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ABSTRACT

An AM estimate 0 of the AR(l) parameter 0 is a solution of the M-

estimate equation t- V([ Yt - 4 t-]Ist)=0 where 1,
1

t = 0, 2,..., satisfies the robust filter recursion

.it = 41 -1 + s, V*([Yt -. it -I ]/s, ), and sl is a data dependent scale

which satisfies an auxiliary recursion. The AM-estimate may-be viewed as a

special kind of bounded-influence regression which provides robustness

toward contamination models of the type Yt = (1 - z, ) x, + z, w, where z,

is a 0-1 process, w, is a contamination process and xg is an AR(1) process

with parameter . While AM-estimates have considerable heuristic appeal,

and cope with time series outliers quite well, they are not in general Fisher

consistent. In this paper, we show that under mild conditions, 4 is Fisher

consistent when V* is of hard-rejection type.
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L INTRODUCTION

In recent years several classes of robust estimates of ARMA model parameters have

been pposed. ine three major classes of such estimates are: (i) GM-estimates (Denby and

Martin, 1979; Martin, 1980; Bustos, 1982, Kunsch, 1984), (ii) AM-estimates (Martin, 1980;

Martin, Samarov an4 Vandaele, 1983), and (iii) RA-estimates (Bustos, Fraiman and Yohai,

1984; Bustos and Yohai, 1986). See Martin and Yohai (1985) for an overview.

Each of the three types of mates appear to have advantages over the others in certain

circumstances. However, in some overall seini-ilthe AM-estimates seem most appealing:

They are based in on an intuitively appealing robust filter.ileaner which '6heansH the data

by replacing outliers with interpolates based on previous cleaned data. Futhermor3, they

have proved quite useful in a variety of application(in addition to the references given after

(ii) above, see also Kleiner, Martin and Thomson, 1979, and Martin and Thomson, 1982).

On the other hand, the AM-estimates are sufficiently complicated functions of the data that it

has proven difficult to establish even the most basic asymptotic properties such as

consistency Indeed, it appears that in general AM-estimates are not consistent (see the

complaint Ot Anderson, 1983, in his discussion of Martin, Samarov and Vandaele, 1983),

even thotigh their asymptotic bias appears to be quite small (see the approximate bias

calculaton in Martin and Thomson, 1982).

In this paper we1 consider,6nly a special case of AM-estimates based on a so-called

hard-rejection filter cleaner. The importance of hard-rejection fiter-cleaners, which are

described in-Seefn'rfor the first-order autoregressive (AR(1)) model, is that engineers

often use a similar intuitively appealing modification of the Kalman filter for dealing with

outliers in tracking problems. In-Section 3 we prove ti-(inder certain assumptions) these

special AM-estimates are Fisher consistent for the parameter 00 of an AR(1) model, Fisher

consistency being the first property one usually establishes along the way to proving

consistency. In addition we prove uniqueness of the root of the asymptotic estimating

" i :J
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The AR(1) model we consider is

Xt = %ox.I+u,, t= 0, ±1, ±2, (1.1)

along with the assumption

(Al) The ut's are independent and identically distributed with symmetric distribution F

which assigns positive probability to every interval.

Furthermore, we shall let a denote a measure of scale for the u, 's. For example, a might

be the median absolute deviation (MAD) of the u,, scaled to yield the usual standard

deviation when the ut are Gaussian, namely, a = MAD /.6795.

A model-oriented justification for using a robust procedure such as the AM-estimates

treated here is that the observations are presumed to be given by the general contamination

model

YJ = (1 -zJ7 )xJ + zIYwI (1.2)

where z4 is a 0-1 process with P (zt¥=l)='y+o (y), and w, is an outlier generating

process. The processes zJ , w, and x, are presumed jointly stationary. See, for

example, Martin and Yohai (1986).

The filter-cleaners and AM-estimates introduced in the next section are designed to

cope well with outliers generated by such a model. However, in this paper our main focus
will be on the behavior of the AM-estimates only at the nominal model (1.1), i.e., when

zt 7 a 0 in (1.2).
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2. AM-ESTIMATES AND HARD.REJECTION FILTER CLEANERS

2.1 Filter Cleaners and AM-Estimates for the AR(1) Parameter

Suppose that the model (1.2) holds, for the moment with or without the condition

ztt a 0.

Let Jft = i(*) denote the filter-cleaner values generated for t = 1,2, ... by the

robust filter cleaner recursion

Xf= .4..+SW~J*r1-i

2  *2p,_. +a2  (2.1)

Pt S1 st _1w* {tft-i }
with initial conditions

Yo=0

(2.1')
$2 _ _G

The robustifying psi-function t* is odd and bounded, and the weight function w* is

defined by

w*(r) = (2.2)

r

We shall often use the notation, it (0) and s, ( ) to emphasize the dependence of it

and x, on q. Then an AM-estimate of 0 is defined by

mx F) J = 0 (2.3)t=-2 St
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where the robustifying function AV is odd and bounded, but in general different than I.

Since bounded 14 * gives rise to bounded i,'s (see Martin and Su, 1986), the AM-estimate

can be regarded as a form of bounded influence regression (see Hampel et al., 1986). Let

4M be the "ordinary" M-estimate defined by

[Y - r - -1 (2.4)
t=2

where I is some robust estimate of scale of the residuals Yt - 4M Yt - . The estimate OM

does not have bounded influence (see Martin and Yohai, 1986). The bounded influence

estimate * efined by (2.3) is obtained from (2.4) by replacing Yt - by t (0), and by

replacing the global scale estimate . by the local, data-dependent scale st . Although the

M-estimate m has high efficiency robustness at perfectly observed autoregressions

(Martin, 1979), m is known to lack qualitative robustness (see for example Martin and

Yohai, 1985), and the t- of (2.3) represents a natural kind of robustification of 4M

We can characterize the asymptotic value of 0 as follows. First, assume that the filter

recursions (2.1) are started not at t =0, but in the remote past, and that .i,, s, and Yt are

jointly asymptotically stationary. Then consider the equation

E jeot- Wi O (2.5)

Sst 0O,))

where i is the measure for the process Y:, and the choice of t is arbitrary by virtue of

starting the filter in the remote part. It is presumed that the functional 0 (i.) is well-defined

by (2.5). Under reasonable conditions one expects that 4 is strongly or weakly consistent,

i.e., that will converge to 4 (g.) almost surely, or in probability.
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2.2 Fisher Consistency

A minimal requirement for any estimate, including robust estimates, is that of Fisher

consistency. In the present context this means: when z4 a 0 in the general contamination

model (1.2), we have Yt a x, and then x, has measure t where 40 is the true

parameter value. Then is said to be Fisher consistent if

O(R%) = 0 V0e (-1,1). (2.6)

In general, AM-estimates are not Fisher consistent. The plausibility of the claim is easy

to see in the case where * --vI. Substituting the basic filter equation of (2.1) in (2.3) gives:

A. )= . (2.7)
t=2 St

Thus, in this special case, can be characterized as a weighted least squares estimate based

on the cleaned data 1, =I,($). When Yt a xt is an outlier free Gaussian process, a

properly tuned filter-cleaner will result in t =x, for most, but not all, times t. At those

times t for which t *xt, A will typically be more highly correlated with

Xt- I, -2 , than is xt . Thus, neither weighted nor classical least squares applied to

the i, is expected to yield consistent, or even Fisher consistent, estimates. This will be the

case a fortiori when Yt r xt , but x, has innovations outliers by virtue of the distribution of

ut having a heavy-tailed distribution (in which case the event f, * x, will occur more

frequently).

The surprising result is that use of a hard-rejection filter cleaner does yield Fisher

consistency under reasonable assumptions. In particular, according to our working

assumption Al, the x, process need not be Gaussian.
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2.3 Hard-Rejection Filter Cleaners

From now on we take zy a 0, and take y' to be of the hard rejection type

rr IrI :c
0 = Irl >c. (2.8)

Correspondingly

w*(r) = { rl >c. (2.10)

The constant c is adjusted to achieve a proper tradeoff between efficiency and robustness of

the filter-cleaner (see Martin and Su, 1986, for guidelines here). The results in the remainder

of the paper hold for any c > 0, and without lost of generality we take c = I.

Note that when "* in (2.1) is the hard-rejection type, the filter-cleaner value at time t

is either it = y, or it = ^ -I(*)

We can now characterize the hard-rejection filter as follows. Let the filter parameter be

*, and from now on replace Yt by xt in (2.1). Then since N4t*(r) is either 0 or r in

accordance with whether or not Ixt- *.f- 1 ()- I s, , it is easy to see that ^ ( ) must

have the form

= X,-Lt (2.11)

where L, =L4(4) is the random time which has elapsed since the last "good" xm. A

"good" x. is one for which Ixm mn -Oi(n) < sm , and hence x. ( .) xm.

Let

N:(O) = the latest time, less or equal to t , at which a good x, occurs. (2.12)

Then

L() = t -Nt(4). (2.13)
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Notefrom(2.1) with y,=x,,thatforagood x, we have pt= 0 and s+ =a2 t

Kj* - 2 e)2 j=O, 1,2, . (2.14)
k=O

Then stZ = (K*) 2 if and only if L t 1 ( = 1

Now set

u = xt - - -I () (2.15)

and note that the event Mt* that x, is bad (i.e., x, is not good) occurs if and only if u,( )

is "rejected', i.e., if I u,(4) is larger than the appropriate Kj*. The appropriate Kj* is,)

KL, _('and so we can write

Mt= [1Um(*)1 2!KL*,). (2.16)

Note that

and

(Mt*f [ ,(O) = x,, N,,) = , ].

Forany j wecanuse (1.1)towrite

j-1
x,= *dx,_j+ 1 t (2.17)

k=O

If we set j L t - and ( 0)= , then (2.11) and (2.17) give

xt - 0o,- 1 (0o) Wt 0O x-, x

= , *0u,_k.
k=0

In this case, with Yt = x, and (0(t)) = 00, the left-hand side of (2.5) becomes
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1k=o (2.18)

Now if L t were replaced by a fixed value m, then the independence of

"t-m , , "u, and x, , -1, along with the evenness assumption on the distribution of the

u, and oddness assumption for AV, would result in the above expectation being zero. This

would give part of what is required to establish Fisher consistency - the other part is to

show that (2.18) is non-zero when 00 is replaced by 0 0 0. However, even for this first

part a more detailed argument is required because x_ - t-L and U,-L I I " " ", are not

conditionally independent, given L t-I m. Fortunately, symmetry and skewness

arguments presented in the next section allow one to get around this difficulty.
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3. THE FISHER CONSISTENCY RESULT

The following assumptions concerning y will be used.

(A2) The function 41: R -+ R has the properties:

(i) AV is monotone nondecreasing and odd

(ii) vj is strictly monotone on a neighborhood of zero.

(iii) AV is continuous

Definition: A distribution function F is called right-skewed (RS) if F (x) +F (-x) < 1

for all x ,and F iscalledleft-skewed (LS)if F(x)+F(-x)> 1 forall x.

Proofs of Lemmas 1-4 below are elementary.

Lemma 1. Suppose that the random variable U has a distribution function F which gives

positive probability to every neighborhood of the origin. Let , satisfy A2. If F is RS and

a >0, then Eq(a+U)>O. If F is LS and a<O, then EAV(a+U)<O. If F is

symmetric, then E (U) = 0.

Lemma 2. Let X and Y be independent random variables, with the distribution of X

being such that every interval has positive probability. Then the distribution of X + Y gives

positive probability to every interval.

Lemma 3. Let X and Y be independent random variables, with Y symmetric. If X is

RS then so is X + Y, and if X is LS then so is X + Y.
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Lemma 4. If U has a distribution F which is RS, then X. > 0 implies that the distribution

of XU is RS and X < 0 implies that it is L5.

The next two lemmas will also be used in order to establish Fisher consistency of 0(g).

Lemma S. Let U have distribution F. For any constant k >0 consider the event

M =[ I a + U k], and let FU I M denote the distribution of U given M.

(i) If a >0 and F isRS, then FUIM isRS.

(ii) If a < 0 and F is LS, then FUiM is LS.

(iii) If a = 0 and F is symmetric, then FU I M is symmetric.

Proof. The result (iii) is immediate, and since the arguments for (i) and (ii) are essentially

the same we prove only (i). It suffices to show that for all t 0 we have

P([U>tinM) 2t P([U:5-t~nM). (3.1)

Notethat M =[Utk-a]u[U<-k-a],andif a >0,t >0 wehave

P([U~t]cnM) = P(U:t, Utk-a)

and

P([U<:-t]nM) = P(U<-t, Utk-a)

+P(U -t,U <-k-a).

These probabiities are readily compared for two separate cases.
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Casea: k-a 5t, t 0

Here

P([Uat]nM) - P(Utt)

and
<(U5tr,)! P(U 5-t

Since U - F with F RS, we get (3.1).

Case b: 0 S 5 k -a

Now

P([U~t]riM) = P(UZk-a)

and

P([Ugt]rM) = P(US-k-a) S P(US-(k-a))

which again gives (3. 1). 0"1

Lemma 6: Let U 1 , U 2 , , be independent and identically distributed random variables

with symmetric distribution function F. Let al,a 2 , .. , and h 2 ,h 3 , .. , be

constants. Let V= U and for i = 2, 3, • •., let

Vi = hi VIx + Ui. (3.2)

Consider the events

Mi = [Iaj+VjI K5], i=1,2,"

where K, is a constant, and for each i >2 Ki is a function of M l , ".,M s _.1 . Set

n
n n Mi , and let FV. I M. be the conditional distribution of V. given M.
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(i) If h 2 >O..., hZ>0 and a <O,..., a. O,then Fv. IMa isRS.

(iii) If h 2 <O, hn50 and aIZ0,a2<0,. an(-l)"<0, then Fv, M. is

RS or LS according if n is odd or even.

(iv) If h2<0,...,h,<0 and a1 5O,a 2>O,...,a,(-l)'>O, then Fv M. is

LS or RS according if n is odd or even.

(v) If al= a2= ... = an=O,then FV.IM" is symmetric.

Proof: The proof is by induction. For n = 1,

MI = [laI+UiI >K 1 ]

and so (i)-(iii) follow from Lemma 5. Now suppose the result holds for n -1, and consider

the case (i). Then conditioned on M - 1, h.V,.._1 is RS and U. is symmetric. From

Lemma 3 it follows that conditioned on M -', V, is RS. Then since K. is fixed, when

we condition on Mn -1 , use of Lemma5 shows that FV. IM is RS. A similar argument

yields cases (ii) to (v). ['

Theorem: (Fisher Consistency) Suppose that F satisfies Al and V satisfies A2. Further-

more, assume that the processes I,, st and x, are jointly asymptotically stationary, and

are governed by their asymptotic joint measure. If * O4Z and * * then for

t=1,2, ". IMr, < 0

where r,()=xt .-i( ),and
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Eit (rt( W) .

Proof.. Let 4vr(u)=v 4-r. II where K,* is given by (2.14), for any fixed r!0,

consider the conditional expectation

E _(O) L M N,_l( )=t-r-1, x,-,-,

= E [2,_ (O)1,.(r,(@))IN,_. 1(d)---r -1, X_._.].

Conditionedon Nt ()=t - r -1 and x_ we have

- -l () - 'xt-. -, i =0, 1, "',r

and it follows from (1. 1) that

i-I
X-r-l+i = Xtg-r-i + I O rt-r- -, i=1,2,

1=0

Thus, conditioned on N,..(*) = t -r - I, we have

i-Iri-r-l+j(4)) Y, % dut-r-j+j-t+(O '-0)xt-r-j, i=1,2, "'-,r+l.

1=0

Put

hi W O )X--

Ui = ur i=12,

Let Vi, 1 < i < r be defined by (3.2) of in Lemma 6, so that
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i 0-i
V i  -' O ut- p- j+ j- j , i = 192, " ,r .

1=0

and

= V 5+a , i=1,2, .,r+l

Recalling the definition of M* in (2.16), let

M i --" Mt* r~ - i=1,2, ,r+l

and note that conditioned on N,.-.I( )=t-r-1 and Xt.r.l, we are ready to apply

Lemma6with n =r+1. We have

= *rxt-,.EV(V,++a,+ I Mrx,-1). (3.3)

If *=%o, then al=a 2 = ... =a,+1=O, part(v)ofLemma6givesthat Fv, it. is

symmetric, and it follows from (3.2) that Fv, II , is symmetric as weil. Then (3.3) is

zero by Lemma 1.

Suppose first that 4% e (0, 1). If 0 < < % and x, 1
> O, then all the a I's are

positive and Fv, I M" is RS by Lemma 6-(i). Then Fv, , !m, is RS by Lemma 3, and

Lemmas 1-2, along with A1-A2, show that (3.3) is positive. Similarly, if 0 < 4 and

x,- 1 < 0 then the ai are all negative, FV, M and F,,., IM " are both LS, which

gives E (v. (V,+ 1+a,+) IM r ] < 0, and (3.3) is once again positive. Since

P (x,.__ 1 =0) = 0, the result follows for e (0, 1), 0 < 4,< . A similar argument shows

that (3.3) is negative for > %.

Now suppose that 4 e (- 1, 0). If < % < 0, xt -_r - > 0 and r is odd, then we

have h 2 <0O .. , h,<O, al>O, a 2 <0,..., a,>O, a,+ 1 <0. It follows from

Lemma 6(iii) that FV, IM, is RS, and then by Lemmas 3-4 Fv,I M is LS. Hence
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Lemmas 1-2 and A1-A2 yield E[V,(V,+I+a,+i) I M"]<0. Since *'xt_,_ n <0,

(3.3) is positive. Similar arguments show that (3.3) is positive for r even, and also for

xt_,<0, r even or odd. Thus E[.j_1(¢),/(r,(¢))jMr]<O, for O<O<O.

Similar arguments show that (3.3) is negative for 40 < < 0.

If %= 0, then the above arguments reveal that (3.3) is positive for 0<0 and negative

for *>0.

The result follows by averaging over the conditioning in (3.3). 0
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4. CONCLUDING REMARKS

The theorem in Section 3 does not in fact give uniqueness of the root of (2.5) unless we

know the sign of *0. At the present time, we have good reason to believe that the inequality

of the theorem does not hold for all Oe (- 1, 1). However, in the case that (.25) has a root

may sign, we still can be Fisher consistent by choosing as estimate the root minimizing

t=2 St

It would be nice to obtain Fisher consistency for the AR(p) case. Unfortunately, Fisher

consistency does not hold for the p th order analogue (p > 2) of the hard-rejection filter-

based AM-estimated treated here. It appears, however, that one or more modifications may

yield Fisher consistency.

These questions will be pursued elsewhere.
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