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Abstract

<;>It is shown that the chronoamperometric response at microdisk electrodes
can be derived from Neumann’s integral theorem of two parameters. The form of
the transients can be predicted for a wide range of boundary conditions and
this is illustrated by the relaxation behavior of irreversible reactions in
addition to that of the widely investigated example of zero surface
concentration of the reactant. Corrections to the transients due to the
tertiary current distribution are derived for relaxation experiments and it is
shown that the methods developed can also be applied to linear sweep
voltammetry.

The steady state behavior of c.e. and e.c. catalytic reactions is

formally similar to the chronoamperometry of irreversible electrode reactions
and it is shown that complete descriptions can be obtained for the voltammetry

of such systems. " ., ;, -~ /S Ny
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PREDICTION OF THE CHRONOAMPEROMETRIC RESPONSE OF
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FOR c.e. AND e.c. CATALYTIC REACTIONS BY

APPLICATION OF NEUMANN'S INTEGRAL THEOREM.
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Iptroduction

We have shown recently that the steady-state behavior of simple reactions

(1,2

at microdisk electrodes can be predicted )by the application of Neumann's

3)

integral theorem The concentration distribution for a reactant (or

product) in such a reaction is governed by

2 2
p224+2%,p22. (1]
ar r dr az

and we obtain

C(r,z) = I ada Ia exp(-az) Q(p) 3 (ar)3 (ap)pdp (2]

] 0 a D

Equation [2] makes a formal linkage between the distribution of sources, Q(p),
(or sinks) at the radial position p and the concentration throughout space.

We have shown that the use of the simple form for the distribution of sinks

-1
-Q(8) = ———— {c + ccos(f) + ¢c_ cos(28) + eve + ¢ cos(n&)}
a cos(#) 0 1 2 n [3]
where
p = a sin(8) (4]

nJ

N




leads to the recovery of known results(hs)(derived by the application of the
discontinuous integrals of Bessel functions) for constant surface

concentrations provided we assume

C = C wmw(Cc =+ ¢ smc =20 [5]
1 2 3

and

c, = 2 fe=. c’]
"

(6]

and of constant, uniform, surface flux provided we assume

c,=c,=c =+ e=~c =0 (7]
and
¢, = Qs | 8]

It has also been shown that the reexpression of [3] in the form

-Q8) = ———Ll——— d + dlcos(e) + eoe + d;cos"(ﬁ)

a cos(f) 0 [9]

is particularly useful in discussing the application of more general boundary

conditions such as




D[QE)-kcs,o<r<a,z-o [10)

dz

The use of 9] in (2] leads to the simple result

- rz
;z (11)

(at z = 0) where I' is the gamma function and zFx denotes the appropriate
hypergeometric function. Application of [1l1] at (n+l) radial positions in any
particular boundary condition (such as [10]) then allows the evaluation of the
unknown coefficients in [9] thereby giving a complete solution for any
particular problem. The results obtained by the application of Neumann'’s
integral theorem has been related also to results derived by an extension'®of

the application of the discontinuous integrals of Bessel functions'*'®’.

Ve
have shown also that the use of Neumann's integral allows the evaluation of
the effects of the distribution of potential in the solution (the tertiary
current distribution) and of the non-linearities in the concentration terms o:
the electrode reactions'!'?.

In this paper we extend the approach to the discussion of the
chronoamperometric response of microdisk electrodes, comment on the effects o:
the distribution of potential in the solution, and outline the analysis of
linear sweep voltammetric experiments. In view of the formal similarity of
the derived equations to those obtained for the steady state behavior of

reactions following the c.e. and e.c. mechanisms, we also derive the relevant

results for these reaction pathways.




Chronoamperometyy

We consider first of all the behavior of a simple diffusion controlled

reaction where mass transfer of the reactant is controlled by

2 2
¢ . pdc,Dac, ¢
at ar r 4r az

subject to the initial condition
C=C,0<r<w,z>0, t=20
and the boundary conditions

C=0,0<r<a,z=0,t>0

ac

D— =0, r>a,z=0,t>0
iz

Laplace transformation of [12] subject to [13] gives

7]
8

g¢c, 13 as¢C
r dr

¢+ -0

QD
N
~
(=

where s is the variable of the Laplace transformation.

(12]

(13]

(14]

(15]

(16]

The solution of [16]

can therefore be expressed in terms of Neumann's integral of two parameters




(p.s) using Q(p,s) as

172
[ 2 s
. © o exp[-[a + —]42]
&(r,z,s) - & + I adaJ‘ L Dl ) Q.s) 3 (ar)J (ap)pdp (17)
0 2 s]l/z D

By analogy with the expansion [9]) used to describe the distribution of sinks

in the steady state, we write

-Qe) = -1 ao(s) + al(s)cos(a) + see 4 &n(s)cosn(v)

a cos(f ) [18]

where all the coefficients dJ are now functions of s. Substitution of [18]

and [4] in [17) gives at z = 0O

n

) @ . J,(ar)eda ("
C(r,s) = =— -} —0/4m— d (s)J (aa sin(8))sin(#)cos’(6)dé
s D

. s]1/?
o |a®+ 2 0
[ D] 3=0

N




z @ J (ar) J (aa) d(aa)
<2 [
- . = d (s)e 2 [19)
s Da }E: J J
J=0 0

2 s 1/2 ((3-1)/2)
[a + B] (aa)

for a distribution of sinks Q(#) over the surface where

2‘“""”1‘((J+1)/2) [20]

The coefficients dj(s) can then be obtained by substituting {18) and [19] into
the Laplace transform of the boundary condition appropriate to the particular

form of the experiment. For example, for the simple condition
C=0,0<r<a,z=0 [21)]
(cf {14]) we solve the set of equations

n

d (s)e L Jo(ark) J o1 (aa) d(aa) !
Z—j———‘J LTJ - = [22]
Da 0 2 s]t'? ((3-1)/2) s
j=0 [a + B] (aa)




at (n+l) radial positions. We therefore obtain the unknown coefficients as
functions of the parameter s. Substitution of these coefficients into [18]
and integration over the radius of the disk then gives the Laplace transform

of the total rate of reaction, R,

) n az.rz J/2
R = 2xD a—C]rdr - 2x a (s) rdr
9z’ z=0 4 az 2 2 12
] 3e0 0 [l -r ]

ﬂ'lz‘
- 2%a I d (s)cos® (#)sin(8)ds
N J
=0

d (s)
- 2ra 3 [23]
(§+1)

Numerical inversion of [23] gives the total rate of reaction in the t-domain.
An alternative procedure is to invert [22] to the relevant convolution

integrals

e t .® Jo(ark) J J+1] (aa) d(aa)dr ‘
——’—-—J Jd (t-1) exp(-Da’r) K3
D \,

1/2
T

((i-1y/2)
j=0 (aa) ]




n e t @ Jo(ark) J[J*l] (aa) d(aa)df
- Z —a I J d (r) exp(-Daz(t-f)) 2
D 3

2
0 (t-r)ll

((3-1)72)
3=0 (aa) 3

-1 (24)

In the numerical integration wver say 1 intervals of Ar we then have to solve
the set of Equations ([24] for the values of f.l.1 in the lth interval. This
forward integration is simplified by the fact that we know that the system

follows the Cottrell equation at short times‘”’for which at sufficiently large

s
O
d1(s) - aflz
s [25]
and
d ~d =3d =¢ ¢ ¢«cmd =0 [26]
0 2 3 n

Other boundary conditions; the tertiary current distribution; linear sweep

voltammetry.
We have pointed out elsewhere that the application of the boundary
condition [14] (or, more generally, of a constant surface concentration

boundary condition) is unrealistic as the flux would have to become infinite

(1,2,4,8) 6)

at the edges of the disk 1see also However, the flux cannot

become infinite for two reasons: firstly because the rate constant governin:-

I
PSR W



the electrochemical reaction must itself be finite and, secondly, because an
infinite rate of reaction would alsu require an infinite overpotential at he
edges of the disk. The current distribution must therefore be more uniform
than that predicted using the boundary condition {14]) under most experimental
conditions (the tertiary current distribution).

As the application of Neumann’s integral theorem provides a link between
the assumed form of the flux distribution, Equation [18], and the
concentration distribution, Equation {19], it i{s straightforward tc assess the
effects of the boundary conditions more complex than [14). We restict
attention here to irreversible reactions which are described by [10].

Substitution of [19] into the Laplace transform of [10] gives

D ac(r,s)
ds

2

1 A ) a -r a-r a-r

[ ) 2]1/2 do(s) + dx(s)
a-r

- ————l——— ao(s) + al(s)cos(ﬁ) + e 4 &n(s)cos“(ﬁ)

a cos(9)




o J (ar) J (aa) d(aa)
kCT  k \ ; J ° [’L‘-]
-— . — d (s)e 2 [27)
$ Da ! ! 0 2. s]t/? -1)/2
=0 [a + 5] (aa)((J 123

The dependence of the coefficients dJ on s can therefore be obtained as for
the case of zero surface concentration governed by Equation [22]). The
distribution of the flux and concentration and the total rate of reaction can
then be derived for the Laplace plane using Equations [18], [19], and [23].
Numerical inversion gives the dependencies in the t-plane. It therefore
becomes possible to assess the effects of changes in k on the behavior of the
system and the relaxation of the rate of reaction under potentiostatic
conditions can be evaluated.

The application of Neumann's integral theorem also allows the evaluation
of the potential distribution in the solution, as in the case of the
discussion of the steady state‘hz{ However, in contrast to that case, the
effects of this potential distribution on the chronoamperometric transient can

only be evaluated in limiting cases. The potentifal distribution in the

presence of excess support electrolyte is governed in the Laplace space by

, ¢ =0, r=w, z=o [28]

while the distribution of sources (for a cathodic reaction) over the disk is

given by

N

_ A—A"




h x 3 - zR(8)

dz

- —zF ao(s) + al(s)cos(O) + ce0 4 &n(s)cosn(ﬂ)

[y

a cos(d ) [29]

We therefore obtain the potential at the surface of the disk, z = 0, as

o ]2
$(r,s) - "fa JJ—.Q(a,s) J,(ar) J (aa sin(8) sin(8) cos § dfda

~
0v o

-zFa o /2
- JJo(ar)da ZI aJ(s) J (aa sin(é) sin(é) cos’d dé

0

-zFa = r
- - z dj(s)edfj[z] [30]




eJ - 2((3'1)/2)P((J+1)/2) [31]
and

r .2 pfl 1, 1, [32]
f[‘]- (Q*D/2) 21l " T a?
ina 20U Bp 342y /2)a

Modification of [10] to take into account the distribution of potential in the

solution gives

D[aC(r,t) -k exp[ a¢(r,c)F]cs
az RT

a¢(r,é)F

](C‘”- C(r,t)) (33]
RT

-k exp(

where k is the value of the rate constant of the electrode reaction in the

absence of any ohmic potential drops in the solution and C(r,t) is the inverse

of the second term in quation [19]. A general Laplace transform of [33] can
evidently only be obtained for sufficiently small perturbations of the

potential and concentration for which
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| D(aC(r.t) . [1 . _32££;£2£L]<c°. C(x,t))
2z RT

. kag(r,t)FC"
RT

* k ((C°- C(r.t))] [34]

giving

L
0[29 - 1 ao(s) + al(s)cos(O) + ese + d (8)cos"(8)
dz a cos(f) ®
o . ) saz I@ Jo(ar) J[iil](aa) d(aa)
X Iy il
s Da \p 3 1/2
= 0 [a2+ %] (aa) (371272
Fikc™
zaFkCa \ 4 o [E] [35]
. KRT i e

Special solutions using [33] include those cases where the dJcan be

approximated by linear functions in time




P .

d, = g +hy(t) [36)

A further interesting case related to [36] is that of linear sweep
voltammetry. We again restrict attention to the case of an irreversible
reaction and, neglecting the effects of the tertiary current distribution,

write [10] as

D[————ac("t) x exp["""F (€™~ c(r,t))
az RT

- k exp(pt)(C - C(r,t)) [37]

where k 1is the rate constant at t = 0. Laplace transformation of [37] gives

D[QQ] - —1 ] a(s) +a(shcos(8) + +++ + & (s)cos™(8)
(] 1 n
a cos(d)

((j-l)/Z)

m J (ar) J (aa) d(aa)
-——Zd(su)e [2) (38]
(S u) 1/2
(aa

0 [ 2,




o

hl an equation system which has to be solved in the t-domain where

1

d (t) + d (t)cos(8) + s+ + d (t)cos"(§)
0 1 n
a cos(f)

Jo(ar)J 341 (aa)d(aa)dr
- kC'exp(ut) - ‘-‘%ﬂf‘l‘—: Z d (t-r) exp(-Da %) [T}
1/2

(aa)((J'l)IZ)

J (ar)J[i:A](ca)d(aa)dr

- KCTexp(ut) - KC_€XP(sE) Z 4,(r) exp(-Da’(t-r))

RYERYE T2
(t-r) (aa) (3712

(39]

c.e and e,c, catalytic reactions in the steady state

We first consider the behavior of the c.e. reaction

in the steady state with the reactant A present in excess concentration. Then

if C denotes the concentration of B, the diffusion of this species is governed
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by

2 2
p ¢, D3, 3%
ar r dr az

“ +k -kC=0 [40]
b 2

Equation [40] is subject to the boundary condition

C -~ C=k/k, r=w, z=0o allt. [41]

and we again consider initially the simplest condition at the electrode

surface

C=0,0<r<a, z=20, all t [(42]

and with

D CA 0, r>a, z=0, all t [43]
az




m
|
a 17

similarity of Equation [40] in standard form

o

S

2 2 k C K
% .a__g.‘.lﬁ.p.a_(z:. - _2_+__1-0
ar r ar az D D [44)

is apparent and we obtain the solution for the concentration of B as

k;
C(r,z,kh) adl +

k 4172
] 2 2 o
exp[-l’a + -D—-] Z]
J , L—L J (ar)ada] Q(p.k)J (ap)pdp (45]
2

k qy1/2
0 [az+ 33] )

(-2

By analogy to the distribution of sinks for the chronoamperometric transient

we assume that for the c.e. reaction we can write

g -Q(8) = . S do(kz) +d (k)cos(f) + eo+ + dn(kz)cos“(a) [46)

a cos(d )

where the dJ are now functions of kz. Then at z = 0 we obtain




2 2

" = © Jo(ar)J 1 (aa) d(aa)
1 1 (——J
C(r,kz) -5 ;: jg:d’(kz) eJ J - 1: [47)
= 0 oty 22| (aayt@TV/®
3 b

Then, if the boundary condition [42] applies, the (n+l) coefficients dj(kz)

can be derived by solving the set of equations

. ®© Jo(ark)J[%:l](aa) d(aa) kl
—_ d (kz) e 2 ol (48]
Da ? y 0 2 kz 1/2 -1)72) 2
3=0 [a + 5 ] (aa)((J /

at (n+l) radial positions. A working curve of the kinetically limited flux

can then be constructed from

n

d (k)
R(k) = 2ra -3 2 (49]
(j+1)

J=0

Mass transfer of the reactant species F in the e.c. (catalytic) reaction

scheme
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E + ze &e—— F (iii)
kz
F + G —_— E + H (iv)
is described by
2 2 .
D é—g + D éc +D é—g - kchC
ar r ar az
2 2
s p2E, 25,588 -0
ar r dr dz {50}

in the presence of excess of the substrate G. Provided the reaction (iii) can
be driven sufficiently hard in the forward direction, [50] will be subject to
the boundary conditions

C=-C,0<r<a,z=0,allt [51)

C=0, r=w, z=o, all t [52]

where C~ is the concentration of species E in the bulk of the solution. With

a distribution of sources over the disk having the form [46], we therefore




20
obtain the concentration
k q1/2
0 2 2 ©
[l 21
C(r,z,k) = = . J (ar)ada| Q(p,k )J (ap)pdp [53]
2 0 2"%0
D 0 2 k2 1/2 0
[G + D—]
and at z = 0
3 . = © J (ar)J 1 (aa) d(aa)
C = — d (kz) eJ 2 (54]
Da ? 0 2 kz 1/2 ((3-1)/2)
J=0 [a + 5 ] (aa) 3

The dJ(kz) are evaluated by solving this set of equations and the working
curve of the kinetically limited flux can again be constructed using [49].

The use of the boundary conditions [42] and [51] is, however, unrealistic
for the same reasons that [14] is unrealistic for the evaluation of the
chronoamperometric transients. In reality, the electron transfer reactions
(ii) and (iii) will take place at finite rates and the e.c. (catalytic)
reactions especially will be subject to the effects of the distribution of
potential in the solution. It {s better therefore to seek to predict the
complete form of the polarization plots taking into account all these effects.

It is, in fact, possible to achieve such a complete description of the systems




since we are considering their behavior in the steady state; we restrict

attention here to the case where the electron transfer processes are
irreversible so that they can be described by the boundary condition ([10].
The distribution of potential in the solution follows as outlined above

and we obtain at z = 0

-zFa T
d(r,kz) - . Zda(kz)eafa[:] [55]

=0

Application of the boundary conditions [10] to the reaction step (ii) in the

c.e. mechanism taking into account [55] gives

D[BC(r,kz)]- 1

d (k) + d (k)cos(8) + «=v + dn(kz)cos"(a)
a cos(#8)

a¢(r,k )F
-k exp[-—————i——] c®

RT
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n

-zaF’ r k
- k exp| 22 d(kz)ef(-a—]- c -
xRT J 33

j=0

n

. ® Jo(ar)J{J*l](aa) d(ca)
- = d (k) e EN [56]
3 2 ]
Da 0 2 kz 1/2 ((3-1)/2)
3=0 [a + 5 (aa) 3 /

where k is the rate constant for reaction (i{ii) for zero ohmic potential at
the surface of the disk. The non-linear equation system [56] can be solved at
(n+l) radial positions for the (n+l) required coefficients dJ in the same way
as has been described for the case of the tertiary current distribution in
simple redox reactions at disk electrodes(LZ).

In a similar way the application of [10] and [55] to the reaction step

(iii) of the e.c. (catalytic) mechanism gives the equation system

1

- [do(kz) +d (k)cos(f) + =o0 4 dn(kz)cosn(ﬂ)J
a cos(8)
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. z © Jo(ar)J 1 (aa) d(aa)
- — d (k) e 2 [57)
Da 12 3 k
J=0 °

2 2 12 ((j-113/2)
[0*"5] (aa)

where k is now the rate constant for reaction (iii) (assumed here to be
irreversible) for zero ohmic overpotential in the solution. The coefficients
dJ derived from [56) and [57) are naturally also functions of k (i.e. of the
standard rate constant, of a and of the overpotential) as well as of the
solution conductivity x. The polarization curves can therefore be completely

described for this model (and indeed other models) using

(58]

Discussion

It can be seen that the application of Neumann'’s integral of two
parameters (the radial and s-dependence of the surface source/sink over the
disk electrode) allows a more comprehensive discussion of the
chronoamperometric transients than has been achieved to date using other

analytical as well as simulation techniques(h7'wls).

In particular, since
Neumann's integral leads to a relation between the assumed form of the flux
and the concentration oat the surface (Equations [17] and [18]) it becomes
possible to derive the transient for boundary conditions such as [10] which
are more realistic than the assumption of zero or constant surface

concentration, [14], which has been used to date.; for example, Equation (2~

leads to the definition of the potentiostatic relaxation behavior of disk




| _
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electrodes.

(4,8,16)

We have pointed out elsewhere that the combined effects of the

finite rates of electrode reactions and of the potential distribution in the
solution must make the distribution of the flux over the surface much more
uniform than that predicted using the boundary condition {14]. Indeed, the

predictions of a model of uniform surface flux and zero average surface

(4,18)

concentration has been shown to be in close accord with experimental

measurements‘’’. While the methodology outlined here allows a systematic

exploration of one of the effects, that of the finite rates of electrode
reactions, Equation [10], the exploration of the effects of chenges in the

potential in the solution unfortunately remains restricted to the discussion

(17)

of the relaxation behavior = "(cf. Equations [34] and [35]); in effect, we

reach the liuits of analytical techniques. However, it does become possible

to develop a complete discussion of linear sweep voltammetry and of cyclic

(17)

voltammetry ', as has been outlined for the first case above, provided the

effects of the tertiary current distribution are neglected.

It has been shown previously that there are no restrictions in the

discussion of the steady state behavior of simple electrode processes(LZ)

The discussion presented here shows that this is equally true for electrode
processes coupled to reactions in solution such as for the c.e. and e.c
(catalytic) mechanisms; a complete description of such systems can be

developed. Comparisons of the predictions with those based on other models

(4,18,19,20)

and methods of analysis as well as extensions to other reaction

schemes will be presented elsewhere'?,
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Glossary of Symbols
a Disk radius, ecm
bx Weighting function series coefficients
c, Fourier coefficients, mols (cm s)}
d Fourier coefficients, mols (cm s) !
e, Fourier constant terms
£ Fourier series integral terms, cm '
c Concentration, mols cm >
c® Bulk concentration, mols em”?
Ckv Average concentration, mols en”?
c* Surface concentration, mols cm
D Diffusion coefficient, cm’s™
F Faraday constant, 96485 C equivalent’
i Exchange current density, A cm >
i Current, A
I Current density, A cm’?
J1 Bessel functions
k Heterogeneous rate constant, cm sq
k Homogeneous rate constant, various
ko Heterogeneous standard rate constant, cm s
k1,k2 Homogeneous rate constants, various types
Q Flux, mols cm-zs.x
R Gas constant, 8.314 J mols k!
r Radial coordinate, cm
s Laplace transform variable
T Temperature, K
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Coordinate normal to plane of disk, cm

Charge of an ion

Transfer coefficient (when in exponent)
Continuous dummy integration variable.

Solution potential, V

a sin(d), cm

Solution Conductivity, ohms ‘ca’
Overpotential, V

Laplace transform dummy integration variable
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