
-0.4651 1.7152
-0.5410 1.4180
-0.5912 1.1620
-0.6102 1.0740
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' Figure 3. The Maximum Likelihood and Model-Critical
: (c = 0.4) Spectrum Estimates for the
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Figure 1. A Simulated AR(4) Process with Innovations
Distributed Normal(0,1).
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