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NEAR FIELD TURBULENT WAKE PREDICTIONS

INTRODUCTION

There are several experimental and numerical studies of the turbulent wake of
a self propelled body. Schetz and Favin (1977, 1979) have computed the near-body
wake using an elliptic, axisymmetric model with a one-equation turbulence model.
Comparisons with wind tunnel data show good ageement with axial velocity but an
underprediction of the swirl velocities. Swanson and Schetz (1975) made numerical
predictions of the far wake using the parabolic axisymmetric Navier-Stokes equations
with a one-equaLion turbuience model at locations far enough downsteam where the
swirl velocities could be neglected. Swean (1987) has simulated the turbulent wake
for a large range of downstream locations including axial and swirl velocities using
the three-dimensional parabolic Navier-Stokes equations and two-equation turbulence
model with a sophisticated Reynolds stress closure. In general, comparisons with the
wind tunnel data of Mitra, Neu, and Schetz (1985, 1986) were good especially when an
account was made of the axial pressure gradient in the otherwise parabolic model.

The purpose of the present study is to develop a partially parabolic model of the
wake of a self propelled body. The goal is to eliminate the need for measured down-
stream pressure data used in Swean's 1987 study while maintaining the overall good
agreement with the experimental data. The following sections contain a description of
the numerical model. A description of the experiments and Swean's (1987) model are
available in his report.

NUMERICAL MODEL

Simplifying Assumptions

The most common form of numerical model for the Navier-Stokes equations is
elhptic. Numerically, this makes no assumptions about the importance of the various
terms. It does require the storage of the dependent variables over the entire domain
of interest. In the case of a turbulent wake, this includes 6 dependent variables (three
flu:d velocities, pressure, turbulent kinetic energy and dissipation) over a domain that
is relatively limited in the transverse coordinates (perpendicular to the principle flow
direction) but which may be orders of magnitude larger in the axial direction.

To overcome the problem of computer storage for the dependent variables, the
parabolic assumptions are usually made whenever axial diffusion terms can be ignored
and the axial velocity suffers no reversal (see Patankar and Spalding, 1972). The
solution may be constructed by starting from the location of the initial conditions and
marching downstream storing the values of the dependent variables at the current axial
location only. The advantages of this procedure are greatly reduced computer storage
and often reduced cpu time.

Manuscript approved September 22, 1988.



Frequently a situation occurs where the parabolic assumptions are valid except
that the axial pressure gradient is important (see Pratap and Spalding, 1976). The
procedure here is similar to the purely parabolic case except that the pressure must
now be stored over the entire domain and multiple sweeps through the flow field are
required to calculate the pressure field. The advantage of this procedure is again
reduced computer storage requirements, hovever execution times are not improved.
This procedure is referred to as the partially parabolic method and we will attempt to
adapt it to model the wind tunnel data of Mitra et al. (1985, 1986) for the self-propelled
body with a simulated free surface.

Governing Equations

The equations describing the partially parabolic form of the Navier-Stokes equa-
tions are shown in Table 1. The distinguishing feature of these equations are that all
stress gradients in the axial direction except for pressure are neglected. For this we
require that 1) there is no flow reversal in the axial direction and 2) the Reynolds
number is high enough that the Reynolds =ind viscous stresses are significant only in
the directions normal to the streamlines.

Typically, this form of the Navier-Stokes equations has been used to model interior
and exterior flows for which pressure influences are transmitted from a downstream lo-
cation to an upstream location. The downstream pressure disturbance, for examples,
may be produced by an obstruction in a duct (confined flow) or a highly curved sur-
face (exterior flow) and is numerically transmitted upstream through successive sweeps
through the domain. In these situations the initial conditions used to start the calcu-
lation are the same as for parabolic flows i.e. three velocity components and turbulent
kinetic energy and dissipation.

The sequence of steps used to calculate this type of a partially parabolic flow field
is the following:

1) The three dimensional pressure field is assigned guessed values, usually zero.

2) The initial values of the u, v, and w components of velocity are advanced to
the next station using the parabolic procedure. Existing values of pressure are used
to evaluate the pressure gradient terms in the momentum equations. Any auxiliary
equations such as turbulence or temperature are advanced at this time also.

3) The pressure correction equations are used to correct the values of pressure
and velocity to satisfy continuity. The pressure correction equations are cast in three
dimensional form but upstream and downstream values of the correction are assumed
zero. The pressure is stored for the next axial sweep.

4) A new downstream station is selected and the momentum and continuity equa-
tions are solved as in steps 2 and 3. This procedure continues until the last downstream
location is reached.
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5) A new axial sweep is initiated using the initial conditions and the three di-
mensional pressure field calculated from the previous sweep. Steps 2 through 4 are
repeated until the pressure correction or, equivalently, the mass residual becomes suf-
ficiently small.

An important feature of the procedure is that the pressure disturbance is transmit-
ted upstream by the calculation of the axial pressure gradient causing an axial velocity
gradient and mass residual which is then eliminated by adjusting the upstream value
of pressure via the pressure correction equation. This does not leave the initial pres-
sure conditions intact. For the situation where the pressure disturbance has its source
downstream from the initial plane, this presents no problem.

Unfortunately, this is not the case in the current situation. The pressure distur-
bance is caused by the body and propeller upstream of the computational domain. The
initial pressure distribution, which must be specified, has a large influence on the flow
field close to the body and propeller.

When the standard method of Pratap and Spalding (1976) is used, the solution
converges relatively quickly with small mass and momentum residuals. However, the
procedure has no mechanism to incorporate the effects of Ln initial pressure distribu-
tion in the converged solution. The result is that the initial pressure distribution is
annihilated by the pressure correction equation leaving a pressure distribution which
does no work on the flow field. The velocity fields tend to relax monotonically toward
free stream values unlike the trends apparent in the wind tunnel measurements.

Mathematically it is unusual to find both the normal velocity and the pressure
specified at a boundary as it is here. The problem becomes over-specified at that lo-
cation and there are not enough degrees of freedom to satisfy both the Navier-Stokes
equations and continuity exactly. The standard method of Pratap and Spalding (1976)
formulates the problem with non-zero initial conditions on velocity only. The comple-
mentary formulation using the initial r'-essure distribution instead of the axial velocity S
was also computed with a similar lack of success. Instead of annihilating the initial
pressure as before, it is the initial axial velocity which becomes distorted.

There is a method in the literatur, which naturally incorporates the Dirichlet type
of boundary condition on the pressure equation at the initial plane. Where the original
method calculates the elliptic pressure field in a marching procedure starting at the
initial plane and marching downstream, a method similar to Chilukuri and Pletcher
(1980) can be used which solves the three-dimensional pressure equation and leaves the
initial pressure conditions intact. The basic assumption here is that either the initial
pressure gradient is zero (which again eliminates the influence of the initial pressure)
or, the initial pressure and velocity cozditions satisfy the Navier-Stokes equations.
the continuity equation, and the modeled form of the Reynolds stresses (which is the
assumption used here). Mathematically, the difference between these two methods
is that the Pratap method solves an approximate equation which is used to correct
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a previous estimate of pressure where the method of Chilukuri calulates the actual
elliptical pressure field based on values of the velocities using the full Navier-Stokes
equations.

The goal here is to find a numerical procedure using either form of the pres-
sure/continuity equation which compromises between satisfying the Navier-Stokes
equations and continuity while incorporating both the initial axial velocity distribu-
tion and initial pressure. This compromise will only be noticable near the initial plane
and will depend on the quality of the initial conditions.

Method Development

As mentioned before, the first method used was the procedure of Pratap and
Spalding (1972). Because this method is unable to use initial pressure conditions the
solution converges to a mathematically satisfying but physically unrealistic flow field.
In order to correct this deficiency in the method, a modification was used to keep the
initial pressure field intact. At the beginning of each sweep, the axial velocity field
was advanced using the pressure gradient betw-en the initial pressure plane and the
first calculated pressure plane downstream. The transverse velocity fields are advanced
to the next downstream station. The pressure correction equation is used to correct
the transverse velocity components but not the initial pressure. At the second and
all subsequent stations downstream, the velocity fields are advanced and the pressure
correction equation is used to correct both the pressure and transverse velocties.

This represents a simplistic way to overcome the initial pressure field problem.
Unfortunately, the solution diverges at the initial plane location. The connection be-
tween the pressure at the initial plane and the first station downstream is too weak
and a discontinuity in the steamwise variation of the axial velocity and pressure fields
results.

To strengthen the steamwise connections in the pres-"re field, several modifications
were used but without much success. A three dimensional elliptic version of the pressiire
correction equation was solved at all axial stations including the initial plane. Here
again, the initial correction was used only to correct the velocity field leaving the initial
pressure condition intact. This calculation also diverged. Instead of simply forming
a discontinuity in the axial velocity field as the previous attempt did. this calculation
eventually became unstable again at the location of the initial plane.

At a very minor increase in core requirements over the three dimensional pressure
correction algorithm, the method of Chilukuri et al. (1980) can be used. This method
does not use the pressure correction equation. Instead, the discretized forms of the
Navier-Stokes equations are used in the continuity equatior. After some manipulation,
the equations can be separated into a standard form for the full pressure equations with
source terms containing the velocities from the previous sweep. Although this source
term appears to be difficult to compute accurately, it actually is already available from
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the previous calculations of the velocity equations. In this way, there is little increase
in computational effort or memory compared to the 3-D pressure correction method.
The overall structure of the program is affected because the two dimensional pressure
correction equation must be retained both for the initial sweep of the entire domain to
generate the initial guess of the downstream pressure field and to maintain continuity
in the regions where the axial pressure gradient is ignored.

There are two potential advantages using this method. The first one, which is
often found in the literature, is that the convergence rate is improved because the full
Navier-Stokes equations are used to satisfy continuity rather than the approximate form
of the pressure correction method. More important for the current problem is that the
boundary conditions for the elliptic equation are in the form of pressure rather than
a pressure correction which must be surpressed at the initial plane. The coefficients
linking the pressure field to the initial pressure conditions are easily calculated. It does
not, however, alter the over-specified condition at the initial plane.

In practice the faster pressure convergence rate expected of this method was ap-
parent over most of the flow field. It did not occur at the first axial station and, in
fact, the calculation slowly diverged and eventually became unstable at that location.

The last two methods which have been described involve three dimensional calcu-
lation of the pressure field and, as a result, require considerably more computer storage.
The memory limitations of the LCP2 Vax 11-780 threaten to make the axial grid spac-
ing unacceptably coarse. An examination of the parabolic calculations showed that the
effect of the axial pressure gradient became negligible at about x/D = 6. Thus the pro-
gram was modified so that the partially parabolic region was confined to 0 < xi'D < 6
and a parabolic calculation was used to calculate the rest of the flow field 6 < x/D <
28. An additional advantage to this procedure is that the multiple sweeps are restricted
to the reduced domain and the full domain is calculated only on the last sweep. greatly
reducing cpu requirements.

Modified Flow Models

All attempts to make the flow field conform to all parts of the model within the
first step downstream creates a highly distorted pressure field which, in turn, causes
the axial velocity gradient to become distorted. The basic method which appears to
avoid this instability is to separate the calculation of the axial pressure gradient from
the transverse pressure gradient in some way. Two approaches were used and their
advantages and disadvantages will be discussed.

Pressure Correction Method

There are several advantages to using the pressure correction method in modified
form for this problem. The most obvious is that computer storage requirements are



small. The second is that all disturbances in this type of flow situation are propogat-
ing downstream. This eliminates one of the primary advantages of three dimensional
pressure calculation methods which is that downstream pressure disturbances are felt
throughout the domain in one axial sweep. The final advantage is that the equation
is directly formulated to annihilate the mass residual. It uses an approximate form
of the Navier-Stokes equations in the continuity equation and has the property that
the calculated pressure field will satisfy the Navier-Stokes equations only in the limit
of zero mass residual. The approximate nature of the initial conditions should be less
important using this method.

The marching form of the pressure correction equation is used here. During each
sweep, the pressure is stored at each axial downstream location but the pressure gradi-
ent in the axial velocity equation is used from the previous sweep. Notice that by using
the marching version of the pressure correction equation we maintain the advantage of
reduced computer storage requirements compared to full three dimensional pressure or
pressure correction methods.

In this way, a purely parabolic calculation is used to provide the initial axial
pressure distribution. All subsequent sweeps will use the calculated pressure gradient.
The difference between this formulation and the standard pressure correction method
is that the initial guess for the transverse pressure field at each axial station is advanced
from the immediate upstream location. The difference between the marching scheme
and the three-dimensional methods is that axial effects in the marching scheme are
included in the pressure equation only through the neighboring pressure correction
coefficients. The values of actual upstream and downstream pressure corrections are
assumed to be zero. Only the transverse velocities are adjusted using the pressure
corrections. If the axial velocity is also adjusted, the effect is the same as modifying
the axial pressure gradient which effectively removes the upstream pressure conditions
and the resulting pressure gradient evenutally relaxes to a version which again does no
work on the axial ve!ocities.

By advancing the upsteam transverse pressure as an initial estimate and correcting
only the transverse velocities, the effect of the initial pressure conditions is transmit-
ted downstream because each new transverse pressure field is exactly the sum of the
upstream pressure plus the correction needed for the actual mass residual caused by
advancing one axial location. At each axial location, only one iteration of the pressure
equation is needed. Because only the transverse velocities are corrected during the
sweep, the mass residual cannot be eliminated during the current sweep, rather, sev-
eral sweeps are needed so that the axial velocity may respond to the new pressure field.
Several implicit iterations at the same axial location would produce a slightly smaller
mass residual but subsequent pressure corrections would not be accurate. The first '
iteration would produce a pressure and velocity correction based on the actual mass
rt-sidual. Further iterations at the same location would produce pressure corrections
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based on the axial part of the mass residual which cannot be immediately eliminated.
A distorted pressure field would result. During the last axial sweep, however, multiple
implicit iterations should be used as the pressures calculated then will not be used for
the axial pressure gradient and the greatest possible reduction of the mass residual is
needed to accurately predict swirl velocities.

Similarly, the mass residual could be eliminated during a single sweep by writing
the pressure correction equation only for the transverse coordinates and eliminating the
upstream and downstream coefficients. This forces the transverse velocities to be solely
responsible for satisfying continuity. The result is that at the first station downstream
of the initial condition plane the maximum swirl velocity was almost doubled and the
calculated transverse pressure was no longer related to the axial variation of pressure
and could not be used for this on the next sweep.

The final result of this calculation was a flow field which converged within 15 axial
sweeps. Near the initial condition plane, a finitc mass residual remains but downstream
it quickly dies out. This finite residual appears to be caused by the approximate nature
of the initial conditions. Comparisons with the experimental data will be presented in
a later section.

Total Pressure Formulation

This method is actually a small modification of the method of Chilukuri (1980)
and uses the same general principles as the previous method. Here, the axial sweep
of the velocities and transverse pressure is exactly the same. On the first sweep, the
calculation is again purely parabolic with no axial pressure gradient and the resulting
three-dimensional pressure field is stored as an initial guess. On subsequent sweeps, the
pressure correction equation is calculated to satisfy the transverse continuity condition
in the same way as the previous method. The pressure field calculated by the pressure
correction method is not stored. Instead, the three dimensional coefficients for the full
pressure equation are calculated and, at the completion of each axial sweep. the full
pressure field is calculated.

Here since we are not using the values of the calculated transverse pressure field
for the axial pressure gradient, multiple implicit iterations at each axial location are
useful to provide the best estimate of the converged, mass conserving velocity fields
using the current estimate of the axial pressure variation. This will help provide the S
best estimates of the coefficients for the pressure equation.

This method has some of the same disadvantages of the original version which is
increased computer storage over the pressure correction method. In addition, because
a hybrid procedure is used, i.e. the pressure correction method is solely used for
continuity and velocity correction and the total pressure method is used to calculate
the axial pressure gradient, the calculation converges much more slowly requiring about
100 iterations. In addition, this method uses multiple implicit iterations on all but the
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first axial sweep while the pressure correction method uses multiple iterations only
during the last sweep. The final result is that the pressure correction method required
approximately 1.75 hours of cpu on the LCP2 vax while the total pressure method
required approximately 25 hours. How much of this difference was due to increased
calculations and how much was caused by the increased need for memory paging due
to the much larger memory requirements is unknown. Of course either method would
require negligable cpu times on the NRL Cray.

The advantage of this method is that more of the physics of the problem are
included in this calculation of the axial pressure variation because the form of the
equation is nominally exact. As we shall see, the differences between the predictions of
the two methods are relatively small.

COMPARISONS WITH EXPERIMENTS

The experiments used to compare with the numerical predictions have been ex-
tensively reported in Mitra, Neu, and Schetz (1985, 1986). The experiments were
essentially of double axisymmetric bodies connected by a thin strut in a wind tunnel.
They were used to simulate a SWATH (Small Waterplane Area Twin Hull) type ship
and the plane of symmetry represents the free surface. No attempt was made to sim- 0
ulate the second half of this type of ship as the hulls are separated far enough in an
actual ship that the merging of the wakes would not occur in the domain of interest.
Several sets of experiments were run. In the situation we will be concerned with here.
the free stream velocity was 45.72 m/s, both the body and its mirror image were self
propelled with a 15.24 cm propeller with thrust balanced against drag using a strain
guage, and transverse plane data was taken at 3.17 cm (x/D = .208), 15.24 cm. (x/D
= 1), and 427 cm. (x/D = 28).

In addition, a detailed comparison between these measurements and a parabolic
finite element code is reported in Swean (1987). In Swean's report comparisons were
made with the mean velocities, turbulent kinetic energy. and Reynolds stresses. In
order to accurately model the self-propelled body, Swean used the measured pressure
profiles at the three axial positions to estimate the axial pressure gradient. In general,
the agreement was very good. The purpose of the current study was to present a
calculational model which would make predictions based solely on initial plane data.

Here we will compare the predictions of the present models with the experimental
data and the previous parabolic predictions. Only those features of the data which
are influenced by the partially parabolic features of the code will be presented. The
parabolic finite element code used by Swean solved the same set of equations describing
momentum transport and turbulent kinetic energy and dissipation as the present finite
volume code. Continuity was satisfied in both using a Poisson type equation but the
current formulation uses a predictor-corrector type formulation while the finite element
code uses a penalty method. To differentiate between the two methods and a purely
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parabolic (P) calculation, we will refer to Swean's method as a quasi-partially parabolic
model (QPP) and the present method as modified partially parabolic (MPP)

Even though experimental data is available to initiate the calculation, this data
covers only part of the domain (see Swean, 1987 for details). The data was interpolated,
extrapolated,and reflected to cover the missing areas. This was made especially difficult
because of the absence of true symmetry due to the rotation of the fluid caused by the
propeller. This process contributes to the approximate nature of the initial conditions.
Here, we use the initial conditions as formulated by Swean including the grid, the
velocity fields, the turbulent kinetic energy, and the turbulent dissipation. The only
modification made was to fit the data onto a staggered grid.

Comparisons between the MPP and QPP predicted and measured values of the
axial minimum and maximum velocity are presented in figures 1 a and b. The most
striking feature of these plots is the peak of the maximum velocity which occurs down-
stream of the initial plane. This peak is caused by the axial pressure gradient and shows
the need for the partially parabolic assumptions. It is interesting that the predicted
axial location of this peak and the location of the measured values coincides. No special
effort was used in the calculation to insure this feature. A strictly parabolic calculation
with no streamwise pressure gradient does not predict a downstream maximum for the
axial velocity.

The QPP prediction of this data set also showed that the measured and predicted
peak occured at the same axial location but this was due to the use of the measured axial
pressure gradient which places the peak at that location. The value of the measured
peak axial velocity is greater than the predicted value in both the QPP and MPP
predictions. In the MPP calculations, the underprediction appears to be caused by
the initial adjustment region directly downstream of the initial plane. During these
initial calculations, mass continuity is not perfectly satisfied and some of the effect of
the pressure gradient appears to be lost.

The QPP calulation requires that continuity be satisfied to within a chosen toler-
ance before advancing to the next axial station yet the peak value of the axial velocity
is less than either the measured values or the current predictions. There are two pos-
sible explanations for this. The simplest reason is that it uses a value of the pressure
gradient which is an average between the initial plane and x/D = 1 downstream and
which has been extensively extended to cover the entire transverse plane. The other
possible cause may be due to the method in which overall continuity is satisfied. For
the present MPP models, during any sweep through the axial domain, the axial pres-
sure gradient used was calculated from the previous sweep. The traditional method of
satisfying continuity at each axial location is to correct all three components of veloc-
ity. It is easy to show that by correcting the axial velocity in the MPP method. the
effect is to change (usually reducing) the axial pressure gradient. Assuming for the
moment that the finite element QPP code is similar in this respect. the downstream
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axial velocity peak would have been reduced by a strict continuity requirement at the
first several stations. This could possibly explain the smaller peak found in the QPP
model compared to the MPP model.

The other profile shown is the minimum axial velocity either at the body center
or behind the strut at the simulated free surface. Initially this minimum occurs at the
center of the body but, at some distance past the x/D=l station, the velocity deficit
behind the strut at the symmetry line becomes the minimum. The use of the axial
pressure gradient in both the QPP and MPP calculations causes the velocity deficit
in both locations to relax back to free stream values much more quickly than a purely
parabolic prediction. In fact, the current MPP as well as the QPP calculation appears
to have slightly overpredicted the relaxation rate compared to the experiments.

Qualitatively, both the QPP and MPP calculations show the same behavior. Quan-
titatively, the velocity defect behind the body center for the MPP method continues
to relax back to the free stream value faster than the QPP method. This changes the
location where the mininum axial velocity moves from the body center to the intersec-
tion of the strut and symmetry line. For the MPP method, this occurs at about x/D
- 3 and for the QPP method at about x/D = 7. The experimental measurements only
shows that it occurs sometime between the x/D = 1 and x/D = 28 stations.

Figures 2, 3, and 4 shows the development of the swirl velocity compared to the
experimental values. In the plot of values at x/D = 1 the predictions agree well with the
measured values. The maximum value of swirl is slightly less than either the measured
or the QPP model. The reason for this is that this value is very sensitive to the mass
continuity calculations upstream. Since continuity is not used as a criterion for the
local convergence during each sweep, a set number of iterations (from 3 to 10) were
performed at each axial location before advancing downstream. The swirl predictions
improved as the number of iterations increased but the overall execution time quickly
became excessive. The calculations using 20 iterations in the last sweep of the pressure
correction form of the MPP model showed that this minor difference (seen here for 10
iterations) was due to this sensitivity.

A more interesting difference is seen in the comparison at x/D = 28. Again the
value for the maximum swirl velocity calculated by the MPP method is slightly low.
The center of the swirl has also moved slightly to the right unlike the QPP method.
The reason for this illustrates the differences in the computational methods. The finite
volume calculation uses a hybrid upwind/central difference method. The finite element
method uses something similar to artificial dissipation to maintain numerical stability
and the effect of this was minimized for this calculation by Swean. Thus the finite
volume calculation has considerably more numerical diffusion and the effect of the
mirror image body and propeller was felt more quickly. The effect of this image is an
induced translation of the propeller vortex in the direction of the tangential velocity
at the symmetry line similar to the self induced translation of a vortex pair (see for
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example Sarpkaya, 1982). While the effect is real, it is obviously overestimated here
due to the excessive numerical diffusion. A simple solution for this problem is the use
of third order upwind techniques such as the QUICK scheme (Freitas et al. 1985). At
this axial location some countersign vorticity begins to appear where the swirl velocities
interact with the right boundary. This is again caused by the translation of the propeller
vortex. The predictions are good nevertheless.

A comparison of the axial decay rate of turbulent kinetic energy at two locations for
both the MPP and QPP calculations is shown in figures 5 a and b. The top line shows
k for the location directly behind the body at the propeller center. At the initial plane,
the body center has a relatively low level of turbulent energy surrounded by higher
levels. The QPP method predicts that at the x/D = 1 axial station, the surrounding
turbulent energy was expected to diffuse inward, eliminating the depression in k and
raising the value above that at the initial plane. Measurements seem to indicate much
less diffusion was present leaving the depressed center area intact with a value less than
the initial value at x/D = 1. As shown here, the MPP predictions are that the value at
the body center does drop going downsteam. This agreement with the measurements
may be more fortuitous than accurate however. In figures 6 a-d the radial distribution
of k at x/D = 1 is shown. Although the center value is quite reasonable, the value
of the surrounding peak is depressed. The figure showing the QPP results at that
location show that although the center depression is eliminated, the estimates of the
surrounding peak are quite good. It appears that in the current model the generation
terms in the turbulent kinetic energy equations are too crudely estimated.

The original programming was designed to produce readily recognizable code, thus*
the various Reynolds stress components which went into the generation terms were
left intact. Derivatives of the Reynolds stresses were made using the discrete volume
values which were in turn, found from the surrounding values of velocity, k and e.
The result is that a point value for the generation term is calculated from distant
values of the other primitive variables and the smea. ",.g causes an underestimate. In
the finite element code, all derivatives are evaluated at the point they are used with
second derivatives reduced to products of first derivatives. The result is that much less
diffusion is expected.

A future improvement on this code would be to reduce the source terms in the
turbulence equations to primitive variables (u, v, w, k, and e). This would require some
fairly tedious manipulations and the coding would be much less transparent but nu-
merical diffusion should be reduced and the peaks in turbulent kinetic energy should be
higher. Whether the center depression in turbulent kinetic energy would be maintained
is not clear and the numerical diffusion would still be greater than that found in the
finite element calculations.

The experimental data has a second, much higher peak value of turbulent energy
at about R/D = .4 as shown in figure 6. This peak actually increases by about 50% by
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x/D = 1 from the initial plane. All of the models predicted approximately equivalent
results for this feature. Instead of increasing, the peaks decayed by about 50%. At this
location, velocity gradients and predicted turbulent production are small. It appears
the the measured increase in turbulent energy is actually caused by velocity fluctuations
due to the passing of the propeller tip. An analysis of the turbulent spectrum by Mitra
et. al. (1986) shows a large peak at the primary and harmonic frequencies associated
with propeller rotation.

Comparisons Between Current Methods

Thus far, all results shown have been for the total pressure formulation version
of this model. As was described earlier, this version uses the complete Navier-Stokes
equtions in the continuity equation to calculate pressure. It was used primarily because
it contains more of the physics in complete form than does the method using the 0
pressure correction. There are two reasons for preferring the pressure correction version
if the accuracy is comparable. First, the execution time is reduced by a factor of 16
and, second, storage is reduced by a factor of 8. Of course, the magnitude of these
reductions are specific to this problem but they appear to be conservative estimates.

Some general observations concerning the predictions produced by both versions 0
will illustrate the differences. First, they differ primarily in the way they calculate the
axial pressure distribution. The total pressure version can be expected to produce a
better estimate of the axial pressure distribution at the expense of small errors in the
satisfaction of continuity near the initial plane. This is because the axial pressure dis-
tribution is calculated using a global, three dimensional calculation but the equations 0.
used are different from the ones used to calculate transverse pressure to satisfy conti-
nuity. The pressure correction method is expected to satisfy the continuity equation
better but produce a cruder estimate of the axial pressure gradient. This is because
axial pressure is calculated using an approximate equation but the axial and trans-
verse pressure calculations are consistant (if separate). Finally, if continaity is satisfied
exactly, both methods should give equivalent results.

Figure 7 contains a comparison between the decay of the maximum swirl velocity
for the total pressure version, the pressure correction version, and the measurements.
The pressure correction version is better at satisfying the transverse part of the problem.
At x/D = 1 the maximum swirl is equivalent to the QPP finite element code and closer 0
to the experimental measurements. In addition, the maximum mass residual (which
naturally occurs just downstream of the initial conditions) is much less for the pressure
correction method than the total pressure version.

The total pressure version appears to be better at satisfying the axia. part of the
problem. Comparisons between the maximum and minimum axial velocity as shown
in figure 8 are, in general, better using this version. In addition, mass continuity is
satisfied much better using this method after a few downstream steps. This is expected
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once the problems associated with the initial conditions die out. After about x/D = 5,
both methods give equivalent results. This is expected since the mass residual of both
quickly becomes small downstream of the initial plane.

Comparisons between predicted and measured pressure at the downstream loca-
tions show only general similarities. Figure 9 shows the variation of the minimum and
maximum pressure as a function of axial position. The trends are the same but the
maximum pressure difference is larger for the pressure correction method and appears
to be closer to the measured values.

Figures 10 a - c shows that the calculated transverse pressure distribution had
only a general resemblence to the measured distribution at x/D = 1. Figure 10a shows
the interpolated experimental pressure data at x/D = I and figures 10 b-c show the
distributions computed by each of the two methods described above. With reference to
figure 10a, however, it should be noted that the experiments were principally confined to
the 2nd quadrant (upper left) with the only additional data existing along the 9 = 225'
and 270° radials (as measured counter-clockwise from the right horizontal axis). Since
the only natural plane of symmetry for the wind-tunnel configuration is z/D = 1, it was
necessary to interpolate very sparse data to initialize the 3rd quadrant after which the
data were reflected to quadrants 4 and 1, either symmetrically or anti-symmetrically as
appropriate. As a consequence any data structure shown can be misleading especially in
quadrants 3 and 4. The primary development in the calculations here is the transition
of the pressure at the center of the body from a large positive pressure to the minimum
value of negative pressure. Surrounding the body center is a region of high pressure.
Otherwise, the experimental values show much more detailed structure. Whether or not
some of this structure is the result of the extrapolation and interpolation routines used
to map the data over the entire domain is unknown. Here again there are differences
between the two calculation methods. The complete pressure formulation captured
the tighter structure better while the pressure correction method estimated the total
pressure difference better. 0

In figures 11 a and b, the calculated pressure distribution at x/D = 28 definitely
shows the influence of the image body and the drag wake of the strut on the calculation.
Interestingly, this is also clearly seen in the experimental data. At this axial location
there was a strong, rectangular depression in the experimental pressures which seems
to be either an artifact of the measurement technique or a pressure drop due to the
wind tunnel walls and this was removed. As was described earlier, the effect of the
image body was not evident in the swirl velocity data at this axial location.

CONCLUSIONS

The near field turbulent wake of a self propelled body presents several interesting
challenges for numerical prediction schemes. The domain of interest is many times
larger in the principle flow direction than in the transverse directions which indicates
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the use of the parabolized form of the Navier-Stokes equations. At regions very close
to the body, reversed flow makes these techniques invalid. At locations far enough
from the body that the axial velocity is unidirectional, the flow field can be adequately
described in the upstream plane only by using all velocity components, turbulent model
components (such as k and e), and the pressure. For most numerical schemes this
represents an over-specified condition.

Two methods are shown to deal with this problem within the context of the par-
tially parabolic equations. In both, the primary concept is to separate the calculation
used for local mass continuity and streamwise pressure gradient. In both cases primary
emphasis is placed on the local continuity equation and the results of that calculation
is used to estimate the streamwise pressure variation.

Of the two methods, the procedure which uses an exact equation to calculate
streamwise pressure variations and an approximate transverse continuity/pressure
equation appears to match experimental measurements more closely. The procedure
which uses the approximate pressure correction method for both streamwise pressure
variation and transverse continuity converges much more rapidly, requires much less
computer storage, and makes predictions reasonably close tc the total pressure formu-
lation and experiment.

Both methods resut in good quantitative agreement with the measured velocity
data in the near-wake region and do so without the necessity to empose the emperical
pressure data as was done in the QPP calculation.
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Table 1 - Parabolic Form of the Governing Equations

Momentum:

8(U 2) 8(VU) 8(WU) _ ,z r , Opp 8  + p + p  + z + F r
Oa a OX

8(UV) 8(V 2 ) a(wV) _%"Z + a + Fy
ax ay +P--y-- - + z y

8(UW) 8(VW) 8(W2 ) - , OP
p ax +1 a +P = --- +  Oz a- + F =

Continuity:

8U OV OW

8X + y + z-

Turbulent Kinetic Energy:

o(Uk) 8(Vk) 8(Wk) +oCk ok c(k-k ok
+ + --- + 9 ((--k - v) )k)+

8 .Ckk.....k 8 .CkkOk .. 8_U 0OUa (! k.1 1--a"k) + -- ' +"u + uw- k + = 0

Turbulent Dissipation: 0

8(ue) +(V) +(WE) 9 ck-To. ck72 o )+
+ -_+ o--)+ oo9 (e

-- X- y Dz(y fE Y z

aC w + a Cek- ) + eCi,,+T.c,,--:: +*iaO c2 =
yk Y k Z k

Where:

T is the total Reynolds and molecular stress,e.g. 7Z: i-.u- - pU'v

P is calculated according to which method is used.
P(y,z) is adjusted to satisfy continuity
u,x act in the axial or streamwise direction
v,y act in the horizontal, transverse coordinate direction
w,z act in the vertical, transverse coordinate direction
F is the momentum source term
{Ck, C,, C,, C,2} = {.12, .09, 1.44, 1.92}
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Table 1 (cont.)
Reynolds Stresses:

, -  Ck - 2 - 2C4.1.(2u

=- +24t T , + +72v' = C3k - C-C ( a U  - (

W/2-  Ck -C ,C,, { .,u-6 - 2C, k aW

u/v/=~ ~ ~ ' -Cz av ,. ,. a.~ ay 2ayray + %..Y))

C A! " 'k3 (Lu,( W- + a"V ) + 2!L' ( - + 2-))

= !L + 2W_) _ C-2,-C4,3 ( "U 4'U

{C1,,C2, C3, C4} = 1.94, 067,56,0681

Pressure Equations:

Total Pressure Formulation:

6

ApP= pD'PA, + (pU, - pUad)AyAz + (p, - pf,,)LKAj z + (p"V - pt' )AX .
1

where
Ui are the reduced velocity components

A---- [ I Ai" + Bu + Dp,uu]
I, [E 4 A iv + B v+ Dp,vv

Wi= A:i-;-- I Ai, + B + D,,,']

Pi axe the pressures at location i
A, Bi, Di, axe coefficients from the momentum equations

Pressure Correction Formulation:

6

A = Z pD'PiAi + (pU,, - pUd)AyAz + (pVe - pV,,,)AxAz + (pIV, - pIV,),X.!j
1

where
U, are the calculated velocities at the control volume faces before continuity correction.
P[ are the pressure corrections at location i

17



(a) MPP CALCULATIONS
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Fig. 1 - Axinti Distributions of Minimum and maximum Streamwise Velocity
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Fig. 5 - Axial Decay of Turbulent Kinetic Energy
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Fig. 6 - Radial Distribution of Turbulent Kinetic Energy v D =I
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(c) MPP CALCULATIONS 0=90
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Fig. 6 - Radial Distribution of Turbulent Kinetic Energy
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Fig. 7 - Axial Decay of the Maximum Swirl Velocity
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Fig. 8 - Comparison of Minimum and Maximum Axial Velocities
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Fig. 9 - Axial Distribution of Minimum and Maximum Pressure
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(a) EXPERIMENTAL
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Fig. 10 - Transverse Pressure Distribution at x/D= 1
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(c) PRESSURE CORRECTION CALCULATION

F C p
E D~ A =-.063

CB B=-.053
C = -. 043
D =-.033

E E= - .023( (K/ IF= -.013

I ~H J=.007

Fig. 10. -Transverse Pressure Distribution at ,JD= I (cont.)
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(a) EXPERIMENTAL
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Fig. 11I- Transverse Pressure Distribution at x/D =28
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