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SUMMARY

During the past 30 years there has been a resurgence of interest in the
classical orbital boundary-value problem of Lambert, largely because of its
relevance to space rendezvous and interception. The most notable contribution to
the subject was by Lancaster, Blanchard and Devaney, in 1966, but more recent
researchers have failed to build on that work; the present Report is aimed at
remedying this neglect by providing details of a universal solution of Lambert's
problem based on the approach of Lancaster et al. In particular, the Report
presents starting formulae for Halley's cubic iteration process, used for evalua-
tion of the unknown parameter, x , at the heart of the approach; this process
always gives highly accurate values of x after three iterations.

A Fortran-77 computing procedure for a general solution of Lambert's pro-
blem has been developed..adl,.its three main subroutines are listed. Details are
given of the testing of'this procedure.

Much of the Report is devoted to a classification of the set of all Lambert

problems, and to a discussion of various geometric and physical aspects.
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1 INTRODUCTION

The 'orbital boundary-value problem', constrained by two points and an

I elapsed time, is usually associated with the name of Lambert1, though Euler had

studied the problem some 20 years before Lambert (but only for parabolic orbits);

other celebrated mathematicians whose names are associated with the problem and

its solution include Gauss and Lagrange. Thus it is a problem of classical

".. celestial mechanics, and one that (like the solution of Kepler's equation) con-

tinues to attract the attention of mathematicians searching for solutiion pro-

cedures of ever-greater generality, accuracy and efficiency. Good text-book

introdu.tion& - Lu be teund ill l.Lj 2 to 4, whilst Refs 5 to 26 nre studies,

chronologically listed, frtom the last 30 years; the outstanding paper on this

list, though from as far back as 1966, is the one by Lancaster, Blanchard and
8Devaney . Classically, Lambert's problem arose as a core component in the

determination of an orbit from three observations of direction alone, the central

observation being used (on a trial-and-error basis) as a source of the missing

distance data for the other two observations. In the Space Age, with direction

measurement a commonplace, the solving of Lambert's problem is directly appli-

cable to the important subject of orbital rendezvous.

Lambert's problem may be stated as follows: an (unperturbed) orbit, about

a given inverse-square-law centre of force, C say, is to be found connecting

two given points, P1 and P 2 t with a flight time At(G t2 - t ) that has

been specified*. The problem must always have at least one solution and the

actual number, which we denote by N , depends on the geometry of the triangle

CPIP 2 and the value of at - it is assumed, for convenience and with no loss

of generality, that At > 0

To get an immediate feel for the problem, let us suppose first that the

* triangle CPIP 2  is not degenerate, so that 6 , the angle subtended by PIP 2

at C , lies between 0 and i . Then it would appear there must be at least two

Ssolutions, since an orbital path (in the plane CPIP 2 ) can be found that subtends

an angle 2rr - S (ig going the 'long way aroand') as well as one that subtends

e . We can avoid this duality, however, by supposing the Uirection of motion to

be specified in advance, so that the two angles can be deemed to define different

problems. There is a further complication, since if At is large enough, other

paths (necessarily ellipticct) will be possible, each of which includes a number

of complete revolutions. It turns out (and will be apparent when Fig 2 is

SN * A list of symbols is provided at the end of the Report.
0
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introduced) that paths incorporating a specific number of complete revolutions,

m say, normally occur in pairs; thus as At increases, N (for a given triangle

and specified direction of motion) is an increasing odd integer, apart from being

even (instantaneously) at each (critical) value of At at which two new solutions

emerge, coincident for that precise value of At . We simplify the approach to

multiple revolutions by extending the distinction between individual Lambert

problems so that '0' is regarded as an angle of unrestricted positive magnitude

defined by the geometry of the path and not just by that of the triangle; we

write ar for the reduced angle (such that 0 < Ur < 2m ) when it is necessary

to discriminate. (We do not have to consider negative 0 , because to do so

would imply negative At which we have already excluded for convenience.) We

have effectively redefined N such that N = 1 if 0 < 21 ; if G > 2P , on the

other hand, N 0 0, 1 or 2 , depending in the relation of At to the appropriate

critical value.

Turning to degenerate triangles, we consider these on the basis of the

unlimited values of 0 just introduced, so that B is now k'a for some

integer k (ý0) . Then if orbital paths exist that are not rectilinear, their

number must be infinite, since any plane through the degenerate triangle contains

valid paths. If we choose an orbital plane (as well as the direction of motion)

arbitrarily, however, we have N = 0, 1 or 2 , if k is odd, exactly as in the

last paragraph; this is actually the simplest of all cases to deal with in prac-

tice, though the literature contains a number of solution procedures that fail

here quite unnecessarily. But there are real difficulties when k is even

(- 2m), associated with a type of discontinuity that is described in section 3.

The effect of this discontinuity is that we would like to be able to distinguish

the angle (kw) , which symbolizes the representation of 0 as 2(m - 1)r

plus a 0r of 2v , from (kr)÷ , which symbolizes its representation as 2mn

plus a 0 of zero; if this distinction (or an equivalent one) is not made, thenr
(for an arbitrarily chosen orbital plane) N 1 1 or 3 if m 1 , and

N = 0, 1, 2 or 4 if m > 1 . The orbital path has to be rectilinear (when k

is even) unless P and P2 coincide.

We can now summarize the data involved in the solution procedure to be

developed in the present Report. The input qucantities are the constant o

(strength of the given force centre at C ), r1 and r 2  (equal to CP1  and

CPl2 ) , 0 (the unrestricted angle PICP2 ) and At . (We assume m > 0 , but

there is also a Lambert problem when m < 0 ; if 0 < w , there is then a unique

hyperbolic solution, wholly internal to the triangle. The transitional case,
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with pi 0 , is of course trivial, but even this can be treated as a Lambert

problem.) The output quantities, 4N + I in number, consist of N itself and

N sets of four quantities, vie VR (radial velocity) and VT (transverse

velocity) at both P1  and P2 . It is assumed here that values of 6 equal

to (2mir) and (2mw)÷ can be distinguished, so that N does not exceed 2.

In reality, of course, the real-number system does not permit this distinction,

though this is a somewhat academic point in a computing procedure that can only

operate for the finite set of computable numbers; more importantly, with

'multiple revolutions' of a rectilinear orbit the problem has become completely

academic anyway, since it involves at least one infinite-velocity 'bounce' off

the force centre. Nevertheless, we shall find it advantageous tu compute with

a peir of quantities, q (introduced in section 3) and ma , in place of just

e ; this avoids the academic difficulties, and is also more efficient.

As with Kepler's equation, Lambert's problem has no satisfactory direct

solution - we have to proceed by an iterative technique (trial and error) and

this inevitably dominates the solution procedure being developed. The following

issues then arise, and will be discussed in successive sections of tho Report:

first (in section 2) the choice of a suitable parameter of the motion to use as

the iteration variable x (it is sometimes claimed, for example in Ref 9, that

the problem is inherenzly a two-parameter problem, with simultaneous iteration

needed on both parameters, but this claim is unwarranted); second (in section 3)

the 'direct' algorithm that generates a quantity equivalent to At , together

with such of its derivatives as are required, from x , r1 , r 2 and 0 ; third

(in section 4) the iteration process, by means of which successive x. (estimates

of x ) are computed; fourth (in section 5) the starting formula (or formulae)

for provision of x0 i fifth (in section 6) the basis for the cessation of

iteration (when 'convergence is complete'), and the accuracy obtained as a result;

., sixth (in section 7) the formulae for computing the 4N velocity components; and

lastly (in section 8) the rationale behind, and results of, the testing of the

solution procedure.

- 2 CHOICE OF PARAMETER FOR THE ITERATION VARIABLE

2.1 Lambert's theorem and the relations of L-congruence and L-similarity

Foa the iteration variable, x , it is desirable to use a quantity that is

a 'Lambert invariant' of the problem, if possible. To explain this (in section

*i 2.2), we require a preliminary digression on Lambert's theorem; as a result of

this theorem, and the equivalence classification of triangles that it makes4 • possible, individual Lambert problems can be divided into equivalence classes.
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Lambert's theorem is usually stated, with an extension of the notation

already introduced, as fa ltows: if c is the chord (aide PIP 2 ) of the triangle

CPI'P 2 , then At (for a connecting orbital path) can be expressed as a

(multivalued) function of just three quantities (tint counting u ), Vi:.

ri + r 2 c and a , this last being the semi-major axis of the path (taken as

negative for hyperbolic orbits 327); many text-books2-4 prove the theorem for

elliptic orbits, and a general 'minimalist' proof has recently been given by
28Sarnecki . Defining s as the semi-perimeter of the triangle, so that

r$ + r 2 = 2s - c , and noting that a is equivalent to the total energy of the

motion per unit mass, we can also express At as a function of s , c and

energy.

It follows from the theorem that triangles with the same values of s and

c are equivalent, from the viewpoint of the relation between At and energy,

and the set of all triangles GPIP 2  can thus be divided into equivalence classes,

as illustrated in Fig 1. Each class contains a unique (apart from orientItion)

isosceles triangle with r, - r 2 , and the general class (with 0 < c < v,

illustrated in Fig Ia) contains a pair of degenerate triangles such that one of

the points PI and P2 lies between the other point and C ; a connecting orbit

for either of these degenerate triangles is necessarily rectilinear. Classes

With c = 0 (illustrated in Fig 1b) contain only a single member each, which is

simultaneously isosceles and doubly degenerate, The other extreme (illustrated

in Fig 0c), occurring 'hen c a s , is such that the classes have their widest

membership, in regard to the r2 :rI ratios possible, though all members are now

degenerate; each class contains a pair of doubly degenerate triangles such that

either PI or P2 coincides with C , whilst the remaining (singly degenerate)

triangles (infinite in number, as in the general case) all have P and P2 on

opposite sides of C . Connecting orbits for the singly degenerate triangles of

this extreme case cannot be rectilinear, on the usual assumption that C is a

point of reflexion (at infinite velocity) for rectilinear orbits; however, a

connecting orbit for either of the doubly degenerate triangles is bound to be

rectilinear (as with singly degenerate triangles in the general case). For the

extreme classes with c = s , therefore, it is convenient to regard the term

'degenerate' as referring only to the doubly degenerate triangles. If, further,

we cease to distinguish between the pair of degenerate triangles with r I < r2

and r1 > r 2 , then we can say, in all cases, that an equivalence class contains

exactly one degenerate triangle,
mO
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Triangles in one of the foregoing equivalence classes may be described as

'Lambert congruent', or L-congruent for brevity, and introduction of the concept

of congruence suggests the allied one of similarity, just as in elementary

geometry. Thus two triangles may be described as L-similar whenever they have

the same value of c/s , this being a dimensionless quantity. Though we continue,

in section 2.2, to introduce Lambert invariance on the basis of b-congruence, in

section 3 we shall find that thinking in terms of L-similarity, with its wider

equivalence classes, has the effect of reducing (by one) the number of arguments

in the algorithm for the flight time.

2.2 Lambert-invariant parameters, Lambert-equivalont problems, and the
parameter x

Since At is a function only of s , c and energy, it follows that the

equivalence of L-congruent triangles provides the basis for a classification of

individual Lambert problems into their own equivalence classes, each such class

being defined by the underlying class of triangles and the given value of At .

Then a Lambert-invariant parameter may be defined as one that has the same value

for all members of an equivalence class of problems. It is unfortunate that,

* though s and c are Lambert-invariant, e is not, which at first sight

negates the virtues of the unrestricted angle that were noted in section 1. We

Scan get the best of both worlds, however, by taking 0 (instead of 0) as a

parameter of the general triangle, where 0 is defined as being the 0 for the

equivalent isosceles triangle: then 0 can be regarded (like 6) as an angle

of unrestricted magnitude. (The quantity JO , denoted by f , was recognized

as an important parameter in the paper19 by Battin, Fill and Shepperd.)

The energy-equivalent orbital parameter a is certainly Lambert-invariant,

but this is not true of e (eccentricity) or p (semi-latus rectum). The use

of p as iteration variable is intuitively appealing, because of its direct

relation to true anomaly and hence to 0 , and it is recommended in a paper as

recent as Ref 24. But p fails, in a somewhat paradoxical fashion, when 0 w

The paradox is that p is given, as 2r r 2/(r1 + r,) , without the need to

iterate at all in these circumstances: because At is not involved in this

formula, however, no further progress can then be made without iterating on

some other variable.

The advantage in using a Lambert-invariant parameter as the iteration

; ariable is that its determination is a numerically identical procedure for all

the individual problems of an equivalence class. The resulting 'reduction in

cases' is a very practical consideration for the solution procedure to be
.10
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developed, not least when it comes to the number of tests that have to be run.

Thus a is an immediate candidate for iteration variable, but its direct use

would be unsatisfactory because (as shown in Ref 2, for example) orbital paths

with a particular value of a occur in pairs or not at all. There is, in fact,

an upper limit (corresponding to minimum possible energy) to the possible values

of 1/a ; it is given by 2/s , for which value the pair :f paths coincide. Lt

follows from this that if we write

x2

2a

then x is a satisfactory substitute for a , such that the choice of sign in

the implied square root distinguishes between the two paths of each pair. The

parameter x is universal (defined independently of the type of orbital path),

unlike, for example, the parameter used by Sun, Vinh and Chern in their recent
26

paper ; it also has the advantage of being non-dimensional, which facilitates

the switch from L-congruence to L-similarity.

The parameter x , as just introduced, is the iteration variable used in

the milestone paper by Lancaster, Blanchard and Devancy8 (of which Ref 10 is a

somewhat expanded version) underlying much of the work reported here. It has

been shown by Sarnecki28 that x has a dynamical interpretation, being a non-

dimensionalized value of the velocity in the (rectilinear) solution of the

Lambert problem for the. degenerate triangle that is L-congruent to the given one

and is such that r1 I r 2 ; x is positive or negative according to whether the

direction of V (now pure radial) is inward or outward, and (in principle - see

also section 3) this resolves the ambiguity in the sign of x outstanding from

the last paragraph. (Battin12 finds an interpretation for x in terms of the

actual problem, whilst a geometrical interpretation of the parameters of the

classical Lambert-Euler equation, also involving the rectilinearly equivalent

problem, is given in Ref 20.) Sarnecki's interpretation, which requires P1  to

be the more distant point, involves an intrinsic (and perhaps surprising) lack

of symmetry; thus s = max (r,, r 2 ) when P1  and P2 are connected by a

rectilinear orbit. It is clear from equation (1), now that there is no longer

an ambiguity in the sign of x , that lx1 < 1 for elliptic orbits, x = 1 for

parabolas and x > 1 for hyperbolas. Values of x < -I do not arise; they

would be associated with negative values of At . There is an apparent distinc-

tion (asymmetry) between the elliptic and hyperbolic paths corresponding to a

given pair oi points P1  and P2 if a positive value of 1/a , less than 2/s

2I
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is givnn, equation (1) gives two values of x , numerically equal but opposite

in sign, and to each value there corresponds an elliptic orbital path; if 1/a

is negative, on the other hand, only the positive root of (1) is legitimate,

implying only one hyperbolic path, But suppose that, for a given value of 0

less than w , we consider the path for 2v - 0 as well as the path for 0 ;

then for negative 1/a there are two hyperbolic paths that are quite distinct

(though having the same value of x), whereas for positive 1/a the two
'additional' elliptic paths, one associated with pobitive x and one with

negative x , are merely the 'orbital complements' of the two original paths

(with reversed signs of x). Thus the apparent asymmetry between the two types

of orbit (and parabolic orhits behave in the same way as hyperbolic orbits) has

no real significance. The nature of the various orbital paths is well illus-

trated by Figs 3.7 and 3.8 in chapter 3 of Ref 2.

3 THE ALCORITHM FOR COMPUTING At

An algorithm for At , in terms of x , requires a pair of Lambert-

invariant parameters to specify the relevant triangle. By thinking in terms of

L-similarity, rather than L-congruence, however, we can reduce the number of

triangle parameters from two to one, so long as the output is made non-

dimensional; we follow Lancaster et aZ8,10 in replacing t by T , where

T 8jiAt .(2)

The choice of s , as 'length scale' in equation (2), pays dividendb (and was

also made in some of the papers by Battin and his colleagues, eu in Ref 18). In

the classical procedure of Gauss, on the other hand, the length scale is

effectively / s(s- 0) , whilst in the modification of Gauss's method due to

Battin and Vaughan23 it is somewhat more complicated - Ref 23 is perhaps the most

interesting of the papers since the pair by Lancaster et al, and Appendix A is

devoted to a brief discussion of this Report and the underlying method of Gaucs.

Finally, in Ref 26 the scale length is effectively 2s - c , ie r 1 + r 2 . The

* - advantage of s over any of these alternatives is that T (as opposed to the

quantities corresponding to it) is monotonic with respect to 0 (for fixed x),

which makes for the essential simplicity of Fig 2, introduced in the next para-

graph; further, we have already seen that s is the quantity that is directly

associated with the minimum-energy path. The importance of using a as the

length scale must not be exaggerated, however, as the use of one of the alterna--

tives does not affect the progress of the iteration process, except of course if
0O
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Lhe sc•ale becomes zero, in particular with Gauss's scale when s c (The

presence of p in (2) debars the solution of Lambert's problem when p is zero;

x is then infinite, since a - 0 for the hyperbola into which the solution

degenerates, and we can include this case in a general algorithm if we sacrifice

full Lambert-invariance and solve for xr rather than x .)

The quantity T is a function of the two parameters x and 0 (defined

in section 2.2), but Lancaster et al use q , rather than 0 , where

q = cos 1 )r/(1 + sin 10) tan . (T - 0r (3)

'!tre 0 is 0 reducrd to the range (0, 2r), so thatr

sin 0 r c (4)

Clearly, (3) and (4) lead to the simple result that

2q (1 - sin 1 0 )I(1 ÷ sin i e ) = I - c/s , (5)
pr r

but (5) does not define the sign of q , whereas (3) does. We also have, from

(3) and (4),

q = (1 - c/2s) cos J O , (6a)
r

which is just a particular case of the result that, for the general triangle,

follows from the standard 'cosine formula' and may bu expressed as

q co ler ; (6b)s r

we refer to (6a) and (6b) in Appendix A.

When q is the second parameter of the T-function, m is required in

addition (as a third parameter) to specify the number of completed circuits.

This brings us to Fig 2, which plots (as in Refs 8 and 10) T against x for

particular values of q and m (corresponding to selected values of 0). The

relation (almost linear) between q and 0 is indicated by Fig 3, which alsor

plots T,0 and 0 T,- against 0 r Here 0TO is a quantity that may be

regarded as a 'time-linearized' version of 0r , ie it is defined over the range

(0 , 2n) in such a way as to make T a linear function of 0T,O when x = 0 ;
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similarly, aT.- becomes time-linearized as x tends to , These two curves

are much less linear, the non-linearity for 
0
T,0 being pronounced. (As

x - , T behaves like 2x-(1 - qklJ) , so 0 T, m m (t - qiqi) .)

The most striking feature of Fig 2 consists in the gaps (unrealizable

regions) that occur in the part of the figure associated with elliptic orbits.

Thus, as 0 increases through a multiple of 2n , for a fixed value of x such

that 0 < JxI < I , q jumps from -1 back to +1 and there is a jump in the value

of T . This brings us to the difficulty, referred to in section I in relation

to the use of 0 , in the functional representation of T as T(x,0) rather

than T(x,q,m) ; when C = 2mi and x A 0 , in fact, T'x,O) is not unique,

the values of T(x, -1, m - 1) and T(x,l,m) not being the same. Though this

is not a major defect in the T(x,0) representation, as we saw, it combines Uith

the greater efficiency of the T(x,q,m) representation to make us regard tho

latter as 'standard'.

We can account for the unrealizablu regions of Fig 2 by studying (for a

fixed x with IxJ < 1 ) the variation of T with 0 for the isosceles

representatives of the equivalence classes of triangles, If x - 0 , the con-

netting orbital paths are all minimum-energy trajectories, by equation (I), and

there is no jump at e = 2mr (we now write 8 , rather than 0 , since they are

identical for isosceles triangles). When x 0 0 , for which a number of cases

(with a fixed value of ixJ , viz 0.5) are illustrated in Fig 4, consider first

the situation for 6 0 0 , regarded as the limit case as C reduces to zero.

Then our triangle is degenerate as well as isosceles, but the orbital path does

not itself have to be degenerate (rectilinear). In fact, any orbit through PI

trivially passes through P12 after zero time (since the points coincide), and

this is reflected in the zero value of T when x > 0 (left-hand illustration

of Fig 4a); uniqueness here derives from the isosceles-triangle assumption, the

limit case of this being such that the velocity is pure transverse and hence the

orbit non-degenerate - for x = 1//2 , indeed, the orbit is circular. (The

general formula for eccentricity, under these conditions, is I1 - 2x
2 1 .) A

entirely different path is available, however, that can be seen to be intrinsi-

cally unique. It is given by a degenerate (rectilinear) orbit with V directed

outward from P1 . such that P2 (still supposed coincident with P I) is

reached after non-zero T , even though B = 0 ; this applies when x < 0

(right-hand illustration of Fig 4b), the velocity now being pure radial.

Now consider what happens as e increases from zero to 2m , with a fixed

N x that is either positive or negative. The two orbital paths are always such
N
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that T(x < 0) exceeds T(x > 0) and when 0 IT (Fig 4c), the path for

T(x c 0) is the reflexiun in the line P1 CP2 of the orbital complement of the

path for T(x > 0) , such that the point half way along the path is poricentre

if x > 0 but apocentre if x < 0 . For 0 > r , it becomes clear, from

symmetry considerations, that the pairs of orbital paths are always shaped as

the orbital complements of the paths for 0 < 1T , but with the sign of x

reversed in the correspondence (compare the pair of illustrations of Fig 4d with

the pair of Fig 4b). As 0 comes up to 2n (Fig 4e), the position is as

follows: for x < 0 , the orbital path approaches the complete circuit of the

(non-degenerate) orbit from which originated the infinitesimal arc that applied

to 0 = 0 and x > 0 ; for x > 0 , on the other hand, the path approaches the

incomplete rectilinear orbit that cumplemenis the path applying to 0 - 0 nnd

x < 0 . In the latter case, the (initial) radial velocity now has to be inwaros

and (in the limit) the starting point is reached after reflexinn (infinite-V
'bounce') from the force centre.

In studying T(x,O) beyond 0 m 2w , still assuming isosceles triangles,

we have a choice in the way we ascribe the sign of x . To follow Lancaster ot al
,28,

(and also Sartecki. ), we effectively start again with a complete revolution

behind us, so that the position represented by Fig 4e is followed by the position

represented by Fig 4a with an orbit grafted on. This implies a double disconti-

nuity, so that for both x > 0 and x < 0 there is a jump in the value of T

at 0 = 2n , bý AT say, equal to the value that T has when x < 0 and 0 = 0

(and hence equal to twice the journey time from P1  to apocentre). With the

double discontinuity associated with this specification of the sign of x , we

have accounted for the unrealizable regions of Fig 2, as promised; at 0 = 2v

itself, there are three (not four) possible values of T (of the original dis-

course on Lambert solutions in section 1) corresponding to a given Ixi , since

the limiting post-jump value for x > 0 is equal to the limiting pre-jump value

for x < 0 (same non-degenerate orbital path), both being equal to the orbital

period. But this very fact leads to the alternative way of defining x when 0

lies between 2mn and 2(m + O)n for any odd value of m ; this simply reverses

the sign assumed by Lancaster et al. Thus, instead of just 'starting again' at

0 = 21 , we 'switch over' (between left-hand and right-hand illustrations) in

returning from Fig 4e to Fig 4a. So there is now no jump in T when x < 0

for x > 0 , on the other hand, there is a jump of 2AT . When we get to

0 = 4 , the position is the exact opposite: there is a jump for x < 0 . with

x as redefined, but no jump for x > 0 ; the sign cf x now reverts to being K
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the same as in the definition by Lancaster ut at. This alternation continues,

ad infinitum, for successive values of m .

Thus, if the alternative definition of (the sign of) x is adopted, it is

possible to plot a figure with only half the number of unrealizable regions, and

this has been done in Fig 5; when the sign of x is reversed, the sign of q

has to be reversed as well, which makes q always continuous with respect of 0

(though dq/dO will have discontinuities - see again Fig 3). It is emphasized

that both methods of definition of x are legitimate; tne original definition,

due to Lancaster et at, leads to the simpler algorithm, however, and will be

adopted for the rest of this Report. In this context, it is worth remarking

that Sarnecki28 effectively presents an understanding of T(xO) , obtained here

via the isosceles-triangle representatives of the equivalence classes, by con-

sidering the legenerate-triangle representatives, Then increasing values of ,

for a fixed value of x , can be interpreted in terms of the 'time-line' of a

single orbital path, so long as r 2  (now evolving) remains less than r1  (fixed

initial value), so that x (and hence s) remains constant. From Sarnecki's

viewpoint, the unrealized values of T correspond to a breakdown of the con-

straint (that rI • r2), but, regardless of this breakdown, the original defi-

nition of x clearly fits this interpretation more naturally than the alternative

one. In Ref 23 (the paper that is discussed in Appendix A), on the other hand,

Battin and Vaughan make explicit use of the isosceles-triangle equivalent of a

given problem, in the solution that they offer as an improvement on Gauss's

method. (It is noted, for completeness, that Figs 2 and 5 can be extended to

cover negative values of T , by reflecting the existing contours in the origin;

for T < 0 it would be values of x >, 1 , not x < -1 , that would be impossible,

however, and this complication is one reason for restricting consideration to

positive At .)

Further light is thrown on the evolution of the orbital paths for isosceles

triangles, if the variation of the eccentricity is considered, and Fig 6 gives

"contours of a in the (x,0)-plane, with x as 'alternatively defined'. (For

o = 0 and x > 0 , we have e = 11 - 2x21 , as already noted.)

The basic formulae for computing T from x, q and m were given in

the papers by Lancaster et at and are repeated here (without proof) in Appendix B,

which gives some details of the Fortran-77 subroutine, TLAMB, that has been

written as the core of a universal procedure for solving Lambert's problem;

further details of TLAMB may be elicited from the listing in Appendix C. Fcr

the present, a few remarks will suffice. The first is that, in addition to T



14

the subroutine can generate, if needed, (partial) derivatives (up to the third)

with respect to x - we denote these derivatives by T' . T" and T"'

Secondly, the basic formulae of Lancaster ct at do not give full accuracy in all

circumstances; it should be clear from Appendices B and C, however, that rounding

error is minimized in TLAIB. Thirdly, one of the quantities used by the sub-

routine is conveniently introduced here, as it is needed in section 7. The

quantity is z , defined by
2 2

z +/ - q + qx) (7)

It has a dynamical interpretation, similar to that given for x in section 2,

following Ref 28; thus z/q is a non-dimensionalized value of the velocity at

the oioaar point in the degenerate Lambert problem (z is never negative because

the direction of this velocity is looked after by the sign of q ). The com-

putation of z by equation (7) is itself an example of the potential loss of

accuracy, since in many situations it is desirable that I - q2 be regarded as

a quantity available independently of q ; this is true, in particular, when

i = 0 and q is close to l, ic when 0 is small. Because of this danger,

TLAMB has 1 .- q as an extra argument, the assumption being that it may be

computed directly from 0 via the formula

2
q c/s m 2 sin i E/0(1 + sin 10) , (8)

which is immediate from (5).

4 ITERATION PROCESS

Though the starting value, x0 , has to be available before numerical

iteration can commence, the iteration process is considered now, before we look

at starting formulae, because the iteration process drives the starting formulae

rather than vice versa. Thus, if just the basic Newton-Raphson method of

iteration is used, the devising of starting formulae to cover all cases becomes

an almost impossible task, When the Halley process, found to work extremely

well in the solution of Kepler's equation (for hyperbolic 2 9 as well as elliptic3 0

orbits), is used instead, however, the task is greatly eased. This is well

illustrated by the solution for x when its true value is 0.5 and S is small,

say 10-5 it. Then (with the starting formula given by equation (10) in the next

section) x0 is roughly double the true x , after which the Newton-Raphson

process leads to an x ,'erv close to zero and the iterative process effectively



15

stagnates; the Halley process, on the other hand, gives an x1  very close to

the true value, after which convergence is rapid. (The reason for the accurate

x1  computation, in circumstances such as these, is that for very small 0 and

x >» FO , T behaves like I/x , which is a bilinear function, and the Halley
31method gives a,0 inuediately-correct solution for bilinear functions .) In

defence of the Newton-Raphson process, on the other hand, it is remarked that

it works very well when the value of 0 approaches 2v and 1xl is small, so

long as the appropriate starting formula from section 5.2 is used; this is

notwithstanding the explicit warning (against using the process in these circum-

stances) issued at the end of Ref 10, an unwarranted warning to which there will

be further reference in the present paper.

The Halley method is essentially the Newton-Raphson method extended to give

third-order convergence, so it requires T" (the second derivative of T with

respect to x ) as well as T' (the first). Since Halley's method was also

adopted for the iteration involved in a subsidiary problem that arises when

m - 0 (see section 5.3), to satisfy an equation expressed in terms of T' , we

sometimes also need V"' ; this is why the subroutine TLAMB generates derivatives

up to the third,

In the present study, the iteration process is incorporated in the

Forcran-77 subroutine, XLAMB, that generates solutions for x and is listed in

Appendix D. The input of XLAMB consists of m , q , 1 - q2 (supplied separ-

ately for the same reason as in TLAI3) and T , and its output is as follows:

the integer N (defined in section 1) that specifies the actual number of solu-

tions (this should get set to 0, 1 or 2, though a value of -1 is also theoreti-

cally possible, constituting the flag to be defined in section 6); x , a solution

when at least one exists; and x+ , the second solution when there are two (x+

is actually the first of the two soltiions to be described in section 5.3, so it

is always positive).

5 STARTING FORMULAE

5.1 Introductory remarks

The requirement in regard to starting formulae fcr the iteration process

is for an approximation to the inverse of the function that (for given m and

q ) generates T from x . When m - 0 , there is formally no difficulty, since

there is a unique x to which the 'starter' is to approximate (in view of the

assumption T # 0 ). When m > 0 , on the other hand, this uniqueness does not
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normally apply: the normal cases are of 'no solution' and 'two solutions', but

the case of just one solution, arising as two solutions merge, is also covered.

All the starters have been incorporated in the subroutine XLAMB.

5.2 Single-revolution starters

For m = 0 , the curves in rig 2 are strictly monotonic, except when q m I

and x > 0 (excluded case of T C 0 ). As an obvious first move, we can deter-

mine the sign of x by evaluating (by TLANB) the value of T , T0  say*,

corresponding to x = 0 . Then the sign of x is the sign of To - T , and it

is used to distinguish two cases,

Suppose first that x > 0 . Then we can approximate to the contour

T(x,q,0) , for the given q (regarded as fixed), by the bilinear curve

T IT+ 4x) (9)T = T 2/(TO+4 9
0 0

The rationale for this, as a particularization of the general bilinear expression

(a + bx)/(c + dx) , is that it satisfies the following three constraints: first

that T tends to 0 as x tends to infinity; secondly, that T = T for x C 00

and finolly, that V' -4 for x ý 0 . (T' has a fixed value, though this

is not obvious from Fig 2; when iqi = 1 , it is not defined, but the one-sided

derivatives both exist, being -8 on one side and 0 on the other so that T' still

has a conveotional value of -4.) The merit of the bilinear approximation is that

it is inseediately invertible, the inverse function being also bilinear; thus from

(9) we get, as our starter for x > 0

x 0 T -( T)/4T (10)

If x < 0 , we proceed in the same way, this time approximating tlte

T(x,q,0) contour by the bilinear curve that is most naturally expressed as

4x
T T -x (11)0 x+ 1

The first of the three constraints that lead to (11) is that T tends to

infinity as x tends to -1; the other two constraints are the same as for the

case x > 0 . On inverting, to get x as a bilinear function of T , we have

* The zero suffix in To is notated differently from the zero suffix in x 0 , to
reduce possible confusion between the two different meanings.
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T -T

01 T -T a 4 (12)
0

This formula, (12), is as elementary as the complementary one, (10), but it was

found to work much less well and it was necessary to patch it; this is why the

left-hand side of (12) has been written x 0 1 rather than x 0 . The patching was

of a complicated nature, with some arbitrary features, but it will be summarized

(in the next three paragraphs) for completeness.

Equation (12) actually requires two patches. The necessity for the first

became apparent for values of 0 greater than about 1.999w, and it was ascribed

to the proximity of the (left-hand half of the) curve for 0 - 2i (q = -1), for

which the value of T' should actually be zero (as opposed to -4, for

0 < 0 < 21). Now T' is autumatically zero for a curve that is bilinear in

(rather than x ). Hence we are led to consider the alternative

approximation

T - To(1 + jx2)/(I - x
2
) (13)

in which only the term ix2 requires explanation - it gives V its correct0

value (6r) for 0 - 2i , where T - 2i . The behaviour of T" follows from
0

equation (B-16) of Appendix B. Thus, if hqi < I , T" is defined and finite

for all x , but it is unbounded as cqi approaches unity and x approaches

zero. If 1q1 is actually constrained to be unity, however, T" is bounded in

the neighbourhood of x ý 0 ; it is strictly undefined at T 0 0 , but may be

regarded as 'effectively defined' since it has the same limiting value, equal

to 3T , for an approach to the limit from either side. The inversion of (13)0

may be written

X - /f(T - T )i(T + jT o) (14)x0200

At this stage we have two possible formulae for our desired starter, the

first (and simpler) being normally to be preferred; thus the possibility of a

weighted combination arises. We start by computing what has been found to be a

suitable empirical criterion, given by

W x +1.7/(2 - E/i) , (15)

in which, since x0 1 < 0 , the two terms are of opposite sign. If W > 0 , we

*01
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use x0 1  without adulteration, but if W < 0 we use a weighted combination of

x with x0 2 , so that the starter is potentially of the form

x ifW>003 01 (16)

x03 X 0 1 + w(x0 2 - X 0 1) if W <

1/16
where (still empirically) the weight w is (-W) , the 16th root being

computed as f//f; the transition from the pure xn0 1 to the weighted x0 3  is

clearly continuous.

The second limitation of the simple starter, (12), was associated with

(true) values of x close to -1, the potential starter, xi0 3 , giving a value

much too close to -1. This flaw has been dealt with by applying an empirical

factor A to x0 3 , so that the final starter (for x < 0 ) is given by

x0  x03 . (17)

The formula used for A is

A + cx 0 3 (1 +x0) x c + x2  (18)
S03 ++01 203 01

with values of c1  and c 2 equal 'empirically) to 0.5 and 0.03 respectively;

to minimize rounding error, I + xi.0  in (18) is computed as 4/(4 + I - T 0

in conformity with (12).

A point concerning the patching of (12) in the vicinity of (x,q) - (0,-i)

is worth discussing. We see from (15) that W is zero at this point, so the

patching associated with (16) can have little effect in its vicinity; moreover,

the effect of the patching associated with (17) is very slight for x i 0 , so

(12) is essentially unpatched. But the x 0 2 /x 0 3  patching was only introduced

because xi0 1 has the 'wrong' left-hand derivative at (0,-i), so there is the

appearance of a contradiction here. The paradox is resolved if we bear two

points in mind. First, the basing of (12) on the value of T means that there

can never be a problem when x - 0 . Secondly, so long as q is not exact•y

-1, the derivative actually has the 'right' value (-4) at (0,q), no matter how

close 0 is to 2w . Thus, for a value of 8 such as 1.99999i, the unpatched

starter fails in the vicinity of an x-value around -0.05; much closer to zero,

however, all is well again. In this context, the inflexion-point curve of

Lancaster and Blanchard (Fig 4 of Ref 10) is relevant, though their associated

,K
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statement, about the need to abandon the Newton-Raphson process in the region in

question, is unjustified (as already noted in section 4),

5.3 Multirevolution starters

For m > 0 , we again make use of the value of T (corresponding to
0

x - 0 , for the given q ), but this is not now the primary source of information

in devising starting formulae. The primary source is TM , the minimum value

of T for the given q , together with the associated value of x , x M As

seen from Fig 2 (and from consideration of the behaviour of T' and T" ), TM

and xM are uniquely defined; further, xM - 0 when q - I , and otherwise

XM > 0 . Once TM is known, we immediately know whether the Lambert problem

will have two solutions (T > TM) one (T = TM), or none at all (T < TM), but

the evaluation of TM (and x ) is a non-trivial matter, itself requiring an

iterative process - a solution is required to the equation T' 0 . For this

subsidiary problem, the same iteration process has been adopted as for the

Lambert problem (with the resulting need for T"' , as remarked in section 4),

so there are two topics to be covered here: first, the starter for this subsidiary

problem; and secondly, the formulae for the two Lambert-problem starters that will

be needed as soon as values for TM and xM are available, assuming that
T M < T.

In regard to the starter for xM , we need the value of 0r , which can be

recovered from q , since, from (3) and (8),

2
-or = arg(2q , 1 - q , (19)

where arg(x,y) is tan- (y/x) computed unambiguously and implemented in

Fortran by the ATAN2 function. It can be shown that for 0 - z (ii for q - 0)r
a good approximation to xM is given by 4/137T(2m + i)f , which we denote by

X *M.1 . From this it has been found, empirically, that for 0r < iT a good

starting formula is (omitting the formal zero-suffix from xM

xMx x M,(7f/()r , (20)

whilst for 0 > i it is (symmetrically)
r

x - XM,5f2 -(2 -r/ (21)
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Having determined xM and the corresponding TM , we now suppose that

T < T , so that the Lambert problem has a pair of solutions with a starting

formula required for both. For one solution we have xM < x , so x is certainly
positive, and this leads to the simpler of the two starters, since T is not

0
used. In principle we get x0  (the required starter) by inverting the particular

0 2
bilinear approximation to T , as a function of (x - xM) , that CM) gives
T - TM when x = xM , (ii) makes T tend to infinity as x tends to unity,

and (iii) has the correct second derivative (T") at x = xM . This bilinear is
MH

T = TM + JT"(x - x M2 2i - (× - X )2/(0 - x)
2

1 , (22)

,id its inversion leads to the starter

x .xX + [(T - TM)/bJTi" ( T T m)/C1 _ xM)2] (23)

We should really not write x0  in equation (23), as it requires a patch that is

based on the one defined by 4l7) and (18) but is a little more complicated; the

details of this patch are omitted, however, but they are available from the

listing of Appendix D. (A new constant, 04,1 , is involved, as well as the

constants, cI and c2 , from (C8)i also, m and 0 are arguments of the

patch.)

For the starter for the other solution we have x < xM , so we use the sign

of T - T to distinguish between two possibilities (ignoring the third possi-0

bility, T =T , which is as trivial as the one-solution case, T = TM ) If

T > T , then x < 0 and we proceed exactly as when m - 0 and x < 0 ; thus0

we just use To , not requiring TM , and we patch the elementary formula for

x0 in two different ways, as before (with the second involving a new constant,

C,2 ) as well as cI and c2 from (18)). Finally, if T < To , we have
40

0 < x < XM , and now we use both T1 and T . We base x on the particular
0 M 20

bilinear approximation to T , as a function of Nx - xM)2 , that (i) passes
through the points with Cx, T) equal to (xM b TM) and (0 , To ), and (ii) has

the corsct second derivative CT") at the former point. (We could match T I
instead of T M , but the resulting formula would be as complicated as equation

(25) following.) This bilinear approximation is

AT" (x - x )2

T T + 2M) M M (24)
I+ (x- x )IT"1T - )- I/.'

M M MT
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and its inversion leads to the starter

110 xM / •12 (25)
- T" - (T - T )JJTj/To- TM) I (25

equation (25) is a complicated formula, but no patching of this starter has been

found necessary.

6 COMPLETION OF CONVERGENCE

It was decided (again following the work29"31 on the two Kepler equations)

to aim at a fixed number of iterations for x , rather than employ a convergence

test. In program testing, carried out on a PRIME computer providing 14 decimal

digits in double precision, it was found, for m - 0 , that three iterations

always suffiucd foc the determination of x to 13 digits, suggesting that (for

levels of precision up to this) no truncation error rema•ned; it was legitimate,

therefore, to fix the number of iterations at three. The foregoing is an over-

simplified statement of the accuracy achieved, however, and an amplifiea version

now follows.

It was arranged, in testing, that the relative error in x (true value

assumed known - see section 8), after a pre-set number of iterations, should be

computed, as well as the relative error (residual) in the value of T finally

computed by TLARB (as compared with the given T ); the smaller of these two

relative errors, c say, was registered for each test case, following the

rationale given in section I of Ref 29, and after three iterations it was found

that c never exceeded 10-13. (This rationale, to he invoked again in section 8,

is based on the proposition that the accuracy in a numerical solution of the

general equation f(x) :V Y should always be assessed in terms of the numerically

smaller of the relative error in x and the relative residual in Y ; assessment

in terms of just the former could amount to a demand for the impossible.) For

completeness, it is worth remarking that when the process was reduced to two

iterations the maximum value of e was found to be about 2 x 10-6, this being

the relative error in x that arises when 0 z 1.71v and x ; -0.9944 , For

just a single iteration, on the other hand, the maximum value of e is 4.3 x 10-3

* occurring for values of 0 approaching 2n and for x - 2.28. Finally, the

maximum value of E prior to any iteration, ie due to the starter itself, is

about 0.5, being associated with the 100% over-estimate by x # when 0 is

small, noted in section 4. consideration of the convergence when m > 0 is held

over to section 8.
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For the convergence of x in the 'subsidiary problem' (as defined in

section 5.3), it was soon clear that a fixed number of iterations would not be

right. There was something of a dilemma here, in regard to the philosophy to

adopt, since, on the one hand, great accuracy in xM should not really be

required, as xM is only a step to the starter for the main problems in critical

cases, on the other hand, an incorrect xM could lead to the erroneous con-

clusion that the particular Lambert problem possesses no solution. It was

eventually decided to op . e on the (conservative) basis that iteration would

end as soon as the value of xM changed by less than three parts in 107 during

the current iteration. With the cubic convergence of Halley's method, this meant,

in principle, that, in a hypothetical further iteration, x would not change by
20

more than throe parts in 10 - this follows from the discussion of convergence,

in the context of Kepler's equation, in Ref 31. This expectation was confirmed

when it was found that there was usually no change in the value of T itself if

the 'further iteration' was actually performed. Tests for values of 0 covering

the full range of q were carried out; the maximum number of iterations needed

to satisfy the x M criterion was found to be nine, but the number was only three

in the vast majority of cases. This was true even for large values of S , the

convergence being essentially dependent on q rather than m . To provide a

guaranteed exit, however, it was arranged that if the criterion was not satisfied

within twelve iterations, then the process would be abandoned and a flag set;

reference to this has already been made (section 4).

It is worth noting how convergence for xM would be affected by substitut-

ing the Newton-Raphson process for the Halley process. For most of the q-range,

the effect would be to add only a single iteration, taking the total from three

to four. For values of q approaching 1, however, io for correspondingly small

values of a , there is a steady rise in the number of iterations required byr

the Newton-Raphson process - the maximum number experienced in the PRIME testing

was 16, corresponding to nine for the Halley process. To avoid this behaviour,

it would be necessary to improve the starting formula, (20).

7 COMPUTATION OF VELOCITY

We come at last to the solution of an individual Lambert problem. It is
+

assumed that we have obtained a value of x (and also, where appropriate, x +

for the Lambert-equivalent class of problems, and it remains to compute, for

both of the points P and P2 , the velocity components (VR and V T) correspond-

ing to the specific quantities (rl, r2, 0 and At) of the original problem. This

computation is performed by the overall Lambert-solving subroutine, VLAMB, which /
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calls XLAMB (which itself calls TLAMB). VLAMB is listed in Appendix E; it will

be seen that its arguments are precisely the quantities summarized (for the full

Lambert solution procedure) in section 1. (For 'minimalist' derivation of the

formulae for VR and VT , see Ref 28.)

10A formula for V R, was given by Lancaster and Blanchard . This can

be improved upon, however, to make it more accurate and efficient. The resulting

formula is

V{R, = Y (qz - x) - n(qz + x)}1r 1  , (26)

where y = /(s12) and r = (r1 - r2)/c . The formula for VR, 2 , similarly, is

VR, 2  = - ((qZ - x) + p(qz + x)/r 2 2 (27)

. 28

Sarnecki's interpretations of x and z are immediately apparent, on putting

We must have in! 4 1 , of course, except that p is indeterminate when

c 3 (P1 and P2 coincide), in which case VLAMB arbitrarily sets it to zero.

But if c ý 0 , q - ±i , so that z a IxI by (7), and then for x # 0 there are

two possibilities, depending on whether q and x are of the same or opposite

sign. Only when the signs are the same do VR,I and VR,2 themselves become

indeterminate (see also the explanatory material in sections 1, 2.1 and 3), and

then the arbitrary value of c yields conventional values for VR,I and VR, 2

There is no indeterminacy when q and x have opposite signs, on the other hand,

since VR,I and VR, 2  (also VT, 1 and VT, 2 ) are then independent of p ; we

now have the rectilinear orbits illustrated by (the limiting form of) Fig 4a (on

the right) atnd Fig 4e (on the left).

A formula for V T, was not given directly in Ref 10, but only via the

orbital elements a and e , with a serious threat to accuracy in awkward cases,

The direct formula is

VT,1 = y(z + qx)/rI , (28)

where in principle o is defined as (0 - p 2 )i ; to minimize rounding error,

however, in practice we compute

a = 2(rlr2 /c 2 )1 sin 
tr (29)



24

setting o I (compatible with p ) when c 0 Similarly,

VT 2  yo(z + qx)/r 2  . (30)

Naturally, VT,I and VT,2 are indeterminate in the same circumstanuces as

VR,1 and VR, 2 , with compatible resolution of this indeterminacy.

For use in equations (26) to (28) and (30), the values of qz - x , qz + x

and z + qx are given, to optimum accuracy, as speclal-case output from the

subroutine TLAMB, in a post-XLAZ direct call by VLAMB. The special case is

signalled by the setting of (input) N to --I, which causes the quantities in

question to be computed in place of T' , TV and T.' (see Appendices 13 and C).

8 TESTING RATIONALE AND RESULTS

The subroutines TLAMB, XLAMB and VLAMB were tested for a wide range of

data, starting with TLAMB which is a self-contained procedure implementing a

direct algorithm (for computing T from x ). Problems of accuracy with this

subroutine seemed most likely to arise with input for which q was close to ±1,

or else x was close to ±1 or zero, so testing was particularly thorough for

data in these categories. Further, there are (for m - 0) two transitions (from

ellipse through 'series' to hyperbola), one each side of x = I (see Appendix B);

the regions in the vicinity of these transitions, defined (in TLAItB) in practice

by x m /06 and x = /- , were tested the most carefully of all, with con-

sistency carcfully monitored. The tests were entirely satisfactory, and Fig 2

was based on the output - its consistency with the Figure given by Lancaster

et at was an additional confirmation that all was in order.

The testing of XLAMB followed a natural procedure for validating the

iterative solution of an equation. Thus, the parametevs of this subroutine are

effectively 0 and T , but instead of ranging over T the tent data actually

ranged over x . Then each 'true' x (with a given 0 ) was the source of a

nominal test value of T (via TLAMB), after which the testing of XLAMB could

proceed, with the true x used (at the end of the test) merely as an accuracy

eva]uator. Only one solution (in two-solution cases) could be relevant to this

evaluation; further, the specific one-solution cases and the no-solution cases

then required separate testing. The general testing was very thorough, with

values of 0r taken very close (and even equal) to 0 and 21 , and (as already

remarked in section 6) it has indicated that, for m w 0 , 13-digit accuracy is

always achieved within three iterations. (The testing extended to a value of
N
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1025 for x ; this confirmed that full accuracy was maintained as the attractive

force was effectively reduced to zero.)

A particular case was examined in detail, namely, that for o C 1.9936w

and x 2 0.159 , chosen because this implied an input of q - 0.99 and T - 5.0,

for which the paper by Battin and Vaughan23 indicated the worst convergence

behaviour of the cases the authors considered. In fact Ref 23 registers 14

iterations as necessary in the modified version of Gauss's method of alternating

substitution (see Appendix A), just to get a solution to 8-digit accuracy.

(Boltz24 claims to achieve faster convergence than Battin and Vaughan, but le

does no better in the worst cases compared.) Ref 23 suggests that methods of the

Newton-Raphson type fail in these circumstances, but this is far from so (in

spite of the remark of Lancaster and Blanchard10 that originated this suggestion,

already commented upon here in sections 4 and 5.2). Thus the values of C

(from section 6) after zero, one and two iterations are, respectively, 0.043,

1.3 x 10-4 and 5.2 x 10- 12; after three iterations, e is too small to detect,

but it would evidently be around 4 x 10-34 in the absence of rounding error.

The figures quoted are for the Halley iteration process incorporated in XLAMB,

but (as it happens) the results are no worse if the Halley process is replaced

by the Newton-Raphson process. However, this conspicuously good behaviour is

.* largely due to the bilinear starter, so it was worth seeing what would happen if,

for compatibility with Ref 23, we took x 0  from its value for the circular

orbit through P1 and P2 ' The formula for this is x0 - q(0 q 2

giving about 0.704 for the case considered. Then the values of e , with the

built-in Halley process, increased to 0.36, 0.012 and 3.4 x 10- 6, for iterations

up to the second, the value after three iterations still being 'submerged in

rounding noise'. When the Halley process was replaced by the Newton-Raphson,

however, it was another story: values of e , taken now as far as the third
-4iteration, were 0.36, 0.23, 0.034 and 6.2 x 10 . For this example, the con-

clusion is clear: only if the starting formula and tha iteration process are

both degraded will convergence deteriorate seriously; even then our normal

criterion would be met after at most another two iterations.

For m > 0 , the value of c is no longer less than 10"13 in all cases,

though for m = 1 the maximum value obtained was still only 1.1 x 10- 13. For

m > 1 , c(max) grows steadily - the initial growth rate of its common

logarithm, with respect to m , is about 0.3, buL the rate falls off gradually,

e(max) being about 3 x 12-12 for m ý 5 , 8 x 10-11 for m = 10 , 6 x 10-8 for

m 30 and 3 X 10 for m = 100 . (Up to about this point, full accuracy would
N
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be restored by going to a fourth iteration, since this reduces c(max) to about
~13 -10

1.7 × 10 when m 100 ; it rises to about 2.4 x 10 when m - 200 , however.)

The growth of u(max) with m is entirely due to a defect in the patching, for

x < 0 , such that the condition for invocation of the patch involving c 4 , 2 is

sometimes not satisfied when one would like it to be. As the patching is

empirical, it could in principle be improved without much difficulty, but the

need to do this is so obviously academic that the matter has not been pursued.

it is worth remarking, however, that for large values of m * the accuracy of

XLANE is surprisingly sensitive to the particular values assigned to c3 and

S4,2 - small changes can easily lead to a worsening in accuracy by several

orders of magnitude. In view of the empirical nature of the patching, it is

perhaps to be wondered at that the multirevolution starters have performed as

well as they have.

The testing of VLAMB was based on the idea that, for each Lambert solution,

the output VR,1 and VT,i of the subroutine can be combined with rI (together

with a polar reference angle, taken as zero) to constitute the four necessary

components of data, associated with the point Pi , for input to the subroutine

PV2ELS. This subroutine ' then generates the corresponding set of four universal

two-dimensional orbital elements, one of which is T , the time from pericentre

(a conventional point if the orbit is circular). When r is updated to T + At

with the other three elements unchanged, a nominal position (plus velocity) for

the point P2 can be obtained from ELS2PV, the subroutine that is inverse to

PV2ELS. This position is specified as a radius vector and a polar angle, so the

performance of VLAMB, and hence the success of the overall solution procedure,

can be assessed by a direct comparison of these quantities with the input (test)

values r 2 and 0 ; we denote the (absolute values of) the differences, in r2

and 0 , by 6r and 60 . Ideally, looking at relative errors, we should like

6r/r2 and 60/0 , which we can denote by 6r and 6 e to be no greater than,

say, 5 x 10- (on the PRIM' computer).

For various reasons, this 'ideal' requirement (in VLAMB testing) is too

stringent. First, if the velocity is (in relative terms) very great at P2

then a large magnif!:zation of the relative rounding error may occur that is

completely unavoidable. For 6 , this magnification will be allowed for, inr

principle, if we do not automatically divide St by r 2 , but instead use rR

where

r max(r , IV At) (31)
R 2 R,21 C

-J
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(We define rT similarly, and apply the factor r 2 /rT to 60 .) This does not

fully compensate for the velocity effect, however, since At may have a large

derivative with respect to the value of x determined by XLAMB; this secondary

effect is allowed for if we replace At in (31) by max(At , Ix d(At)/dxj ).

(The rationale here is the same as the one involved in the definition of c in

section 6; the value of the derivative comes at once from T' , using the

relation between At and T in equation (1).)

With the foregoing allowance for the velocity at P2 , the modified value

of 6r satisfied the 'ideal requirement' for all tests with r1I 5 r2 , but a

further complic'ation with the test criteria was observed in tests with r2 > r1

(We have hitherto thought of r1  as being at least as great as r 2 , because of

the asaociation with the definition of x , but this restriction did not apply

in the testing of VLAMB.) The difficulty may be understood in relation to situ-

ations with r 2 >> rI , acd with a value of x corresponding to a semi-major axis

with a >» r 2 , since then the determination of the element a(-,/a) by PV2ELS

is inevitably inaccurate. In principle, it would be better to replace it by the

value given (from x and s ) by equation (1), but as the object of the exercise

was to test the new subroutine (VLAMB) with the existing subroutines PV2ELS and

EL52[V, this has not been done. Instead, the question "what empirical further

relaxation in the definition of 6 (and similarly 6 ) would cause the diffi-re
culty to disappear?" was addressed. it was found that an additional division,

in computing the relative errors, by the ratio r 2 /r 1 , or rather by

max(l, r2/r 1 ) to cover the other case (rI r 2) as well, would for the most

part resolve the problem; complete resolution became possible on replacing the

empirical ratio r 2/rl 'y the even more empirical (r 2/r1)1.3

With 6r and 6 adjusted on the rationale of the last two paragraphs, it

was found that Sr always satisfied the 'ideal requirement', but zhat 6

could fail to do so when 0 was less than about I radian. Under these circum-

stances, replacement of the relative error (%0) by the absolute error (60)

permitted the requirement to be satisfied, but this is hardly surprising, and,

in view of the desirability of maintaining relative accuracy for Lambert problems

with sm.ll values of 3 ,nd At , it was important to know whether the loss of

accuracy aroce in the Lambert procedure itself or in the test procedure via

PV2ELS and ELS2PV. Tests for very small values of both the input parameters

have indicated that the errors are entirely in the test procedure. The expla-

nation is that PV2ELS and ELS2PV were not designed for extreme accuracy in moving

between close points on a given orbital path; in particular, this follows from

0:
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the subroutines' built-in reference to a puricentre, which is likely to be a

point that Is remote from the given points that are neighbours. (It would be

possible to formulate the subroutines in a different way, but this would involve

considerable complication in the solution of the two forms of Kepler's equation;

"thus, for an elliptic orbit it would be necessary to solve an equation for the

eccentric-anomaly difference E1 - E2 , rather than solving the classical equation

for E2 . Lancaster has written on the Lambert problem for short arcs, whilst

Battin 12 has considered the effective inversion of Lambert's boundary-value

problem to provide a solution for Kepler's initial-value problem!)
With the original definitions of 6r and 60 modified as indicated,

including the replacement of the latter by 60 when 0 is less than I , their

values remained below 5 x 10-13 in all the tests carried out. In this testing,

the same range of values for 0 was used as in testing VLANB, with the same

range of input-x used as source for the nominal. values of At . Separate values

of r1  and r 2 were now provided, though only their ratio was actually signifi-

cant; this meant, of course, that the input 0 was no longer identical with 0

Various values for r 2/r were selected, covering the range from 10-6 to i06,

so the face that (modified) 6r and 60 could be held to d x 10- 13, over such

a wide range of Y , 6 and r1/r 2 , must bc regarded as an entirely successful

outcome to the VLAMB testing; it incidentally increased the confidence placed in

the robustness of PV2ELS and ELS2PV, except in regard to the point of the

preceding paragraph.

9 CONCLUSIONS

A study of the literature on Lambert's orbital boundary-value problem shows

that the crucial contribution to the subject was made by Lancaster. Blanchard
8 .

and Devaney in 1966. Some of the recent papers, unfortunately, do not refer to

Ref 8 at all, and their treatment of the problem is, to this extent,

retrogressive.

The original paper of Lancaster et (21 was very short (less than I1 pages)
10and, though their approach was amplified in a later paper , there has been a

need for the approach to be extended to a general computing procedure for solving

the Lambert problem. The present Report fills this gap, and has addressed, in

particular, the following topics not covered by Lancaster et atl: the provision

of universal starting formulae for the procedure's iteration process; the method

of iteration; the minimization of rounding error in all circumstances (not just

around the parabolic-transition region); the accurate computation of velocity;
adand the test-validatioc of the procedure (with emphasis on extreme cases).
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The overall conclusion is that the procedure provides excellent accuracy,

in an efficieLt manner, for any problem that might arise in practice. Three

iterations of the iteration process suffice for the effective elimination of

rounding error, when working to an accuracy of not more than 13 significant

figures. When only 5- or 6-figure accuracy is necessary, two iterations will

be adequate - in most cases they will be a great deal more than merely 'adequate'.

The Report has attempted to facilitate a deeper understanding of Lambert's

problem by introducing the concepts of L-similarity and L-congruence (for the

basic triangle involved in the problem) and of Lambert invariance (for physical

parameters).

I.

N-i
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Appeý,ndix A

GAUSS'S METHOD AND THE PAPER BY BATTIN AND VAUGHAN

Ref 23 represents the culmination of a long study of Lambert's problem by

Battin and various co-workers. Ref 2 (his text-book) and Refs 12, 18, 19 and 23

do not exhaust the list of Battin's contributions to the subject, but Ref 23

represents a change of approach in which the authors return to the classical
32 33method of Gauss. The essence of Gauss's method, of which Moulton and Plummet

give traditional text-book accounts, lies in its iterative determination, by

'alternating substitution' (not a standard term), of a pair of Lambert-invariant

parameters, traditionally denoted by x and y . For an elliptic orbit, Gauss's
Sis sin2  

(E2 - Ei) , where E1  and E, are 'he eccentric anomalies of the

points PI and P 2 ; x also identifies with J(I - g) , where g is defined

by equation (B-9) of Appendix B. Again, y is a quantity defined by the Lambert

triangle CP P and the required orbital path, being the ratio of the area of
1 2

the 'curvilinear' triangle to that of the ordinary 'linear' triangle, where the

curvilinear triangle has, for its 'side' P1 P2 , the orbital arc rather than the

chord (so y is-infinite when 0 = a ); this identifies Gauss's y with T/4qa

in the notation of Appendix B, where a is given by equation (B-4). Two equations

are available for connecting x and y , vi

3 2

y - y 2 mX (A-i)

and

x- m/y - . (A-2)

In (A-i) and (A-2), Z is equivalent to q (in the notation of the main text)

since
i2

(I - q)2/4q (A-3a)

sin 4G /Cos . (A-3b)
r r

Computation of 2 from C , via (A-3b), is more accurate than computation from

q , via (A-3a), when 0 is small. For computation from 0, rather than
r r r

Gauss recommended a formula that may be derived from the basic relation

/(r 1r) cos J O = qs a i(rI + r2) cos 0
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which is just a combination of equations (6a) and (6b) of the main text. (This,

incidentally, identifies 0 with 2f in Ref 17.) Gauss's formula is

P - (sin re + tan 2w)/cos 10 (A-3c)r r

where w is given by

tan(w + n) - (r 2 /r 1)VI

and it is evident that (A-3c) is just a generalization of (A-3b). However, we
2

can get a still more accurate value of Z if we replace tan 2w in (A-3c) by

Wr-I - 2)2/4/(r1r2) , and we do best of all, when an accurate value of

r- r2 is available, if the replacement is by

Cr1I r 2)/{4/(r~r 2)C(VT, + /2

To return to the quantities introduced in (A-I) and (A-2), m (actually written

c2 by Moulton, following Gauss's Theoria Motus 34) is closely related to T

(present main text) since

m •(At)2 /(8s3q 3) , (A-4a)

from which, using equation (2) of the main text, we get

m - T2 /64q 3 (A-4b)

Finally, X is a function of x alone, most concisely expressed, in terms of

the usual hypergeometric function, as !F(3,1,2h;x) , but most effectively com-

puted using continued fractions. The determination of y from x in (A-i) then

involves the solution of a cubic equation.

Gauss based the iterative determination of x and y , to satisfy (A-i)

and (A-2) simultaneously, on a method of successive substitution (a form of

relaxation) that can more descriptively be referred to as 'alternating substi-

tution' when only two equations are involved. To see how the method operates,

consider (A-i) and (A-2) generalized to y = f(x) and x = g(y) respectively,

with an initial estimate available for x ; then we compute y, - f(xo)

x - g(Yl) Y3 - f(x 2 ) el',?, and need to assess how the alternating sequences

converge, if at all. So let f' and a' denote the derivatives of f and g
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and suppose that f' and g' are reasonably constant over the square defined

by (x 0 , yO) and the true solution (x , y). Then if Jf'g'J < I , an error, c

say, in x 0  leads to an error of order f'g'8 in x2. On this assumption, the

process is linearly convergenti the rate of convergence is rapid if ifgi << 1

but still only linear. Thus, though the process is likely to be very robust, it

is inherently inferior to the standard iteration processes for solving a single

equation in a single variable - in particular31 the Newton-Raphson process which

gives quadratic convergence and the Halley process which gives cubic convergence.

The main weakness in Gauss's method comes from the infinities in Z and m when

q = 0 (which should bo the simplest of all cases), and a subsidiary defect lies

with the slow convergence in other cases. Battin and Vaughan have improved the

method significantly in both respect-, dealing with the infinities by a redefi-

nition of all the quantities Z , m , x , y and X , in such a way that (A-i)

and (A-2) are (formally) still the equations to be solved. In particular, the

redefinition of m is as

2 6
m - T 2( + q)

this still leaves an infinity, but now it is for q -1 (0 a multiple of 2v

in the notation of the main text), which is a lesser fault but a fault nonetheless.

Battin and Vaughan deal with the other weakness by an adjustment of the equations

(A-i) and (A-2) themselves, in a way that leads to a dramatic speeding up of the

cunvergence (via a reduction in the value of Jf'g'J , though they do not express

the alternating substitution process in this way).

It may well be supposed, however, that a much more drastic modification of

Gauss's method could be devised. If we remove the denominator in (A-5), and then

formulate (A-1) and (A-2) as an equation in a single unknown (as is hinted at in

Ref 14), we remove both the deficiencies completely. In doing this in the most

efficient way, however, we effectively just recover the method of Lancaster et at,

and it is ironic that the only reference to this method made by Battin and Vaughan

is a remark to the effect that "the difficulties arising when 0 is a multiple of
102v were recognized by Lancaster and Blanchard and necessitate the abandonment

of the Newton-Raphson process". it is perfectly true that the possibility that

this process might have to be abandoned was suggested in Ref 10. In reality,

however, as should be clear from section 8 of the present Report, this is the

last circumstance in which it is actually profitable to change the iteration

process; the Gauss procers is inevitably still at its worst, in spite of the

improvements of Battin and Vaughan, whereas the Newton-Raphson process (or better
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the Halley process) continues to do extremely well in three iterations; this

success must be attributed to the use of a good starting formula for the x of

Lancaster at at.

(N

C
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Appendix B

DETAILS OF THE TLANIB ALGORITIIM

The normal function of the subroutine TLAMB, which is listed in Appendix C,

is to compute the value of the Lambert-invariant parameter T , defined in

section 3 of the main text, together with as many of its first three derivatives

(with respect to the Lambert-invariant parameter x ) as are required. The input
2

arguments of the subroutine are m , q , 1 - q , x and n , where n , when

0 c n < 3 (normal operation), specifies the number of derivatives to be output,

the output arguments being T , V , T" and T"' . When n = -1 , the sub-

routine has a special function, namely, to compute the quantities R , B and A

that will be defined in due course; these quantities then replace the arguments

T' T" and T"' , there being no output T .

The basic algorithm for T is unchanged from the definitive work of

Lancaster t a 8'10, and we use the same notation, except for the introduction

of o , A , B and B , and for the use of u as a quantity that is the negative

of E in Refs 8 and 10. We start by summarizing the basic algorithm for T ,

V', T" and T"' , including such comments as seem necessary, in particular in

regard to the computation of quantities with minimal rounding error. The

rounding-error problems referred to here do not extend to the most serious one

of all, that arises for orbital paths that are sufficiently close to parabolic:

the entire 'basic algorithm' then has to be replaced by a series-based algorithm,

which if also rooted in the formulae of Lancaster et al and is summarized after

the basic algorithm.

The basic algorithm operates whenever any one (or more) of the following

three conditions applies: (i) m > 0 (multi-revolution elliptic path); (ii)

x < 0 (remote from parabolic path, for which x I ); (iii) Jul > 0.4 , where

2
u = 1 - x , (B-i)

the criterion (0.4) being an essentially arbitrary one. The appropriate part of

the basic algorithm also always operates when the special function of the sub-

routine is required, since there is never a need for series expansion when the

computation does not proceed as far as T . The following formulae apply to

both ellipses and hyperbolas:

Y = yj , (B-2)

a

N
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z - (1 - q2 + q2 x) 2 (B-3)

a - z- qx , (B-4)

A = z + qx (B-5)

1 = qz -x , (-6)

B = qz + x , (B-7)

f = ay (B-8)

and

g = xz + qu . (B-9)
2 2

In equation (B-3), z is computed using the input argument I - q

provided independently of q , as part of the rounding-error minimization philos-

ophy. In respect of the next four quantities, it is actually a and 5 , rather

than A and B , that are normally required, Viz a in (B-8) above and a in

(B-13) below, so the flow will often bypass A and B (required, in their own

right, only in the special operation of the subroutine). However, about 50% of

the time it will be necessary to compute a and B from A and B , to avoid

rounding error in subtractions, and sometimes (in the special operation) the

opposite computations will be necessary; the connecting formulae are

aA = I - q2  (B-10)

and

3B 3 (1 q 2)(q 2u - x2) (B-11)

It will also be necessary, 50% of the time, to compute g from

g = (x2 - q2u)/(xz - qu)

instead of from (B-9).

We now require a quantity, d , for which there are formulae that differen-

tiate between ellipses and hyperbolas. For an elliptic path,

d m•m + arg(g , f) , (B-1 2 a)

,0
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where the arg function is as for equation (19) of the main text. The corre-

sponding formula for a hyperbolic path is

d a tanhl (f/g) (B-12b)

which may in principle be evaluated as ln(f + g) , as assumed by Lancaster eb aZ

(since f and g are equal to, not just proportional to, sinh d and cosh d

respectively). This would lead to sorious error when f is small, however (not

noted by Lancaster at at), so in this case we evaluate the inverse tanh function

by series; as in Ref 29, it is more efficient to evaluate d as

2 tanh- 1{f/(g + 01 , rather than as tanh- 1 (f/g) . It is perhaps worth remarking

on what may appear to be curious in the preceding formulae, namely, that the

elliptic and hyperbolic rdgimes can be dealt with by just two versions of a single

formula, equations (B-12); the explanation is that the distinction really starts

with the absolute-value sign in (B-2), as a result of which (B-8) and (B-9) are

reached with val.ues of f and g such that (apart from rounding error)
g2 + f2  I for ellipses and g2 -2 = I for hyperbolas.

The formula for T can now be given, to cover all orbits that are not
'too parabolic', It is

T - 2(d/y + 0)/u (B-13)

This is taken directly from Refs 8 and 10, where the formula for T' is given

as well, viz

T' = (3xT + 
4

q 3x/z - 4)/U. (B-14)

In (B-14), as in (B-13), we are nut concerned with non-zero values of the

u-denominator, since they only arise with the near-parabolic r6gime that we are

not yet considering, but the z-denominator requires attention. From (B-3) we see

that z can only vanish when x is zero and qi - 1 , so we do not get an

infinity in (B-14) but an indeterminate term of the form 0/0 (herein lies a

further explanation of the discontinuities in Fig 2 that were remarked upon in

section 5.2). The effect of this indeterminacy is entirely localized, however,

with no spread of rounding error in the vicinity of the zero in z ; thus all

that is necessary is that the computation of T' be bypassed when z is zero.

To complete the description of the basic algorithm, it only remains to

present the formulae for V" and T"' . These were not given by Lancaster et aZ,

but are easy to derive, on proceeding from (B-14) and bearing in mind that
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I2

z' 2q 2x/z (B-15)

The formulae may be expressed in the same way as (3-14), but it will be seen

that real infinities now arise when z is zero; thus the possibility of overflow

exists, even when z A 0 , but (as with T' ) there should be no qucstýion of the

spread of rounding error. The formulae are

"T" 13T + 5x.' + 4(q/z)3(i - q 2 }/u ()B-16)

and

T" {8T' + 7xT" - 12x(q/z)
5

(1 - q2)}/u .(B-1)

We now come to the series-based formulae that are required for T T'

V" and T"' when m is zero, with x positive and such that Jul < 0.4 . As

Lancaster et at indicate, following Gedeon6 ' 7  the basic expression for T can

be written

T -= (u) -q 3 p(q2u) , (B-18)

Sun ,

where O(u) An (13-19)

n=0

with

A ( 2 n)l/{ 2
2
n-2 (n) 2 (2n + 3)} (B-20)

But (B-18) is inaccurate for computing when q has a value close to I , so we

replace it by a single series, viz

T = Bnun , (n-21)

n=0

where B n A b n(B-22)n n n

with

b 1 - 2n+3 (B-23)

Cn
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Accuracy demands that b be computed with minimal rounding error. The
n q3

critical computation is of b 0 , which we simply set to I - if q < 0.5

If q Z 0.5 , however, we set

b 0  - {q + 1/(1 + q)}l1 - q
2 ) (3-24)

The two expressions for b0  are formally identical, but computing accuracy (when

needed) is given by (B-24), because of the assumed accuracy of the independent

argument ( q - q2) of TLAMI. For n > 0 , bn is given by the recurrence

formula

b b + q
2 n+1(1 - q) . B-25)

The computation of A is straightforward, since we may express it asn

A m a /(2n + 3) , (0-26)n n

where a is given by the recurrence formulan

an- (2n - 1)/2n}an_ , (B-27)

with a0 = 4

In principle, then, T is computed from (B-21), with terms continually

added until there is no further change of value. But for values of lul close

to the maximum (0.4) for which the series would be used, the convergence was

found to be rather slow. At the expense of a little extra computation, however,

it was possible to accelerate it by computing the series for Tx• instead of
2 2

T , and then dividing by x ( 1 , of minimum value 0.84). Writing

Tx2 t Cnu (3-28)

n=4

therefore, we have (for n > 0 , C0  being just B0 )

Cn B n-i B (An An 1 )bn + An 1 (b - b 1 ) , (B-29)

where, from (B-26) and (B-27), we get
0

0
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A -A n-i {n + 1)/(4n2 1)}An (B-30)

Thus the c),uputation of T is based on (B-28) rather than (B-21).

Two additional complications arise with the computation of T' , T" and

T"' . First, it is derivatives with respect to x that we want, whereas the

series for T is in terms of u . Writing T for dT/du etc, we have

V' -2xT (B-31)

T" = -2T- + 4x 2 T (B-32)

and

T'" 12xTf - 8xT . (B-33)

2-The other complication arose from the desire to compute x T , T , T,ý and T

efficiently within the same loop of code. It was decided that negligible accuracy

would be lost if the criterion for an unchanging value of Tx2 was used to

terminate the computation of all four quantities, but there was another difficulty

created by the fact that the initial value of n in the series for T , T and

T should be 1, 2 and 3 respectively; to overcome this, it was decided that the

simplest procedure was to allow the initial value to be zero in each case, even

though initially-zero contributions to T , etc would be computed in consequence.

As a footnote to the function *(u) , it is remarked that it can be

expressed in terms of the same hypergeometric function as was involved in the

quantity X used in Appendix A. Thus we have O(u) - 1F(3,1,2flj(i - x)) ,

where Vi - x) = hu/l1 + V) - u when x > 0 ; this identifies (B-18) witb

equatioa (28) of Ref 18. Also, Ref 18 indicates a way of expressing (B-18) with

only one occurrence of the function • ; in the notation of the present Appendix,

the expression for T is then

T a Ca%2((f
2) + 4q}

N0
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Appendix C

FORTRA-77 SUBROUTINE TLAMB

SUBROUTINE TLAMB (M, Qo %ISQFMI, X, N, T, DT, 02T, D3T)
IMPLICIT DOUBLE PRECISION (A-H,O-Z)
LOGICAL t141, LI, L2, L3 0 ODATA PX, SW /3.141592653589793D0,01~0
LMI = N. EQ. -1
Li .G.
L2 -N.GE.2
L.3 -N.EQ.3

c (NECED F SEIESAND OTHERWISE USFFUL WHEN 2

IF (121 .OR. M.GT.O .OR. X.LT.000 OR. DABS(U).GT.SW) I.XEI
c ~~DIRECT COMPUTATION (O EIS

Y - DSQRT(DABS(U))
Z =OSQRT(QiSQFM1 + QSQ*XSQ)
QX= *
IF (QX.LE.ODO) THEN
A z - oX
B Q *1 - X

END IF
IF (QXrl'.ODO .AND. U41) THEN

AA -Q.'QFMI/A
SB QSQFMI*(QcJQ*U - XSQ)/B

END IF
IF' (QX.EQ.000.AND.LM. .OR. QXGT.O0DO) THEN

AA + QX
B8 Q*Z "- x

END IF
IF (QA.GT.ODO) THEN

A -QSQFM41/AA
B =QSQFM1*(QSQ*U -. XSQ)/BB

ENO) IF
IF (.NOT.Ul() THEN

IF (QX*U.GE.ODO) THEN
G = X*Z +- Q*U

E LS E
G (XSQ - OQS*U)/(X*Z - *U))

END IF
F = *
IF (X.L.E.IDU) THEN
T ý I*PI + ATAN2 (F, G)
ELSE
IF (F.GT.SW) TH1EN

T -DLOG(? + G)
ELSE
FGJ. F/(G *. 1-00)
1210¶M ýIDOA'FGI
FGlSC2 FG1*FGI
T = TERM
TWOIl = DO

1TWOTI. = TWOIIl 2D0
TERM =TERM*FGISQ
TOLD =T
T -T +TE.RM/TWOT1
fF (T.NE.TOLD) GO TO I

C (CONTINUE LOOPING FOR INIIERSE TANH)
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END IF
END IF'
T = 200* (T/Y 13)/U
IF (LI AND). Z.NE.ODO) THEN

0Z2 =~ 0/2Q

DT - (3D0*X*T - 400*(A ,- QX*OS0PMI)/Z)/U
IF (L2) 02T (3D0*T * 500*'X*DT + 4Do*QZ*0*SQFMjj;-L:
IF (L3) ODl' =CSDO*DT -, 700X*D)2T -12D002Z*22'X*0QSOF1j:Lý

END IF
ELSE
DT B

L)3T =AA
END IF

ELSE
C COMPUTE BY SERIES

UQI m100
IF (Li) UII 100
II' (L,2) U21 =100
IF (L3) U31 = 100
TERM - 400
TO C*QSO~'MI

IF (Q.LT.SD-1) TQSUM = LDO -Q*QSQ

IF (Q.GE.50-1) TQSUM =(100/(I10 4 Q) + Q)*QSQFMI
TTMOLOD TERN/3DO
T =TTMOLD*TQSUM

C (START OF LOOP)

d101 UOt*U
IF (Li .AND. I.GTt1) UnlmUI*
IF (L2 .AND. I.GT.2) 021 = 021*U
IF (L3 .AND. I.GT.3) U21 0 31-U
TEitM TERM

t
(P -0.500)/P

TO= TQ*QSO
TQSUM = TQSUM + TO
TOLD =T
TTERN = TERN/(200*P + 200)
TQTERII TTERM*TOSUM
T - T tJOI*((1.500*P - 0.2500))*TOTERM1 (L)*P - .25DO)

A - TTMOLD*TQJ
TTMOLD TTFRM
TQTER*4 TQTERN*P

IF (Li) DT =DT' + TQTERM*U1I
IF (r,2) D2T =2 +l' TQTERN*U21*(P - 100)
IF (L3) ODl' = ODl' + TQTFRN*tI3I*(P - IDO)*(P -200)
IF (1.LT.N OR. T.NE.TOLD) GO TO 2

c (END OF LOOP)
IF (L3) O3Tl' SDO*X*(i.500*D2T - XSO*DJT)
IF (L2) OZT = 200*(200*XSQ*D2T - DT)
IF (LI) EnT -2D0*X*DT4 END IF

RETURNj END

C141
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Aa2ndix D

FORTAN-77 SUBROUTINE XLAMB

SUBSROUTINE XLAMB (,X, Q, QSQFME, VLN, N,X, AP L
IMPLICIT DOUBLE PRECISION (A-H,Oj-Zi
PARAMETER (PI=2.14159265358919300O, TOL=30-77,Z0.7,
PARAMETER (Cl=0.S3DO, C2=0.0300, C3>0.15D0, 041'-ID0, C.;2-3C.24L0,,
DSRT(X) -DSQRT(DSQRIY(DSQRT(X)))
THR2 -' 0ATAN2(QSQFM1, 2004 Q)/,PI
IF (M.EQO0) THEN

C SINGLE-REV STARTER FROM T (Ar X 0) & B.LINEAR(SAL{

CALL TUAMB (H, Q, 0001141, 000, 0, TO, [1'V, BIT, >~rj
TOIFF -TIN - TO
IF (TDEFFLIE.000( THEN
N = TOkTO1FF/(-4D0*TIN1)

C2 (-4 IS TIHE VALUE OF DT, FUR X = 0)
ELSE
X = -TDIFF/(TDEFF + 400)
W N i CO*DSQRT(2D0*(ID0 - THR2))
IF (W.LT~oO)

A N N - OsQkrT)DSRT(-'.4fl(X -OSQRT(TDflFFA'('DLFF -I.S;UU'it,
W = 400/(4D0 + 'WDlFF)
N X*(100 X*(CI*WN - G2*X*000RP(W)))

END IF
ELSE

*C WITH MULTIREVS, FIRST GET T(MIN) AS BASIS FOR STARTER
NM= IDU/(1.500*(M * 501) I*21)
IF (TNR2.LT.5D-I) NM = D8RT(200rTH4R2)*XM
IF (THR2.GT.5D-t) NM = (200 - OSRT(2D0 - 200*'THR2, 10

*C (STARTER FOR THIN)
00 1 I>1,12
CALL TLAM'B (M, Q, QSQFM1, NM, 3, THIIN, DT, 02T, 03'r)
IF (0)2T.EQ.ODO) GO TO 2
XMOLO = XM
NM = NM - DT*02T/(02T*02T - OD3T/UT,2D0)
NTEST = DABS (XMOLD/NYI - I00)
IF (XTEST.LE.TOL) GO TO 2

1 CONTINUE
N = -1
RETURN

C (BREAK OFF & EXIT IF THIN NuT LOCALEZD - SHOULD NEVER riARPF.,.
C NOW PROCEED FROM T(MIN) r0 FULL S3TARTER

2 CONTINUE
TDIFFM = TIN - THIN
IF (TOIFFM.I.T.')D0) THEN
N =0
RETURN

*C (EXIT IF NO SOLUTION WITH THIS M,
ELSE IF (T`DIFFM.Eý.ODO) THEN

N NM

RETURN
C (EXIT IF UNIQUE SOLUTION ALREADY' FROM N(I`MIN))

ELSE

ci
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N3
IF (D2T.EQ.OIJOj D2T GDO*M*PI
X DSQRT(TDIFFM/(D2T/200 + TDIFFM/(lD') XM)W*24)
W u M + N
W = W*4D/0/(00 + TDIFFII) + (100 - )*
X = X*(100 - (100 +N * C41*(THR2 0 .EO0fl/(IO') - 03'rM)*

A N*(C1*W t-C2*N*DSQRT(W))) - M
D2TZ D2T/2D0
IF (X.GE.XDO) THEN
N = 1
GO TO 3

END IF
C (NO FINITE SOLUTION WITH X > NM)

END IF

END IF
(NOW HAVE, A STARTER, SO PROCEED BY HALLEY)

5 CONTINUE
DO 4 I-1,3
CALL TLAI4B (MN, Q, QSQFNI, N, 2, T, DT, D2T, D3T)
T = TIN - T
IF (DT.NE.ODO) X -N - T-OT/(DT*DT -T*D2T/200j

4 CONTINUE
IF (N.NE.3) RETURN

C (EXIT IF ONLY ONE SOLUTION, NORMALLY WHEN M 0

X PL N
C (SECOND MULTI-REV STARTER)

3 CALL TLA±48 (M, Q, QSQFMi, 000, 0, To, DT, 02'?, D3Ty
TOIFFO TO - TMIN
TUIFF TEN - TO
IF (TDIFF.LE.O) THEN

X = NM - USQRT(TDIFFM/(D2T2 - TDIFFM*(D2T2/TDIFEC

ELSE
XN -TDIFF/(TDIFF + 400)
IJ = 200
W - X + CO*DSQRT(200*(IOO - THR2))
IF (W.LT.ODO) N

A N - DSQRT(DSRT(-W))h(X + DSQRZT(TCIFF/(TOIFF - !..DCATO)))
WN 400/(400 TOTFF)
X = N*(LDO - (100 + N C42*(THR2 - O.5DOfl/(IOO - C3*M),

A X*(C1*W C 2*X*DSQRT(W)))
IF (X.LE,-100) THEN

C (NO FINITE SOLUTION WITH N < NM)
IF (N.EQ.I) X XPL

END IF
END IF
00 TO 5
END

71
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FORTRAN-77 SUBROUTINE VLAZIB

SUBROUTINE VLAM8 (GM, 1G. R2, TH, rDELT, N, VRII, ITLIL,
1 VRXZ, VT12, VR21, VT21, VR22, 'P222)
IMPLICIT DOUBLE PRECISION (A-F1,O-Zj
PARAMETER (Pt 3,14159265358979300), TWOPI 2DOýPU)
M " TII/TWOPI
THR12 =TH/2D0 M*PI
DR =RI - R12

RIRITH -' 4D0*RIR2*DSIN(THR2,*...2
USQ =DR**2 + RlRZTH
c =DSQR'r(CSQ)
S -(RI ± R12 r C)/1200
GMS = DSQR~r(CMAS/2DO)
QsQEMi = C/S
Q DSQRT(RIR2)*DCOS(THR2)/'5
IF (C.NE.ODU) THEN

RHO = DR/C
SIC R1R2TH/CSQ

ELSE
RHO ODO
SIGC IDO

END IFv
T = 4D0*GMS*Tr)Ehr/S**2
CALL XLAMB (M, Q, QSQEMi, T, N, X1, X2)

C PROCEED FOR SINGLE SOLUTION, OR A PAIR
DO I1i=i,'N
IF (1.EQ.1) THEN

X= X1
ELSE
X = X2

END IF
CALL TLflIB (M, Q, VSOFM1, X, -1, UNUSED, QZMINX, QZPLA,, I'PuOXý
VT2 = MS*ZPLQX*DSQRT(SIG)
VRI OMS4,(QZMINX QZPLX*RHO)/Ri
VT). VT2/Ri
VR2 =-CMS*(QZMINX + QZPLX*RIHO)/112
'P22 VT2/R2
IF ( IEQ.i) THEN

VRIl = RI
VT).)= VT).
VR1t2 =VR2

VT12 VT2
ELSE
VR21 VR1)

VT22 =T

END IF
I1 CONTINUE

RETURN
END
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LIST OF SYMBOLS

(Principal usage in the main text - some symbols have different meanings in the

Appendices)

a semi-major axis

C chord of triangle CPIP2

C centre of force

e eccentricity

E eccentric anomaly

kc arbitrary non-negative integer

m number of complete revolutions included in the flight path

N number of solutions of a particular Lambert problem

p semi-latus section, a(i - e )

Pip P2 end-points of flight path
2

tan I(n - Or) , whence also q - 1 - c/s

rip r2 distances CP1 and CP2

a semi-perimeter of triangle CP1 'P2

t1 , t 2  times such that At(- t2 - rI) is the flight time

T non-dimensionalized 6t , defined by equation (2)

T value of T(x, 0) , or T(x, q, m) , when x -0

TM minimum value of T for given 0 > 2r

V T', eto partial derivatives 3T/Dx etc

V R radial velocity

V transverse velocity
T

w, W empirical quantities used in starter weighting

x fundamental parameter (iteration variable) such that x 1 - s/2a

Svalue of x estimated after iteration i (x atarter)
1 0

xM value of x associated with TM

x second solution for x, when relevant

; z 1(1 - q 2 
+ q 2 x 2) z i

VD"
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LIST OF SYMBOLS (concluded)

a ia/a

y V(us/2) , introduced at equation (26)

Sr, 60 absolute values of residual differences in r 2 and 0

6r' 6a 6r/r 2 and 60/0

G smaller of relative errors in (i) solved-for x and (ii)

corresponding T

0 angle PICP2

Or 0 reduced to (0, 2u) range

0 value of e for the Lambert-equivalent isosceles triangle

x empirical quantity used in starting formulae

P strength of gravitational force centre (C)

P (r - r2)/c
o 41 -p 2)

T time from pericentre

0
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