
Technical Report

TIC tILE. CO CMUSE.-87-TR-40u~I.. ESD-TR-87-203
.. .- Carregie-Mellon Unver:.'ty

Software Engineering Institute

Ada Performance Benchmarks on
the Motorola MC68020:
Summary and Results
Version 1.0

Patrick Donohoe

0 /December 1987

DTIC
ELECTE

• /, I OCT 2 4 1988 U

* 4Nd

-Mwj 0" 0

• • 0

Technical Report
CMU/SEI-87-TR-40

ESD.TR.87-203
December 1987

Ada Performance Benchmarks on the
Motorola MC68020:

Summary and Results
Version 1.0

Patrick Donohoe
Ada Embedded Systems Testbed Project

Approved for public release.
Distribution unlimited.

Software Engineering Institute
Carnegie Mellon University

Pittsburgh, Pennsylvania 15213

I
I
I

This technical report was prepared for the

SEI Joint Program Office
ESD/XRS
Hanscom AFB, MA 01731

The ideas and findings in this report should not be construed as an official
DoD position. It Is published in the interest of scientific and technical

information exchange.

Review and Approval

This report has been reviewed and it approved for publication.

FOR THE COMMANDER

Karl H. Shingler

SEI Joint Program Office

This work Is sponsored by the U.S. Department of Defense.

This work Is sponsored by the U.S. Department of Defense.

Copyright 0 1987 by the Softwar Engineering Institute.

Thi document is available through to Defense Technical Information Cntr. DTIC provides access to and transfer of
odentf and technical information for oD lpersonnel, DoD contraomrs and potential contractors, and other U.S.
Govemment agency personnel and &eir conactors. To obtain a copy, pleasp contact OTIC direct: Defense Technical
Information Cenler, Atn: FDRA, Cameron Station, Alexandria, VA 22304-6145.
Coplee of tha document are also available through the National Technical Information Services. For information on
ording, plea contact NTIS direcly: National Technical Information Services, U.S. Department of Commerce,
SprinflK VA 22161.
Ads is a registered trademark of the U.S. Department of Dfense, Ada Joint Program Office. Ada-Plus is a registered
trademark of Systems Designers, PLC. DEC, iAcroVAX, VAX, VAXELN, and VMS are trademarks of Digital Equipment
Corporation. VMEmodule is a trademark of Motorola, Inc. TeleSoft and TeieGen2 am trademarks of TeleSoft VERDIX
and VAOS are trademarks of VERDIX Corporation.

Table of Contents
1. Summary 1
2. Discussion 2

2.1. The Performance Issues Working Group (PIWG) Ada Benchmarks 2
2.2. The University of Michigan Ada Benchmarks 2
2.3. Testbed Hardware and Software 2
2.4. Running the Benchmarks 3
2.5. Problems Encountered and Lessons Learned 3

2.5.1. The Dual Loop Problem 3
2.5.2. Accuracy of Results 4
2.5.3. The SD Cross-Compiler 5
2.5.4. Timing with the Logic Analyzer 5
2.5.5. Miscellaneous 5

References 7

Appendix A. PrWG Benchmark Results, SD Cross-Compiler 9
A.0.1. Composite Benchmarks 10

A.0.1.1. The Dhrystone Benchmark 10
A.0.1.2. The Whetstone Benchmark 10
A.0.1.3. The Hennessy Benchmark 10

A.0.2. Task Creation 11
A.0.3. Dynamic Storage Allocation 12
A.0.4. Exception Handling 13
A.0.5. Coding Style 14
A.0.6. Loop Overhead 14
A.0.7. Procedure Calls 15

A.0.8. Task Rendezvous 17

Appendix B. Selected U. Michigan Results, SD Cross-Compiler 19
B.0.1. Clock Calibration and Overhead 19
B.0.2. Delay Statement Tests 19
B.O.3. Task Rendezvous 20
B.0.4. Task Creation 20
B.O.5. Exception Handling 21
B.0.6. Dynamic Storage Allocation 21

Appendix C. PIWG Benchmark Results, TeleSoft Cross-Compiler 23
C.0.1. Composite Benchmarks 24

C.0.1.1. The Dhrystone Benchmark 24
C.O.1.2. The Whetstone Benchmark 24
C.0.1.3. The Hennessy Benchmark 24

C.0.2. Task Creation 25
C.O.3. Dynamic Storage Allocation 25
C.0.4. Exception Handling 26
C.0.5. Coding Style 27
C.0.6. Loop Overhead 27

CMU/SEI-87-TR-40

C.0.7. Procedure Calls 28
C.O.8. Task Rendezvous 30

Appendix D. Selected U. Michigan Results, TeleSoft Cross-Compiler 33
D.0.1. Clock Calibration and Overhead 33
D.0.2. Delay Statement Tests 33
D.0.3. Task Rendezvous 34
D.O.4. Task Creation 34
D.0.5. Exception Handling 35
D.O.6. Time and Duration Math 36
D.0.7. Dynamic Storage Allocation 37
D.0.8. Memory Management 38

Appendix E. PIWG Benchmark Results, VERDIX Cross-compiler 39
E.0.1. Composite Benchmarks 40

E.0,1.1. The Dhrystone Benchmark 40
E.0.1.2. The Whetstone Benchmark 40
E.0.1.3. The Hennessy Benchmark 40

E.O.2. Task Creation 41
E.0.3. Dynamic Storage Allocation 41
E.0.4. Exception Handling 42
E.O.5. Coding Style 43
E.0.6. Loop Overhead 43
E.g.7. Procedure Calls 44
E.0.8. Task Rendezvous 46

Appendix F. Selected U. Michigan Results, VERDIX Cross-compiler 49
F.0. 1. Clock Calibration and Overhead 49
F.0.2. Task Rendezvous 50
F.0.3. Task Creation 50
F.0.4. Exception Handling 51
F.0.5. Dynamic Storage Allocation 52
F.O.6. Memory Management 53

Appendix G. A Note on Optimization 55

Acoession For

NTIS GRA&I
DTIC TAB 5]
Unannouneed -
Justificatio

By
Distributiod/

Availability Codes

K Avail atid/ar
iDist| Special

CMU/SEI-87-TR-40

.

ii

Ada Pe ormance Benchmarks on the Motorola
MC6802:

I.

Summa and Results
Abstract: This report documents the results obtained from running the ACM SIGAda
Performance Issues Working Group (PIWG) and the University of Michigan Ada perfor-
mance benchmarks on a Motorola MC68020 microprocessor (MVME133 VMEmodule
Monoboard Microcomputer), using the Systems Designers Ada-Plus, the TeleSoft
TeleGen2, and the VERDIX VAX/VMS hosted cr- s-compilers. A brief description of
the benchmarks and the test environment is fOIlowbo by a discussion of some problems
encountered and lessons learned. Wherever possible, the output of each benchmark
program is also included-

1. Summary
The primary purpose of the Ada Embedded Systems Testbed (AEST) Project at the Software
Engineering Institute (SEI) Is to develop a solid in-house support base of hardware, software, and
personnel to Investigate a wide variety of issues related to software development for real-time
embedded systems. Two of the most crucial issues to be investigated are the extent and quality
of the facilities provided by Ada runtime support environments. The SEI support base will make it
possible to assess the readiness of the Ada language and Ada tools to develop embedded sys-
tems.

The benchmarking/instrumentation subgroup was formed to:

Collect and run available Ada benchmark programs from a variety of sources on a
variety of targets;

- Identify gaps in the coverage and fill them with new test programs)
3,v Review the measurement techniques used and provide new ones if necessary,)
) Verify software timings by inspection and with specialized test instruments. t

This report documents the results of running two suites of Ada performance benchmarks on a
Motorola MC68020 microprocessor using the Systems Designers Ada-Plus, the TeleSoft
TeleGen2, and the VERDIX VAX/VMS hosted MC68020 cross-compilers. The benchmarks were
the ACM SIGAda Performance Issues Working Group (PIWG) Ada benchmarks (excluding the
compilation tests) and a subset of the University of Michigan Ada benchmarks. A description of
the benchmarks, and the reasons for choosing them, are given in [61. A summary description of
each suite and the execution environment is given below. The problems encountered and the
lessons learned from running the benchmarks are summarized. The output of each benchmark
program is listed In the appendices, wherever possible, but the caveats discussed in the body of
the report must be borne in mind when examining these results.

CMU/SEI47-TR.40

2. Discussion

2.1. The Performance Issues Working Group (PIWG) Ada Benchmarks
The PIWG benchmarks comprise many different Ada performance tests that were either collected
or developed by PIWG under the auspices of the ACM Special Interest Group on Ada (SIGAda).
In addition to language feature tests similar to the Michigan benchmarks, the PIWG suite contains
composite synthetic benchmarks such as Whetstone [51, [9]; Dhrystone [15]; and a number of
tests to measure speed of compilation. PIWG distributes tapes of the benchmarks to interested
parties and collects and publishes the results in a newsletter.1 Workshops and meetings are held
during the year to discuss new benchmarks and suggestions for improvements to existing
benchmarks.

2.2. The University of Michigan Ada Benchmarks
The University of Michigan benchmarks concentrate on techniques for measuring the perfor-
mance of individual features of the Ada programming language. The development of the real-
time performance measurement techniques and the interpretation of the benchmark results are
based on the Ada notion of time. An article by the Michigan team [41 begins by reviewing the Ada
concept of time and the measurement techniques used in the benchmarks. The specific features
measured are then discussed, followed by a summary of the results obtained and an appraisal of
those results. A follow-up letter about the Michigan benchmarks appears in [3].

2.3. Testbed Hardware and Software
The hardware used for benchmarking was DEC MicroVAX II host, running MicroVMS 4.4, linked
to two 12.5 MHz Motorola MVME133 single board computers (111, [101 enclosed in a VMEbus
chassis. The setup can be summarized as follows:

Host: DEC MicroVAX II, running MicroVMS 4.4

Compilers: Systems Designers (SD) Ada-Plus VAX/VMS MC68020, release 2B.01

TeleSoft TeleGen2 for VAXIVMS embedded MC68OX0 targets, release 3.13
VERDIX Ada Development System (VADS), release 5.41(h)

Targets: 2 Motorola MVME133 VMEmodule 32-Bit Monoboard Microcomputers, each
having a 12.5 MHz MC68020 microprocessor (one wait state), a 12.5
MC68881 floating-point co-processor, and 1 megabyte of RAM

Each MVME133 board had a debug serial port and two additional serial I/O ports that were

connected to their counterparts on the host. The SD[12], TeleGen2(131, and VERDIX
[14] cross-compiation systems contained tools for compiling, linking, downloading, and execut-

ing target programs. Each also had a cross-debugger.

To verify benchmark timing results, one of the MVME133 boards was connected to a Gould K1 15
logic analyzer [8]. Although designed primarily for testing hardware, the analyzer can be con-

1The benchmark came fkom te PIWG distibution tape known as TAPEA..3186. The name, address. and
teleon, number of the current chairperson of the PIWO can be found in Ada Letters, a bimonthly publication of SIGAda,
the ACM Special Interest Group on Ada.

2 CMU/SEI-87-TR.40

I.

figured for use with an MC68020 microprocessor so that data, address, and control-line transi-
tions can be captured. The device also provides a symbolic disassembler so that assembly
language instructions rather than, say, data addresses, can be monitored. This latter feature,
however, proved to be impractical for timing purposes because the disassembler interface
removed timing information during data capture. The analyzer is a far from ideal tool for software
debugging, but it has been used successfully for benchmark timing, albeit to a limited extent.

2.4. Running the Benchmarks
Command files to compile, link, download, and execute the benchmarks were written. For each
cross-compiler, the link phase included commands to define the memory layout, e.g., program
placement and stack and heap sizes. Tests were run singly, rather than in groups, because of
problems noted below. The Systems Designers cross-compiler was the first one used in the
testing, thenTeleGen2, and finally VERDIX.

Based on the earlier VAXELN benchmarking experience [7], it was decided that only selected
PIWG and Michigan benchmarks would be run. This decision was reinforced by the discovery of
the SD compiler's TARGETIO package problem, described below. In practice, running selected
tests quickly became an attempt to see how many benchmarks would run at all. Eventually, most
of the PIWG tests and some of the Michigan tests were run. Fewer problems were encountered
with the TeeSoft TeleGen2 compiler.

The SD cross-compiler provided optimization by default, although details are not given in the
documentation. TeleGen2 and VERDIX do not optimize by default; optimization must be explicitly
requested. The TeleGen2 and VERDIX times listed in this report are for un-optimized runs. The
results for each cross-compiler are given in the appendices. A brief comparison of optimized
versus un-optimized runs of selected PIWG tests compiled under TeleGen2 is also given in an
appendix. All the benchmarks contained code to prevent the language feature of interest from
being optimized away. Runtime checks were not suppressed, and, apart from the modifications
to the output routines discussed below, the benchmarks' source code was not modified in any
way. There was no performance difference evident between the two MVME133 boards.

2.5. Problems Encountered and Lessons Learned

2.5.1. The Dual Loop Problem
One major problem with benchmarklng had already been encountered during the MicroVAX II
runs of the University of Michigan benchmarks: negative time values were produced for some of
the tests. An Investigation revealed that the VAXELN paging mechanism lengthened the execu-
tion times of loops that spanned a page boundary. (Physical memory on the VAXELN target is
divided into 512-byte pages; however, no swapping to disk took place since disk support was not
Included. The benchmarks were entirely resident in memory.) Thus the control loop of some
benchmarks would actually take longer to run than the test loop, and the execution time of the
language feature being measured (expressed as the difference of the test and control times)
would sometimes be negative. A similar Investigation of the MC68020 target, using the SD
cross-compiler, revealed that the timing problem was present there also. The reason, in this
case, is that the MC68020 memory accesses are by word, whereas the SD compiler placed the

CMU/SEI-87-TR-40 3

loop statements without regard to word boundaries. Thus, depending on placement in memory,
loops would sometimes require fewer memory accesses to execute. A more detailed discussion
of the so-called "dual loop problem" may be found in [1]. A complete report on the problems
encountered during the AEST benchmarking effort and a discussion of other possible bench-
marking pitfalls Is contained in [2].

2.5.2. Accuracy of Results
Another interesting issue Is the accuracy of times reported by the PIWG benchmarks. One of the
PIWG benchmark support packages, A000032.ADA, contains the body of the ITERATION pack-
age. This package Is called by a benchmark program to calculate, among other things, the
minimum duration for the test loop of a benchmark run. The minimum duration is computed to be
the larger of 1 second, 100 times System.Tick, and 100 times Standard.Duration'Small. The
idea appears to be (a) to run the benchmark for enough iterations to overcome the problem of the
relatively coarse resolution of the Calendar.Clock function, and (b) to minimize the relative error
of the timing measurement. There are two observations to be made about this:

" The times reported by the benchmark programs are printed with an accuracy of
one-tenth of a microsecond; however, merely running the test for a specific minimum
duration does not guarantee this degree of accuracy. If the clock resolution is 10
milliseconds, for example, and the desired accuracy is to within one microsecond,
then the test should be run for 10,000 iterations. For Ada language features that
execute in tens of microseconds, running for a specific duration may ensure enough
iterations for accuracy to within one microsecond; this Is not so for language features
that take longer.

" Since Systemn.Tlick is used in the minimum duration calculation, the implicit assump-
tion seems to be that System.Tick Is equivalent to one tick of Calendar.Clock. This
is true for SD but not for TeleGen2 or VERDIX. For the TeleGen2 MC68020 cross-
compiler, System.Tick is 10 milliseconds, but the resolution of Calendar.Clock, as
determined by the University of Michigan calibration test, is 100 milliseconds. Thus
to obtain results accurate to one microsecond when using the TeIeGen2
Calendar.Clock, tests should iterate 100,000 times. For VERDIX, System.Tick is
10 milliseconds and the resolution of Calendar.Clock is 61 microseconds, so the
accuracy of timing measurements is actually much better than plus or minus one
microsecond.

In general, the accuracy of the PIWG and Michigan benchmarks is to within one tick of
Calendar.Clock divided by the number of iterations of the benchmark (see the "Basic Measure-
ment Accuracy" section of the U. Michigan report). The University of Michigan benchmarks typi-
cally run for 10,000 iterations, and so are accurate to better than 1 microsecond for SD Ada-Plus
(7.8 millisecond Calondar.Clock resolution). For TeIeGen2, however, they are accurate to the
nearest 10 microseconds. Also, the task creation tests and some of the dynamic storage alloca-
tion test run for fewer iterations, probably because of the amount of storage they use up, so the
accuracy Is further reduced. The reduction In accuracy Is noted in the relevant sections in the
TeieGen2 results appendix. For the PIWG tests, which run for varying iteration counts, a table of
iteration counts and resultant accuracy is provided In both the SD and TeleGen2 results appen-
dices.

4 CMU/SEI-87-TR-40

/''. . • . ..

2.5.3. The SD Cross-Compiler
Other problems encountered during this benchmarking effort related to the varying degrees of
difficulty experienced in getting the cross-compilers installed and running, and the benchmarks
running on the MC68020 targets. The SD cross-compiler had its own special problem: programs
compiled using the SD cross-compiler had to use a TARGETIO package, instead of TEXT_10,
to produce output from the target machine. This meant that all benchmark output statements had
to be converted to use the routines provided by TARGET_10. An additional problem was then
discovered: the routine to print floating-point numbers never produced any output. Examination
of the source of TARGETJO (which was fortunately provided with the SD product) revealed that
the routine had a null body. Rather than write a floating-point routine, a quick solution was to
scale up the timing results in microseconds and use the integer output routine. This meant that
times would be to the nearest microsecond instead of to the theoretically-achievable nearest
tenth of a microsecond. For the PIWG benchmarks, resolving the shortcomings of TARGET_1O

was only a matter of changing a single general-purpose output program. For the Michigan
benchmarks, however, it would have meant changing each of the output routines associated with
the individual tests. For this reason, not all of the Michigan benchmarks were converted for the
SD cross-compiler.

2.5.4. Timing with the Logic Analyzer
Problems arose when attempts were made to verify some of the timing results using the logic
analyzer. These included: identifying the beginning and end of the assembly code generated for
the language feature being measured; computing the actual start and end addresses of this code
by examining load maps, adding appropriate offsets, and allowing for the MC68020 word-
bounding; and choosing the correct "window" to capture data. Because of these problems, only
the Michigan and PIWG task rendezvous times for the SD cross-compiler have been verified
using the logic analyzer; these times are within 5 percent of the times reported by the benchmark
runs. More use of the logic analyzer will be made in the next phase of the AEST Project when a
PC with a data storage and analysis package will be connected to the analyzer.

2.5.5. Miscellaneous
For all three cross-compilers, most of the tests that failed did so with a STORAGEERROR.
Changing the stack and heap sizes and re-linking the programs resolved some of these prob-
lems, but not all. This proved to be one of the more tedious aspects of the benchmarking effort.
Other time-consuming problems were a serial port data overrun problem and a VADS download-
ing problem. The host and target serial ports could not operate all of the time at 9600 baud;
intermittent data overrun messages would be produced during or after benchmarking runs. They
were eventually made to work at 1200 baud. The VADS downloading problem - intermittent
"TDM is not responding" error messages when attempting to download tests using the debugger -
turned out to be a problem with VADS software. It will be corrected in the next release (version
5.5). VADS also suffered from the fact that it didn't reset the timer (to disable interrupts) on exit
from a benchmark program, so that the next benchmark would always fail with a "stopped in
nit_clock" error message. The workaround was to reset the timer manually before exiting the

debugger. Putting this reset command in a debugger command file, after the download and run
commands, alleviated some of the tedium of running the VADS tests. For some unknown reason,
this also greatly reduced the intermittent TDM errors, allowing (finally) the VADS-compiled
benchmarks to be run.

CMU/SEI-87.TR-40 5

Comparison of the results from the most closely equivalent PIWG and Michigan benchmarks has
been hindered by the accuracy problem and the dual loop problem. Even when the correction
factors are applied to take care of the former, the precise effects of the dual loop problem on each
benchmark program are not known. Thus, the disparity between the times reported for the

Michigan task rendezvous test, R_REND, and the PIWG T000001 test has yet to be resolved.
For the earlier VAXELN testing, T000001 took about 5 percent longer than RREND to execute.
For the MC68020 testing, RREND took about 5 percent longer than T000001 when compiled
with TeleGen2, but only about 1 percent longer when compiled with SD Ada-Plus. (For VERDIX,

the numbers were equal, to the nearest microsecond.) It may be possible to resolve this issue by
employing a timing scheme that uses the fast timers on the MVME133 board and eliminates the
need for dual looping; a benchmark test harness that does this is currently being developed by
the AEST Project.

A question prompted by the preceding discussion is: What exactly is being measured in a task
rendezvous? The timing calls to Calendar.Clock are in the calling task, so they bracket a "round

trip" rendezvous: the clock is read in Task A, Task A calls Task B, they proceed in parallel for the
duration of the accept statement, and the control eventually returns to Task A where the second
clock reading is taken. Depending on whether or not the called task is waiting at an accept
statement, the "round trip" may involve up to three context switches. Are these context switches
part of the rendezvous or not? If a more sophisticated timing scheme can measure the duration
of the accept statement, is it measuring the "real" rendezvous, and can the result be compared
with the PIWG or Michigan measurements? It is clear that more work needs to be done to
resolve such Issues.

As was the case with the VAXELN benchmarking effort, the major result of the MC68020 effort is
not just a list of numbers to be taken at face value; rather, it is an appreciation of the problems
and pitfalls facing the would-be benchmarker. It has also shown that it is difficult to generalize
about benchmarking results; results must be interpreted within the context of the specific
hardware and software environment.

6 CMU/SEI-87-TR-40

References
[11 Altman, N. A., and Weiderman, N. H.

Timing Variation in Dual Loop Benchmarks.
Technical Report SEI-87-TR-21, Software Engineering Institute, September, 1987.

[21 Altman, N. A.
Factors Causing Unexpected Variations in Ada Benchmarks.
Technical Report SEI-87-TR-22, Software Engineering Institute, September, 1987.

[3] Broido, Michael D.
Response to Clapp et al.: Toward Real-Time Performance Benchmarks for Ada.
Communications of the ACM 30(2) :169-171, February, 1987.

[4] Clapp, Russell M., et al.
Toward Real-Time Performance Benchmarks for Ada.
Communications of the ACM 29(8):760-778, August, 1986.

[51 Curnow, H. J., and Wichmann, B. A.
A Synthetic Benchmark.
The Computer Journal 19(1):43-49, February, 1976.

[61 Donohoe, P.
A Survey of Real-Time Performance Benchmarks for the Ada Programming Language.
Technical Report SEI-87-TR-28, Software Engineering Institute, October, 1987.

[7] Donohoe,P.
Ada Performance Benchmarks on the MicroVAX I: Summary and Results.
Technical Report SEI-87-TR-27, Software Engineering Institute, September, 1987.

[81 Gould K1 15 Logic Analyzer User's Manual.
Gould, Inc., 1985.

[91 Harbaugh, S. and Forakis, J.
Timing Studies using a Synthetic Whetstone Benchmark.
Ada Letters 4(2):23-34, 1984.

[101 MC68020 32-Bit Microprocessor User's Manual.
Second edition, Motorola Inc., 1985.

[11] MVME133 VMEmodule 32-Bit Monoboard Microcomputer User's Manual.
First edition, Motorca Inc., 1986.

[12] Ada-Plus VAX/VMS MC68020, Volume 1 & 2.
Systems Designers PLC, 1987.

[131 The TeleSoft Second Generation Ada Development System for VAX/VMS to Embedded
MC680XO Targets.
TeleSoft, 1987.

1141 VAX/VMS-Motorola 68000 Family Processors, Version 5.40,
Verdix Corporation, 1987.

[151 Weicker, Reinhold P.
Dhrystone: A Synthetic Systems Programming Benchmark.
Communications of the ACM 27(10): 1013-1030, October, 1984.

CMU/SEI-87-TR-40 7

S 4

8 CMU/SEI-87-TR-40

Appendix A: PIWG Benchmark Results, SD
Cross-Compiler
These results are for benchmarks that were compiled with optimization enabled (the default for
SD Ada-Plus). The SD documentation does not specify what kinds of optimization are performed.
The PIWG G tests (Text_lO tests) and the Z tests (compilation tests) were not run.

Most of the PIWG tests that failed did so with a STORAGEERROR. The SD cross-compiler
reported such exceptions as "unhandled exception #4." (#1 is CONSTRAINTERROR, #2 is
NUMERIC_ERROR, #3 is PROGRAMERROR, and #5 is TASKINGLERROR.) It is believed that
the solution to the STORAGEERROR problem lies in simply finding the right settings for the
storage parameters (e.g., stack size and heap size) of the target environment definition file.

The output of each PIWG benchmark program contains a terse description of the feature being
measured. For any further details, the user must inspect the benchmark code. The reported
"wall time" is based on calls to the Calondsr.Clock function. The reported "CPU time" is based
on calls to the PIWG function CPUTIMECLOCK. This function is intended to provide an inter-
face to host-dependent CPU time measurement functions on multi-user systems where calls to
Calendar.Clock might return misleading results. For the SD MC68020 tests, the basic version of
CPU_TIMECLOCK, which simply calls Calendar.Clock, was used.

Because of the Issue of the accuracy of PIWG results (see Section 2.5), the table below is
provided. Note that the actual iterations of the benchmarks are 100 times greater than the re-
ported iteration counts. The reported counts are only for the main loop enclosing the control and
test loops; these latter loops alway iterate 100 times. The accuracy delta is computed by dividing
the resolution of the Calendar.Clock function (7812 microseconds) by the actual number of itera-
tions. The accuracy of results is to within one microsecond or better when the actual iteration
count equals or exceeds 7812.

Reported Actual Accuracy
Iteration Iterations Delta

Count in Microseconds
1 100 78.120
2 200 39.060
4 400 19.530
8 800 9.765

16 1600 4.882
32 3200 2.441
64 6400 1.220

128 12800 0.610

In general, for the PIWG tests compiled with SD Ada-Plus, the accuracy delta ranges from about
1 percent to 4 percent of the reported execution time. The exceptions are the loop overhead
tests: for these the accuracy delta is much greater than the reported test times, and so the times
must be rejected as unreliable.

CMU/SEI-87-TR-40 9

"~ ~ ~~~i ---;-,7i_ . '

A..1. Composite Benchmarks

A.0.1.1. The Dhrystone Benchmark
This test failed with an "unhandled exception #2,* i.e., a NUMERIC_ERROR. The problem was
traced to the generated assembly language where it was found that a 16-bit value was being
picked up as a 32-bit value.

A.0.1.2. The Whetstone Benchmark
Two versions of the Whetstone benchmark 151 are provided. One uses the math library supplied
by the vendor; the other has the math functions coded within the benchmark program so that the
test can be run even when a math library is not supplied. SD Ada-Plus does not include a math
library, so the second version of the Whetstone benchmark was used. "KWIPS" means Kilo
Whetstones Per Second.

ADA Whetstone benrhmark
A000093 using standard internal math routines

Average time per cycle : 4510 milliseconds
Average Whetstone rating : 222 IWIPS

A.0.1.3. The Hennessy Benchmark
This is a collection of benchmarks that are relatively short in terms of program size and execution
time. Named after the person who gathered the tests, it includes such well-known programming
problems as the Towers of Hanoi, Eight Queens, Quicksort, Bubble Sort, Fast Fourier Transform,
and Ackermann's Function. The Hennessy benchmark, known as PIWG A000094, failed with a
STORAGEERROR. Initial attempts to resolve the problem by modifying the stack and heap
sizes were unsuccessful.

10 CMU/SEI-87-TR-40

)!

A.0.2. Task Creation
Test name: C000001 Class name: Tasking
CPU time: 3691 microseconds
Wall time: 3691 microseconds Iteration count: 8
Test description:

Task create and teminate measurement
with one task, no entries, when task is in a proceduze
using a task type in a package, no select statement, no loop

Test name: C000002 Class name: Tasking
CPU tim: 2753 microseconds-
Wall time: 2753 microseconds Iteration count: 4
Test description:

Task create and terminate time measurement
with one task, no entries when task is in a procedure,
task defined and used in procedure, no select statement, no loop

Test name: C000003 Class name: Tasking
CPU time: 2773 microseconds
Wall time: 2773 microseconds Iteration count: 4
Test description:
Task create and tezminate time measurement
task is in declare block of main procedure
one task, no entries, task is in the loop

CMU/SEI-87-TR-40 11

A.0.3. Dynamic Storage Allocation
Test name: D000001 Class name: Allocation
CPU time: 9 microseconds
Wall time: 9 microseconds Iteration count: 128
Test description:
Dynamic array allocation, use and deallocation time measurement
dynamic array elaboration, 1000 integers in a procedure
get space and free it in the procedure on each call

Test name: D000002 Class name: Allocation
CPU time: 15703 microseconds
Wall time: 15703 microseconds Iteration count: 1
Test description:
Dynamic array elaboration and initialization time measurement
allocation, initialization, use and deallocation
1000 integers initialized by others->l

The tests D000003 and D000004 failed with a STORAGEERROR; neither produced any output.
The test description each would have produced is shown below.
Test name: D000003 Class name: Allocation
Test description:
Dynamic record allocation and deallocation time measurement
elaborating, allocating and deallocating
record containing a dynamic array of 1000 integers

Test name: D000004 Class name: Allocation
Test description:
Dynamic record allocation and deallocation time measurement
elaborating, initializing by (DYNAMICSIZZ, (others->1))
record containing a dynamic array of 1000 integers

12 CMU/SEI-87-TR-40

A..4. Exception Handling
There is no E000003 test in the PIWG 8/31/86 suite.

Test name: 1000001 Class name: Exception
CPU time: 32 microseconds
Wall time: 32 microseconds Iteration count: 256
Test description:
Time to raise and handle an exception
exception defined and handled locally

Test name: Z000002 Class name: Exception
CPU time: 48 microseconds
Wall time: 48 microseconds Iteration count: 128
Test description:
Exception raise and handle timing measurement
when exception is in a procedure in a package

Test name: 1000004 Class name: Procedure
CPU time: 68 microseconds
Wall time: 68 microseconds Iteration count: 64
Test description:
Exception raise and handle timing measurement
when exception is in a package, four deep

CMU/SEI47-TR-40 13

A.M.5. Coding Style
Test name: 1000001 Class name: Style
CPU time: 3 microseconds
all time: 3 microseconds Iteration count: 512

Test description:
Time to set a boolean flag using a logical equation
a local and a global integer are compared
compare this test with 1000002

Test name: 1000002 Class name: Style
CPU tim: 4 microseconds
Wall tim: 4 microseconds Iteration count: 512
Test description:
Tim to set a boolean flag using an "if" test
a local and a global integer are compared
compare this test with 1000001

A.O.6. Loop Overhead
The times reported here are unreliable because the number of actual iterations of the tests (400)
means the times are accurate to plus or minus 19.53 microseconds.

Test name: L000001 Class name: Iteration
CPU time: 6 microseconds
Wall time: 6 microseconds Iteration count: 4
Test description:
Simple "for" loop time
for I in 1 .. 100 loop
timm reported is for once through loop

Test name: L000002 Class name: Iteration
CPU time: 4 microseconds
Wall time: 4 microseconds Iteration count: 4
Test description:
Simple "while" loop time
while I <- 100 loop

time reported is for once through loop

Test name: L000003 Class name: Iteration
CPU time: 4 microseconds
Wall time: 4 microseconds Iteration count: 4
Test description:
Simple "exit" loop time
loop I:-i+1; exit when 1>100; end loop;

time reported is for once through loop

14 CMU/SEI-87-TR-40

I

A.0.7. Procedure Calls
There is no P000008 or P000009 test in the PIWG 8/31/86 suite.

Test name: P000001 Class name: P. ,cedure
CPU time: 23 microseconds
Wall time: 23 microseconds Iteration count: 456
Test description:
Procedure call and return time (may be zero if automatic inlining)
procedure is local
no parameters

Test name: P000002 Class name: Procedure
CPU time: 25 microseconds
Wall time: 25 microseconds Iteration count: 256
Test description:
Procedure call and return time
Procedure is local, no parameters
when procedure is not inlinable

Test name: P000003 Class name: Procedure
CPU time: 18 microseconds
Wall time: 18 microseconds Iteration count: 256
Test description:
Procedure call and return time measurement
procedure is in a separately compiled package
compare to P000002

Test name: P000004 Class name: Procedure
CPU time: 16 microseconds
Wall time: 16 microseconds Iteration count: 256
Test description:
Procedure call and return time measurement
procedure is in a separately compiled package
pragma INLINE used
compare to P000001

Test name: P000005 Class name: Procedure
CPU time: 20 microseconds
Wall time: 20 microseconds Iteration count: 256
Test description:
Procedure call and return time measurement
procedure is in a separately compiled package
one parameter, in INTEGZR

CMU/SEI-87-TR-40 15

I

Test nams: P000006 Class name: Procedure
CPU time: 19 microseconds
Wall time: 19 microseconds Iteration count: 256
Test description:
Procedure call and return time measurement
procedure is in a separately compiled package
one parameter, out INTEGER

Test name: P000007 Class name: Procedure

CPU time: 23 microseconds
Wall time: 23 microseconds Iteration count: 256
Test description:
Procedure call and return time measurement
procedure is in a separately compiled package
one parameter, in Out ZNTEGER

Test name: P000010 Class name: Procedure
CPU time: 40 microseconds
Wall time: 40 microseconds Iteration count: 128
Test description:
Procedure call and return time measuremnt
compare to P000005
10 parameters, in INTEGER

Test name: P000011 Class name: Procedure
CPU time: 71 microseconds
Wall time: 71 microseconds Iteration count: 128
Test description:
Procedure call and return time measurement
compare to P000005, P000010
20 parameters, in INTEGER

Test name: P000012 Class name: Procedure
CPU time: 49 microseconds
Wall time: 49 microseconds Iteration count: 128
Test description:
Procedure call and return time measurement
compare with P000010 (discrete vs composite parameters)
10 parameters, in MY RCORD a three component record

Test name: P000013 Class name: Procedure
CPU time: 90 microseconds
Wall time: 90 microseconds Iteration count: 64
Test description:
Procedure call and return time measurement
twenty composite "'in" parameters
package body is compiled after the spec is used

16 CMU/SEI-87-TR-40

A.0.8. Task Rendezvous
The T000004 test produced no output except an "unhandled exception #4" message
(STORAGE_ERROR). Test T000006 produced an "unhandled exception #5" message
(TASKING_ERROR). The test descriptions that each test would have produced are included

1: below.

Test name: T000001 Class name: Tasking
CPU time: 480 microseconds
Wall time: 480 microseconds Iteration count: 32
Test description:

Minimum rendezvous, entry call and return time
one task, one entry, task inside procedure
no select

Test name: T000002 Class name: Tasking
CPU time: 473 microseconds
Wall time: 473 microseconds Iteration count: 32
Test description:
Task entry call and return time measured
one task active, one entry in task, task in a package
no select statement

Test name: T000003 Class name: Tasking
CPU time: 490 microseconds
Wall time: 490 microseconds Iteration count: 16
Test description:
Task entry call and return time measured
two tasks active, one entry per task, tasks in a package
no select statement

Test name: T000004 Class name: Tasking
Test description:
Task entry call and return time measured
one tasks active, two entries, tasks in a package
using select statement

STORAGEZRROR raised, no output produced

CMU/SEI-87-TR-40 17

. -.;W
J

j. ____

Test name: T000005 Class name: Tasking
CPU time: 460 microseconds
Wall time: 460 microseconds Iteration count: 4
Test description:
Task entry call and return time measured
ten tasks active, one entry per task, tasks in a package
no select statement

Test name: T000006 Class name: TASKING
Test description:

Task entry call and return time measurement
one task with ten entries, task in a package
one select statement, compare to T000005

TASKING ERROR raised, no output produced

Test name: T000007 Class name: Tasking
CPU time: 480 microseconds
Wall time: 480 microseconds Iteration count: 32
Test description:
Minimum rendezvous, entry call and return time
one task, one entry
no select

18 CMU/SEI-87-TR-40

I

Appendix B: Selected U. Michigan Results, SD
Cross-Compiler
In the results presented below, certain lines of output have been omitted for the sake of brevity.
Many of the Michigan tests print out lines of "raw data," and the command files sometimes run a
particular test many times; these are the lines that have been omitted. Also, some of the head-
ings have been split over two lines to make them fit this document.

These tests were compiled with the compiler's default optimizations enabled. The SD documen-
tation does not specify what these optimizations are. Except where otherwise stated, the ac-
curacy of these results is better than one microsecond because the Michigan tests typically iter-
ate 10,000 times. Times are reported in integral numbers because of the TARGET_10 problems
discussed earlier in the report.

B.0.1. Clock Calibration and Overhead
For the SD Ada-Plus system, System.Tlick and Standard.Duration'Small are both 7812
microseconds (1/128 seconds). The second-differencing clock calibration test gave the resolution
of Calendar.Clock as 7812 microseconds also. The clock overhead test yielded:

Clock function calling overhead 100 microseconds

B.0.2. Delay Statement Tests
For the delay tests, the actual delay is always the desired delay plus 7812 microseconds.

CMU/SEI-7-TR-40 19

- -7- . -

B.O.3. Task Rendezvous
For this test, a procedure calls the single entry point of a task; no parameters are passed, and the
called task executes a simple accept statement. According to the Michigan report, it is assumed
that such a rendezvous will involve at least two context switches.

Rendezvous time : No parameters passed
Number of iterations - 10000

Task rendezvous time 478 microseconds

B.O.4. Task Creation
These tests measure the composite time taken to elaborate a task's specification, activate the
task, and terminate the task. The coarse resolution of the clocks available at the time the tests
were developed did not allow for measurement of the individual components of the test. Also,

because these tests are run for 100 iterations, the times are accurate to 78.12 microseconds, or

0.078 milliseconds.

The third task creation benchmark - new Object, Task Type - failed with a
STORAGEERROR.

Task elaborate, activate, and teominate time:
Declared object, no type
Number of iterations - 100

Task elaborate, activate, terminate time: . milliseconds

Task elaborate, activate, and tezminate tim:
Declared object, task type
Number of iterations - 100

Task elaborate, activate, terminate time: 1 milliseconds

20 CMU/SEI-87-TR-40

B.O.5. Exception Handling
The times reported here are accurate to plus or minus 7.812 microseconds.
Number of iterations - 1000

Exception Handler Tests

Exception raised and handled in a block

15 uSEC. User defined, not raised
54 uSEC. User defined
62 uSIC. Constraint error, implicitly raised
54 uSEC. Constraint error, explicitly raised
62 uSEC. Numeric error, implicitly raised
54 uSEC. Numeric error, explicitly raised
54 uSEC. Tasking error, explicitly raised

Exception raised in a procedure and handled in the
calling unit

23 uSEC. User defined, not raised
62 uSEC. User defined
70 uSEC. Constraint error, implicitly raised
70 uSEC. Constraint error, explicitly raised
70 uSEC. Numeric error, implicitly raised
62 uSEC. Numeric error, explicitly raised
70 uSEC. Tasking error, explicitly raised

B.O.6. Dynamic Storage Allocation
The times reported here are accurate to plus or minus 7.812 microseconds.
Number of iterations - 1000

Dynamic Allocation with NEW Allocator

Time I # Declared I Type Declared ISize of I
(Microsec.) l I Object

93 1 1 lInteger array i 11
101 I 1 lInteger array I 101
101 I 1 lInteger array 1 1001
93 1 1 IInteger array i 10001
93 I 1 12-D Dynamically bounded arrayl 101

CMU/SEI-87-TR-40 21

!!~

22 CMU/SEI-87-TR-40

Appendix C: PIWG Benchmark Results, TeleSoft
Cross-Compiler
These results are for benchmarks that were compiled without optimization enabled (the default for

TeleGen2). All of the PIWG tests, with the exception of the task creation tests, ran without
problems. The G tests (Text_1O tests) and the Z tests (compilation tests) were not run.

The output of each PIWG benchmark program contains a terse description of the feature being
measured. For any further details, the user will have to inspect the benchmark code. The
reported "wall time" is based on calls to the Calendar.Clock function. The reported "CPU time"

is based on calls to the PIWG function CPUTIME_CLOCK. This function is intended to provide
an interface to host-dependent CPU time measurement functions on multi-user systems where

calls to Calendar.Clock might return misleading results. For the SD MC68020 tests, the basic
version of CPU_TIME_CLOCK, which simply calls Calendar.Clock, was used.

Because of the issue of the accuracy of PIWG results (see Section 2.5), the table below is
provided. Note that the actual iterations of the benchmarks are 100 times greater than the re-
ported iteration counts. The reported counts are only for the main loop enclosing the control and

test loops; these latter loops alway iterate 100 times. The accuracy delta is computed by dividing
the resolution of the Calendr.Clock function (100 milliseconds) by the actual number of itera-
tions. The accuracy of results is to within one microsecond or better when the actual iteration

count equals or exceeds 100,000.

Reported Actual Accuracy
Iteration Iterations Delta

Count in K_.A..:sconds

1 100 1000.000
2 200 500.000
4 400 250.000
8 800 125.000

16 1600 62.500
32 3200 31.250
64 6400 15.625

128 12800 7.812
256 25600 3.906
512 51200 1.953

1024 102400 0.976

* Compared with the execution times of the language feature tests, TeleGen2's 100-millisecond

Calendar.Clock is extremely coarse. Also, even when a test te, ates enough times to be accurate

to within a microsecond or two, the accuracy delta may still be a significant percentage of the

execution time (see P000002 and P000003 results, for example).

CMU/SEI-87-TR-40 23

!- ~ _ _ _ _ -...- ~-..-- -

C.O.1. Composite Benchmarks

C.O.1.1. The Dhrystone Benchmark

0.70996 is time in milliseconds for one Dhrystone

C.O.1 2. The Whetstone Benchmark
Two versions of the Whetstone benchmark [51 are provided. One uses the math library supplied

by the vendor; the other has the math functions coded within the benchmark program so that the

test can be run even when a math library is not supplied. TeleGen2 does not include a math
library, so the second version of the Whetstone benchmark was used. "KWIPS" means Kilo
Whetstones Per Second.

ADA Whetstone benchmark
A000093 using standard internal math routines

Average time per cycle : 4240.02 milliseconds
Average Whetstone rating : 236 KIPS

C.0.1.3. The Hennessy Benchmark
This is a collection of benchmarks that are relatively short in terms of program size and execution

time. Named after the person who gathered the tests, it includes such well-known programming

problems as the Towers of Hanoi, Eight Queens, etc. Execution times are reported in seconds.

AOO0094

Perm Towers Queens Intm MM Puzzle
2.10 2.30 1.10 1.80 3.90 6.50

Quick Bubble Tree FTT Ack
0.80 1.70 1.10 8.60 27.10

24 CMU/SEI-87-TR-40

ii

C.O.2. Task Creation
The three task creation benchmarks failed with a STORAGE.ERROR. It is believed that the
problem can be solved simply by changing the stack or heap size specifications in the linker
options file. Another possibility is moving the debugger/receiver into PROM so that it leaves the
maximum amount of RAM available for downloaded programs. Time did not permit the explora-
tion of these possibilities.

C.O.3. Dynamic Storage Allocation
Test name: D000001 Class name: Allocation
CPU time: 11.7 microseconds
Wall time: 11.7 microseconds Iteration count: 256
Test description:
Dynamic array allocation, use and deallocation time measurement
dynamic array elaboration, 1000 integers in a procedure
get space and free it in the procedure on each call

Test name: D000002 Class name: Allocation
CPU time: 9499.5 microseconds
Wall time: 9499.5 microseconds Iteration count: 2
Test description:
Dynamic array elaboration and initialization time measurement
allocation, initialization, use and deallocation
1000 integers initialized by others=>l

Test name: D000003 Class name: Allocation
CPU time: 1375.1 microseconds
Wall time: 1375.1 microseconds Iteration count: 8
Test description:
Dynamic record allocation and deallocation time measurement
elaborating, allocating and deallocating
record containing a dynamic array of 1000 integers

Test name: D000004 Class name: Allocation
CPU time: 12993.3 microseconds
Wall time: 12993.3 microseconds Iteration count: 1
Test description:
Dynamic record allocation and deallocation time measurement
elaborating, initializing by (DYNAMIC SIZE, (others->1))
record containing a dynamic array of 1000 integers

CMU/SEI-87-TR-40 25

Ilk -~ ~

C.O.4. Exception Handling
There is no E000003 test in the PIWG 8/31/86 suite.

Test name: 1000001 Class name: Exception
CPU time: 31.3 microseconds
Wall time: 31.3 microseconds Iteration count: 256
Test description:
time to raise and handle an exception
exception defined locally and handled locally

Test name: E000002 Class name: Exception
CPU time: 109.4 microseconds
Wall time: 109.4 microseconds Iteration count: 128
Test description:
Exception raise and handle timing measurement
when exception is in a procedure in a package

Test name: 1000004 Class name: Procedure
CPU time: 374.8 microseconds
Wall time: 374.8 microseconds Iteration count: 32
Test description:
Exception raise and handle timing measurement
when exception is in a package, four deep

26 CMU/SEI-87-TR-40

- K .L ' ° : '

I

C.O.5. Coding Style
Test name: F000001 Class name: Style
CPU time: 3.9 microseconds
Wall time: 3.9 microseconds Iteration count: 512
Test description:
Time to set a boolean flag using a logical equation
a local and a global integer are compared
compare this test with 1000002

Test name: 1000002 Class name: Style
CPU time: 0.0 microseconds
Wall time: 0.0 microseconds Iteration count: 512
Test description:
Time to set a boolean flag using an "if" test
a local and a global integer are compared
compare this test with F000001

C.O.6. Loop Overhead
The times reported here are unreliable because the number of actual iterations of the tests (800)
means the times are accurate to plus or minus 125 microseconds.

Test name: L000001 Class name: Iteration
CPU time: 1.3 microseconds
Wall time: 1.3 microseconds Iteration count: 8
Test description:
Simple "for" loop time
for I in 1 .. 100 loop
time reported is for once through loop

Test name: L000002 Class name: Iteration
CPU time: 0.0 microseconds
Wall time: 0.0 microseconds Iteration count: 8
Test description:
Simple "while" loop time
while I <- 100 loop
time reported is for once through loop

Test name: L000003 Class name: Iteration
CPU time: 1.3 microseconds
Wall time: 1.3 microseconds Iteration count: 8
Test description:
Simple "exit" loop time
loop 1:-I+1; exit when 1>100; end loop;
time reported is for once through loop

CMU/SEI-87-TR-40 27

!7 ; 7 7

C.O.7. Procedure Calls
There is no P000008 or P000009 test in the PIWG 8/31/86 suite.

Test name: P000001 Class name: Procedure
CPU time: 11.7 microseconds
Wall time: 11.7 microseconds Iteration count: 512
Test description:
Procedure call and return time (may be zero if automatic inlining)
procedure is local
no parameters

Test name: P000002 Class name: Procedure
CPU time: 7.8 microseconds
Wall time: 7.8 microseconds Iteration count: 512
Test description:
procedure call and return time
procedure is local, no parameters
when procedure is not inlinable

Test name: P000003 Class name: Procedure
CPU time: 7.8 microseconds
Wall time: 7.8 microseconds Iteration count: 512
Test description:
Procedure call and return time measurement
procedure is in a separately compiled package
compare to P000002

Test name: P000004 Class name: Procedure
CPU time: 9.8 microseconds
Wall time: 9.8 microseconds Iteration count: 512
Test description:
Procedure call and return time measurement
procedure is in a separately compiled package
pragma INLINE used
Compare to P000001

Test name: P000005 Class name: Procedure
CPU time: 9.7 microseconds
Wall time: 9.7 microseconds Iteration count: 512
Test description:

Procedure call and return time measurement
procedure is in a separately compiled package
one parameter, in INTEGER

28 CMU/SEI-87-TR-40

Test name: P000006 Class name: Procedure
CPU time: 7.8 microseconds
Wall time: 7.8 microseconds Iteration count: 512
Test description:
Procedure call and return time measurement
procedure is in a separately compiled package
one parameter, out INTEGER

Test name: P000007 Class name: Procedure
CPU time: 9.8 microseconds
Wall time: 9.8 microseconds Iteration count: 512
Test description:
Procedure call and return time measurement
procedure is in a separately compiled package
one parameter, in out INTEGER

Test name: P000010 Class name: Procedure
CPU time: 15.6 microseconds
Wall time: 15.6 microseconds Iteration count: 256
Test description:
Procedure call and return time measurement
compare to P000005
10 parameters, in INTEGER

Test name: P000011 Class name: Procedure
CPU time: 31.3 microseconds
Wall time: 31.3 microseconds Iteration count: 128
Test description:
Procedure call and return time measurement
compare to P000005, P000010
20 parameters, in INTEGER

Test name: P000012 Class name: Procedure
CPU time: 31.3 microseconds
Wall time: 31.3 microseconds Iteration count: 256
Test description:
Procedure call and return time measurement
compare with P000010 (discrete vs composite parameters)
10 parameters, in MY_RECORD a three component record

Test name: P000013 Class name: Procedure
CPU time: 54.7 microseconds
Wall time: 54.7 microseconds Iteration count: 128
Test description:
Procedure call and return time measurement
20 composite "in" parameters
package body is compiled after the spec is used

CMU/SEI-87-TR-40 29

C.O.8. Task Rendezvous
Test name: TO00001 Class name: Tasking
CPU time: 437.3 microseconds
Wall time: 437.3 microseconds Iteration count: 32
Test description:

Minimum rendezvous, entry call and return time
one task, one entry, task inside procedure
no select

Test name: T000002 Class name: Tasking
CPU time: 437.3 microseconds
Wall time: 437.3 microseconds Iteration count: 32
Test description:
Task entry call and return time measured
one task active, one entry in task, task in a package
no select statement

Test name: T000003 Class name: Tasking
CPU time: 468.9 microseconds
Wall time: 468.9 microseconds Iteration count: 16
Test description:
Task entry call and return time measured
two tasks active, one entry per task, tasks in a package
no select statement

Test name: T000004 Class name: Tasking
CPU time: 1874.4 microseconds
Wall time: 1874.4 microseconds Iteration count: 4
Test description:
Task entry call and return time measured
one task active, two entries, tasks in a package
using select statemnt

Test name: T000005 Class name: Tasking
CPU time: 450.0 microseconds
Wall time: 450.0 microseconds Iteration count: 4
Test description:
Task entry call and return time measured
10 tasks active, one entry per task, tasks in a package
no select statement

30 CMU/SEI-87-TR-40

I~
L

Test name: T000006 Class name: TASKING
CPU time: 2299.3 microseconds
Wall time: 2299.3 microseconds Iteration count: 1
Test description:
Task entry call and return time measurement
one task with ten entries, task in a package
one select statement
compare to T000005

Test name: T000007 Class name: Tasking
CPU time: 468.9 microseconds
Wall time: 468.9 microseconds Iteration count: 32
Test description:
Minimum rendezvous, entry call and return time
one task, one entry
no select

CMU/SEI-87-TR-40 31

32 CMU/SEI-87-TR-40

I

Appendix D: Selected U. Michigan Results, TeleSoft
Cross-Compiler
These results are for benchmarks that were compiled without optimization enabled (the default for
TeleGen2).

In the results presented below, certain lines of output have been omitted for the sake of brevity.
Many of the Michigan tests print out lines of "raw data," and the command files sometimes run a
particular test many times; these are the lines that have been omitted. Also, some of the head-
ings have been split over two lines to make them fit this document.

These tests were run close to the deadline for this report, so there was no time to re-run tests that

caused problems. It is likely that for tests that failed with a STORAGE_ERROR, the solution is
simply to increase the stack or heap size and re-run them. The subprogram overhead tests were
not run. Of the dynamic storage allocation tests, only the array allocation tests were run. Except
where otherwise stated, the accuracy of these tests is plus or minus 10 microseconds (100 mil-
lisecond clock resolution divided by 10,000 iterations).

D.A.1. Clock Calibration and Overhead
For the TeleGen2 cross-compiler, System.Tick is 10 milliseconds, and
Standard.Duration'Small is 60 microseconds. The clock calibration test reported the resolution
of Calendar.Clock as 0.10009 seconds, or approximately 100 milliseconds. The clock overhead
test yielded:

Clock function call ng ovehead 349.95 microseconda

D.O.2. Delay Statement Tests
The delay statement tests failed with a STORAGE_ERROR.

CMU/SEI-87-TR-40 33

F_,

D.O.3. Task Rendezvous
For this test, a procedure calls the single entry point of a task; no parameters are passed, and the
called task executes a simple accept statement. According to the Michigan report, it is assumed
that such a rendezvous will involve at least two context switches.

Rendezvous time : No parameters passed
Number of iterations - 10000

Task rendezvous time : 480.0 microseconds

D.O.4. Task Creation
These tests measure the composite time taken to elaborate a task's specification, activate the
task, and terminate the task. The coarse resolution of the clocks available at the time the tests
were developed did not allow for measurement of the individual components of the test. Also,

because these tests are run for only 100 iterations, the times are accurate to plus or minus 1000
microseconds, or I millisecond.

The task creation test below that failed with a TASKINGLERROR was supposed to allocate a
task object using the new allocator.

Task elaborate, activate, and terminate time:
Declared object, no type
Number of iterations - 100

Task elaborate, activate, terminate time: 2.0 milliseconds

Task elaborate, activate, and terminate time:
Declared object, task type
Number of iterations - 100

Task elaborate, activate, terminate time: 1.0 milliseconds

>>> Unhandled exception: TASKING_ERROR

-34 CMU/SEI-87-TR-40

I

D.O.5. Exception Handling
The times reported here are accurate to plus or minus 100 microseconds.

Number of iterations = 1000

Exception Handler Tests

Exception raised and handled in a block

0.0 uSEC. User defined, not raised
0.0 uSEC. User defined

100.1 uSEC. Constraint error, implicitly raised
0.0 uSEC. Constraint error, explicitly raised
99.1 uSEC. Numeric error, implicitly raised
0.0 uSEC. Numeric error, explicitly raised
0.0 uSEC. Tasking error, explicitly raised

Exception raised in a procedure and handled in
the calling unit

0.0 uSEC. User defined, not raised
200.2 uSEC. User defined
299.3 uSEC. Constraint error, implicitly raised
200.2 uSEC. Constraint error, explicitly raised
299.3 uSIC. Numeric error, implicitly raised
200.2 uSEC. Numeric error, explicitly raised
299.3 uSEC. Tasking error, explicitly raised

CMUISEI-87-TR-40 35

D.O.6. Time and Duration Math

Number of iterations = 10000

TIME and DURATION Math

uSEC. Operation

50.05 Time : Vat time + var duration
59.96 Time : Vartime + constduration
79.98 Tim& :- Var duration + var time
89.89 Time :- Const duration + var time
89.89 Time : Var_time - varduration
80.08 Time : Var_time - const_duration
29.93 Duration : Vartime - var time
10.01 Duration : var-duration + var duration
9.91 Duration := Varduration + const_duration
9.91 Duration := Const_duration + varduration
0.00 Duration = Const duration + const duration

10.01 Duration := Varduration - vardurzation
10.01 Duration := Varduration - const _duration
10.01 Duration := Const_duration - var-duration
-0.01 Duration := Const duration - const duration

36 CMU/SEI-87-TR-40

D.O.7. Dynamic Storage Allocation
Because of time constraints, the first set of dynamic storage allocation tests (dynamic allocation
in a declarative region) was not run. Of the second set, only the array allocation tests were run;
results are listed below. The times reported are accurate to plus or minus 100 microseconds.

Number of iterations - 1000

Dynamic Allocation with NEW Allocator

Tium I # Declared I Type Declared ISize of I
(microsec.)I I lObject I

290.0 1 1 lintegexr array 1 2. 1
290.0 1 1 [Integer array 10 I
290.0 1 1 lInteger array 100 1
290.0 I 1 lInteger array I1000 1
310.0 1 1 11-D Dynamically bounded array 01
310.0 1 1 I1-D Dynamically bounded array 1 10 1
340.0 1 1 12-D Dynamically bounded array 1 1 I
340.0 1 1 12-D Dynamically bounded array 1 100 1
390.0 1 1 13-D Dynamically bounded array I 1 I
390.0 1 1 13-D Dynamically bounded array 1 1000 1

CMU/SEI-87.TR-40 37

- - - -

D.O.8. Memory Management
No timing results 'Are produced by these tests; they are used to determine whether or not garbage
collection takes place. They attempt to allocate up to ten million integers by successively allocat-
ing 1 000-integer arrays using the new allocator. Only the last test explicitly attempted to free any
allocated storage (using UNCHECKED_DEALLOCATION). The tests were designed either to
report how much storage they allocated before the expected STORAGEERROR exception oc-
curred, or a message saying they had succeeded. Running the tests confirmed that garbage
collection did not occur; reclamation of storage is only done when explicitly requested. The
output of the three tests is shown below.

Mesize: 127 arrays of 1000 integers allocated

>>> Unhandled exception: STORAGE ERROR (allocator failure)

Implicit deallocation: 127 arrays of 2._000 integers allocated

>>> Unhandled exception: STORAGE_ERROR (allocator faillure)

Storage is reclaimed by calling UNCHECKEDDEALLOCATION,
or the memory space is larger than 10_000_000 INTEGER units

An additional test included with the memory management tests uses a first differencing scheme
to determine the scheduling discipline of the target operating system. This test was not run
because it was already known that TeleGen2 is a pre-emptive system.

38 CMU/SEI-87-TR-40

I

Appendix E: PIWG Benchmark Results, VERDIX
Cross-compiler
These results are for benchmarks which were compiled without optimization enabled (the default
for VADS). All of the PIWG tests, with the exception of the task creation tests, ran without
problems. The G tests (Text_10 tests) and the Z tests (compilation tests) were not run.

The output of each PIWG benchmark program contains a terse description of the feature being
measured. For any further details, the user will have to inspect the benchmark code. The

reported "Wall Time" Is based on calls to the Calendar.Clock function. The reported "CPU Time"
is based on calls to the PIWG function CPUTIME_CLOCK. This function is* intended to provide

an interface to host-dependent CPU time measurement functions on multi-user systems where
calls to Calendar.Clock might return misleading results. For the VADS MC68020 tests, the basic
version of CPU_TIME_CLOCK, which simply calls Calendar.Clock, was used.

Since the resolution of Calendar.Clock under VADS is 61 microseconds, there is no accuracy
problem; an accuracy of plus or minus 1 microsecond can be achieved with 61 iterations of a test.
PIWG benchmarks run for at least 100 actual iterations (reported by the program as an iteration
count of 1). Most of the PIWG benchmarks compiled under VADS ran for many more than 100
iterations.

i

CMU5EI-87-TR.40 39

E.O.1. Composite Benchmarks

E.O.1.1. The Dhrystone Benchmark

0.84936 is time in milliseconds for one Dhrystone

E.O.1.2. The Whetstone Benchmark
Two versions of the Whetstone benchmark [5] are provided. One uses the math library supplied
by the vendor, the other has the math functions coded within the benchmark program so that the
test can be run even when a math library is not supplied. VADS does not include a math library,
so the second version of the Whetstone benchmark was used. "KWIPS" means Kilo Whetstones
Per Second.

ADA Whetstone benchmark
A000093 using standard internal math routines

Average time per cycle : 6945.84 milliseconds
Average Whetstone rating 144 KWZPS

E..1.3. The Hennessy Benchmark
This is a collection of benchmarks that are relatively short in terms of program size and execution
time. Named after the person who gathered the tests, it includes such well-known programming

* problems as the Eight Queens problem, the Towers of Hanoi, Ouicksort, Bubble Sort, Fast
Fourier Transform, and Ackermann's Function. Execution times are reported in seconds.

A000094

Perm Towers Queens ZntwM Mm Puzzle
3.20 3.85 2.70 3.18 6.81 14.25

Quick Bubble Tree rFT Ack
2.86 5.98 1.98 16.94 36.58

40 CMU/SEI-87-TR-40

..

E.O.2. Task Creation
The three task creation benchmarks failed with a STORAGE_ERROR. It is believed that the
problem can be solved simply by changing the memory layout specifications in the linker direc-
tives file.

E.O.3. Dynamic Storage Allocation
Test Name: DOOOO01 Class Name: Allocation

CPU Time: 34.6 microseconds
Wall Time: 34.6 microseconds. Iteration Count: 128
Test Description:
Dynamic array allocation, use and deallocation time measurement
Dynamic array elaboration , 1000 integers in a procedure
get space and free it in the procedure on each call

Test Name: D000002 Class Name: Allocation
CPU Time: 3844.9 microseconds
Wall Time: 3844.9 microseconds. Iteration Count: 4
Test Description:
Dynamic array elaboration and initialization time measurement
allocation, initialization, use and deallocation
1000 integers initialized by others->l

Test Name: D000003 Class Name: Allocation
CPU Time: 9144.8 microseconds
Wall Time: 9144.5 microseconds. Iteration Count: 2
Test Description:
Dynamic record allocation and deallocation time measurement
elaborating, allocating and deallocating
record containing a dynamic array of 1000 integers

Test Name: D000004 Class Name: Allocation
CPU Time: 12719.7 microseconds
Wall Time: 12730.1 microseconds. Iteration Count: 1
Test Description:
Dynamic record allocation and deallocation time measurement
elaborating, initializing by (DYNAMIC SIZE, (others=>1))
record containing a dynamic array of 1000 integers

CMU/SEI47-TR-40 41

A

OE..4. Exception Handling
There is no E000003 test in the PIWG 8/31/86 suite.

Test Name: 3000001 Class Name: Exception
CPU Time: 7035.2 microseconds
Wall Time: 7034.9 microseconds. Iteration Count: 2
Test Description:
Time to raise and handle an exception
Exception defined locally and handled locally

Test Nam: Z000002 Class Name: Exception
CPU Time: 12559.2 microseconds
Wall Tim: 12560.4 microseconds. Iteration Count: 1
Test Description:
Exception raise and handle timing measurement
when exception is in a procedure in a package

Test Name: 1000004 Class Name: Procedure
CPU Time: 29559.9 microseconds
Wall Tim: 29550.1 microseconds. Iteration Count: 1
Test Description:
Exception raise and handle timing measurement
when exception is in a package, 4 deep

42 CMU/SEI-87-TR-40

E.O.5. Coding Style
Test Name: F000001 Class Name: Style
CPU Time: 3.8 microseconds
Wall Time: 3.8 microseconds. Iteration Count: 512
Test Description:
Time to set a boolean flag using a logical equation
a local and a global integer are compared
compare this test with 7000002

Test Name: 1000002 Class Name: Style
CPU Time: 3.8 microseconds
Wall Time: 3.8 microseconds. Iteration Count: 512
Test Description:
Time to set a boolean flag using an 'if' test
a local and a global integer are compared
compare this test with 1000001

E.O.6. Loop Overhead
Test Name: LO00001 Class Name: Iteration
CPU Time: 4.3 microseconds
Wall Time: 4.3 microseconds. Iteration Count: 8
Test Description:
Simple "for" loop time
for I in I .. 100 loop
time reported is for once through loop

Test Name: L000002 Class Name: Iteration
CPU Time: 5.9 microseconds
Wall Time: 5.9 microseconds. Iteration Count: 4
Test Description:
Simple "while" loop time
while I <- 100 loop
time reported is for once through loop

Test Name: L000003 Class Name: Iteration
CPU Time: 6.4 microseconds
Wall Time: 6.4 microseconds. Iteration Count: 4
Test Description:
Simple "exit" loop time
loop I:iI+1; exit when 1>100; end loop;

time reported is for once through loop

CMU/SEI-87-TR-40 43

E.O.7. Procedure Calls
There is no P000008 or P000009 test in the PIWG 8/31/86 suite.

Test Name: P000001 Class Name: Procedure
CPU Time: 7.2 microseconds
Wall Time: 7.2 microseconds. Iteration Count: 512
Test Description:
Procedure call and return time (may be zero if automatic inlining)
procedure is local
no parameters

Test Name: P000002 Class Name: Procedure
CPU Time: 10.4 microseconds
Wall Time: 10.4 microseconds. Iteration Count: 512
Test Description:
Procedure call and return time
Procedure is local, no parameters
when procedure is not inlinable

Test Name: P000003 Class Name: Procedure
CPU Time: 9.5 microseconds
Wall Time: 9.5 microseconds. Iteration Count: 512
Test Description:
Procedure call and return time measurement
The procedure is in a separately compiled package
Compare to P000002

Test Name: P000004 Class Name: Procedure
CPU Time: 0.1 microseconds
Wall Time: 0.1 microseconds. Iteration Count: 512
Test Description:
Procedure call and return time measurement
The procedure is in a separately compiled package
pragma INLINI used. Compare to P000001

Test Name: P000005 Class Name: Procedure
CPU Time: 11.0 microseconds
Wall Time: 11.0 microseconds. Iteration Count: 512
Test Description:
Procedure call and return time measurement
The procedure is in a separately compiled package
One parameter, in INTEGER

44 CMU/SEI-87-TR-40

. t~w'w

i
I

Test Name: P000006 Class Name: Procedure
CPU Time: 12.6 microseconds
Wall Time: 12.6 microseconds. Iteration Count: 512
Test Description:
Procedure call and return time measurement
The procedure is in a separately compiled package
One parameter, out INTEGER

Test Name: P000007 Class Name: Procedure
CPU Time: 13.1 microseconds
Wall Time: 13.2 microseconds. Iteration Count: 512
Test Description:
Procedure call and return time measurement
The procedure is in a separately compiled package
One parameter, in out INTEGER

Test Name: P000010 Class Name: Procedure
CPU Time: 26.7 microseconds
Wall Time: 26.7 microseconds. Iteration Count: 256
Test Description:
Procedure call and return time measurement
Compare to P000005
10 parameters, in INTEGER

Test Name: P000011 Class Name: Procedure
CPU Tim: 46.4 microseconds
Wall Time: 46.5 microseconds. Iteration Count: 128
Test Description:
Procedure call and return time measurement
Compare to P000005, P000010
20 paramters, in INTEGER

Test Name: P000012 Class Name: Procedure
CPU Time: 358.4 microseconds
Wall Time: 358.1 microseconds. Iteration Count: 32
Test Description:
Procedure call and return time measurement
Compare with P000010 (discrete vs composite parameters
10 paramaters, in MYRECORD a three component record

Test Name: P000013 Class Name: Procedure
CPU Time: 707.5 microseconds
Wall Time: 707.4 microseconds. Iteration Count: 16
Test Description:
Procedure call and return time measurement
twenty composite 'in, parameters
The package body is compiled after the spec is used

CMUISEI-87-TR-40 45

E.O.8. Task Rendezvous
Test Name: T000001 Class Name: Tasking
CPU Time: 328.7 microseconds
Wall Time: 329.0 microseconds. Iteration Count: 32
Test Description:
Minimum rendezvous, entry call and return time
1 task 1 entry , task inside procedure
no select

Test Name: T000002 Class Name: Tasking
CPU Time: 328.4 microseconds
Wall Time: 328.7 microseconds. Iteration Count: 32
Test Description:
Task entry call and return time measured
One task active, one entry in task, task in a package
no select statement

Test Name: T000003 Class Name: Tasking
CPU Time: 340.9 microseconds
Wall Time: 340.9 microseconds. Iteration Count: 16
Test Description:
Task entry call and return time measured
Two tasks active, one entry per task, tasks in a package
no select statement

Test Name: T000004 Class Name: Tasking
CPU Time: 432.2 microseconds
Wall Time: 331.8 microseconds. Iteration Count: 16
Test Description:
Task entry call and return time measured
One tasks active, two entries, tasks in a package
using select statement

Test Name: T000005 Class Name: Tasking
CPU Time: 328.4 microseconds
Wall Time: 328.7 microseconds. Iteration Count: 4
Test Description:
Task entry call and return time measured
Ten tasks active, one entry per task, tasks in a package
no select statement

46 CMUISEI-87-TR-40

* ,-A',, ;'

Test Name: T000006 Class Name: TASKING
CPU Time: 642.4 microseconds
Wall Time: 642.0 microseconds. Iteration Count: 2
Test Description:
Task entry call and return time measurement
One task with ten entries , task in a package
one select statement, compare to T000005

Test Name: T000007 Class Name: Tasking
CPU Time: 328.7 microseconds
Wall Time: 329.0 microseconds. Iteration Count: 32
Test Description:
Minimum rendezvous, entry call and return time
I task 1 entry
no select

CMUISEI-87.TR-40 47

-'17

- - - - - -. -r - .- ~. *r *- - - - .. * -, - .- w,

48 CMU/SEI-87.TR-40

~ I - -
~ <

- t

Appendix F: Selected U. Michigan Results, VERDIX
Cross-compiler
These results are for benchmarks which were compiled without optimization enabled (the default
for VADS).

In the results presented below, certain lines of output have been omitted for the sake of brevity.
Many of the Michigan tests print out lines of "raw data", and the command files sometimes run a

particular test many times; these are the lines that have been omitted. Also, some of the head-
ings have been split over two lines to make them fit this document.

Like the TeleGen2 tests, these tests were run close to the deadline for this report, so there was
no time to re-run tests which caused problems. It is likely that for tests which failed with a
STORAGEERROR, the solution is simply to increase the stack or heap size and re-run them.
The subprogram overhead tests were not run. Of the dynamic storage allocation tests, only the
array allocation tests were run.

F.0.1. Clock Calibration and Overhead
For the VADS cross-compiler, System.Tick is 10 milliseconds and Standard.Duration'Small is
61 microseconds. The clock calibration test reported the resolution of Calendar.Clock as 61
microseconds. The clock overhead test yielded:

Clock function calling overhead : 1269.69 microseconds

CMU/SEI-87-TR-40 49

F.O.2. Task Rendezvous
For this test, a procedure calls the single entry point of a task; no parameters are passed, and the
called task executes a simple accept statement. According to the Michigan report, it is assumed
that such a rendezvous will involve at least two context switches.

Rendezvous Time : No Parameters Passed
Number of Iterations = 10000

Task Rendezvous Time 328.9 microseconds.

F.O.3. Task Creation
These three tests measure the composite time taken to elaborate a task's specification, activate
the task, and terminate the task. The coarse resolution of the clocks available at the time the
tests were developed did not allow for measurement of the individual components ot the test.
The first two tests failed with a STORAGE-ERROR. The test producing the result below used
the new allocator to create a task object

Task Elaborate, Activate, and Terminate Time:
NEW Object, Task Type
Number of Iterations = 100

Task elaborate, activate, terminate time: 1.6 milliseconds.

50 CMU/SEI-87-TR-40

F.O.4. Exception Handling

Number of iterations - 1000

Exception Handler Tests

Exception raised and handled in a block

0.0 uSEC. User Defined, Not Raised
5541.9 uSEC. User Defined
11173.9 uSEC. Constraint Error, Implicitly Raised
11287.9 uSEC. Constraint Error, Explicitly Raised
11223.9 uSEC. Numeric Error, Implicitly Raised
11462.9 uSEC. Numeric Error, Explicitly Raised
11523.9 uSEC. Tasking Error, Explicitly Raised

Exception raised in a proc~du-e and handled in
the calling unit

2.9 uSEC. User Defined, Not Raised
10505.0 uSEC. User Defined
16007.0 uSEC. Constraint Error, Implicitly Raised
16192.0 uSEC. Constraint Error, Explicitly Raised
15993.0 uSEC. Numeric Error, Implicitly Raised
16179.0 uSEC. Numeric Error, Explicitly Raised
16176.0 uSEC. Tasking Error, Explicitly Raised

I

CMU/SEI.67-TR.40 51

F.O.5. Dynamic Storage Allocation
Because of time constraints, the first set of dynamic storage allocation tests (dynamic allocation
in a declarative region) was not run. Of the second set, only the array allocation tests were run-
results are listed below.

Number of Iterations = 1000

Dynamic Allocation with NEW allocator

Time 1# Declared I Type I Size of I
(microsec.) I I Declared I Object I

88.0 I 1 lInteger Array 1 I
88.0 1 1 JInteger Array I 10 J
88.0 J 1 lInteger Array 1 100 I
88.0 1 1 lInteger Array 1 1000 1

135.9 1 1 11-D Dynamically Bounded Array
11

135.9 I 1 11-D Dynamically Bounded Array
10 1

155.0 I 1 12-D Dynamically Bounded Array

155.0 I 1 12-D Dynamically Bounded Array
100 1

177.0 I 1 13-D Dynamically Bounded Array
~1

177.0 1 1 13-D Dynamically Bounded Array
1000 1

52 CMU/SEI-87-TR-40

.1

*! F.O.6. Memory Management
, There are no timing results produced by these tests; they are used to determine whether or not

garbage collection takes place. They attempt to allocate up to ten million integers, by succes-
sively allocating 1000-integer arrays using the new allocator. Only the last test explicitly at-
tempted to free any allocated storage (using UNCHECKEDDEALLOCATION). The tests were
designed either to report how much storage they allocated before the expected
STORAGEERROR exception occurred, or a message saying they had succeeded. Running the
tests confirmed that garbage collection did not occur; reclamation of storage is only done when
explicitly requested. The (edited) output of the three tests is shown below.

Memaize: 31 arrays of 1_000 integers allocated

MAIN PROGRAM ABANDONED -- EXCEPTION "storage_error" RAISED

Implicit deallocation: 31 arrays of ._000 integers allocated

MAIN PROGRAM ABANDONED -- EXCEPTION "storage_error" RAISED

Storage is reclaimed by calling UNCHECKEDDEALLOCATION,
or the memory space is larger than 10_000_000 INTEGER units

An additional test included with the memory management tests uses a first differencing scheme

to determine the scheduling discipline of the target operating system. This test was not run
because it was already known that VADS is a pre-emptive system. (The VADS implementation
also gives a user the option of specifying time-slicing when configuring the run-time system.)

CMU/SEI-87-TR-40 53

54 CMUISEI-87-TR-40

Appendix G: A Note on Optimization
For comparison of optimized versus unoptimized runs of the benchmarks, a number of the PIWG
tests and the University of Michigan task rendezvous test were compiled using TeleGen2 both
with and without optimization enabled. The level of optimization was that provided by the
/OPTIMIZE qualifier [13].2 In addition, the tests were made to run for 100,000 iterations or more
to obtain an accuracy of at least plus or minus one microsecond using TeleGen2's 100-
millisecond Calendar.Clock. The results are summarized below. All 'Limes are given in
microseconds.

U. Michigan task rendezvous:
R_REND: Un-optimized: 485 Optimized: 485

PIWG task rendezvous:
T000001: Un-optimized: 458 Optimized: 457
T000007: Un-optimized: 459 Optimized: 456

PIWG exception handling:
E000001: Un-optimized: 26 Optimized: 25
E000002: Un-optimized: 100 Optimized: 102
E000004: Un-optimized: 358 Optimized: 358

PIWG subprogram overhead:
P000013: Un-optimized: 49 Optimized: 45

Thus, for this small sample, optimization appears to make little difference to benchmarks meas-
uring individual language features. This is not really surprising, since the tests measure only one
language feature, and they are designed to prevent optimizing compilers from removing the fea-
ture of interest from the benchmark. The "best" reduction in execution time for the above sample
is 8 perent for P000013; the "worst" is the apparent gain of 2 percent for E000004.

A quick attempt was made to compare optimized and un-optimized runs of a composite bench-
mark, Dhrystone. When modified to run for 100,000 iterations (originally 10,000), both the op-
timized and un-optimized versions crashed with a STORAGE_ERROR. Running optimized and
un-optimized versions of the original program produced the result below. Times are in mil-
liseconds, not microseconds, and the results are accurate to plus or minus 0.01 milliseconds.

PIWG Dhrystone benchmark:
A000091: Un-optimized: 0.71 Optimized: 0.61

2The manual does not give much detail about the kinds of optimization provided by the /OPTIMIZE qualifier, apart from
saying that it allows subprograms to be (a) called from parallel tasks, (b) called recursively, (c) expanded inline if the
INLINE pragma is given, and (d) expanded inline automatically, whether or not an INLINE pragma is given. The global
optimizer optimizes across-compiler collections of units.

CMU/SEI-87-TR-40 55

56 CMU/SEI-87-TR-40

UNLIMITED, hTNCT ASSITED~f
SECURITY CLASSIFICATION OF: THIS PAGE

REPORT DOCUMENTATION PAGE
I& REPOIRTSECURITY CLASSIFICATION 1b. RESTRICTIVE MARKINGS

UNCLASSIFIED NONE
2,. SECUAIT- CLASSIFICATION AUTHORITY 3. DISTRIBUTION/AVAILABILITY OF REPORT

N/A APPROVED FOR PUBLIC RELEASE
2b ELSSIFICATION/OOWNGRAOING SCHEDULE DISTRIBUTION UNLIMITED

N/A _

4. PERFORMING ORGANIZATION REPORT NUMBER(S) S. MONITORING ORGANIZATION REPORT NUMBER(S)

CMU/sEI-87-TR-40 ESD-TR-87-203

Sa. NAME OF PERFORMING ORGANIZATION mb. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION

§OFTWARE ENGNEERING INSTITUTEI SEI SEI JOINT PROGRAM OFFICE
GC. ADDRESS (City. St. Wind ZIP Code) 7b. ADDRESS (City. State and ZIP CodeJ
CARNEGIE MELLON UNIVERSITY ESD/XRS1
PITTSBURGH, PA 15213 HANSCOM AIR FORCE BASE, MA 01731

Se. NAME OF FUNDINGISPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

ORGANIZATION (it app"cabie)

SEI JOINT PROGRAM OFFICE SEI JPO F1962885CO003

&C. ADDRESS (City. State and ZIP Code) 10. SOURCE OF FUNDING NOS.

CARNEGIE MELLON UNIVERSITY PROGRAM PROJECT TASK WORK UNIT

SOFTWARE ENGINEERING INSTITUTE JPO E LE MENT No. NO.NON.
PITTSTRC=H- PA 15213 N/A N/A IN/A
BI. ARk MA&I IRICi~~HRARS ON THE MOTOROLA +68020: SMAYNDRE 3ULTS

12. f& Pf6 4i$6~t ftj~i

13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Yr.. Mo.. Day) 15. PAGE COUNT

FINAL FROM ___ TO ____ DECEMBER 1976
16. SUPPLEMENTARY NO0TATION

17. COSATI CODES 18. SUBJECT TERMS lContaiw.. on reuerse if nectuauY and identify by biock number)

FIELD _GROUP _ SuB. GA. ADA, PEFORMANCE, MOTOROLA MC68020, BENCHMARKS

mance benchmarks on a Motorola MC68020 microprocessor (MVMEI 33 VMEmodule
Monoboard Microcomputer), using the Systems Designers Ada-Plus, the TeleSoft
TeleGen2, and the VERDIX VAXtVMS hosted cross-compilers. A brief description of
the benchmarks and the test environment is followed by a discussion of some problems
encountered and lessons learned. Wherever possible, the output of each benchmark
Program is also included.

20. DISTRIBUTION/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION

UNCLASSI FIED/IUNLIMITED 0fI SAME AS ROT. 0 DTIC USERS XX UNCLASSIFIED, UNLIMITED

22a. NAME Of RESPONSIBLE INDIVIDUAL 22b. TELEPHONE NUMBER 22c. OFFICE SYMBOL

KARL SHINGLER 4,2)2873 E P

0O FORM 1473, 83 APR EDITION OF I JAN 73 IS OBSOLETE. UNLIMITED, UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE

