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LEARNING STEREOPSIS WITH NEURAL NETWORKS

G. Z. Sun, H. H. Chen, and Y. C. Lee

Laboratory for Plasma and Fusion Energy Studies and
Department of Physics and Astronomy and
Institute for Advanced Computer Studies

TInivpr-%tv of Maryland

College Park, MD 20742

ABSTRACT

A high order recursive neural network is constructed to learn the task
of stereopsis from random dot stereograms. The connection weights of the
network are learned through Hebbian rule. To avoid the problem of over-
whelmingly large number of weights, we exploit the translational symmetry
and trained only a small local patch and later transported uniformly to the
whole network. Since the Hebbian learning is linear, the weights can be
calculated analytically. The results show that the continuity and the
uniqueness constraints first proposed by Marr and Poggio are learned auto-
matically.

INTRODUCTION

Neural network models have been demonstrated to be very effective in
computing perceptive problems such as vision, speech, and motor control.,
One of its main advantages is the ability to learn automatically to perform

a specific task by way of a learning algorithm.2  In a single-layered per-
ception, the error correction learning rule is guaranteed of convergence if
a solution exists. In a multi-layered feed-forward network, back propaga-
tion of error messages is used to train the networks. These learning
methods are generally nonlinear, making it hard to analyze the final
network to understand the working principle of the networks.

In this paper, we would like to study an example, namely, the
stereopsis of random dot images3 wherein a recursive network is used. We
would like to demonstrate that the algorithm for solving random dot
stereogram can be learned by the simple Hebbian rule. Since the Hebbian
rule involves neither error correction nor back propagation and is local
and linear, it allows us to calculate the connection weights analytically.
The result confirms the uniqueness and the continuity constraints that Marr
and Poggio4 first postulated to be in the working principle of the
stereopsis network. Through Hebbian learning, these two constraints are
learned automatically. Furthermore, the weights leazned are symmetrical
which ensures the convergence of the recursive network. The 4network we
used has five depth layers. Each layer contains 100 x 100 = 13 pixels of
neuron cells. If fully connected, it would require 2.5 x 10 connection
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weights, a formidably large number. To reduce from this large number of
weights, we exploit the localness and the translational symmetry of the
stereopsis problem. We train a small patch of the network with pixel
size a x a (a < 11) and then transport it to the whole image plane. The
result is a high order recursive network with local connection weights
uniformly distributed in the network.

II. TRAINING OF THE NETWORK

The stereo vision is achieved by detecting the binocular disparity of
the two images observed by the two eyes. The random dot stereogram
demonstrated that the stereo perception is an early vision problem that
does not involve the high level task of recognition and identification of
visual objects. In Fig. 1(a) and (b) we show two random dot images of the
left and the right eyes. Each has lOOxlO0 pixels with an equal
probability (v = 1/2) to be white and black. The actual three-dimensional
image, a five-layered cake, is shown in Fig. 1(c). Our task is to train a
neural network to construct the three-dimensional image surfaces from the
two monocular random dot images. Marr and Pogglo constructed a network
with connection weights designed from the two constraints, namely the
uniqueness constrain-.s which says that in any given direction we see only
one image surface and the continuous constraint that says a surface is
usually continuous. In this paper we are going to demonstrate that these
two working principles of stereopsis can be learned automatically by the
networks using Hebbian learning rule.

In order to proceed, we first choose the following conventions for
notations and representations.

i) In the random dot images, a black dot is assigned the value +1
and a white dot -1.

(ii) In each monocular image the probability for a dot to be black

is V.

(iii) The maximum depth is an integer D.

(iv) The input to the network is a conjunction of the left and the
right monocular images (see Fig. 1(d)),

li'k = (RL)ikxky = Rk Lk X-i+lky (1)

where k = (k ,k ) is the position vector of the pixel point on a single

monocular imag, and i = 1,2 ... D is the index for the different depth
level countered from the bottom (i=l) to the top (i=D). R and L denote the
right and the left monocular images respectively. Equation (1) implies
that the input is composed of all possible matches between the left and the
right monocular images including both the black and the white dots.
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(v) The output of the network also consists of five (D-5) layers of
planes with size 100 x 100. We let

s (i,k) lies on a solution surface

1 otherwise

Here the solution sr urface means the ouitline surface of the 3-D object
viewed from above (as shown in Fig. 1(c)) and s is a normalization factor
such that the total sum of all the components of the connection weight
would be zero if s = D -1.

We then use the Hebbian learning rule to construct the weightp
between Si,k and Ij,k ,

W Si~ r Ik ,kpS 2

i,k;jk , - , k Tjk' N ,k (

where the summation is over all possible pattern pairs of S and I, and N
is the total number of patterns.

For training patterns, we choose a small patch of size axa with a <<
100 to reduce the number of weights to a manageable size. The training is
done by dividing the patch into four frontal planes with two dividing
lines, one horizontal and another vertical. The position of these two
lines and the height of the four sub-patches are uniformly random.

To calculate the analytica. weights, we note the following:

M s (i,k) lies on the solution plane(i) S = if , (3)

i 1 otherwise

i if (ik) lies on t e solutign plane
(i) (RL)i'k= 1 with prob. p(1) = 0 + (-) if not on (4)

(-1 with prob. p(-1) = 2v(l-v) ) solution plane,

(iii) if (i,k) is not on the solution plane, we have the ensemble average

2<(RL)i,k> - (1-2) (5)

(iv) with the patch axa, two points (kx ky) atud (kx+x, k y+y) would lie
on the same sub-plane with the probability

Pd =  a (a-l-xJ)(a-l-yJ) (6)(a-1)2

where we have assumed that (k ,k ) is at the center of the patch (anx y
approximation justified by the translational symmetry). To proceed, we
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consider two exclusive cases i = j and i ; j.

(a) diagonal i = j,

Wi'k;ik+r - <Si k(RL)ik+r> (7)

Since S , can assume the value s with probability 1/D and the value -1
with probability (D-1)/D, we have

<S =R) >= <R) >

<Si,k(RLli,k+r> = D ((RI)i,k+r i,k s

D-1 <(RL) > (8)

)i,k+r S i,k

when (i,k) lies on a solution plane, the probability that (i,k+r) is not on
any solution plane would be

(1-Pd) (1-1/1)),

and we have

<(RL)i,k+r>Si k=S

= (l-Pd)(l-1/D)(l-
2v)2 + I - (1-Pd)(-11/D) 

(9)

Similarly, we have

<(RE) = (1-P + [i - I (1-P)](1-2v) . (10)

~i,k+r S i k= d D D d

Finally, we have

Wk;i,k+r - N{ 1
+ 

4 v(lv)(D-L)Pd + s-D+1 [1-4v(l-v)(1 - i)]}. (11)

(b) i J. In this case (i,k) and (j,k+r) can not lie on the same
plane. If (i,k) lies on a solution plane, the probability for (j,k+r) to
be also on a solution plane is

P L (1 - P (12)

On the other hand, if (i,k) is not on a solution plane, then the
probability that (j,k+r) would lie on a solution plane is

= = = I [+P /(Dd1)D (13)P2 = d D-1 (-d) D" D" d



With these probabilities, we can calculate

<(RL) >k+> S = P1 + (1-P 1 )(1-2v) 2  (14)

and

<(RL) jk+r>Si,k=- - P 2 + (1-P 2 )(1-2v) 2  (15)

Therefore when i * j, we have
= - s+1 s -D+1 16Wik N~~ Ip- L- 4v(l-v)P d + ----6-- [1-4v(l-v)(l )] (16)

i,k; p D 2 ~v(~)d D D

Combining Eqs. (11) and (16), we have for general i and j,

W = Np 2s+1 4v(l-v)(D6i-1)P
ikj, +r D 2d(17)

+ N s-D+l 1-4v(l-v)(1p D [ -_9v) l - )

The second term in Eq. (17) can be ignored if we choose s = D - 1. Substi-
tuting the expression of Pd from Eq. (6), we get

Wikjk. _ P 4v(1-v) (a-1-1k -kx1)(a-l-lk -ky1)(D i -1) (18)i~~~- D (-)2 x x y y ij

where k.,k, is chosen as the center of a patch axa aid k',k" run through
the whole patch. It is easily seen that this weight matri x is symmetrical
between i and j. This is a consequence of the translation and reflection
symmetry in our training patterns. The last factor in Eq. (18) also shows
that the weights between neurons on the same layer are excitatory while for
neurons on different layers are inhibitory. A direct confirmation of the
continuity and the uniqueness constraint is proposed by Marr and Poggio.

III. CONVERGENCE THEOREM

Hopfield is the first to show the convergence of an asynchronous
symmetrical recursive network with the help uf a Liapunov function. In our
problem, the weights are symmetrical and we can implement the dynamics of
our network with two schemes, a) the maximum scheme and b) the threshold
scheme. Their performance is similar. As a matter of fact, in order to
enhance the stability of our result, we choose to add a forcing from the
input to our network which can be integrated into the convergence theorem
easily.

The maximum scheme evolves according to
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t+1 t O
X = max [ Wi,k;j, Xk +

l<i<D j,k" - (19)

where max I if y, = max(yj ; j=1 .... D)

<i<D = -1 otherwise

0

and X 0 is the input state of the neurons. Following Goles and Vichniac,
5

i k
we can' show that this scheme is convergent with the help of the Liapunov
functi on,

t t+1 t+1t
EM(X tX )= , X Xik Wi,k;jk" Xk"

i,k jk- '~'

(Xt+ + t )X 0(20)
+ t- + Xi k)aX 0 k

i,k 
i  +

where Xt and Xt+ 1 are the neuron states at time step t and t+1,

respectively. It is then straightforward to show that the updating

monotonically increases the Liapunov function (20) and therefore guarantees

its convergence.

The advantage of the maximum scheme is its simolicity. It ensures
that the uniqueness constraint is satisfied strictly. However, since we
are interested in the learning of the network to automatically implement

the uniqueness constraint, we are also interested in the threshold scheme
which takes the mutual inhibition of the pixels along line of sight into
account. The threshold scheme evolves according to

0 6[ W W + j (21)

i,k j i,k;jk.X,k. X + i

where e is the step function defined as

e(x) if x >0
x< 0

and T is a threshold value. This scheme is also ensured of convergence.
For synchronous updating, the Liapunov function is very similar to Eq. (20)
and is given by

5

F (Xt,Xt+)= . t+ W Xt

T i k i,k i,k;j.k j,k"

(22)

+ I (X + X i)(aX + T),22

i,k i,k i , k i ,k



Again, we can show that AET > 0 strictly. Both of the maximum and the

threshold scheme have been implemented and show similar performance.

IV. STATIONARY STATES AND THE NUMERICAL IMPLEMENTATION

After proving the convergence theorem, the next question to ask is
where would the network converge to? Unfortunately, the complete
discussion of the attractor states are very tedious and is not the main
interest of this paper. We would only state that the considerations of the
following questions help us to find the optimal choice of the few
parameters remain in our network, namely the threshold value, the strength
of the forcing by initial pattern, and the size of our training patch a.

The questions involved are:

(i) Are the internal cells statiotary? An internal cell is a pixel
cell whose immediate neighbors are occupied by cells with the same value.

(ii) Are the cells at a boundary stationary? As one solution
surface meets another solution surfacae at a boundary, this boundary must
be stationary.

(iii) the corner must be stationary. This is a tougher condition to
be met than (ii).

(iv) isolated dots are false and should be eliminated.
These considerations lead us to the choice of 3 < a < 13.

We hbe run many numerical simulations of our networks with the above
a values. Typically, three or four iterations are sufficient to attain the
final stationary state (see Fig. 2). Sometimes, merely one or two itera-
tions already give an almost perfect result. The remaining iterations
serve only to the removing of a few isolated false spots. Among the
results obtained in terms of different size and weights, the one ootained
with a = 5 has the cleanest shape and sharpest corners.

We have also tested our network -with 3-D images other than rectangles,
for instance, triangles and octagons. The learned weights generalize well

for these cases (see Fig. 3). We also tested the robustness of the network
by implementing the numerically acquired weights. The performance is as
good as those with the analytical weights.

V. CONCLUSION AND DISCUSSIONS

We demonstrated in this paper that using high order recursive network
the connection weights can be learned automatically from Hebb's rule to
perform stereopsis on random dot stereograms. The Hebb's rule is linear
that allows us to consLLuLL the weights analytically. qhe results showed
that the continuity and the uniqueness consraint first prooosed by Marr and
Poggio are learned automatically. The weights obtained are symmetrical and
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therefore guarantee the convergence of the network. Numerical implementa-
tions confirmed these predictions.
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RESULT OF THE ITERAlTION # 0
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1 INTRODUCTION

It is well known that two-layered perceptron with binary connections but no
hidden units is unsuitable as a classifier due to its limited power [11. It cannot
solve even the simple exclusive-or problem. Two extensions have been pro-
posed to remedy this problem. The first is to use higher order connections

_J. It has been demonstrated that high order connections could in many
cases solve the problem with speed and high accuracy 131, [41. The repre-
sentations in general are more local than distributive. The main drawback
is however the combinatorial explosion of the number of high-order terms.
Some kind of heuristic judgement has to be made in the choice of these terms
to be represented in the network.

A second proposal is the multi-layered binary network with hidden units
[51. These hidden units function as features extracted from the bottom input
ayer to facilitate the classification of patterns by the output units. In order
to train tile weights, learning algorithms have been proposed that back-
propagate the errors from the visible output layer to the hidden layers for
eventual adaptation to the desired values. The multi-layered networks enjoy
great popularity in their flexibility.

However, there are also problems in implementing the multi-layered nets.
Firstly, there is the problem of allocating the resources. Namely, how many
hidden units would be optimal for a particular problem. If we allocate too
many, it is not only wasteful but also could negatively affect the performance
of the network. Since too many hidden units implies too many free param-
eters to fit specifically the training patterns. Their ability to generalize to
noval test patterns would be adversely affected. On the other hand, if too
few hidden units were allocated thln th-e network would not have the power
even to represent the trainig set. How could one judge beforehand how many
are needed in solving a problem? This is similar to the problem encountered
in the high order net in its choice of high order terms to be represented.

Secondly, there is also the problem of scaling up the network. Since the
network represents a parallel or coorperative process of the whole system,
each added unit would interact with every other units. This would become
a serious problem when the size of our patterns becomes large.

Thirdly, there is no sequential communication among the patterns in the
conventional network. To accomplish a cognitive function we would need
the patterns to interact and communicate with each other as the human
reasoning does. It is difficult to envision such an interacton in current systems
which are basically input-output mappings.

2 THE NEW SCHEME

In this paper, we would like to propose a scheme that constructs a network
taking advantages of both the parallel and the sequential processes.

We note that in order to classify patterns, one has to extract the intrinsic
features, which we call attributes. For a complex pattern set, there may
be a large number of attributes. But differnt attributes may have different
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ranking of importance. Instead of extracing them all simultaneously it may
be wiser to extract them sequentially in order of its importance i6], [7[. Here
the importance of an attribute is determined by its ability to partition the
pattern set into sub-categories. A measure of this ability of a processing unit
should be based on the extracted information. For simplicity, let us assume
that there are only two categories so that the units have only binary output
values 1 and 0 ( but the input patterns may have analog representations). We
call these units, including their connection weights to the input layer, nodes.
For given connection weights, the patterns that are classified by a node as
in category 1 may have their true classifications either 1 or 0. Similarly, the
patterns that are classified by a node as in category 0 may also have their
true classifications either 1 or 0. As a result, four groups of patterns are
formed: (1,1), (0,0), (1,0), (0,1). We then need to judge on the efficiency of
the node by its ability to split these patterns optimally. To do this we shall
construct the impurity fuctions for the node. Before splitting, the impurity
of the input patterns reaching the node is given by

16 = -P6ogP6 - P6logP (

where P1 = NI./N is the probability of being truely classified as in category
1, and P = N/N is the probability of being truely classified as in category
0. After splitting, the patterns are channelled into two branches, the impurity
becomes

I, = -PI YZ P(j, 1) logP(j, 1) - P. F P(Jo)ogP(j, 0) (2)
J=0., J=1,l

where P, = NIj/N is the probability of being classified by the node as in
category 1, PO = Nbn/N is the probability of being classified by the node as
in category 0, and P(j, i) is the probability of a pattern, which should be in
category j, but is classified by the node as in category i. The difference

A I = Ir - 1 (3)

represents the decrease of the impurity at the node after splitting. It is the
quantity that we seek to optimize at each node. The logarithm in the im-
purity function come from the information entropy of Shannon and Weaver.
For all practical purpose, we found the optimization of (3) the same as max-
imizing the entropy [G

S - N o' ) + + + (4)

where N, is the number of training patterns classified by the node as in
category i, V,, is the number of training patterns with true classification in
category i but classified by the node as in category j. Later we shall call the
terms in the first bracket S, and the second S2 . Obviously, we have

N, = No, + N,, i = 0, 1
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sly it may After we trained the first unit, the training patterns were split into two
I i7I. Here branches by the unit. If the classificaton in either one of these two branches
:tition the is pure enough, or equivalently either one of S, and 52 is fairly close to 1,
Issing unit then we would terminate that branch ( or branches ) as a leaf of'the decision
Us auWue tree. and classify the patterns as such. On the other hand. if either branch is
,ry output not pure enough, we add additional node to split the pattern set further. The
ions). We subsequent unit is trained with only those patterns channeled through this
.er, nodes. branch. These operations are repeated until all the branches are terminated
a node as as leaves.
ilarly, the
-ave their
tterns are 3 LEARNING ALGORITHM
iciencv of
s we shall We used the stochastic gradient descent method to learn the weights of each
* impurity node. The training set for each node are those patterns being channeled to

this node. As stated in the previous section, we seek to maximize the entropy
function S. The learning of the weights is therefore conducted through

I(,1)1 as()
icategory / r/ j

category Where 7 is the learning rate. The gradient of S can be calculated from the
f impurity following equation

OS _1[ r N , ON11, + N?1 _____o

as I N 2 - 9-) 2(2) 1 N N o, +  + (1- )

ode as in (I -~ 2 W, N0? )2_V I-2 G
e node as Using analog units
uld be in 1
ence 0 =1 exp(- (7)

(3) we have

It is the O O(1 -Or)I (8)
'the im-
Weaver. Furthermore, let A' 1 or 0 being the true answer for the input pattern r
as max- then

N,,= E iA + (1 _i0(1 - A')II~ ( J( O) (9)
(4) th ,11=!l+( j( 1

Substituting these into equation (5), we get

ode a in AW = 2iZ [2A'( N 1 - ) + N 20  N o'(1 - o')1; (10)
cation in I (- V0--- ,)± --- N 2

I call the
In applying the formula (10),instead of calculating the whole summation at
once, we update the weights for each pattern iudividually. Meanwhile we
update N., in accord with equation (9).
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a3

YES N

Figure 1: The given classification tree, where 01, 02 and 03 are chosen to be
all zeros in the numerical example.

4 AN EXAMPLE

To illustrate our method, we construct an example which is itself a decision
tree. Assuming there are three hidden variables a,, a2 , a3, a pattern is given a
by a ten-dimensional vector I1, 12, ... , I10, constructed from the three hidden ci
variables as follows 0

ft

I,= a-t+a3 16 = 2a3 2

12 = 2a, - a2 I = a3 - a, t(

13 = a3-2(2 18 = 2a, +3a3 3

14 = at- 2a2 + 3a3 19 = 4a3 - 3a, F

Is = 5a - 4a4 110 = 2a + 2a2 + 2a3.

A given pattern is classified as either 1 (yes) or 0 (no) according to the
corresponding values of the hidden variables a,, a2, a3. The actual decision
is derived from the decision tree in Fig.1.

In order to learn this classification tree, we construct a training set of 5000
patterns generated by randomly chosen values at, a2,a3 in the interval -1 to
+1. We randomly choose the initial weights for each node, and terminate t
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S=0.79

n,

S1 =0.60 0.87

Si 0.6 (2519/ 3 5)=,F -- !=
S, =0.65 \S 2= 0.88

nl3

S t 0.85 S2 = 0.73

(5 5/5) FES nl4

S, =0.90 S 2 =0.96
$ to be (9 2 / 5) fej Qo(548/ 12)

cisionn Figure 2: The learned classification tree structure
163ven a branch as a leaf whenever the branch entropy is greater than oS. The

qiidden entropy is started at S = 0.65. and terminated at Its maximum value S=
0.79 for the first node. The two branches of this node have the entropy
fuction valued at S = 0.61,S2 = 0.87 respectively. This corrsponds to
2446 patterns channeled to the first branch and 234 to the second. Since
S2 > 0.80 we terminate the second branch. Among 2554 patterns channeled
to the second branch there are 2519 patterns with true classification as no and
35 ye5 which are considered as errors. After completing the whole training
process, there are totally four nodes automatically introduced. The final
result is shown in a tree structure in Fig.2.

The total errors classified by the learned tree are 3.4 7o of the 5000 trainig
patterns. After trainig we have tested thc result using 10000 novel patterns,
the error among which is 3.2 %.

,o the
"cision

f5000 5 SUMMARY

r -1 oWe propose here a new scheme to construct neural network that can au-
ninate toinatically learn the attributes sequentially to facilitate the classification

of patterns according to the ranking importance of each attribute. This
scheme uses information as a measure of the performance of each unit. It is
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self-organized into a presumably optimal structure for a specific task. The
sequential learning procedure focuses attention of the network to the most
important attribute first and then branches out' to the less important at-
tributes. This strategy of searching for attributes would alleviate the scale
up problem forced by the overall parallel back-propagation scheme. It also
avoids the problem of resource allocation t. countered in the high-order net
and the r mlti-layered net. In the example we showed the peifurmatnce of the
new method is satisfactory. We expect much better performance in problems
that demand large size of units.

6 acknowledgement

This work is partially supported by AFOSR under te grant $7-03SS.

References

[1] M. Minsky and S. Papert, Perceptron, MIT Press Cambridge, Ma(1969).

[2] Y.C. Lee, G. Doolen, H.H. Chen, G.Z. Sun. T. Maxwell. H.Y. Lee and
C.L. Giles, Machine Learning Using A High Order Connection Netwe-
ork, Physica D22,776-306 (1986).

[3] H.H. Chen, Y.C. Lee, G.Z. Sun, H.Y. Lee, T. Maxwell and C.L. Giles,
High Order Connection Model For Associate Memory, AIP Proceedings
Vol.151,p.S6, Ed. John Denker (19S6).

[4] T. Maxwell, C.L. Giles, Y.C. Lee and H.11. Chen, Nonlinear Dynamics
- Iof Artificial Neural System, AlP Proceedings Vol.151,p.299, Ed. John

Denker(10S6).

1bj D. Rummenlhart and J, McClelland, Parallel Distributive Processing,
MIT Press(1986).

[61 L. Breiman, J. Friedman, R. Olshen, C.J. Stone. Classification and Re-
gression Trees,Wadsworth Belmont, California(19S4).

[7] J.R. Quinlan, Machine Learning, Vol.1 No.1(1OS6).



UMIACS-TR-88-26 April, 1988
CS-TR-2013

Parallel Sequential Induction Network a New
Paradigm of Neural Network Architecture

G.Z. Sun
Laboratory for Plasma Physics Research
Department of Physics and Astronomy

H.H. Chen and Y.C. Lee

Institute for Advanced Computer Studies,
Laboratory for Plasma Physics Research and

Department of Physics and Astronomy
University of Maryland

College Park, MD 20742

ABSTRACT

We present here a new scheme to automatically construct a neural network archi-
tecture that takes advantage of both the parallel and sequential strategies to solve a pat-
tern classification or decision problem. The new scheme opti-aizes an entropy measure
to train nodes that extract attributes from the training patterns. The sequential extrac-
tion of attributes with ranking order could alleviate significantly the scale up problem
of an all parallel network. Examples of decision tree problem demonstrate amply the
superior performance of PSIN (Parallel Sequential Induction Network) against the usu-
al back propagation procedure in multi-layered networks.



PARALLEL SEQUENTIAL INDUCTION
NETWORK

A NEW PARADIGM OF NEURAL
NETWORK ARCHITECTURE

G.Z. Sun, H.H. Chen and Y.C. Lee

Laboratory for Plasma Physics Research,

Department of Physics and Astronomy

and

Institute for Advanced Computer StudicS

UNIVERSITY OF MARYLAND,COLLEGE PARK,MD 20742

ABSTRACT-

We present here a new scheme to automatically construct a neural network ar-

chitecture that takes advantage of both the parallel and sequential strategies to

solve a pattern classification or decision problem. The new scheme optimizes an

entropy measure to train nodes that extract attributes from the training patterns.

The sequential extraction of attributes with ranking order could alleviate signifi-

cantly the scale up problem of an all parallel network. Examples of decision tree

problems demonstrate amply the superior performance of PSIN (Parallel Sequential

Induction Network) against the usual back propagation procedure in multi-layered

networks.

1 Introduction

When we make up the decision on a certain task, usually we have to evaluate a

number of factors called attributes here. These attributes, in general, have different

importance in helping us to make up the decision. As a matter of fact, some of the

attributes are independent of each other, and can be evaluated at the same time,

i.e. in parallel, while other attributes may have to wait until some preliminary

decision based on more important attributes on a subtask has already been made.

This combination of parallel and sequential strategies in the decision processes can

1 -- m o n,,ummmmn~nI m mnnn i nnI Nm l



be very efficient indeed [11,[2]. On the other hand, we note that the neural network

studied so far employs mostly the parallel strategy [3]. These are just input output

mappings, with the neural network serving the role of a nonlinear mapping function.

There are two major limitations of this approach. First, it is difficult to identify

the proper network structure for a given task. Second, the scaling up problem and

the associated low learning speed are serious drawbacks of these networks. These

limitations could be alleviated by using a new scheme proposed in this article [41
which we call the parallel sequential induction network ( PSIN ). PSIN takes advan-

tage of both the parallel and sequential strategies in solving a problem. It consists

of many nodes that would classify the incoming patterns into a few subcategories.

Each node in PSIN is itself a neural network with one or more output neurons. It
is important to notice that we do not expect a single node alone to accomplish the
entire decision or classification job. It is the combination of many such nodes that
would complement each other and in the end coorperatively get the job done.

2 The parallel sequential induction network

In a conventional neural network, train-
ing ( or testing) patterns are presented

to an input layer and the results read off
from the output units. The adaptation at
of the connection weights are the conse- 0 0 .0

quence of all the training patterns because

of the overall parallel strategy. However, a2
it can be seen that this strategy may not '<0 >O 0

be the best for problems represented by a

multi-branccd decision tree. An example Y U N Y
is shown in Fig.1., where a,, a 2, a3 , ... are

attributes to be tested at the correspond-

ing nodes 1.2, 3, Fig. 1

Suppose there are only two pattern classes yes and no. For an input pattern, if
its test result in node 1 is positive, it is channeled to the node 2 to test for attribute

a2. If the result is again positive we classify the pattern as yes and so on. We note

that in order to classify a pattern, not all attributes are tested ( or relevant). For
some patterns a, and a2 are the determinative attributes and a3 is irrelevant. But
for other patterns ai and a3 are important and a2 is irrelevant.

2H|Hl



If we expect a three layered network to be able to extract automatically the

three attributes ai,a 2 , and a3 , we are actually assuming that the input patterns

are uniform in their regularity which is however not true. This problem would get

worse dramatically as the depth of the decision tree is increased. The number of

relevant attributes become much less than those irrelevant and their voting power

in a decision process could be swamped easily by noise signals from those irrelervant

attributes in an all parallel arrangement.

To remedy this problem, or to recognize that some attributes are important for

a fraction of the patterns but not at all for others, we propose the parallel sequential
induction network. The PSIN divides the task of classification of patterns into steps.

The first step is to construct a node that extract the most important attributes for
the largest fraction of patterns from all the input patterns. We use information
entropy to measure the quality of this node. After training, we expect the node
to do its best to classify the patterns. However, usually what the first node could

accomplish is only to purify the patterns in each branches. We set a criterion for

the purity. If the purity in a branch is lower than the criterion, we use the subset
of patterns that were channeled into the branch by the first node to train another

node. We again maximize the information gain and purify the classification of the
subset of patterns. This procedure of branching and purification is continued until

a satisfactory performance is achieved.

3 Training of nodes

The objective of a node is to purify the classification of the patterns that come to
this node. The purity of the patterns are measured by an information function.

Before entering the node, we assume there are Y+ + N- = N number of patterns.
where V+ is the number of yes patterns and N- is the number of no patterns. The

information entropy function ( or impurity function) that characterizes tle impurity

of these patterns is given by

Sb = ( -(log-- + log--) ()
2 N N N N

using the Shannon-Veaver entropy. In practice. we approximate the above with a

simpler function
"(N+ 2( (-
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A node is in principle a neural network by itself. It consists of an input laver to

which the input patterns are presented and an output layer that may contain one

or more output units. Since one of the strategies of PSIN is to relieve the burden

of classification task on a single network to a series of smaller networks ( or nodes),

each node of PSIN may be constructed using the simple perceptron architecture

instead of other more complex networks. However, we should note that the training

of the connection weights in this perceptron-like node is not the error correction

scheme.

A node consisting of n output neurons will channel the patterns into 2' possible

branches. The impurity or entropy function after the classification by the node is

given by

1 ~ J 32 ...J In .NJ..
S. = ,- 1: - (3)

N 
N

+  

s 
--- 

nu1e2...

where ji (= 0 or 1) is the quantized output of the i1 h neuron, N1 2. is the number

of yes patterns channelled into the branch with ith.neuron having the quantized

output j,(i = 1,2 ... , n). The information gain or the increase of purity by the node

is then
AS = S - b. (4)

Since the node cannot change Sb, the trainning can only alter S, and we adapt the

weights to maximize Sa.

It is easy to show that
2 ~~~ N'7 "2 + ,. 2

2.K 1 2 A-I \T + + IIJ ... 5)
L s22 N .. 2 .....

Note also that

AN+r + 1-(1 jk)(1-O(6)
r'=I k=I";0

and

.v {kip]o r (2j, 1)A O[ J Or
A N 112, n = -1 - A') rJ7 [JkO +(1 -jk)(1 O ) _O (2jo - 1)OT )

r=. J~ Or (1 -jh, -

(7)

where A' = 0 or 1, representing yes or no respectively, is the true classification of

the pattern r and 0 is the analog output of the 11h neuron for the pattern r. We

have
1

1 + exp( - 1rliy/'



and

L o (1 - 0 )I;,, (9)

Therefore, a stochastic gradient descent algorithm can be constructed with

a=9s
77 49V 2

S27 2' ( NjL j2...J ) ( 3 2 . )2]
j2 ... j jj ... i 1 . ...

n Z (21'- 1)0,(1 - 0 ) 1 (10)

X -[jko0 + (1 j)(1 - Ok)]J + (1 _ ,)( _ }
k=1

where 77 is the learning rate and the summation over training patterns is dropped.

4 Result

We constructed a few examples and tested them with the PSIN against the back

propagation on a three layered net. PSIN had proved to be superior than back

propagation in all these cases.

These examples use three attributes constructed from ten input units

a, = V1 + 1.5v2 + 0.5V3 -- 0.4V4 + 0.3v5 + V6 - V7 + 2v 8 - 9 +v 0.9vio

a 2 = 0.1v, - 0.2V2 + 0.3v3 - 0.4v 4 + 0.5vs - 0.5 --0.4V7 - 0.3v8

+0.2v 9 - 0.1vlo

a 3 = ?2 + V4 + V6 + V8 + VlO

All these are analog units. The componets of patterns v,j = 1 to 10 are generated

randomly and uniformly between -1 and 1. In learning these cases, we use 5000

randomly generated training patterns. After learning we use another set of 5000

novel patterns to test the result.

(i) Second Order XOR Problem

T hib problem is represented in the decision tree in Fig.2. Using a node with single

output neuron, PSIN cannot improve the purity of this node with any significant

amount. This is expected because we know that XOR problem canmiot be solved by

perceptron with a single output unit. However, if we use two output neurons in the

5



node, then immediately the PSIN learned the problem in only 12 seconds cpu time

on a Cray-XMP with an accuracy of 99.85% out of 5000 novel testing patterns.

On the other hand, using a three layered

network with back propagation, we found

the results depend significantly on the a,
number of hidden neurons. Using two hid-

den neurons, the error is as high as 25.67% <_0 0

after a trainig of 10 seconds cpu time. The

result of three hidden neurons do not show a. "  a
improvement. The error is still 25.98% af- < - 0<0 -> 0

ter a.7.2 seconds training time. Increasing

the hidden neuron number to 10, the er- y N Y
ror is reduced to 2.25% which is still 15 /

times worse than the PSIN result and the

training time is 69.7 seconds or about Fig. 2

seven times longer than the PSIN method.

(ii). Third Order XOR

This problem is represented in the deci-

sion tree in Fig.3. The PSIN approach

starts from the premise that the problem + -

may be solved using a node with a sin-

gle output neuron. This being impossi- a2
ble, the program automatically increases + - +

the output neuron number in the node

by one to try to improve its information + a3

gain. In the end, a node with three output

neurons solved the problem with an accu-

racy of 9S.9%. The cpu time including all Y N N Y N Y Y N
the computations from one neuron node

to three neuron node used is 39 seconds

on Cray-XMP. If we knew before hand Fig. 3

that we should use only three neuron node, then this time would be cut to at least

a half. On the other hand, the automatic search for the right number of neurons to

be included in a node is also one of the desirable feature of the PSIN approach

The same problem run on a three layered network with back propagation has

an error of 20% for three hidden neurons, 4.6% for six hidden neurons and the cpu

.



time spent is already 44.5 seconds. Increasing the hidden neurons to 10 results in

a higher error rate of 5.5 - 7% and the cpu time needed is around 70 seconds. We

could not reduce further the error of back propagation scheme by including more

hidden neurons.

(iii). A Third Example
As another example, we consider the de- a,
cision tree in Fig.4. The PSIN approach 0 >

automatically formd a two-node struc-

ture to solve this problem. The structure a
closely resembles the decision tree. The

first node consists of one output neuron

and the second consists of two output neu-

rons. The network trained has an error

rate of 0.75%. The time spent is 11.75 < >0 < >0
seconds. The back propagation scheme

on a three layered net with three hidden Y N N y
neurons has an error of 7.45%. The time

spent is 22.7 seconds. Fig. 4

5 Conclusion and discussion

In this paper, we have presented a scheme called Parallel Sequential Induction

Network to construct automatically a tree of neural network nodes. Each node is

trained t.? classify patterns channeled to it by a previous node. A stochastic gradient

descent algorithm is presented to optimize the information gain (or the reduction

of the impurity in the pattern sets) of the node. The PSIN scheme has been tested

on a few decision tree problems and show a much superior result than the three

layered network with hidden neurons and back propagation training.

We expect that for complex decision problems the combined parallel and sequen-

tial strategy would significantly alleviate the scale up problem for the all parallel

multi-layered network. Since the scheme automatically search for the best organi-

zation of nodes and learned automatically the weights in each node to determine

the important attributes, it can be very useful in many real life problems.
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