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CHAPTER 1

INTRODUCTION

Many important problems of physical geodesy are being solved by
integrals extended over the entire Earth. Some examples are Stokes’
and Vening-Meinesz’ formulase [Heiskanen and Moritz, 1867] and
Molodenskii’s solution of the boundary value problem of physical
geodesy [Moritz, 1980]. The solution of these problems is formulated
assuming that gravity is known everywhere on the Earth’s surface.
However, this is hardly ever the case. Therefore, there is a well -
justified need for gravity interpolation and extrapolation.

The scope of this study is to investigate two deterministic methods
for gravity field approximation. The predictors are deterministic in the
sense that no satochastic properties of the gravity field are involved.
On the other hand, one feature of both methods is that any linear
functional of the disturbing potential can be used as observable and/or
quantity to be predicted.

The firat method was proposed by Bjerhammar [1964). He assumed
that obaservations are given at a finite number of sgtations. The
disturbing potential is assumed harmonic (i.e., it satisfies Laplace’s
equation) down to a sphere fully internal to the Earth. The gravity
anomalies at the surface of the internal sphere are solved for by a
downward continuation process and then they are used to perform
predictions by an upward continuation integral. This formulation and
solution of the discrete geodetic boundary value problem is treated in
Chapter 2.

Secondly, Hardy’s biharmonic potential technique is considered.
According to this approach the disturbing potential can be shown to
satisfy the biharmonic equation. The biharmonic sources that generate
the disturbing potential can be estimated based on observations and
then they can be used to predict gravity related quantities. The
derivation of the alternate integral for the disturbing potential, the
biharmonic equation and its solutions in terms of spherical harmonics,
as well as expressions of the gravity anomalies and the deflections of
the vertical in terms of the biharmonic sources are given in Chapter 3.

Chapter 4 includes a detailed description of the terrain and the
data coverage as well as data reduction computations for the White
Sands Test Area in New Mexico. The White Sands test data were used
to test both predictors.




Thia work is continued with a detailed account of the tests
performed with both methods. Variations of the methods are tested
and the results are discussed and summarized. A comparison is
attempled with the results of the four methods tested at the same area
[Kearsley ot al., 1985]). The aforementioned tests are given in Chapter
5.

Finally, a summary of this investigation together with the
conclusions drawn and recommendations for future work is given in
Chapter 6.




CHAPTER II
THE BJERHAMMAR PROBLEM

2.1 Introduction

An explicit solution to the geodetic boundary value problem was
published by George Gabriel Stokes in 1849 (Heiskanen and Moritz,
1967, p. 94]. The underlying assumptions of his solution are that the
mathematical figure of the Earth (the geoid) is approximated by a
sphere; there are no masses outside the geoid; and that gravity is
known everywhere on the geoid. However, gravity is measured on the -
surface of the Earth, and the application of Stokes’ formula requires
on one hand the reduction of measured gravity down to the geoid and
on the other hand the absense of masses above the geoid [ibid, p.
126]. In order to solve these two problems gravity reductions must be
used. These gravity reductions not only require an assumption for the
density of the external masses [Bjerhammar, 1964, p. 9), they also
introduce a change of the geoid, the indirect effect [Heiskanen and
Moritz, 1967, p. 141}, Molodenskii in 1945 stated that the geoid cannot
be determined without knowledge of the mass distribution outside it
[Bjerhammar, 1963, p. 3].

Malkin in 1939 redefined the principal problem of physical geodesy
so that the physical surface of the Earth became the unknown [ibid, p.
9].

In 1948, Molodenskii presented the solution to the problem of
determining the physical surface of the Earth from gravity
measurements [Moritz, 1980, p. 330], [Bjerhammar, 1964, p. 3]. The
problem is non-linear and the notion of the telluroid is introduced for
its Taylor linearization [Moritz, 1980, p. 337]. Molodenskii’s solution,
Brovar’s solution and a solution by analytical continuation are given by
Moritz, [1980, pp. 354-388]). Bjerhammar [1963, p. 7] gave credit to
Molodenskii for his elegant solution for the diastrubing potential but he
also realized that the problem of Molodenskii is continuous
{Bjerhammar, 1975, p. 185], (Bjerhammar, 1964, p. 3] and the
observations are only made at discrete points.

As a result, Bjerhammar defined the discrete geodetic boundary
value problem as follows [Bjerhammar, 1975, p. 185}, (Bjerhummar, 1964,
p. 14], (Bjerhammar, 1963, p. 17], [Moritz, 1980, p. 95], (Bjerhammar,
1986, p. 1): A finite number of gravity data is given for a
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non-spherical surface and it is required to find such a solution
(gravity field) that the boundary wvalues for the gravity data are
satisfied at all given pointas. The discrete boundary value problem
avoids the singularities of downward continuation (Moritz, 1980, p. 95]
and has no need for uniform approximation theorems (such as Runge’s
or Keldych-Lavrentieff’s) [Bjerhammar, 1973, p. 480]. Stokes solved the
goodetic boundary value problem assuming continuous data coverage on
the boundary. An error is introduced in the actual implementation of
his solution because an integral is being approximated by a finite sum.
On the other hand, Bjerhammar realized the fact that there is only a
finite amount of data and consequently he formulated the discrete
geodetic boundary value problem.

2.2 Formulation of the Problem
2.2.1 Definitions

This study will follow well established geodetic practices in which
the geodetic boundary value problem is independent of time and the
space outside the boundary is emptly [Moritz, 1980, p. 330). This is to
say that the atmospheric and the tidal effects have been taken into
account by corrections to the observed gravity [ibid, pp. 425, 330],
(Sanso’, 1981, p. 13]. The Earth is assumed to be a rigid body which
rotates with constant angular velocity around a fixed axis which passes
through its center of mass [Moritz, 1980, pp. 330, 447}, (Sanso’, 1981, p.
13]. An Earth-fixed rectangular Cartesian coordinate system is defined
such that the origin is at the center of mass of the Earth. Its z axis
coincides with the Earth’s mean axis of rotation, the xz plane coincides
with the mean Greenwich meridian plane and the y axis is
perpendicular to the xz plane such that the system is right-handed
[Moritz, 1980, p. 2], Therefore, the figure and gravity field of the
Earth as well as the coordinate system are assumed to be constant in
time [ibid, p. 477].

Let W be the actual gravity potential of the Earth and let U be a
normal gravity potential which is an analytic approximation to W; U is
usually taken as the potential of an equipotential ellipsoid [Moritz,
1980, p. 337). Let us also denote by g the actual gravity vector and
by 7 the normal gravity vector. They are defined as follows [ibid, p.
337):

2 = gradw, (2-1)

? = gradU. (2-2)

A point P of the geoid is projected onto the point Q@ of the
ellipsoid by means of the ellipsoidal normal (Figure 1). The gravity

anomaly vector Af is defined as the difference [Heiskanen and Moritz,
1967, p. 83),




2= - F

where @, is the actual gravity vector at P and 33 the normal gravity
vector at Q. The difference in magnitude

48 = gp ~ 7q (2-3)

is the gravity anomaly [ibid, p. 83].

geeid (wW=w,)

refersace
ellipseid (U=W)

Figure 1. Definition of the gravity anomaly.

The disturbing or anomalous potential T is defined as [Moritz, 1980, p.
12]

T=Ww-10U (2-4)

The fundamental equation of physical geodesy, neglecting

W W
T 0(e*)

which is smaller than 0.5 mgal [Cruez, 1985], is [Heiskanen and Morits,
1967, pp. 86, 91]

aT 17 ) _
2 18rem-0. (2-6)
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Introducing the usual spherical approximation, i.e., the tolerance of
a relative error in the order of 3x107? in equations relating quantities
of the anomaious field, one can write [Heigskanen and Moritz, 1967, pp.
87-88), [Bjerhammar, 1986, p. 5]:

mc-a— -a—- e
-5 1L X (2-6)

and therefore

-l _ _ 13y _ 13 (M _ri(-2aM) _ 2 aT T
s3I 13:‘[?:]' @it ) Srad g =5
Substituting in (2-5) one gets
aT _ 2T . _
et t_+Ag--0. (2-7)

2.2.2 Pigzetti’s Formula

Let us now introduce a sphere ¢ fully internal to the Earth, of
radius r, and with its center at the center of mass of the Earth. This
sphere is hereafter called the Bjerhammar sphere, the internal sphere,
or the geocaphere.

The aim is to solve the discrete boundary value problem, i.e., given
a finite number of observed gravity data, to find a solution (disturbing
potential) with the following properties [Bjerhammar, 1986, p. 8]:

{(a) T is harmonic outside o,
(b) T is regular at infinity, i.e., }.’u(‘r-r) = constant, and
{c) All observations are satisfied.

If one assumes no masses outside the sphere ¢ and denote the
gravity anomalies on ¢ by Ag* then the disturbing potential T is given

by Pizzetti’s formula [Heiskanen and Moritz, 1967, p. 93], [Bjerhammar,
1988, p. 71:

T(r, ¢, 1) = 52 [fs(r, o)ageao (2-8)
[ 4

where [Heiskanen and Moritz, 1967, p. 93]

2r, 3r 4 a ofwrtd
S(r.u)=-‘-ﬂ+fl-—:§-—$§-cm(5+33nm'9§;——] (2-9)
with cosw = sinésiné; + cosécosé;cos{\-A;) (2-10)
and 22 = r3 4+ py? ~ 2rorcosw; (2-11)




alaso, ¢, A are the geodetic latitude and longitude respectively and r is
the geocentric distance of the point at which T is computed and ¢;, A
are the geodetic latitude and longitude respectively of the infinitesimal
surface element de.

Let X = (¢ A]'. Let us also define the evaluation (Moritz, 1980, pp.
37, 200] or Dirac "delta" functional § [Bjerhammar, 1986, p. 14] by the
following relation (¢ is the geosphere, R is the set of real numbers and
f is some function on ¢):

teo-on 2 [[ 2mex - %40 = £5) (2-12)
[

The Ag* in equation (2-8) is rewritten as [Bjerhammar, 1986, p. 141:

ag<(®) = § ag¥(x,)8(%%,) (2-13)

1=

The Ag*(X,) values are a set of fictitious anomalies that generate the
observations at the given points [Sjoberg, 1978, p.2}, [Katsambalos,
1981, p.58]. The basic postulate of the Dirac Impulse method is that
Ag*(X) = O everywhere on the geosphere with the exception of n points
asgociated to the given observations (Bjerhammar, 1986, p.l4].
Equation (2-13) is the mathematical formulation of the basgic postulate.

Substituting (2-13) in (2-8) one obtains

T(r, %) = 52 [[s(r, %, %) Ag*(Ru)day =
a

% I‘l S(Yo ’-‘n in) -'giAg*()-(‘)ﬁ(i“-»i‘)dcu =

ro £00%R0) 77 [[str, %, 506Gy e

which by (2-12) yields (the aubscript M in the above derivation was
merely introduced to denote the moving point M on the sphere):

T(r,,0) = ro 5 88%(#1, M) S(r 4,2, 80,1¢) (2-14)

=1
Introducing t and d by

= Lo -
t =2 (2-15)
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d = {1+ t2 - 2tcosw}® (2-186)
one gets from (2-11)
8 =rd (2-17)
Letting
u= % (1 - tcosw + d) (2-18)
the gemeralized Stokes’ function S(r, &) in (2-9) becomes
S(r, ) = t(1 - 3d + % - tcosw(5 + 34n u)) (2-19)
Therefore, (2-14) becomes
- g 2
T(r,#,A) = rot’ (1 -3d+ 5 - tcosu(5 + 3tnu))agf (2-20)
=1

2.2.3 __ Gravity anomalies and vertical de tions _in terms of Dirac
anomalies

All the quantities related to the disturbing potential, i.e., all its
linear functionals such as gravity anomalies or vertical deflections can
be evaluated by applying the pertinent linear operators to T in (2-20).
(a) Gravity Anomalies:

From (2-7) one sees that Ag = LT, where

I

= -4 _
L= r

In order to compute %% , the following derivatives are needed

id _ t-cosu -
t d (2-21)
du _ l{t-cosw _ _
i 2[ d com] (2-22)

Rewriting (2-20) ss T(r, #, A) = ro § bast, with




9
by =t - 3dt + %—t'- - 5t3cosw ~ 3t3coswinu (2-23)
T _ b —
one has 3= = rg‘g‘ T agt. (2-24)
ab b, It
—t = —_—t .
Now, 3+ = 3t or °® (2-25)
it _ ot
and r r
Thus,
= 3T _2T_ _ db, it _Ig -
A‘ - ar r To ’g‘ at r Ad r 'gg Zbi“f -
- b t
= - 1o qu = [ r]ad 2t g b,agk
or,
ag = -t=‘§l M,agt (2-27)

The M; coefficients can be further reduced (see Appendix A.l) to yield

E .
My =1+ td,l + 3tcosw

80 that (2-27) becomes

t2-1
a3

Ag = - t";[l + + 3tcooa]u1‘

or, rearranging terms
Ag =‘g‘[ﬁ%‘,-'-t—’l - 3tcosw - t2)agt (2-28)

which is of course the same equation Bjerhammar came up with by
discretizing Poiason’s equation {Bjerhammar, 1986, p.8},[{Bjerhammar,
1964, p.20].

(b) Deflections of the vertical:
The vertical deflections north (¢{) and east (n) are given by
Heiskanen and Moritz (19687, p.2361:
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1 1
= = = §; = - = i,
¢ y %6 y A

where [ibid, p.233]

pe=lil. o 1 a1
¢ =¥ 3¢ 2T rcose aA
or, upon substitution
¢=- LI
r » _
1t (2-29)
" yrcos¢ A
On the other hand
L U O PR ) O T
F R P Rt ) Y PR 1)
and [ibid, p.234]
%2 = —coseo and -:-; = ~cosésinag
therefore
¢) _ fcosal 1_ 3T _
[q] - [lind yr do (2-30)

Now 32 = r.t'g‘A.Ad. with A, = 3= [1 - 3d + 2 - Stcosc-3tcosutnu]
The A, darivative- can be evaluated (see Appendix A.2) to yield
A = taino (8 - &5 - AL 434
thus
= r.t’ [8 - -(——1-)-: + 3lnn]-inutgf (2-31)
Substitution of (2-31) in (2-30) yields
() = £ (8- % - AEE + somufaine {Go0e)eet (2-32)

Finally, using Heiskanen and Moritz [1967, p.113]
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[linucosu = cosésiné; - sin‘coshco-(x,-k)] (2-33)
sinusina = cosé sin(A;-A)
one gets

_ 2 _ 3(d+1)2 cosésiné -sinécosé¢ cos(A(-\)
[f,] Ty .g, [8 43 2ud  * 3‘““] [coshsinzk,-)\) ' ‘ }Aﬂ
(2-34)

Equations (2-28) and (2-34) can be used both to compute Ag{ from
observations and to predict Ag, ¢, 9.

2.2.4 A truncated sum

Given a continuous function f(x) and a constant x,, one can form a
sequence f, = f(nx,), n ¢« N. This operation is called sampling and x,
is called the sampling interval. Conversely, given a sequence f,, one
can construct a continuous function f(x), by an operation called
pulsing and defined as

£0x) = I fa6(x - mxo) = I £(x0)8(x - nxo)

where § is the Dirac delta functional. The aforementioned operations
are well established in the analysis of Linear Systems and can be
found in many electrical or mechanical engineering texts such as Brown
{1961, p. 176}, Aseltine {1958, p. 247]) and Tretter [1976, p. 85].

Equation (2-13) is the two-dimensional analog of the above equation
defining pulsing. The only difference is that pulsing as defined above
is the superposition of an infinite number of impulses whereas (2-13)
represents a finite sum.

Bjerhammar realized that in applications one has only a finite
number of data, and therefore one can only solve for a finite number
of impluses. Consequently he truncated ‘he sum in (2-13) at some
integer number n equal to the number of observations. :

However, only an infinite number of A4g* wvalues is able to
recontruct the original signal (recall that in order to recover T one
needs an infinite number of harmonics). Therefore, the gravity related
quantities predicted from n Ag* values will naturally not include the
contribution of the truncated terms beyond n. This is to say that
equations such as (2-20), (2-28) and (2-34) can only be considered as
approximations.
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2.3 Symmetric Kernel Approach

In the original approach the Dirac Impulses were located on the
surface of the sphere ¢. In the symmetric kernel approach the Dirac
Impulses are located at positione (Figure 2) with geocentric radii
inversely proportional to the geocentric radii of the observations, i.e.
the Dirac Impulse corresponding to the observation at r; is located at
Troi» where [Bjerhammar, 1986, p. 48]

roy = ff— (2-35)

topography
geosphere

"reflected"”
topography

—

%o
"-"l-?l('i' Te)

Figure 2. Symmetric Kernel Approach.

Every observation will be asaociated with a Dirac Impulse at r,;.
Considering n observations one will have to consider n Dirac Impulses
located, in principal, at n different geospheres. The disturbing
potential associated with the i-th Impulse will be given by (see
equation (2-14))

Ti(r, ¢, A) = ro S(r, ¢, A, &, A{)ag} (2-36)
and AT, = 0 at r > roy;. The total potential will be

T(r, ¢, A\) =

ne-

Iro.S(r. ¢, A, ¢, 2)ag} (2-37)
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by the superposition principle of the potential (Heiskanen and Moritz,
1967, p.2])

ro?

min(ry, ..., ry)

and AT = 0 at r > max(rg,, ..., Top) =

Introducing t by t = Ef:‘ and d by (2-16) one has

- Yoy _ ro® _
t= e fo (2-38)
and
S(r, o) = t(1 - 3d + % - teosw(5 + 3fmu)) (2-39)

Therefore (2-37) becomes

T(r,8,\) = ig‘ro‘t(l - 3d + & - tcosa(5 + 3tnu))agh (2~40)

Similarly as in the original approach one derives

2 -4 2
Ag = 'gl[u-cl-l,—t—)- - 3t3cosw - t’]Ag’f (2-41)

¢ 1 2 afq 2. _ 3(d+1)? cosésiné—sinécosé;cos(\;-\)
[ n} Ty ,Elt [8 d? 2ud +3lnu] [cosﬁsin(k,-k) ]Ad

(2-42)

2.4 The Linear System

If one assumes n observations comprising the vector # then the
linear aystem is

2 = Gag* (2-43)

In general the vector of the Dirac Impulses Ag* will be of
dimension m. The elements of G can be taken from (2-28) or (2-34) for
Ag or ¢, n observations in the original approach and from (2-41), (2-42)
for the same type of observations in the symmetric kernel! approach.
Note that G is of full row rank as long as there are no Ltwo
observations 2, ¢; of the same type (e.g., Ag or §{) with r; = rj.

There are three distinct possibilities:

~——— e e




14

(i) Exact solution (m = n):

The Dirac Impulses and their covariance matrix respectively are
given by

Ag¥ = Gt (2-44)

Zagx = GIGT (2~45)

(ij) Overdetermined case (m < n):

In this case the traditional least-squares method [Uotila, 1985}
applies and the solution is

ag* = (G7E3'6) 'GTrp'a . . (2-46)
Lage = (6752'6)7 (2-a7)
The a posteriori variance of unit weight 3 is given by
T -1 - 2Te a1
R cag* (2-48)

where «3 is the a priori variance of unit weight.

It should be kept in mind that the property of the reproducibility
of the observations is lost in this case.

"1} __Underdetermined case (m > n):

In this case equation (2~-43) represents a system of equations with
an infinite number of solutions since G has full row rank [Dermanis,
1985, p. 215). From this infinite number of solutions, one particular
solution may be chosen by the minimum-norm criterion ag*7-Ag¥ = min.
This solution is unique in the sense that the norm of any other
solution is at least as large as the norm of Ag* or larger. In order to
find the solution that minimizes the norm of Ag* and satisfies (2-43)
one needs to find Ag* that satisties

¢ = ag¥Tag* + 2k7(Gag¥ - 4) = min (2-49)

The minisum of ¢ with respect to Ag¥ is attained at
:—:? = 0 <=> 2ag%T + 2k7G = 0 <=> ag¥ = Gk (2-50)
On the other hand ) :

0 =Gag¥ -2 =066k - # <=> k = (GGT)~'2, thus
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Ag* = GT(GGT)~'2 (2-51)

Obviously G is (nxm) with rank n (full row rank). Now GGT is
(nxn) with the same rank as G, thus GG' is of full rank and therefore
invertible, The covariance matrix of Ag*¥ can be computed from the law
of propagation of covariances [Uotila, 1985, p. 4]:

Lagx = GT(GGT)™* Ly (GT(GGT)™*)T = G7(GGT)™* Ig (GGT)7?G, thus

Tagx = GT(GGT)™* Ig (GGT)'G (2-52)

It is trivial to notice that the solution (2-51) is the pseudo inverse
solution. For a full row rank matrix G one has [Uotila, 1982b]

Gt = g7(GaT)"? ’ (2-53)
thus (2-51) and (2-52) can be written as

Ag¥ = g*s (2-54)
Tagx = G Is (61T (2-585)

The uniqueness of the pseudo inverse quarantees that Ag¥ in (2-54) is
unique.

2.5 Propagation of Data Noigse into the Predictions

Let us assume that we will perform predictions at q stations. The
vector f of predictions will be of dimension q and it will be given by

£ = R-agt . (2-56)
where the elements of the (qxm) matrix R will be given by (2-28) for
Ag predictions and by (2-34) for (¢,7) predictions. The covariance
matrix £; of the prediction vector t.will be given by [Uotila, 1985, p.4]

L¢ = R-EA‘;-R' (2-57)
where £j. % is the covariance matrix of Ag* as computed from (2-45) for

the exact case, (2-47) for the overdetermined case and (2-55) for the
underdetermined case.

2.6 _On the n the Dirac Impulses
From the theoretical standpoint there is no reason to prefer any

location over any other for the location of the Dirac Impulses. From
the numerical standpoint however, one should prefer the location that

F e e
EREUREE -1 5% HE U S
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yields optimal stability in the sense of maximal diagonal dominance of
the matrix to be inverted as done in Bjerhammar [1986, p. 30]. The
matrix G in (2-44) will be selected to investigate the location issue
gince this issue is only numerically and not theoretically relevant. The
resulting location is going to be used regardless of the observation
type and of the solution type (i.e., exact solution, adjustment solution
or minimum norm solution). The development will follow Bjerhammar’s
ideas [ibid, p. 30].

Let the Dirac Impulse ag* corresponding to some observation Ag at
r, & A be located at ros %0y Ao

The corresponding element of G in the main diagonal will be (see
eq. (2-28))

2 -2
g = ) 3escoms - t2 (2-58)
with d = {1 + t2 - 2tcosw}* (2~59)
and cosw = sindsinéd, + cosdcosocos(A~A,) (2-60)

Ehe maximum of g = g(w) with respect to w will be attained at ¥ .
’

do
thus
] -3) 3 .
0= 35 = \‘.’(l—t’)id—:.31 ﬁ - 3t3(-sinw) =

I( - 22 3
-3 d} L ———t';n" + 3t3%sine =>

0=38 =3e[53E + 1]sine (2-61)

which vanishes identically for w = 0, i.e., o = # Ao = A. This is the
argument originally given by Bjerhammar [1986, p. 30). However, in
order for «=0 to be a maximum (22g/dw2){w=0) ¢ 0 muat be satisfied. It
holds that

2 S(¢2- )
:—“5 = -:—; [St’im + &.&ﬁ.g_.l_}. ,im.,] = 3t3coswt3td(t2-1) _g; [s:i?“]:)

2 S(¢3- - i
:_ug = 3t3come + SELL dlzcosa _ 15t t'dl sin’y (2-62)

Now for & = 0 => sine = 0, cosw = 1, hence




e
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d=[1+1t2-2tcosw}* =>d=1-1t, thus
-:f:-} (w =0) = 3t + 3—{'—;%—;%1)-, or upon simplification
2 3
8 (v = 0) = g2 LA-D* - (141 (2-63)
Now for O<t<l => ~1<-t<0 => 0<1-t<1l => (1-t)*Ql (2-64)
Also 0<t => 1<1+t, thus
(1-t)4<1<1+t => (1-t)* ~ (1+t)<0 (2~65)

2
which yields %;é (0=0)<0 and thus &=0 is indeed a maximum for g.

Therefore, the optimal positions for the Dirac Impulses
corresponding to gravity anomaly observations are at the nadir points
of the observation stations.

2.7 On the Optimal Radius of the Geosphere

A successful application of the Dirac Impulse method requires a
suitable choice for the radius of the internal asaphere. Some
suggestions pertaining to gridded data can be found in Katsambalos
[1981, p.76] and Bjerhammar {1985, p.7].

A suggestion for sparse data was made by Sjoberg [1978, p.64]
according to which

ro = Re - Re § (2-66)

where Rg is a mean earth radius (e.g. Rg=6371 km) and y is the
average angular distance between neighboring points. Alternatively,
one can attempt to compute r, from the given data if this is possible.
Two methods can be considered. The first one was somewhat
differently regarded in Bjerhammar [1986, p.20]. He conaidered a
least-squares solution whereas here a minimum norm solution will be
investigated. The system in (2-43) can be written as

2, = G-ag¥ = F(X,) (2-67)
with Xy = [::i » Xo = [:53 , X = [g:‘*] end 4, = £, + V.
[} o

Equation (2-67) represents a non-linear system in the unknowns.
Linearizing by Taylor's theorem and neglecting terms of order 2 and
higher yields
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[
"

a = F(Xo) + %— (X.-Xo), or upon letting
a

»
-]
|

= M = - M 'aL = . AL =
F(Xo); £ = #,-2,; ax, [3%5;, ar.-,] B, one then gets

BX - £ =0. (2-68)

In the case of n observations (2-68) represents a system of n
equations in (n+l1) unknowns with B having full row rank, therefore
the condition XTX=min will yield (see eq. (2-49) through (2-55))

X = BT(BBT)"2 (2-69)
with

Lx = BY(BBT)"'L4(BRT)!B. (2-70)
Now let us write B as

B = (G a], (2-71)

where a = -;—5— is an (nxl) vector. Denoting by l,i the i-th element of
o

2., the i~-th element a; of the vector a will be a; = -:-é-a-‘-. In order
o
to evaluate a; for Ag, ¢ and 5 observations one will need the following

derivatives

N TL R T L _
(i) arg - ntr g - n;: . (2-72)
(i) 24 - 2d 3t du _Judt oo 1ling (2-21) and (2-22) one gets

aro at 3r° aro at h‘o
dd _ t(t-cosw) 3du_ _ _t (t-cosw _ .
r, rod ' ar, 2r, d cos:.:]. (2-73)

Now, rewriting the i-th equation of (2-67) as

n
_ x _
ta, —j§1 SijAG.J (2-74)
one has
a
ap = 2t = § 3y 40 (2-75)

vy _j=: iry b]

where for gravity anomalies, from (2-28)
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? ._(L'.ﬂ). - 3t3cosw ~ t3 (2-76)
and for vertical deflections, from (2-34)
3 3 2
{‘f: L [s- & - AP 3epu)aine(S709). (2-77)

The differentiation' of the g;; coefficients required in (2-75) yields
(Appendix A.3):

A —42

%;‘_403 . ;t_- L1-ate) - 3ot ) (trcose) _ gygq,, - g (2-78)
for gravity anomalies. For vertical deflections it yields (Appendix A.4)

axfy

ar,

3t3sinef, _ 2 - g 12’ gt—c @) (d+ Z
awp| © " rer [e-% +3tous F <5 =
r,

- e (e + 1] G52 (2-79)

Equations (2-78) and (2-79) can be used to form the elements of
the vector a in (2-71). Equation (2-69) can be used to solve for the
vector X of the unknowns, the last element of which is r,.

For the actual implementation of (2-69) it is worth noting that
since G in (2-67) is of full rank, then [Boullion and Odell, 1971, p. 18]

pr = [0 ST

where b = (1 + (G 'a)TG 'a]"*(G 'a)Tq™?
Another method of solving for r, is to separate the data in two
groupl 4] and £ of n, and n, observations respectively. Denoting by

Ag* the Dirac Impulses corresponding to 2}, one has the following
linear aystem:

8% = Rag*. (2-80)
Solving (2-80) for Ag* one gets

Ag¥ = R 111, (2-81)
On the other hand, knowing Ag¥ one can predict 2 as
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£3 = sag¥ : (2-82)
Substituting (2-81) in (2-82) one gets

23 - SR =0 (2-83)

Equation (2-83) can serve as the mathematical model of the form
F(X,,L,) = 0 in an adjustment scheme with r, as the only unknown.
Following Uotila [1985] one can write

n

Xy = 1(r8)1; Xo

e s v

Linearizing (2-83) by Taylor’s theorem and neglecting powers of
{X,~-X,) of orders 2 and higher one gets

Jr8las X = ,[6roly; 4, = ..,+..,[:§]x

(2-84)

"

[1]5 2 < nuen

AX +BV+W=0 (2-85)

with
2

B = 35 = [-SR; I). (2-86)

NaXn NaXN, NaXn,
Also

- 3E_ 3F 2, | -4 -
A3, T, T I, MATSETMAL) = g (D) - g (SRTM) (28T
nyxl

From Dermanis {1985, p.187] one has that

L) =L3+a P, (2-88)
$ () = a Boae (2-89)

where A,B are matrix-functions of the variable t such that AB and A™!
are defined. Applying (2-88) and (2-89) in (2-87) one gets

- SR _ 38 _
A= (SR—' ary ar,]“"‘z (2-90)
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The elements of the matricea A and B are given by (2-90) and
(2-86) respectively. The least-asquares solution of (2-85) is given by
Uotila [1985)

P= aozz;: (2-91)
W = F(Xo,8) (2-92)
M = BpiBT (2-93)
X = ~(ATM™1A)"ATM W (2-94)
Xe = Xo + X (2-95)
Ze, = 00 (ATMTIA)72. (2-96)

Since the problem is non-linear, iterations will be needed.
Following the iteration scheme described in Uotila [1982a] one can write
{(for the i-th iteration) the following:

- Bvaluate A,B at X§ = Xi~?, #} = #i™} (2-97)
~ WY o= F(X§, 88) + BY(#,-2}) (2-98)
- M= (BH)PI(B")T; P = o} £, (2-99)
XP = ~[(AV)T(MI)"PAV) -2 (AV)T(MI)—Wd
[ (2~-100)
v‘ = -p—-x(Bi)T(Hi)—l(Aixi + wi)
2l =2, + V!
278
XL = X§ + X!
In this particular case it is worth noting that
Wt = 22 - SI(RY)244. (2-102)

Yet snother method to be considered for optimal r, computations is
the following. A measure s? of the quality of the results is assumed to
be a second order polynomial in r,. According to Bjerhammar, {1986,
p-17]1 82 is the variance of unit weight or the RMS error of a residual
field [ibid, p.18] (note that in the case where 8? = RMS (dAg) then the
units of 8? are mgals rather than mgal?). Thus

82 = a + bry, + crd (2-103)

The value of r, at which s? is an extremum will be the root of

e
R et L e

N ) o
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':%E = 0, or equivalently of 2¢cr, +b =0
The root of this equation is
o -5 (2-104)

Furthermore, for ¢>0, the extremum in (2-104) is a minimum.
Assuming that three different radii To,, Fo,, Yo, resulted in s}, s}, s}
respectively, one can write from (2-103)

s = a+ br.,l + cr.,:
a3 = a + ln-‘,z + cr°: (2-105)

s = a+ br,,s + cro:

This linear system of three equations in three unknowns a,b,c can
be solved to yield the following

a=si- Fo,Tos(sf - s FoyTlos(s] - s3)

] (ro“roz)(roa‘ro,) (l‘ol'l‘oz)(t‘oi-—ro,)

_ (Fo,+los)(st-s _ (Fo,+Fo,)(si-s _
b = Tre,-re,)(Fo,To,] ~ (Fe,-Ts.)(To, ro,) (2-106)
e = sy - 8% _ si - s
| (ro“ro,)(ro,"ro,) (rol"l‘o:)(ro’“x‘o')
The substitution of b and ¢ from (2-106) in (2-104) yields

(Foi-ro3) (s3-88) -~ (ro3-ro])(si-sd)

£ = 2((To,-Toy)(83-83)-(To5-Tos) (87—82)] (2-107)

If Yo, = ro-h, Toy = roy Yoy = rot+th is selected, one obtains from (2-107)

- - h{st-s _
o = T 3a7 + 237 — da] ( (2-108)

which is the original formula derived by Bjerhammar [1986, p.18] after
correcting a minus sign error.

The actual implementation of (2-107) will be to apply the prediciors
three times with three different radii and record the resulting a?
values. The selection of the three initial radii is quite arbitrary.
However, in order to make (2-107) most effective one should keep in
wmind that (2-103) ia a parabola and its minimum will be best computed

> oot
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if one has a point in the aacending part of the curve, one point in the
descending part of the curve and one point between the two.




CHAPTER III
THE BIHARMONIC POTENTIAL -~ HARDY’S METHOD

3.1 Introduction

The gravitational potential of a maes distribution with density o
occupying a volume U is given by (Heiskanen and Moritz, 1967, p. 3]

V= efy % dv (3-1)

where G = Newton’s gravitational constant
du= differential volume element
2 = distance between dv and the evaluation point.

Let the volume and the gravitational potential of the Earth with
mass distribution ¢, be denoted by U, and V, respectively. The
gravity potential of the Earth is then given by

W, =V, + & (3-2)

where ¢, = %wf(x?+y?) is the centrifugal potential [ibid, p.47) and w, is
the Earth’s angular velocity.

Introducing the standard notion of the reference ellipsoid with
density «¢,;, volume U,, gravitational potential V,, gravity potential W,
and angular velocity w,=w,, one has

Vi = GIIT P dv (3-3)
ul

Va = QIS 3R du (3-4)
uz

Wy =V, + ¢, (3-5)

The disturbing potentiel T is ‘.fined as
T =W, - W,. (3-6)

Therefore

24
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T =W,-W, =Va+b,Vy-4, =GfLIP dv ol (xt+y?)-GI{I2 du-3ud (x3+y?)
3 2

and since o; = ®; one gets

TGl P -aff Pavea st v
v, U, v, -y,

-

It will be assumed that the integral of ¢, over the difference of
the two volumes U, and U,; is negligible. Denoting by ¢ the denaity
anomaly function, i.e.,, ¢ = ¢,~05 and also denoting U, by 0 one finally
geots

= -4 .
T= GI&I 2 dv (3-7)
3. dy’s pro ts co! u
3.2.1 Existence of the mo tential

The representation of the disturbing potential in (3-7) is singular
at points that induce potential since at these points 2=0. On the other
hand, since there are infinitely many mass distributions ¢, that have
V, as their exterior potential [Heiskanen and Moritz, 1967, p.17], there
are infinitely many density anomaly functions ¢ that have T as their
exterior disturbing potential.

Hardy and Nelson (1986] proposed to select a particular family of «
functions, namely the ones that are zero together with their normal
derivatives at the boundary. They also defined a function p such
that

P = %c (3-8)

where the Laplacian operator A in (3-8) is defined as usual, i.e.,

Y LI LN L
A-ix"iv""iz’

and it refers to the point that induces potential. Then they showed
that the disturbing potential T can be written as

T= 0161p3® (3-9)

In order to prove (3-9) one needs to show the following: Let 0 be
some volume of mass with denaity anomaly function ¢, satisfying ¢ = 0
and 3¢/in=0 at the boundary S of . The function p defined by 2p=ics
is such that
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I&I[% - pl]dv =0 (3-10)

The proof will in principle follow Bardy and Nelson [1986, p.19]. One
can easily eastablish that A(2/2) = 1/¢ at points with #£=0.

We will distinguish two cases, one for exterior and one for interior
points, due to the singularity at 2=0.

(a) BExterior points:

If the point at which the integral in (3-10) is evaluated is outside
the volume Q@ then by Green’s identity for the functions 2/2 and ¢ one
can write [Heiskanen and Moritz, 1967, p.11]

_ ppf2 3¢ fl 235 _ o at
fgff[' 4o - "‘H]d" = ”[z am ¢ '53 2]]“’ Mem 2 an]d"
jut, on s, both ¢ and 3 are zero. Therefore [[ (3 oy .
an s 2adn 2 dn)

On the other hand p = %A¢ and A[Z] = ‘, hence
1'61'[% da - dl[%]]dv =0 <=> I&I[pl - %]dv = 0, q.e.d.

(b) Interior points:

Let us denote by 0, the volume that will remain if one excises from
0 the volume of a sphere with center at P and radius r. The
boundary of 0, is denoted by S,.. A schematic representation is given
in PFigure 3.

B

Figure 3. Derivation of the Alternate Integral for the Disturbing
Potential at points Interior to the Maas.
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The surface ABCDA is the boundary S of 0. The surface ABCEA is
the boundary S, of 8,.. The surface ABC is SnS,. = {points Q:S: Q:S,}.
The surface AEC is S,.-S = {points Q:S., Qf£S}.

By Green’s identity for ¢ and 4/2 one has

iflGe - wolelle = 15 5% - « Gl - 55 - 5 55w
AR SR LRI Ea E

The first integrrl in the above formula is zero since ¢ = 3¢/an = 0
on § and SnS.€S. If one considers 0, small enough such that
(2/2)(36/3an)-(c/2)(38/3n) = constant = c¢ [Scheik, 1986] the second
integral can be written as followa:

cal

J1, 1, [355-5 5l - o1, a8 = cdm?

which of course goes to zero like r2. Therefore

sgrae - af))en - ralsgrlie - wa(f)e]

sislae - §)ev

ln[ %%]ds] = 0, q.e.d.

s —5[2

Therefore

I&J‘[p’l - %]d'v 0 <= fprldv = j‘&]‘ % dv =) Gf&!pldv = GI&I % dv

and the representations of T in (3-7) and (3-9) are identical. (31D
3.2.2 The bi c n

The Poisson equation
= e (3-12)

corresponds to the representation (3-7) for the disturbing potential.
The same way as above, a potential represented by (3-9) is called
biharmonic because then it satisfies

B ok QU ot QU ok QRPN b | asT L _
81T = 3ot + 555 * 35 * Gyiag2 * Yyasgt ¢ Gymag = ~8nlp (3-13)
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which is the biharmonic equation. However, the derivatives

32 32 32

must exist [Hardy and Nelson, 1986, p.19]. Outside the maases, where
p=0. T satisfies

A2T = 0. (3-15)
3.2.3 The biharmonic potential

It is shown in Appendix A.5 that the solutions of the homogeneous
biharmonic equation (A2T = 0) are

Ti(r,0,\) = ior" .go[(a,,.+r’c,,.)cos-A+(b,..+r'd,,,.)aimA]P,,.(cose)

n=

(3-16)
To(r,0,))= io ;%?T _g_o[(!n."'r'Cn.)¢0m+(b,,.+r'd,,,.)sim]P,,,,(cosa)
" " (3-17)

where a,, b,. ch,a and d,, are arbitrary constants. Therefore a
biharmonic function T can be represented as

T=H, + r?f, (3-18)

where H, and H,; harmonic. If H, vanishes identically then T
degenerates to a harmonic function.

Equations (3-16) and (3-17) are general. Every function which is
biharmonic inside a certain sphere can be expanded into a series (3-16)
whereas every function which is biharmonic outside a certain sphere
can be expanded into a series (3-17).

3.2.4 Further consequences
The definition p=%Ae¢ is a partial differential equation of the Poisson
type. Therefore, the above definition together with the boundary

conditions ¢ = 3¢/3n = 0 uniquely determine ¢ [Kellogg, 1929, p.215].
Actually, since the earth is not homogeneous, one should write

wltas] + Gled] + e - 2

where f,, 1,, {5 are functions characterizing the inhomogeneity of the
medium [Volyskii and Bukhman, 1965, p.361.

In order to solve p = %Ac one can use Green's third identity
(Heiskanen and Moritz, 1967, pp.11-12] to get
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1 - lag 23 (1
«’5!7‘“"--‘"*{’(: an "an[z”d’
where
4n if the evaluation point Q is inside S,
k = {Zn if the evaluation point Q is on S,
0 if the evaluation point Q is outside S,
agd n is the normal to S directed outward. But since ¢ = 3 = 0 on
an
and p = %Ac one gets
IIBav=-X 9
fHEdv=-3 . (3-19)
For points Q inside S one gets
,:-—%;[&f%dv (3-20)

From equation (3-20) one can see that the singularity of T at 220 is
not avoided. It is simply transfered to a singularity in ¢ at the same
point (4=0). .

An obscure point in Hardy’s derivation remains the existence of the
fourth order partial derivatives of T in (3-13). The reason for this is
that at least one of the second order partial derivatives of T must be
discontinuous in the region from the geocenter to infinity [Heiskanen
and Moritz, 1967, p. 5] following the discontinuities of 4.

On the other hand, the density anomaly function ¢ is assumed to
possess properties that may not be physically reasonable. At first, the
second partial derivatives of ¢ are assumed to exist. Since the earth’s
density function is very likely to exhibit discontinuities, the density
function of the reference ellipsoid must be discontinuous in such a
manner that both ¢ and its partials of first order be continuous.
Furthermore, the density function of the reference ellipsoid must be
such, that ¢ together with its normal derivative wvanish at the
boundary.

The aforementioned requirements of the method are not justified
from the point of view of the physics of the problem. For example,
since all the points of discontinuity of the Earth’s density are not
known, one cannot construct a reference ellipsoid such that the
resulting density anomaly function ¢ and ite partinls of first order be
continuous. The point of this discussion is that if the method yields
not good predictions of gravity field related quantities, this should come
as no surprise due to the aforementioned shortcomings of the method.
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3.3 Approximation of the disturbing potential

Let data be given at n discrete points. Let us also subdivide @
into regions V,, izl, 2, .., n. The biharmonic sources (sources of
biharmonic potential) are defined as follows [Hardy and Nelson, 1986, p.
19}

a; = I{I pdv (3-21)
1

Let P be the point at which the disturbing potential will be
evaluated, q; be one of the given data points and q be any point in
V;. Also, let ‘pc” be the distance from p to q;, #; be the distance of
q to q; and 2 be the distance from p to q. The triangle inequality for
P,q,q; can be written as

[8-2pq,] ¢ 4 (3-22)

Multiplying both sides by Ipidv and forming the integral for V; one
gets

GI{{ll—qu‘ldpldv € GI{{ Lilpidv (3-23)

Summing over all of the Vi"s one gets

¢ T |4tpq, | 1piev € G § 101 titpicy (3-24)
Now
| § arrrepav - § arsra,g pav| = 6| Sistpdv +.. +ffTtpdv-r1it,, pav
151V 151V, v, Vp v,
- I{f‘pq"pdvl =
- s]f{{:pdv = [{tpqpdve.s [{Ttpav - ;{{n,q"pdvl ‘
‘ G|I£flpdv - f{.‘fl"‘dv‘ ot G‘I££lpdv - I{ilpq“pdv| p
[

GI{I'IP—lpqll-lpldv+...+ GI{Illp-quni-lpldv, hence,
3 n
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|  arirepav - £ argra g pav| « 3 arsr|e,-t,,, | tpiav
151 vy 151 vy P 151 v 1P P
which, upon substitution in (3-24) yields
|6 § rirtpav -6 rirag, pav| aa § rrreiiprav (3-25)
=1 v, =1 v, T 151 v,
Now G‘ilf“l;flpdv = T, from the basic integral (3-9). Also, since lpq'
vy
is constant for each V, (3-25) can be rewritten as
|1o - 6 § 2,4, firpav| s 6 § rrreiiprav (3-26)
=1 LN iZ1 v,

Let us denote by :; the distance of q; to the furthermost q in V4, i.e.,
£; > %qq; for all q ¢ V,. Also, let us denote by ¢ the maximum &;, i.e.,
¢ = max(c;) for i=1,2,...,n. Then 2, € : for izl,2,...,n and recalling
(3-21), (3-26) can be written as

T, -GY #,,a,] ¢6E rrroiptav (3-27)
P 1= PH i=170V)
Equation (3-27) implies that the approximation
n
T = G’z ‘i8| (3‘28)
=1

can be made arbitrarily good by an appropriate choice of ¢, i.e., of the
size of the subregions V; (note that 2,,; was substituted by ¢; in
(3-28)).

3.4 Linear functionals of the disturbing potential

3.4.1 Gravity anomalies

From the fundamential equation of physical geodesy (2-7) one has

=-3ar_z2t -
TERE B8 (3-29)

If one denotes by r the geocentric distance to the evaluation point, by
r; the geocentiric distance to the biharmonic source a; and by ¢,A\,¢; A,
their geodetic coordinates respectively one has from (2-11) and (2-10)

£, = {r3+r{-2rr,cosw}% (3-30)
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cosw = sindsiné, + cosécosé cos(A-1A). (3-31)
Thus
T R 3l . a8 1
i G'};‘ a,-a-;'-, with 3?‘ =31 (2r-2r cosw). Hence
a . G 2 a‘r—r cofe , and therefore
r 45 4
_ E r-ricosw , 248 -
Ag = G § a;|—1== + =}, (3-32)
1=1 4 r

3.4.2 Deflections of the vertical

Recall equation (2-30)

() -5 8 g )

- The required derivative T is

do
:—3 = G‘g‘ a, -:-:-;’- = G'g‘agﬁﬁ——m, thus, using (2-33) one gets
=G ' a;ry [cosésiné; ~ sinécosé cos(i;-}A) _
{fl} 4 12. 4, {coshlin(x,-k) } (3-34)

3.5 The biharmonic sources on the geosphere

If one places the biharmonic sources on the surface of the
geosphere with radius r,, equations (3-32), (3-34) will become

= r-rocose , 24
Ag = -G'g‘ a,[+ + ;—] (3-35)
¢) _ G a;ro f{cosésiné; — sinécosé cos(A;-\) _
{ﬂ} - ng [ [cosO,ninzk.-A) ! ' } (3-36)
with
2 = (r3+r§ - 2rrocosw}* (3-37)

Introducing t and d by
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‘ ¢=Ee (3-38)

t and d = (1+t2-2tcosw}¥ (3-39)
one gets

Al 2 = {r3+r§-2rrocosw}* = r{1+t2-2tcosw}* = rd; hence

ag = o § [Figeme . 2d]a,, (3-40)
131
¢) _ Gt a, {cosésiné; — sinécosé,cos(\;-A)
{’l} Ty 12; 3" {co“‘sinzk,-)\) ! ! } (3-41)
Finally, letting
¢ = Gay (3-42)
one can write (3-40), (3-41) as
r be = _‘g‘[L:sﬁggg + 2d]ey, (3-43)
£ _ ¢t cy; [cosésiné,; — sinécosé,cos(A;-\)
{n} Ty a5 ?14 {coﬂ.sinz).,-—x) ! ! ] (3-44)

Equations (3-43), (3-44) can be used to compute c; from observed
Ag, ¢ and 7 and/or to predict Ag, ¢, » from previously computed c;
values. The associated linear system and its solution will be identical
p to the one described in Section 2.4. Also, the propagation of the data
noise into the predictions will be performed in a manner identical to
the one described in Section 2.5.
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CHAPTER IV

THE DATA

4.1 Introduction

The White Sands Teat Area is located at the western outskirts of
the Rio Grande Rift System in New Mexico. The tests of the two
methods were performed with data in the portion of White Sands bound
by the parallels 32°N and 34°N and the meridiang 253°E and 254°E.
Thig area is mainly a plateau at a level of 1200 m to 1400 m (Figure 4).
The Oscura and San Andres mountain chains cross the area in a
North-South direction. The geological constitution of the area is mainly
young mesozoic sediments complimented by some late tertiary volcanics
[Schwarz, 1983, p. 2].

The bulk of the White Sands Test data were made available to the
Special Study Group 4.70 of the International Association of Geodesy by
the National Geodetic Survey, NOS, NOAA, Rockville, Maryland. C.C.
Tscherning did some initial data screening and then arranged the
different files for the tests [Schwarz, 1983). The test data used were
made available to us by C.C. Tscherning and were identical to the data
used in the collocation solution of the report "White Sands Revisited"
[Kearsley ot al., 1985].

4.2 The Two Solutions

For each method two independent solutions were employed. One
for the (1°x1°) area bound by parallels 33°N and 34°N and called the
North Block (NB) and one for the (1°x1°) area bound by parallels 32°N
and 33°N and called the South Block (SB).
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Figure 4. Topographic Map of the New Mexico Test Area From a 2'x2°
DTM (CI = 100m).
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4.3 Gravity Anomalies

The gravity anomaly data are free-air values referenced to the
Geodetic Reference System 1967. Their geodetic latitude and longitude
are given in the NAD27, their height is orthometric and their standard
deviation is & 2 mgals. There are 384 observalions in the NB (Figure
5), 548 observations in the SB (Figure 6), 82 contirol values in the NB
(Figure 7) and 123 control values in the SB (Figure 8).

4.4 Deflections of the Vertical

The vertical deflection data are astrogeodetic values referenced to
the NAD27. Their geodetic coordinates are given in the NAD27, their
height is orthometric and their standard deviation is #0!3. There are
67 (¢,m) observed pairs in the NB (Figure 9), 63 observed pairs in the
SB (Figure 10), 176 control pairs in the NB (Figure 11) and 208 control
pairs in the SB (Figure 12).

4.5 Conversion of the data to an approximately geocentric system

The system in which all the calculations were carried out was an
approximately geocentric system with the ellipsoidal parameters of
GRS80. The datum transformation parameters from NAD27 to the new
gystem are {Schwarz, 1983, p. 13}, [Tscherning, 1987]

Ax = -22m, Ay = 157m, A2 = 176m, : = 0, ¥y = 0, o = -OU7, AL = 0 (4-1)

The geodetic latitude and longitude can be transformed to the new
system by

$NEN
ANen

with [Rapp, 1981, pp.70,77]

®Napa7+de -
Anapz7tdA (4-2)

[ 1a . _ SindécosA _ sinésin) cos¢ e?sindcosé
de = Wb Ax =W W+ Wh Az + WMD) A
i *IMein?
+ sm‘cosﬁZNM:: Msin?e) (1-£)af (4-3)
. _ _8in) cOBA _
dA = (N+h)cosé ix + (N+h)cos¢ by - e

and [Rapp, 1984, pp.21,30,35]
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Pigure 5. Distribution of the 384 Gravity Observations at the North

Block of the White Sands Test Area.
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Figure 9. Distribution of the 67 Observed Vertical Deflection Pairs at

the North Block of the White Sands Test Area.
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the South Block of the White Sands Test Area.
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W2 = l-e?sin?¢; M = 9571,—;"—')-; N = % (4-4)
Also [Repp, 1984, p.169]
anaD2? T 6378206.4 =
faapa? = 1/294.978698
ayew = 6378137 m
faew = 1/298.257222101

and Aa = aygy — ayapary

6f = fygw — fuapar

The error in using orthometric height instead of geometric height in
(4-3) is less than 0.001.

Similarly for the vertical deflections one has

EnEN

EHAD:7 + dG (4-5)
NNEN

énap2z + d

where [Rapp, 1981, p. 74}

d¢ = ~de ' | _
dn = -dicosé (4-6)

The relation between normal gravity computed with the GRS80 and
the GRS67 reference ellipsoid is [Schwarz, 1983, p. 13]

Yisso = Tisey + (0.8316 + 0.07828in2¢ ~ 0.0007sin*¢) (4~7)

Furthermore, in Section 2.2.1 it was assumed that the space outside
the boundary is empty which implies that the atmospheric and the tidal
effects have been removed from the observed gravity. As far as the
tidal corrections are concerned it is assumed that they have been
modeled during the observation reduction process. The atmosapheric
corrections will be computed by [Wichiencharoen, 1982, p. 5]

g, = (0.8658 ~ 9.727x107°H + 3.482x10"°H?)mgals (4-8)
where H is the orthometric height in meters.

Therefore the gravity anomalies referenced to GRS80 and corrected
for atmospheric effects are given by

A‘GRS.Q = “6&867 - 0.8316—0.07823in’0"5“ + 0.00078in‘.u5u + 68A
(4-9
Contour maps of the observations at both the North and the South

Block of the White Sands Test Area are shown in Figures 13 through
18.
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Figure 13. Contour Map From the Observed Gravity Anomalies at the
North Block of the White Sanda Test Area. (CI=20 mgals).
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Figure 15. Contour Map From the Observed Prime Vertical Deflections at
’ the North Block of the White Sands Test Area. (CI=2").
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Figure 18.
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4.6 Removal of Reference Field and Residual Terrain Model (RTM)

Effects

The predictors will be applied to the mid-frequencies of the
anomalous potential spectrum. The low frequency effects,
corresponding to wavelengths of about 1° (~111 km) or larger will be
accounted for by the OSUS6F reference field to degree and order 180
(Rapp and Cruz, 1986]. The reference field computations will be
performed as described in [Rapp, 1982b].

The Residual Terrain Model (RTM) effect is the effect of the masses
between the actual topography and a mean elevation surface, on the
gravity anomalies and the deflections of the vertical. The actual
topography is represented by a detailed DTM whereas the
aforementioned mean elevation surface, termed the reference surface, is
a coarse DTM which is usually derived from the detailed DTM by
averaging. The residual topography is modeled as an assembly of
rectangular prisms with a constant positive or negative density
depending on whether the terrain surface is above or below the
reference surface [Kearsley et al.,, 1985, p. 53). The effect of the
residual topography on the gravity anomalies and the vertical
deflections is removed computationally, so that the residual quantities
refer to the reference surface rather than the actual topography
[Forsberg, 1988]. Therefore, the RTM effects account for the short
wavelength features of the anomalous potential spectrum [Kearsley et
al.,, 1985, p. 551].

The question of the optimal RTM computations has not been
completely answered yet. For example, Forsberg and Tscherning [1981]
used two different grid sizes as reference surfaces for testing
purposes. On the other hand, Cruz (1985, p. 74] used a sapherical
harmonic expansion of the topography as the reference surface.
Moreover, Kearsley et al. [1985, p. §5] performed tests using different
DTMs as reference surfaces. These tests indicated that the coarser the
reference surface the smoother the residual field. However, different
reference surfaces have an insignificant impact on the predictions due
to the remove-restore operation [ibid, p. 55].

The RTM effects used in this investigation were computed by R.
Forsberg and C.C. Tscherning [Forsberg, 1988). The same RTM effect
values were also used in other tests with the White Sands data
(Schwarz, 1983) and [Kearsley et al.,, 1985]. A (30"x30") elevation grid
which extends over the area 31°30° < ¢ < 35° ond 252° < A < 255* was
used as the detailed DTM, whereas a (30°x30°) grid was used as the
reference surface. Consequently, the majority of the signal of the
anomalous field at wavelengths of 30° (~55 km) or smaller was removed
by the RTM computations., The remaining part of the signal (between
wavelengthe 55 km and 110 km) was left to be handled by the
predictors [Forsberg, 1988).

——tnn
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Tables 1 and 2 show the results of the removal of both the
reference field and the RTM effects from the observed and the control
values respectively. The residual quantities V in these tables are

= Aggrseo ~ ABosuser — AZRTH
Ve = Enen ~ Eosuser — EnTn (4-10)
= WNEW ~ MosUsEF — MRTH

Table 1. RMS Values of OSUS6F and RTM Effects on Observations.

OBSERVATION|OSUB6F| RTM | RESIDUAL(V)
Ag(mgal) 26.59 |14.86 |19.64 | 17.68
) 3.73 | 2.60 | 1.95 1.80
(") 6.42 | 4.53 | 3.34 4.09

Table 2. RMS Values of OSUS6F and RTM Effects on Control Data.

CONTROL|OSUB6F] RTM_|RESIDUAL(V)
Ag(mgal) | 25.54 [10.94 |15.95] 19.35
€™ 3.82 | 2.66 | 1.76] 1.63
7 (") 6.78 | 4.65 | 3.42]  4.33

Tables 1 and 2 indicate that the residual field is smoother than the
original field. Figures 19 through 24 show contours from the residual
observations in both the NB and the SB. Comparison of Figures 13 to
19, 14 to 20, 15 to 21 for the North Block and 16 to 22, 17 to 23, 18 to
24 for the South Block reveals that the basic signature of the
anomalous potential is not lost by the removal of the OSU8S86F and RTM
effects. However, some irregularities of the original field have been
smoothed out by these computations.

The CPU time required to compute reference field effects is about
0.5 sec/station and to compute RTM effects is about 0.5 sec/station on
the IBM 3081 main frame.

In conclusion, the computation scheme will be to remove the
OSUSGF and RTM effects from the observations, perform the predictions
with the residual field and then restore the OSU86F and RTM effects at
the prediction stations.
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Contour Map of the Residual Observations at the North

Block of the White Sands Test Area.

(CI=10 mgals).
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CHAPTER V
ANALYSIS OF THE RESULTS

Introduction

The Bjerhammar and Hardy predictors were tested with data in the
portion of the White Sands Test Area bound by parallels 32°N and 34°N
and meridiang 253°E and 254°E. For each method tested two
independent solutions were employed. One for the 1°x1° area bound by
parallels 33°N and 34°N and called the North Block (NB) solution and one
for the 1°x1° area bound by parallels 32°N and 33°N and called the
South Block (SB) solution.

Two factors that contribute greatly to the quality of predictions of
quantities related to the Barth’s gravity field are the topography and
the data coverage of the area of interest. The 2°x1* area at which the
two predictors were tested presents significant variations in both of
these factors. As far as the terrain is concerned, Figure 4 reveals
relatively large valleys and rather high mountain peaks, the NB being
more irregular than the SB. In relation to data coverage, the SB is
superior to the NB in terms of gravity anomalies. It possesses more
observationa the distribution of which is more even than the ones of the
NB (Figures § and 7). However, in terms of vertical deflections, Figures
6 and 8 show that the NB is superior to the SB as related to both
amount and distribution of data.

Furthermore, both the terrain and the data coverage vary
significantly within blocks. Therefore, in order to understand the
performance of each method better, the area was divided into eight
0.5x0°5 sub-blocks (hereafter to be referred to as "the 0.6 blocks” or
simply "blocks”) following Kearsley et al. [1985, p.61]. The eight 0.5
blocks are shown in Figure 25.
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Figure 25. The eight 0°5 blocks used to test the performance of the
two predictors at the White Sands Test Area.

The "goodness of representation"” factor R can be defined as follows
[Kearsley et al., 1985, p.63]

R = 10~3Coy (5-1)

where oy is the RMS height variation with respect to the mean elevation
of the area and C in km?/station is the average coverage of the area
defined as

=4 : -
c=: (5-2)

where A is the area and n is the number of stations in A.

A large R value indicates either few observations or highly varying
terrain or both. Ii is essential to realize that R is a relative quantity
for intercomparison of the eight 0°5 blocks. This is to say that an R
value of 10 for the observed deflections represents a good sub-block
whereas it may represent a very poor sub-block in terms of gravity
control stations. As a specific example, block #8 with Rpg = 6.1 for the
control stations is considered as representing the area well whereas
blocks #2 and 3 with Rpq equal to 5.7 and 5.3 respectively for the
observation stations is considered as representing the area poorly. The
following table shows these details by sub-block. In this table P stands
for Poor, M for Medium and G for Good sub-blocks.
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Table 3. Terrain Characteristica and Data Coverage in the Test

Area.
OBSERVATIONS CONTROL_STATIONS
BLOCK] TERRAIN on C R TYPE C R TYPE
| TYPE m)|A A £, 18gl€E, 1A £,m] A g.n Aglé,n
1 [Hilly = Flat -(E]).--ig' 171 -2-% 13.9|M | M {184} 68 14% 5.5 ﬁ‘ M
2 |Mountainous [200}29}151}5.7|30.2}JP | M |135]| 561{27.0}10.3iP | M
3 |[Mountainous {217{24]|152[5.3}33.0|P | M | 81} 72]17.5]15.6|M | M
4 |Hilly -+ Flat|128{30{144|3.8/18.4|M | M |152] 50]19.5] 6.4|M | M
5 [Mountainous |(176{19{173({3.3{30.5|M | M | 81} 93{14.3]116.3|M | M
6 |Hilly » Flat] 90}22|144{1.9/13.0|G | M 118} 29]|10.6} 2.6|M | G
7 |[Hilly - Flat]187]18|238{3.3]44.4|M | P | 69|114{12.9(21.2{M | M
8 ([Hilly » Flat| 72{18{13841.3] 9.9|/G | G | 84| 39} 6.1] 2.8/{G | G

Table 3 quantifies the differences by sub-block in terms of both
terrain characteristicea and data coverage. For example, the difference
between the SE 30°x30° portion of the SB (sub-block #7) and the SW
30°x30° portion of the SB (sub-block #8) in terms of vertical deflection
observations is clearly demonstrated by the R ,n factors which are 44.4
and 9.9 respectively. From Table 3 one can see that the SB solution
should be considered more representative of the capabilities of the
method under consideration than the NB one. Furthermore, in terms of
gravity anomaly observations, sub-blocks #2 and 3 are not anticipated to
contribute greatly to a possible good NB solution, whereas sub-blocks #6
and 8 are capable of being the major contributors to a possible high
quality of the SB solution. On the other hand, the gravity anomaly
contirol data coverage in sub-block #2 is poor rendering the comparison
of results not very reliable in this block, whereas block #8 is good for
this purpose. Also, reliable sub-blocks for wvertical deflection
comparison in terms of control values are blocks 6 and 8.

In order to evaluate the two predictors the differences

dig = Ag, - Ag’
& = €. ¢ (5-3)
d" = e - N

will be examined where the subscript ¢ refers to the control values and
the subscript p refers to the results of either the Bjerhammar or the
Hardy method. The differences in (5-3) are due to errors in the
prediction as well as errors in the control data.
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5.2 Results of the Bjerhammar Method

5.2.1 Attempts to Computie an Optimal Geosphere Radius from the Data

One of the most important factors influencing the quality of the
predictions with the Bjerhammar method is the radius r,; of the internal
sphere. Up to a certain extent r, is a coupling factor in the sense that
the improvement of the predictions expected by a smooth terrain, by
good data coverage and by the removal of reference field and residual
terrain model effects can be easily nullified by an unsuccessful choice
of r,. More importantly, an inappropriate choice of r, can render the
downward continuation impossible. Due to the aforementioned effects of
ro on the predictions, efforts were made to compute it from the data.

Two methods never before tested with the Bjerhammar predictor
were attempted. The first method is the minimum norm (pseudo) solution
given by equations (2-67) to (2-70). It was tested in the NB with 384
gravity anomalies as observations. The unknowns were both 384 Dirac
Impulses and the optimal radius of the geosphere, a total of 385
unknowns. An approximate value of 6350 km for the optimal radius r,
resulted after 2 iterations in an adjusted value of 6350 ¢ 0.17x10~% km.
The residuals were in the order of 10~° mgals, VIPV was 7x10-'® and
the standard deviations of the Dirac Impulses exceeded the values of the
Impulses. Similar results were attained after two iterations when the
approximate value for r, was 6360 km. The order of magnitude of the
residuals and VTPV can be explained by the fact that no redundant
observations are present in the solution. The large standard deviations
of the Impulses stress that the values for the Impulses are evaluated
with very large uncertainty. The only peculiar result is the small
standard deviation of r, even though the adjusted value of r, is the
same one as the approximate. At any rate this method did not seem to
have computed an optimal radius of the geosphere.

The second method to compuie r, from the data is to separate the
observations into two groups and to consider the first group as
observed values and the second one as control values. This type of
solution is given by equations (2-80) through (2-102). In this case we
only have one unknown, namely the optimal geosphere radius r, and
therefore we have only one normal equation. This method was tested in
the NB. The results of the solution (iteration #0) as well as some
selected iterations are shown in Table 4. In Table 4, N is the normal
matrix (of dimensions (1x1)) and U is the right hand side vector (of
dimensions (1x1)) of the normal equations.
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Table 4. Data Separation Method of Computing r,. Bjerhammar

Predictor.
ITERATION #lrgo° (km) N U Sro(lm)irg (km
0 6360.000[0.000 015 520|0.045 439 743]|-2.928 |6357.072
1 6357.072]0.000 007 390}0.031 566 632]-4.272 |6352.801
5 6346.544|0.000 001 266|0.002 313 902|-1.827 |6344.717
10 6339.725{0.000 000 799{0.000 635 825|-0.816 |6338.909
20 6335.52710.000 000 578]0.000 082 876]-0.143 |6335.384
30 6334.783|0.000 000 546§0.000 019 254]-0.035 |6334.748
40 6334.576/0.000 000 537}0.000 003 724|-0.007 ]6334.569
45 6334.549{0.000 000 535{0.000 001 777|-0.003 |6334.546
50 6334.536}0.000 000 535)0.000 000 948]-0.002 |6334.534
52 6334.533|0.000 000 535{0.000 000 767}-0.001 }6334.531
53 6334.531]0.000 000 535{0.000 000 485{-0.001 |6334.530

From Table 4 one observes that the iteration criterion, the
correction to ro, be less than 1 m, was met after 53 iterations.
Furthermore, the normal matrix stabilizes only at the 45th iteration and
the rate at which the correction to r, tends to zero im very low. Most
importantly, the resulting adjusted value of rg§ = 6334.530 km yields RMS
differences of control minus predicted values in the order of 7.73 mgals
for Ag, 20:53 for ¢ and 30.07 for n. These differences are much larger
than the ones yielded with the same data type when an optimal radius
was computed prior to the solution as it will be demonstrated in
Subsection 5.2.2.1.

The overall conclusion from both of the aforementioned methods is
that they did not yield an optimal geosphere radius. Therefore the s?
method given by (2-103) to (2-108) will be used for optimal geosphere
radius computations.

5.2.2 The Asymmetric Kernel Approach

The predictor defined by equations (2-8) through (2-34) is called
the Asymmetric Kernel (AK) approach to be distinguished from the
Symmetric Kernel (SK) Approach given by (2-35) through (2-42). The
Symmetric Kernel Approach ias given its nam2z by Bjerhammar [1986, p.
48]. In the SK approach, t in (2-38) is a symmetric quantity, i.e.,
invariant with respect to i and j. Recall that t of the AK is not
symmetric ( see equation {2-15)). Furthermore, if the observations are
only gravity anomalies, then the design matrix G in (2-43) is symmetric.
The Asymmetric Kernel Approach was given thie name in this
investigation in order to distinguish it from the SK Approach. In what
follows the Dirac Impulses will be located at the nadir points of the
observations. In the tables that follow the differences in 4g, ¢ and 7
are control minus predicted. The notation ry49, rof and ro" will be
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differences in Ag, ¢ and 7 respectively as s? values. On the other
hand, r, will be defined as:

ro = % (;'oAg + ;'os + ;'o"’) ‘ (5-4)

Every variation of each predictor will be tested and compared with
similar results after the following cycle is completed:

(1) Perform three golutions with three different radii,
(2) Compute ;'059, rof and r,? by (2-107),

(3) Compute r, by (5-4). .

(4) Perform the final solution with ry=r,.

5.2.2.1 Prediction Using Only Gravity Anomaly Data

In the case where only gravity anomalies are observed the exact
solution as given by (2-44) and (2-45) applies. The elements of the
design matrix G in (2-44) and (2-45) are given by (2-28). The resultis
of both the NB and the SB solutions with three different radii are
shown in Table 5.

Table 5. RMS Differences Between Predicted and Control Values
with the Asymmetric Kernel Approach and Only Ag
Observed. Bjerhammar Method.

SOLUTTON[rg (i) | Ag(mgal) () 1a(")
vorth | 6355 | 4.03 0.99 0.99
forth | 6360 | 3.32 [0.91 {0.97
6365 | 2.96 |0.92 |1.11
6355 | 3.87 |1.00 [1.17
:?giﬁ 6360 | 3.80 [0.92 |1.13
6365 | 3.89 lo.s9 |1.19

Using the results of Table 5 with the s? method (eq. (2-107)) and
the RMS differences one gets r, = 6362.571 km for the NB and r, =
6361.562 km for the SB solution. The results of the NB and the SB
solutions with r, = r, are shown in Table 6.
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Table 6, RMS Differences Between Predicted and Control Values with
the Asymmetric Kernel, Only Ag Observed and the Optimal
Radius of the Geosphere r,, by 0.5 Block. Bjerhammar
Method.
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From Table 6 one observes that the best Ag predictions were
performed at sub-block #8 and the best ¢ and 7n predictions were
performed at sub-block #7.

5.2.2.2 Prediction Using Both Gravity and Vertical Deflection Data

In the case where both Ag and (£,7) are observed the leaat squares
solution applies with as many degrees of freedom as deflection pairs.
This type of solution is given by (2-46) through (2-48) and the elements
of the design matrix G are given by (2-28) for gravily anomaly
observations and by (2-32) for vertical deflection observations. The
results for three different radii are given in Table 7.

Table 7. RMS Differences Between Predicted and Control Values with
the Asymmetric Kernel Approach and Both Ag and (§,9)
Observed. Bjerhammar Method.

SOLUTION]r, (km) [Ag(mgal) [E() |7(")
North 6355 | 3.78 |0.87 |0.73
Block 6360 | 3.56 |0.78 |0.73

6366 | 3.76 ]0.77 |0.77
South 6360 | 4.52 10.84 |0.92
Block 6364 | 4.3a |o0.82 |0.91

6368 | 5.5 |1.10 {1.14

. Using the RMS differences of Table 7 in equation (2-107) we obtain
ro = 6360.248 km for the NB and r, = 6362.312 km for the SB solution.
The results of the NB and the SB solution with ro, = r, are shown in
Table 8.
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Table 8, RMS Differences Between Predicted and Control Values with
the Aaymmetric Kernel Approach, Both Ag and (¢,m)
Observed and With the Optimal Radius of the Geosphere,
by 0.5 Block. Bjerhammar Method.

BLOCK __| RMS DIFFERENCES
SUB-BLOCK | Ag(mgal) [£(") [9(")
North | 3.58 |0.77]0.73
1 4.04 0.84|0.58
2 2.54 |0.79/0.87
3 3.47 |0.91}0.57
4 4.32 10.72]0.77
South | 4.54 |0.84|0.93
5 3.83 |1.26|1.27
6 7.35 |0.92|1.04
7 4.01 [0.46{0.34
8 2.94 0.54/0.73

From Table 8 one can see that using both Ag and ({,7) observations
one can predict Ag on the average to about 4 mgals and ¢ and 7 to
about 0:8. These results can vary from 2.54 mgals (sub-block #2) to
7.35 mgals (sub-block #6) for Ag, 0.46 (sub-block #7) to I.26 (sub-block
#5) for ¢ and (!34 (sub-block #7) to 1.27 (sub-block #5) for 1.

5.2.2.3 Prediction Using Only Vertical Deflection Data

In the case where only vertical deflections are observed the least
squares solution applies with as many degrees of freedom as observed
deflection pairs. This type of solution is given by (2-46) through
(2-48). The elements of the design matrix G are given by (2-32).
Results with three radii for both the NB and the SB solutions are given
in Table 9.

Table 9. RMS Differences Between Predicted and Control Values with

the Asymmetric Kernel Approach and Only (¢,7) Observed.
Bjerhammar Method.

[SOLUTION]r Ag(mgal) 1£(") |n(")
North 0 18.74 1.16 11.00
Block 6360 9.01 1.47 |1.31

6365 | 10.06 |1.84 |1.84
South | 6390 | 58.57 [1.18 [1.14
Block | 6350 | 9.46 1.06 |0.99

6360 | 9.19 l1.64 |1.19
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The RMS_differences of Table 9 in (2-107) yield ;'o = 6354.221 km for
the NB and ro = 6350.352 km for the SB solution. Using these r, values
one gets the results in Table 10.

Table 10. RMS Differences Between Predicted and Control Values
with the  Asymmetric Kernel Approach, Only (¢,9)
Observed and With the Optimal Radius of the Geosphere.
Bjerhammar Method.

| _BLOCK RMS DIFFERENCES
SUB-BLOCK | Ag(mgal) ¢ (") [n("")
North | 13.19 [1.25]1.06
1 11.98 (1.06{0.91
2 - 8.15 [0.76|0.74
3 16.00 }1.00|0.80
4 12.85 11.79]1.50
South 9.19 {1.08{0.99
5 10.62 [1.58|1.25
6 7.34 |1.110.89
7 10.20 {1.00{1.35
8 7.25 [0.75{0.85

From Table 10 one can see poor Ag predictions. On the other hand
¢ was predicted to about 117 and 5 to about 1'03 on the average, with
variationa from 0.75 to I'79 for ¢ and 0.74 to 1'50 for =.

5.2,3 The Symmetric Kernel Approach

In this series of tests with the SK approach the Dirac Impulses will
be located at the nadir points of the observations. Also, the optimal
geosphere radius will be computed via (5-4) in order to use it for the
final solution as described in Section 5.2.2.

5.2.3.1 Prediction Using Only Gravity Anomaly Data

In this case the exact solution as described by (2-44) and (2-45)
applies. The elements of the design matrix G are given by (2-41). The
results of both the NB and the SB solutions with three different radii
are shown in Table 11.

Using the RMS differences of Table 11 in equation (2-107) one
obtains r, = 6366.339 km for the NB and r, = 6365.267 km for the SB
solution. The results of the NB and the SB solutions with ro = ro are
shown in Table 12.
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Table 11. RMS Differences Between Predicted and Control Values
with the Symmetric Kernel Approach and Only Ag
Observed. Bjerhammar Method.

SOLUTION|r,, (km) [Ag(mgal) [€(") ")
North 6360 5.31 [2.03 [1.42
Block 6365 3.62 0.95 0.96

6370 3.59 J1.11 |1.61
South 6360 | 4.00 [1.82 [1.67]
Block 6365 3.82 |0.95 [1.13

6370 4.78 |0.99 |1.58

Table 12. RMS Differences Between Predicted and Control Values
with the Symmetric Kernel Approach, Only Ag Observed
and the Optimal Radius of the Geosphere r,. Bjerhammar

Method.
BLOCK RMS DIFFERENCES
SUb-BLoCE Az (mgel) [ () [n(7)
North 3.29 {0.92(0.97
1 4.47 10.8810.82
2 2.56 10.6611.00
3 3.03 1.32]0.75
4 3.33 |0.80]1.15
South 3.81 0.94{1.13
5 3.57 1.36]1.44
6 5.97 10.96;1.23
7 3.30 10.58|0.79
8 2.44 10.78(0.92

In this case one can see in Table 12 that the good sub-block #8 in
the sense of Table 3 gave the best Ag predictions whereas the best ¢
and 7 predictiona were performed at sub-block #7. Overall, with only
Ag aobservations the SK approach on the average predicted Ag to about
3.6 mgals, ¢ to about 0.9 and 5 to about I.05.

5.2.3.2 Prediction Using Both Gravity and Vertical Deflection Data

In the event that both Ag and (¢,n) are obaierved the least-squares
solution given by (2-46) to (2-48) applies, and one has as many degrees
of freedom as observed deflection pairs. The elements of the design
matrix G are given by (2-41) for Ag observations and by (2-42) for (¢,n)
observations. Table 13 shows the results for this case with three
different radii.
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Table 13. RMS Differences Between Predicted and Control Values
with the Symmetric Kernel Approach and Both Ag and
(¢)n) Observed. Bjerhammar Method.

SOLUTION|ro (km) [Ag(mgal) [£(™) |7(")]
“No';t"'h ~—1 6363 | 3.29 [0.86 0.7'211
e | eses | 3.3 0.8l |0.72
6367 | 3.67 l0.72 {0.70
8365 | 4.31 10.88 10.89
g‘l";zﬁ 6367 | 4.55 |o0.84 |0.93
6369 | 4.20 lo.82 Jo.s1

The application of (2-107) and (5-4) with the results of Table 13
yielded r, = 6362.867 km for the NB and r, = 6368.049 km for the SB
solution. The resulits of the NB and SB solutions with r, = r, are
shown in Table 14.

Table 14. RMS Differences Between Predicted and Control Values
with the Symmetric Kernel, Both Ag and_(¢{,m) Observed
and the Optimal Radius of the Geosphere r,. Bjerhammar

Method.
| BLOCK RMS DIFFERENCES
SUB-BLOCK]A al) [¢(") {q(")
North 3.26 [0.87]0.72
1 3.90 [0.67{0.54
2 2.49 (0.77]0.71
3 3.25 ]1.15]/0.83
4 3.45 }(0.85]0.75
South 4.33 10.8210.91
5 3.58 {1.23(1.23
6 7.01 (0.90}(1.01
7 3.83 [0.48]0.37
8 2.85 10.52}0.72

From Table 14 one observes Ag to be predicted to about 3.5 mgals, ¢
to about 0.85 and 5 to about 0.8 on the average.

5.2.3.3 Prediction Using Only Vertical Deflection Data

When only vertical deflections are observed the least-squares
solution applies with as many degrees of freedom as observed (¢,n)
pairs. This type of solution is given by (2-46) to (2-48) and the
elements of the design matrix G are given by (2-42). Both the NB and
the SB solutions with three different radii are shown in Table 15.
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Table 15. RMS Differences Between Predicted and Control Values
with the Symmetric Kernel Approach and Only (¢,7)
Observed. Bjerhammar Method.

SOLUTION| r, (lom) [Ag(mgal) [£ (") [n(").
North | 6395 | 50.88 [1.04 [1.03
Block 6360 | 22.98 [1.12 |1.00

6365 | 10.19 }1.36 |1.18
South 6355 | 93.96 |1.31 [1.23]
Block 6360 | 13.05 |0.97 |0.99

6365 | 8.38 |1.48 [1.12

Using the RMS differences of Table 15 in (2-107) yields r, =
6359.982 km for the NB and r, = 6361.017 km for the SB solution.. The

NB and SB solutions with these optimal radii are shown in Table 16.

Table 16. RMS Differences Between Predicted and Control Values
with the Symmetric Kernel, Only (¢,n) Observed and ro =
ro. Bjerhammar Method.

BIOCK | RMS DIFFERENCES
SUB-BLOCK|Ag(mgal) [£ () [n(")
North | 23.05 |1.12]1.00

1 20.82 [0.97(1.08

2 17.16 |0.79/0.74

3 27.34 |0.990.77

4 12165 [1.51]1.25
South | 9.84 |1.05]0.99

5 11.35 |1.53|1.22

6 8.25 |1.08(0.50

7 10.69 [1.01]1.33

8 7.93 ]0.73/0.86

From Table 16 one can see that Ag were poorly predicted with only
(¢,m) observations. Also, the best ¢ predictions were performed at
sub-block #8 whereas sub-block #2 yielded the best 7 predictions.

5.2.4 Comments on_the Results of the Asymmetric and Symmetric Kernel
Approaches

Comparison of Tables 6 and 8 shows that in the AK approach when
(¢,m) observations are introduced vertical deflection predictions are
improved by eabout (i3, whereas the gravity anomaly predictions were
downgraded by about 0.6 mgals. Furthermore, inapection of Tables 12
and 14 yields very similar comparison for the SK approach for the
introduction of (¢,n) observations.




63

Comparison of Tables 8 and 10 for the AK and 14 and 16 for the SK
approach demonstrates deterioration of both the Ag and the (&,3)
predictions when no Ag observations are used.

Comparison of Tables 6 to 12, 8 to 14 and 10 to 16 shows that the
results of the predictions with the AK and the SK approaches are
practically identical. Actuslly, the only difference in the two approaches
is the radius that yielded the optimal results. Table 17 shows the
optimal radii for the two approaches.

Table 17. Optimal Radii in km for the AK and the SK Approaches in
Both the NB and the SB Solutions with Different
Obsgervation Types. Bjerhammar Method.

Optimal radius ro, (km) [Optimal radius r, (km)
Type of Asymmetric Kernel Symmetric Kernel ‘
Observations|North Block]South Block|North Block|South Block

IT; 6362.571 | 6361.562 | 6366.339 | 6365.267
Ag and (§,7)| 6360.248 | 6362.312 | 6362.867 | 6368.049
(¢,m) 6354.221 | 6350.352 | 6359.982 | 6361.017

From Table 17 one can see that larger radii yield the optimal resulta
in the SK than in the AK approach.

5.2.5 Dirac Impulses on a Grid

Up to this point the Dirac Impulses were located at the nadir points
of the observations. However, one potential location for the Impulses is
on a grid at the surface of the geosphere. In this case it holds that r,
in (2-38) is equal to r, and therefore t is the same for both the AK and
the SK approach. Consequently their respective formulae namely (2-28)
and (2-41) for Ag and (2-32) and (2-42) for (¢,7) become identical. This
scheme of computing Ag* on a grid was tested for four different grid
sizes for both the NB and the SB. The grids were selected with two
considerations in mind. The first one was to have integer minutes in
the mesh size. The second one was to have less number of grid
vertices (unknowns) than observations so that the least squares soclution
as given by (2-46) to (2-48) be applicable. Also, it should be kept in
mind that very coarse grids are not derirable since information that
exists on the data cannot be transferred to Ag¥ values and the resulting

predictions become inaccurate. The selected grids are shown in Table
18.
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Table 18. Details of the Four Grids Used at the White Sands Test

Area.
# OF VERTICES [# OF VERTICES |TOTAL #
GRID!GRID CELL SIZE|IN ¢ DIRECTION|IN )\ DIRECTION|OF VERTICES
1 6 x4’ 156 22 330
2 6'x6° 15 15 225
3 7°x7° 13 13 169
4 12°x12° 8 8 64

The grida of Table 18 were used in two cases. One with only Ag
observations and one with both Ag and (¢{,m) observations. In the case
of only (¢{,7) obaervations two grids were used. The criteria were the
same as the ones in the selection of the grids of Table 18. The first
grid had a grid cell size of 7°x12° with 13 and 8 vertices in the latitude
and longitude directions respectively and a total of 104 vertices. The
gsecond grid was identical to grid #4 of Table 18. The computational
scheme will be to use three arbitrary values for r, and record the
resulting RMS differences of control minus predicted values for Ag, ¢
and 7. Subsequently, these values will be used in conjunction with
{2-107) and (5-2) to yield the optimal geosphere radius. The optimal
radius of the geosphere is used in the final solution.

5.2.5.1 Prediction Using Only Gravity Anomaly Data

In this case, the elements of the design matrix G are given by
either (2-28) or (2-41). The results of both the NB and the SB solutions
are shown in Table 19.

Table 19. RMS Differences Between Predicted and Control Values
with the Four Grids and Only Ag Observed. Bjerhammar

Method.
Optimal NORTH BLOCK GRID| Optimal SOUTH BLOCK
radius (km) | Ag(mgal ") [n(") | # |radius(lm)lAg(mgal)]£(") In(")
6347.269 8.86 6.07]10.69] 1 6353.852 4.38 0.93] 1.20
6348.500 3.21 1.556] 1.69| 2 6351.250 4.39 0.87] 1.10
6342.500 3.41 0.94] 1.24| 3 6351.250 4.82 0.80( 1.08
6330.576 4.85 0.77} 1.01} 4 6347.500 6.49 0.83] 1.49

From Table 19 one can see that gravity anomaly predictions are best
performed with grid #2. Furthermore, the best ({,n7) predictions were
performed with grid #4 for the NB and with grid #3 for the SB. Most
importantly, with gravity data alone, the downward continuation on a
grid can yield similar resulta to the ones obtained with the downward
continuation to the nadir points of the observations (compare with
results of Tables 6 and 12).
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5.2.5.2 Prediction Using Both Gravity and Vertical Deflection Data

In this case the elements of the design matrix G are given by either
(2-28) and (2-32) or (2-41) and (2~42). The results of both the NB and
the SB solutions with the four grids of Table 18 are shown in Table 20.

Table 20. RMS Differences Beiween Predicted and Control Values
with the Four Grids and Both Ag and (¢{,7) Observed.
Bjerhammar Method.

Optimal | NORTH BLOCK GRID| Optimal SOUTH BLOCK |
radius (km) |Ag(mgal) [ £(") " # |radius(lm)|Ag(mgal) [£(") ")
.6356.389 3.49 | 0.71] 0.75] 1 6350.143 3.57 0.64} 0.73
6349.166 3.18 | 0.68{ 0.61] 2 6341.548 3.94 0.63| 0.86
6346. 167 3.56 0.65| 0.65] 3 6345.833 4.69 | 0.62| 0.92
6326.624 | 4.39 0.72] 0.89] 4 6325. 686 6.28 0.80] 1.29

From Table 20 one observes that grid #2 yielded the best Ag
predictions in the NB whereas grid #1 was the favorite for the SB. As
far as the meridional deflection predictions are concerned grid #3 gave
the best results. However, in terms of 5 predictions grid #2 performed
best in the NB whereas grid #1 performed best in the SB. Comparing
Tablea 19 and 20 one sees that the introduction of vertical deflection
observations resulted in improved predictions in all cases. Finally,
comparison of Table 20 to Tables 8 and 14 reveals slightly better results
from the downward continuation onto a grid. However, the downward
continuation onto a grid has the drawback of having to try different
mesh-gizes in order to get the best predictions, which is impossible in
the absence of control data.

5.2.5.3 Prediction Using Only Vertical Deflection Data

For this application the elements of the design matrix G are given
by either (2-32) or (2-42). The results of the NB and the SB solutions
are shown in('l'able 21.

Table 21. RMS Differences Between Predicted and Control Values
with Two Grids and Only (¢,m) Observed. Bjerhammar
Method.

Optimal NORTH BLOCK ___ |GRID| Optimal SOUTH BLOCK
radius (Jm) [8g(mga)] £(") [7(") | # |radius(km) |Ag(mgal)] £C") [q(")
6330.232 |5424.63 |123.57|41.82] 1 | 6347.498 |10708.15|293.05|66.84

3 4.33

6347.420 | 314.77 4.98| 3.66] 2 6348.443 332.27] 7.21
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From Table 21 one observes very poor predictions for both grids
with only (¢,m) observations.

5.2.6 The Best Ag and (¢{,n) Predictions

The best gravity anomaly predictions were obtained with the
Asymmetric Kernel (Table 6) approach and with only gravity anomalies as
observations. The Dirac Impulses were located on the geosphere at the
nadir points of the observations.

Inspecting Table 6 in light of the representation factors of Table 3
we see that even though the SB solution was expected to be better than
the NB one this was not the case. Actually they turned out about the
same. Furthermore, from Table 3 one sees that sub-block #6 should
yield very good predictions, which was not the case as Table 6 shows.
Also, even though sub-block #2 is characterized poor in Table 3, it
yielded good predictions. These somewhat conflicting results force one
to look at the individual results at each station.

Pigures 26, 27, 28 and 29 show the differences control minus
predicted value for each gravity control station at the four .5x0.5
sub-blocka of the NB and the SB solution respectively in the
background of the gravity data. These differences are from the AK
approach with only gravity observations and the Dirac Impulses located
at the nadir points of the observations. In these Figurea the gravity
control stations are indicated by x and the convention is that a bar
above the x indicates a positive difference whereas a bar below the x
indicates a negative difference.




-
67
o Aens
SUB-BLOCK = 1 - 1IN
4 X= CRAU, ANOA. COAP. STAT,
i P @~ CAAU. ANDA. DBS. STAT.
°
3 o .. i * .. b ® .. )
e ® .: o |® ®
1 g"“' — . O
i : LK Py ..
' e ® ® “ . lee = [
: o ® °... ® ® °
d:a' ) LX) b4 ‘ .
s —‘—'—'. e o of 1. .
e, °® * 4 .
¢ L e ® L
® x
. .: ° r molqw
? [ E [
L 3 [ L
[LONGITUDE]
P 8 AGALS
SUB-BLOCK = 2 -~ 18
X* CRAU, RANOA. COAP. STRT,
- ©+ CRAU. ANOA. 0BS. STAT.
® $, 0 o
l [ Y ® o [ ] [ ]
Y PY [ ] .
° [ ] b e 9 .
! Llow 00* [ou 2 2 P, o
1» 0 . ®lo e o
E . .1 e ¢ o
E N che
Fo - X oo P
il § 1 o e
* o [ %
L4 [ ] [ ] Y hd
s 9

,,,.h.’&L__nga;: 2

‘ ‘ ILONGITUDE)

Figure 26. Comparison by Station of Control and Bjerhammar-Predicted
Gravity Anomalies at the North Block of the Test Area.
Sub-blocks #1 and 2.

'
wr
o
0 18°




68

8 RCALS

SUB-BLOCK « 3 - 32
X GRAU. ANDM. COMP, STAT.
©= CRAU. ANOA. 0BS. STAT.

%'
. .
° L .
* ] .1 I.. ™ °
TEIT ..}. e D .
e
‘s, 3
R .. PY “x.xxd‘. p 'l I{
33" 00° d "°
P ry P v
‘s’ T
. o® .
° ee® e o o * e
22° 48

Y. B TR
KDNBITUDH

SUB-BLOCK ~ M - 1?7
X+ GRAV. ANOA. COMP. STAT,

O« ;CRRU. ANOA. 0BS. STAT.
= %' Tl-v-
o 'f“
. o
., o ®

> 1s° - 5 ——

LATITUDE

32" 00°

R v }
B L i
[LONGITUDE]

Figure 27. Comparison by Stetion of Control and Bjerhammar-Predicted
Gravity Anomalies at the North Block of the Test Area.
Sub-blocks #3 and 4.

2 38’




69

29 ACALS

SUB-BLOCX - 5 - 32
X+ GRAU. RANOR. COAMP. STAT.
O= CRAYU. ANDA. 0BS. STAT.

n* 38,
Ve LI L . . o oo,
e
':‘..ot T
[ J ] 'Y [ ]
®
Luljar oo’ vt
(o | H ® °o : * . ’. ’.
E e o o b Q. e h
0.:' ® o '.. * { :‘ ~* ® L
(o of ® % ¢
- - .. "b‘r’o R s
.. N o®® o
[ ] e,
l ',f. 1
2 % Po S
? 8 'e. R
¥ H B H
[LONGITUDE]
:
Iu AcLs
SUB-BLOCKX = B - 22
X= CRAU. ANOR. COMP. STAT.
I ©®- CAAU. RNDA. DBS. STAT.
[ ] ®
.. ° . ¢ e X e ®
[ ] o o b L e
o © o " o By
t — .
g ® '3 o Poaoe
- 0 & ° oo
c X X ° ) d [ ]
- f TN —r—e
+74 1o
. b
i .
% = 8
r e 8 -
Figure 28. Comparison by Station of Control and Bjerhammar-Predicted
Gravity Anomalies at the South Block of the Test Area.
Sub-blocks #5 and 6.




70

1% ACAS

5U8-BLOCK - 7 - 38
Xe CRAU. ANOA. COMP. STAT.
O= CRAV. ANOA. 0BS. STAT.

L Ty
] ° [ ] o0 o ... 0‘
oo .. L.* o ¢F 'xo ¥
') oot %g o O
e o oo u-L. ..J‘
un‘ls'—'* ] t h
(o | b e of °
2 Geo,® » o."g}
P ° e ®looe °,,o ® o
=1 o® o yo o % o
E ° ®ere F. :..o
22 00° e ° a - X
| ® ...T. ... ° e o .‘
* :.’ *2 oo
* [ ] Y LY
u.“.

8 ®
i 2 2
LONGITUDE

nrw

|l'l ACALS

SUB-BLOCK « 8 - 31
Xe CRAU, ANDA. COAP. STAT.
0- CRAU. ANOA. 0BS. STAT.

K .¥. ° °.L.
‘&: o, ¢t |s ca @ " hd
- l'....°° d
X o o4 Iy ° 'y
L3 15t [a b qi ' na 2 ».
wa] ¢ o r °
= .‘ d o e L]
- b o x® e |® %o ®
- }a* ] ®* Lo |oe
L 8
E ”» § °
_,”.“ .“ o8 e T ©
o® o %o 0, o g
® 9 . o® o, e
Fo oo} ® e ole Lo
a® .t
'R

2° 38’

v
2 ;
LONGITUDE

Figure 29. Comparison by Station of Control and Bjerhammar-Predicted
Gravity Anomalies at the South Block of the Test Area.
Sub-blocks #7 and 8.




71

Figures 26, 27, 28 and 29 indicate that the majority of the large
differences occur at areas with insufficient data coverage. However,
there are exceptions. For example, in block #2, station #7778 has a
difference of -5.85 mgals whereas for station #7777 this difference is
-0.08 mgals and these stations are only about 700 m apart. Similarly, in
block #3, station #6717 which is between stations 6716 and 6718 and only
a few km away from either one has a differences of 5.35 mgals whereas
the other two stations have differences of 0.22 mgals and -0.32 mgals
respectively. Also, Figures 26, 27, 28 and 29 demonstrate that the
method can operate fairly well in clusters provided sufficient data
coverage is present.

As far as the vertical deflection predictions are concerned, the best
results were obtained when both gravity and deflection observations
were included. The Dirac Impulses were located on grid #3 on the
geosphere (Table 20). The results of this solution, by (0®5x0.5)
sub-block are given in Table 22.

Table 22. RMS Differences Between Predicted with Ag and (¢,9)
Observed and the Optimal Radius of the Geosphere r,.
Dirac Impulses on Grid #3. Bjerhammar Method.

BLOCK RMS DIFFERENCES
SUB-BLOCK [Ag(mgal) [£ (™) [n(")
North 3.56 ]0.65]0.65
1 4.07 10.66{0.54
2 3.16 [0.63]0.75
3 3.03 0.83{0.44
4 4.34 |0.49]0.75
South 4.69 0.62]0.92
5 4.30 0.57/0.89
6 4.06 [0.70]0.80
7 6.25 0.59]1.03
8 2.90 ]0.51}1.04

The results of Table 22 in light of Talble 3 are conflicting in this
case also. For example the "Medium” sub-block #4 yielded the best
meridional deflection predictions and the prime vertical deflection
predictions of the "Good" sub-block #8 were the worst n predictions.
However, the "Good" sub-block #8 yielded Lhe best gravity anomaly
predictions and the second best meridional deflection predictions.
Figures 30, 31, 32 and 33 show the differences control minus predicted
value for each vertical deflection control station at the four 0.5x(.5
sub-blocks of the NB and the SB solution in the background of the
gravity observations. These differences are from the solution where
both Ag and ({,7) were observed and the Dirac Impulses were located on
grid #3 at the surface of the geosphere. In these Figures the vertical
deflection control stationa are indicated by x and the convention is that
a bar above the x ixzdicatea a positive difference in §{, a bar to the
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right indicates a positive n difference whereas a bar below x indicates
a negative difference in ¢ and a bar to the left indicates a negative
difference in 1.

Figures 30 through 33 illustrate thalt the majority of the large
discrepancies between control and predicted values occur at areas poor
in data coverage and rich in terrain variations. For example the hilly
to flat sub-block #8 with good Ag and (§,7) observation coverage
vielded the best Ag and second best ¢ predictions. Moreover, in the
"poor" sub-block #2, station 358 had ¢ predicted within 01 and 9
within (82 due to the presence of gravity observation stations 7800,
7801 and 7802.

5.2.7 Errors of Predictions

In the solution with optimal radius of the geosphere for each
variation of the predictor the standard deviations of the predicted
values were computed according to (2-57). A close inspection of these
standard deviations indicates that they cannot be considered a safe
indicator of the quality of the predictions. This is to say that many
poorly predicted quantities are associated with small standard
deviations and many very well predicied quantities are associated with
large standard deviations.

5.2.8 Conclusions from the Bjerhammar Predictor

At first the optimal radius r, of the geosphere could not be
computed from the data. The results of two methods to perform this
computations were discouraging. Therefore the 8? method was used at
which the RMS discrepancies (control minus predicted) in Ag, ¢ and g
were considered a second order polynomial in r,.

If gravity predictions are required, then use only gravity data and
position the Dirac Impulses at the nadir points of the observations. It
is not significant whether the Asymmetric or the Symmetric Kernel is
used in terms of the quality of the predictions. The only requirement
to get the same prediction quality from both the AK and the SK is to
associate the AK with radii about 6362 km and the SK with radii about
6366 km. The exact value for the optimal r, should be dictated by the
apecific data set with the s? method. In the event that no control
data exist in an area, the observations can be separated in two groups,
one of which will play the role of observations and the other one the
role of conirol data so that an optimal r, can be computed by the
s?-method.

If vertical deflection predi.tions are sought, then include (¢,n)
observations with the gravity data and place the Dirac Impulses on a
grid. When performing computations on scalar computers select the
grid cell size keeping in mind that finer grids are more CPU time
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consuming withoug being necessarily more accurate. In the event that
a super-computer is available, the grid cell size may not introduce a
problem in terms of CPU time. This is the case with the Cray X-MP/24
which was used for our solutions. As for the grid size, the White
Sanda Test Area seems to indicate that it can be about twice the
angular distance beiween gravily observations. A radius of about 6346
km yielded optimal results.

As far as the R factor (eq.(5-1)) is concerned, one may conclude
that it is of limited importance. For example, from Table 22 one can
gee that the "Medium" sub-block #4 (see Table 3) yielded the best ¢
predictions, the "Good" sub-block #8 yielded the worst 7 predictions,
even though the "Good" sub-block #8 yielded the best Ag predictions
and the "Poor" sub-block #7 yielded very poor 7 predictions.

For terrain height variations from the mean height of 70 m to 220
m, gravity data density of 20 to 30 km? per station and standard
deviations of the data in the order of 2 mgals, the method can predict
Ag within 4 mgals and (¢(,9) within 17, If vertical deflection
observations as dense as 140 to 240 km? per station and as accurate as
0.3 are added, then vertical deflections can be predicted to 0.7 or
better. )

5.3 Results of the Hardy Method

5.3.1 Tests of Optimal Geosphere Radius Computation

The radius of the internal sphere is as important with Hardy’s
predictor as it is with Bjerhammar’s predictor. The coupling effect of
ro mentioned in subsection 5.2.1 is present here also. Therefore an
optimal value for the radius was attempied to be computed from the
data with this predictor as well.

The same two methods tested with the Bjerhammar predictor were
tested with the Hardy predictor also. The first one was to use 384 Ag
observations in the NB and solve for 384 bihermonic sources c; plus
the radius r, of the geosphere. An approximate value of 6350 for r,
resulted after 4 iterations in an adjusted value of 6381585.4 * 11.4 m.
The residuals were in the order of 10~¢ mgals; VTPV was 10~? and the
standard deviations of the biharmonic sources c; were larger than the
cy values. An approximate value of 6360 km for r, resulted after 10
iterations in an adjusted value of 6359324.1 t* 1018.1 m. The residuals
were of the order of 10°2> mgals, VIPV was 10~* and the standard
deviations of c; were larger than the c¢; values. The order of
magnitude of the residuals and of V'PV can be explained by the
absence of redundant observations. The large standard deviations of
the ¢; values as well as the standard deviation of the adjusted r,
simply stress that the resulled adjusted values have not been
accurately determined. From the above resulis one cannot conclude in
favor of a meaningful r, computation,
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The second attempt was the data separation method (equation
(2-80) through (2-102)). The method was tested in the NB and the
results of the solution (iteration #0) as well as the six iterations
required for convergence are shown in Table 23. In Table 23, N is the
normal matrix (of dimensions (l1xl)) and U is the right hand side vector
(of dimensions (1x1)) of the normal equations.

Table 23. Data Separation Method of Computing r,. Hardy Method.

ITERA-

TION #|r§ (lm N U ro(km)|rg (km) |
0  |6360.000| 0.000 006 657 0.009 826 926|-1.476 |6358.524
1 {6358.524| 0.000 005 277| -0.011 218 644| 2.126 |6360.650
2 |6360.650| 0.000 004 396| -0.024 550 281| 5.585 |6366.235
3 |6366.235| 0.000 027 438| -0.148 932 793| 5.428 {6371.663
4 |6371.663| 0.085 465 724| -38.874 943 956| 0.455 |6372.118
5 |6372.118| 1.708 862 581|-160.625 401 236| 0.094 [6372.212
6 |6372.212|415.993 395 432]|-106.240 406 225| 0.000 |6372.212

The adjustment yielded r3 = 6372.212 t 5x10~* km. Also, it yielded
VTPV = 5x10* and ¢, = 11.7. From Table 23 one observes that, after
the second iteration, both N and U are increasing in absolute value,
However, the correction ér, tends to 2zero after the third iteration.
The adjusted value of the internal sphere was greater than the mean
Earth radius of 6371 km. Using ro, = r§ = 6372.212 km resulted in RMS
discrepancies control minus predicted of 17.37 mgals for Ag, 9311 for ¢
and 323:81 for ». Conclusively, neither one of the two methods appears
to be able to compute an optimal r, value. As a result, the 82 method
should be used for r, computations with the Hardy predictor.

5.3.2 Biharmonic Sources at the Nadir Points of the Observations

In this series of tests the biharmonic sources c; will be located at
the nadir points of the observations. The differences in the following
tables will be control minus predicted and the a2 method will be used
for optimal ro computations. The final solutions for each variation of
the method will be performed with the r, value computed from (5-4)
based on the RMS differences resulting from solutions with Lhree
different radii.

5.3.2.1 Prediction Using Only Gravity Anomaly Data

In the case where only Ag are considered as observations the exact
solution applies as given by (2-44) and (2-45). The elements of the
design matrix G are given by (3-43). The results from both the NB
and the SB solutions with three different radii are shown in Table 24.
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Table 24. RMS Differences Between Predicted and Control Values
with Only Ag Observed. Hardy Method.

SOLUTION]rg (Jom) [ Ag(mgal) [£(") |7("
f'—“ _""th 6355 | 4.39 |8.49 | 6.59
B‘l’:ck 6360 | 3.58 l4.72 | 7.24
6365 | 3.03 |5.41 |13.37
South 6355 | 3.90 |2.57 | 4.43
Block 6360 | 3.82 l2.57 | 7.51
6365 | 3.75 [4.53 |15.55

Application of (5-4) with r8e, rf, r§ as computed through (2-107)
and the RMS differences of Table 24 yielded ro = 6363.903 km for the
NB and ro_= 6355.948 km for the SB solution. The NB and SB solutions
with ro = ro are shown in Table 25.

Table 25. RMS Differences Between Predicted and Control Values
with Only Ag Observed and the Optimal Radius of the
Geosphere r,. Hardy Method.

BLOCK RMS DIFFERENCES _|
[SUB-BLOCK|Ag(mgal) [£ (") [ (")
North 3.13 |[4.93[11.36
1 4.32 |2.86[11.42

2 2.56 |6.17| 3.95
3 2.88 |2.32|18.44

4 2.98 |6.00| 9.52]
South 3.88 12.43] 4.77
5 3.73 [3.93] 7.24
6 5.69 |1.49| 4.97

7 3.57 [1.04| 4.18

8 2.63 |2.91] 3.12

From Table 25 we can see that the NB solution is slightly better
than the SB one in terms of gravity predictions. The best Ag
predictions were performed in sub-block #2. However, the SB solution
is better than the NB one in terms of vertical deflection predictions.
The best { predictions were performed in sub-block #7 and the best 7
ones were performed in sub-block #8.

5.3.2.2 Prediction Using Both Gravity and Vertical Deflection Data

In the event that both Ag and (¢,7) are utilized as observed
quantities the least-squares solution applies as given by (2-46)
through (2-48) and we have as many degrees of freedom as observed
deflection pairs. The elements of the design matrix G are given by
(3-43) for Ag observations and by (3-44) for (¢(,n) observations. The
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the SB with three different radii are

RMS Differences Between Predicted and Control Values

with Both Ag and ({,7) Observed.

SOLUTION]ro (k) |Ag (mgal) LE(") In(")]
North 6360 | 6.88 [2.23 |2.31
Block 6365 | 12.73 [2.43 |3.09

6370 | 20.09 [3.15 |3.74
South 6361 | 7.57 ]2.29 |2.43
Block 6365 | 13.09 (4.12 [4.17

6368 | 18.09 |4.83 |4.92

Hardy Method.

Using the results of Table 26 with the s? method (equation (2-107))

Table 27.

therefore non-invertible.
considered optimal for the SB.

and the RMS differences we get ro, = 6365.402 km for the NB and the
ro = 6362.044 km for the SB solution.
a normal matrix with numerically linearly dependent columns and
Alternatively the value of 6361 km was
The results from the NB solution with
re = ro and the SB solution for r, = 6361 km are shown in Table 27.

The r, value for SB resulted in

RMS Differences Between Predicted and Control Values
with Both Ag and (¢,7) Observed, ro, = 6362.186 km for

the NB and r,

Method.

BLOCK | RMS DIF]‘B}(i’ENCES
SUB-BLOCK | Ag(mgal) [¢(") |n(")
North 13.37 12.45]3.19
1 9.12 J1.65(1.79
2 5.08 |[2.32{3.10
3 18.55 ]1.84)2.43
4 10.85 |3.29}4.32
South 10.13 }3.70§3.11
5 8.00 (2.76{1.91
6 13.84 ]4.85]4.30
7 10.25 ]1.04]0.75
8 8.73 ]2.69]1.86

6361 km for the SB solution.

Hardy

From Table 27 we can see that Ag can be predicted from 5.08 mgals

(sub-block #1)

surprisingly,
introduction of vertical deflection observations degrades the gravity

to 18.55 mgals
discrepancies vary from 1.04 (aub-block #7) to 4:85 (sub-block #6) for
¢ and from (.75 (sub-block #7) to £32 (sub-block #4) for » Not

{(aub-block #3).

Also,

the RMS

comparison of Tables 25 and 27 reveals that the
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predictions whereas it improves vertical deflection predictions.

5.3.2.3 Prediction Using Only Vertical Deflection Data

In the case where only vertical deflections are observed the
least-squares solution applies with as many degrees of freedom as
deflection pairs. This type of solution is given by (2-46) through
{2-48). The elements of the design matrix G are given by (3-44).
Resulta from both the NB and the SB solutions with three different
radii are shown in Table 28.

Table 28. RMS Differences Between Predicted and Control Values
with Only (¢,7) Observed. Hardy Method.

|

SOLUTION|ro (km) jAg(mgal) [E(") [n(")
North | 6355 | 16.33 0.97 0.99
jorth 16360 | 15.15 |1.01 |1.01
6365 | 15.78 |1.07 |1.09
6350 | 29.57 [0.93 [1.06
§g:2ﬁ 6355 | 22.90 [0.91 [1.01
6360 | 22.03 lo.99 |1.05

The 8? method of equation (2-107) with the RMS differences of
Table 28 yielded r, = 6354.698 km for the NB and r, =,6355.676 km for
the SB solution. The NB and SB solutions with r, = r, are shown in
Table 29.

Table 29. RMS Differences Between Predicted and Control Values
with Only (¢,3) Observed and the Optimal Radius of the
Geosphere r,. Hardy Method.

BLOCK RMS DIFFERENCES
SUB-BLOCK{Ag(mgal){¢(™) |n(")
North 16.48 (0.97|0.98
1 11.68 [0.87]|1.16
2 5.93 10.7410.77
3 23.62 10.97(0.88
4 10.43 {1.20{1.09
South 12.61 0.9111.01
5 6.49 1.46}1.23
6 20.09 0.80§0.93
7 10.90 (0.97]1.37
8 12.46 [0.72{0.86

From Table 29 one can see that the best Ag predictions are
performed at sub-block #2. Sub-blocks #2, 6 and 8 did well for ¢
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predictions as did sub-block #2, 3, 6 and 8 for . Comparison of Table
29 to Tables 25 and 27 indicates further improvement of the (¢,n)
predictions and deterioration of the Ag p .ctions from the removal of
Ag observations.

5.3.3 éiharmonic Sources on_a Grid

Up to this point the biharmonic sources were located at the nadir
points of the observations on the internal sphere (see Subsection
5.3.2). In the following sequence of tests the biharmonic sources will
be placed on a grid at the surface of the geosphere. The scheme for
selecting the grids was the same as previously employed (Subsection
5.2.4); the four grids of Table 18 were used. The computational scheme
will be to use three arbitrary values for r, and record the resulting
RMS differences of control minus predicted values for Ag, ¢ and 7.
Subsequently, these values will be used 'in conjunction with (2-107)
and (5-2) to yield the optimal geosphere radius. The optimal radius of
the geosphere is used in the final solution.

5.3.3.1 Prediction Using Only Gravity Anomaly Data

In this case the least-squares solution applies as given by (2-46)
to (2-48). The elements of the design matrix G are given by (3-43).
The results of the NB and the SB solutions are shown in Table 30.

Table 30. RMS Differences Between Predicted and Control! Values
with the Four Grids and Only Ag Observed. Hardy

Method.
Optimal NORTH BLOCK GRID| Optimal SOUTH BLOCK
radius(km) |Ag(mgal) [£(") ") | # lradius(km)|Ag(mgal)[¢(") Jo(")
6356.965 | 19.80 |14.19{23.91( 1 6356.973 4.39 2.811 4.06
6354.388 | 3.21 4.21| 8.61] 2 6351.499 | 4.39 2.72| 2.81
6351.746 | 3.37 7.171 5.93] 3 6362.912 4.77 3.08] 8.07
6342.176 | 4.91 | 2.70} 2.88] 4 6354.502 6.51 3.37] 65.15

From Table 30 one sees that grids #2, 3 in the NB and grids #1, 2,
3 in the SB yield satisfactory Ag predictions. However, the vertical
deflections were predicted poorly from only gravity anomaly data.

5.3.3.2 Prediction Using Both Gravity and Vertical Deflection Data

Here the least-squares solution applies also. The elements of the
design matrix G are given by (3-43) for gravity anomaly and by (3-44)
for vertical deflection observations. The results of NB and SB
adjustments are shown in Table 31.




W e — v

83

Table 31. RMS Differences Between Predicted and Control Values
with the Four Grids and Both Ag and (¢{,m) Observed.
Hardy Method.

Optimal NORTH BLOCK GRID{ Optimal SOUTH BLOCK
radius(km) [Ag(mgal) [£(") In(") | 8 Iradius(lm){Ag(mgal)é(") [9(")
6352. 264 4.85 1.16f 1.39] 1 6350.196 4.85 0.87| 1.19
6343.865 4.36 0.98| 0.86f 2 6342.498 4.53 0.79] 0.98
6335.444 4.50 0.81§ 0.77{ 3 6334. 255 5.34 0.69{ 1.08
6312. 865 5.18 0.76] 1.08] 4 6326.940 6.76 0.93] 1.59

From Table 31 one observes that grid #2 is the preferred choice
for Ag predictions at both the NB and the SB. However, grid #3
yielded best ({,7) for the NB and best ¢ for the SB. The best 9
predictions at the SB were performed using grid #2.

Comparison of Tables 30 and 31 indicates that the introduction of
(¢,m) observations deteriorated the Ag predictions whereas it improved
the (¢,7) predictions.

5.3.3.3 Predictions Using Only Vertical Deflection Data

The two grids of subsection 5.2.4.3 were used in this case. The
solution is of the least-squares type, and the elements of the design
matrix G are given by (3-44). The results for both the NB and the SB
adjustments are shown in Table 32.

Table 32. RMS Differences Between Predicted and Control Values
with the Two Grids and Only ({,7) Observed. Hardy

Method.
Optimal NORTH_BLOCK GRID| Optimal SOUTH_BLOCK
radius (Jm) |4 al)I€(") In("™) | # Iradius(lm)|Ag(mgal)|é(") |7(")
6177.393 | 194.41 | 4.48| 5.39] 1 | 6108.834 [208.57 | 3.95| 8.25
6328.837 | 777.24 | 3.28] 3.78] 2 | 6329.203 |406.48 | 4.66] 2.05

From Table 32 one sees that grav‘ty anomalies are predicted
unacceptably with both grids. Furthermore, the vertical deflection
predictions are poor. Also, from Table 32 one sees that the value of
the optimal radius of the geosphere for grid #1 is peculiar.

Comparison of Tables 31 and 32 indicates that removal of Ag
observations deteriorated both the Ag and the ({,n) predictions.

i LA

A
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5.3.4 The Best Ag and (£,n) Predictiona

As far as the gravity anomaly predictions are concerned the best
results were obtained using only gravity observations and locating the
biharmonic sources at the nadir points of the observations. This
solution yxelded RMS differences in the order of 4 mgals for gravity
anomalies and is shown in Table 25.

Inspecting Table 25, with the representation factor R of Table 3 in
mind, we see that block #8 performed well as expected. Also, blocks
#2, 3 and 4 performed well even though they were classified as not
very good. The "promising”" sub-block #6 according to Table 3 yielded
the worst results. Figures 34, 35, 36 and 37 show the differences
control minus predicted value for each gravity control station at eight
0.5x0"5 sub-blocks. The convention for positive and negative values
is the one used in Figures 26, 27, 28 and 29.

The fact that the terrain type and the data coverage influences
the predictions greatly is also illustrated in Figures 34 through 37.
The problems of stations 7778 and 6717 mentioned at the Bjerhammar
method exist with the Hardy predictor. The difference for station #7777
is also 0.10 mgals whereas for 7778 it is -5.69 mgals and the
discrepancy for 6717 is 5.27 mgals whereas for 6716 it is 0.14 and for
6718 is -0.26 mgals.

In terms of vertical deflection predictions, the best results were
attained when both Ag and (¢,7) were observed and the biharmonic
sources were located on grid #3 at the surface of the geosphere (Table
31). These solutions yielded good Ag predictions also and are shown in
Table 33 by (0.5x0.5) sub-block.
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and Hardy-Predicted

Gravity Anomalies at the North Block of the Test Area.
Sub-blocks #1 and 2.
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Figure 35. Comparison by Station of Control and Hardy-Predicted
Gravity Anomalies at the North Block of the Test Area.
Sub-blocks #3 and 4.
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Gravity Anomalies at the South Block of the Test Area.
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Gravity Anomalies at the South Block of the Test Area.
Sub-blocks #7 and 8.




89

. Table 33. RMS Differences Between Predicted and_Control Values
with Ag and (¢) Observed and ro, = r,. Biharmonic
¥ Sources on Grid #3. Hardy Method.

BLOCK RMS DIFFERENCES
SUB-BLOCK| g (mga ) [€ () [2 ()]
North 4.50 0.81{0.77
1 4.56 0.69{0.54
2 3.68 0.62{0.77
3 3.85 1.0010.93
4 6.14 |0.90/0.79]
South 5.34 0.6911.08
5 4.77 0.7611.18
6 5.03 0.75]0.91
7 7.00 0.69]1.12
8 3.37 0.55}]1.23

From Table 33 one can see that the "Good" sub-block #8 yielded
the best ¢ predictions and the "Medium" sub-block #1 yielded the best
n predictions. Most importantly from Table 33 one s8ees that
predictions below the 1" mark can be performed with the Hardy
Method. Figures 38, 39, 40 and 41 show the differences control minus
1 predicted value for the eight 0:5x0.5 sub-blocks. The convention for
positive and negative differences is the one used in Figures 30, 31, 32
and 33.

Figures 38 through 41 demonstrate that large differences mostly
occur at areas rich in terrain variations and poor in data coverage.
With the Hardy predictor one observes that sub-blocks #8 and 7 yield
the best and worst { predictions respectively and that sub-blocks #1
A and 8 yield the best and worst 5 predictions respectively.
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Sub-blocks #3 and 4.
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5.3.5 Errors of Predictions

For every variation of the predictor the standard deviations ¢ of
the predictions were computed at the solutions with the optimal radii
ro according to (2-57). These ¢ values are rather smooth and cannot
indicate locations at which predictions are good or not.

5.3.6 Conclusions from the Hardy Predictor

At ftirst, the results of the two methods to compute ;'o from the
data were not promising with the Hardy Predictor. As a result the s?
method was used to compute r,.

If gravity predictions are required, use only gravity data and
place the biharmonic sources at the nadir points of the observations on
the geosphere. For White Sands, a radius of about 6356 km to 6363 km
appears to be optimal.

It vertical deflection predictions are required use both Ag and
(¢,m) observations and locate the biharmonic sources on a grid at the
surface of the geosphere. A radius of about 6335 km yielded optimal
results for New Mexico.

The overall result of the tests of the Hardy Predictor seems to be
that Ag can be predicted to about 3 to 4 mgals, ¢ and » to about 0.8
0.9,

5.3.7 Comparison of Bjerhammar and Hardy Predictors

Theoretically the predictors are very different. They even assume
different behavior of the disturbing potential T. However, in practice
they yielded very similar results. The best Ag and (¢{,7) predictions
were performed with identical data requirements and downward
continuation scheme and yielded similar results. A minor difference is
the value of the optimal geosphere radius. The aforementioned results
seem to stress that an improvement in the predictions of both Ag and
(¢ym) even in mountainous areas may not result from a theoretical
breakthrough but from improved data coverage.

5.4 Prediction Using Least-Squares Collocation

For comparison purposes a Least-Squares Collocation solution was
tested at the New Mexico Area. The model used for the disturbing
potential covariance function was of the form [Kearsley et al., 1985; p.
50]

_ 4 AR.2 Rg 2)nH+1 _
KP.Q) = B D 2 wan) (rprg) | Polcosera) 55
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where wpq is the spherical distance between points P and Q, rp and rg
are geocentric radial distances to P and Q respectively, Ry is the
radius to the Bjerhammar sphere and Rg is the mean Earth radius.
The following values were used [Kearsley et al., 1985, p. 501].

Rg = 6371 km, Rg = 6369.75 km (5-6)

ae variance CX‘S of the residual gravity anomalies as computed fr
1137 point values was [Heiskanen and Moritz, 1967; p. 253]

Cods = Var(Vpq) = 323.82 mgal? (5-7)
where V5, is given by (4-10).

For each teat two solutions were performed. One for the NB and
one for the SB. The first test was to predict Ag and (¢{,) from
gravity data alone. The results of this test for both the NB and the
SB are shown in Table 34.

Table 34. RMS Differences Between Predicted and Control Values
with Only Ag Observed. Collocation Solution.

BLOCK RMS DIFFERENCES
SUB-BLOCK ] Ag(mgal) 1 £(") Jn(")
North 2.84 |0.76{0.92
1 4.23 10.83|0.79
2 2.59 ]0.63|0.91
3 2.28 |1.02|0.75
4 2.65 |0.61]1.10
South 3.68 {0.80{1.03
5 3.01 |1.00{1.25
6 6.25 10.86(1.16
7 3.36 ]0.57{0.79
8 1.68 10.67]0.79

From Table 34 one sees RMS differences from 1.68 to 6.25 mgals for
Ag, 057 to 1102 for ¢ and (0756 to 1925 for # resulting from different
data coverage and terrain type within the eight sub-blocks. On the
average Ag was predicted to about 3 mgals, { to about 0:8 and 5 to
about I.0.

The second test was to predict Ag and (¢,n) from both Ag and (¢,3)
observations. The results of this attempt for both the NB and the SB
solution are shown in Table 35.

SEN B S50 R

S e et W BRSO N,
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Table 35. RMS Differences Between Predicted and Control Values
with both Ag and (¢,m) Observed. Collocation Solution.

BLOCK RMS DIFFERENCES
SUB-BLOCK|Ag(mgal) [ (") [0 (")
North 2.93 [0.58/0.56
1 4.08 [0.59/0.48
2 2.40 |0.49]0.60
3 2.56 |0.82[0.31
4 3.00 |0.44]0.68
South 3.44 |0.64[0.66
5 3.37 l0.89]1.06
6 4.61 |0.70|0.59
7 3.70 |0.31}0.37
8 1.82 |0.49]0.59

From Table 35 one sees RMS differences from 1.82 to 4.61 mgals for
Ag, 0°31 to 0:83 for ¢ and 0.31 to 1906 for 5 due to the terrain type
and data coverage of the sub-blocks. On the average Ag was
predicted to about 3.3 mgals and ¢ and # to about 0.6,

The third test was to predict Ag and (¢,n) from vertical deflection
observations alone. The results of this test for both the NB and the
SB solution are shown in Table 36.

Table 36. RMS Differences Between Predicted and Control Values
with only (¢,7) Observed. Collocation Solution.

BIOCK __ | RMS DIFFERENCES
[SUB-BLOCK|ag (mgal) [¢ () [n("
North 5.41 ]0.67]0.86
1 6.02 |0.65/0.87
2 3.75 |0.5210.66
3 5.91 |0.73]|0.83
4 5.46 ]0.7611.02
South 7.36 [0.72]0.86
5 5.92 (1.31}1.27
6 3.49 ]0.58{0.79
7 10.70 [0.53|0.64
8 5.47 |0.60{0.80

From Table 36 one sees RMS differences from 3.49 to 10.70 mgals
for Ag, 052 to 1:31 for ¢ and 0.64 to 1:27 for n. The reason for this
variation is the terrain type and the data coverage in the aub-blocks.
On the average Ag was predicted to about 6.5 mgals, ¢ to about 0.7 and
n to about 09,
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Comparison of Tables 34, 35 and 36 shows that the introduction of
vertical deflection data slightly improved the (¢,m) predictions and
slightly deteriorated the Ag predictions. It is noteworthy that the RMS
difference of 6.25 mgals at sub-block #6 was improved to 4.61 mgals by
the introduction of (¢{,7) observations. The removal of gravity data
resulted in degradation of the Ag predictions by about 3 mgals and a
slight degradation of the (¢,») predictions. In conclusion, the best Ag
predictions were obtained from Ag data alone (Table 34). This solution
is shown by station in Figures 42, 43, 44 and 45. On the other hand,
the best (¢,n7) predictions are obtained from both Ag and (¢,9) data
(Table 35) and this solution is shown in Pigures 46, 47, 48 and 49 by
station.
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5.5, Comparison of the Bjerhammar and Hardy Predictors to
Least-Squares Collocation

In the sequel a comparison between the Bjerhammar Method (BM),
the Hardy Method (HM) and Least Squares Collocation (LSC) will be
attempted. The CPU time comparison is based on times required on the
IBM 3081 computer. In the event that only Ag observations are
available the results from the White Sands tests are shown in Table 37.

Table 37. RMS Differences Between Predicted and Control from the
Three Predictors. Only Ag Observed.

Block | _Ag(mgals) 1) 20 CPU Time
Sub-Block| BM | BM JLSC | BM | WM JISC | BM | HM JISC | (sec)
NORTH |3.08|3.13]2.840.90(4.93]0.76(1.00|11.36]0.92|  BM
SOUTH |3.79|3.88/3.68/0.90/2.43{0.80(1.13] 4.77[1.03|NB: 512
1 |4.27]4.32[4.23]0.91|2.86(0.83|0.81{11.42{0.79|SB: 1440
2 |2.54|2.56|2.59(0.64]6.17]0.63[0.99| 3.950.91[ ™
3 |2.84|2.88|2.28|1.26]2.32[1.02(0.70|18.44{0.75{NB: 500
4 |2.86|2.98|2.65/0.81/6.00/0.61|1.28| 9.52|1.10{sB: 1392
5  |3.43|3.73|3.01{1.27|3.93|1.00{1.36| 7.24]1.25[ 1Lsc
6 |6.22|5.69]6.25/0.94|1.49|0.86{1.28] 4.97|1.16|NB: 638
7 |3.20{3.57|3.36/0.58|1.04/0.57[0.75| 4.18|0.79|sB: 1182
8 12.23|2.63]1.68|0.74]|2.91{0.67]/0.89] 3.12[0.79

From Table 37 and keeping in mind that both the observed and the
control Ag have a standard deviation of 2 mgals one sees that all three
methods can predict gravity anomalies within 3 to 4 mgals.
Furthermore, the difference in the quality of the predictions
introduced by each method never exceeded the observation error.
Also, sub-blocks that performed well or poorly with some method
behaved similarly with all methoda. For instance, sub-block #6 yielded
the largest RMS difference and sub-block #8 yielded the smallest RMS
difference for all methods.

The picture is different for vertical deflection predictions. From
Table 37 one can see immediately that the HM cannot perform to a
satisfactory level. On the other hand BM and LSC performed equally
well with the exception of sub-blocks #3 and 5 at which LSC
outperformed BM at the ¢ predictions by about 0.25 which is not very
large keeping in mind that the standard deviations of the control
deflections are (.3.

In case that both Ag and (¢{,n7) are utilized as observations one
gets the results of Table 38.
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Table 38. RMS Differences Between Predicted and Control from the

Three Predictors. Both Ag and (¢,m) Observed.
Downward Continuation on a (7°x7°) Grid for Both BM
and HM.
Block Ag(mgals) 1) (") CPU Time
Sub-Block|{ BM | BM |1SC | BM | AM |ISC | BM | HM |LSC (sec)
NORTH [|3.56]4.50{2.93]|0.65[0.81]0.58|0.65]0.77|0.56 BM
SOUTH [4.69|5.3413.44]0.62]0.69|0.64/0.92]1.08|0.66|NB: 892
1 4.07({4.56]4.08,0.66]0.69]{0.59{0.54{0.54{0.48{SB: 1140
2 3.16|3.68{2.40/0.63]0.62|0.49]0.75|0.77]0.60 HM
3 3.03}3.85]2.56{0.83]|1.00{0.82|0.44|0.93]0.31|NB: 880
q 4.34]16.14]3.00]0.49(0.90{0.44|0.75[{0.79|0.68{SB: 1128
5 4.30(4.77|3.37({0.57(0.76[0.89{0.89({1.18{1.06 LSC
6 4.06(5.03/4.6110.7010.75{0.7010.80{0.91/0.59{NB: 861
7 6.25(7.00]3.70|0.59|0.69{0.31{1.03|1.12]|0.37|SB: 1463
8 2.9013.37]1.82]/0.51]0.55{0.49]1.04}1.23/0.59

From Table 38 one sees that all methods can predict Ag to about 3
to 5 mgals. Also, the discrepancies of the RMS differences among
different methods are always smaller than the standard deviation of the
Ag values. LSC is favored over both BM and HM in terms of Ag
predictions.

As far as vertical deflection predictions are concerned all methods
can predict ¢ to about 06 to 0.8 and n to about 0.6 to 1'0. In the
majority of the cases all methods performed equally well with the
exception of sub-blocks #3 and 4 in favor of BM and LSC, #5 in favor
of BM and #7 in favor of LSC for ¢ and sub-block #3 in favor of BM
and LSC, #5 in favor of BM and LSC and #6, 7 and 8 in favor of LSC
for n. Overall, similar accuracy was obtained by all three methods.

In the event that one has (§,7) observations only one gets the
results of Table 39.

From Table 39 one sees superiority of the LSC solution in the Ag
predictions, which, however yields rather large RMS discrepancies. In
terms of vertical deflection predictions one can obgerve LSC to perform
better than both BM and HM with the exception of sub-block #5 for .
Therefore, in this case the LSC solution is preferred.
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Table 39. RMS Differences Between Predicted and Control from the
Three Predictors. Only (¢(,m) Observed.

Block Ag(mgals) (™M) n(") CPU
Sub-Block| BM HM | LSC | BM | WM |LSC | BM | HM [LSC | (sec)
NORTH {13.19{16.48] 5.41]|1.25|0.97{0.67]1.06|0.98{0.86] BM
SOUTH 9.19|12.61| 7.36}1.08{0.91{0.7210.99(1.01/0.86|NB: 36
1 11.98|11.68| 6.02{1.06|0.87]|0.65|0.91}1.16{0.87|SB: 36
2 8.15| 5.93] 3.75]0.76]0.74]0.52]|0.74]0.77|0.66] HM
3 16.00123.62] 5.9111.0010.97|0.73{0.80{0.88{0.83{NB: 36
4 12.85]10.43| 5.4611.79{1.20]/0.76{1.50]1.09{1.02|SB: 36
5 10.62| 6.49| 5.92]1.58]/1.4611.31{1.25|1.23{1.27| LSC
6 7.34{20.09{ 3.49|1.11§0.80]/0.58{0.89]0.93{0.79|NB:130
7 10.20{10.90{10.70{1.00/0.97{0.53]1.35{1.37|0.64{SB: 140
8 7.25]12.46] 5.4710.75]0.72{0.60}0.85]/0.86/0.80

A comparison of the three methods reveals that BM and LSC
performed equally well in all cases, except the case of only (¢,9)
observations, in which LSC performed better than BM. The HM,
however, yielded peculiar results. For example, Ag were predicted to
about 3 to 4 mgals from gravity data only (Table 37). From the same
solution, (¢,m) were predicted unacceptably. From only (£,9)
observations (Table 39), vertical deflections were predicted well,
whereas Ag were predicted unacceptably. These types of results from
HM come as no surprise in light of the comments in subsection 3.2.4.

The best vertical deflection predictions for all three methods were
abtained when both Ag and (¢,7) abservations were used (Table 38).
The downward continuation for both the BM and the HM was performed
on to a (7’x7’) on the geoaphere. In Table 38, only the RMS
differences of control minus predicted quantilies are given. The
corresponding average differences are about 1 mgal for Ag and for
{¢ym) they are in the order of a few tenths of an arcsecond.
Furthermore, the predictions obtained from .e three methods agree
very well a8 seen from Figures 26 through 49. The RMS prediction
differences between any two methods are 2 to 4 mgals for Ag and in
the sub-second level for (¢,3). Furthermore, the corresponding
average differences are less than 0.7 mgals for Ag and for ({,3) they
are less than two tenths of an arcsecond in absolute value. In the
North Block, the best agreement is observed between the predicted
both Ag and (¢,m) from the BM and LSC and the worst agreement is
observed between HM and LSC. In the South Block, the best
agreement is observed between BM and HM whereas the worst one is
observed between the HM and LSC. Correlation coefficients between
average ({,n7) differences (control minus predicted) among methods in
each sub-block ranged from 0.2 to 0.9. The average correlation
coefficient was 0.7. The corrresponding correlation coefficients from Ag
predictions ranged from 0.82 to 0.93. The average value was 0.90.
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Examination of the differences of control minus predicted vertical
deflections at individual stations yields interesting resultsa. For
example, in Kearsley et al., [1985, p. 68] the ¢ component of the
vertical deflection at station 191 was reported as a suspected error in
the control data. This appears to be the case from the results of this
investigation also. Furthermore, stations with large differences from
one method, yield large differences with all three methods (e.g. stations
376, 383, 395, 404, 286 and 305 for ¢ and stations 199, 200, 202, 203, 128
and 29 for n to name only a few). On the other hand, there are some
stations with smsll differences from one method and large differences
from another (e.g. stations 378, 320 and 172 for ¢ and 349, 355 and 127
for 7).

As far as CPU time requirements for the three predictors, Tables 37,
38 and 39 indicate that there is no method that consistently required
leas time than the others. It is worth noting that 75% of the time
estimates for BM and HM is needed to compute an optimal value for the
radius of the geosphere.

The software for both the BM and the HM was converted to work
on the CRAY X-MP/24 supercomputer. This conversion was almost
effortless. However, it will take a moderate effort to modify the LSC
software (GEOCOL) to work on the supercomputer. The CPU time
requirements for both the BM and the HM on the CRAY X-MP/24,
including an optimal r, computation, are shown in Table 40.

Table 40. CPU Time Requirements (in seconds) for BM and HM on
the CRAY X-MP/24 Supercomputer.

BM M
Type of Observable N6 1 SB B SBA
Ag 7.71 22.6] 8.8123.7
Ag and (¢&,7) 10.4] 24.8]/10.9(28.8
{(t,m) 0.1} 0.1] 0.1] 0.1

Comparison of Table 40 to Tables 37, 38 and 39 reveals improvement
by a factor of at least 10 and as much as 90.

Lastly, in the event that an optimal ;., is required for the BM or
the HM and no control data exist in an area, then the observations can
be separated in two groups. The firat group should be regarded as
observations and the second one should be regarded as control data.
These two groups can be used with the s?-method to compute an
optimal geosphere radius. Finally, the entire data set should be used
as observations to perform the solution.
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5.6 Comparison With the FPour Methods Tested with the New Mexico Test
Data

In Kearsley et al. [1985] four methods to predict deflections of the
vertical from gravity anomaly data were tested and intercompared.
These methods were the Fast Fourier Transform (FFT), the Combined
Collocation-Integration (CINT), the Numerical Integration (RINT) and the
Terrain Effect Integration and Collocation (TEIC) method. In Tables 4.5
and 4.6 of {ibid, pp. 93-94] they reported RMS diascrepancies, control
minus predicted vertical deflections, predicted from gravity data in the
order of 1" when height data are used.

In the sequel we will compare the results of the four methods in
[Kearsley et al.,, 1985] with the results of this investigation. The
comparison will be based on Tables 4.5 and 4.6 of [ibid, pp. 93-94] and
on Table 37 of this work. However, the results of our LSC will be
used rather than the ones of TEIC because the results of our LSC
solution are slightly better. A summary of these results appear in
Table 41. In Table 41, the column designated AG shows the RMS values
of the vertical deflections by sub-block.

Table 41. Comparison of the Bjerhammar and Hardy Predictors
with the Four Methods Tested at New Mexico. Only Ag

3 Obsgerved. .
AG BM M LSC FFT CINT RINT

BLOCK| ¢ | n I1A¢ [An [A¢ | An |AE [An 1At [An [A¢ an [8¢ [an
North|4.3[7.9/0.9/1.014.9]11.4]0.8]0.9{1.1]1.3]1.0(1.6}1.1]|2.0
1 {2.8|5.6/0.9]0.8{2.9{11.4|0.8|0.8{1.2]1.4|0.8{1.4/0.7]1.4
2 14.1]19.1}0.6}1.0]6.2} 4.0]0.6]0.9]1.0/1.4}0.9]1.6]0.7]2.2
3 |5.1/6.6(1.3]0.7]|2.3]18.4]1.0]0.8]1.2]|1.3/1.4}1.5]1.8|1.6
,i. 4 14.718.7]0.8]/1.316.0] 9.5]0.6}1.110.8/1.3]/1.0/1.8/0.9]2.5
South|3.0/7.1]0.9|1.1]2.4] 4.8]0.8]1.0]0.9{1.2]{0.8]1.2]0.7}]1.6
5 14.0|7.9/1.311.413.9] 7.2]1.0]1.3]|0.9{1.2]0.7]|1.3]0.9]1.6
6 12.8{7.7|0.9/1.3|1.5] 5.0(0.9|1.2]0.8/1.1}0.9]|1.1}0.6]1.7
7 {3.416.3(0.6]0.8{1.0] 4.2{0.6{0.8{1.0(1.5{0.8{1.410.6(1.2
* 8 12.4]6.2]0.7]0.9]2.9] 3.110.7]|0.8]0.8]/1.1]0.8]/1.2]0.7]1.5

From Table 41 one can see that the methods that performed best
were LSC and BM. Furthermore, LSC performed slightly better than
BM l()l:»y about 0.1 on the average, which is below the (¢(,7) noise
level).

r However, the most important conclusion drawn from Table 41 is

that, when reference field and RTM effects are removed from the data
and restored at the predictions, there are at least five methods that
can predict vertical deflections to the sub-second level from gravity
data.
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CHAPTER VI

SUMMARY, CONCLUSIONS, RECOMMENDATIONS

Two deterministic methods for gravity field approximation have
been investigated. The first one was the Bjerhammar Dirac Impulse
method and the second one was the Hardy’s biharmonic potential
method.

Bjerhammar defined the discrete geodetic boundary wvalue problem
as the one at which observations are given at discrete points and it is
required to find a gravity field such that all observations are
satisfied. The solution is constructed such that the disturbing
potential is harmonic outside a sphere fully internal to the Earth and
regular at infinity. The Dirac Impulses that generate the disturbing
potential are computed by a downward continuation process and they
are used to perform predictions in an upward continuation scheme.

Hardy’s work was initiated by the fact that the integral
representation of the disturbing potential is singular at points that
induce potential. Based on the non-uniqueness of the solution of the
inverse problem of potential theory one can assume that the density
anomaly function of the Earth together with its normal derivative is
zero at the boundary. An integral representation of the disturbing
potential can be derived which is non-singular at points that induce
potential and which =satisfies the biharmonic equation. An
approximation to the fundamental integral is also derived.
Operationally, the biharmonic sources are computed as the solution of a
linear system and then they are used to perform predictions.

Both of the aforementioned methods can use any linear functionals
of the disturbing potential as observations and/or quantities to be
predicted.

Tests were performed for both methods with the White Sands Test
Data. The predictions were compared to independently observed
gravity anomalies and vertical deflections that served as control data.
Reference field and residual terrain model effects were removed from
the observations and were restored at the predicted values before any
comparison to the control data was done.

A factor that influences the quality of the results with both
predictors is the radius of the internal sphere. Two approaches to
compute it from gravity data failed for both methods. However, a

111

AT e AR T Bt e e UE AR e e e o JEE L e weaE B e Lt RS e SRR 8 T A

b e




PN

112

technique for optimal radius computation that yielded satisfactory
results is to consider some measure of the quality of the predictions a
second order polynomial in the radius.

The Bjerhammar method, performing the downward continuation on
the nadir points of the observations and with only gravity data
resulted in RMS differences of control minus predicted values in the
order of 3 to 4 mgals Ag, 0'9 for ¢ and 170 for . When vertical
deflection observations were introduced the RMS discrepancies became
35 to 4.5 mgals for Ag and 0!8 for ¢ and 75 When the gravity
observations were completely removed, the RMS differences became
larger than 10 mgals for Ag, and about 1" for both ¢ and . The
aforementioned results pertain to both the Asymmetric and the
Symmetric Kernel approach. In fact, the only difference between the
AK and the SK is that the optimal radii associated with the AK are
usually smaller than the ones with the SK (see Table 17).

When the downward continuation is performed onto a grid on the
geosphere, the Bjerhammar method predicted Ag to 3 to 4 mgals, ¢ to
about (!9 and 5 to about I'l from gravity observations alone. When
vertical deflection observations were introduced, the RMS differences of
control minus predicted values was the same (about 3 to 4 mgals) for
Ag, whereas it became about 0.7 for ¢ and 0.8 for 5. On the other
hand, the predictions from (¢{,7) data alone were unacceptable both for
Ag and (¢m).

For every variation of the Bjerhammar predictor, standard
deviations of the predictions were computed according to (2-57). These
standard deviations cannot be considered a safe indicator of the
quality of the predictions. The reason for this is that there were
many well predicted quantities with large standard deviations and
there were many poorly predicted quantities with small standard
deviations.

The Hardy method, when the biharmonic sources were located at
the nadir points of the observations, gave RMS discrepancies of control
minus predicted values on the order of 3 to 4 mgals for Ag whereas
the vertical deflection predictions were very poor. When vertical
deflection observations were introduced, the RMS differences were
larger than 10 mgals for Ag and larger than 25 for ¢ and %, When the
gravity data were completely removed, the RMS differences were
degraded further for Ag whereas they became smaller than 1" for both
¢ and 9.

When the downward continuation is performed onto a grid on the
geosphere, the Hardy method with only gravity data, yielded RMS
discrepancies in the order of 3 to 4 mgals for Ag whereas the vertical
deflections were worse than Z!7 for all grid sizes. The introduction of
vertical deflection observations degraded the Ag predictions to 4.5 to
5.5 mgals whereas it upgraded the (¢(,7) predictions to the 1" level.
The complete removal of Ag data rendered both the Ag and the (¢,4)
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predictions unacceptable.

For every variation of the Hardy predictor, the standard deviations
e of the predictions did not prove to be indicative of the quality of

the resultss, since in many cases large o¢’s were associated with well
predicted quantities and vice versa.

Comparison of the two predictors (BM and HM) with Least Squares
Collocation (LSC) indicates that BM and LSC yield comparable results in
all cases with the exception of the case where only (¢,7) observations
are utilized in which case LSC performed better than BM. On the
other hand, HM performed well when it predicted Ag from Ag data or
(¢m) from (¢,m) data and the downward continuation was performed at
the nadir points of the observations.

The most important overall result of this work is that when
reference field and RTM effects are taken into account, there are at
least five methods that can predict (¢,) from Ag to the sub-second
level, even in mountainous areas. Furthermore, the improvement of the
predictions should not be anticipated from a theoretical breakthrough
but from data.-type and coverage improvement.

As far as future investigations are concerned it is recommended
that undulations and/or gravity gradients be predicted from various
data types with both predictors., Particularly for the Hardy method it
is suggested that a low degree and order spherical biharmonic
expansion (e.g. 6 to 10) be computed from the formulae given in

Appendix A.5 using 10°x10* or 5°x5° global data and then be tested as
to its reliability.




APPENDIX A

DERIVATIONS

Show that if M, = 224 _ 3
2t
2t

with by = t - 3dt + - Btacosw — 3tacoswinu,

then M, = 1+ 221 4 3¢
§ = FE cosw

Proof:
Recalling equations (2-21) and (2-22) one has

3d _ t-cosw
at d

and

du

at - COSU] .

1 [t-cos~
2 d
Therefore

M = Z%; - %%i =2-6d+ % - 10tcosw - 6tcoswinu -

a
-1 - 3% (td)

+

2%; [ﬁ] = 10tcosw - Btcoswinu - 3t2cosw %z(lnu)]=

=2 -6d + % -~ 10tcosw — 6tcoswinu - [1 - 3t 3:2352 - 3d +
d-t t-gosa
+ 2 rE - 10tcosw - 6tcoswinu -

1 1{t-cosw

- 3t3cosw sl a - cosa]] =

2
=2 -6d + % - 10tcosw - 6tcoswinu - 1 + 3%— - 339359 + 3d - % +
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+ 2t _ 2tcose 10tcose+Btcoswtny + St cosogt-cosoz 3t2cos?n _

ad - a 2u
-1 2, 3t? 3tcosw 2t  2tcosw . 3t2cosw(t-cosw) _
=1-3d+3+5 a *E T YT 2ud

3t2cos?a

2u
-1 - 2, 3t2 6tcosw , 2t? _ 2tcose . 3tcosw
=1-3d+ it 1 + 55 rEmaihd el
+ 3ticosa(t-cosw) _ 3t?cos?e _
2ud 2u

= Lo 4o - 39 + 202 + 3t2d2 - 6td?cose + 2t? - 2tcoss| +
d

3tcosw [1 + t2-tcosa—tdcose

+ 2u

E% [d= - 3d* - d7 + 3d%(1 + t* - 2tcosw) + 2t? - Ztcose] +

3tcosw

* T2ud

[Zu + t? - tcosw - tdcosu] =

= 3% (d® - 3d* - d? + 3d* + 2t? - 2tcosw) +

+ 3“2::;“ (1 — tcosw + d + t? - tcosw — tdcosw) =

=d—}(d’—d3+2t‘—2tcow)+-m—2::“’(d’+d—tdco“)=

[ L

a—(d’-l—t’+2tcoca+2t’—2teolo)+

+ 342989 4 (4 + 1 - teosw) =

= d"% (d> + t2 - 1) + ——3t2u f2u=1+ %}l + 3tcosw q.e.d.
-3 2 _
Show that Ay = 35— 1l -3d + = - 5tcosw - 3tcosulnu| =
@ d

PR

2R AR i e



= tsim[B - %—,— - gg_g%%)_* + 3lnu]

Proof:
Recalling equations (2-16) and (2-18) one can show that

dd _ tsing du _ tsing 1 .
% -4 and %o -3 [1 + d]' Therefore:

Ay = :—“ [1 -3d + % - Stcosw - 3tcosolnu] =

ad ad
dw dw

3 ts;no - g_a_ ts% + 5tsinw+3tsinwinu -

= tsixw[— % - 3—, +5 + 34nu - ___3t<2:om.: - _3*"2:::" =
. X 2 3
L = tsma[B -F 3inu - Zud (2ud + 2u + tdcose + tcosa)] =
. 2 3
= tsmo[B - + 34pu - Fud ((1 - tcosw + d)d+(1 ~ tcosw +
+ tdcosw + tcos:.:)] =
= tsi [ 2 3 _ a
) -31M8-d—,+3lnu—'2—uﬁ(d—dtcoo+d + 1 - tcosw +

+ d + tdcosw + tcooo)] =

F =tsim[8-%—;+3lnu-2“id(d'+2d+1)] =

= tsino(8 - %; -3 gﬁ 2. 3]  q.e.d.

1(1-¢2 ‘
3. Show that if g}] = £t  3escose - t2,

v withd’=1+t’-2tcmandt=%ﬂ.

Ag
d _ k212 - _ 3t(1-t3)(t-cosw) _ -
then -l-u"o - [ 3£ (1 - 2t2) 15 Stcosw 2]

3tc:sa Lixzua[l + _]_._]
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= -3 33 42(-1)a* 32 5t (-sinw) -3t(-sinw)tnu ~3tcosw % du _

d

d) +
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Proof:
. ) - @ - n
Firstly: ¢t = f‘ => ire (t") = ntn—? 3%: = ntr? % = %f—
Secondly: %g: %—- [(1 + t2 - 2tcosw)¥] =

t(t-cosw

= 1 - a .
" (Ft-Ztcoaw)® (2t-Zeose) 5o- = =509

.%’

[(1 t!)_(_). + tz_u_l ds -~ ta(l_ta)%

Jro d
} ALY A _
3cosw arg arg

N

1 2t? Zt’ t2(1-t2 t(t-cosw
F o 240 (2] e 4, Htocome) _

3t° _2t?

- 3cosw
To To
) < 2¢3) - 3t3(A-tD)(t-comw) _ ., cose _ 2t2
T red® (1 2t?) rod® It To ro ' or

agy | e2 2
drg  ro Ld® Q

- 2¢3) - 3t(1-t?) (t-cosw) _ Itcose — 2] q.e.d.

dl

a. showth.tif[‘fs}='—i-;‘—“{fg:: L,
9,

b ]
with L = Bt - %; - 3"231 2+ 3toam,

= % (1 - tcosw + d) and £ and t as in A.3, then,

]
r, _ 3t'sine -2 _ 3(d+1)?

* T ey [e & " Tgud  t U+
%7,
ir,

P gl (G SR o) - e [ )] (oo

T vt
i Y A -
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Proof:
Firstly: :%o. = -;- [— -:—:’_;- cosw + %] =
= % (.. 7. coso - (t*:::ca)] 2_t__. [t~coso _ cos“]
Then:
R S & "
a_:: %;] - ',3?:_;—3 _ 3t‘rg to.;;:osuz
(b) [t’(d"'l)’] = (d+1)?2 "('—)' + t3 "— [(d"l)’]
= (+1)? 32 4 49401 39- =
- Blel) [3(d+1) + Bt(t-cose)]
-:-;(ud)= d %;l; +u % -4 2:0 troome _ cp) 4y t_O%:_sgz, thus
) (e Mg (@] - () I ()
iro [ ud ] = il 2 =
o ud [3(d+1) M]
R (] g
(€) 3= (t24nu] = 4ny 33%:2 + 2 _:;: (tnu) =
= 1:.':' fou + % 5:.—0 % ~ cooo), therefore:
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‘L _am—z_an t—,.]_g-L[-t-’—Lﬁ-ll:].ps?%(tS‘n“):

Oro r, ro d3 2 r,
_ g 3t3 3t _ 3t4(t-cosw)
=8 To rod® rod® ] [ r.,ud
2te(d+l) (t—cosw) _ t4(d+1)? _
+ roud? -é;f‘—l;a),— (t - cosw - dcosw) ~
‘gﬁll’gt-coul] lmx + Sti(t-cosw) _ 3ticosw -
roud? 2roud 2rou
-3 _2t®  3t3(d+l)s s 6t4(t-cosw) _
- [8es L ——S-—LM + 3t nu) + __(——)'ro =
_ 3ti(d+l)(t-cosw) . 3t2(d+1)3(t-cosw—dcosw) +
roud: 4ron:d:
3t4(d+1)2(t-cosw 2 3t4(t—cosw) _ 3t*cosw -
2rqoud’ 2roud 2rou
- L + 3ti(t-cosw) [__2_ + gd+1)’] t‘coao [g )2 . ]
rod? q3 4u?

+ Sur{troose) [(4)? _ 5(45]) 4 1], thus:

2r°\ld
d
ire - 3t’s1n~ _ g_ _ 3(d+1)2
, ——— [8 Sud + 34nu +
Jrg

t(alz d+l)?

S =Rl &~ | e

sina

q.e.d.

The bibarmonic equation is 42V = 0. Find its solutions.

Solution:

Let the Cartesian rectangular coordinates x, y, z be expressed as:
x = x(Q1s 925 93)) ¥ = ¥(Q1s Q25 Qs)y 2 = 2(Q, G2, Q)

such that x, y, z are continuously differentiable functions and also

solvable for q,., Qi q,, i.e., the Jacobian of the transformation
does not vanish.

via
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For orthogonal coordinate syatems [:: ::J 3%7 3%; ::{ %ﬁ;

0, i = j|, the Laplacian is [Kellogg, 1929; p. 183], [Heiskanen
and Moritz, 1967; p. 19}):

haby 3V ) | 3 (hahy V) , 2 (hbs 3V )
hxh:hs 3‘!1 h, dq, 3aq; ( h; 3q, 3qs | hy dq,

[[aq.] + [:q,] [aq,] ]x

=3xz
and h,h;h, Ia(q;.QaaQS)

transformation.

av

where
h,

| = 131 and J is the Jacobian of the

In the usual spherical coordinates which satisfy:

X = rsinfcos)

y = rsinfsin)

z = rcosb

one haa

X _ gindcosn; X - ocosr; X - _ raingsin
or - ®infcos); o9 = rcos i 33 = ~ rsinésin
$ = sinowink; 2L = rcosdsink; I = rsinscos)
L) [ ) . é
3% = cosé; 3% = - rsiné; 3{ = 0 , hence

hy =1; h = r; hy = rainé.

With these values for q, hy, i = 1, 2, 3, AV becomes after
differentiation [Heiskanen and Moritz, 1967; p. 19]:

AV = a2y 2 V.1 arv  cotd IV 1 av
Fr i r ar  r? 203 r? 390 risin?@ I\?
Now

42V = A(AV) = m [— [r’lan —(-A!)'] + -— 8inb —M] +

(ke 2] - b (2 3
ax sin® r’.xne 0

e e s e e e gy = o
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Computing A, B, T yields:

- crming 2 (4V) = r78ing Y - 20100 2L + 2cming 22V -
A = r?siné e (AV) = r2?siné s 28iné ir + 2rsiné a2
28inf 32V X 33V 2cos@ 3V v
I TR A T T T r 38 ' °°%9 355
__2 3w + 1 3V
rsind aA?  sinf draa?
- - 33V __ . 2sing 33V sing 33V _
B = lan (AV) 8in@ ——— 209r7 + =r  J9r + 57 39°
_ 1 4V  cos@ 32V _ _2cosf_ 32V 1 sy
riginif 38 = r? 367 r?sin?@ A7  risinf 36A?
[ = —2a 1 3 (aV) = 1 ¥y 2 a3y 1 av +
sinB aA 8inB IAIr? = rsin@ INIr = risind IrI63
cosd 33V 1 3 .
rIsin?0 a8 | r3sin’g '’ therefore:
PPN [ O W L QS W 00 ST R T .
ar®*  r* 39*  r%sin®d I\* r? Ir2da062 ' r2ain2@ Iri2aa?
+ 2 v 4 3V 2cot8 33V __ _2cot® _33V
r*sin3@ 2839\ = r ar’ r? dr23@ r*sin?0 agaa?

2cot® 3’V  cot29 2V + 4 v cot051+211n’92 v

+ :
r* 63 r* 202 r*sin“é JA' r*sin?6 0

Assuming V(r, 8, A\) = f(r)-Y(8, A) with Y(8, A) = g(8)-h(\) we get

) Lasy . _ 1 v, 2 .2
av =Y+ Rty g et T et

2

+ r3sin?g

.. a3y 2 Y 4 s
£ Tt et )Y

2cotd
rl

g Y _ _2cotd 2y
30 r*sin?@ = 363)?
2cot8 33Y ¢ - Sotle

L QT ST L,
ré 99° r

f 293 r*sin*8 Jk’

+ cot0§l+2|1n’02

r*sin3@




122

where the derivatives of f are with respect to r.

a
Now A2V = 0 <= "ﬁ A2V = 0 <=>

ref(e) 1 asy 1 3%y 2r3f”

+ 3 L et S8 l._Y a2y
f Y 36 7 Ysin®@ a\* f Y 203

<=>

2 Y 4r3£(3) , 2r2f’° cot@ 3Y _ 2coté _33Y

* Yain'6 3079A% * ~ f T Y 36 Ysinig 3G9A°
4 2cot@ Y  cotlg 7Y 4 22Y cot@(1+2sin?8) aY =0 (1)
Y 6° Y 962 Ysin‘é ak' YsinZ?8

Let Z, A, be defined as

32 )
z=aY= Tz + oot 35+ s ) V-

_ 3y v, _1_aw
= + cot® 35 + 3inie 7

393
Also, let

%Y + 1 a4y + 2 %Y  2cot@ __ 3%y
20*  8in%*0 I\*  sin?@ 302aA2 gin2g 3033

2 2 2
- cot2g LY , _4_ 23Y  cot6(1+2sinZ6) aY

203 8in*o ak’ sin36

L= + 2coté JOZ -

- r‘f(‘) + Ar’f(’)
Tf f

On the other hand:

Z _ _a_ a3y av 1 a3y) _
30 - 3¢ lag7 * °°t0 36 * sinie a2
_ 3y a8y 1 ¥y 1 2%Y _ 2cosg %Y .
= 3g° * o8 357 ~ 31n7 30 * 3In7@ J69AT _ sin’6 A’ W
Bz 3 (Y ¥ 1 ¥, 1 33Y _ 2cos@ %Y
362 - 30 l3g° * °°t9 37 ~ 3in%@ 30 * sini6 969N7  sind8 aA?
_ 2%y 1_ 2%, o33V 2cos8 3y _1_ Y

= 30 ~ sin’@ 907 20° * 3in%0 30 sin?0 20?2

_2cos9 %Y . _ 1 _3°Y__ 2(1+2cos?@) 3?Y _ 2cos8 %Y
8in’6 209A%  gin?@ 30733 8in*8 A2 8in%0 0322
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Z _ %Y ay 1_ 3%y
- et * °ot8 3335 * 3inig axs » ad
37 asy a3y 1 ey
377 " JgTaad * ©ot0 35537 * 3inig axe ° hemce:
|z iz, _1_az
MiZ + 22 = 353 + cotl 35 *+ TinTg and -
a1 Y, 2cow0 ¥ _ _1_ 2% _
= 36° ~ sin?6 39° ¥ °°t@ 355 * 5in%6 36 ~ sin’6 367
_2cos8 %Y . _ 1 _ Y . 2(1+2cos?8) 3°Y _
J sin%0 903\* sin?@ OO'JA’ 8in%g IAd
2cos0 33Y 2y Y 1 ay
oin’0 36927 ' °°t°[ao= + cotl 357 - 3in%e 38 T
b} 2 4 b}
1 sy 2cos8 3%Y 1 Y | cote =X,

2in30 909A% _ sin°0 aa?) T sin?e lag7ard FIE

1 Y 2?2y

Y 2 ary
tsinie el * 23

L)
*+ 2co0té 35 t Sin?@ a?

Y, 1 _'2 Y
{ = 76° * 3100 9%° T 3inif 3g7a\7 T 2°0t8 353

Y _ 2cotd _3%Y
36° ~ 2in?6 30aA?

33Y  (2+4cos?8 _ 2cos?@ 2 ay
ap ccos’®  _<c | Y
+ [cot 6 l1n’0 * 2]39’ " 8in*6 8in%0 ' sini6) a7 '

cosé8 + 2cos8 2cos8) 3Y _
8in%0 * sin@ ) 38 ~

) d Sy 1 a2 3%

6% * 3in*0 aA* ' 3in36 399977 30° ~ 3in?0 30\7

- cot2g LY . _4_ 7Y  cotd(1+2sin?f) Y _ =1

02 sin‘9 3&' sin?é T
therefore A4,Z + 2Z =
Now (1) becomes:

L, 2r3f"" 1, _ _
M+?+ T ?Z-0<->
1
_ 1 2rag”’ 2
> M+ v (4,2 + 22) + = 5F° 0 <=
{ ..
> M+ vy« 2L 4T (2)
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If one assumes A,Y = cY . (3)

with ¢ a constant one gets

A2Y = A,(A,Y) = 4,(cY) = cA,Y 4)

Substituting (4) in (2) one obtains

Med v+ 20, + LMY - 0 which using (3) becomes:
M+ieveon + EL c-0 =

=> r‘§(4) + 4!";(’) + —21::—“ c+c2+2c=0 )

Selecting the constant ¢ = - n(n+l), equation (5) yields

i‘f 4 3’f 2n(n+l) af n‘n—l“n'*l“lﬂ'zz £=0 (6)
T 1 3 arr T r* -

The solutions of (6) are rn, r—(n+1) pet2 and p=(n=1) ag can be
verified by substitution. On the other hand (3) becomes:

3Y+ctBaY 1 2%y

20° 26 * sinig a3 ' D(otY =

the solutions of which are [Heiskanen and Moritz, 1967; p. 21] the
surface spherical harmonics '

Ppm(cos@)cosm) and P,,(cos@)sinm)

and P,,(cos8) are the Legendre’s functions [ibid, p. 21]. Therefore,
the biharmonic functions (solutions of A2V = 0) can be represented as:

Vi(r,8,)) = gor" go[(a,,, + ric,,)cosm\ +
+ (bpm + rid,,)sinmr}P,,(cos8)
Vg(r,8,)) = ngo ;m E {(anm + ricyq)cosmn +

+ (bpm + ridpg)simer )Py, (cosd),

where a,,, byas Com» and d,, are arbitrary constants.
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