
NAVAL POSTGRADUATE SCHOOL
Monterey, California jj

0
*,ID STATES4r

i El i i

NO I 19 8

IMPLEMENTATION OF A PARALLEL

MULTILEVEL SECURE PROCESS

by

David R. Pratt

June 1988

Thesis Advisor: Joseph S. Stewart

Approved for public release; distribution is unlimited

m mliin~lmlI u1 p 32

UNCLASS1FIED
SECURITY CLASSiFICATION O ' -S PAGE

REPORT DOCUMENTATION PAGE / -

la REPORT SECURITY CLASSIF,CATION 1b RESTRiCTIVE MARKINGS

UNCLASSIFIED
2e. SECURITY CLASSIFCAT)ON AUTHORITY 3 DISTRIBUTION .'AVAILABILITY OF REPORT

2Approved for public release;
b DECLASSIFICATION.' DOWNGRADING SCHEDULE distribution is unlimited

4 PERFORMING ORGANIZATION REPORT NUMBER(S) 5 MONITORING ORGANIZATION REPORT NUMBER(S)

6a NAME OF PERFORMING ORGANIZATION 6b OFFICE SYMBOL 7a NAME OF MONITORING ORGANIZATION
(if applicable)

Naval Postgraduate School Code 52 Naval Postgraduate School
6c. ADDRESS (City, State, and ZIPCode) 7b ADDRESS (City, State, and ZIP Code)

Monterey, California 93943-5000 Monterey, California 93943-5000

8a. NAME OF FUNDING; SPONSORING Sb OFFiCE SYMBOL 9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION ('f applic.ble)

8c. ADDRESS (City, State, and ZIP Code) 10 SOURCE OF FUNDING NUMBERS

PROGRAM PROJECT TASK WORK UNIT
ELEMENT NO. NO NO jACCESSION NO

1 1 TITLE (Include Security Classification)

IMPLEMENTATION OF A PARALLEL MULTILEVEL SECURE PROCESS

12 PERSONAL AUTHOR(S)

Pratt, David R.
13a. TYPE OF REPORT 13b TIME LuvFkED 14 DATE OF REPORT (Year, Month, Day) 15 PAGE COUNT
qaster's Thesis FROM TO 1 1988, June 117
16 SUPPLEMENTARY NOTATION

The views expressed in this thesis are those of the author and do not reflect the official
policy or psition of the Dea nt of Defense or the U.S. Government.

17 COSATI CODES 18 SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

FIELD GROUP SUB-GROUP Security Kernel; Multilevel Security;
Eventcounts and Sequences

19 ABSTRACT (Continue on reverse if necessary and identify by block number)

-This thesis demonstrates an implementation of a parallel multilevel
secure process. This is done within the framework of an electronic mail
system. Security is implemented by GEMSOS, the operating system of the
Gemini Trusted Computer Base. A brief history of computer secrecy is
followed by a discussion of security kernels. Eventcounts and sequences
are used to provide concurrency control and are covered in detail. The
specifications for the system are based upon the requirements for a
Headquarters of a hypothetical Marine Battalion in garrison.

Q

20 DISTRIBUTION/AVAILABILITY OF ABSTRACT 21 ABSTRACT SECURITY CLASSIFICATION
[UNCLASSIFIED/UNI.IMITED El SAME AS RPT [] O:TIC USERS Unclassified

22a NAME OF RESPONSIBLE INDIVIDUAI 22b TELEPHONW (include Area Code) L c OFFICE SYMBOL

CDR Joseph S. Stewart (408) 64b-249I Code 5St
DO FORM 1473, 84 MAR 83 APR edition rray be used until exhausted SECURITY CLASSIFICATION OF THIS PAGE

All other ed.tions are obsolete 0 u G Priing ofice i

i UNCLASSIFIED

Approved for public release; distribution is unlimited

Implementation of a Parallel
Multilevel Secure Process

by

David R. Pratt
First Lieutenant, United States Marine Corps

B.S.E., Duke University, 1983

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
June 1988

Author: _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

David R. Pratt

Approved by: Iw Stewart, Tglesis Advisor

Richard A. Adams, Second Reader

Robert B. McG cting Chairman,Departme o Cm er Science

Actin Dean o nformat6n a Policy Sciences

ii

ABSTRACT

This thesis demonstrates an implementation of a parallel

multilevel secure process. This is done within the

framework of an electronic mail system. Security is

implemented GEMSOS, the operating system of the Gemini

Trusted Computer Base. A brief history of computer secrecy

is followed by a discussion of security kernels.

Eventcounts and sequences are used to provide concurrency

control and are covered in detail. The specitications for

the system are based upon the requirements for a

Headquarters of a hypothetical Marine Battalion in garrison.

iii

TABLE OF CONTENTS

I. INTRODUCTION---1I

A. THE ENVIRONMENT----------------------------------- 2

B. GOAL--3

C. ORGANIZATION---------------------------------------4

II. INTRODUCTION TO SECURE COMPUTERS---------------------6

A. HISTORY-- 6

B. COVERT CHANNELS---------------------------------- 10

C. SECURITY KERNELS--------------------------------- 12

D. SECURE COMPUTERS--------------------------------- 20

E. THE GEMINI COMPUTER AND GEMSOS------------------ 25

F. OTHER SECURE SYSTEMS----------------------------- 36

III. EVENTCOUNTS AND SEQUENCERS--------------------------- 38

A. EVENTCOUNTS--------------------------------------- 38

B. SEQUENCERS--40

C. RELATION TO SEMAPHORES--------------------------- 41

D. SECURITY OF EVENTCOUNTS AND SEQUENCERS---------42

E. IMPLEMENTATION OF EVENTCOUNTS AND
SEQUENCERS IN GEMSOS----------------------------- 43

IV. RESEARCH MODEL AND IMPLEMENTATION------------------- 45

A. INTRODUCTION-------------------------------------- 45

B. DESIGN LIMITATIONS------------------------------- 45

C. DESCRIPTION OF NEED------------------------------ 45

D. REQUIREMENTS-------------------------------------- 50

E. OVERVIEW OF THE SECURE MAIL SYSTEM DESIGN -- 53

iv

F. CONCURRENCY CONTROL ------------------------- 65

G. COVERT CHANNELS ----------------------------- 69

V. CONCLUSIONS AND RECOMMENDATIONS ----------------- 72

A. CONCLUSIONS --------------------------------- 72

B. RECOMMENDATIONS ----------------------------- 73

C. FINAL COMMENT ------------------------------- 74

APPENDIX A: USER MANUAL FOR THE SECURE MAIL SYSTEM --- 75

APPENDIX B: SMS CONFIGURATION MODULE CODE ------------ 79

APPENDIX C: SMS NODE PROCESS CODE -------------------- 80

APPENDIX D: SMS TYPE INCLUDE FILE -------------------- 107

LIST OF REFERENCES ------------------------------------ 108

INITIAL DISTRIBUTION LIST ------------------------------ 110

p

V

hi l imili lil li Hll ii ~~ i ' '=
I

I. INTRODUCTION

Imagine yourself as a critically sick patient who has

just checked into a large Eastern Medical Center. Right

before undergoing surgery, your doctor sits down and logs

onto the computer to review your record. The only problem

is that your record is nowhere to be found, and there is no

trace of what happened to it. A computer "virus" has

attacked the system. After rebuilding your medical record,

getting the medical care that you needed and recovering, you

finally return to work around Christmas time. As you log on

to the computer to check the messages that have piled up,

you notice that the system is severely overloaded. A type

of computer chain-letter has taken over the system in only a

couple of hours. Both of these events actually have

happened. [Marb88]

One of the problems with the use of computers is the

lack of security built into them. It is fairly easy to

control the flow of classified paper, but how is the

classified computer data safeguarded? To the Department of

Defense (DoD), this presents a real problem, and one that is

drawing increasingly close scrutiny.

Traditionally, computer security has been an

afterthought to system designers whose main concerns are the

efficiency of operation and the budget. This attitude has

1

degraded the performance of systems, caused increased costs,

and systems to be delivered late when the security module

had to be added. If the designers of the systems had

considered the security requirements in the beginning, most

of these problems could have been avoided. [Tay188]

A. THE ENVIRONMENT

Computer security is the art of compromise. The only

truly secure computer is one that is turned off and in a

locked and shielded room. The computer which is easiest to

use places no limits on the activities of a user, authorized

or not. The most efficient computer, in terms of

throughput, does no checking for authorization to do an

operation, it just does it. It is the system designer's job

to hammer out a compromise between security, usability and

efficiency.

The security policy of an organization determines how

much security is compromised in order to achieve more

efficient operation of the system. The security policy is

determined by the security requirements of the organization.

If the principle function of the organization is to count

sheets and pillow cases, usability and throughput are more

important than security. At an intelligence center the

opposite will be true. While these are the two extremes

(therefore easily lending themselves to a particular

security policy implementation), what about the average

military installation? It is harder to develop and maintain

2

a coherent computer security policy when the users and the

designers of the system themselves do not have a firm grasp

on the security requirements of the organization. It is

those systems that are provided to indecisive and often

unenlightened users that give computer security a bad name.

The reason is that very often security has been an

afterthought and usually, therefore, inefficient,

cumbersome, resented, and widely ignored.

The security goal of all computer systems is to provide

access to authorized users while denying access to

unauthorized users. A secure system is only secure with

respect to thc security policy of the organization. DoD

defines a secure system as one that:

...will control, through use of specific security
features, access to information such that only properly
authorized individuals, or processes operating on their
behalf, will have access to read, write, create, or delete
information. [DoDs85]

While this definition gives us an idea what a secure system

is, it does not say how one is to be implemented. A more

rigorous definition of a secure computer will be developed

in the next chapter.

B. GOAL

It is the goal of this thesis to combine the security

aspect of computers with the growing field of parallel

processing; having two or more programs running at the same

time and communicating among themselves. The security will

have to allow for a multilevel secure process. A multilevel

3

secure process is a program that interacts with the security

policy at different levels and does not violate it. Since

security was a prime consideration from the beginning of the

development process, the parallel multilevel secure process

is both easy to use and efficient. Each of the processes is

a simulated electronic mail network node. The system will

simulate a network running on a trusted computer base. This

served to investigate the use of interprocess communications

and trusted computers in a multilevel secure environment.

C. ORGANIZATION

Chapter II presents a brief rational for the

consideration of the systems approach to security of a

system. The first section of the chapter is a brief history

of computer security. Also in the second chapter the

concepts of "Secure Computer" and "Security Kernel" are

introduced. The next section is an overview of the Gemini

trusted computer base and GEMSOS, its operating system.

This section is a condensation of the "System Overview"

published by Gemini computers. The final section of the

chapter contains some information on other secure systems,

both implemented and theoretical.

Chapter III deals with eventcounts and sequences. These

provide a means for processes to communicate with each other

during execution. The Gemini computer implements these in a

secure environment which is a little more complex than

normal.

4

Chapter IV provides a description of the model and

implementation of the secure mail system. A complete

description of the modules is provided, along with

justification for some of the implementation choices that

were made during development.

The final chapter, Chapter V, list the conclusions and

provides recommendations for further study and research.

II. INTRODUCTION TO SECURE COMPUTERS

A. HISTORY

When Charles Babbage first developed his mechanical

analytical engine in the early nineteenth century, it was a

single user--single process machine. Security meant simply

keeping it locked up away from physical harm. One person

could run only one process at a time and that person had to

be in the same physical location as the computer to use it,

so physical protection was all that was required.

As technology advanced, the data processed on computers

became more sensitive and the cost of the machines

increased, the means of physical protection became more

elaborate. The fact remained, however, that the only

protection needed to enforce computer security was physical.

Very little thought went into having to place a security

device within the computer itself. To this day the primary

emphasis in security remains physical; that is, if you

cannot get to the computer, you can not do any harm to the

machine or the information stored in it. This eliminates 0

most of the security threats from outsiders. The threat

from insiders, people who are authorized access to the

computer, remains.

Computers were developed which were able to do more than

one process at a time, multiprocessing allowed the user to

6

al ! !

have several processes loaded on the system, although only

one process was executing at any given moment. The advent

of multiprocessing meant that several users could gain

access to the system and run different programs at the same

time. This fact, combined with the use of remote

peripherals (which allowed users who were not in the same

physical location as the computer to use it), created the

need for a new means of access control. These two

developments took the computer out of the exclusive control,

both physically and operationally, of a few trusted

operators and gave rise to the need for additional security

measures. It was no longer sufficient to provide physical

security; a form of logical security was needed. Changes

had to be made in operating system design to include a means

of verifying the person logging on had authorization to

access the system.

The user name and password mechanism was designed to

allow only certain people, i.e., the "authorized users,"

access to the system. When a user wants to gain access to

the machine, he has to first input his user identification

(userid) and a secret password that is known only to himself

and the System Security Manager (SSM). These two entries

are verified in a table of authorized users. If they are

found and are correct, access is granted; if not, access is

denied.

7

The userid and password system can be extended to

include not only the computer, but also to certain sets of

programs and data files within the computer. This system

limits direct access by the user to only those items to

which he has been granted access authorization by the SSM.

These systems are not fool-proof, however. There is a set

of utilities, such as text editors and file managers, to

which all users have access. One of these programs could be

modified such that when it executed, it would copy a legally

accessed, protected data file into an unauthorized and

unprotected data file. This type of modification to a

program creates what is known as a "Trojan Horse" program.

In addition to its intended function, such a program

performs unauthorized hidden functions, usually undetected.

[Beob85] D

A classic Trojan Horse program was written around 1976

at Heriot-Watt University, United Kingdom. A student wrote

a program that simulated a system crash followed by a login

sequence. He then left the program out on the system for

other users to try and run. When the unsuspecting user ran

the program the system appeared to crash and the user then

signed on. The program recorded the userid and password in

a disk file for later use by the author. [Norm83]

A derivation of the Trojan Horse is the "virus" program.

This program functions such that every time the user

executes the program in which the virus is embedded, the

8

• -. -- - . IllI I I i N li i I S

virus is able to embed itself in yet another program until

the entire system is infected [Beob85]. An example of this

phenomenon would be a program that appends itself to the end

of another program and in turn deletes the program in which

it is embedded. Eventually, all of the programs will have

been infected and deleted.

The user identification and password system can do

nothing to stop these two problems. Since the "authorized

user" is the one running the infected program, his actions

are entirely legal--the results of his actions, even though

they may be unintentional and unknown to him, are not legal

or authorized. To combat the use of "Trojan Horses" and

"viruses," a new method of computer resource security had to

be developed. [Beob85]

The concept of multitasking of the computer created a

special kind of problem, namely, "How to separate two

processes that require different levels of security?" For

the most part, this was handled by limiting the system to

one classification at a time, the so called "single level"

security. Whenever the classification of the jobs changes

the machine has to be purged of all data to ensure there is

no residual classified information left on the machine. One

of the major drawbacks to this system is that one user

processing a classified job will cause all unclassified jobs

to wait until the classified job is done and the system has

9

been sanitized. This was clearly a waste of computer

resources.

As part of the research to deal with these security

issues, the concept of a "Security Kernel" (hereafter

referred to as just kernel), was developed. This concept is

the main focus of this thesis. As the DoD becomes more and

more computerized, emphasis must be placed on the security

aspects of computer systems during the entire system life

cycle. Computer security cannot simply be added as an

afterthought software package.

B. COVERT CHANNELS

The Trojan Horse programs require a means to transfer

information from the authorized user to the perpetrator's

desired destination. Most of these information paths can be

closed, or reduced, by the use of the reference monitor

[Ames73]. However, there are ways to transfer information

from one process to another that do not use normal data

transfer means. This leakage of data between programs that

use data paths not intended for information transfer are

called covert channels [Lamp73]. All computer systems have

an abundance of covert channels, it is only the secure

systems that are concerned with eliminating them.

The damage done by the channel is a function of its

bandwidth. The bandwidth is the measure of bits per unit

time that are passed though the channel per unit time. The

10

EMIL. m

higher the bandwidth, the more damaging the channel is to

the security policy of the system.

While there are many different specific types of covert

channels, they can be grouped into two general classes,

storage and timing channels. A storage channel is one that

causes an object to be written and another process can

observe some aspect of that action. A timing channel uses a

timing mechanism to observe the effect on the system by some

process. [Gass88]

Storage channels can be grouped into three subclasses.

The first class is the object's existence. This simply

tells the user if an object exists or not. An example would

be an attempted access to a file and the message "permission

denied" is returned by the system. In this manner we can

tell the file exists. The second type, object attributes,

can give us even more specific data on the object. This can

be done by reading an object's header and reading the

attributes. The value of attributes that are stored in the

header may be real or placed there by a Trojan Horse and

used for communication. The final type of storage channel

is the shared resource channel. This channel communicate

more on the status of the system rather then on one

particular process. A printer spooler that has a finite

number of jobs can be monitored as a covert channel; this

would indicate the status of the print queue at any given

moment. [Gass88]

11

Il
i1

The other general type of covert channel is the timing

channel. This type of channel requires access to a timer in

order to operate. The clock can be provided by the system,

i.e., a real time clock, or by the program, i.e., a timing

loop. From the passage of time it is possible for the

program to determine the passage between two events. An

example of this is the request for access to a file and

denial of access. The programmer knows that it takes X

amount of time for the system to determine that it does not

exist and Y to determine that access is denied. [Gass88]

Of the two types of channels, the timing channel is

harder to control. There are no formal techniques for

finding them and they are very difficult to detect and

correct. The storage channel's bandwidth can be reduced by

strictly enforcing the security models and the elimination

of shared resources. [Gass88]

C. SECURITY KERNELS

As the problem of covert channels was brought to light,

a method to deal with them had to be developed. The most

elementary solution was to provide a separate machine for

every level, or security classification, of processing.

This was also one of the most expensive solutions since the

computer was not being used to the fullest extent possible

and it was difficult to share the data between machines.

This idea evolved into the concept of having the machine

12

|

appear to each user as though it were dedicated to his

particular level of processing.

This concept required the establishment of several

different security levels within the machine itself.

Providing these various levels of security were extensions

of the password and userid system. The user had his access

authorization checked at a finer level, thereby adding an

extra layer of security to the system. An example of this

is requiring the user to specify a password to access an

object. This method of access control proved to have the

same drawbacks as the login password--it created an

environment, although smaller, in which the user access

could be exploited. As was shown in a preceding section,

access control of the environment can be circumvented by the

Trojan horse or virus.

The environment created by use of access controls

provides only a means to check the user's authorization to

access the data, which is insufficient to stop the Trojan

horse attack. We must also examine his authorization to

modify, delete and write to the data storage location. In

order to reduce the bandwidth of the covert channels, the

authorization to write and the destination of the data must

be validated each time the user writes his data. Simply

put, every reference to any information must be checked and

authorized. This is the basic concept behind the idea of a

reference monitor as shown in Figure 1 [Ames73].

13

LSubjct Relerence Objct
(users and Monito, (Data, Terminals.

active processes) Program flies elc)

Access Log Fe T Access Control

Figure 1. The Reference Monitor

Before we go any further, some terms have to be defined

that will be used throughout the rest of this thesis. All

active processes, be they users, executing jobs, or anything

else which makes a reference to data, are termed subjects.

An object is a passive element, such as a data file, program

file, terminal device, or storage device, which contains the

data elements of the system. When a program is called, it

transitions from an object--a passive program file, to a

subject--an active process in the system.

Nondiscretionary security is the mandatory security that

is enforced on all users. It is based strictly on the

individual's security clearance. Discretionary security is 0

the policy that limits access to those who have the need to

know. A security policy is the organization's guiding

principle when it comes to accessing information. This can

be discretionary--relying strictly on the subject's need to

know--or nondiscretionary--based on the subject's level of

14

0

trust, which is his security clearance. Most organizations,

like the U.S. military, have a policy that is a combination

of both of these. A clearance and a need to know are both

required to gain access to objects. With reference to this

security policy, we can classify computers as trusted or

not. A trusted computer is one which can be relied on to

enforce the organization's security policy.

When a subject references an object, the reference

monitor must approve the transaction. This includes not

only reading the data in a file, but writing the data out as

well. Note that this reduces the effectiveness of the

storage covert channels by controlling all access to the

data. The Trojan Horse program is detected when it tries to

write the data into an unauthorized file, and the virus is

diagnosed when it attempts to embed itself where it is not

allowed.

Some of the more successful implementations of a trusted

computer use the security kernel [Land73]. The security

kernel is defined as the hardware and software required to

carry out the reference monitor concept. The kernel assumes

control over a small subset of the functions which are

normally part of the operating system. [Ames73]

The kernel is placed between the operating system and

the hardware. The implementation of the kernel is of vital

concern to the design of the system. Since every data

reference must be validated, a significant amount of

15

computer time is spent in the kernel. If the kernel is

implemented in software the performance will suffer, but the

system will be flexible. A hardware kernel will run fast

but it will be very difficult to modify. As stated in the

introduction, security is the art of compromise. As a

result, the kernel should be implemented partially in both.

Figure 2 shows a normal system configuration and Figure 3

shows a system which has a security kernel.

Users

. User Interface
Applications

Operating System Interface
Operating Systems

Hardware Interface

Hardware

Figure 2. A Standard Operating System

A trusted process, as shown in Figure 3, is one that can

circumvent the security built into the kernel. While it can

sidestep the built in security, it is trusted not to violate

the organization's security policy. This type of process is

16

w. - -- ,w Im~wmmml i ~ i m - ili mi~ m

TRUSTED USERS
USERS

UNSECURE
TRUSTED APPLICATIONS OPERATIONS

OPERATING
SYSTEMS

SECURITY

SECURITY PERIMETER
KERNEL

(SOFTWARE)

SECURITY SECURE
KERNEL OPERATIONS

(HARDWARE)

BARE HARDWARE

Figure 3. An Operating System using a Security Kernel

critical to the efficient operation of the system. A

typical trusted process allows the SSM to down-grade a

classified file.

Implementing the kernel as a subset of the operating

system solves the problem of size and complexity associated

with large programs. This implementation concept is

integral to the three design criteria of secure computers

(completeness, isolation, and verifiability). The size of

the kernel has a direct impact on the designer's ability to

prove that each of the design criteria hold.

17

The first of these, completeness of the reference

monitor--requires that all access to the objects be made

through the kernel. The second concept, the isolation of

the kernel, ensures that the monitor is tamper-proof.

Isolation of the kernel is usually achieved by implementing

the monitor in a mixture of hardware and inaccessible system

software. The third concept is that of verifiability of the

reference monitor. This requirement states that the

designer of the system must be able to prove that the

monitor enforces the security policy for which it was

designed.

The completeness and verifiability of the reference

monitor can be attributed to small size of the kernel. Due

to the small size, it is possible to do exhaustive testing

and proof of correctness to prove the correctness of the

kernel. An example of the small size of the kernel would

be one of the first security kernels developed by The Mitre

Corporation in 1974. It consisted of less than 20 primitive

subroutines and was written in fewer than 1000 high level

language statements. [Ames73]

The work in security kernels was based mostly on the

development of the Bell and LaPadula model [Ames73]. This

model is the most widely accepted of the systems that have

been built thus far for use within DoD. The model is based

on the "simple security condition" in which a subject at a

given security level has the ability to access only objects

18

at an equal or lower security level. Objects of a higher

classification would be inaccessible; in other words, no

"read up" is possible.

The *-property (pronounced "star-property"), is just the

opposite of the simple security condition. Subjects can

only write to objects that are higher or equal

classification, no "write down" is allowed. Figure 4

contains a graphical representation of the Bell and LaPadula

model.

Violation of H g e
Simple Security HigherLevel

Con'dition Object

Read Write

Operation I Operaiions

Lower
Level Violation of
Object " -propery

Figure 4. The Bell and LaPadula Model

An exception to the two properties is a trusted process,

in which subjects are authorized to cross some of the

security boundaries of the system provided that the security

policy of the system is not violated.

19

D. SECURE COMPUTERS

The DoD realized there must be some standardization in

the definitions and criteria of secure computers. As a

result of this the DoD Computer Security Center (DoDSCS)

published the DoD Trusted Computer System Evaluation

Criteria, CSC-STD-001-83, otherwise known as the "Orange

Book" (the color of its cover) [DoDs85]. This document sets

forth six fundamental requirements that a trusted, or

secure, computer must provide. In addition to the

requirements, four divisions and several subclasses are

defined to provide a standard bench mark for the evaluation

and rating of the systems. [DoDS85]

The six requirements are broken down into two

categories. The first, which contains the first two

requirements, deals with the policy that is being

implemented. The remaining four requirements cover what the

system must furnish to ensure controlled access to data.

The following is a summary of the requirements:

Policy Requirements

Requirement One. Security Policy--there must be an
explicit and well-defined security polic, enforced by the
system.

Requirement Two. Marking--Access Control Labels must

be associated with objects.

Accountability Requirements

Requirement three. Identification--Individual
subjects must be identified.

20

S

r

Requirement Four. Accountability--Audit information
must be selectively kept and protected so that actions
affecting security can be traced to the responsible party.

Requirement Five. Assurance--the computer system must
contain hardware/software mechanisms that can be
independently evaluated to provide sufficient assurance
that the system enforces requirements one through four
above.

Requirement Six. Continuous Protection--the trusted
mechanisms that enforce these basic requirements must be
continuously protected against tampering and/or
unauthorized changes. [DoDS85]

These six basic requirements provide the foundation of

the four security divisions. The divisions are labeled

alphabetically, in decreasing order of assurance of the

security enforcement, D being the least credible and A

providing the most complete security mechanisms. Each class

includes all of the requirements for the lower classes.

Division D has only one class. A division D machine is

one that has been tested but has failed to meet any the

requirements of a higher class. Minimal protection is

provided by this class.

Discretionary protection is provided by both class Cl

and C2. The users, processes and other active entities are

held accountable for the actions by required audit

capabilities. A C1 system must control access between named

users and named objects. The users of the system shall be

able to specificy and control the access to an object.

Before a user gains access to the system he must identify

himself and authenticate his identity. All functions of the

TCB must be protected from tampering and be able to be

21

0

periodically validated to ensure correct operation. The Cl

system shall be documented and tested to ensure that the

documentation agrees with the implementation. A C1 system

should only be used when all users are processing the same

level of data.

A class C2 system has a finer granularity on the

discretionary access control than Cl, because it holds the

individual responsible for his actions by means of login

procedures, auditing of security-relevant events and the

isolation of resources. When a system assigns a storage

resources it must first verify that the unauthorized data

has been purged. The testing process for a class C2 system

must include a search for obvious security related flaws in

the system.

Division B, mandatory protection, has the largest number

(three) of classes. Division B enforces a set of mandatory

access controls through the use of sensitivity labels that

are associated with the data in the system. The security

labels include both machine and human readable formats. The

developer of the system must be able to provide the

specification of the system and prove that the TCB

implements the reference monitor concept. A TCB that has

been rated as class BI must provide an informal statement of

security policy model, data labeling, and mandatory access

control over named entities in the system. Any change to

the security labels or overrides of the system must be

22

. - i-.i • -- i i i ~ i
i -i

auditable and done by an accountable individual. Any known

bugs in the system must be removed before certification of

the system. Documentation must be provided that includes

the maintenance and user changes to the TCB.

A B2 system requires that the security policy be

formalized and extended to include both discretionary and

nondiscretionary controls over all entities of the system.

The system must provide a trusted path from the user to the

TCB for user login and authentication. All physical devices

on a B2 system must have a minimum and maximum security

level. The process isolation requirement for class B2

requires that each process contains it own address space

under TCB control. A detailed search for covert channels is

mandated in a B2 system and the bandwidth of the channel

must be computed. The TCB must be structured in such a way

as to provide protection critical and nonprotection critical

elements in the system. A configuration management system

must be put in place to ensure consistency between the TCB

and the documentation. The developer of a B2 system must

ensure that the formal model used and defined in the

descriptive top-level specification is consistent with the

TCB.

A system that has achieved a B3 classification makes use

of security domains to aid in its high resistance to

penetration. The B3 rated TCB must completely implement the

reference monitor concept, be tamperproof and small enough

23 0

to be thoroughly analyzed and tested. A logically isolated

and distinguishable trusted path must be provided between

the user and the TCB which can be activated by the user or

the TCB. In the event of system failure, a means to provide

a trusted recovery, one that does not compromise the

security of the system, must be in place. The coding of a

B3 TCB must be done using modern software engineering

techniques. The testing of the TCB must find no design

flaws, show that few correctable implementation-flaws exist

and that there is cause to believe that few flaws remain.

Current technology allows for only one class within the

A division, Al. While the system may be functionally the

same as a class B3 system, the amount of analysis, formal

design specifications, and verification methods result in a

high degree of credibility that the TCB is correctly

implemented and that the hardware implements the formal

specification. The formal specification must contain a top

level specification of each of the modules in the model, a

formal model of the security policy, and a mathematical

proof proving its correctness. The existence of covert

channels must be identified, analyzed, and their existence

justified by formal means.

The purpose of the Trusted Computer System Evaluation

Criteria is to provide guidance to both the user and the

vendor. It is a service to the user by aiding in the

acquisition process. By having a reference document, the

24

.... . . , l l l l l i l l m i i iiA

user can specify a class of protection that he needs,

thereby eliminating the need for the development of his own

security classification system. The document provides a

service to the vendor by listing those requirements the

government views as important. It also gives the vendor the

evaluation criteria so that he can design and build systems

that will have a market.

E. THE GEMINI COMPUTER AND GEMSOS

This section serves as a brief overview of the Gemini

Trusted Multiple Microcomputer Base, hereafter referred to

as the computer, TCB or system. This is essentially a

synopsis of the salient points contained in [Gemi84], which

is available from Gemini computers.

The system was designed from the ground up to be

certified as a B3 class machine with the possibility of

eventual Al rating. In order to accomplish this, the system

uses some of the latest microprocessor and software

technology. Some of the major features of the system

include:

1. Use of the Intel IEEE standard 796 Multibus allowing
for third party expansion boards.

2. Up to eight iAPX286 (80286) microprocessors with up to
two megabytes of local memory.

3. Global shared memory of up to eight megabytes.

4. Nonvolatile memory used to store passwords, encryption
keys and other security related data.

5. Up to 48 RS-232 serial communication ports.

25

6. A mix of four disk drives to include Winchester hard

disks and floppy disk drives.

7. Real time calendar clock.

8. Self-hosting software development environment.

9. Data Pncryption using the NBS staiidard DES algorithm.
[Gemi85]

A graphic representation of the system's architecture is

contained in Figure 5. The design of the computer provides

for a flexible and expandable system capable of growth and

customization to the desired application.

1. Resource Management

One of the major functions of any computer's

operating system is that of resource management. The Gemini

Secure Operating System (GEMSOS) is no exception to this

rule. GEMSOS is structured as a kernelized operating

system, and as such the system calls are made as procedural

calls to the kernel. By providing a conceptually simpler

operating system, the resource management calls have been

divided into three major areas: segments, process and

device management. The specifics of the individual calls

can be found in the GEMSOS interface routines provided by

Gemini Computers with each compiler; we will deal only in a

high level of abstraction.

GEMSOS does not use files as thought of in a

conventional sense, but rather makes use of a uniquely

identified logical object called a segment. All code and

data are contained in a separate segment. By separating

26

i , i i |I

System I iAPX286
Controller E Processors

E with 2MB RAM
E (1-8)*

S

L Disk t
Controller a Globaln Memory

d Up to 8MB RAM

a
Floppy r
Disk d

Optional
7 User

Hard Disk 9 Required

(0-3)* 6 Boards

M
U

Serial I/O 1 Optional
Controller t Network
8 RS-232 Ports i Interface
(1-6)* b Boards

U
S

indicates the minimum and maximum number of devices

or expansion boards of this type

Figure 5. The Gemini TCB Architecture

the code from the data segments it is possible to ensure the

static nature of the code by making the code segment read

only. A pair of functions allows the system to assign a

27

|! ,

local temporary identification to a segment and then to

release it. Through the use of the "swap-in" and "swap-out"

kernel calls, it is possible to bring a segment into memory

where the data can be accessed. Secondary storage (disk

drives) is divided into a series of volumes. Each of the

volumes can be thought of as a collection of segments. The

volumes, just like the segments, contain security labels

that reflect the security classification of the data stored

in them. The database of segments is managed by a segment

manager which keeps track of all segments known to a process

though the use of a "Known Segment Table." It is this

segment manager that acts as the reference monitor by

controlling data access. More specifics about the kernel

calls used in this thesis can be found in [Gemi86b].

Process management is the second major area of

concern. Most modern computer systems are capable of

supporting multiprogramming (having more than one job in

memory at a time on a single CPU) and multiprocessing

(executing more than one process at the same time on

multiple CPUs); the Gemini system is no exception. GEMSOS

requires that the processes are run on the same physical CPU

that they are created on at run time. This forces the

process to share the CPU with other executing processes. To

minimize bus contention, each process's code, stack, and

data segments are loaded in the processor's local memory

thereby improving the system throughput. In order for two

28

5 . * 1 iIH - i * i I I I I *u'

asynchronous processes to communicate with each other, Reed

and Kanodia's eventcounts and sequencers (Reed79] are used

(this will be covered in more detail in the next chapter).

The time sharing of the CPU uses a very simple algorithm: a

process runs until it blocks, at which time it is swapped

out and the next pending process is swapped in. In order to

keep the kernel code as simple as possible, no effort is

made to determine if deadlock exists.

The desire to keep the kernel code as small as

possible led to the philosophy for device management that

Gemini used in designing the system. This approach is to

handle each I/O function at the application level by the

application programmer, thereby making use of part of the

segment and process manager subsystems. While this approach

makes the verification of the security system easier, it

makes the development of application programs considerably

more difficult than in a "normal" programming environment.

The device management system is based on the requirement

that each of the I/0 peripheral controllers are themselves

processes. These processes are activated by a procedural

call at the application level and accomplish the required

I/O synchronization and transfer at a lower level. The

involvement of the kernel with I/O is minimal. It is

limited to the attachment and detachment of the device to

the process, which makes it possible to reduce the amount of

29

m~ mm m m m m

involvement of the kernel in the process, thereby increasing

throughput.

The resource management within GEMSOS is highly

dependent on the hardware of the system. This follows

directly from the fact the system was designed from the

ground up to be a secure system.

2. GEMSOS Architecture

GEMSOS uses a ring-based protection system, similar

to the Multics operating system [Corb65]. The rings are

referred to as Ring 0, the most privileged, through Ring 3,

the least privileged. Rings 0 and 1 implement the

Bell-LaPadula model. Ring 0 contains the distributed kernel

that implements the nondiscretionary part of the model.

Ring 1 contains the supervisor that provides the

discretionary part of the model. These first two rings make

up the reference monitor. Rings 2 and 3 are outside the

security perimeter of the system and are used for nonsecure

processes. GEMSOS provides a series of kernel calls to

allow a process to communicate across different rings.

Each entity within GEMSOS is assigned a security

label. From this label it is possible to determine the

level of compromise and integrity properties of the subject

or object. Figure 6 contains a brief statement of these two

properties as contained in [Gemi84]. When entity A's access

class is a superset of entity B's access class, A's access

class is said to dominate B's access class.

30

mS

Compromise Properties:
1) If a subject has "observe" access to an object, the compromiae

access component of the subject must dominate the compromise access
component of the object.

2) If a subject has "modify" access to an object, the compromise
access component of the object must dominate the compromise access
component of the subject.

Integrity Properties:
1) If a subject has "modify" access to an object, the integrity

access component of the subject must dominate the integrity access
component of the object.

2) If a subject has "observe" access to an object, the integrity
access component of the object must dominate the integrity access
component of the subject.

Figure 6. Compromise and Integrity Properties

The access class of the entities determines what

type of device they can interact with. This is made more

complex by the fact the GEMSOS allows single and multilevel

subjects. These are subjects that can access objects over a

contiguous range of security levels. This is similar to a

multilevel device, one that can be attached to different

level subjects. GEMSOS also supports single level devices.

Figure 7 list the propzrties of single and multilevel

devices.

3. Application Development

This section contains some of the background and

procedures required for a programmer to develop applications

within GEMSOS. The steps taken apply to all programming

31

mod

Single Level Devices:

1) To receive ("read") information:
Process maximum compromise) Device minimum compromise
Device maximum Integrity)z Process minimum integrity

2) To send ("vrite") information:
Device maximum compromise) Process minimum compromise
Process maximum integrity >x Device minimum integrity

Nultilevel Devices:

1) To receive ("read") information:

Process maximum compromise >= Device maximum compromise
Device minimum integrity >= Process minimum integrity

2) To send ("write") information:
Device minimum compromise >= Process minimum compromise
Process maximum integrity)= Device maximum integrity I

Figure 7. Properties of Single/Multi Level Devices

languages supported by the Gemini computer. For further

guidance the reader should refer to [Gemi86b] and [Gemi86c].

GEMSOS is capable of hosting an operating system

(having another operating system run between GEMSOS and the

applications). Currently this is limited to CP/M-86, but

discussions with Gemini personnel indicate that GEMSOS might

soon be able to host the UNIX operating system as well

[Tao88]. The ability to have a hosted, widely-used

operating system is critical to the application development

process, allowing users to run some of the commercially

available programming languages such as Pascal MT+, S

32

.... - -- ,. .=mm~ s mnm inil~a I n0

JANUS/ADA, PL/1, C, and Fortran. This reduces the amount of

code required to be included within GEMSOS by having the

hosted operating system handle the development piocess.

There are special routines that are provided by Gemini

computers to create the operating system and kernel calls to

GEMSOS for the compiled code. These special routines allow

the user to write programs which do not require the hosted

operating system but can place service calls directly to

GEMSOS. These service calls are similar to normal

procedural calls for the language in which the application

is written.

One of the advantages of having CP/M as a hosted

operating system is that GEMSOS allows concurrent processing

without depending on concurrent programming languages. The

programs can be developed under CP/M and then run in GEMSOS

as concurrent programs. For example, PASCAL MT+ does not

have the ability to effect interprocess communication but,

with functions provided by GEMSOS, it is possible to use the

eventcounts and sequencers to achieve the communication.

The coding, compilation, and linking of an

application is done in a manner similar to what is done in a

standard CP/M environment. The coding is a little more

complex because of the security constraints involved. The

debugging of the system is radically different in that the

system must be sysgened (defined later) and the. booted

33

under GEMSOS. This by itself adds a tremendous amount of

time to the application development process.

One of the most difficult concepts that the

application developer faces is the structure of the GEMSOS

hierarchical storage system. As stated previously, GEMSOS

does not support a file and directory structure, but rather

a hierarchical segment ordering where each of the segments

has a unique name, its access path. The segment naming

process follows a strict hierarchical method that is shown

in Figure 8. The segment numbers are assigned in a CP/M

submit file. This file is then used as the source input for

the sysgen process, which builds the structure on the

desired volume. The sysgen process is covered in detail in

[Gemi85a].

4. Summary

The Gemini Trusted Multiple Microcomputer Base

provides a flexible, cutting edge of technology computer

system to be used in an environment where security is a key

consideration. While the system is very capable, it is

still a first generation TCB, and like many other products

on the leading edge it is not user friendly. If the

application that is being developed does not require the

security controls provided by the system, use another

machine.

34

/00
U)

C~C)

35C

F. OTHER SECURE SYSTEMS

The Gemini TCB was designed from the start to be a

secure computer. (Land73] provides a good overview of some

other systems that have been completed and some that are

still under development. Many of these system- are

extensions to existing software or hardware.

Two operating systems seem to be the favorites for the

software implementation of the security models, Multics and

Unix. Multics [Corb65] is a logical choice for the

conversion since its design is based upon the ring privilege

concept, the inner rings are more privileged than the outer

rings. By establishing a few well-defined gates it is

possible to control the flow of information between the

rings. The use of segmented memory, where each file is a

segment, allows the inclusion of a header to keep track of

the ring parameters. Each segment has read, write and

execute bits that act in conjunction with the ring

parameters to aid in the enforcement of the security policy.

The other popular operating system to enhance is Unix

[Ritc74]. In native, or unenhanced Unix the protection

system is based on the file system and the user domains.

Each of the files has read, write and execute bits for the

owner, group, and world. This provides a basic data access

security. One of the better known modifications was the

UCLA data secure Unix. In this implementation, the

Bell-LaPadula model is enforced by a module running outside

36

the kernel. The resulting system was implemented on a

PDP-11 and ran very slowly [Land73).

A different approach was taken by Honeywell for

development of the Honeywell Secure Communications Processor

(SCOMP) [Hone84]. To build this system, a standard

minicomputer, the Honeywell DPS 6, was modified by the

replacement of the central processor unit, the memory

management unit and the addition of a security protection

module. SCOMP uses a kernelized operating system based on

Multics. This system has been certified by DoDSCS to meet

all the requirements for the Al level.

Computer security, especially security kernels, was a

major research area in academia during the early eighties.

As the research started to yield implementable systems,

fewer papers were published to avoid giving away trade

secrets and benefiting competitors in the security market

place.

37

S

III. EVMNTCOUNTS AND SEQUENCERS

Whenever a computer system has more than one process

executing concurrently, a process management system is

required. When the processes are independent of each other,

the operating system's scheduler and process swapping

mechanism provides the required control. In a computer

system that allows the processes to communicate, share code,

or share data during execution, a means to achieve process

synchronization and communication is required.

There are several means to achieve the synchronization

necessary for the correct process execution. Some of the

more common methods (semaphores and monitors) are primarily

designed to provide mutual exclusion to a critical section

of code (only one process can execute at a time) or the

access to a data structure. This chapter will explore a

different form of synchronizing mechanism that is used by

GEMSOS, eventcounts and sequencers. This mechanism to

control the sequencing of processes was developed by Reed

and Kanodia [Reed79].

A. EVENTCOUNTS

An eventcount is an increasing unbounded integer that

keeps track of the number of events that have occurred so

far in the system. This concept is very similar to

Larport's "logical clock" [Lamp78]. It is up to the

38

programmer to determine what constitutes an event; it could

be the completion of a procedure, the availability of a

computed result, or an error condition. [Reed79]

The eventcount can only be modified by placing a call to

the advance(EVC) procedure, where EVC is the eventcount in

use. This has the result of increasing the value of EVC by

one. By doing this it is possible to signal the system of

the occurrence of an event.

The value of an eventcount can be read by the read(EVC)

function. This function returns the current value of the

eventcount, with the value being the number of advance(EVC)

calls that have been placed before the call. Since mutual

exclusion is not guaranteed, it is possible that the value

of the EVC can be changed during the read operation. This

equates to the read function returning the minimum value of

the eventcount at any given moment.

Constant reading of an eventcount provides a way to

monitor the occurrence of an event. The busy wait loop can

be avoided by the use of the await(EVC,x) primitive. The

use of this primitive causes the calling process to suspend

until the value of EVC is equal to or greater than that of

x. If the value of x is less than or equal to the value of

the eventcount at the time of the call, the process is not

suspended. [Reed79]

39

B. SEQUENCERS

One of the drawbacks of the use of pure eventcounts is

the lack of mediation between concurrent processes that must

be synchronized. An example of this is two processes that

are trying to update a file at the same time. There has to

be some mechanism to guarantee that one request is processed

before the other to ensure consistency of the data. Reed

and Kanodia [Reed79] describe an additional object called a

sequencer, which provides the ability to differentiate

between two processes that act independently. It does this

by using a ticket(SEQ) primitive, where SEQ is the

sequencer.

The ticket(SEQ) function, much like the read(EVC)

operation, returns the current value of the sequencer.

However, the ticket function has the side effect of

incrementing the value of the sequencer by one. This,

combined with the use of mutual exclusion for the ticket

section of the operating system, which guarantees that only

one ticket request will be processed at a time, ensures

that for each call, the ticket function will return a unique

value. From the value that was returned from the ticket

operation it is possible to determine which process

requested a ticket first.

To aid in understanding the use of a sequencer in

conjunction with an associated eventcount, the bakery ticket

machine is often used as an example. In this example the

40

customer walks up to the machine and takes a ticket. Since

only one customer can take a ticket at a time, each ticket

value is unique. This is the ticket operation with the

ticket machine acting as the sequencer. The customer then

sits down and waits until the turn indicator on the wall,

the eventcount, reaches his ticket value, the await

operation. After the baker finishes with a customer he

increments the turn indicator, the advance primitive, and

calls for the next customer.

C. RELATION TO SEMAPHORES

An interesting side light is the claim in [Reed79] that

semaphores can be built out of eventcounts and sequencers.

This is from the view that eventcounts and sequencers are

lower level then semaphores. The paper shows how to

construct P and V, and even a simultaneous P operation out

of eventcounts and sequencers. [Reed79]

The Concurrent Computer Corporation chose eventcounts

and sequencers to implement some of the primitives required

for a new operating system. In [Rosk86] it shows that it is

not always possible to construct semaphores out of

eventcount and sequencer, because of the lack of a

conditional ticket operation. If a ticket is taken it must

be used, or a dummy process must take the place of the

original process and advance the eventcount.

41

D. SECURITY OF EVENTCOUNTS AND SEQUENCERS

Of special interest is the suitability of the primitives

to the secure computing environment. The advance operation

can be classified as a pure write. In a pure write no

information about the value of the eventcount, either

current or previous, is transmitted back to the calling

process. This property makes it possible to advance an

eventcount that has a security classification at the same or

higher level of the calling process, the modify domain.

The read and await primitives can be thought of as pure

reads, because no information is modified when the values

are returned. There is no primitive to determine if other

processes are waiting for the eventcount, making it

impossible for one process to determine the status of other

processes. Thus, the read and await primitives can be used

on eventcounts of equal or lower security classification

than the calling process, the observe domain.

The ticket operation on the sequencer is both a

read/write operation. Since the ticket operation returns

and changes the value of the sequencer, the ticket operation

can only be used in the intersection of the modify and

observe domains. Thus the sequencer must be at the same

security level as the calling process.

Using eventcounts, it is possible to introduce a "secure

readers-writers problem." The underlying idea is that the

readers do not have the ability to modify any of the data in

42 !S

the data base or to signal any of the writers or other

readers. [Reed79] provides implementation to solve this

problem in its purest sense. Of interest to this thesis is

a modification to this problem, the "multilevel secure

readers-writers problem." The problem is constructed by

adding multilevel security to the "secure readers-writers

problem."

F. IMPLEMENTATION OF EVENTCOUNTS AND SEQUENCERS IN GEMSOS

To provide the required process synchronization Gemini

Computers chose eventcounts and sequencers. The shared main

memory of the Gemini Computer provided the required

architecture for the execution of the synchronization

mechanism. The built-in security aspects of operations made

them the ideal choice for a secure system. The pure read

and writes of the primitive operations are considerably

simpler to verify than some of the traditional

synchronization mechanisms.

One of the goals in designing a security kernel was to

keep the kernel as small as possible. In order to do this,

GEMSOS views each eventcount and sequencer as an integral

part of a segment. The naming and the security

classification of the eventcount and sequencer is the same

as that of the owning segment. By having common names, the

kernel has fewer entities to keep track of for security

purposes. While there is wasted space created by unused

eventcounts and sequencers, it is more than compensated for

43

by the reduced kernel size and complexity in the naming of

the objects. [GemiB4]

44

IV. RESEARCH MODEL AND IMPLEMENTATION

A. INTRODUCTION

A software system was created to explore the multilevel

secure process and to demonstrate success of the proposed

concept.

The system was developed in the framework of an

electronic mail system where each user represents a process.

This allows for the creation of multilevel secure data which

is sent to and used by a multilevel secure process. The

system was first be developed to run with two users of the

same level and then was extended to different levels and to

more users. The implementation was done primarily in Pascal

MT+ and on the Gemini Trusted Microcomputer.

B. DESIGN LIMITATIONS

The overriding limitation in the design of this system

was the availability of the Gemini TCB. The availability of

the hardware forces the design decision later in the

development process. As a result of the availability of

support documentation and software available from Gemini

Computers the Pascal MT+ language was chosen for this

implementation.

45

C. DESCRIPTION OF NEED

An electronic mail network was chosen to model the

parallel multilevel secure processes. The electronic mail

system was chosen for its inherent parallelism. It is

assumed that multiple users might be active at any given

moment. The mail system was made multilevel secure to fully

exercise the capabilities of the TCB. The implementation of

this system is done to prove that, given that combination of

hardware and software support and an integrated security

design, a multilevel secure process can operate without

severe performance degradation.

1. Environment of Employment

For the purpose of illustration a fictitious United

States Marine Corps Infantry Battalion headquarters will be

used. Figure 9 shows an organizational diagram. For

simplicity, assume that the battalion is in garrison and

will not take this system to the field.

Commanding
Officer
Top Secret

Executive
Officer
Top Secret

Persnnel Intelligence Operations Logistics Chaplain
Section (S-t) Section (S-2) Section (S-3) Section (S.4)
Confidential Top Secret Top Secret Secret Unclassified

Figure 9. Marine Infantry Battalion's Headquarters

46

The Commanding Officer (CO) would task the Executive

Officer (XO) with gathering all the required information on

data usage and security requirements to present to the

Divisional Information Systems Management Officer (ISMO).

The ISMO will then develop the technical specification of

the system. The XO and ISMO will then oversee the

contracting and installation of the system.

In the battalion the individual sections each have a

security requirement based upon the type of data that they

deal with in execution of their duties. The Personnel

section (S-l) deals with CONFIDENTIAL data which deals with

the status of forces and privacy act information. The

Intelligence section (S-2) has all the information on battle

plans, both friend and foe, which are classified at the TOP

SECRET level. The Operations section (S-3) has the TOP

SECRET mobilization and deployment plans as well as the

schemes of maneuver and weapons data. All of the SECRET

data which deals with the status of the supplies and

logistics is kept by the Logistics section (S-4). The

Chaplain is not authorized access to any of the battalion's

classified data,but does need to access unclassified data on

the system. Both the CO and XO have to be able to access

all data within the battalion, and as such are classified as

TOP SECRET users. All of the battalion's sections are

cleared only up to and including the level of the data being

processed by that section.

47

2. Conventional Solution

Based upon the data and security requirements of the

battalion, two different approaches are possible for the

implementation of an electronic mail network. The first is

the use of four separate electronic mail networks. Each one

of the networks would operate at a single level of security,

yielding a single level system. Figures 10(a) through (d)

show how the sections would be connected to the different

networks. In this solution four separate network servers

are required. This approach requires that the TOP SECRET

users have four terminals, one for each network available to

them. SECRET users will have three, CONFIDENTIAL would have

two, and the Chaplain will have only one terminal on his

desk. This system would require a total of 22 terminals,

four servers, and multiple cable runs. To check all of the

incoming messages the CO would have to login to the four

different networks. Clearly, there has to be a more

efficient way of implementing the network. 5

3. Multilevel Secure Solution

A much more efficient use of resources would be to

combine the four different levels of security on one

machine. This approach is not unique [NRLR82; Wyat841. The

implementation of this system requires the use of a Trusted

Computer Base (TCB) to act as the central message server and

one terminal at each of the nodes, seven total. The

resulting reduction in the amount of hardware required will

48

Confidential Top SecretTop SecretSertncaife

Con~entil To Seret op Scre Secret

P:,onIntel ligence Operations Cali
S-1 Section (S-2) Section (S-3)

Too ScretTop Secret

Figure10. Sngle evel Ntwrk

49 fce

To0ece

result in a system that will be easier for the user to

employ. The coding of the system will be more complex and

the individual pieces of hardware will be more expensive.

D. REQUIREMENTS

The requirements of the model have been broken down into

two general categories; user interface and computational.

The separation of the two requirement areas allows the

division of the Secure Mail System (SMS) into two main

logical divisions. The user interface corresponds to the

unsecure section, and the computational requirement is

fulfilled in the security relevant sections.

1. User Interface Requirements

The user interface of the SMS was designed to

provide a simple interactive single screen text processor

that the user could master in relatively few sessions.

Thus, WordStar-like editing commands were chosen for the

basic editing functions. The selection of an option is done

from menus or boolean (yes/no response) questions.

After the user has logged onto the system he will be

presented with a menu of options and a listing of the

current messages. The actions from the main menu will be

able to create, edit, delete, read, or send a message. From

this menu the user will be able to terminate his current

mail session.

The user will be able to select from a menu of up to

nine pending messages to edit, delete or send. A similar

50

0

list of up to nine incoming messages will be available to

read or delete.

The following is a summary listing of the minimal

requirements for the SMS message editor:

1. Single screen (22 lines by 80 characters).

2. Heading to indicate destination, classification, and
Date and time created on top line of the screen.

3. Full Cursor control movement within the text area.

4. A means to toggle text insert on and off.

5. Line wrap. (When you reach the end of the line the
cursor goes to the first position of the next line.)

6. The return key works as expected; position the cursor
on the first character of the next line.

7. Must provide a unique key to end the editing of the

message.

8. Save/No save option after all creation and editing.

9. Ability to delete the current character, the one the
cursor is under.

10. The ability to edit a previously created, but unsent,
message.

11. Recall a previously created message for modification,
transmission and/or retransmission.

2. Computational Requirements

The computational requirements have been separated

from the user requirements to decrease the amount of

security relevant code. The security system has been

divided into three major subareas; system configuration,

user authentication and data access.

System configuration is done by the System Security

Manager (SSM) at boot time. This process involves selecting

51

the terminal ports and the security levels for the selected

ports. The selected security level is the maximum security

level of data for the terminal, the minimum is set to

UNCLASSIFIED by default. The system supports four

classification levels, UNCLASSIFIED through TOP SECRET,

without any compartments. Once the SSM makes these

selections they remain static until the system is rebooted

and reconfigured.

User authentication is accomplished by GEMSOS when

the system is booted by the SSM and within the SMS when a

user tries to log on to the terminal. The login process

verifies the user by a login and password combination. It

next prompts the user for a desired security level for the

session. The user's request is then checked against the

user's and terminal's upper security bounds. If the

requested classification is out of bounds, the

login/password are incorrect, or the user is not authorized

access to the system and access is denied without divulging

the reason.

Once the user has been admitted to the system GEMSOS

handles most of the data access authentication. The

exception is when a user desires to send a message to

another user. At this point the SMS must verify the

receiver has access to data at that security level before

passing the write request to GEMSOS for execution.

52

raili il-- m mmm~ i mmm M m

E. OVERVIEW OF THE SECURE MAIL SYSTEM DESIGN

In this section an overview of the SMS will be presented

at the module level. A more detailed description of the

procedures can be found in Appendixes B through D which

contain the SMS Code. The segment storage structure that is

generated by the system generation process (sysyening the

system) can be found in Figure 11. The loader and operator

login processes used in the system are the standard

processes provided by Gemini Computers. Since these two

modules are covered in [Gemi86c), they will not be covered

in this thesis. The logical relationship between the two

SMS processes is shown in Figure 12.

1. Data Structures

To gain a firm grasp on the structure of the SMS,

knowledge of the system's data structures is required. It

is how these structures are stored and accessed by the

machine that affects the security credibility of the system.

As with all data that is stored by GEMSOS, each of the data

structures, has a security level label associated with the

segment that contains the data. As stated earlier, each of

the segments contains an eventcount and sequencer that is

maintained by GEMSOS. Through the use of these two

mechanisms it is possible to control access to the segments.

The first data structure that is of concern is the

user array. This is one of two data structures that is

passed from the System Configuration Module to the

53

4 -)

Sc1

zr

o-oo

SMS
Configuration
Module

Rlprocessdef process_def

SMS SMS
Node Node

Process Process
(Node 0) (Node 11)

Figure 12. SMS Process Relationships

individual node processes (the other being the process

definition structure that is required by GEMSOS to

initialize a child process). The purpose of this is to

provide all of the node processes a listing of all users of

the system with the maximum access class, password and user

number. This is used by the message sending module to

verify that a user can receive mail at the desired security

classification level. The user login module reads this

array to ensure that a person trying to log into the system

is an authorized user. This array is created prior to

sysgening the system and remains static during the operation

of the system. This allows the SMS to service users that do

not have access to GEMSOS directly. The structure

definition is contained in Figure 13.

55

User rec is a record of:

Field Name Data Tyve Purpose
Active Boolean To determine if record is

in use
Name String[12] User's login name
Pswd String[12] User's password
Maxclass Access Class Maximum security class
Minclass Access Class Minimum security class

Userarray is an array index 0 to Maxuser of Userrec

Figure 13. Definition of the User Array

The structure of the message headers is given in

Figure 14. Each user has two message header arrays, one for

pending and the other for received message headers, for all

of his messages, regardless of the classification level.

Messheading is d r-coi.a ot:

Field Name Data Type Purpose
Charclass Character Human readable security

classification
Class Access class GEMSOS readable security

classification
From String[8] Message originator
Reci String[8] Message Receiver
Time String[4) Last edit time
Date String[6] Last edit date

Figure 14. Structure of the Message Header

56

This requires the read and write processes to be multilevel

trusted processes. The design decision to use a multilevel

header array was made early in the design process to ensure

ease of use by the user. By having multilevel headers it is

possible that a user could view a single screen containing

the headers and find what message he had awaiting action

regardless of the security class under which he is

operating. The message headers are grouped into a record

containing two arrays of nine elements, one array for

incoming and one for outgoing messages, as shown in Figure

15. Each user's message header array is stored in a

separate segment which is indexed by his user number.

Theaderarray is an array 1..9 of messheading

Userhead is a record of:

Field Name Data Type Purpose
Income Theaderarray Array of incoming messages
Outgo Theaderarray Array of outgoing messages

Figure 15. Structure of the Message Header
Storage Structure

* The final major data structure is the message itself

as shown in Figure 16. The heading of the message is the

same as that of the corresponding entry in the message

heading array. The size of the body of the message was

57

Messtext is a record of:

Field Name Data Type Purpose
Heading Messheading Message header for the message
Body Array of Message text

2..23, 1..80
of Character

Figure 16. Structure of a Message

determined by the requirement for a single screen editor.

The array's index range corresponds to the line numbers on

the screen display. This was done to facilitate the mapping

of characters from the array to the screen. The messages

are stored, by user, as segments with 18 messages of the

same security classification per segment. The first nine

messages are incoming messages and the remainder are the

outgoing messages. This storage method creates at least 54

unused message spaces per user spread out over four

segments. This method allows the different security

classification to be stored as separate segments, allowing

for single level segments with GEMSOS providing the security

enforcement. Each of the messages can be uniquely

identified by the security classification (which major

branch), user number (which segment), and message number

(location within the segment). The separation of security

58

• a" i l&Im lil i i i B -- - i i il l I

levels and the ease of access offsets the wasted space in

the storage of messages.

2. System Configuration Module

The system configuration module is the first process

executed once the control of the machine has been passed to

the application programs from the login process. The SSM

can configure the Gemini TCB's terminal ports, within the

security constraints stored in the system security memory.

The maximum number of terminals that can be configured is

determined at compile time of the System Configuration

Module by a named constant embedded in the code. The

maximum number of users must be known at sysgen time to

construct the sufficient number of code and message

segments. Once all of the desired terminals have been

configured, the system configuration process then spawns all

of the SMS node processes.

3. SMS User Control Menu Module

The SMS user control module acts as a master process

for the individual users. It attaches the terminal to the

process and then passes control to the user login module.

When a user successfully gains access to the system he is

then presented with a menu of options for him to select as

shown in Figure 17. When the user selects a valid option,

control is then passed to the appropriate module. Upon

completion of an action, control is passed back to the SMS

user control module and the menu is redisplayed. When the

59

I | | P

Security class: Unclassified
SECURE MAIL SYSTEM

C. Create a message
E. Edit a message
R. Read message
S. Send a message
D. Delete a message
0. Ouit message editor

You have the following Messages: The Following messages are pending:

Class From Time Date Class To Time Date

1. U stewart 0721 880607 1. U west 0715 860607
2. * 2. U stewart 0716 880607
3. * 13. U lengenfe 0717 880607
4. * 4. U adams 0718 880607
5. * 5. *

6. * 6. *
7. * 7. *
8. * 8. *

9. * 9. *
Figure 17. SMS Main Menu

user exits the system, control is passed to the user login

process.

4. User Login Module

This module is called by the user control module to

verify the access authorization of the user. This process

reads the user array segment to verify the login, password,

and access level. Since this module reads a classified

segment, it falls within the security perimeter and must be

proved correct. After each login attempt the process

detaches and then reattaches the terminal before passing

control back to the calling procedure.

60

• |

5. Create Message Module

This module creates a blank message form in memory

after obtaining a message identification number from the

header array if one is available. The system provides the

security classification for the message (the current level

at which the user is logged in), date and time of creation,

and originator. The user provides the recipient's

identifier. At this time the message is then passed to part

of the edit module for the input of the text. After the

user has completed editing the message he is given the

option of saving the message or deleting it.

6. Read Message Module

This module allows the user to read a pending

message, either incoming or outgoing without doing any

modifications. One of the functions of this module is

displaying a message on the screen as shown in Figure 18.

The message display routine is used by the create and edit

modules to display the message on the screen for further

action.

7. Edit Message Module

This module allows the user to select any of the out

going messages for editing. A subset of WordStar commands

are used for the editing features. Appendix D contains the

specific commands and their functions. None of the message

header information can be changed by the user in this

module. If the message was of lower security classification

61

Select one of the following Messages:

Class From To Time Date

1. U pratt west 0715 880607

2. U pratt stewart 0716 880607

3. U pratt lengenfe 0717 880607

4. U pratt adams 0718 880607

5. *

6.
7. *
8.*
9. *

0. No act ion

Figure 18. Message Selection Menu

than the current session, the security classification is

changed to reflect the reclassification as a result of the

modification. This prevents a user from circumventing the

security classification system for the messages.

8. Send Message Module

The send module provides the user a means of

transmitting a message to another user. The send message

process is set up to allow the user to send a message that

is classified at the current operating security level. The

message header is displayed and the user is able to change

the recipient of the message at this time. When the message

is sent the system then updates the message header with the

current data and time. A table look up is done on the user

array to ensure that the recipient's name matches a user of

the system. If no match is found the user is given the

option of specifying a new name or aborting the message

62

sending process. The system verifies that the recipient has

access to the security classification of the message and an

empty slot in the receive message header array. If the

message is unable to be delivered that user is notified as

such, without being given a reason. The message is not

deleted from the message sender's message space by this

module. This feature makes it possible to send a single

message to multiple user without rekeying the message.

9. Delete Message Module

This module deletes the selected entry in the

message header array and the message text. Both the message

header array and the message text segments can be considered

pooled resources. As such the data storage area must be

overwritten by the delete process before the message can be

considered deleted and the space reused. Since the delete

option is a write operation, the user can only delete

messages at the same security level where currently

operating.

10. Message Header Array Access Module

This module is comprised of two major low level

routines, the read and write header routines. These are

trusted processes since the system maintains one header file

for all of a user's messages regardless of the security

level at which individual message were created. When a user

enters the system at a classification lower then some of his

pending messages, the header array will show the presence of

C3

the messages by displaying the security classification of

the message, but not the time, date, destination, or origin

information that is contained in the header. This is done

to allow the user to be alerted to the fact that he has the

message but k~eping the amount of information disclosed

about the message to a minimum. This display of the

security classification can be considered a covert storage

channel in the system since the user can find out

information concerning data of a higher security

classification. Covert channels in the system will be

discussed in a later section. This module is within the

4 security perimeter, and has such the code has to be

validated. The section on concurrency controls details how

the read and write operations are accomplished.

11. Message Text Access Module

As in the message header access module, there are

two major routines that comprise this module; read and write

message operations. By placing a call to the read operation

the user is able to read any of his messages that are at his

current security level or a lower level. The write

operation is strictly a single level operation. This is due

to the use of the ticket primitive to ensure consistency of

the data, as outlined in the chapter on eventcounts and

sequencers. Both of the routines use the security features

implemented in GEMSOS to ensure there are no unauthorized

64

data accesses. This module is within the security

perimeter.

12. Terminal Control Module

This module is made up of two routines that are

dependent on the type of terminal connected to the system.

For this implementation, the DEC VT100 control set was

chosen due to equipment availability. One of the routines

provides the ability to clear the screen using the terminal

control sequences. A direct cursor addressing procedure has

been implemented. The direct cursor addressing is required

by the message editor's cursor movement functions and the

menus throughout the system. All of the procedures in this

module write directly to the write device, rather then

returning strings to the calling process.

F. CGNCURRENCY CONTROL

Collectively the data segments can be thought of as a

hierarchical database. The different security classes of

message texts and the message headers form separate major

branches. The message header branch then branches off in

individual leaves for each user's message header. Each user

has a leaf on each of the security branches if he has access

to that security level. The leaves in turn are made up of

the user's message texts for that security level. With this

data base structure, the SMS is a database management

process where multiple users are accessing the same data

65

base and their actions must be coordinated to ensure data

consistency and verified to ensure the access is authorized.

The SMS will have a separate process running for each

user node. Each process will be making updates to a

multilevel security message database. This is the

"multilevel secure readers-writers problem" that was

presented in the previous chapter. To solve this problem,

two modes of concurrency control are required; data access

and process scheduling.

1. Data Access Control

In the "multilevel secure readers-writers problem"

we have the constraints that a process can read lower level

data, write higher level data, and modify data at the same

level. GEMSOS provides the required security checks on the

eventcounts and sequencers as an integral part of the data

segments. This eliminates the need for any explicit

checking of access authorization for the security classes in

the code.

The use of eventcounts and sequencers is limited to

the syrnchronizing of access to data. Read operations, which

can be done by more than one process concurrently with no

loss of consistency in the system, use only eventcounts to

ensure that the data is in a consistent state. By using

4 only eventcounts it is possible to read any data from the

same or lower security classes. The eventcount is read at

two points in the system read process, once before the data

66

1 -1

is read and once after. If the two values of the eventcount

are the same, there were no writes during the read process.

If the values are different the read aborts and restarts.

This ensures that the data is read in a consistent state.

Figure 19 contains the pseudocode for the algorithm.

Make security branch mentor known
Make message segment known
Swapin message segment
Make pointer to the segment
REPEAT

Read Segment's Eventcount
Move selected data to desired data structure
Read segment's eventcount

UNTIL the two eventcount values are equal
Terminate message segment
Terminate security branch mentor

Figure 19. Sample Read Operation

The writing process must provide a means for the

writer to gain exclusive control (only one write operation

at a time) of the data to ensure consistency of the data.

To do this, the ticket operation is used; it is the only

mechanism that provides mutual exclusion. The single level

security limitation of the ticket operation prohibits

writing data at any security level except the current

security level. After every write operation, the

appropriate eventcount is advanced to ensure the data is in

67

a consistent state. A pseudocode implementation of the

write process can be found in Figure 20.

Make security branch mentor known
Make message segment known
Swapin message segment
Obtain a TICKET from the segment
AWAIT the value of the ticket
Make pointer to the segment
Move data from the data structure into the segment
ADVANCE the segment's eventcount
Terminate message segment
Terminate security branch mentor

Figure 20. Sample Write Operation

2. Process Scheduling

As outlined in Chapter II, GEMSOS is capable of

multiprogramming and multiprocessing. Due to the structure

of the SMS, with one master process creating the node

processes, all processes are run on a single processor, the

multiprocessing feature is not used by the SMS. This makes

use of the multiprogramming scheduling algorithm in GEMSOS.

The "run to block" algorithm is used by the system. Each of

the processes will run until a request is placed for a

service that can not be immediately provided, at which time

68

- I

it will block and a ready process will be allowed to

commence execution.

G. COVERT CHANNELS

As with most secure systems, covert channels exist in

the SMS. In this section the channels found during a search

of the system and code will be discussed, rationalized and

an estimated bandwidth given. A channel naming system that

was presented in [Gass88] is used to identify the type of

channel. The author has not had formal training in the

evaluation of secure systems and as such more, covert

channels may exist and the computed bandwidth may be

incorrect. The bandwidths computed in this section tend to

be overly pessimistic in that it would be impossible for a

user to sustain the channels at the computed bandwidths.

1. StoraQe Channels

The message header array is an object attribute

channel. When the array is displayed on the terminal it is

possible to find out the security class of all the user's

messages. Given that there are a maximum of nine messages

and four possible security classes for each message the most

information that can be leaked is 36 bits. Assuming that no

more then one screen display per second is possible, the

maximum band width is 32 bits per second. The actual

bandwidth will be considerably smaller since much of the

header array will remain static for a length of time. This

covert channel, while it has a large potential bandwidth, is

69

not deemed serious. The justification for this is that a

user is authorized access to the data that is being leaked

to him by the channel.

The message header also presents the opportunity to

use an object existence channel. By sending a user repeated

messages it is possible to compute the number of messages

that were pending prior to the attack. From the total of

nine messages, four bits are required to identify explicitly

the number of messages. In the worst case one attempt is

required to determine that the recipient has nine messages.

This action will take about one second for a bandwidth of

four bits per second. This channel is created by the static

nature of the header array. A variable length header array,

such as a linked list, would not have this channel.

It is possible for a user to create an object

existence channel to determine the maximum security class of

each user on the system. This can be done by attempting to

send highly classified mail to a known user downgrading each

successive message until a message is received. With the

four security classes, four bits of data are leaked out in

each attempt. These four bits times the number of users

equals the maximum amount of information that can be gained

by this channel. Assuming all users are at the highest

classification level tried, at best case it would take four

to five seconds per attempt. The resulting bandwidth would

be about one bit per second. The justification for allowing

70

the existence of this channel is that most users know each

others security clearances in advance since such information

is readily available.

2. Timing Channels

Knowing that the Gemini Computer uses a run to block

scheduling algorithm, it is possible for a knowledgeable

user to make a rough determination of the system load by the

delay in the services provided by the system. Write access

to the data segments is controlled by the ticket mechanism,

which allows one user at a time to access the data. This

delay would make it possible for a user to determine if

other users were trying to access the same data segment.

These two timing channels can be defeated by installing a

random length delay loop in the sections of code that reads

and writes the data to the segments. The channels'

existence can be rationalized by the fact that the

perpetrator cannot compute the correct number of users on

the system--just a rough idea of that number.

7

71

V. CONCLUSIONS AND RECOMMENDATIONS

A. CONCLUSIONS

It was the purpose of this thesis to demonstrate that it

is possible to design a parallel multilevel secure process

that is simple for a user to operate. The result was a menu

driven electronic mail system that allows up to 12 users and

four levels of security classification. This system

demonstrates that the goal of the thesis is attainable.

Programming in a secure and parallel environment

requires a different "mind set" than conventional unsecure

single process programming. For a secure environment the

programmers must know the classification of the data and

which sections of code can access particular data. In a

parallel environment the system's designers must impose

controls on data access to ensure all reads and writes are

atomic (no other process can alter the data during the

transaction) and no data is left in an inconsistent state.

Security can be built into a system with minimum
I

overhead and additional expense. This is true if the system

designers consider security as an integral part of the

system.

Eventcounts and sequencers are an efficient and simple

way to control access to shared data by parallel processes.

72

The fact that reading and writing of eventcounts can be

separated make them ideal for use in a secure environment.

B. RECOMMENDATIONS

The author severely underestimated the skill level and

expertise needed to program in a secure environment. For

this reason, if the Gemini computers owned by the Naval

Postgraduate School are to be used, an ongoing research

program must be developed. This will allow experience to be

passed from one thesis student to the next in a series of

follow on theses.

The Gemini TCB is capable of supporting up to 48

terminals, whereas, SMS currently limits the number of

terminals and users to 12. The data structures of the

system can be modified to allow the SMS to support more than V

12 users.

The message storage formats used by the SMS waste

considerable amount of space. A more efficient means of I

storage would be to create a new segment for every message

under a mentor segment unique to each security class and

user pair.

The use of secure computers warrants considerable study.

A secure computer is a special purpose computer, and as such

should be used for specific applications. Programming a

secure computer is considerably more difficult than a normal

computer. The increased difficulty is offset by the

benefits of a secure system for certain applications. If

73

the system has an overriding security requirement then a

secure computer should be considered.

The Naval Postgraduate School has the resources

available to develop a comprehensive program to explore the

uses of secure computers. Such a program should include the

development of applications for, and the management of,

secure computers. This program should be under a larger and

more general Automated Data Processing (ADP) security
I

program.

C. FINAL COMMENT

Computers can be made only as secure as the least

trusted individual who has access to them. To paraphrase a

common cliche, "Computers don't leak information, people

do."

7

74

APPENDIX A

USER MANUAL FOR THE SECURE MAIL SYSTEM

A. INTRODUCTION

The Secure Mail System (SMS) is a multilevel secure

electronic mail system. It can support up to 12 users on 12

active terminals. Four separate security classifications of

messages are used by the system to segregate the messages.

The system has been dividee into two logical areas.

System initialization is done by the System Security Manager

(SSM) at boot time. This process then spawns the node

process in which all user interaction takes place.

B. SYSTEM INITIALIZATION

During the system initialization process the SSM

configures the system by specifying the active terminals and

the security classification for the selected terminals. A

menu is presented to select the terminal from a list of

terminals that are connected to the system. Once the SSM

selects a terminal he is then prompted for a security class.

After the node parameters have been selected, the

configuration process spawns the node process. This is

repeated until all terminals have been configured. At this

time the configuration process blocks.

75

r

C. NODE PROCESS

The node process runs on each terminal and provides the

user interaction. The user is required to verify his

identity by of a username/password login sequence. At this

point the session security class is selected. If the user

does not provide a correct login sequence within three

tries, the terminal process blocks. The SSM must then

restart the system.

Upon successful login into the system the user is

presented with a menu of options and a listing of incoming

and outgoing messages. The options include edit, create,

* read, delete, send and quit. The after selecting the edit

option the user is then prompted to make a selection from a

list of messages. Once the menu has been selected the user

is presented with the text that had been previously entered

into the message. From here any of the commands listed in

Table A-1 can be used. When the user exits the editing mode

the date, time and the security classification are updated

to reflect the current system parameters.

By selecting the create option the user indicates that

* he desires to create a new message form. This can only be

done when there is an empty space in the message header

array. The user is prompted for the destination of the

* message, the rest of the header is filled in by the system.

The system then goes into the edit mode to allow the user to

fill in the text of the message. After completion of

76

TABLE A-I

EDIT MODE COMMANDS

Key Function

^e Cursor up

Ax Cursor down

^s Cursor left

Bksp Cursor left
^d Cursor right

^m Go to first position of the next

line

Return Go to first position of the next
line

^a Go to start of current line

^f Go to end of current line

^r Go to top of message text

Ac Go to bottom of message text

Ai Tab, move cursor 5 spaces right

Av Turn insert mode on, any control

character turn insert mode off
Ag Delete a character

Ay Delete a line

Az Exit edit mode

editing the user is asked if they would like to save the

message and for the destination of the message.

0 The read option allows the user to view a message with-

out the ability to edit it. This is useful when he desires

to consult a lower level security message.

* Upon selecting the delete option the user is queried to

find out if he desires to delete an incoming or outgoing

message. Once that selection has been made a list of the

* messages is displayed. From this menu the user selects the

77

message number for deletion. Both the header and the

message text are overwritten in this process.

When the user desires to send a message he is presented

with a list of messages available for transmission. When he

selects one of the messages the security class is checked

and upgraded if it is lower than the current session

security level. The user is prompted for the destination of

the message. The data and time are updated before the

message is sent. This process does not delete the message,

thereby allowing the same message to be sent to multiple

users without rekeying.

The quit option logs the user out and allows a new user

to login to the system at a new security class.

D. SUMMARY

The SMS was designed to be a simple user friendly secure

electronic mail system. Commercially available unsecure

electronic mail systems offer many more features but do not

offer the security that is built into this system.

78

APPENDIX B

SMS CONFIGURATION MODULE CODE

The source code for this module contains routines that

are proprietary to Gemini Computers. In order to allow

unlimited distribution, the code has not been included in

this thesis. Code for this module is available from the WAR

lab custodian at the following address:

Superintendent, Code 55wg
Naval Postgraduate School
Monterey, CA 93943

79

.. . . .r

APPENDIX C

SMDESS ODE

1 (This code was written in Pascal MT+ version 3.0. It is
2 linked using the following cammand line for the Linkmt
3 program:
4
5 Linkmt sns = f:rl-init,sm,f:lf30/s,rllib/s,paslib/s/p:80
6
7 The code is shared among all node processes, each node has a
8 separate stack and data segment.)
9 ($e-}

10 ($KO) {SK$) {$K2) ($K3) {$K5) {$K6) ($K7)
11 {$K8} {$K9) {SK1O) {$KL2) {$K13)
12
13 module sis;
14
15 const
16 ($i f:gate-con.zli)
17 {$i f:rl-con.zli)
18 {$i f:user-con.zli)
19 (* {$i f:cd-con.zli} *)
20 (program specific constants)
21 userseg = 11;
22 headerseg = 2;
23 useg = 3;
24 cseg= 4;
25 sseg = 5;
26 tsseg = 6;
27 type
28 {$i f:gate-typ.zli)
29 {$i f:lib-typ.zli}
30 {$i f:kst-typ.zli)
31 ($i f:rlp-typ.zli)
32 ($i f:user-typ.zli)

* 33 (program specific types)
34 ($i sms.typ}
35
36 {* External Declarations *)
37
38 ($i f:lib.zli)

* 39 ($i f:io-str.zli)
40 ($i f:gate.zli)
41 ($i f:loadregs.zli}
42 ($i include.dec)
43

80

44 ($e4-)
45 (r+)}
46 *
47 1 main
48 I This is the node process
49 *
50 procedure main (var init: rljrcess def);
51
52 var
53 success ,result :integer;
54 user : string;
55 minclass ,naxclass userclass, : access class
56 choice :char;
57 innotout :boolean;
58 trycn~tr integer;
59 portno integer;
60
61 procedure serdmess (user: strirn8 ;userclass: access-class);
62
63 var
64 messn.n, result, destno, serninum : integer;
65 choice,yesno :char;
66 headerarray : theaderarray;
67 message : messtext;
68
69 begin
70 clrscr;
71 Selectfile (user, userciass ,FAILE,choice);
72 if choice <> '0' then
73 begin
74 messnum := ord(choice) - 48;
75 readheader (user, FAILSE, userciass ,headerarr-ay, result);
76 readfile (FALSE, userciass , nssnum,headerarray [messnmV],
77 message, result);
78 disp2 (message);
79 repeat
80 puitstr (w_dev, 'Is this the correct messsage? (YIN) ');
81 getchar (r dev, yesno);
82 putln (w dev,' 1);
83 until yesno in ['yI,'nv','tYl,W];
84 if yesno, in ('y','YI] then
85 begin
86 repeat
87 putstr (w dev, 'Is the destination of the message');
88 putstr (wFdevI' correct? (YIN)')
89 getchari (dev, yesno);
90 putln (wdev,I ') ;
91 until yesno in ['y','n','Y',IN'];
92 if yesno, in r'N','n'] then
93 begin
94 pultstr(w-dev, 'What is the new destination?')

81

95 getln (r_dev, message. heading. reci);
96 end;
97 getusernum (message. heading. reci, serinum, result);
98 if result = 0 then
99 begin

100 findheaderslot (message. heading. reci, userclass,
101 TME, destno);
102 if destno <> 0 then
103 begin
104 (send the message)
105 writeheader (message. heading. reci, TRUE,userclass,
106 message. heading, destno, result);
107 writefile (TRUE,userclass, destno, message -heading,
108 message, result);
109 (update user's version)
110 writeheader (user, FALSE, userclass, message. heading,
il messnn, result) ;
112 writefile (FALSE, userclass,messnum, message. headirg,
113 message, result) ;
114 putln (w_dev, 'The message has been sent');
115 end
116 else
117 begin
118 putln(w dev, 'Unable to deliver the message');
119 putstr(w_dev, ' Check destination 's username');
120 putln(w dev, ' and security class');
121 end
122 end
123 else
124 begin
125 putln(w_dev, 'Unable to deliver the message');
126 putstr(wdev, 'Check destination''s username');
127 putln (w_dev',' and security class');
128 end;
129 getreturn;
130 end;
131 end;
132 erd;
133
134 {*}
135 PROCEDURE hookup console(portno: integer;wrtdev integer;
136 rd-dev : integer);
137 var
138 success : integer;
139
140 begin
141 repeat
142 attach(portno, wrtdev, false, success);
143 until (success = no error);
144 repeat
145 attach(portno, rd dev, true, success);
146 until (success = no error);

82

147 end; {hookup_console)
148
149(*
150 FCEX1RE userlogin (VAR user: stririg8; Var userciass: access class;
151 maxcias : access-class ;portno: integer;Var result: integer);
152 var
153 password : string8;
154 userin char;
155 usernum: integer;
156 begin
157 result :=0;
158 userin :I U';
159 userclass : =.maxclass;
160 hookup ponsole(portno,,w dev, r~dev);
161 clrscr;
162 puitstr(w _dev, 'togin: 1);
163 getln (rdev,user);
164 puztstr (wdev, 'Password (will not echo):)
165 noecho getln (r_dev, password);
166 putln(wdev,I 1);
167 repeat
168 p.itstr (w dev, 'Desired access class (U/C/S/r):')
169 getchar (r dev, userin);
170 putln (w dev,' 1');
171 until userin in [U',C','S,'T,u,'c,'s','t'];
172 if ord(userin) > 96 then
173 userin := chr(ord(userin) -32);
174 case userin of
175 'U' userclass.czrcrmise[0] :=unclass level;
176 ICI userclas cmrcmnise[O] :=conf level;
177 I' : userclass.cacprai~ise(0] :=secret level;
178 IT' :userclass.ccmopractise[0] =t-secret-level;
179 end;
180 (detach(w dev);
181 detach(r dev);
182 (*do look up for usernane, password, access class *
183 lookupuser (user, password, userclass, usernm,result);
184 if (userclass. canrcmise[0] > maxclass. ccuprcinise[0])
185 and (result = 0) then result := 4;
186 (hookuip console (portno,w wdev,r rdev);
187 0,
188 end;
189
190(*
191 PROCEIX3RE lookwpuser (user ,password: strig8 ; userclass: access -class;
192 var usernum: integer;var result: integer);
193 var
194 arrayptr : userptr;
195 seg rnrnber,size,cntr : integer;
196 xwclass : access-class;
197 begin

83

198 (*pitln (_ dev, ' in the look up user proc);*
199 mclass := init. resouroes .max class;
200 seg inakekicn.in it. initial.seg[2] ,Userseg, seg number,
201 r w,size,nclass,result);
202 rwapinsegment (seq pnber, result) ;
203 arrayptr *:= 1ibxr.pntr (ldt table, seg_nurrmber, 1);
204 cntr :=0;
205 while (aitr < ax user) and
206 not (arrayptrA [cntr] .name = user) do
207 begin
208 cntr := cntr + 1;
209 end;
210 if arrayptrA [cntr] .nrame = user then
211 begin
212 usernun := tr;
213 if password = arrayptrA [usernum] .pswd then
214 begin
215 if (userclass.cmrmise[0] <--
216 arrayptrA [userium] .max-class. compromise [0]) then
217 result := 0;
218 end
219 else
220 result := 2;
221 endi
222 else
223 result := 1;
224 seg_ termina~te (seg__numbe, cntr);
225 end;
226
227{*
228 PRCEUJR getusernum (user: strirg8 ;Var usernum, result: integer);
229 var
230 arrayvptr : userptr;
231 seg-number,cntr,size :integer;
232 imclass : access-class;
233 begin
234 mclass := Lnit.resources.max class;
235 seg_makekncain(init. initial,.si 2] ,2]Userseg, seq_number,
236 r w,size,mclass,result);
237 show err ('get. usernm makeknow~n result = ',result)
238 swapinsegment (seq numbe-r, result);
239 show _err('get userntnn swapin result = ',result);
240
241 arrayptr := 1iburpntr (ldt table, seq number, 1);
242 cntr := 0;
243 while (cntr < Pax-user) and (arrayptrI [c-itr] .nam <> user) do
244 begin
245 cntr := cntr + 1;
246 end;
247 if (userclass.ciprcmise[0] <=
248 arrypt-A [cntr] .max-class. coMromise [0])

84

249 and (arrayptr^[cntr].name = user) then
250 begin
251 result 0;
252 usernum := cntr;
253 end
254 else
255 result := 1;
256 seq terminate (seg ntmber, cntr);
257 showerr('set usernum setterminate result =,cntr
258 end;
259
260 (*}
261 PROCEDURE writefile(innotout:boolean;sec class:acoess-class;
262 messnum: integer;mhead:messheadinq;
263 Var message:messtext;VAR result:integer);
264
265 var
266 userntu : integer;
267 size, segi, seg2,evcl, evc2, cntr : integer;
268 arrayptr : messptr;
269 user :string8;
270 branch : integer;
271 tampptr : varpointer;
272 messptr ,messtext;
273 begin
274 (ensure no write down is allowed)
275 if sec class.cmprmise[0] >= nhead.class.cmpromise[0] then
276 begin
277 if innotout then
278 user := mhead.reci
279 else
280 user := mhead.fram;
281 case mhead.class.ccirrcmiise[0] of
282 unclass level : branch := useg;
283 conf level : branch := cseg;
284 secret level : branch := sseg;
285 t secret level : branch := tsseg;
286 else result := 2;
287 end; {case)
288
289
290 getusernum (user, usernum, result);
291 seg_makeknown(init. initial seg[2],branch,segl,
292 r w,size,sec class,result);
293 showerr('write file make known result 1 = ',result);
294
295 segmakeknown (segl, usernum, seg2,
296 r w,size,secclass,result);
297 showerr('write file make known result 2 = ',result);
298
299 swapinsenent (seg2,result);
300 showerr('write file swapin result = ',result);

85

301
302 ticket (seg2,evcl, result);
303 show err('write file ticket result = ',result);
304 await (seg2, evcl,result);
305 show_err('write file await result = ',result);
306
307 temItr.seg := lib mk sel(ldt-table,seg2,1);
308 if innotout then
309 tepptr.off := (messnum - 1) * sizeof(messtext)
310 else
311 teMpptr.off := (messnum + 8) * sizeof(messtext);
312 messptr := teaqptr.p;
313 messptr := message;
314
315 advance (seg2, result);
316 showerr('write file advance result = ',result);
317
318 seg terminate (seg2,result);
319
320 segterinate (segl,result);
321 end
322 else
323 result := 1;
324 end;
325
326 (*}
327 PCEDURE readfile(innotout:boolean;secclass:access class;
328 messnum: integer ;mhead: messheading;
329 Var message:messtext;VAR result: integer) ;
330
331 var
332 usernum : integer;
333 size,segl,seg2,evcl,evc2,cntr : integer;
334 arrayptr : messptr;
335 user :string8;
336 branch : integer;
337 mclass : access-class;
338
339 begin
340 iesult := 0;
341 (ensure no read up is allowed)
342 if sec class.ccmpranise[O] >= mhead.class.cmpramise[O] then
343 begin
344 if innotout then
345 user := rhead.reci
346 else
347 user := idihead.frca;
348 case mhead.class.ocuprcmise(O] of
349 unclass level : branch := useg;
350 conf level : branch := cseg;
351 secret level : branch := sseg;
352 t secret-level : branch := tsseg;

86

353 else result := 2;
354 end; (case)
355 if result = 0 then
356 begin
357
358 getusernumn (user, usern, result);
359 mclass := init.rescuroes.max class;
360 seg makeknon (mit. iratial seg[2),branch, segi,
361 r w,size,sec class,result);
362 show err('read file make knoc~m result 1 = ',result);
363
364 seg akekn.'n (seg , usenin, seg2,
365 r w,size,iuzlassresult);
366 show err('read file make)arow result 2 = ',result);
367
368 swapin .segment (seg2 ,result);
369 show err ('read file swapin result = ',result);
370
371 repeat
372 read-evc(seg2,evcl,result);
373 arrayptr := lib mkpnjtr(ldt-table,seg2,l);
374 if innotout then
375 message =arrayptrA [messnum)
376 else
377 Message := ytA[eSM + 93;
378 read-evc(seg2 ,evc2 ,result);
379 until evcl = evc2;
380
381 seg terminate (seg2 ,result);
382
383 segtenninate (segl ,result);
384 end;
385 end
386 else
387 result := 1;
388 erd;
389
390{*
391 FCCEflJR readheader (user: strinig8; innotout boolean;
392 access: access class; VAR headerarray: theaderarray;
393 Var result: ineger);
394 var
395 segl, seg2 ,evcl, evc2 ,cntr, size : integer;
396 arrayptr :headptr;
397 xiclass :access class;
398 userrium integer;
399
400 begin
401
402 (*p11tln (w dev, 'accessing the header array list') ;*)
403 getusernrn -(user, usernnn, result);
404 mclass : = init. rescozrces *max-class;

87

405 seg yakeknown(imit. initial seg[2] ,headerseg, segi,
406 r w,size,nKcass,result);
407 show err ('read heaider make known result 1 = ',result);
408 seg Imakeknown (segi, .USernUM, Seg2.,
409 r w,size,mc1ass,result);
410 show err ('read hader make known result 2 = ',result);
411 swapinjseqnent (seg2, result);
412 show .err ('read header swapin result = ',result);
413 repeat
414 read --evc(seg2,evc,result);
415 arrayptr := lib mk pntr(ldt table,seg2,l);
416 if innotout then
417 headerarray :=arrayptrA. jarcxy
418 else
419 headerarray :=arrayptrA . otgo;
420 read evc(seg2,evc2,result);
421 until evcl = evc-2;
422
423 seg _tenninate (seg2,result);
424 segtermninate (segi, result);
425 for tr :=l1to 9do
426 if acoess.cczracnise[0] <
427 headerarray [cntr3-.class. cmtprmise[0) then
428 with headerarray [cntr] do
429 begin
430 frcmn -
431 reci:=
432 tim~:' '
433 date
434 end;
435 end;
436
437(1
438 PROJCEDUJRE writeheader (user: string8; innotout: boolean;
439 access: access class; header: messheading ;messnum: integer;
440 Var result: integer);
441 var
442 size,usernun : integer;
443 segl..seg2,cntr..evcl : integer;
444 arrayptr : headptr;
445 mclass :access-class;
446 begin
447
448 (*puitln (w dev, 'accessirq the header array list') ;*)
449 getusernmuser, usernn, result);
450 mclass : = init. resources *max class;
451 seg~makeknown(init. initial seg[2) ,headerseg, segi,
452 r w,size,imlass,result);
453 show err ('write heiader make known result 1 =',result);

454
455 segqxakecKnwn (segl ,usernum ,seg2 ,

88

456 r_w,size,mclass,result);
457 showerr('write header make known result 2 = ',result);
458
459 swapinsegment (seg2,result);
460 show err('write header swapin result = ',result);
461
462 ticket (seg2, evcl, result);
463 show err('write header ticket result = ',result);
464 await (seg2,evcl,result.);
465 show err('write header await result = ',result);
466 arrayptr := lib mk pntr(idttable,seg2,l);
467 header.class := access;
468 if innotout then
469 arrayptrA. inae[messnum] := header
470 else
471 arrayptrA.aotgo[messnum] := header;
472 advance(seg2,result);
473 show err('write header advance result = ',result);
474
475 seg ter ate (seg2, result);
476
477 segterminate (segl,result) ;
478
479 end;
480
481 (*}
482 PRCEDURE get_return;
483
484 var
485 ten:str string;
486
487 begin
488 putstr(wdev, '<ret> to continue');
489 getln(rdev, tenpstr)
490 end;
491
492 {*)
493 PROCEDRE write-cotpo(class : access-class; var str string);
494
495 begin
496 case class.ccupromise[0] of
497 unclass level : str 'Unclassified';
498 conf level : str 'Confidential';
499 secret level : str := 'Secret';
500 tsecret_level : str := 'Top Secret';
501 end;

4 502 end;
503
504
505 (*}
506 PROCEDURE gotoxy(col, row: integer);
507 var

89

i IE II E K I i . . I II I i !i ..

508 vstr string;
509 strlen : integer;
510 begin
511 if ((0 < col) and (col <= 80) and
512 (1 <= row) and (row <= 24)) then
513 begin
514 vstr[l] chr(27);
515 vstr[2) 1[1;
516 strlen 3;
517 if row > 9 then
518 begin
519 vstr(strlen] := chr(48 + (row div 10)) ;
520 strlen := 4;
521 end;
522 vstr[strlen] := chr(48 + (row mod 10));
523 strlen := strien + 1;
524 vstr[strlen] := 1;1;
525 strlen := strien + 1;
526 if col > 9 then
527 begin
528 vstr[strlen] := chr(48 + (col div 10));
529 strlen := strien + 1;
530 end;
531 vstr[strlen] := chr(48 + (col rd 10));
532 strlen := strien + i;
533 Vstr[strlen] := 'H';
534 vstr[0] chr(strlen);
535 end
536 else
537 begin
538 vstr[ol chr(1);
539 vstr[l] chr(7);
540 end;
541 putstr(wdev,vstr);
542 end;
543
544 (*}
545 PROCEDRE clrscr;
546 var
547 vstr : string;
548 cntr : integer;
549 begin
550
551 for cntr := 1 to 25 do
552 putln (w_dev, '');
553
554 vstr(0] chr(4);
555 vstr[l] chr(27);
556 vstr[2] : [,;
557 vstr(3] '2';
538 vstr[4] : J,;
559 putstr(wdev,vstr)

90

IL , l

560 end;
561
562 (*)
563 CEUJRE mainscreen(secclass:access class;
564 user: strings ;var choice: char);
565
566 (main menu screen)
567 var
568 headerarray : theaderarray;
569 innotcut : boolean;
570 class str: string;
571 cntr,iesult : integer;
572
573 begin
574 innotout := TRUE;
575 clrscr;
576 putstr(w_ dev,, Security class: ');
577 write ccmp(sec class,classstr);
578 putln(w_dev,classstr);
579 putstr (w_dev, '
580 putln(w dev, 'SEaJRE MAIL SYSTEM');
581 pztln(w_dev, ");
582 putln(w_dev,' C. Create a message');

583 putln(wdev,' E. Edit a message');
584 putstr(w_dev,' R. Read a ');
585 putln(w dev, 'recieved message');
586 putln(w_dev, ' S. Send a message');
587 putIn (w_dev,' D. Delete a message');
588 putstr(wdev,' Q. Quit message ');
589 putln (w_dev, 'editor');
590 putln(w-dev,' ');
591 putln(wdev,' ');
592 pitstr (wdev, 'You have the following Messages:');
593 patln(w_dev,' The Following messages are pending:');
594 putln(wdev,') ;
595 ptstr (wdev,' Class Fran Time Date');
596 putln(w dev,' Class TO Time Date');
597 putln(wdev,' ');
598 putln(w-dev,'i. 1.');
599 putln(wdev, '2. 2.');
600 pltln(wudev, '3. 3.1);
601 putln(wdev, '4. 4.');
602 putln(wudev, '5. 5. ');
603 putln(w_dev, '6. 6. ');
604 putln(wdev, '7. 7.');
605 putln (wdev, '8. 8.');
606 putstr(wdev,'9. 9.');
607
608
609 {incoming messages)

91

610 inriotout := true;
611 Readheader (user, innotourt, sec-class, headerarray, result);
612
613 for cntr :=l1to 9do
614 begin
615 gotoxy(5,cntr + 15);
616 putchar(w dev, headerarray [cntr] .carclass);
617 gotcocy(8,cntr + 15);
618 putst (w_ dev ,headerarray [aitr].fri
619 gotoxy(18,cntr + 15);
620 pxtstr(w _dev,headerarray[antr] .time);
621 gotoxy(25,cntr + 15);
622 pxtstr(w6 dev, headerarray[aitr] .date);
623 end;
624
625 (perdim nmessages)
626 innotout := false;
627 Readheader (user, innotout, secclass, headerarray, result);
628
629 for cntr := 1to 9 do
630 begin
631 gotoxy(46,crxtr + 15);
632 putcbar(w dev,headerarray[aitr) .charclas)
633 gotoxy(51,aitr + 15);
634 pitstr (w_dev, headerarray[cntr] .reci);
635 gotoxy(62,cntr + 15);
636 putstr(w _dev, headerarray[antr].tine);
637 gotoxy(70,cntr + 15);
638 pxtstr(w .dev,headerarray~aitr) .date);
639 end;
640
641 (stay in the loop until a valid key is pressed)
642 repeat
643 gotoxy(28,10);
644 getd-iar(r .dev,choioe);
645 if ord(choice) > 96 then
646 choice := chr(ord(choice) - 32);
647 until (choice = 'CI) or (choice = 'E') or
648 (choice = 'PA) or (choice = 'S') or (choice = D')
649 or (choice= ~)
650
651 end;
652
653 *
654 PRCEX3R Selectfile (user: string8 ;sec class: access-class;
655 innotcRut :boolean ;VAR choice: char);
656 (frat here the user selects on of the available of files)
657 var
658 headerarray : theaderarray;
659 aitr,result : integer;
660 fileflag : boolean;
661 begin

92

662 clrscr;
663 putln(w dev, 0)
664 paxt2ln (wdev, .
665 putln (w dev, .
666 putstr(w dev,' Select one of the ');
667 pztln(w 3ev, 'followiirg Messages:');
668 pitln(wDev, I Clas FromTo)
669 putJln(w .dev,' I im Dte');
670 putln(w dev,' 1.'1);
671 pzitln(wi'dev,' 2.'); .
672 pitln (widev, 3.');
673 pitln (widev 1 4.');
674 puztln(w dev,'I 5.');
675 pitln(wdev,' 6.');
676 p~zln(Wdev,' 7.');
677 p.ut~n (wdev,' 8 .');
678 putln(widev,'1 9.');
679 lxitln(widev,' 0. No action');
680
681 (read in the header file)
682 Readheader (user, znnotcit ,sec class, headerarray, result);
683
684 for cntr := Ito 9do
685 begin
686 gotoxy(19,cntr + 5);
687 putcbar(w dev,headerarray[cntr] .charclass);
688 gotoxy(27,aitr + 5);
689 putstr (w_dev, headerarray [cntr) .fxn
690 gotoxy(38,c-itr + 5);
691 pitstr(w _dev,headerarray[aftr] .reci);
692 gotoxy(48,aitr + 5);
693 p..tstr (w dev,headerarray [crtr] .tm)
694 gotoxy(59,cnatr + 5);
695 putstr (w~de., headerarray [aktr] .date);

696 erxi;
697 gotoxy (10, 16);
698 (make sure the user selects a valid file or nio action)
699 repeat
700 getchar(r__dev,choice);
701 if (choice >= '1') and1 (choice <-- '9') then
702 fileflag :=
703 headerarray[ord(chioioe) - 48] .diarclass <> '*';
704 if choice = '0' then
705 fileflag := IJE;
706 until (choice >= '0') andl (choice <-- '9') and Fileflag;
707 clrscr;
708 end;
709
710
711{*
712 ROCMUJRE int2str (num: byte ;var str: strirg);
713

93

714 bagin
715 str[1) := 0';
716 if rium >= 10 then
717 str[1) := chr(48 + (rumn div 10));
718 str[2] :chr(48 + (rpm mod 10));
719 str[O] := 2';
720 end;
721
722{*
723 PRCEDUJRE gettime (var time: strirq4 ;var date: string6);
724 cmist
725 clockslot = 5;
726 var
727 str :string;
728 result : integer;
729 clockbuff : od tiza buff;
730 begin
731 ad r attach(clockslot, result);
732 Cdri-dev (cloc-kslot, clock1bff,result)
733 inE2str(clockbfff[2] ,str);

735 tiu2[1] : str[1];
736 tiaie[2) :=str[2];
737 int2str(clockbu.ff [3] ,str);
738 tine[3] :=str[1];

740 int2str(clock1biff [7),str);
741 date[0) :=chr(6);
742 date[1] :=str[lI;

743 date[2] :=str[2];
744 int2str(cockbxff[5] ,str);
745 date[3) :=str[1];
746 date[4) :=str[2];
747 int2str(clockbuff[6 , str);
748 date[5] : str[1];
749 date[6] :=str[2];
750 detach (clockslot);
751 endl;
752
753{*
754 PRCEUE de-leteheader (user: string; sec class :Acoess-class;
755 availsiot: integer; innotout :boolean ;Var result: integer);
756 var
757 header : imessheading;
758 begin
759 header.charclass =';
760 header.classcuprcmise[0] := 0;
761 header.fri:=
762 header.reci :
763 header.time :

764 header.date :
765 writeheader (user, innotout, sec-class, header, availsiot, result);

94

766 end;
767
768 (*)
769 PF RE delmessage (user: string8; sec-class: acess class;
770 choice: integer; innotout: boolean;
771 result: integer);
772 var
773 message : messtext;
774 cntrl,cntr2: integer;
775 begin
776 with message.heading do
777 begin
778 charclass :=
779 class.cmiprcmise[O] := 0;
780 if innotout then
781 begin
782 reci := user;
783 fran:='
784 end
785 else
786 begin
787 frm := user;
788 reci:='
789 end;
790 time : '
791 date := '

792 end;
793 for cntrl := 2 to 23 do
794 for cntr2 := 1 to 80 do
795 message.body[cntrl,cntr2) := '
796 writefile (innotout, sec class, choice, message, heading,
797 message,result);
798 end;
799
800
801 (*)
802 FROCEDURE deletemess(user:string8;sec class:acoessclass);
803 var
804 innotout : boolean;
805 choioe,yesno : char;
806 headerarray : theaderarray;
807 messrRn, result : integer;
808 message : messtext;
809 begin
810 clrscr;
811 repeat
812 putstr(wdev, 'Do you want to delete an ');
813 putstr(w_dev,' ircainr message? (Y/N) ');
814 getdar(r_dev,yesno);
815 putln(w diev,' ') ;
816 until yesno in ['y','n','Y','N'];
817 innotout := (yesno = 'Y') or (yesno = 'y');

95

818 Selectfile (user, ecclass, inrotout, choice);
819 if choice <> '0' then
820 begin
821 messrmm := ord(choice) - 48;
822 readheader (user, innotout, sec class, headerarray ,result);
823 readfile(inrotout, sec claiss ,messmntm,headerarray [xessritn],
824 message, result);
825 disr2 (nssage);
826 repeat
827 putstr(wdev, 'Is this the crrect me~ssage? (YIN) ');
828 getdiar (r dev, yeso);
829 pultln(wdev,' ');
830 until yesno in I Iy'I,'In IF'Y',FWIN'
831 if yesno in ['y','Y'] then
832 begin
833 deleteheader (user, sec class -,messnum, innotout, result);
834 dlesae(user, sec-cilass,messnum, innotout, result);
835 end;
836 ed
837 end;
838
839
840{*
841 PROEJE fir~headslot (user: strirg8 ;sec class: aoess-class;
842 innoto.it boolean;
843 Var availsiot: integer);
844 var
845 cntr : integer;
846 headerarray : theaderarray;
847 result : integer;
848 begin
849 readheader (user, innotcut, sec class, headerarray, result);
850 availsiot :=1;
851 while (availsiot < 9) and
852 (headerarzy~availslot].charciass <> '*1) do
853 availsiot := availsiot + 1;
854 if headerarry[availslot . charciass <> ''then

855 availsiot := 0
856 else
857 begin
858 with headerarray[availslot] do
859 begin
860 class := sec-class;
861 case class.ccmiprcinise[0] of
862 unclass level : charclas P u';
863 conf level : charclass := C';

*864 secret level : charciass IS'
865 t secret level : charclas IV'T;
866 else dhirclass = *1

867 ed
868 frm~ := user;
869 gettime (tim, date)

96

870 end;
871 writeheader (user, innotout, sec class.
872 haaderarray[availsiot] ,availsiot, result);
873 endi;
874 endi;
875
876{*
877 P~oEJRE createmess (user : strirg8 ; ec class: acoess-class);
878 var
879 cntri, cntr2 ,availsiot : integer;
880 irwotout :boolean;
881 message :messtext;
882 yesno chdar;
883 result :integer;
884
885 begin
886 clrscr;
887 innoto.it =FAILSE;
888 findheadslat (user, sec class, innotout ,availslot);
889 if availsiot = 0 theni-
890 begin
891 pultstr(w dev,' Trhere is no roan in the header array for)
892 pjitln(w .dev, 'any mo~re messages');
893 pxtstr (w_dev, 'You nm.st delete ari/or sendi some
894 puitln(w_dev, 'of them before');
895 putin (w _dev, I you can create any moreI);
896 end
897 else
898 begin
899 updateheader (user, sec class ,message headirg, result);
900 for cntrl := 2to23d3o
901 for citr2 := ItoB80do
902 message.body~aitrl,cntr2] :
903 dispmessage (message);
904 edit (message);
905 clrscr;
906 repeat
907 putstr (w dev,' Do you want to save the message? (Y/N)');
908 getchiar(r dev,yesno);
909 putln(w dev,' 1I);
910 until yesno in ['YI,INI,IyI,InI];
911 if (yesno = 'Y') or (yesno = 'y') then
912 begin
913 updateheader (user, sec class message. heading, result);
914 writeheader (user, innotout, sec-class, message- heading,
915 availslot, result);
916 writefile (innotout, sec-class, availslot, 9
917 message. heading ,message, result);
918 endi
919 else
920 deleteheader (user, sec-class, availslot, innotout, result);

97

921 end;
922 end;
923
924(*
925 PRCEDUJRE d~sisae(messin :Messtext);
926 var
927 airtri , atr2 :integer;
928 secstring : string;
929 message : messtext;
930
931 begin
932 message := n in;
933
934 clrscr;
935 write cxzj,(messaqe .headingclass, secstring);
936 putstr (w dev, sectring);
937 gotoxy(25,1);
938 pitstr (wdev, message. heading. f ran);
939 gotoxy(35,3.);
940 putstr (w dev, message. heading.reci);
941 gotoxy(45,1);
942 pitstr (w_ dev, message. heading. time);

0943 gotoxy(55,1);
944 pitln (w dev, message . heading, date);
945 gotoxy(1,2);
946 for cntr1 2 to 23 do
947 begin
948 for cntr2 1lto 79 do
949 putchar (w dev, message. body [ontri, aitr2]);
950 putln (w _dev, ressage. body (cntrl, 80))
951 end;
952 gotoxy(60,24);
953 write cmp (message-. heading. class, secstring);
954 end;
955
956(*

* 957 PRCEaMR disp2 (messii: messtext);
958 var
959 secstring :string;
960 begin
961
962 write cxzimp(messin. heading, class, secstring);
963 putstr (w dev, secstring);
964 gotoxy (25, 1) ;
965 putstr (w dev,messin.heading. frari);
966 gotoxy(35,1);

*967 putstr(w dev,messin.heading.reci);
968 gatoxy(45,1);
969 pitstr (w dev, messn. heading. tire);
970 gotoxy(55,1);
971 putin (w dev , messin. heading, date);
972 gotoxy(1,2);

98

973 end;
974
975 (*)
976 PCEDE readness (user: string8 ;sec-class: access-class);
977 ccnst
978 innotout = TKE;
979 var
980 choice : char;
981 headerarray : theaderarray;
982 messnum, result : integer;
983 message : messtext;
984 begin
985 Selectfile (user, secclassinnotout, choice);
986 if choice <> '0' then
987 begin
988 messAm := ord(choice) - 48;
989 readheader (user, innotat, sec class, headerarray, result);
990 readfile (innotout, secclass, messnum, headerarray [messnum],
991 message,result);
992 if result <> 0 then
993 begin
994 clrscr;
995 pitln (wdev, 'Error reading the messaget);
996 getretuirn;
997 end
998 else
999 begin

1000 dispmessage(message);
1001 gct_.re trn;
1002 end;
1003 end;
1004 end;
1005
1006 (*}
1007 PCEDUM updateheader (user: string8 ; sec-class: access class;
1008 var headerrec:messheading;var result:integer);
1009 var
1010 teupstr : strin;
1011 cntr : integer;
1012 clockbuff : cd tim_buff;
1013 begin
1014 with headerrec do
1015 begin
1016 class := sec class;
1017 case class.cEprcmise[0] of
1018 unclass level : charclass := 'U';
1019 conf level : charclass := 'C';
1020 secret level : charclass :=S';
1021 t secret level : charclass := 'T';
1022 else charclass :=
1023 end;
1024 fran := user;

99

. _ r,-" dmmm mm~ma i a "|al ,,',,H i I
| ' l l i m

1025 gettime (time, date);
1026 putstr (w_dev, 'Name of person to send message to ? ');
1027 getln(r_dev,reci);
1028 erd;
1029 end;
1030
1031 (*)
1032 PRCEDURE edit(var message : messtext);
1033 var
1034 ihar : char;
1035 cntr, atr2, charirm,olcntr, lirecntr integer;
1036
1037 begin
1038 gotoxy(1,2);
1039 linecntr 2;
1040 colcntr 1;
1041 repeat
1042 getchar (r dev, inchar);
1043 charmn := ord(inchar);
1044 if charnum in [32..126] then
1045 (Normal C arcaters}
1046 begin
1047 if (linecntr = 23) and (colcntr = 80) then
1048 putchar (w_dev,chr(7))
1049 else
1050 if (colcntr = 80) then
1051 begin
1052 putdiar(w dev,inchar);
1053 message.body[linecntr,colcntr] incar;
1054 linecntr linecntr + 1;
1055 colcntr := 1;
1056 gotoxy(colctr, linecntr);
1057 erd
1058 else
1059 begin
1060 pitchar(w dev,indhar);
1061 message.body linecntr, colcntr] inchar;
1062 colcntr := oolcntr + 1;
1063 end;
1064 end
1065 else
1066 case charnm of
1067 (Cirsor Movement)
1068 Ip I^EII)

1069 5 : begin
1070 if linecntr 2 then
1071 putcar (wdev, chr (7))
1072 else
1073 begin
1074 linecntr linectr - 1;
1075 gotoxy (olcntr, linecntr);
1076 end;

100

10/7 end;
1078 (down "-X")
1079 24 : begin
1080 if linecntr = 23 then
1081 putchar (w_dev, chr (7))
1082 else
1083 begin
1084 linecntr := linecntr + 1;
1085 gotoxy(oolcntr, linecntr);
1086 end;
1087 end;
1088 (left '"S")
1089 19,8 : begin
1090 if (linecntr = 2) and (colcntr = 1) then
1091 putc-ar(w_dev,dCr(7))
1092 else
1093 if (colcntr = 1) then
1094 begin
1095 linecntr := linecntr - 1;
1096 colcntr := 80;
1097 gotoxy (colcntr, linecntr);
1098 end
1099 else
1100 begin
1101 oolcntr := colcntr - 1;
1102 gotoxy (colcntr, linecntr);
1103 end;
1104 end;
1105 {right '"D")
1106 4 begin
1107 if (linecntr = 23) and (colcntr = 80) then
1108 putchar (w_dev,chr(7))
1109 else
1110 if (colcntr = 80) then
1111 begin
1112 linecntr linecntr + 1;
3113 colcntr := 1;
1114 gotoxy (oolcntr, linecntr);
1115 end
1116 else
1117 begin
1118 colcntr := oolcntr + 1;
1119 gotoxy (colcntr, linecntr);
1120 end;
1121 end;
1122 (Carrage return "A^ , or the "return" key)
1123 13: begin
1124 if linecntr = 23 then
1125 putchar(wdev,chr(7))
1126 else
1127 begin
1128 linecntr := linecntr + 1;

101

I

1129 colcntr := 1;

1130 gotoxy (colcntr, linecntr);
1131 end;
1132 end;
1133 (Start of line ""All}
1134 1 : begin
1135 colcntr := 1;
1136 gotoxy (colcntr, linecntr);
1137 end;
1138 (End of line "1^F11)
1139 6 : begin
1140 oolcntr := 80;
1141 gotoxy (o1cntr, linecntr);
1142 end;
1143 (TOp of page "AR"1)
1144 18 : begin
1145 linecntr := 2;
1146 gotoxy(colcntr, ljinecntr);
1147 end;
1148 (Bottm of Page AC

1
)

1149 3 : begin
1150 linecntr := 23;
1151 gotoxy (colcntr, linecntr);
1152 end;
1153 (Tab, five spaces "AI", or the "tab" key)
1154 9 : begin
1155 if colcntr < 75 then
1156 begin
1157 colcntr := colcntr + 5;
1158 gotoxy (colcntr, linecntr);
1159 end;
1160 end;
1161
1162 (insert 11^V11)
1163 22 begin
1164 gotoxy(70,1);
1165 putstr(w dev, 'INSERT ON');
1166 gotoxy(colcntr, linecntr);
1167 getchar(rdev,inchar);
1168 charnum := ord(inchar);

* 1169 while charnum in [32..126] do
1170 begin
1171 if (colcntr < 80) then
1172 begin
1173 for cntr := '/9 downto colcntr do
1174 nessage.body[linecntr,acntr + 1]

* 1175 ressage.body[iinecntr, cntr];
1176 message.body[linecntr,oolcntr] := inchar;
1177 for cntr := colcntr to 80 do
1178 pxtchar (wdev,
1179 message.body[linecntr, cntr]);

102

1180 colcntr := colcntr + 1;
1181 gotoxy (colcntr, linecntr);
1182 end
1183 else
1184 begin
1185 pftcar (devinchar);
1186 message.body[linecntr,colcntr] = inchar;
1187 inchar := chr(27); (exit)
1188 end;
1189 getchar(r_dev,inchar);
1190 charnum := ord(irchar);
1191 end;
1192 gotoxy(70, 1) ;
1193 putstr(wdev,'
1194 gotoxy (olcntr, linecntr);
1195 end;
1196
1197 (Delete single character "AG")
1198 7 : begin
1199 for cntr := colcntr to 79 do
1200 begin
1201 message.body[linecntr,cntr] :=
1202 message.body[linecntr,cntr + 1];
1203 putchar (wdev,message. bodyf linecntr, cntr]);
1204 end;
1205 message.body~linecntr,80].-'' ''
1206 putstr(wdev,' ');
1207 gotoxy (colcntr, linecntr);
1208 end;
1209 (Delete Line "AY" t)
1210 25 begin
1211 colcntr := 1;
1212 gotoxy (colcntr, linecntr);
1213 for cntr := linecntr to 22 do
1214 begin
1215 message.body[cntr) := message.body[cntr+1];
1216 for cntr2 := 1 to 80 do
1217 patchar (wdev,message body [cntr, cntr2]);
1218 end;
1219 for cntr2 := 1 to 80 do
1220 begin
1221 message.body[23,cntr2:=
1222 putstr(wdev,' ');
1223 end;
1224 gotoxy (co1cntr, linecntr);
1225 end;
1226
1227 {Exit edit mode "^Z")
1228 26 : (exit);
1229 (Invalid key error, sound bell)
1230 else

103

1231 putchar(w dev,chr(7));
1232 end;
1233
1234 until chbarrium =26;
1235 end;
1236
1237{*
1238 PRCaMURE editmessage (user: string8 ;sec class: acess-clas)
1239 orist
1240 innotout = FALSE;
1241 var
1242 choice,yesno : char;
1243 headerarray : theaderarray;
1244 messntm,result : integer;
1245 message : messtext;
1246 begin
1247 Selectfile (user, sec class, inriotout, choice);
1248 if choice <> '0' then
1249 begin
1250 messnm := ord(choice) - 48;
1251 readheader (user, innotout, sec class, headerarry, result);
1252 readfi-le (innotout, sec-class ,xissnumn,

* 1253 headerarray [uessnumn] ,message, result);
1254 if result <> 0 then
1255 begin
1256 clrscr;
1257 pitln (w dev, I'Error reading~ the message')
1258 get retudrn;
1259 end
1260 else
1261 begin
1262 dispuessage(xiessage);
1263 edit (message);
1264 clrscr;
1265 repeat
1266 pultstr(w dev, 'Do you want to save the changes? (YIN)');
1267 getchar (rdev,yesno);
1268 until yesno in ['Y,'N','y', In']1;
1269 if (yesno = 'Y') or (yesno = 'y') then
1270 begIn
1271 upda'teheader (user, sec class,
1272 headerarray [Iessn] ,result);
1273 wdriteheader (user, innotout, sec class
1274 headerarray[nessnnn],
1275 xiessnum, result);
1276 ".rritefile(innotout, sec-class,messnum,

* 1277 headerarray(messnum], nessage, result);
1278 end;
1279 end;
1280 end;
1281 end;
1282

104

1283 (*)
1284 PFCCEOIM show_err(str:striq; code:integer);
1285 begin {showerr)
1286 if code <> noerror then
1287 begin
1288 pitstr (wdev, str);
1289 putstr(w_dev,' ');
1290 p&tdec (w_dev, code);
1291 putln (w _dev, ''

1292 end;
1293 end; (showerr)
1294
1295 begin (******************** MAIN *************************)
1296 (* the port number is passed in from the SMSMAIN program*)
1297 portno := init.reserved[0);
1298 minlass := init.resources.minclass;
1299 maxclass := init.resources.max class;
1300 tryatr := 0;
1301 while trycntr < 3 do
1302 begin
1303 userclass := maxclass;
1304 clrscr;
1305 userlogin (user, userclass,maxclass, portno,result);
1306 if result = 0 then
1307 begin
1308 trycntr := 0;
1309 choice := ';
1310 innotout True;
1311 while choice <> 'Q' do
1312 begin
1313 mainscreen (userclass,user, choice);
1314 case choice of
1315 'C' : begin
1316 createmess (user, userclass);
1317 end;
1318 'R' : begin
1319 readmess (user,userclass);
1320 end;
1321 'E' : begin
1322 editmessage (user,userclass);
1323 end;
1324 'S' : begin
1325 sen±ess(user,userclass);
1326 end;
1327 'D' : begin
1328 deleteness (user,userclass);
1329 end;
1330 'Q' : begin
1331 (Quit branch of case statement, No cperation)
1332 clrscr;
1333 detach(wdev);
1334 detach(rdev);

105

9

1335 end;
1336 end;
1337 end;
1338 end
1339 else
1340 begin
1341 show err(,bambed out error = ',result);
1342 detai-dh ev);
1343 detach (rdev);
1344 trycntr := trycntr + 1;
1345 end;
1346 end;
1347 clrscr;
1348 putln(wdev, 'This terminal has been locked out due to too ');
1349 putln (wdev, 'many wrong loginVpassword atteups') ;
1350 putln(wdev, 'Notify the system manager for reactivation');
1351 pxtln(wdev, 'Termination of Secure Mail System');
1352 detach(w dev);
1353 detach(r-dev);
1354 self delete(init.initialseg[0], success);
1355 repeat until (false);
1356
1357 end;
1358
1359 modend.
1360

106

APPENDIX D

SMS TYPE INCLUDE FILE

This file contains the type declarations that are

covered in Chapter IV.

string4 = string(4];
string6 = string[6];
string8 = string[8];

messheading = record
charclass : char;
class : access class;
from : string8;
reci : stringS;
time string4;
date string6;

end;

messtext = record
heading : messheading;
body : array [2..23,1..80] of char;

end;
theaderarray = array[l..9] of messheading;

messarray = array[l..9) of messtext;

userhead = record
income : theaderarray;
outgo : theaderarray;

end;

usermess = array [1..18] of messtext;

userptr = "user array;
messptr = Ausermess;

headptr = Auserhead;

107

LIST OF REFERENCES

Ames, S.R. Jr, Gasser, M. and Schell, R.R., "Security Kernel
Design and Implementation: An Introduction,"
Computer(USA) Vol. 16, No 7, pp. 14-22. July 1983.

Beobert, E., Kain, R. and Young, B., "Trojan Horse Rolls Up
to DP Gate," Computerworld, pp. 65-69, 2 December 1985.

Corbato, F. and Vyssotsky, V., "Introduction and Overview of
the Multics System," AFIPS Conference Procedings, Vol
27, Part 1, pp. 185-196, 1965.

Department of Defense Computer Security Center, CSC-STD-001-
83, Department of Defense Trusted Computer System
Evaluation Criteria, March 1985.

Gasser, M., BuildinQ a Secure Computer System, Draft of book
to be published by Van Nostrand Reinhold Co., Inc. 1988.

Gemini Computers Inc., System Overview. Gemini Trusted
Multiple Microcomputer Base, Version 0, Carmel,
California, May 1984.

Gemini Computers Inc., Product Description. Gemini Trusted
Multiple Microcomputer Base, Carmel, California, 1985.

Gemini Computers Inc., Sysaen Users Manual For Svsgen
Version 0.5, Carmel, California, June 1986.

Gemini Computers Inc., GEMSOS RinQ 0 User's Manual for the
Pascal/MT+86 Language, Carmel, California, July 1986.

Gemini Computers Inc., GEMSOS Model Application Environment
User's Manual for the Pascal/MT+ Language, Carmel,
California, August 1986.

Honeywell Information Systems Inc., Product Information,
Secure Communication Processor (SCOMP), 1984.

Lamport, L., "Time, Clocks, and the Ordering of Events in a
Distributed System," Communication of the ACM, Vol 21,
No. 7, pp. 558-565, July 1978.

Lampson, B., "A Note on the Confinement Problem,"
Communication of the ACM, Vol 16, No. 10, pp. 613-615,
October 1973.

108

Landwehr, C.E., "The Best Available Technologies For
Computer Security," Computer(USA) Vol. 16, No. 7, pp.
86-100, July 1983.

Marbach, William D., Sandaza, R. and Rogers, M., "Is Your
Computer Infected?", Newsweek, p. 48, 1 February, 1988.

Naval Research Laboratory Memorandum Report 4925, ADA119960,
Secure Military Message Systems: Requirements and
Security Model, by Landwehr, C.E. and Heitmeyer, C.L.,
September 1982.

Norman, A.R.D., Computer Insecurity, p. 192, Chapman and
Hall, New York, 1983.

Reed, D.P. and Kanodia, R.K., "Synchronization with
Eventcounts and Sequencers," Communication of the ACM,
Vol 22, No. 2, pp. 115-123, February 1979.

Rithcie, D. and Thompson, K., "The UNIX Time--Sharing
System," Communication of the ACM, Vol 17, No. 7, pp.
365-375, November 1974.

Roskos, J., "A Comparison of Two Synchronization Primitives
in an Operating System For Parallel Processing
Applications," ProceedinQs of the 1986 International
Conference of Parallel Processing, pp 231-233, August
1986.

Tao, T., Gemini Computers, Interview with the author,
Feburary 1988.

Taylor, T., "Navy's Computer Security Research and
Development Program," Computer Science Lecture, Naval
Postgraduate School, Monterey, California, October 1987.

Wyatt, R.W., Multilevel Security For the Integrated Software
System Mail Application, Master's Thesis, N'aval
Postgraduate School, Monterey, California, March 1984.

1

109

0

INITIAL DISTRIBUTION LIST

No. Copies

1. Defense Technical Information Center 2
Cameron Station
Alexandria, Virginia 22304-6145

2. Library, Code 0142 2
Naval Postgraduate School
Monterey, California 93943-5002

3. Director, Information Systems (OP-945) 1
Office of the Chief of Naval Operations
Navy Department
Washington, D.C. 20350-2000

4. Commandant of the Marine Corps (Code TE06) 1
Headquarters, United States marine Corps
Washington, D.C. 20360-0001

5. Computer Technology Programs, Code 37 1
Naval Postgraduate School
Monterey, California 93943-5000

6. CDR Joseph S. Stewart, Code 55St 2
Naval Postgraduate School
Monterey, California 93943-5000

7. Major Richard A. Adams, Code 52Ad 1
Naval Postgraduate School
Monterey, California 93943-5000

8. 1st LT David R. Pratt 3
SABARS/MCCDPA
Code G9S, Bldg 3041A
MCCDC,
Quantico, Virginia 22134-5001

9. Chairman, Computer Science Department, Code 52 1
Naval Postgraduate School
Monterey, California 93943-5000

110

