
oTw Fr F CON1

0 NAVAL POSTGRADUATE SCHOOL
Monterey, California

DTIC

NOV 1 7 1988
S ELECTE THESIS

SOFTWARE REUSABILITY:

A DECISION TREE MODEL

by

William D. Randall, Jr.

June 1988

Thesis Advisor: Gordon H. Bradley

Approved for public release; distribution unlimited.

58 110 17 o2

UNCLASSIFIED
SECURITY CLASS CA 'ON O: '-S ACE

REPORT DOCUMENTATION PAGE

la REPORT SECUR;TY CLASSIFCATiCN 'b RESTRCT,yE MARKNGS

2a SECURITY CASSIF;CATiON AUTHORJTY 3 D;STR BuTON AvA .- OF REOORT

2b DECLASSIFICATlON I DOWNGRADING SCHEDULE Approved for public release; distribution
unlimited.

4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5 MONITORING ORGANIZATION REPORT NJMSER(S;

6a. NAME OF PERFORMING ORGANIZATION 61b OFFICE SYMBOL 7a NAME OF MONITORING ORGANIZATiON
(If applicable)

Naval Postgraduate School 33 Naval Postgraduate School

6c. ADDRESS (City, State, and ZIP Code) 7b ADDRESS (City, State, and ZIP Code)

Monterey, California 93943-5000 Monterey, California 93943-5000

Ba. NAME Or FUNDING. SPONSOR!NG 8b OFFICE SYMBOL 9 PROCUREMENT IN57TUMENT IDENTIFICATION NUMBER
ORGANIZATION (If applicable)

8c. ADDRESS (City, State, and ZIP Code) 10 SOURCE O FUND:NG BVE5is
P=A D I C NvrPK NIT

ELEMENT NO NO NO ACCESS;ON NO

11 TITLE (Include Security Classification)

SOFIWARE REUSABILITY: A DECISION TREE MODEL

12 PERSONAL AUTHORS)
Randall, William D., Jr.

13a. TYPE OF REPORT 3b TME COVERED 14 DATE OF REPORT (Year, Month, Dy) 15 PAGE COUNT
Master's Thesis PROM TOI 1988, June 73

16 S)PPLEM.ENTARY NOTATiONTe views expressed in this thesis are those of the author and do not reflect the official

policy or position of the Departmnt of Defense or tho U. S. CcverniTent.

17 COSATI CODES 18 SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

FIELD GROUP SUB-GROUO Reusable software, decision trees, decision modeling
software engineering

19 ABSTRACT (Continue on reverse if necessary and identify by block number)

There are numerous claims in the software engineering literature that reusable
software will solve many of the problems extant in the software industry, bu'. there are
few articles examining the economic factors inherent in the reusability issues. This
thesis proposes a decision tree as a nodel of the reuse decision and suggests applications
for its use. . -

20 DlSTRIlBLTION/AVAILABLITY OF ABSTRACT 21 ABSTRACT SECURITY CLASSFCATION

JaUNCLASSIFIEDUNLiMTED 0 SAME AS RPT C3 DTIC USERS UNCLASSIFIED
22a NAME OF RESPONSIBLE (NDVfDA-. 22b TELEPHONE (Include Area Code) 22c OFFICE SYMBOL

Criin (-,- Rr;llp v 408 646 2359 52Bz
DD FORM 1473, 84 MAP 83 APR ed ton ma1 be used untl exhausted SECURITY CLASS,;ICATION OF THIS PAGE

A!l other ed.tions are obsolete UJNCLA.STFTED- P -,,. -" ,-C. 24.

mmmm,. .. . -. ,- -- -- - - ,mml , = - . mmm • • mmmlmm -'- m • -i

Approved for public release; distribution is unlimited.

Software Reusability: A Decision Tree Model

by

William D. Randall, Jr.
Lieutenant Commander, United States Navy

BCHE, Auburn University, 1975

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN ENGINEERING SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
June 1988

Author:
William D. Ratall r.

Approved by:
-,,-Trdon IT. Br y le : !i Advisor

Daniel L. Davis, Second Reader

Vincent 1Lum, Chairman,
Department Yi Computer Sciences

Gordon E. Schacher, Dean of
Science and Engineering

ii

ABSTRACT

There are numerous claims in the software engineering

literature that reusable software ,iill solve many of the

problems extant in the software industry, but there are few

articles examining the economic factors inherent in the

reusability issues. This thesis proposes a decision tree as

a model of the reuse decision and suggests applications for

its use.

copy

INSPECTEVD

Lj'-I

5.

i

iii

TABLE OF CONTENTS

I. INTRODUCTION AND BACKGROUND 1

A. WHY REUSABLE SOFTWARE? 1

B. REUSABLE SOFTWARE 2

C. CLAIMS OF REUSABILITY OF SOFTWARE 4

II. RATIONAL DECISIONS/ECONOMIC ANALYSIS 6

A. RATIONAL DECISIONS 6

B. ECONOMIC ANALYSIS 7

III. MODELLING THE REUSE DECISION 9

A. RATIONAL DECISIONS MADE EVERY DAY 9

B. DECISION TREES 9

C. STAIRS OR ELEVATOR? 10

D. EXAMPLE EXTENDED TO SOFTWARE ENGINEERING . . 16

E. DESCRIPTION OF THE REUSE DECISION THROUGH A

MODEL 18

IV. CALCULATIONS/SENSITIVITY ANALYSIS 21

A. REFINED EXAMPLE 21

B. CALCULATIONS WITH ARBITRARILY CHOSEN DATA 23

C. THE PROBABILITY OF MODIFICATION, Pm 2s

D. THE PROBABILITY OF FINDING A MODULE, Pf . 28

E. SENSITIVITY OF THE MODEL 29

F COMPUTER PROGRAMS UF Tn'E DECISiON TREE MODEL 33

iv

V. DATA COLLECTION 35

A. DIFFICULTY IN OBTAINING DATA 35

VI. APPLICATION OF MODEL 37

A. INITIALIZING THE LIBRARv 37

B. CAN THE LIBRARY BE TOO LARGE? 43

C. A NATIONAL LIBRARY OF SOFTWARE 44

D. GRAPHICAL ANALYSIS OF Pf Vs PM 46

E. WHERE SHOULD DATA COLLECTION BE CONCENTRATED? 48

F. WHEN DOES LIBRARY PAY FOR ITSELF? 50

VII. CONCLUSIONS 54

APPENDIX (Computer Programs) 56

LIST OF REFERENCES 64

INITIAL DISTRIBUTION LIST 66

V

LIST OF FIGURES

Figure 1. Simple Decision Tree 11

Figure 2. Decision Tree for Stairs vs. Elevator

Decision 13

Figure 3. Reuse Decision Tree 17

Figure 4. Reuse Decision Tree Showing Variables 24

Figure 5. Reuse Decision Tree Showing Assigned Values 26

Figure 6. = 0.95 30

Figure 7. Vfm = $45,000 32

Figure 8. Underwriting the Costs 41

Figure 9. Pf vs Pm 47

vi

I. INTRODUCTION AND BACKGROUND

A. WHY REUSABLE SOFTWARE?

In his thesis, written in March 1984, LCDR William C.

Johnson described the software crisis as a "situation within

the computer industry in which production and maintenance of

computer systems is 'bottlenecked' by the software

components systems." [Ref. 1] In June 1984, T. C. Jones

stated, "The average productivity rates of industrial and

commercial software builders have been in the vicinity of

2,000 to 4,000 lines of source code per programmer year,

since the mid-1960's." [Ref. 2] If the productivity rates

since 1984 have remained fairly constant, and there is no

indication to the contrary, the "crisis" still exists. In

fact, it must be getting worse.

Maintenance is another major concern of software

engineers. The costs of maintaining software are

increasing; in 1985, one writer states:

The percentage of time that programmers spend on
maintenance has been steadily increasing for the last
several years. Computerworld's annual DP budget survey
[CW, Dec. 31, 1984/Jan. 7, 1985] found that the percentage
of an average programmer's time spent on maintenance now
stands at about 55%, compared with 45% last year. There
are no indications that this figure will go anywhere but
up. [Ref. 3]

There have been many articles advocating software

reusability as a remedy to the software crisis, but there

appear to be few articles that indicate that these software

1

concerns are abating, or that software engineers are turning

to reusable software in order to ease these concerns.

B. REUSABLE SOFTWARE

In some sense, software engineers do reuse software.

Software engineers know the algorithms and code for certain

problems that they have faced often in the course of their

careers. They have developed their own tool kits which they

carry with them from project to project, from job to job.

When similar problems arise, they rely on this software tool

kits to solve the problem or complete the project at hand.

There are other examples of reuse that commonly occur.

Romberg and Thomas [Ref. 4] suggest that reusable

software may encompass anything from the use of subroutines

in Basic programs to the continued reuse of a single

application program. This indicates that the meaning of the

phrase is ambiguous and also depends on the context in which

it is presented. It is certainly true that one reuses

software every time he uses a commercial word processor or a

commercial spread sheet. However, within the context of

this thesis the phrase "reusable software" will refer to

software modules retained in a library that are available to

the software engineers for their use in software design

projects. Hence, the word "module" will refer to atomic

program components that form the fundamental building blocks

of complete programs or software systems. A module may be a

2

single algorithm, or a collection of algorithms which

collectively achieve a single end.

The module need not and, perhaps, should not be coded.

Software is limited by its environment. It is very closely

tied to the compiler version, the operating system and the

hardware for which it was written. A software module can

thus be quite limited in its reusability. To avoid this

limitation, the module could consist of the requirements and

specifications to which the software is written, the

algorithms used to achieve the requirements and

specifications, the interfaces of the software module, the

testing and test plans and the documentation. In this

thesis, the word "module" will refer to just that.

If several people are working on a project and if two or

more require the use of the same abstract data type, it is

wasteful for these people to each write their individual

data type. It makes much more sense for the abstract data

type to be written and then made available for all concerned

with the project. A complete description of the data type

(which could include the algorithms used to construct it,

the types of data it can h~id, the types of operations that

can be performed on it, the requirements for which it was

written and the testing to which it has been subjected)

could be retained in a library of software modules.

Subsequently, when the data type was again needed, the

3

module could be retrieved from the library. This is

reusable software within the context of this thesis.

C. CLAIMS OF REUSABILITY OF SOFTWARE

Reusable software has been cited as a means of

increasing software productivity, improving software

reliability and reducing software costs. "Reusability

reduces software development costs, speeds up theJ

development process, and reduces testing needs." [Ref. 5]

Further support of reliance on reusable software is found in

an article by Romherg and Thomas:

Production of one piece of code to do the work that
would otherwise require many coding efforts creates
obvious savings of time and effort in specification,
design, construction and testing. These savings are
minimally offset by the need to meet the interface
requirements of a large set of environments in which the
code will be used. The net effect is substantially
reduced development time and cost. The savings are
compounded as the resources freed are applied to
additional development. [Ref. 6]

Despite these ringing endorsements for the use of

reusable software in the software industry, there is little

evidence to indicate that reusability is being embraced by

software engineers. In his 1984 book, David King [Ref. 7]

describes a project library with no mention of coded or

uncoded modules that may be reused by the program engineers

and in 1986, William Wong [Ref. 8] of the Institute of

Computer Sciences and Technology (ICST) of the National

Bureau of Standards stated that analysts and programmers

4

generally have to build code from scratch, and that few

organizations have an organized body of knowledge of

software assets that would allow an analyst or programmer to

find and reuse modules. If reusability is worthy enough to

have as large a share of the current software engineering

literature devoted to it as does, why is reusability not

receiving the attention of software engineers in industry?

This thesis proposes a model that may explain why

software reusability is not in widespread use in the

industry, and how, when it is appropriate, it might be

encouraged.

5

II. RATIONAL DECISIONS/ECONOMIC ANALYSIS

A. RATIONAL DECISIONS

If one reads the literature, he or she is led to believe

that any software engineer should be anxious to reuse

software at any opportunity that presented itself. Software

that has already been written, that is pre-designed to meet

design specifications, that has been tested again and again,

and, finally, that is free of design and production costs,

would seem to be a ripe plum, ready for the picking. The

fact is, few software engineers reuse software modules.

When software engineers are faced with a software design

project they examine the specifications then fit their

experiences and knowledge to the problem. The software

engineer is likely to determine how the current project is

like or unlike projects in the past and apply the knowledge

gained in the past to the current project.

This type of behavior is not unlike renting a car. Even

though the car may be a make that is different from the make

that a driver is accustomed to driving, the driver can still

make decisions about driving the rental by relying on

knowledge about the other make. The ignition switch will be

on the dash, or on the steering column. The ignition must

be "on" in order to unlock the gear lever and the steering

wheel. The light switch is on the dash near the steering

6

column and the turn signal is the small lever on the left of

the steering column.

Similarly, when a software engineer is faced with a

problem in software design his solution is based on what has

worked in similar situations in the past. What data types

or algorithms worked best in this situation the last time?

When last faced with this question did a linked list or

simple array work better? Is a trapazoidal rule or a

Simpson's rule approximation better in this case?

This is rational behavior and software engineers are

rational people. They will make design decisions based on

sound judgments. Economically speaking, the soundest

judgment is the decision which results in a combination of

low risk, low cost and high return.

B. ECONOMIC ANALYSIS

In order to understand the software engineer's

reluctance to rely on reusable software in accomplishing his

assignment, one should undertake an economic analysis of his

decision, as he surely does. The economic analysis is based

on choices. Each of these choices is characterized by risk,

expected value and cost. The software engineer makes the

choices he does because he feels that they are economically

sound choices.

A particular decision may mean fewer lines of code, and

therefore, less time and money spent on coding this segment

7

of the project. A second decision may be made because one

alternative is more likely to yield the expected results.

Or, a third decision may be made because it will lead to

increased profits for the firm or a particular department

within the firm.

These are economic considerations; they appear to be

absent from much of the current literature in the field of

reusability. Yet, if reusable software is ever to become a

reality in the software industry these considerations will

require much more attention than they are getting at the

present time.

8

III. MODELLING THE REUSE DECISION

A. RATIONAL DECISIONS MADE EVERY DAY

Every day, people make rational decisions, either

consciously or unconsciously evaluating each alternative

available to them and the consequences of pursuing these

alternatives. Based on this evaluation, and the perceived

answers to questions about consequences, a decision is

reached. The decision is to pursue the alternative which

returns the best combination of return, risk and cost.

The difficulty is in determining which alternative leads

to the optimal combination of return, risk and cost. One

method in overcoming this difficulty is decision analysis,

through the use of the decision tree.

B. DECISION TREES

Decision trees are one tool used by management in the

analysis of decisions. This discussion of decision trees is

based on discussions of decision trees in texts by Ackoff

and Sasieni [Ref. 9] and Markland and Sweigart [Ref. 10].

A decision tree is a graphical representation of a

decision-making process that provides the decision maker

with a stage-by-stage account of a decision. A decision

tree consists of branches, representing events which might

occur, and nodes, representing the points at which

alternatives occur. There are two types of nodes; decision

9

nodes, represented by circles, at which one has the

opportunity to elect one alternative over others, and chance

nodes, represented by squares, at which nature controls the

outcome. A node may have two or more branches. Figure 1

shows a simple decision tree with two branches.

C. STAIRS OR ELEVATOR?

At this point, an example may prove to be useful.

Consider a man who has a meeting on the fourth floor of a

certain building. On entering the building, he has the

choice of taking the elevator to the fourth floor, or he may

take the stairs. (Figure 2 shows the decision tree that

represents this decision.)

In the decision tree, events are shown in chronological

order, from left to right. Node A is a decision node,

indicating that this person has the choice of taking the

stairs, branch S, or of taking the elevator, branch E. At

the end of each of these branches, are chance nodes, marked

B and C. From each of these chance nodes, emanate two

branches marked "Success" and "Failure", the two possible

states of nature resulting from the decision maker's earlier

choice of taking the stairs or of taking the elevator.

The decision maker makes his decision by evaluating and

comparing the expected values of his alternatives. First,

he determines the payoff for success in each case. In this

example, the payoff is the same for both the stairs and the

10

Branch

Branch

Figure 1. Simple Decision Tree

elevator. That is, whether he arrives at the fourth floor

by stairs, or by elevator, he will still be in time for his

meeting. Because the payoffs are the same for each case, a

relative value of 1.00 can be assigned to each of the

Success branches in Figure 2. If, for whatever reason, the

man does not arrive at the fourth floor (Failure), the

payoff is 0.00, again, as shown in Figure 2.

The decision maker must then determine the probability

of success or failure at each chance node. (Any probability

must be between 0.00 and 1.00.) If, in the experience of

the decision maker, the elevator works reliably, he may

assign the event that he arrives at his destination a

probability of 0.99. (It could never by 1.00, as there is

always the possibility of malfunction.) If, on the other

hand, the elevator is under repair, or it is the experience

of the decision maker that the elevator is rarely in

operation, he will assign his arrival by elevator a very low

probability, one very nearly 0.00. It is assumed, for this

example, that the elevator is in good repair and that the

decision maker assigns his arrival by elevator a probability

of 0.99. He will assign his arrival at his destination by

stairs a probability of 1.00, because a power failure will

not cause the stairs to fail, as it would the elevator.

Since this event can only have one of two outcomes, the

probability of success and the probability of failure must

sum to 1.00. Therefore, whatever probability is assigned to

12

iA . . ,L,,,-"- m auu a '-,

0.99 1.00

Success

B

Failure

.50.25
0.00

1.00

1.00

1.00
SSuccess

Failure

0.00 1.00

Figure 2. Decision Tree for Stairs vs. Elevator Decision

13

........

the Success branch, the Failure branch must be assigned a

value of 1.00 less the probability of success. At node B,

for example, the probability of failure is 1.00 - 0.99, or

0.01. All probabilities are shown on Figure 2.

Next, the decision maker calculates the expected value

at each of the chance nodes. This is done by taking the

product of the probability and the payoff of each state of

nature at one chance node, then summing them. This sum is

assigned as the expected value of that node. Other chance

nodes are evaluated similarly. In this illustration, the

expected value of node B is

0.99 x 1.00 + 0.01 x 0.00 = 0.99

and the expected value of node C is

1.00 x 1.00 + 0.00 x 0.00 = 1.00.

There is a cost associated with each alternative. For

instance, it may take fifteen seconds for the elevator to

reach the fourth floor, but walking, it requires sixty

seconds to reach the fourth floor. Thus, the rational

decision maker may, consciously or otherwise, assign the

elevator alternative a relative cost of 0.25, but the stairs

alternative a relative cost of 1.00, since it "costs" four

times as much time to take the stairs as it "costs" to take

the elevator. These costs, shown in Figure 2, are

subtracted from the expected values just calculated to yield

revised expected values of 0.74 for the elevator (0.99 -

0.25) and 0.00 for the stairs (1.00 - 1.00).

14

The decision maker now compares the expected values of

each of the alternatives and makes the rational decision to

take the elevator. However, it is possible that different

values for some of the variables will result in a different

decision. For example, if the decision maker places great

value on exercise, he may judge the payoff from taking the

stairs to be twice the payoff of taking the elevator, the

savings in time to the contrary, assuming that he can still

arrive in time for his appointment. A payoff of 2.00 for

arriving at his destination by stairs changes the expected

value of node C to 1.00 ([1.00 x 2.00 + 0.00 x 0.00] - 1.00

= 1.00). It is now rational to take the stairs to the

fourth floor.

Note that the expected values were calculated from the

end of the decision tree, to the beginning. This is similar

to the thought processes in making a decision. One might

think to himself, "Either way, I get to the fourth floor.

If I take the stairs, I'm sure that I will get there, but

it's going to take much longer. On the other hand, if I

take the elevator, I'm almost as sure of getting to the

fourth floor and I will get there more quickly. I'll take

the elevator."

Other variables can be changed with no effect on the

decision. If the payoffs are the same as originally stated,

but the elevator is not as reliable as in the first

illustration, the probability of success of arriving by

15

elevator may be degraded to 0.50. This changes the expected

value of node B to (0.50 x 1.00 + 0.50 x 0.00) - 0.25 =

0.25. Even though the probability of success in taking the

elevator is nearly half of its value in the original

illustration, the expected value from taking the elevator

(0.25) is still greater than the expected value of taking

the stairs (0.00) and the rational decision does not change.

D. EXAMPLE EXTENDED TO SOFTWARE ENGINEERING

Although the preceding is a rather simple example, it

illustrates the use of decision trees in everyday decisions.

Further, it can be extended easily to the environment of

software engineering.

Having arrived at the fourth floor, this rational

decision maker (a software engineer) is given a software

project to complete. The project is to write a software

module for subsequent inclusion in a larger project.

However, he is now faced with a series of choices instead of

a single choice. These choices can also be represented by a

decision tree, albeit a more complex decision tree, as shown

in Figure 3. The decision tree contains five decision

nodes, A, B, D, E and G. These represent the points at

which the software engineer has the opportunity to make a

decision about the use of reusable software in the current

project. The decision tree also contains two chance nodes,

C and F. These are the points at which the software

16

NS p

NR
NM

NR

Fiur 3 Res DeiN Te

17G

.. , - - - . m . a n , mm m m m m ,- - m m m m • um mm m m m iiCo

engineer has no control over the state of nature which

follows. In this decision tree, there are eight branches

which do not terminate in a node. These indicate that a

final state has been reached. Two of these branches emanate

from chance node F and two emanate from each of the decision

nodes B, E and F.

E. DESCRIPTION OF THE REUSE DECISION THROUGH A MODEL

The first node, labelled A, represents the decision of

the software engineer to create his own software modules

from scratch, or to conduct a search of a software library

for applicable modules, already written and tested. The

upper branch represents the alternative that no search is

conducted and is labelled NS. The lower branch represents

the alternative that a search is conducted and is labelled

S.

If the software engineer elects to take the branch

labelled NS, he arrives at another decision node, B. At

this juncture, he may elect to create a software package

that is suitable to his purpose, but without consideration

that it be used in similar applications in the future (i.e.,

reusable), the branch labelled NR. This will be referred to

as conventionally written software. Alternatively, the

software engineer, may elect to create a software package

that meets the strict standards of the reusable software

library, represented by the branch labelled R. Having done

18

so, when faced with similar assignments in the future, this

or other software engineers, may reuse the software created

now.

The software engineer may decide to conduct a search of

the library of reusable software, represented by the branch

labelled S. This option results in arriving at chance node

C. Here, the software engineer has no election. The two

branches stemming from node C are mutually exclusive, chance

events. The search reveals a software module that the

software engineer may be able to use, the F branch, or the

search reveals nothing, the NF branch.

If the search reveals nothing, the software engineer is

at decision node E, which is identical to node B. However,

should the search reveal a software module, the decision

tree takes the software engineer to decision node D. At

node D, the software engineer must decide if he is going to

pursue the reusable software option, branch P, or if he is

going to abandon his efforts to reuse and create the

software from scratch, the NP branch. The NP branch takes

the software engineer to dec 4iion node G, again, identical

to decision node B.

However, if the software engineer decides to pursue the

reusable software option further and takes branch P, he

arrives at chance node F. This node represents the point

that the module revealed by the search may or may not

require some modification before the software engineer can

19

use the module in his project, the states of nature M and

NM, respectively. (The alternatives of modifying or not

modifying may not be entirely up to chance. The software

engineer may have some discretion in this matter. This

issue will be discussed at a later point.)

This decision tree is proposed as the model of the

decision making process of the software engineer engaged in

a large-scale software project. Ensuing discussion will

center around examples using arbitrarily chosen data, the

problems of data collection as it pertains to this model and

application of the model to the software engineering

environment.

20

IV. CALCULATIONS/SENSITIVITY ANALYSIS

A. REFINED EXAMPLE

In order to facilitate the model and the following

example, the following variables are defined:

* Pm -- the probability of having to modify a software

module.

* Pnm -- the probability of not having to modify a

software module; Pnm = 1.00 - Pm,

* Pf -- the probability of finding the software module

that meets the specifications in a software library.

* Pnf -- the probability of not finding the software

module that meets the specifications in a software

library; Pnf = 1.00 - Pf.

* Cab -- the cost of proceeding from node A to node B;

that is, the overhead involved in starting out writing the

software from scratch.

* Cac -- the cost of proceeding from node A to node C;

that is, the overhead involved in searching a software

library for a reusable modules.

* Cbr -- the cost of writing a reusable module, having

arrived at node B.

* Cbnr -- the cost of writing a non-reusable module,

having arrived at node B.

* Cdf -- the cost of examining modules revealed by the

21

search, to determine which module best fits the

requirements.

* Cer -- the cost of writing a reusable module, having

arrived at node E.

* Cenr -- the cost of writing a non-reusable module,

having arrived at node E.

* Cgr -- the cost of writing a reusable module, having

arrived at node G.

* Cgnr -- the cost of writing a non-reusable module,

having arrived at node G.

* Cfm -- the overhead involved in using a software module

that requires modification.

* Cfnm -- the overhead involved in using a software module

that requires no modification.

* Vfm -- the payoff realized for using a reusable module

that requires modification.

* Vfnm -- the payoff realized for using a reusable module

that requires no modification.

* Vbnr -- the payoff realized for producing a software

module that is not reusable, after decision node B.

* Vbr -- the payoff realized for producing a software

module that is reusable, after decision node B.

* Venr -- the payoff realized for producing a software

module that is not reusable, after decision node E.

* Ver -- the payoff realized for producing a software

module that is reusable, after decision node E.

22

• Vgnr -- the payoff realized for producing a software

module that is not reusable, after decision node G.

* Vgr -- the payoff realized for producing a software

module that is reusable, after decision node G.

The expected value of each node will be denoted by the

letter designation of that node. In other words, D is, for

example, the expected value at decision node D. These

variables are shown in Figure 4, on the branches on which

they are encountered. They will be used to illustrate the

facility and application of the model in the following

discussions.

B. CALCULATIONS WITH ARBITRARILY CHOSEN DATA

Figure 5 is an amended copy of Figure 4, showing the

values assigned for this illustration. Each of the branches

which do not terminate in a node show the payoffs associated

with its particular state. Both branches emanating from

chance node F show a payoff of $40,000. Branches emanating

from nodes B, E and G show payoffs of $50,000. These data

are arbitrarily chosen, and are used only to illustrate the

analytical capabilities of the model.

Assume that a realization of $50,000 is forecast for the

completion of this phase of the project, unless the module

is a reusable module found in the library as a result of

search. In this case, the realization may only be $40,000,

as the module may be less than the exact specifications.

23

Vbnr

BPmn
Vfm

Cbnr

Cgnr
Cbr< - ,

gr

Ca b FDr PnmiVrha
Cdf

Cac
Vgnr

G k-gnr

C Cgr

Vgr

Pnf
Venr

Cenr

it Cer

| Ver

! Figure 4. Decision Tree Showing Variables

24

Further, assume that any branch representing a chance event

has an equal chance of occurrence (Pm = Pnm = Pf = Pnf =

0.50).

It will be assumed, for this illustration, that the cost

of writing a software module in the conventional manner is

$25,000 and that the cost of writing a software module that

is reusable is $30,000, a 20% increase over writing a non-

reusable module. Therefore, Cbnr = Cenr = Cgnr = $25,000

and Cbr = Cer = Cgr = $30,000.

The cost of modifying a software module is, in this

illustration, assumed to be $20,000 (Cfm = $20,000). At

this point, it is easy to jump to the conclusion that there

is no overhead if one is fortunate enough to find a reusable

module that exactly fits the specifications. This is

probably not the case, as it will no doubt have some

interface with other modules in the overall project. Based

on this reasoning, in this illustration, Cfnm = S5,000.

with these data, the decision of the software engineer is

evaluated as described in the following paragraphs.

The expected value of node F is evaluated, as follows:

F = Pfm(Vfm - Cfm) + Pfnm(Vfnm - Cfnm).

Substituting the assumed values into the above formula

yields the following results:

F = 0.50(40,000 - 20,000) + 0.50(40,000 - 5,000)

F = $27,500.

25

CD 00D

0 C

4A 0^

0 0 Q)
0 0o

0A L 0 0 Cf

0* 0 0 0

00

LA

0D 0Q

L 00 LA 0D 0
00 Co CD LA LU 0 -

0 0 LALl %

LAO A

LA LA4

C> 6

C) C-

CD 0 26

The expected value of node G is computed by finding the

difference between the payoff and the cost of each branch

and selecting the greater value. For example:

Vgnr - Cgnr = 50,000 - 25,000 = $25,000

and

Vgr - Cgr = 50,000 - 30,000 = $20,000.

Thus the expected value of G is $25,000. (Likewise, the

expected values of nodes B and E are $25,000.)

The expected value of node D is the greater of the

values (F - Cdf) and G. F was previously calculated as

$27,500, but must be decreased by the cost of examining the

retrieved modules for the best fit. Assuming Cdf = $1000,

(F - Cdf) = $26,500. G was shown to be $25,000. Therefore,

the expected value at node D is $26,500.

The expected value of node C is calculated as follows:

C = (Pf x D) + (Pnf x E).

Substituting for the variables yields the following results:

C = (0.50 x 26,500) + (0.50 x 25,000)

C = $25,750.

The expected value of node A is the greater of the

expected values of nodes B and C, less any costs associated

with the two branches. If the cost of the library search is

$1,500, the expected value of node A is $25,000, but can be

achieved only by taking the path marked NS. The path marked

S yields only $24,250 (25,750 - 1500). Based on this

27

illustration, the software engineer's decision is to write

the required software module from scratch.

C. THE PROBABILITY OF MODIFICATION, Pm

Pm is the probability of having to modify a software

module that has been identified as at least marginally

meeting the specifications of the software project on which

the software engineer is working. In the example cited

above, Pm was given a value of 0.50. This indicates that

half of the software modules called upon for reuse will

require some modification in order to fit the bill. This

can still be economically advantageous to the software

engineer, as long as the cost of the modification is not too

great.

Initially, this probability is likely to be much higher

than 0.50. As the library is filled with more and better

reusable software modules, the probability that its modules

will require modification will decrease. Additionally, Pm

can be decreased by more strictly enforcing acceptability

requirements to the library. Thus, Pm might be viewed as a

measure of the quality of the software library.

D. THE PROBABILITY OF FINDING A MODULE, Pf

Pf is the probability that the library will contain a

reusable software module that can be used by the software

engineer. In the example, Pf was set at 0.50, which

28

indicates that for every 100 searches of the library, 5b

will be fruitful. This obviously depends on the quantity of

the library contents. As the library is filled with more

and more reusable software modules, the probability that a

reusable software module is found increases. Pf can be

viewed as a measure of the quantity of the library.

E. SENSITIVITY OF THE MODEL

A model, if it is a good analytical tool, must be able

to demonstrate the effects of changes of one or more of the

parameters on other parameters. In the case of the decision

tree as a model of the software engineer's decision process,

the model should, for example, be able to demonstrate the

effect a change in the probability of modification, Pm, on

the decision to search or write from scratch; or the effect

of a change in the payoff resulting from writing a reusable

module, rather than writing a module in a conventional

manner. Does the proposed model accomplish this?

Subjectively, one would surmise that if the probability of

having to modify a module were quite large, say 0.95, it

might have some effect on the software engineer's decision

concerning a library search. Will the model support this

instinctive feeling?

A change of the value of Pm to 0.95 will change the

expected values of the decision and chance nodes as shown in

Figure 6 and as follows. The expected value at node F is

29

Co 0 0 0
oD 0 0D 0

00 C 0 0 > 40

r1 0 4A Ll 00

A^
4AAA

(A 0

0 0
0 0 0t

C0 0 0
LA LA) 00 ulA

0;r- 0 0

LAOM

0 LA

LUU

0n 0 EnC
-o C 0 0^

LAOA
e,4 in

LA LA

00

reduced to the amount of $20,750. With an expected value at

F of that amount, the expected value at node D changes from

$26,500 to $25,000, since $25,000 is the larger of the

expected values at F and G. Still assuming that Pf is 0.50,

the expected value at node C is $25,000, vice $25,750 in the

original example. This means that whatever the overhead

involved in conducting the search for a reusable software

module, the economically advantageous route is to choose to

write the software from scratch, as one instinctively

believes.

Another variable that might be changed is the payoff

realized when a reusable module is used. In the example,

the payoff in this case was $40,000, predicated on the

observation that the module may be slightly less than that

which was specified. But, if the software engineer is going

to modify the module (branch M), the final product may be

very much closer to that which was specified and therefore

worth more than $40,000. What if the payoff for a modified

module is $45,000, as shown in Figure 7?

With the payoff fo branch M valued at $45,000 (and Pm

again set to 0.50), the axpected value of F is $30,000,

driving the expected value of D to $29,000. This drives the

expected value at C to $27,000, which means that a search of

the software library is economically advantageous so long as

the cost of conducting the search is less than $2,000.

31

oD 0 0 0
oD 0 0 0l
00 0 0 0

LA C 0 Oo
40 0n oo 4)

C1 0 A 00

LAA 0
C) CLDI0 0l 0f

0) 0 0)
0l A 00 LA
0D VA 4^ 00 4A

0 EN64 0

0l LA

0 0 E
0 0l >7

LA 004 LA 00

00 4A LA

Ln Ln

LA LA

r14
4A r'

'4A

32

F. COMPUTER PROGRAMS OF THE DECISION TREE MODEL

Two computer programs were written to demonstrate the

analytic capabilities of the model. They are included as an

appendix to this thesis. The programs are written in the

Pascal programming language. The variables are the costs,

expected values, payoffs and probabilities, as explained in

the model and illustrated in the example. The first program

is written using the data found in the example. However,

rather than assuming a value of Pm, the probability that a

module will require modification, the program is written so

that it will find the value of Pm at which it is no longer

economically rational to conduct a library search for

reusable software modules. This is as if the software

engineer, or his supervisor, were to have a reasonably good

estimate of the value of Pf, the probability of finding an

applicable reusable module in the library and was interested

in determining what value Pm would have to be in order for a

library search to be rational.

This first program is written assuming a value of Pf of

0.50, as in the example. A "while" loop, incrementing Pm

from 0.00 to 1.00, in steps of 0.01, is written. At each

increment of Pm the program determines the expected value of

node B (Rb), the expected value of node C (Rc) and the

branch selected by the decision maker (S or NS for Search

and No Search, respectively). The program prints this

information for each increment. With this particular set of

33

data, the rational decision is to conduct the search of the

library until the value of Pm is 0.47.

The second program is written to establish a

relationship between Pf and Pm. To establish this

relationship, all variables from the model, except Pf and

Pm, are assigned values. A "while" loop, incrementing Pm

from 0.00 to 1.00, in steps of 0.01, is written. At each

increment of Pmt Pf is incremented from 0.00 to 1.00, in

steps of 0.01. For each increment of Pf, the program

determines whether the rational (economically advantageous)

decision is to conduct a search of the library, or to write

the software module from scratch. For each value of Pm' the

program prints the values of Pm' the minimum value of Pf for

which a search is economically sound and the return expected

as a result of the decision.

The computations carried out by either of these programs

are easily done analytically. However, the short computer

programs cited in this thesis will allow the decision maker

to quickly examine the effects of varied sets of data. For

example, the first computer program assumed a value of Pf of

0.50 and found that at a value of Pm of 0.47, the rational

decision was to write the software from scratch. Changing

the value of Pf to 0.75 and running the program, the

decision maker can easily ascertain that Pm can be as high

as 0.52 and search still be economically feasible.

34

V. DATA COLLECTION

A. DIFFICULTY IN OBTAINING DATA

Up to this point in the thesis, all the data has been

arbitrarily chosen to illustrate the model of the software

decision. This was simply because accurate data applicable

to this topic is extremely difficult to obtain. If, as Boehm

[Ref. 11] says, the annual cost per software professional is

$44,650 and the average software professional has an average

output of 2,000 lines per year, then a rough per-line cost

for software is $22.32. Using this figure, the modules in

the example would have to be approximately 1100 lines each.

The difficulty is in how these costs are determined.

What is a software professional, an analyst, a programmer or

an "average" of the two. To determine costs, does one

include more than salary, such as utilities and office

overhead? Likely, the answers to these questions are

different for different groups and would thus have to be

answered individually.

The assignment of values to the probabilities is an even

more difficult task. How does one establish the probability

of finding a usable module in a library. The best way is

through history. A certain number of successes were

achieved in a known number of searches. This percentage can

be used as the value of Pf, but is, until the number of

searches is large, subject to a wide margin of error.

35

The assignment of a value to the probability that a

module will have to be modified (Pm), is even more

difficult. This difficulty is exacerbated by the fact that

the node at F, although presented aq P chance node, can not

be placed neatly into the category of chance or decision

node. The issue of whether a module is modified is not

entirely up to chance. Two different software engineers may

have differing opinions about the applicability of a

particular software module, with or without modification.

Hence, this node shows attributes of both chance and

decision nodes. It is only because of a lack of precise

representation of the cognitive aspects of this issue that

node F is presented as a chance node.

36

VI. APPLICATION OF MODEL

A. INITIALIZING THE LIBRARY

In many cases, there may not exist a library of reusable

software modules. If it does exist, the library is sparsely

populated. This forces the software engineer, according to

the model, to write the software from scratch. The

literature suggests that writing reusable software is more

difficult and more expensive than writing software in a

conventional manner, meaning that no reusable modules are

being written to place in such a library. Therefore, the

task facing the software industry is one of overcoming a

powerful inertia in software engineering.

One scheme to encourage the expansion of the library of

software might be to offer bonuses for reusable software

modules over conventionally written software. How might the

model help the software industry? Suppose the manager of a

team of software engineers was considering such a bonus.

How much of a bonus can realistically be offered? How will

the bonus effect the rest of the operation?

In an organization just getting started in reusability,

with a very small or non-existent library, Pf, the

probability the needed software module is present, is going

to be extremely small. The results of the second computer

program representing the model show that in the ideal

situation, i.e., perfectly reusable modules (Pm = 0.00), the

37

probability of finding a reusable module in the library

must be 0.12 in order for the search to be an economically

feasible alternative. Obviously, a Pf of 0.12 is not

possible if the library is empty.

The model shows, that in this situation, the software

engineer will elect to write the module from scratch;

indeed, there is no other choice. As a decision maker, the

software engineer will follow the NS branch, to decision

node B. At node B, the software engineer will have to make

a decision whether to write the software as a reusable

module or conventionally. Again, the model shows that the

software engineer will decide to write the software

conventionally, as this is the alternative which provides

the greatest return. As long as the rational decision is to

write software in the conventional manner, no reusable

modules will be created to add to the library. As long as

no reusable modules are being added to the library, the

rational decision is to write software in the conventional

manner. The project supervisor, examining the decision

making model, can predict this cycle and may be provided a

clue to the solution.

The project supervisor can see that the library must be

provided a base of reusable modules. He can also see that

the rational decision is to write software conventionally.

It simply costs too much to write reusable software. For

the software engineer to make the decision to write reusable

38

software, it must become economically feasible. For

writing reusable software to become economically feasible,

either the cost of writing the module must be reduced, or

the payoff of a reusable module must be higher.

Reducing the cost of writing a software module is a

difficult task, if possible at all. However, it may be

possible for the software firm to have the department

responsible for the management of the library to underwrite

a portion of each reusable module that it finds acceptable.

In his 1984 article, T. C. Jones (Ref. 12] states that some

concerns have gone so far as to establish the reusable

library as an overhead item or as a cost center. If this

scheme removes all cost of writing from the particular

software project (but only if the module is written for

reuse), any decision maker arriving at decision node B

should make the decision to write a reusable software

module.

However, the model shows that with this scheme, the

decision maker will never decide to conduct a search of the

library. It is now more profitable to write the reusable

module, regardless of what is in the library. This will

result in a very well stocked library, but one which suffers

greatly from duplication. One way to guard against this is

for the software firm to stipulate that the library cost

center will underwrite the cost of writing a reusable

module, once a library search has been conducted and the

39

library contained no module to meet the required

specifications. This requires the decision maker to follow

the decision tree to decision node E, as a minimum. This

scheme drives the software engineers to stock the library,

but without the risk of placing redundant modules in the

library.

Does this cost center have to underwrite the entire cost

of the reusable software module? An examination of Figure 8

will help reveal the answer. For an empty library, Pf is

0.0; Pnf is 1.0. This means that the expected value of

chance node C is due solely to the contribution of the NF

branch and, because Pnf is 1.0, the contribution of the NF

branch is the expected value of decision node E. Knowing

that Cac is $1000.00, the software engineer, or his manager,

can see that the expected value of node C less the cost of

conducting a search has to be greater than the expected

value of node B, $25,000. For this to occur, in these

circumstances, the condition Ver - Cer > $26,000 must be

true. In the limiting case, Ver - Cer = $26,000 and for the

case of Ver = $50,000, Cer $24,000. Therefore, if the

library cost center underwrites $6,001 of the $30,000 to

write a reusable module, the rational decision maker will

follow the decision tree to decision node E, even when he

knows that Pf is 0.0. Further, once at decision node E, he

will follow branch R, writing a reusable software module,

that can be placed in the software library for future use.

40

0 0D 0D 0D
0 0 0>C

0 0 0 0 0* 0 LA 00 A 444c
IN Ch~oo L

LrAO

LA
0

0 Q 00 0D
LL LA) m o D LA61

0 CD 44
00

C)C

0f 0
4-.0) 0D L..

0Y 00

00
C)L

00

< 0*

LA
(N

41

In the previous paragraph, the library's cost center

underwrote a portion of the costs of writing the reusable

module. This has results identical to the results had

another cost center provided a bonus of the amount

underwritten. The important aspect is that net payoff of

this branch be greater than the net payoff of the NR branch,

not the manner in which the advantage was achieved.

How long should the cost center continue to underwrite a

portion of the cost of writing reusable modules? As the

library grows under this expansion policy, Pf increases as

Pnf decreases. Thus, the contribution of the NF branch to

the expected value of chance node C diminishes, as the

contribution of the F branch to the expected value of node C

increases. At some point, the relative contributions should

be such that, even with the cost center withdrawing its

support, the economically sound decision is to conduct the

library search.

To determine this point, consider the example shown in

Figure 5. Each of the probabilities was set to 0.50, for

purposes of illustration. This resulted in an expected

value of $25,750 at node C. If the cost of conducting the

library search is less than $750, the rational decision is

to proceed with the search. However, that one conducts a

search does not guarantee that a reusable module is found.

The decision maker may find himself at decision node E,

42

having to decide between writing a reusable module or

writing a conventionally structured software module.

At node E, the decision maker will again follow the

branch which provides the greater return. If following

branch NR results in a return of $25,000 and following

branch R results in a return of $20,000, the rational

software engineer will follow branch NR. The model shows

that the cost center should continue to underwrite some

portion of the cost of writing a reusable software module.

B. CAN THE LIBRARY BE TOO LARGE?

If the library is too well stocked, the software

engineer may be overwhelmed by the number of modules

revealed by the search. A cost is associated with tne

branch from node D to node F. This cost, Cdf, reflects the

investment in time and money incurred by the software

engineering team in sorting a large number of modules to

find the best of the lot. In the example (Figure 5), with

the expected value of node G valued at $25,000, the rational

software engineer will choose the branch from node D to node

F so long as Cdf is less than $2,500 ($27,500 - $25,000).

(Of course, this decision may simply manifest itself as the

software engineer's throwing up his hands in despair at such

an overwhelming number of modules from which to choose, for

which the model makes no allowance.)

43

The question of how many modules are too many is another

question for which the model has no explicit answer.

However, if the cost of examining a number of modules for

the best candidate can be determined, the number of modules

for which the cost surpasses an acceptable limit may be

ascertainable.

C. A NATIONAL LIBRARY OF SOFTWARE

As an example of a software library that may be too

large, consider the following. There are advocates of a

national library of software which would hold every piece of

software ever written or commissioned by the federal

government. Such an endeavor is ambitious and appealing.

What does the proposed decision tree model reveal about this

suggestion?

First, with a library consisting of thousands

(millions?) of programs, one can assume a large value of Pf,

a value very nearly 1.00. It is very likely that anything

one wants would be in such a large library. However, this

might also be the problem. Such a library is bound to have

a great deal of redundancy in it. This redundancy manifests

itself by resulting in an overwhelming amount of software

that is applicable to the project at hand being revealed by

the search.

The increase in the amount of software which must be

considered by the software engineer results in an increase

44

in the value of Cdf as the engineer examines the software to

determine which best meets his needs. (See Figure 4.) It

is possible that the value of Cdf will become so high that

no matter what the expected value of node F is, the value of

Cdf will reduce the expected value of node F to a value

below that of the expected value of node G. Therefore, the

rational decision will be to write the software from

scratch. The model has shown that in such a library guards

against excessive redundancy must be in place and has also

provided a method of determining how much redundancy is

excessive.

Excessive redundancy is not the only force effecting the

value of Cdf. The form of the contents of the library can

also lead to an increase in the value of Cdf. If the

contents of the library are complete programs, or are

modules with incomplete or badly written specifications, Cdf

may again be so high that the software engineer will write

his software from scratch. Here, the model shows that the

national software library must place strict rules on the

contents of the library.

It was shown earlier that in order to start a library of

reusable software modules, the library was going to have to

underwrite a portion of the cost of writing the reusable

software modules, or to offer a bonus for reusable software

modules, over conventionally written software. In a

national library containing software written under the

45

auspices of the government, the situation is different.

Producing software for the government, the software engineer

would conduct a search of this national library. (It could

even be made a stipulation of the contract.) If the library

search reveals nothing, what will induce the software

engineer write a reusable software module? This is a case

in which a bonus is applicable, vice underwriting a portion

of the costs. (In effect, the government is already

underwriting the production costs, anyway.) The model can

be used by the contract managers or by the library managers

to determine the size of the bonus necessary.

D. GRAPHICAL ANALYSIS OF Pf vs PM

The second computer program representing the decision

making model was run three times; once, with the values used

in the example and shown in Figure 5 and twice with revised

values for V. This was done to observe the effect on the

relationship of Pm and Pf. From the data output by the

program on each of these three runs, a graph was prepared

and is included as Figure 9.

Curve 1 is the case which was used as the example. The

curve shows that as the probability of having to modify

increases (the quality of the reusable modules decreases),

the probability of finding the applicable reusable module

must increase (the quantity of the reusable modules must

increase). In this case, Pm must be higher than 0.50 before

46

ti

a IL

I IT

I I -C

____ _____ _ -47

the chance of finding a reusable module has to be nearly

1.00.

Curves 2 and 3 represent the increase in value of V of

15% and 20%, respectfully. These curves show the same

general shape as does curve 1, but increasing toward 1.00

with smaller values of Pn. From this graph, it can be seen

that with greater increases in the payoff a stricter quality

control mechanism must be in place in order to keep the

values of Pf in a reasonable range.

With only minor changes to the computer program, it will

provide data in the form of Pm as a function of Pf. This

could be advantageous if the data relevant to Pf is more

readily accessible than is data relevant to Pm" This is an

illustration of the flexibility of the proposed model.

E. WHERE SHOULD DATA COLLECTION BE CONCENTRATED?

Great expense can be incurred in the collection of data

to be used in forecasting the feasibility reusability in

software. There are many variables involved in this model

and if attempts were made to collect data for each of these

variables, the result may be some wasted time, effort and

money at the least. Are there, then, some variables that do

not have significant effects on the outcome of the software

engineer's decision to usi or not to use reusable software

modules?

48

The model exhibits a sensitivity to changes in the costs

of writing software, or to changes in the payoffs associated

with the various branches of the decision tree. This

indicates that the firm of software engineers considering

the possibility of initiating a software library would do

well to take a long, hard look at their cost of writing

software and at the payoffs likely to result from the

completion of projects.

It does not seem to be a sensible use of one's time to

gather a great deal of data on the probabilities involved in

the model. If the firm is only now embarking on a path to

reusability, the probability of finding the right module is

zero. The library is empty. It is not until the library

has begun to be established that any data about Pf is even

available. Then it becomes desirable to track Pf as the

value of Pf can determine the amount of cost that must be

underwritten by the library cost center.

Similarly, it does not seem to be a sensible use of

one's time to gather a great deal of data on Pm. Again, the

data is not available until the library is established and

in use. Once the library is established Pm should be

tracked in order to provide those concerned with a measure

of the quality of the reusable modules in the library. If

Pm is high, it indicates that the modules are frequently in

need of modification, that is, the modules being written to

49

stock the library are in need of stricter quality assurance

measures.

F. WHEN DOES LIBRARY PAY FOR ITSELF?

It has been estimated that the start-up costs for a

reusable software library will fall into a range of $50,000

to upwards of $250,000 [Ref. 13]. This is a sizable

investment and software engineers will have to know if this

investment can be recovered. As this is an important aspect

to the reusability issue, the model proposed in this thesis

should assist in ascertaining this break-even point. Does

it?

To answer this question, it is necessary to trace the

development and use of software through the model. First,

consider a software module, written conventionally. This

conventional software will cost, as per the example,

$25,000, resulting in a profit of $25,000 on the first, and

only, use of the software. When a similar project,

returning similar payoffs and requiring similar software, is

assigned, an additional design effort is required, meaning

4another $25,000 expense to realize another $50,000 payoff.

This means, that in two uses of the same or similar

software, a profit of $50,000 is realized.

This is as if the software engineer took the path from

node A to node B on every decision. The model indicates

50

that each time the engineer takes this path, he will realize

a profit of $25,000.

Had the software engineers originally chosen to write a

reusable module, the software would have cost $31,000, i.e.,

$30,000 to design and write the software and $1,000 for the

fruitless library search. The resulting profit is $19,000.

In this case, a second assignment calling for similar

software can be answered by conducting a library search,

retrieving the reusable software module and installing it.

In the worse case, this will cost $1,000 for the search,

$1000 for sorting and $20,000 (modification required) for

installing it. If the payoff for branch M is only $40,000,

the profit is $18,000. That is $37,000 profit in two calls

for the software module.

If, however, since the module is being modified, it can

be made to more nearly meet the specifications, it is

reasonable to surmise that the payoff might be more than

that for an unmodified module. If it can be made to meet

specifications exactly, it will return a payoff of $50,000.

This results in a profit of $28,000 for the second use of

this module. When added to the profit of the first use of

the module, a combined of $47,000 is realized, still below

the profit of twice using the conventional modules.

However, on the third use of the modules, the

conventional module will return another $25,000, but the

reusable module is now coming into its own. Since it was

51

previously modified, the cost of using this module is only

$7,000 ($1,000 for the search, $1,000 for sorting the

retrieved modules and $5,000 for installing the reusable

module). This returns $43,000 for the third use, alone and,

when combined with the previous uses of the module, returns

a gross profit of $90,000, compared to $75,000 profit for

the conventional modules. The break-even point will occur

when the gross profit exceeds the start-up costs of the

library.

Even though these numbers are arbitrarily chosen, this

discussion shows how the model can be used by a software

engineering firm to predict its own break-even point in

determining whether it should strive for reusability in

software. It also shows how the model can provide the

software engineering firm information to make the decision

whether reuse is the right decision for the firm.

In his article in Computerworld [Ref. 14], Jones implies

that the project initializing a reusable module will reap no

benefit from writing reusable softwaLe and that only

subsequent users of the software module will gain any

benefit. The model supports Jones' assertions and gives an

indication of the number of subsequent uses that must be

realized for reusability to be of some benefit.

If the firm can predict that the software will not be

reused a sufficient number of times to gain this advantage,

it may determine that reusable software holds no advantage.

52

Further, there is the issue of the value of money. A return

of $50,000, ten years hence is not the same as a return of

$50,000, one year from now.

Here is a case in which a firm may not wish to pursue

the reusable software course of action. The model has shown

that it is possible to envision a circumstance in which

reusability is, economically, a mistake. A software module

that is only expected to be used once, or one that is not

expected to be used within a reasonable frame of time, will

provide no economic reuse advantage to the software firm

producing it. This idea disputes the trend in the current

literature implies that reusability is the remedy of today's

software engineering dilemma.

53

VII. CONCLUSIONS

The issue of software reusability has received much

attention in recent literature. The literature extols the

virtues of reusable software, but fails to discuss analysis

of the economic issues relevant to the area of software

reusability. The model proposed in this thesis provides a

methodology for explicitly studying these issues.

The model demonstrates the decision making process

through which the software engineer progresses. it also

provides guidance in how to establish incentives in order to

establish a library of reusable modules and how long those

incentives should be in place. The model demonstrates that,

even though not initially profitable, after a point the

reusable module can be an extremely profitable asset.

On the other hand, the model shows that reusability is

not the panacea one is led to believe. As demonstrated, it

is conceivable that some software firms may find it an

economic disaster to pursue reusability if the software is

not expected to be reused often enough or soon enough. The

model also provides a means of determining how many times

the software must be reused in order to be profitable.

The model analyzes the question of software reusability

only from the standpoint of dollar value to the

ogranization. This is not the only view to be taken. There

may exist non-economic considerations that are not

54

incorporated into the model. For instance, an organization

may consider that its programming expertise or its ability

discover new and better solutions to old problems are

critically important assets. The organization may therefore

choose a conventional approach over the less costly avenue

of reuse in order to maintain these important skills. Even

though the model does not incorporate these considerations,

it will allow the organization to determine a trade-off

between economic and non-economic considerations.

The discussion of the model is meant to be suggestive,

rather than inclusive; the figures used in this thesis were

arbitrarily chosen to illustrate the utility of the model as

an analytical tool. There is much more that can be done

with this model. In the future, for example, thesis

students may apply empirical data to the model to further

explore its utility. Government agencies attempting to

foster software reusability may use the model to ascertain

why the agencies' software engineers are writing

conventional software modules. Finally, private industry

may use the model in actual cases to further verify the

claims of this thesis.

55

APPENDIX

(Computer Programs)

Program DecisionTree;
var

Costs Expected Payoffs Probabilities
Values

Cab, Rb, Vbr, Pf,
Cac, Rc, Vbnr, Pm,
Cbr, Cbnr, Rd, Ver,
Cer, Cenr, Re, Venr,
Cfm, Cfnm, Rf, Vem,
Cgr, Cgnr, Rg, Venm,
Cdf, Vfm,

Vfnm,
Vgr,
Vgnr: real;

outfile: text;

function Max (a,b: real): real;
begin (* function Max *)
if a >= b then
Max := a

else
Max := b;

end (* function Max *);

begin (* main program *)

assign (outfile,'dectre.dta'); rewrite (outfile);

Cab := 0000.00; Cac := 1000.00; Cbr := 30000.00; Cbnr
25000.00;
Cer := 30000.00; Cenr 25000.00; Cfm := 20000.00; Cfnm
5000.00;

Cgr 30000.00; Cgnr := 25000.00; Cdf := 1000.00;

Vbr := 50000.00; Vbnr := 50000.00; Ver := 50000.00; Venr
50000.00;

Vfm := 40000.00; Vfnm := 40000.00; Vgr := 50000.00; Vgnr
50000.00;

writeln ('Pm':7,'Rb':11,'Rc':13,'Branch Selected':26);
writeln (outfile,'Pm':7,'Rb':11,'Rc :13,'Branch

Selected':26);

56

Pf 0.75; Pm 0.00;

while Pm <= 1.00 do
begin
Rg Max((Vgr - Cgr), (Vgnr - Cgnr));
Re Max((Ver - Cer), (Venr - Cenr));
Rb Max((Vbr - Cbr), (Vbnr - Cbnr));
Rf Pm * (Vfm - Cfm) + (1-Pm) * (Vfnm -Cfnm);

Rd Max(Rg, (Rf - Cdf));
Rc Pf * Rd + (1-Pf) * Re;

write (Pm:8:2,Rb:13:2, (Rc-Cac) :13:2);
write (outfile,Pm:8:2,Rb:13:2,(Rc-Cac):13:2);

if Rb >= (Rc - Cac) then
begin
writein ('NS':16);
writein (outfile, 'NS' :16);

end
else

begin
writein ('S':16);
writeln (outfile,'S':16);

end;

Pm := Pm + 0.01;

end; (* while *

close (outfile);

end.

57

Pm Rb Rc Branch Selected
0.00 25000.00 30750.00 S
0.01 25000.00 30637.50 S
0.02 25000.00 30525.00 S
0.03 25000.00 30412.50 S
0.04 25000.00 30300.00 S
0.05 25000.00 30187.50 S
0.06 25000.00 30075.00 S
0.07 25000.00 29962.50 S
0.08 25000.00 29850.00 S
0.09 25000.00 29737.50 S
0.10 25000.00 29625.00 S
0.11 25000.00 29512.50 S
0.12 25000.00 29400.00 S
0.13 25000.00 29287.50 S
0.14 25000-00 29175.00 S
0.15 25000-00 29062.50 S
0.16 25000.00 28950.00 S
0.17 25000.00 28837.50 S
0.18 25000.00 28725.00 S
0.19 25000.00 28612.50 S
0.20 25000.00 28500.00 S
0.21 25000.00 28387.50 S
0.22 25000.00 28275.00 S
0.23 25000.00 28162.50 S
0.24 25000.00 28050.00 S
0.25 25000.00 27937.50 S
0.26 25000.00 27825.00 S
0.27 25000.00 27712.50 S
0.28 25000.00 27600.00 S
0.29 25000.00 27487.50 S
0.30 25000.00 27375.00 S
0.31 25000.00 27262.50 S
0.32 25000.00 27150.00 S
0.33 25000.00 27037.50 S
0.34 25000.00 26925.00 S
0.35 25000.00 26812.50 S
0.36 25000.00 26700.00 S
0.37 25000.00 26587.50 S
0.38 25000.00 26475.00 S
0.39 25000.00 26362.50 S
0.40 25000.00 26250.00 S
0.41 25000.00 26137.50 S
0.42 25000.00 26025.00 S
0.43 25000.00 25912.50 S
0.44 25000.00 25800.00 S
0.45 25000.00 25687.50 S
0.46 25000.00 25575.00 S
0.47 25000.00 25462.50 S
0.48 25000.00 25350.00 S
0.49 25000.00 25237.50 S
0.50 25000.00 25125.00 S

58

0.51 25000.00 25012.50 S
0.52 25000.00 24900.00 NS
0.53 25000.00 24787.50 NS
0.54 25000.00 24675.00 NS
0.55 25000.00 24562.50 NS
0.56 25000.00 24450.00 NS
0.57 25000.00 24337.50 NS
0.58 25000.00 24225.00 NS
0.59 25000.00 24112.50 NS
0.60 25000.00 24000.00 NS
0.61 25000.00 24000.00 NS
0.62 25000.00 24000.00 NS
0.63 25000.00 24000.00 NS
0.64 25000.00 24000.00 NS
0.65 25000.00 24000.00 NS
0.66 25000.00 24000.00 NS
0.67 25000.00 24000.00 NS
0.68 25000.00 24000.00 NS
0.69 25000.00 24000.00 NS
0.70 25000.00 24000.00 NS
0.71 25000.00 24000.00 NS
0.72 25000.00 24000.00 NS
0.73 25000.00 24000.00 NS
0.74 25000.00 24000.00 NS
0.75 25000.00 24000.00 NS
Q.76 25000.00 24000.00 NS
0.77 25000.00 24000.00 NS
0.78 25000.00 24000.00 NS
0.79 25000.00 24000.00 NS
0.80 25000.00 24000.00 NS
0.81 25000.00 24000.00 NS
0.82 25000.00 24000.00 NS
0.83 25000.00 24000.00 NS
0.84 25000.00 24000.00 NS
0.85 25000.00 24000.00 NS
0.86 25000.00 24000.00 NS
0.87 25000.00 24000.00 NS
0.88 25000.00 24000.00 NS
0.89 25000.00 24000.00 NS
0.90 25000.00 24000.00 NS
0.91 25000.00 24000.00 NS
0.92 25000.00 24000.00 NS
0.93 25000.00 24000.00 NS
0.94 25000.00 24000.00 NS
0.95 25000.00 24000.00 NS
0.96 25000.00 24000.00 NS
0.97 25000.00 24000.00 NS
0.98 25000.00 24000.00 NS
0.99 25000.00 24000.00 NS
1.00 25000.00 24000.00 NS

59

Program DecisionTreel;

type
pathtype = (S, NS);

var

Costs Expected Payoffs Probabilities
Values

Cab, Rb, Vbr, pf,
Cac, Rc, Vbnr, Pm,
Cbr, Cbnr, Rd, Ver,
Cer, Cenr, Re, Venr,
Cfm, Cfnm, Rf, Vem,
Cgr, Cgnr, Rg, Venm,
Cdf, Vfm,

Vfnm,
Vgr,
Vgnr: real;

outfile: text;

path,
lastpath:

pathtype;

function Max (a,b: real): real;
begin (* function Max *)
if a >= b then

Max := a
else

Max :=b;
end (* function Max *);

procedure Output(parameterl, parameter2, parameter3:real);
begin (* procedure Output *)
writeln (parameterl:8:2, parameter2:8:2,parameter3:15:2);
writeln (outfile,parameterl:8:2,

parameter2:8:2,parameter3:15:2);
end; (* procedure Output *)

begin (* main program *)

assign (outfile,'thesis.dta'); rewrite (outfile);

Cab := 0000.00; Cac := 1000.00; Cbr := 30000.00; Cbnr
25000.00;

Cer := 30000.00; Cenr := 25000.00; Cfm := 20000.00; Cfnm
5000.00;

60

Cgr 30000.00; Cgnr 25000.00; Cdf 1000.00;

Vbr 50000.00; vbnr 50000.00; ver 50000.00; venr

: 50000.00;
Vfm := 40000.00; Vfnm 40000.00; Vgr 50000.00; Vgnr

: 50000.00;

Pm := 0.00;

writeln ('Pm':7,'Pf':8,'Expected value at A':22);writeln (outfile,,Pm':7,lPf':8,'Return':lS);

while Pm <= 1.00 do
begin
Pf := 0.00;
lastpath := NS;

while Pf <= 1.00 do
begin
Rg Max((Vgr - Cgr), (Vgnr - Cgnr));

Re Max((Ver - Cer), (Venr - Cenr));

Rb Max((Vbr - Cbr), (Vbnr - Cbnr));

Rf Pm * (Vfm - Cfm) + (1-Pm) * (Vfnm - Cfnm);

Rd Max(Rg, (Rf - Cdf));
Rc pf * Rd + (1-Pf) * Re;

if Rb >= (Rc - Cac) then
path NS

else
path S;

if (path = S) and (lastpath = NS) then
Output(Pm,Pf,Rc-Cac);

lastpath := path;

pf := Pf + 0.01;

end; (* while *)

Pm := Pm + 0.01;

end; (* while *)

close (outfile);
end.

61

Pm Pf Return
0.00 0.12 25080.00
0.01 0.12 25062.00
0.02 0.12 25044.00
0.03 0.12 25026.00
0.04 0.12 25008.00
0.05 0.13 25072.50
0.06 0.13 25053.00
0.07 0.13 25033.50
0.08 0.13 25014.00
0.09 0.14 25071.00
0.10 0.14 25050.00
0.11 0.14 25029.00
0.12 0.14 25008.00
0.13 0.15 25057.50
0.14 0.15 25035.00
0.15 0.15 25012.50
0.16 0.16 25056.00
0.17 0.16 25032.00
0.18 0.16 25008.00
0.19 0.17 25045.50
0.20 0.17 25020.00
0.21 0.18 25053.00
0.22 0.18 25026.00
0.23 0.19 25054.50
0.24 0.19 25026.00
0.25 0.20 25050.00
0.26 0.20 25020.00
0.27 0.21 25039.50
0.28 0.21 25008.00
0.29 0.22 25023.00
0.30 0.23 25035.00
0.31 0.23 25000.50
0.32 0.24 25008.00
0.33 0.25 25012.50
0.34 0.26 25014.00
0.35 0.27 25012.50
0.36 0.28 25008.00
0.37 0.29 25000.50
0.38 0.31 25023.00
0.39 0.32 25008.00
0.40 0.34 25020.00
0.41 0.36 25026.00
0.42 0.38 25026.00
0.43 0.40 25020.00
0.44 0.42 25008.00
0.43 0.45 25012.50
0.46 0.48 25008.00
0.47 0.52 25014.00
0.48 0.56 25008.00
0.49 0.61 25006.50
0.50 0.67 25005.00

62

0.51 0.75 25012.50
0.52 0.84 25008.00
0.53 0.96 25008.00

63

LIST OF REFERENCES

1. Johnson, LCDR William C., Reusable Software, Master's
Thesis, Naval Postgraduate School, Monterey,
California, p. 7, March 1984.

2. Jones, T. C., "Laying the Groundwork With Reusable
Code", Computerworld, v. 18, no. 26Am, p. 12, 27 June
1984.

3. Anonymous, "Softalk: Keeping Maintenance Minimal",
Computerworld, v. 19, no. 5, p. 37, 4 February 1985.

4. Romberg, F.A. and Thomas, A.B.; "Reusable Code,
Reliable Software," Computerworld, Vol. 18, No. 13, p.
221D, 26 March 1984.

5. Ramamoorthy, C. V., Prakash, A., Tsai, W. T., Usada,
Y., "Software Engineering: Problems and Perspectives",
Computer, v. 17, no. 10, pp. 191-209, October 1984.

6. Romberg, F. A. and Thomas, A. B.; "Reusable Code,
Reliable Software", Computerworld, v. 18, no. 13, p.
221D, 26 March 1984.

7. King, David, Current Practices in Software Development,
p. 175, Yourdon Press, 1984.

8. Heffernan, Henry, "Modular Software Simplifies
Maintenance and Reuse", Government Computer News, v. 5,
no. 21, p.70, 24 October 1986.

9. Ackoff, Russell, L. and Sasieni, Maurice W.,
Fundamentals of Operations Research, John Wiley & Sons,
Inc., 1968

10. Markland, Robert E. and Sweigart, James R.,
Quantitative Methods: Applications to Managerial
Decision Making, John Wiley & Sons, Inc., 1987

11. Boehm, Barry W., The Hardware/Software Cost Ratio: Is
It a Myth?, letter to the editor of Computer, March
1983, p. 79.

12. Jones, T.C., "Laying the Groundwork With Reusable
Code," Computerworld, Vol. 18, No. 26Am, June 27, 1984,
p. 13.

64

13. Jones, T. C., "Laying the Groundwork With ReusableCode", Computerworld, v. 18, no. 26Am, p. 13, 27 June
1984.

14. Jones, T. C., "Laying the Groundwork With ReusableCode", Computerworld, v.18, no. 26Am, p. 13, 27 June 1984.

65

INITIAL DISTRIBUTION LIST

No. Copies

1. Defense Technical Information Center 2
Cameron Station
Alexandria, Virginia 22304-6145

2. Library, Code 0142 2
Naval Postgraduate School
Monterey, California 93943-5002

3. Vincent Y. Lum, Chairman
Department of Computer Science
Naval Postgraduate School
Monterey, California 93943-5000

4. Prof. Gordon Bradley, Code 52Bz 2
Department of Computer Science
Naval Postgraduate School
Monterey, California 93943-5000

5. Joel Trimble
STARS Program
Office of Secretary of Defense (R & AP/CET)
Room 3D139 (1211 FERN, C112)
Pentagon
Washington, D. C. 20301

6. Dr. E. Royce, Code 38
Naval Weapons Center
China Lake, California 93950

7. Daniel L. Davis
MBARI
160 Central Avenue
Pacific Grove, California 93950

8. Dr. Gregory Aharonian
So, rce Translation and Optimization
P. 0. Box 404
Belmont, Massachusetts 02178

9. LCDR William D. Randall, Jr. 3
Engineering and Weapons Division
United States Naval Academy
Annapolis, Maryland 21402

66

