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Abstract

- A most favorably oriented crystal located at a free surface of a f.c.c. polycrystal under

cyclic tension and compression of high-cycle loading is considered. An extrusion in this cry-

stal is shown to be caused by a positive slip in one thin slice "'P" and a negative slip in a

closely located slice "Q". An initial tensile strain e.. in the thin slice "R" sandwiched

between P and Q causes an initial compressive stress zta in R and a positive initia shear

stress cap in P and a negative one in Q. (The repetition of the subscript in Greek letters in this

paper as the above does not denote summations). Slices P, Q and R, slip direction cc and nor-

mal to the slip plane [ all make 450 with the free surface. The elongation in R induced by

this initial strain is called the "static extrusion". The difference in resolved shear stresses in P

and Q causes the build-up of plastic shear strain in P and Q, hence the extrusion growth. As

the extrusion grows, the initial compression in R decreases resulting in a decrease in the

extrusion growth rate. This decrease of compression in R tends to activate a second slip sys-

tem to slide. The plastic strain due to slip in this second slip system has a tensor component - -
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eaa, "vhich has the same effect as the initial strain e'i in causing the positive and negative

resolved shear stresses in P and Q, and hence the additional extrusion growth. In the present

study with the consideration of the secondary slip in R, the extrusion is shown to grow far

beyond the static extrusion. A similar conclusion can be made for the growth of an intrusion.

Introduction

Forsyth (1953) made an important discovery of extrusion and intrusion in fatigue

bands in aluminum alloys. Thompson, Wadsworth and Louat (1956) and Hall (1958) detected

extrusions in both copper and aluminum. Extrusions were observed by Meke and Blochwitz

(1980) and Mughrabi (1980) in their studies of persistent slip bands. Extrusions and intru-

sions in fatigue specimens were also observed by a number of other investigators.

Following the clue, provided by the observation on extrusions and intrusions, a number

of theories of fatigue crack initiation have been proposed by different distinguished investiga-

tors: Mott (1958), Cottrell and Hull (1957), Thompson (1959), McEviley and Machlin (1959),

Wood (1956) and others. One theory considered a column of metal containing a single screw

dislocation intersecting a free surface. Assuming that this dislocation travels a complete cir-

cuit, the volume contained in the circuit is translated parallel to the dislocation. This causes

the metal to extrude. However, this mechanism does not explain why the dislocation under

cyclic stressing does not oscillate back and forth along the same path rather than transversing

a closed circuit. Clearly, some form of gating mechanism is required to convert the back and

forth oscillation of the dislocation into a uni-directional circuit. This gating mechanism is

also needed in a number of other proposed mechanisms ac ,iscussed hy Kennedy (1963).
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It is well known that single crystal tests show that, under stress, slip occurs along cer-

tain directions on certain planes; this slip depends on the resolved shear stress and not on the

normal stress on the sliding plane. This dependency of slip on the resolved shear stress,

known as Schmid's law, has been shown by Parker (1961) to hold also under cyclic loadings.

Hence to calculate the slip distribution in a fatigue band, we need to calculate the resolved

shear stress distribution in the band.

Referring to a set of rectangular coordinates, we consider the strain to consist of the

elastic part eij and the inelastic part eij:

eij = e + eij

(1) .

The inelastic strain may be a combination of thermal strain, eT, creep strain e1q, plastic strain

J and initial strain el. Consider the elastic constants to be isotropic. The stress is related to

the elastic strain as

TCij --- 5ij X elkk +t 2G eij

(2)

where X and G are Lame's constants, 6ij is the Kronecker delta and the repetition of subscript

denotes summation.

The condition of static equilibrium is written as

S
!  

- 0 iV = TY

(3)

where the subscript after comma denotes differentiation with respect to the coordinate "Wi-

able; Fi, is the i-th component of the body force and T' is the i-th compon,-nt cf the ,urf-,-c-

traction on the surface with outward unit normal v.
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Substituting Eq. (2) into Eq. (3) yields

keklc, i + 2 Geijj + Fi - (.eki + 2G eij) = 0
(4)

(-kk 8ij + 2 Geij) vj = Tiv + (e65 + 2 Gei') Vj
(5)

It is seen that -(Xe ki +- 2Gei) is equivalent to Fi and (?.e + 2Geij)v j is equivalert to Tiv

in causing the strain fie!d eij; hence they are called equivalent body and surface forces and are

denoted by Fj and Tiv respectively. The stress field is then

Tij = 8ij X (ekk - elk) + 2G(eij - eij)
(6)

Hence, the strain distribution in a body with inelastic strains under an external load is the

same as that in a purely elastic body without inelastic strains but with additional equivalent

body and surface forces. This analogy reduces to Duhammel's analogy of thermal stress (Lin,

1968) when the inelastic strain is thermal strain and gives the same results as those given by

Eshelby's ingenious process of cutting, relaxing, restoring, welding, and relieving in his

famous paper on ellipsoidal inclusions (Eshelby, 1959). This method ot equivalent force is

here used to calculate the stress fields in fatigue bands.

A Polycrystal Model

Fatigue cracks generally initiate at a free surface. To relieve the same amount of

resolved shear stress in a thin slice, a greater amount of slip i.e., plastic strain, is required

near the free surface than at the interior of metals (Lin and Ito, 1967). For the present analyt-

ical study, the thin slices subjected to alternate forward -ni ' ve- d loadings are t h,"Cn, be

in the most favorably-oriented crystal at the free surface of a polycrystal. The slip plane and
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the slip direction of the most favorable slip system of this crystal form 450 with the specimen

axis. The polycrystal is subject to a cyclic tension and compression of low amplitude, so the

plastic deformation essentially occurs only in this most favorably oriented crystal.

Defects exist in all metals. The initial resolved shear stress field caused by initial

defects is denoted by r'. During loading, when the critical shear stress is exceeded in some

region, slip occurs. After unloading, this slip remains and induces a residual resolved shear

stress field tr. The resolved shear stress caused by loading is denoted by 'Ta. Hence, the total

resolved shear stress is the sum of these three stresses: t i + tr + Ta.

For an extrusion to initiate, positive shear has to occur in a thin slice P and negative

shear in a closely located slice Q, as shown in Figure 1. The initial stress field T' favorable

for this slip sequence is one having positive shear stress in P and negative in Q. Lin and Lin

(1983) have shown that such an initial stress field can be provided by an initial strain in the

thin slice R, sandwiched between P and Q. Referring to Fig. 1, an initial strain field e'

varying linearly from zero at the free surface to a maximum value at the interior boundary of

the crystal. causes a constant gradient of strain e,, along the cx direction and a uniform

equivalent body force Fa in R yielding a uniform initial positive resolved shear stress zT in P

and a negative one in Q. Lin and Ito (1969) suggested that this positive ec can be produced

by a row of interstitial dislocation dipoles, and a negative e("i by vacancy dipoles. Recently,

Antoncpoulus, Brown and Winter (1976) and Mughrabi, Wang, Differt and Essmann (1983)

have shown that the ladder structure in a persistent slip band (PSB) can be represented by an

array of dislocation dipoles c:using initial resolved shear stresses at the interface between the

PSB and the matrix.
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Gating Mechanism Provided by Micro Stress Fields:

Consider T' to be positive in P and negative in Q as that caused by an arTay of intersti-

tial dislocation dipoles discussed earlier. Referring to Fig. 1, a tensile loading causes a posi-

tive resolved shear stress Ta in this crystal. In P the shear stress will be the sum of t i and Ta

and will be the first to reach the critical stress c and slide first. The plastic strain and the

equivalent forces are taken to be constant along the x3 direction, a'C.3/X3 = 0. From the

equilibrium condition Eq. (3), with no body force we have Dr I/Dkx + DJT[ /a[3 = 0, where 3

is normal to the slip plane. Since kca/ax is finite, kcta is also finite and the change of

zax across the short distance between P and Q is very small. Therefore, the slip in P relieves

not only the positive shear stress in P, but also in its neighboring region including Q as shown

by Lin and Ito (1969) and Lin (1977). This keeps the positive shear stress in the neighboring

region from reaching that of P, hence only P slides during the forward loading. This slip

increases the negative resolved shear stress in Q to cause Q to slide more readily in the

reverse loading. When the negative resolved shear stress in Q reaches Tc in the reversed load-

ing, slip occurs in Q and a new residual stress field is produced. Similarly, the slip in Q

causes the relief of negative resolved shear stress not only in Q but also in its neighboring

region including P, thus making P more readily to slide in the next forward loading. This

process is repeated for every cycle, providing a natural gating mechanism for the monotonic

buildup of local slip and plastic strain in P and Q. The plastic shear strains e.5 in P and Q

tend to push out the slice R and start an extrusion. Interchanging the signs of initial stresses

in P and Q will initiate an intrusion instead of an extrusion. This theory is extensively sup-

ported by metallurgical observations (Lin, 1977). Some of them are given below.
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Some Related Experimental Observations

Slip lines are often developed in the early stage of fatigue cycling to produce "soft"

regions where local deformation tends to concentrate as shown by Woods (1973), Winter

(1974), Finney and Laird (1975). Slip lines generally multiply and grow into persistent slip

bands. Persistent slip bands carry essentially all the plastic strain in low amplitude fatigue

tests as indicated by Brown and Ogin (1984). Tests on aluminum single crystals under cyclic

tension and compression by Charsley and Thompson (1963) have shown that a reversal of

stress after a prior tensile deformation gives rise to new slip lines. Similar "compressive" slip

lines were observed by Buckley and Entwistle (1956) to form between "tensile" slip lines.

Forsyth (1954) found that the slip lines produced in the forward loading and those produced

in the reversed loading were in the same fatigue band, very close but distinct from each other.

Wood and Bendler (1962) have shown with their electron-micrographs, that both forward and

backward slips have occurred within a fatigue band; also the slip th3t occurs in cyclic loading

does not lead to significant deformation in the bulk of the matrix. This is verified by the lack

of dark spots on the X-ray reflection photographs of fatigue spccimens shown by Woods

(1956). Intrusions are often considered as embryos of cracks. Other experimental observa-

tions and suggested models of fatigue crack initiation were given in two excellent reviews by

Grosskreutz (1971) and Laird and Duquette (1972). These experimental observations show

that the slip lines formed in the forward loading and those formed in the reversed loading in

fatigue specimens often are closely spaced but distinct from each other. Observations clearly

support the proposed gating mechanism provided by the microstress fields due to two alterna-

tively sliding slices.
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Extent of Extrusion and Intrusion:

The buildup of the slip strain ec1 in P and Q is caused by ea in R. If R were cut

out, the free length of R would be longer than the slot by an amount referred to as the "static

extrusion" by Mughrabi et al. (1983). This e,,. causes an initial compression t' in R.

Under cyclic loading, the extrusion grows and the thin slice R increases in length. This elon-

gation causes the compression to decrease. A question raised by Mughrabi (1980) and

Essmann, Gosele and Mughrabi (1981) is whether the extrusion growth will cease after the

extrusion has reached the magnitude of the static extrusion. This question is to be discussed

in the following calculations.

There are twelve slip systems in a f.c.c. crystal. The change of the direct stress 'rc in

R causes changes of resolved shear stresses in all slip systems. When the decrease of

compression R becomes large, its resulting residual stresses combined with the applied stress

can cause a second slip system to have shear stress reaching the critical and slide. The plastic

strain e n, caused by slip in this slip system has a tensor component ea, just like eca in caus-

ing the positive and negative c,,p in P and Q respectively. Hence this secondary slip can

increase greatly the extent of extrusion and intrusion.

Method for Calculating Incremental Slip in P, Q and R:

The slip direction cx and the normal to the slip plane 3 make 450 to the loading axis

(Fig. 1). As the extrusion grows, ec,- in the slip band causes tcc, to increase and can cause a

second slip system to slide. c13 lie in the x1, x2 plane as shown in Fig. I but rl is not

confined to the x1, x2-plane. Hence the equivalent force Fi due to er" can have component

9
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normal to this plane. In 1972, Lin and Lin showed the effect of a secondary slip on fatigue

crack initiation. To simplify the numerical computation, they assumed the second slip system

to be on the x1-plane along the x2 direction or 'vice-versa. This is not an actual slip system.

In the present study, the second slip system analyzed is one actually existing in the crystal.

The presence of a body force component along the x3 direction requires the modification of

the solution of the plane strain problem. A similar problem was shown in the analysis of

prismatic anisotropic bars by Lekhnitski (1963) and is referred to as the generalizzd plane

strain problem. This generalized plane strain is exp-essed as

u i = ui(x1 x2), i = 1,2,3
(7)

This gives

Tj =2G v eij 0 + 1/2 (uij + uj,i)

where E = u1 1 + u2 2 and v is Poisson's ratio. The substitution of this expression into the

condition of equilibrium (3) yields

V 2 u a +  1 + Fa =a0, 1,2
l-2v x, G (9)

and

V2 u3 + = 0
(10)

The differential equations (9) and (10) are not coup 1'd and can be solved separately.
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The three slip directions of each of the four slip planes of a f.c.c. crystal are shown in

Fig. 2. The most favorably oriented crystal of a polycrystal loaded under alternate tension

and compression along the x, axis (Fig. 1) has a slip plane and a slip direction making 45'

with the direction of loading. The slip system is referred to as the primary slip system. Let

a, axis (Fig. 2), correspond to this system. During fatigue loading, the build-up of large local

plastic shear stain in the primary slip systerr. positive in P and negative in Q. tends to start

an extrusion or an intrusion. Consequently an appreciable direct stress t, will be built-up in

R. The Schmid's factors of all the 12 slip systems for the stress Tij and those for "t are

listed in Table 1. It is seen that there are four slip systems cI, c3, d1 and d2 equally favorable

under to. Among these four, c3 is most favorably oriented under T2 2 where -22 is the alter-

nate loading. Hence c3 is considered to be the active second slip system in R.

Plastic strain ect due to slip in the primary slip system u43, causes equivalent forces F,

and F2. This is a plane strain problem Melan has given the solution of the stress distribution

caused by a point force in a semi-infinite plate in plane stress. Melan's solution was modified

for plane strain by Tung and Lin (1966). Let t (x, JR) be the stress at x due to a unit force

along xk axis applied at j- and Ok (x, x-) be the corresponding stress function, where x denotes

(xI, x2, x3). Lin and Lin, 1974 has expressed the stress components in terms of the stress

functions as:

k2Ok ka k k a2k
t 1 1 (X, X) - , 22 (x,-=- 2 (xS)=- X12k= 1,2

*xx (11)

where the stress functions are
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O1(x, ) = - (p+q)(x 2 - i 2)(01 + 02) + 1/2 q(x1 - K1) In (X,/X2 ) + 2p X+

x,

x1K1(x2 + x, + x-)
02(X, X)= (p+q)(x 2 - -)(01 + 02) + / q(x2 - 2) In (X1/X2 ) - 2p1

(12)

with

p= ( , q=p(1-2v),47t(l-v)

x21 --x20, arc tan _ , I- It<_0 < tE

X2 - X2 71 7C0,

02 =arctan , < <tx I  + j - 2 - - 2 '

X= (X1 -i 1) 2 + (X2 - T2 ) 2, X 2 = (x1 + yl) 2 + (x 2 j- 2 )2

(13)

Plastic strain e4n due to slip in the secondary slip system causes F 3 in addition to F1

and F2 To solve Eq. (!n) for F , we write 03 (x, - as G u3(x, x). The stress is then

Tj~, X) 10 , r3 (-,X) a0
axl x2 (14)

All other stress component's are zero. For a unit concentrated force F3 at -Eq. 10 gives

V 2 03 + 8 (x - -) = 0

where 5(x, x) is the Dirac Delta function. With the boundary conditions of

14
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=0 atx = 0 and

- and 0 0as x+x, -4 0
Ox 1  D(15)

we have

03(x, X) = - (In XI + In X,)
4 (16)

where X1 and X, are given in Eq. 13.

Numerical Calculation and Results:

The thicknesses of the slices P, Q and R are very small as compared to their lengths.

As discussed before, the slip strains in these slices are taken to be constant across the thick-

ness. The slices are divided into a number of parallegram grids along the length in the a

direction. For numerical calculation, a grid of constant plastic strain has been used. The

corresponding grid stress is the average stress in the grid. From the plane strain solution of a

semi-infinite medium the stress field caused by a uniform plastic strain ean in the n-th grid

was calculated. The relief of shear stress t'p (x) at any point is expressed as

rT0(x) C - (x, c4p : n, c) e~
ap.

(17)
11where C(x, c3 ; n, c43) is the resolved shear stress at x due to unit uniform plastic strain ea

in grid "n". The average relieved stress c'o(x) over the m-th grid denoted by r"p. and is
4 aC

written as
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..p. = -C (in, ap3; n, ox3) eap

As a cyclic loading proceeds. slips occur in P and Q and cause a residual stress field.

The total resolved shear stress in the mtih grid of the ct[3 slip system is the sum of the initial.

residual and applied stresses:

cc = O+ - Z C (m, cc3 ; n, c43) e
n (18)

where "n" is summed over all the sliding grids with plastic strain eaO.-

Plastic deformation in metals is highly localized (Brown, 1952). Plastic strain concen-

trates in thin slices. The microscopic plastic strain in the thin slice is much larger than the

macroscopic plastic strain in the metal. Hence, the strain-hardening of the thin slice is much

less than that of the metal and is neglected. This gives a constant critical resolved shear

stress tc. Sliding occurs in the grids where t (x) = 'tC. For an incremental applied shear

stress A aM Arn = A? = 0. Eq. 18 yields

A'CI= C (in, ct ; n, c3) Ae"
n (19)

There are as many unknown Aea10n's as the number of the above equations. The plastic strain

increments Aeap in the sliding grids for an incremental loading ATa can be readily calculated.

Similarly, the stress components rtAa and in R can be calculated (Lin, 1972) and written as

r"

*Tb, = XC(m, ctot; n, (c3 ) eaf
n (20)
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Ir
p= . C (m, 1313; n, ca3) e al

n

From these calculations, it was found that "tr1p. in R is quite small.

To find C (m, aa ; n, a13), a different approach, which gives a better physical insight,

is considered. The elastic shear strain ec' 3, that equals tc/2G in the sliding grids, is much less

than the cumulative plastic strain ecp. The cumulative plastic shear strain eaxp in P and Q are

about the same. Denoting the thickness of the slices P and Q by t, we can express the dis-

placement in R along the a direction as - 2teo,.Q or approximately - 2 teOpp.Q. The negative

sign is due to the fact that the direction of the extrusion is opposite to the direction of the x

direction. This causes a tensile strain in R,

e"aR = -2t e aP 'Q
dca (21)

Since 'p is very small and assumed to be zero, we have the residual tensile stress

= E De.0

1-v2  aa (22)

With the residual stress t increasing with cycles of loading, the initial compressive stress

ta is gradually relieved.

As discussed earlier, c3 (Table I) is the most likely second slip system to become

active. The resolved shear stress in c3 is denoted by tr. As shown in Table 1, the initial

resolved shear stress z n varies with the initial stress components CI3, tbi, t33 . For our

numerical calculation rk, is assumed to be zero. From Table I,
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A = - .318 A 1C22 - 0.408 A "taa
(23)

When T4 increase to Tc or decreases to _1c, this slip system slides and causes e;. Now we

have slip in the cP slip system in P and Q and in the T11 slip system in R.

Let the two slices P and Q be divided into 2N grids and R into M grids. The resolved

shear stress in the c43 slip system of the i-th grid is written as

'tapi C(i, o(1XP j, ([3) ealpj - C(i, ap3 k, 11) e .,  ( 4
(24)

Tr= - C(i, 4I ; j, ctf) eap, - C(i, 1 ; k, rj) e"

The repetition of subscript "j" denotes summation from one to 2N and that of subscript "k"

denotes summation from one to M. C(i, T1 ; j, oxP) is the residual stress rr in i-th grid due

to a unit plastic strain eap in the j-th grid. For constant strain eap in grid, j the corresponding

C(i, rj ; j, 04p) is the average shear stress rl in the i-th grid. A method of numerical calcu-

lation using grids with strain linear in cc direction has also been developed and used. With

residual stresses given by Eq. (24), the incremental plastic strain in all grids are calculated by

Eq. (19).

The dimensions of the most favorably-oriented crystal at the free surface are shown in

Fig. 1. The thickness in P and Q is 0.01 t along x2 dimension and thickness in R is 0.1 t

along the same direction. The initial strain ea. in R is assumed to vary linearly from zero at

the free surface to 3.64 x 10-5 at x1 = 50t. The static extrusion is then 1/2 x. 3.64 x 10- 5 x

50 x 2t= 1.28 x 10- i. ea = 1/2 -". This corresponds to a plastic strain ecO in P and

Q at the free surface of 0.091.
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This initial strain field causes a uniform initial shear stress of 1.46 x 10- 3 MPa (0.20

p.s.i.) in P and -1.46 x 10- 3 MPa (0.20 p.s.i.) in Q. The polycrystal is subject to a cyclic ten-

sile and compressive loading in the x2 direction. Let tE be the excessive shear stress defined

as the initial shear stress ri plus the maximum applied shear stress ta minus the critical shear

stress tc:

E ti + Ta _c

(25)

Tests on single aluminum crystals under cyclic loading under constant plastic strain amplitude

by Snowden, 1963, show that the resolved shear stress increases in the first 50 cycles and

approaches a saturated value of about 2.94 MPa (425.8 p.s.i. or 300gm/nm 2). Hence tc is

taken as 2.94 MPa (425.8 p.s.i.). For a maximum applied shear stress ta of 2.94 MPa (425.8

p.s.i.), the excessive shear stress rE is 1.46 x 10- 3 MPa (0.20 p.s.i.).

With the process of sliding discussed earlier, the plastic strain distributions e4,, in the

secondary slip system are shown in Fig. 3 and the corresponding resolved shear stress (T4)

variations are shown in Fig. 4. The plastic strain e4 in the second slip system causes some

e., which in turn, causes positive rt, in P and a negative "cq in Q just like the initial

strain e'. This e", causes additional +tot p in P and -tp in Q. The sum of the initial plus

residual shear stresses riA + T.0, in P and Q, on which the extrusion growth depends, is

shown in Fig. 5. It is seen that this sum is considerably more in the cases with the secondary

slip than in those without. The plastic shear strain distributions exp in P and Q at different

cycles of loading were calculated for the cases with and without the secondary slip and are

shown respectively as solid and dotted lines in Fig. 6. The e .. 's at the free surfaces vs.

19



Ij-~

U, U, 0
U,

U
U

U

0 - U
U, 0

La -

~ C
0 L#~

~
&-

E S
C~

U

0 ~ -
rN Lr

U S

0
0

0

U_____________________________ 0

Ut~X~S diiS AJ~PUO~g

S

S



Iz

I-

Q

U
V

t .s

o ~
~

~
C
~.-

U
C., U
r~
4,

C p-..,

"C
4,
U

U

C
0

0
I-.

r'J

uz~isXS dTIS Ax~puo~s
~t42 UT SS~U1S T~flP1S~1



cycles of loading are shown in Fig. 7. It is seen for the case without considering the secon-

dary slip, extrusion growth ceases as the extrusion approaches the static extrusion The plastic

strains elp in P and Q at the free surface, which represent the amount of extrusion or intru-

sion, with the secondary slip is four times that without the secondary slip.

Conclusions

Under cyclic tension and compression the plastic shear strain growth e, in P and Q

were calculated with and without considering the secondary slip system 471. The plastic strain

em in the secondary slip system has a component ea which has the same effect in causing

"1 in P and Q as e'. Hence e" in P and Q with the secondarn slip in the present case is

four times more than that without the secondary slip. Consequently, the extent of extrusion or

intrusion in the cases with the secondary slip is greatly more than those without. This

explains the observed extrusion growth beyond the static extrusion as reported by Mughrabi

(1983) and explains that a face-centered polycrystal has greater extrusion height and intrusion

depth than hexagonal polycrystals. The stress intensity factor of crack depends on the extent

of extrusion and/or intrusion. Hence this extent is important for the study of crack initiation.

The initial strain distribution eaa assumed in the slice R is arbitrary. Similar calculations can

be made for other initial strain distributions. The present method of analysis satisfies the

equilibrium, continuity of displacement and slip characteristics of the crystals.
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