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I. Introduction

In this paper we consider the multiple-access capability of frequency-hop

spread-spectrum communication systems from an information theoretic view-

point. This capability is calculated by modelling the communication system

from the modulator input to the demodulator output as an interference channel

and determining the capacity region of this channel. We examine synchronous

and asynchronous hopping patterns and consider the cases of side information

at the receiver and no side information at the receiver.

There have been several recent studies of multiple-access performance of

spread-spectrum communication systems 11,3J. These have concerned themselves

with the probability of error of packets or codewords over such multiple-access

channels using specific codes, typically Reed-Solomon codes. For the (much

harder to analyze) unslotted channel they have used bounding techniques to ap-

proximate the packet or codeword error probability [4]. In this paper we address

the issue of performance with the best possible codes. Here we examine only the

slotted channel with both synchronous and asynchronous hopping each with and

without side information and determine the capacity region.

We do not allow cooperation between users either at the encoder or at the

decoder. This makes the interference channel model more appropriate to our

situation rather than the multiple-access channels. Using this model we are able

to calculate the capacity region in each of the cases mentioned above. We then

focus our attention on the largest possible total rate that can be achieved by all



users.

II. Channel Models

The model for multiple-access frequency-hop spread-spectrum communica-

tion consists of K source-receiver pairs with the i-th source desiring to commu-

nicate only with its corresponding receiver over a common channel (See Fig. 1).

There are K separate encoder devices: one for each source. The i-th encoder

has as its input only the messages from the i-th source and produces a symbol

P~') E X (the common input alphabet). This symbol is transmitted by mod-

ulating and frequency-hopping the desired symbol. The i-th receiver examines

its assigned hopping pattern demodulates the received waveform and produces

the output symbol y(') E Y (the common output alphabet). Decoding is done

independently at the i-th receiver. The i-th source may transmit one of j2nJ

messages and this is then encoded by the i-th encoder, modulated using one of

M signals, and then frequency hopped by the i-th frequency hopper to one of q

frequency slots. The hopping patterns are modelled by independent sequences

equiprobable over the q slots. Thus each component of each of the K input vec-

tors of length n is chosen from the common alphabet {1, 2,..., M}. We assume I

channel symbols are transmitted per hop and this in incorporated into the chan-

nel alphabet size M. We assume that the channel is slotted and thus the number

of transmissions during a slot is constant.

The hopping patterns we consider are modelled by independent sequences,
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one for each sender-receiver pair, equiprobable over the q slots. In the case of

synchronous hopping this makes the channel hits (i.e. the event of more than one

user transmitting over the same frequency slot) independent. However, in the

case of asynchronous hopping patterns, knowledge about past hits by a particular

user affects this user's knowledge about the distribution of the frequency slots

used by the K - 1 other users and so the sequence of hits for any particular

user exhibits memory. Moreover, it turns out that this sequence is not even

Markovian 15). In this paper we demonstrate that this sequence is a function of

an underlying Markov chain which enables us to treat the marginal channels in

the asynchronous case as finite state channels thereby allowing us to compute

the capacity regions of the K-user channel with asynchronous hopping in both

*the case with side information at the receiver (knowledge about whether each

received symbol was hit or not) and the case with no side information at the

receiver. We consider only the noise arising from interference due to other users

and do not include any other background noise in our analysis (although it would

not be difficult to do so).

Case A: Synchronous Hopping-Side Information Available

We first examine the case of synchronous hopping patterns and thus consider

a memoryless channel model (since the symbol hits are independent in this case).

The side information referred to is the awareness of each of the K decoders about

whether or not there was a hit on the corresponding transmission. The symbols

hit are erased. This model is shown in Fig. 2(a). It is easy to see that
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*m 1 L.. . . . . . . . ... .. . . . . . .

CA - P{erasure} = 1 - (1 - (1)

where p 1 /q.

Case B: Synchronous Hopping-No Side Information Available

Here again synchronous hopping is considered but in this case the decoders

do not receive any information about hits on each symbol. Thus the hits remain

undetected and cause a symbol error with probability co (see Fig. 2(b))

eD/(M - 1)=P{error) = (1 - (1 - p)-)eo/(M - 1). (2)

Note that in our model we do not distinguish between the case of two users

colliding or more than two users colliding.

Case C: Asynchronous Hopping-Side Information Available

We now address the situation where the hopping is asynchronous and the

receivers have side information which enables the demodulator and decoder to

determine which symbols have been hit. It is assumed that all symbols that have

been hit are erased. We need to introduce some notation which we do with the aid

of Fig. 3. Each user employs a hopping pattern with frequencies chosen uniformly

from the set {1, ... ,q} and independently of the frequencies chosen by the other

users. We denote the random hopping pattern for user i as {Fj, j = 0, 1, ...}.

(All capital letters will denote random quantities (variables or vectors), and

the corresponding lower-case letters will denote particular realizations of these

random quantities). Observe that 2 channel symbols of user i overlap with the
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U j-th channel symbol of user 1. We define the frequency possibIj interfering with

the transmission by user one in the j-th hop on the right (see Fig. 3) as F,,j

and (F,,,, ... , FJ) as Pi. Now suppose all K users are transmitting packets and

receiver 1 (which desires to receive user l's messages) locks onto user I's hopping

pattern. We assume that user 1 transmits using frequencies F 1,,, F,i, .., F,,,,. We

denote by Hi, j = 1, ... ,n, n binary random variables such that Hi = 1 if the j-th

symbol transmitted by user 1 is hit (i.e. if at least one of the other K - I users

uses the same frequency during the slot corresponding to the jth channel symbol)

L and.H = 0 otherwise. We note that Hi = 1 if and only if Fj E -,1 U F. We

also will need the binary random variables Ht, Hf, j = 1,2,..., n defined as

follows

= I I F1 EF,..1

0 otherwise,

n 1 Fij E Pi -

0 otherwise.

Finally, let Sl be the number of frequency slots out of time slots i, i + 1,...,j

of user 1 that have been hit.

Note that in the model we have just described the set (Fj; i = 1, 2,..., K, j -

0,1,..., n} is an independent identically distributed (i.i.d.) set of random vari-

ables with each Fj being uniformly distributed on the set 1, 2, ..., q and conse-

quently {F,; j - 0,1, ... ,n} is an i.i.d. sequence. Also H, - 1 if and only if

H -1 or HJR- land S'= H + ... + Hi. Now we can state our key lemma.
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Lemma 1: The sequence (Hf, Hff) is a Markov chain.

Proof: See Appendix A.

Note: In the sequence (...H H1, HR1 9 HjL, HjR) HL depends on H'_ but is

independent of HiL and H . The reason why H, is not a Markov chain (for

K > 2) is that knowledge of Hi-1, H,- 2, ... affects our posteriori distribution of

Fk, k 1, j - ,j - 2,... and thereby Hj_I thus making

P(HjjHj-,,Hj-,,...) j4 P(HjjHj-,).

Since Hj - (HP or HR) we recognize that the sequence of symbol hits is really

a function of the underlying stationary Markov chain (Hf, HRt) with four states

viz. (Hf, HJt ) = (0,0), (0, 1),(1,0), or (1, 1). For the sake of brevity we use U 0

to denote the state of the component channel between the i-th sender and the

corresponding receiver during the j-th symbol transmission i.e. U! ') = (Hf, Hf)

for the i-th component channel.

This Markov chain is shown in Fig. 4 and the transition probabilities are

calculated in Appendix B. In the K-user situation each of the K component

channels (between the i-th sender and the corresponding receiver) is thus a finite

state channel. Corresponding to state a=(OO) we have a noiseless channel and

corresponding to states b=(O,1), c=(iO) or d=(1,1) (i.e. a hit on the current

symbol) we have a channel which puts out an erasure symbol.

Case D: Asynchronous Hopping - No Side Information Available

Finally we address the case where the hopping is asynchronous and the de-

coders receive no information about whether a symbol is hit or not. Hits are
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3 thus undetected and cause errors with probability eo. The component channel

in this case may be modelled as an M-ary input M-ary output channel where

the output letters Yj associated with the input Xj are given by Yj = X, e Hj R,

where Hi is the random variable (defined earlier) which is I if the j-th sym-

bol was hit and is 0 otherwise and R. is a random variable independent of the

input and independent of Hj with a distribution on {0, 1, ... , M - 1} such that

P(R, 0) = 1 - co and P(Rj = 1) =eo/(M - 1) for l = 1, 2,..., M - 1. Finally

the addition @ is modulo M addition.

III. Capacity Regions

We observe that in both the synchronous cases our models are a simple case

of a K-user discrete memoryless interference channel, i.e. a channel characterized

by a probability density p(y(l }, ..., y(K)Iz(l), ... ,(K)) with the i-th sender trying

to communicate with the i-th receiver through independent encoders and de-

coders. The capacity region for such channel is not known in general but various

inner and outer bounds have been developed for it 16). Our channels fall into

a simple class known as separated channels for which the marginal probabilities

p(y(WI (l), ... ,z(K)) do not depend on x(') j 0 i, i.e.

p(Y (' ...,z(' ) = p( C W I '}) .

Since the capacity region depends only upon the marginal probabilities p(y( I), ... , z(K))

we see from the converse to the coding theorem for the two user channel that the

maximum rate of reliable transmission for the ith sender-receiver pair cannot be
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more that maxQ, I(Xi; Yj) where Xi and 1' are related by the conditional proba-

bility distribution p(y(')lz(')). This rate can be actually achieved by maximizing

each Q, individually and hence we see that the capacity region is

0 _ , _ C . (3 )

where C, = maxQ I(X; Yj).

In the asynchronous case we similarly see that

pX y('l l) , .. , 
)  .. , z(K), U(I) U(2)'..., u( )) - p(y')Iz ) u W))

where the u}'s are the states of the underlyig Markov chain corresponding to

the i-th sender-receiver pair. Thus again from the converse to the coding theorem

for the single user channel {91 the maximum rate of reliable information trans-

mission cannot be more than the capacity of this finite state two user channel.

Since we can actually achieve this rate by suitable choice of input probabilities

(in fact, by i.i.d. inputs) we see that the capacity region of this communication

system is

0< ,C, I<i<K (4)

where Ci is the capacity of the finite state channel corresponding to the ith

sender-receiver pair.

We now calculate the interference capacities for the models described above.

Case A: (Synchronous Hopping, Side Information Available)

RA C,=(1-CA)log2 M, i=1,...,K (5)
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where q is fixed. The sum of the rates of the individual users, R.m R,,

is maximized by

K-1

- ln(1 -p)

for which the sum rate is

-1 e 1

R eam !5 Coum Ci 109)o 2 M'

For large q the optimum number of users approaches q, i.e.

lim (6)
q-*oo q

and

q-.0 q

*Caae B: (Synchronous Hopping, No Side Information Available)

and

R,,,m Cu,, = K(log2 M - hm(EB)) (9)

where

hmx -z logm(z/(M - 1)) - (1 -zx) ogm(1 -zx). (10)

9



The limiting sum capacity for M -2 and K = Aq with A fixed is

lim -" = A(1 - h(- -(11)
q- q

Optimizing the above over A gives A* = 0.46 and limq-.o q-'Cu. 0.143.

Case C: (Asynchronous Hopping, Side Information Available)

The channel model for the i-th user is a finite state channel with four states

a, b, c and d. Since the Markov chain U, = (Hl, HJ") is ergodic and its state

sequence is independent of the input we see that our channel model belongs to

the class of indecomposable finite-state channels with no intersymbol interference

memory. We calculate the capacity C, of the s" component channel as follows

(see [91).

Ci = lim max min/o(X"; YIUO)
n-oo Q,(,,) ,,O n

where Qn(.) is some n-dimensional joint density on the input and uO is some

initial state of the Markov chain (Ht, HJR). Since the channel is indecomposable

and therefore C is independent of the initial state of the Markov chain and may

be written as

Cq = lir max IQ(X,; YnlIUo)
n--f Q. (x%) n

for any initial state uo. Now

Iq(X"; Y'luo) = H(Y"Iuo) - H(YnIX", UO)

and

10



H(Y"luo) <_ n(hu(1 - p(Yj4) _?Ix(') =))

- with equality achieved by equally inputs where hM(z) is given in (10) and p(y') =

?]z=') = k) -( -)2K - ) and k and i are arbitrary. Denoting p(y,') =?Ixzi' =

k) as Ec, we have

H(Y"lX",uo) = ni-ec logm cc - (1 - c) logm(1 - c)].

Now it is easy to verify that

C4 (1-c)IogM(M - 1).

Ience

S( log M, 1,...,K (12)

is the capacity region of the K-user channel in this case. Asymptotically as the

* number of frequency slots, q, approaches infinity with K = Aq, (A some constant)

we get
(1-(I 1 h)2(K- 1))) -. 1- (I1 e -2 ) -" e -A. (13)

(1 - ( - (1 -(13')

q

Hence, asymptotically C= e- 11 logS M. Optimizing

lin C.,,,/q = lim C,/q = Ae_. log M

over A gives A * 0.5 and lim-.oo , C,/q = 0.5e-1 log 2 M.

11|



Case D: (Asynchronous Hopping, No Side Information Available)

In this case with asynchronous hopping and no side information available we

calculate the capacity C, of the 0"' component channel using, as in Case C,

C, = lim max min IQ(X";Y"IUO),--.oo q.(f) UO n

Again since the channel is indecomposable C, is independent of the initial state

of the Markov chain and may be written as

j = im max IQ(X Y"ItO)
.--0 q,,.(X) n

for any initial state u0. Now

Iq(-X";Y"Ilo) = H(Y-uo)-H(Y'IX",uo)

= H(Y"uo) - H(V'luo)

where V. is a 1 if an error occurred on the n-th symbol and is 0 otherwise. Hence

'C = lira max Iq(m nIU)= log M - H.0 (V) (13)
n-00o q.(.R) n

since H(YJuo) < n log M with equality for equally likely outputs which are

achieved by equally likely inputs and since lii,,o IH(V"Juo) is independent

of uo and is equal to H,.(V), i. e. the entropy of the stationary random (non-

Markovian) process {V} which is a function of the Markov chain, {(Ht, Hf, Rj) }.

Computing the entropy of a function of a Markov process has been con-

sidered by Blackwell [111. While a closed form expression for the capacity is

not available in our case, tight upper and lower bounds are available [121. Let

12



Wy = (Ht, H, R,) be the state of a Markov chain and V the function of the

state given by Vj = 1 if HL = HJ = 1 and R, : 0 and Vj = 0 otherwise. Then

the entropy Ho,(V) of V is bounded as follows.

H(VIV,,_I, V,,:, ..., V1, Wo) !5 H.(V) !5 H(VIV,,_, V.,_..., VI).

Furthermore these bounds converge expontially fast in n to Hoe(V). From [121

it can be seen that the difference between the upper and lower bounds above is

less than Dp" where

D= ND loge

N, mini, r ,

N, and ND are the minimum and maximum number of states colasped repectively

by the function of the Markov chain (in our case N, = M - 1, ND = 3M + 1),

i m~i is the transition probability of the Markov chain W and

O<p=l- mi Nlm.k,, <1.
i,j,k,m,n t,mj~m

* In our model this convergence is especially rapid since for most parameters of

interest the Markovian dependence of W, on Wj-. is very "weak", i.e. the tran-

sition probabilities are almost independent of the previous state. If fact our

numerical results show that the upper and lower bound are essentially identical

for n = 2, even for moderate values of q. (For q = 50 the upper and lower bounds

agree out to more than 8 significant digits). In Appendix C we show a sample

calculation of the entropy used in the upper and lower bounds.

If we let q --. oo with K = \q(.\ constant) we see that the stationary dis-

tribution of the Markov chain {U,} tends to the the conditional distribution

13



P(U, IU,-) with P(U = 00) = 1-e-,P(U =01) = P(U = 10) = e-(l-e - )

and P(U, = 11) = (I - e-). Thus for large q (and K = Xq) the U become

independent. Thus for the case of errors occurring with probability (M - l)/M

given a hit occurs, asymptotically as K and q become large with K/q - A

C... A(log M - h(e-")). (14)

q

Now it is easy to see that the asymptotic normalized capacity of this asynchronous

case is exactly half of the synchronous normalized capacity when optimized over

IV. Numerical Results and Conclusions

In Fig. 5 we show the sum capacity for the case of synchronous hopping with

q = 50 and M = 2 while in Fig. 6 we show the sum capacity for the case of

asynchronous hopping with q = 50 and M = 2. When there is no side information

the errors are assumed to occur with probability 1/2. A careful examination of

the numerical results show that q need not be very large for the asymptotic

results to give a very accurate approximation to the capacity of these channels.

Also the asymptotic value for the optimum number of simultaneous users is a

good approximation for the actual value for finite q. For the asynchronous case

without side information the upper and lower bounds were virtually identical for

the case of q = 50. The tightness of the bounds is due to the fact that for even

reasonable values of q the sequence of errors in the channel is essentially an i.i.d.

process.

14



W

In this paper we have determined the multiple-access capability of frequency-

hopped spread-spectrum for four different models. The interference is either

modeled as causing errors with a given probability when two users hopped to

the same frequency at the same time or as causing erasures. The key result was

identifying the underlying Markov chain (Hf, Hf) or (Hf, HI, R,). Using the

Markovian properties of the underlying process allows one to recursively compute

the error probabilities of block codes for these channels (see 181) and for channels

with combinations of errors and erasures.
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U APPENDIX A

Lemma 1: (Hi,H,") is a Markov chain.

Proof:

P(H H H,H ,Hfr,H_, 'i 2 H,,H,H-,3 -,...)P(Hj_,,H _,, jHj
H]_,H 1_ ...P (Hi",HjR, HJL1, HRj 1 HiL 2, HRj HiL 3,1 H!?3 9,...)

P (HfiL , Hr 1 HiL 2, Hr ..
A

= B (say).

We write A as follows.

A = P(Fi, E -_1,Fj E! P,,Fj_1 Ef.1 F,_.,F,4_, E _ I,_, ... )

where Ef is E if H' = 1 and 0 if Hf = 0 and Ef is E if Hm = and f if H1 =O.

Now

LA P(F, 3 Ef' FP. 1 ,F1 Ef' PiFl Ef Pi-2,F 4 ... E,11 F,-I,... 1F1 3 1- f= -1

P(Flj-l = /I-,)

- P(F1 ,, E F1 1 ,F1 4 E#,P fj- E' Fi3f- Ef' Fi-I ...
f1j1, q

- P(F 1 , E P 1, Fi,0EPit f1 ,, 1 EA. IFi 1)

- I

1Ij-1 *Pfj- ,-, Fi,_, ...) f-2P
q

using the independence of Fli, F1j_ 1 , F1j- 2 , Fi, Fj-, Fj-,2 , ... in the last equality.

Now from the fact the Fij for each user i is a random variable uniformly dis-

tributed over the set {1,... q} and Fj and F., are independent and identically

16



distributed for i #k we see that P(F1 , E PF-,1 ,F, Elf F,, fij,, ER I>~ is

functionally independent of fi,.Thus

P ej F Pi1, Fj 0~ P,fi4 ... E IFi 1 )

~ P(f1 4 1l E K.I Fi-.2, F1,,. 2 E L 2 Fs.)
kiIq

P(P(Fj- EfF,..FiF2,,iE2 ER - k- .

Similarly it can be seen that

B =P(f 1 ,,1l 0 . 1 Pi-.1)P(F1,,j Ef-I. Fi-.2, F1 ,,.. 2 E 2 F,. 3 ... )

and so

A _P(F, 1-d -P-,FjFjf-Ej1

B - P(f14.... Pj -,)
P P(Hi", HRI Hf 1 ).

Clearly P(HL, HR Hj.,,Hj 1) will also be equal to P (HtL, HR Hf- 1). Thus

the Lemma follows.

17



U APPENDIX B

In this appendix we calculate the stationary probability distribution and transi-

* tion probabilities for the Markov chain shown in Fig. 5. We will show how to

calculate the stationary probability for one particular state. The calculations for

the other states are similar and so we just state the result.

P{HjL = 0,H 0} = P{F -,F,,

- ~ l 0 PiIfj0Pll = f1jPFj= fij}

_ ! P(fj 0 j,l F1,, fi)P{fj 0 PF, F, -- fI

q ,.

qq q

P{H = 1,H -J } (1 -=1 -( )K-].
q q

P{HL =1, Hj -0) - (1 _ ),K-[l -(1 - 11
qq

-(j = -,j 1) = 1- (1 - )(K-1)12.

q

The transition probabilities of the Markov chain are easily determined once

q(ik) = P{HiL = i,Hi_1 = k} is determined. Let a = (1 - and

18



(1- i)-. Then

q(O,O0) P P{HtO0, Hj 1=0

q2

1
- [jqcr + q(q -)/

q 1 1

= [q(1 - a) + q(q - 1)(2(1 - a) - ( l}

q q2

I (I - ) + ( - 1)12(l - ) -

q(1,1 = P{ 9 =,H 1 =q(1,0 -q ,0P-f 1, Fifi,)1 2F 1
q

Due to symmetry it is easy to see that q(O, 1) -- q(1,O) and thus

q(O, 1) =q(1,O) = (1 -q(O,O) -q(1, 1))/2

We now turn to the calculation of the transition probabilities for the Markov

chain.

P{H = ,H = mH _ = } -P{H = t1,HP -- m, MR -" ni

P{H=1, H = MIH~j I P{H_, = n}

For the case I = 0, m = 1, n = 0 the numerator in the above expression can be

written as

R1P{1(=l , H= m, H_, = n} = q~ E P{fI ..- ,f,.- F-,}P{ j E P}.
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SSince the last term does not depend on fij this term can be taken out of the

summation we have

Oft P{H =O,H j=1,H H_,=o} = P{H =O,Hj',1 =1jP{H3 =o}.

It is easy to see that these operations also hold for any value I, m, n so we have

in general that

P{H =-,Hm'=M,Hf,=n =} =- HL= ,Hj _,=mjP{HjR=,,.

L Thus

p(L,mln) P{H = -I,H 7 = mH_, = n}

P{H = 1,Hj = n}P{H =m}S.eP{.H/,_ n)}
q(t, n)p(m)

p(n)

where p(k) = P{Hf = k}. Letting a = (0,0), b (0,1), = (1,0) and d = (1,1)

and pj = P(Hj,Hj) - (H_,,Hf) - 1), the transition probabilities, are

given as

p.,o = p.,o = p(O,O1O) = la + (I -
9 91 1 (1-a,

p,.o = pb,. = p(O,1IO) = [-a + (1 - i)o] a).
q q

1
P. =P.,. = p(1,0O) = (1 - -)(a -

q

Pd,. = Pd,, = p(1,110) = (1 - i)(a- a
q a

p., = P.,d = p(0,01) = ( 1-- H )

20
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p,,. = p(o,1I1) = (1 -)(c,-/3),

p, = p,,, = p(1,111) = q a) + (1- 1 - ) -(1-q q
pdb p,. =p~, 1 =!( a +( 1)[( t

q q
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m APPENDIX C

In this Appendix we give a few sample calculations for the joint distributions

- of the random variable Vj, a function of the Markov chain W. = (Hf, H , R,).

That this is a Markov chain is an easy consequence of the fact that (Hf, HJ) is

a Markov chain and is independent of {R,) which is an i.i.d. process.

First let U, = (Hf,H t ) with a = (0,0), b = (0,1), c = (1,0), and d = (1, 1).

The upper bound to the entropy of V is determined from the joint distribution

of V. We will do a sample calculation of the joint distribution for one particluar

argument for n = 2 and n = 3 and list the results for other arguments. The

distributions of V will be calculated in terms of the distributions of the Markov

chain U, and the joint distribution of the process {R }. Since R, is an i.i.d.

process the joint distribution is easy to calculate. The joint distribution of U is

easily calculated since it is a Markov chain.

* The first order distribution of Vi is calculated as follows.

P(Vo=O).-=P(Ho=OorRo=O) = P(Ho=O)+P(Jo=1)P(Ro=O)

= P(o = a) + P(Uo E B)P(Ro = 0),

P(Vo = i) P(Ho = 1,P = P(Ho = I)P(R=D1)

- P(Uo E B)P(Ro1).
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The second order distribution is calculated as follows

P(V1 = ,Vo= 0) = P(H1 = 0orR = ,H0 =O0or = 0)

= P(HI =0,HO =0 or RO=0)

P( = 1, R, = 0, Ho = 0 or RD= 0)

= P(H1 =O0,HO = 0) + P(H1 = 0,110 = I,Io 0)

P( = I,,= 0,Ho = 0) + P(HI = l,RI = 0,HO 1,R= 0)

= P(H1 =0, Ho =0) +P(H1 = 0, Ho=1)P(R = 0)

P( = 1, HO = O)P(R1 =0) + P(H1 = 1HO= 1)P(R1 =0, RO = 0)

= P(U1 = a, U0 = a) + P(U1  a, Uo E B)P(Ro = 0)

+P(U1 E B, Uo = a)P(R1  0) + P(U1 E B, Uo E B)P(R1 = 0, R = 0).

Later we determine the joint distribution of (U1, Uo) that will allow us to complete

the calculation. The remaining components of the distribution are calculated in

a similar fashion and so we just state the results.

P(V 1=O,Vo=l) = P(Hi=OorRI=O,Ho=1,Ro=l)

= P(U1 =a,U0 E B)P(o= 1) +P(U 1 E B,UoE B)P(R1 =O)P(Rv = )

P(Vi=1,Vo=0) = P(Hi=1,Ri=1,HO=OorRO=0)

= P(U E B,U = a)P(R = 1) +P(U E B,U E B)P(R1 = )P(Ro=0)

P(V1 = 1,1v0= ) = 1- P(V1 = ,V = 0)- P(VI = 0,1v= 1)- P(V = 0,V0 = 0).
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For n =3 the joint distribution is calculated using the same method as for n =2.

We obtain

- P(V,=0,V1 =0,Vo=0) = P(H2=OorR2 =O,H,=0or R1 =,HO=OorRO=0)

= P(U 2 =a,U1 =a,Uo=a)

P(:= a, UI E B, U0 = a R = 0)

P(2= a, U, = a, Uo E B)P(R. = 0)

P( = a, U1 E B, Uo E B)P(RI 0,R~ 0)

+P(U2 E B, U, = a, Uo a)P(R2 =0)

+P(U2 E B, U1 E B, Uo =a)P(R 0, ORI = 0)

+P(U2 E B, U, = a, Uo E B)P(R2 0, Ro = 0)

+P(U2 E B, U, E B, Uo E B)P(R2 0, R, = 0, Ro 0),

R
P(V2 = ,V1 =0,V = 0) = P(H, = 1,1R=1,111=0or R1 = 0,1=0 or = 0)

= P(U E B,U = a, Uo =a)P(Rg=1

+P(U2 E B, U, E B, Uo = a)P(R, = 1, R, = 0)

+P(U: E B, U, = a, Uo E B)P(R2 = 1, Ro = 0)

+P(U2 E B, U, E B, Uo E B)P(R2 1, R, =O0, Ro = 0),

P(V2 = 0,1V1= ,V = 0) =P(H 2 =Oor R2 =0,11= 1,R1 = ,HO 0 or = 0)
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= P(U2 =a,UE B, Uo =a)P(Ri=1

P( = a, U, E B, Uo E B)P(R1 = 1, Ro = 0)

+P(U2 E B, Ul E B, Uo = a)(2= 0, R, = 1)

+P(U2 E B, U1 E B, Uo E B)P(R2 = 0, R, = 1, 0o),

P(V 2 =1,V1 =1,Vo=o) = P(H 2 =1,R2 =1,Hi=1,RI=1,Ho=OorR,=0)

= P(U2 EB,U E B,U0 =a)P(R2 =1,R1 = )

+P(U2 E B, U1 E B, Uo E B)P(R2 = 1, RI = 1RD= 0),

P(V2 =0,14 = ,Vo= 1) = P(H2 = 0or R,=0,H11= 0or R1 =0,110=lR= 1)

= P(U = a, Ul= a, Uo EB)P(Ro =1)

P(2= a, U, E B, Uo E B)P(R1 = O,R 1)

+P(U2 E B, U1 = a, U0 E B)P(RI = 0,)? = 1)

P(2E B, U1 E B, U0 E B)P(R2 = 0, R, 0, OR = 1),

P(V 2 =i,V1 =O,V=l) = P(H 2 =1,R2 =1,Hi=OorRi=0,Ho=l,Ro=1)

= P(U 2 EB,Ui=a,UoEB)P(R2=1,Ro=l)

+P(U2 E B, U1 E B, U0 E B)P(R2 =1, R, 0, Ro 1),
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N P(V2 =0,V 1=1,V=i) = P(H 2 =OorR=O,HI=,Ri,H0 1,Ro=1)

= P(U 2 =a,UIEB,UoEB)P(Ri=1,Ro=O)

- +P(U2 E B, U1 E B, Uo E B)P(R2 =0, R, = =1)

P(V 2 =1,V 1 1,Vo=1) = P(H 2 =1,R2 =1,H =1,R =1,HO =I,R0 =1)

- P(U2 E B, U1 E B, UE B)P(R3 = 1, Ri = 1, o=O0).

L Now since Uj is a Markov chain 110]

P(U2 =a,U1 =a,Uo=a) = P(U2 = aIUi = a)P(Ui = aUo = a)P(Uo = a)

P(U2 =a,U = a,UoE B) = P(U2 = aUi = a)P(Ui = aIUoE B)P(U0 E B)

P(U2 =a,U E B,Uo=a) = E P(U 2 = ajU1 =-y)P(U1 = -yUo = a)P(Uo = a)

P(U2 =a,U E B,UoEB) = P(U2 = ajUz = y)P(Ui ='7 1Uo E B)P(Uo E B)
'TED

*P(U 2 EB,U1 =a,Uo=a) = P(U2 E BI = a)P(Ui = alU= a)P(Uo =a)

P(U2 EB,U1 = ,Uo EB) = P(U2 E BIi = a)P(Ui = aIUo E B)P(Uo E B)

P(U 2 EB,U1 E B,U=a) = E P(U E BI = 7)P(Uj = 7IUo =a)P(Uo =a)

P(U E B,U E B,U E B) = F, P(U2 E BIU1 = -y)P(U1 = -ylUo E B)P(Uo E B).

The transition probabilities above are calculated in terms of the transition prob-

abilities of the Markov chain U, which are determined in Appendix B.

P(U = l~j, =a)= p,.
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P(U, = aJUi-E B) = P(U = a,Ui-.1 E B)/P(U E B)

S[P(U, = a,U_, = b) + P(U, = a,Ui_, = c) + P(U, = a,Up_, = d)]
P(Ui-i = b) + P(Ui-I = c) + P(Uj_, = d)

P.,bPb + PPc + P.,aPd
Pb -Pc + P I

P(Ui E BlUi = a) = P(Ui = blUit = a) + P(Uj = ci-_ = a) + P(U = dU-I = a)

= P1,. + Pc,. + Pd,.

for any integer j.

Now consider the lower bound to the entropy, namely,

H(V,,IV. - 1, .... V,1, wo).

Since R0 is independent of Vi for all j it is easy to see that this entropy is the

same as

H(V,IV,-=, .... V I Uo).

To calculate this entropy we need to know the joint distribution of (V., ..., V1, Uo).

The bound we use will be with n = 2. The second order distribution is given as

follows.

P(V =O,VI =O,Uo = i) = P(H=0 or R2 = 0,1HI = 0 or R = O,Uo = i)

= P(H 2 =O,Hl=O,Uo=i)

+P(HI = O, HI = 1, R, = O, Uo = i)

+P(H2 = 1,RI = O,HI =0,Uo =

+P(H= =1,R2 = 0,HI = 1,RI = 0,Uo = i)

27



m = P(Hg=0,H1 =0,Uo=i)

+P(2 =0,1H1 = 1, U0 = i)P(Ri = 0)

+P(2 =1, H, = 0, Uo = i)P(R2 = 0)

+P(2 =1, H, = 1, U0 = i) P(R2 = 0,? =, 0)

=P(U 2 = ,U= a, Uo =i)

+P(3 =a, Ul E B, Uo = 4)P(Ri = 0)

+P(U2 E B, U1 = a, U0 = i)P(Ru = 0)

+P(U2 E B, U1 E B, U0 = i)P(Rx = 0, R, 0),

* P(V,=1,V1 =O,Uo=i) = P(H 2 =,R 2=l,HI=Oori&=0,Uo=i)

= P(UEB,Ui=a,Uo=i)P(R:1=1)

+P(U2 E B, U1 E B, Uo = i)P(R: = 1, R1 = 0),

P(V,=0,Vi=Il,Uo=i) = P(H2=OorRI=0,=1,RI=1,Uo=i)

= P(U =a, UlE B, UO= i)P(RI = 1)

P(2E B, U, E B, Uo = i)P(R2 = 0, R1 ),

P(V2 = 1,/1 ,U = i) = P(HI ,R 2 = ,HI = 1,=,U0 = )

= P(U E B,UiE B, Uo =i)P(R:= 1, R,= 1).
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hopped spread-spectrum communications system

(a) with side information, (b) without
side information.
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