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SUMMARY

During the past 30 years there has been a resurgence of interest in the
classical orbital boundary=value problem of Lambert, largely because of its
relevance to space rendezvous and interception. The most notable contribution to
the subject was by Lancaster, Blanchard and Devaney, in 1966, but more recent
researchers have failed to bulld on that work; the present Report is aimed at
remedying this neglect by providing details of a universal solution of Lambert's
problem based on the approach of Lancaster et al., 1In particular, the Report
presents starting formulae for Halley's cubic lteration process, used for evalua-
tion of the unknown parameter, x , at the heart of the approach; this process
always gives highly accurate values of x after three iterations.

A Fortran=77 computing procedure for a general solution of Lambert's pro-
blem has been developed,.and.its three main gubroutines are listed. Details are
given of the testing ofithis procedure. !
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. R .
Much of the Reporf is devoted to a classification of the set of all Lambert
problems, and to a discussion of various geometric and physical aspects.
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1 INTRODUCTILON

The 'orbital boundary-value problem', constrained by two points and an
elapsed time, is usually associated with the name of Lambctt‘, though Euler had
studied the problem some 20 years before Lambert (but only for parabolic orbits);
other celebrated mathematicians whose names are associated with the problem and
its solution include Gauss and Lagrange., Thus it is a problem of classical
relestiazl mechanics, and one that (like the solution of Kepler's equation) con=
tinues to attract the attention of mathematicians searching for solution pro-
cedures of ever-greater generality, accuracy and efficiency. Good text-book
introductions uwe Lu be jovund it Kkeis 4 to 4, whilst Refs 5 to 26 are studies,
chronologically listed, from the last 30 years; the outstanding paper on this
ligt, though from as far back as 1966, is the one by Lancaster, Blanchard and
Devaneys. Classically, Lambert's problem arose as a core component in the
determination of an orbit from three observatinns of direction alone, the central
observation being used (on a trial=and=-error basis) as a source of the missing
distance data for the other two observations. In the Space Age, with direction
measurement a commonplace, the solving of Lambert's problem is directly appli-

cable to the important subject of orbital rendezvous,

Lambert's problem may be stated as follows: an (unperturbed) orbit, about
a given inverse-square-law centre of force, C say, is to be found connecting
two given points, P] and Py with a flight time At(= £y - t1) that has
been specified*., The problem must alwavs have at least one solution and the
actual number, which we denote by N , depends on the geometry of the triangle
CP]P2 and the value of At =~ it is assumed, for convenience and with no loass
of generality, that At > 0 ,

To get an immediate feel for the problem, let us suppose first that the
triangle CP‘P2 is not degenerate, so that 8 , the angle subtended by P1P2
at G, lies between 0 and = . Then it would appear there must be at least two
solutions, since an orbital path (in the plane CP1P2 ) can be found that subtends
an angle 2r - 8 (ie going the 'lony way around') as well as one that subtends
6 . We can avoid this duality, however, by supposing the Airection of motion to
be specified in advance, so that the two angles can be dcemed to define different
problems. There is a further complication, since if At is large enough, other
paths (necessarily elliptics?) will be possible, each of which includes a number

of complete revolutions. It turns out (and will be apparent when Fig 2 is

* A list of symbols is provided at the end of the Report.
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introduced) that paths incorporating a specific number of complete revolutions,

m say, normally oceur in pairs; thus as At increases, N (for a given triangle
and specified direction of motion) is an increasing odd integer, apart from being
even (instantaneously) at each (critical) value of At at which two new solutions
emerge, coincident for that precigse value of 4t . We simplify the approach to
multiple revolutions by extending the distinction between individual Lambert
problems so that '0' is regarded as an angle of unrestricced positive magnitude
defined by the geometry of the path and not just by that of the triangle; we

write 0. for the reduced angle (such that 0 < B, < 20 ) when it is nccessary

to diseriminate. (We do not have to consider negative & , because to do so

would imply negative At which we have already ercluded for conveniencc.) We
have effectively redefined N such that N =1 if 0 < 27 ; if & > 2n , on the
other hand, N =0, 1 or 2 , depending on the relation of At to the appropriate

critical value.

Turning to degenerate triangles, we consider these on the basis of the
unlimited values of 6 just introduced, so that & 1is now kv for some
integer k (20) . Then if orbital paths ecxist that are not rectilinear, their
number must be infinite, since any plane through the degenerate triangle contains
valid paths. If we chooSe an orbital plane (as well as the direction of motion)
arbitrarily, however, we have N =0, 1 or 2 , if k 1is odd, exactly as in the
last paragraph; this is actually the simplest of all cases to deal with in prac-
tice, though the literature contains a number of solution procedures that fail
here quite unnecessarily. But there are real difficulties when k i3 even
(= 2m), associated with a type of discontinuity that is described in section 3.
The effect of this discontinuity is that we would like to be able to distinguish
the angle (kw)_ , which symbolizes the representation of 6 as 2(m - i)r
plus a 8, of 2n , from (kr)+ , which symbolizes its representation as 2mn
plus a er of zero; if this distinction (or an equivalent one) is not made, then
(for an arbitrarily chosen orbital plane) N =1o0or 3 if m=1 , and
N=0,1, 20r 4 if m> i ., The orbital path has to be rectilinear (when k

is even) unless PI and P2 coinecide,

We can now summarize the data involved in the solution procedure to be
developed in the present Report. The input qucntities are the constant
(strength of the given force centre at C ), r, and r, (equal to CP1 and
CPZ) y» 0 (the unrestricted angle P, CP, ) and At . (We assume u > 0 , but
there is also a Lambert problem when p < 0 ; if 8 < w , there is then a unique

hyperbolic solution, wholly internal to the triangle. The transitional case,

L20
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with p = 0 , is of course trivial, but cven this can be treated as a Lambert
problem,) The output quantities, 4N + 1 im number¢, consist of N itself and

N sets of four quantities, vis V, (‘radial velocity) and V, (transversc

veloeity) at both P? and P2 . ?t is assumed here that valzes nf 6 equal
to (2mw)_ and (2mr)_ can be distingulshed, wo that N does not exceed 2.
In reality, of course, the real-number system does not permit this distinction,
though this is a somewhat academic point in a computing procedure that can only
operate for the finite set of computable numbers; more importantly, with
'multiple revolutions' of a rectilinear orbit thc problem has become completely
academic anyway, since it involves at least one infinite-velocity 'bounce' off
the force centre. Nevertheless, we shall find it advantageous to compute with
a prir of quantities, gq (introduced in section 3) and m , in place of just

® 3 this avoids the academic difficulties, and is also more efficient,

As with Kepler's equation, Lambert's problem has no satisfactory direct
solution - we have to proceed by an iterative technique (trial and error) and
this inevitably dowinates the solution procedure being developed. The following
issues then arise, and will be discussed in successive sections of the Report:
first (in section 2) the (hoice of a suitable parameter of the motion to use as
the iteration variable x (it is sometimes claimed, for example in Ref 9, that
the problem is inherencly a two=-parameter problem, with simultaneous iteration
needed on both parameters, but this claim is unwarranted); second (in section 3)
the 'direct’' algorithm that generates a quanticy equivalent to At , together
with such of its derivatives as are required, from x , T, ., and 0 ; third
(in section 4) the iteration process, by means of which successive X (estimates
of x ) are computed; fourth (in section 3) the starting formula (or formulae)
for provision of Xg i fifth (in section 6) the basis for the cessation of
iteration (when 'convergence is complete'), and the accuracy obtained as a result;
sixth (in section 7) the formulae for computing the 4N velocity components; and
lastly (in section B) the rationale behind, and results of, the testing of the

solution procedure.

e 2 CHOICE OF PARAMETER FOR THE ITERATION VARIABLE

2.1 Lambert's theorem and the relations of L-congruence and L~similarity

For the iteration variable, x , it is desirable to use a quantity that is
a 'Lambert invariant' of the problem, if possible. To explain this (in section
2.2), we require a preliminary digression on Lambert's theorem; as a result of
this theorem, and the equivalence classification of triangles that it makes

possible, individual Lambert problems can be divided into equivalence clagses.

Q27
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Lambert's theorem iy usually stated, with an extension of the notation

already introduced, as fuollows: if ¢ is the chord (side PIPZ ) of the triangle t
CPII’2 , then At (for a connecting orbital path) can be vxpressed as a
(multivalued) function of just three quantities (not counting wu ), vin

r, *ry, ¢ and a , this lagtzgeing the semiﬁmnju;ﬂzxis of the path (taken as
negative for hyperbolic orbits™’"'); many text-books prove the theorem for
elliptic orbits, and a general 'minimalist' proof has rccently been given by
Snrncckiza. Defining s as the semi-perimeter of the triangle, So that

£, vy = 2s ~ ¢ , and noting that a is equivalent to the total energy of the
motion per unit mass, we can also express At as a function of s , ¢ and

energy.

It follows from the theorem that triangles with the same values of s and
¢ are equivalent, from the viewpoint of the relation between At and energy,
and the set of all triangles CP P, can thus be divided into equivalence classes,
as illustrated in Fig 1. Each class contains a unique (apart from orientation)
isosceles triangle with £y, and the general class (with 0 < ¢ < s,
illustrated in Fig la) contains a pair of degenerate triangles such that one of
the points P1 and P2 lies between the other point and C ; a connecting orbit
for either of these degenerate triangles is necessarily rectilinear., Classes
with ¢ = 0 (illustrated in Fig 1b) contain only a single member each, which is
simultaneously isosceles and doubly degenerate, The other extreme (illustrated
in Fig 1e¢), occurring wvhen ¢ = s , is such that the classes have their widest
membership, in regard to the ryiry ratios possible, though all members are now
degenerate; each class contains a pair of doubly degenerate triangles such that
either P, or P, coincides with C , whilst the remaining (singly degenerate)
triangles (infinite in number, as in the general case) all have P, and P

1 2
oppostte sides of €, Connecting orbits for the singly degenerate triangles of

on

this extreme case cannot be rectilinear, on the usual assumption that C is a
point of reflexion (at infinite velocity) for rectilinear orbits; however, a
connecting orbit for either of the doubly degencrate triangles is bound to be
rectilinear (as with singly degenerate triangles in the general case). For the
extreme classes with ¢ = g , therefore, it is convenient to regard the term
‘degenerate' as referring only to the doubly degenerate triangles. If, further,
we cease to distinguish between the pair of degenerate triangles with v, <,
and £, > LV then we can say, in all cases, that an equivalence class contains
exactly one degenerate triangle.

20
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Triangles in one of the foregoing cquivalence classes may be described as
'Lambert congruent', or Lecongruent for brevity, and introduction of the concept
of congruence suggests the allied one of similarity, just as in elementary
geometry, Thus two triangles may be described as L=-similar whenever they have
the same value of ¢/s , this being a dimensionless quantity. Though we continue,
in section 2.2, to introduce Lambert invariance on the basis of L~congruence, in
section 3 we shall find that thinking in terms of L-similarity, with its wider
equivalence classes, has the effect of reducing (by one) the number of arguments

in the algorithm for the flight time,

2.2 Lambert-invariant parameters, Lambert-equivalent problems, and the

Earameter X

Since At is a Function only of s , ¢ and energy, it follows that the

equivalence of L-congruent triangles provides the basis for a classification of
individual Lambert problems into their own equivalence classes, each such class
being defined by the underlying c¢lass of triangles and the given value of At .
Then a Lambert-invariant parameter may be defined as one that has the same value
for all members of an equivalence class of problems. It is unfortunate that,
though s and ¢ are Lambert=invariant, 6 is not, which at first sight
negates the virtues of the unrestricted angle that were noted in section 1. We
can get the best of both worids, however, by taking @ (instead of B8) as a
parameter of the general triangle, where € 1is defined as being the 8 for the
equivalent isosceles triangle: then © can be regarded (like 6) as an angle

of unrestricted magnitude. (The quantity }0 , denoted by £ , was recognized

as an important parameter in the paper19 by Battin, Fill and Shepperd.)

The energy-equivalent orbital parameter a is certainly Lambert-invariant,
but this is not true of e (eccentricity) or p (semi~latus rectum). The use
of p as iteration variable is intuitively appealing, because of its direct
relation to true anomaly and hence to 0 , and it is recommended in a paper as
recent as Ref 24, But p fails, in a somewhat paradoxical fashion, when 0 = 7 .
The paradox is that p is given, as 2r1r2/(r1 + rg) , without the need to
iterate at all in these circumstances: because At 1is not involved in this
formuls, however, no further progress can then be made without iterating on

some other variable.

The advantage in using a Lambert-invariant parameter as the iteration
variable is that its determination is a numerically identical procedure for all
the individual problems of an equivalence class. The resulting 'reduction in

cases' is a very practical comnsideration for the solution procedure to be




developed, not least when it comes to the number of tests that have to be run.
Thus a i3 an immediate candidate for iteration variable, but its direct use
would be unsatisfactory beeause (as shown in Ref 2, for cxample) orbital paths
with a particular value of a occur in pairs or not at all. There is, in factk,
an upper limit (corresponding to minimum possible energy) to the possible values
of 1/a ; it is given by 2/s , for which value the palr of paths coinclde. It

follows from this that if we write
s
x~ = - T3 (1)

then x is a satisfactory substitute for a , such that the choice of sign in
the implied square root distinguishes between the two paths of cach pair, The
parameter x 1is universal (defined independently of the type of orbital path),
unlike, for example, the parameter used by Sun, Vinh and Chern in their recent
paper26; it also has the advantage of being non-dimensional, which facilitates

the switch from L-congruence to L-similarity.

The parameter x , as just introduced, is the iteration variable used in
the milestone paper by Lancaster, Blanchard and Devancy8 (of which Ref 10 is a
somewhat expanded version) underlying much of the work reported here. It has
been shown by Sarnecki28 that x has a dynamical interpretation, being a non-
dimensionalized value of the velocity in the (rectilinear) solution of the
Lambert problem for the degenerate triangle that is L-congruent to the given one
and is such that r1 2 r2 s
direction of V (now pure radial) is inward or outward, and (in principle - see

x 1is positive or negative according to whether the

also section 3) this resolves the ambiguity in the sign of x outstanding from
the last paragraph. (Battiu12 finds an interpretation for x in terms of the
actual problem, whilst a geometrical interpretation of the paramcters of the
classical Lambert-Euler equation, also involving the rectilinearly equivalent
problem, is given in Ref 20,) Sarnecki's interpretation, which requires P1 to
be the more distant point, involves an intrinsic (and perhaps sutprising) lack
of symmetry; thus s = max (ri, r2) when P1 and P2 are connected by a
rectilinear orbit. It is clear from equation (1), now that there is no longer
an ambiguity in the sign of x , that [x]| < 1 for elliptic orbits, x =1 for
parabolas and x > 1 for hyperbolas. Values of x ¢ -1 do not arise; they
would be associated with negative values of At . There is an apparent distinc~
tion (asymmetry) between the elliptic and hyperbolic paths corresponding to a

given pair of points P1 and P2 } if a positive value of 1/a , less than 2/s
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is given, equation (1) gives two values of x , numerically equal but opposite
in 8ign, and to each value there corresponds an elliptic orbital path; if 1/a
is negative, on the other hand, only the positive root of (1) is legitimate,
implying only one hyperbolic path, But suppose that, for a given value of 8
less than w , we consider the path for 2r - 08 as well as the path for 0 ;
then for ncgative 1/a there are two hyperbolic pathis that are quite distinct
(though having the same value of x), whereas for positive 1/a the two
'additional' elliptic paths, one associated with positive % and one with
negative x , ave merely the 'orbital complements' of the two original paths
(with reversed signs of x). Thus the apparent asymmetry between the two types
of orbit (and parabolic orbits bchave in the same way as hyperbolic orbits) has
no real significance. The nature of the various orbital paths is well illus-

trated by Figs 3.7 and 3.8 in chapter 3 of Ref 2.

3 THE ALGORITHM FOR COMPUTING At

An algorithm for At , in terms of x , requires a pair of Lambert-
invariant parameters to specify the relevant triangle. By thinking in torms of
L-gimilarity, rather than L-congruence, however, we can reduce the nunber of
triangle parameters from two to one, so long as the output is made non-

8,10

dimensional; we follow Lancaster et al in replacing ¢ by T , where

)
r - (‘3!31) A . @

s

The choice of s , as '"length scale' in equation (2), pays divideads (and was
also made in some of the papers by Battin and his colleagues, ¢y in Ref 18). 1In
the classical procedure of Gauss, on the other hand, the length scale is
effectively vs(s = ¢) , whilst in the modification of Gauss's method due to
Battin and Vaughan23 it is somewhat more complicated - Ref 23 is perhaps the most
interesting of the papers since the pair by Lancaster et al, and Appendix A is
devoted to a brief discussion of this Report and the underlying method oi Gauss.
Finally, in Ref 26 the scale length is effectively 23 - ¢ , e ¥, +r, . The
advantage of s over any of these alternatives is that T (as opposed to the
quantities corresponding to it) is monotonic with respect to 0 (for fixed x),
which makes for the essential simplicity of Fig 2, introduced in the next para-
graph; further, we have already seen that s is the quantity that is directly
associated with the minimum-encrgy path. The importance of using g as the
length scale must not be exaggerated, however, as the use of one of the alterna-

tives does not affect the progress of the iteration process, except of course if




the ucale becomes zero, in parsicular with Gauss's scale when s = ¢ . (The
presence of p in (2) debars the solution of Lambert's problem when p o is zerv;
x is then infinite, since a = 0 for the hyperbola intov which the solution
degenerates, and we can include this case in a general algorithm if we sacrifice

full Lambert-invariance and solve for xVi rather than x .)

The quantity T 13 a function of the two parameters x and 0O (defined

in section 2.2), but Lancaster et al use q , rather than © , where

q = cos igr/(1 + sin 5or) = tan %(n - 0.) . (€))

tare or is U reduced to the range (0, 27), so that

. __C
sm&@r = 4s - ° %)

Clearly, (3) and (4) lead to Lhe simple result that

< o= - sin40)/(1 + sinde) = 1-c/s , (s)

but (5) does not define the sign of q , whereas (3) does. We also have, from
(3) and (4),

q = (1 = c/28) cos Or s (6a)

which is just a particular case of the result that, for the general triangle,
follows from the standard 'cosine formula' and may be expressed as

VE1T2

s

cos ier ; (6b)

we refer to (6a) and (6b) in Appendix A.

When ¢q 1is the second parameter of the T-function, m is required in
addition (as a third parameter) to specify the number of completed circuits.
This brings us to Fig 2, which plots (as in Refs 8 and 10) T against x for
particular values of q and m (corresponding to selected values of 0). The
relation (almost linear) between q and @r is indicated by Fig 3, which also
plots OT,O and QT,m against 0r . Here OT,O is a quantity that may be
regarded as a 'time-linearized' version of 0, » Ze it is defined over the range

(0, 2%) in such a way as to make T a linear function of Op o When x =0
¥

L0

Attt i,
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similarly, OT o Decomes time-linearized as x tends to = . These two curves
»
are much less linear, the non-linearity for OT 0 being pronounced. (As

- 14
X %*» , T behaves like 2x '(1 - qlq]) , so OT W = (- alqly )
»

The most striking feature of Fig 2 consists in the gaps (unrealizable
regions) that occur in the part of the figure associated with elliptic orbits,
Thus, as O increases through a multiple of 2n , for a fixed value of x 3uch
that 0 < |x| < 1, q jumps from -1 back to +1! and there is a jump in the value
of T . This brings us to the difficulty, referred to in section 1 in relation
to the use of 6 , in the functional representation of T as T(x,0) rather
than T(x,q,m) ; when @ = 2mmn and x # 0 , in fact, 7T/x,0) is not unique,
the values of T(x, -1, m = 1) and T(x,!,m) not being the same. Though this
is not a major defect in the T(x,0) representation, as we saw, it combines with
the greater efficiency of the T(x,q,m) representation to make us regard thec

latter as ‘'standard'.

We can account for the unrealizable regions of Fig 2 by studying (for a
fixed x with |x| < 1) the variation of T with © for the isosceles
representatives of the equivalence classes of triangles, If x = 0 , the con-
necting orbital paths are all minimum-energy trajectories, by equation (1), and
there is no jump at 6 = 2mm (we now write © , rather than © , since they are
identical for isosceles triangles). When x # O , for which a number of cases
(with a fixed value of x| , viz 0.5) are illustrated in Fig 4, consider first
the situation for & = 0 , regarded as the limit case as § reduces to zero.
Then our triangle is degenerate as well as isosceles, but the orbital path does
not itself have to be degenerate (rectilinear), In fact, any orbit through P1

trivially passes through P, after zero time (since the points coincide), and

this is reflected in the zego value of T when x >0 (left-hand illustration
of Fig 4a); uniqueness here derives from the isosceles~triangle assumption, the
limit case of this being such that che velocity is pure transverse and hence the
orbit non-degenerate - for x = 1/¢¥2 , indeed, the orbit is circular.2 (The

| o) An

entirely different path is available, however, that can be seen to be intrinsi-

general formula for eccentricity, under these conditions, is |1 - 2x

cally unique. It is given by a degenerate (rectilinear) orbit with V directed
outward from P1 , such that P, (still supposed coincident with P,) is
reached after non~zero T , even though © =0 ; this applies when x < 0

(right-hand illustration of Fig 4b), the velocity now being pure radial.

Now consider what happens as 0 increases from zero to 2m , with a fixed

x that is either positive or negative. The two orbital paths are always such




that T(x < 0) exceeds T(x » Q) ; and when 6 = m (Fig 4c), the path for

T(x < 0) 1is the reflexion in the line P1CP of the orbital complement of the

path for T(x > 0) , such that the point hal% way along the path is pericentre
if x > 0 but apocentre if x <0, lor ¢ > n , Lt becomes clear, from
symmetry considerations, that the pairs of orbital paths arc always shaped as
the orbital complements of the paths for 6 < @ , but with the sign of =
reversed in the correspondence (compare the pair of illustrations of PFig 4d with
the pair of Fig 4b). As 0 comes up to 2m (Fig 4e), the position is as
followst for x < O , the orbital path approaches the complete circuit of the
(non~degenerate) orbit from which originated the infinitesimal arc that applied
to 0=0 and x > 0 3 for x > 0 , on the other hand, the path approaches the
incomplete rectilinear orbit that complements the path applying to @ = 0 and

x < 0. 1In the latter case, the (initial) radial velocity now has to be inwaras
and (in the limit) the starting point is reached after reflexion (infinite-V

'bounce') from the force centre.

In studying T(x,9) beyond 0 = 2n , still assuming isvsceles triangles,
we have a choice in the way we ascribe the sign of x . To follow Lancaster et al
(and also Sarneckizs), we cffectively start again with a complete revolution
behind us, so that the position representcd by Fig 4e is Followed by the position
represented by Fig 4a with an orbit grafted on. This implies a double disconti=
nuity, so that for both x > 0 and x < 0 thare is a jump in the value of T
at 0 = 2v , b, AT say, equal to the value that T has when x <0 and 8 =20
(and hence equal to twice the journey time from P, to apocentre). With the
double discontinuity associated with this specification of the sign of x , we
have accounted for the unrealizable regions of Fig 2, as promiscd; at 6 = 2u
itself, there are three (not four) possible values of T (cf the original dis-
course on Lambert solutions in section 1) corresponding to a given |[x| , since
the limiting post=jump value for x > 0 is equal to the limiting pre-jump value
for x < 0 (same non-degenerate orbital path), both being equal to the orbital
period. But this very fact leads to the alternative way of defining x when 0
lies between 2mn and 2(m + 1)7 for any odd valve of m ; this simply reverses
the sign assumed by Lancaster ¢t al. Thus, instead of just 'starting again' at
9 = 21 , we 'switch over' (between left-hand and right-hand 1llustrations) in
returning from Fig 4e to Fig 4a., So there is now no jump in T when x < 0 ;
for x > 0 , on the other hand, there is a jump of 2AT . When we get to

8 = 41 , cthe position is the exact opposite: there is a jump for x < 0 , with

Lzo

x as redefined, but no jump for x > 0 ; the sign ¢f x now reverts to being




the game as in the definition by Lancaster ¢t a¢l. This alternation continues,

ad infinitum, for successive values of m .

Thus, if the alternative definition of (the sign of) x is adopted, it is
possible to plot a figure with only half the number of unrealizable regions, and
this has been done in Fig 5; when the sign of x is reversed, the sipgn of ¢
has tc be reversed as well, which makes q always continuous with respect of ©
(though dq/de@ will have discontinuities - see again Fig 3). 1t is emphasized
that both methods of definition of x are legitimate; tne original definition,
due to Lancaster ¢t al, leads to the simpler algorithm, however, and will be
adopted for the rest of this Report. In this context, it is worth remarking
that Sarnecki28 effectively presents an understanding of T{x,0) , obtained here
via the isosceles-triangle repreaentatives of the equivalence classes, by con=~
sidering the iegenerate=-triangle representatives, Then iacreasing values of 0O ,
for a fixed value of x , can be interpreted in terms of the 'time-line' of a
1 (fixed

initial value), so that x (and hence s) remains constant., From Sarnecki's

single orbital path, so long as r, (now evolving) remains less than r

viewpoint, the unrralized values of T correspond to a breakdown of the con-
straint (that £,o2 rz), but, regardless of this breakdown, the original defi~
nition of x clearly fits this interpretation more naturally than the alternative
one. In Ref 23 (the paper that is discussed in Appendix A), on the other hand,
Battin and Vaughan make explicit use of the isosceles-triangle equivalent of a
given problem, in the solution that they offer as an improvement on Gauss's
method. (It is noted, for completeness, that Figs 2 and 5 can be extended to
cover negative values of T , by reflecting the existing contours in the origin;
for T < 0 it would be values of x > 1 , not x ¢ =1 , that would be impossible,
however, and this complication is one reason for restricting consideration to

positive At .)

Further light is thrown on the evolution of the orbital paths for isosceles
triangles, if the variation of the eccentricity is considered, and Fig 6 gives
contours of e 1in the (x,0)-plane, with x as 'alternatively defined'. (For

©=0 and x >0, we have e = |1 - szl , as already noted.)

The basic formulae for computing T from x, ¢ and m were given in
the papers by Lancaster et al and are repeated here (without proof) in Appendix B,
which gives some details of the Fortran-77 subroutine, TLAMB, that has been
written as the core of a universal procedure for solving Lambert's problem;
further details of TLAMB may be elicited from the listing in Appendix C. Fer

the present, a few remarks will suffice. The first is that, in addition te T ,




Gamanchinenn, R PR SRFIT SIS SR

h—“

14

the subroutine can generate, if needed, (partial) derivatives (up to the third)
with respect to x = we denote these devivatives by T' , T and 1"
Secondly, the basic formulae of Lancaster vt al do not give full aceuracy in all
circumstances; it should be ¢lear from Appendices B and C, however, that rounding
error is minimized in TLAMB. Thirdly, onc of the quantities used by the sub-
routine is conveniently introduced here, as it is needed in section 7. The

quantity is =z , defined by

z = + /(1 - q2 + q2x2) . @D)

1t has a dynamical interpretacion, similar to that given for x in section 2,
following Ref 28; thus 2/q 1is a non=-dimensionalized value of the velocity at
the oloscr point in the degenerate Lambert problem (z is never negative because
the direction of this velocity is looked after by the sign of q ). The com=
putation of 2z by equation (7) is itself an example of the potential loss of
accuracy, since in many situations it is desirable that 1 - q2 be regarded as
a quantity available independently of q ; this is true, in particular, when
m=0 and ¢ is close to I, t¢ when © 1is small., Because of this danger,
TLAMB hag 1 - q2 as an extra argument, the assumption being that it may be

computed directly from © via the rformula
1-¢q = c¢fs = 2 sin £®r/(1 + gin ior) , (8)

which ig immediate from (5).

4 LTERATION PROCESS

Though the starting value, x. , has to be available before numerical

0
iteration can commence, the iteration process is considered now, before we look

at starting formulae, because the iteration process drives the starting formulae
rather than vice versa. Thus, if just the basic Newton-Raphson method of
iteration is used, the devising of starting formulae to cover all cases becomes

an almost impossible task, When the Halley process, found to work extremely

well in the solution of Kepler's equation (for hyperbolic29 as well as clliptic3o

orbits), is used instead, however, the task is greatly cased. This is well

illustrated by the solution for x when its true value is 0.5 and © 1is small,

say 10=5ﬂ. Then (with the starting formula given by equation (10) in the next

section) x, 1is roughly double the true x , after which the Newton-Raphson

0
process leads to an x ery close to zero and the iterative process effectively

I




stagnates; the Halley process. on the other hand, gives an x, very ¢lose to
the true value, after which convergence is rapid, (The reason for the accurate

®x, computation, in circumstances such as these, is that for very small & and

xl>> V6, T behaves like 1/x , which is a bilinear function, and the Halley
method gives au immediately-correet solution for bilineatr funcnion331.) In
defence of the Newton-Raphson process, on the other hand, it is remarked that

it works very well when the value of O approaches 21 and |x| is small, so
long as the appropriate starting formula from section 5.2 is used; this is
notwithstanding the explicit warning (against using the process in these circum-
stances) issued at the end of Ref 10, an unwarranted warning to which there will

be further reference in the present paper.

The Halley method is essentially the Newton-Raphson method extended to give
third-order convergence, 8o it requires T" (the second derivative of T with
respect to x ) as well as T' (the first)., Since Halley's method was also
adopted for the iteration involved in a subsidiary problem that arises when
m = 0 (see gection 5.3), to satisfy an equation expressed in terms of T' , we
sometimes also need T"' ; this is why the subroutine TLAMB generates derivatives

up to the third.

In the present study, the iteration process is incorporated in the
Forcran-77 subroutine, XLAMB, that generates solutions for x and is listed in
Appendix D, ‘The input of XLAMB consistg of m, q , 1 - q2 (supplied separ-
ately for the same reason as in TLAMB) and T , and its output is as follows:
the integer N (defined in section 1) that specifies the actual number of solu-
tions (this should get set to 0, 1 or 2, though a value of =1 is also theoreti-
cally possible, constituting the flag to be defined in sectionm 6); x , a solution
when at least one exists; and x" , the second solution when there are two (x+
is actually the first of the twc solutions to be described in section 5.3, so it

is always positive).
5 STARTING FORMULAE

5.1 Introductory remarks

The requirement in regard to starting formulae fcr the iteration process
is for an approximation to the inverse of the function that (for given m and
q ) generates T from x . When m = 0 , there is formally no difficulty, since
there is a unique x to which the 'starter' is to approximate (in view of the

assumption T #0 )., When m > 0 , on the other hand, this uniqueness does not
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normally apply: the normal cases are of 'no solution' and 'two solutions', but

the case of just one sclution, arising as two solutions merge, is also covered.
All the starters have been incorporated in the subroutine XLAMB.

5.2 Single-revolution starters

For m = 0, the curves in Fig 2 are strictly monotonie, cxcept when q = |
and x > 0 (excluded case of T =0 )., As an obvious first move, we can deter-
mine the sign of x by evaluating (by TLAMB) the value of T , T, say*,
corresponding to x = 0 . Then the sign of x is the sign of T0 -~ T, and it

is used to distinguish two cases,

Suppose first that x > 0 . Then we can approximate to the contour

T(x,q,0) , for the given q (regarded as fixed), by the bilinecar curve
T = TE/(T + 4x) (9
o' “To '

The rationale for this, as a particularization of the general bilinear expression
(a *+ bx)/{c + dx) , is that it satisfies the following three constraints: first
that T tends to 0 as x tends to infinity; secondly, that T = T, for x =203
and finaliy, that T' = -4 for x =0 . (Té has a fixed value, though this
is not obvious from Fig 2; when |qj =1 , it is not defined, but the one-sided
derivatives both exist, being -8 on one side and 0 on the other so that Té still
has a conventional value of -4.) The merit of the bilinear approximation is that
it is inmediately invertible, the inverse function being also bilinear; thus from
(9) we get, as our starter for x > 0 ,

Xy *° TO(To - TY/4T (10)
If x <0, we proceed in the same way, this time approximating tte

T(x,q,0) contour by the bilinear curve that is most naturally expressed as

4x
T To vy

T (11)

The first of the three constraints that lead to (11) is that T tends to
infinity as x tends to =1; the other two constraints are the same as for the

case x > 0 . On inverting, to get x as a bilinear function of T , we have

* The zero suffix in T, 1is notated differently from the zero suffix in x
reduce possible confusion between the two different meanings.

o,to
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T = To
X9 ¥ "¥=T. %% (12)
Q
This formula, (12), is as elementary as the complementary one, (10), but it was
found to work much leds well and it was necessary to patch it; this is why the
left-hand side of (12) has been written X5 rather than Xg The patching was
of a complicated nature, with some arbitrary features, but it will be summarized

(in the next three paragraphs) for completeness,

Equation (12) actually requires two patches. The necessity for the first
became apparent for values of © greater than about 1,999w, and it was ascribed
to the proximity of the (left—hand half of the) curve for © = 27 (q = -1), for
which the value of Té should actually be zero (as opposed to -4, for
0 <0 <2r)., Now Té is autumatically zero for a curve that is bilinear in
xz (rather than x ). Hence we are led to consider the alternative

approximation

I R O VIS (13)

in which only the term ixz requires explanation - it gives Tg its cotrrect
value (6n) for © = 2w , where T, = 27 . The behaviour of T" follows from
equation (B~16) of Appendix B. Thus, if |q] < 1, T" is defined and finite
for all x , but it is unbounded as [q| approaches unity and x approaches
zero, If |q| is actually constrained to be unity, however, T" 1is bounded in
the neighbourhood of x = 0 3 it is strictly undefined at T = O , but may be
regarded as 'effectively defined' since it has the same limiting value, equal
to 3To , for an approach to the limit from either side. The inversion of (13)
may be written
Xg % VQ(T =TT + LTO)} . (14)

At this stage we have two possible formulae for our desired starter, the
first (and simpler) being normally to be preferred; thus the possibility of a
weighted combination arises, We start by computing what has been found to be a
suitable empirical eriterion, given by

ot 1.7/(2 =~ o/m) , (15)

in which, since Xgy < 0 , the two terms are of opposite sign. If W30 , we




sumlipmie

use Xy, without adulteration, but if W < 0 we use a weighted combination of
%oy with Xg » 80 that the starter is potentially of the form

X = X ' if wso0
03 01 , (16)
Xo3 = Xgy * w(x02 - x01) if W<O

where (still empirically) the weight w is (-w)"'é , the 16th root being
computed as YWV ; the transition from the pure «x
clearly continuous.

01 to the weighted 03 15

The second limitation of the simple starter, (12), was assocliated with
(true) values of x close to -1, the potential starter, Xg3 ! giving a value
much foo close to =1, This flaw has been dealt with by applying an empirical

factor A to x4, , SO that the final starter (for x < 0 ) is given hy

Xy = Axoa . (17)

The formula used for A is

2 —
A= 1+ L1x03(1 * xOI) - c2x03V21 * XOI) . (18)
with values of ey and <y equal ‘empirically) to 0.5 and 0,03 respectively;

to minimize rounding error, 1 + X0 in (18) is computed as 4/(4 + T - To) ,
in conformity with (12).

A point concerning the patching of (12) in the vicinity of (x,q) = (0,-1)
is worth discussing., We sec from (15) that W is zero at this point, so the
patching associated with (16) can have little effect in its vicinity; moreover,
the effect of the patching associated with (17) is very slight for x= 0 , so
(12) is essentially unpatched. But the xoz/x03 patching was only introduced
because %04 has the ‘'wrong' left-hand derivative at (0,-1), so there is the
appearance of a contradiction here. The paradox is resolved if we bear two
points in mind. First, the basing of (12) on the value of T0 means that there
can never be a problem when x =0 . Secondly, so long as q 1is not exactly
~1, the derivative actually has the 'right' value (~4) at (0,q), no matter how
close © is to 2m . Thus, for a value of © such as 1,999997, the unpatched
starter fails in the vicinity of an x-value around ~0,05; much closer to zero,
however, all is well again. In this context, the inflexion-point curve of

Lancaster and Blanchard (Fig 4 of Ref 10) is relevant, though their associated

B
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atatement, about the need to chandon the Newton-Raphson process in the region in
question, is unjustified (as already noted in section 4),

5.3 Multirevolution starters

For m > 0 , we again make use of the value of 'I‘o (corresponding to
x = 0, for the given ¢q ), but this is not now the primary source of information
in devising starting formulae. The primary gource is TM , the minimum value
of T for the given q , together with the associated value of x , X, . As

M

seen from Fig 2 (and from consideration of the behaviour of T' and T" ), TM

and xy are uniquely defined; further, Xy 0 when q =1, and otherwise

Xy > 0 . Once TM is known, we immediately know whether the Lambert problem
will have two solutions (T > TM)‘ one (T = TM)' or none at all (T < TM)' but

the evaluation of Ty (and Xy ) is a non-trivial matter, itself requiring an
iterative process ~ a solution is required to the equation T' =0 . For this
subsidiary problem, the same iteration process has been adopted as for the

Lambert problem (with the resulting need for T"' , as remarked in section 4),

so there are two topics to be covered here: first, the starter for this subsidiary
problem; and secondly, the formulae for the two Lambert-problem stavters that will
be needed as soon as values for T, and x,, are available, assuming that

M M
TM <T.

In regard to the starter for x, , we need the value of Ot , which can be

M
recovered from ¢ , since, from (3) and (8),

"
1o, = arg(2q, 1 - ) , Q5]
where arg(x,y) is tan-l(y/x) computed unambiguously and implemented in

Fortran by the ATAN2 function. It can be shown that for 0 = 1m (e for q = 0)
a good approximation to Xy is given by 4/{3n(2m * I)} , which we denote by

Xy g From this it has been found, empirically, that for @r < v a good
starting formula is (omitting the formal zero-suffix from Xy )
x, = x, (0 /n)% s (20)
M M,m
whilst for 0, > it iz (symmetrically)
X, = X {2 = (2-=-0 /n)%} 2n
M M, r '
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Having determined Xy and the corresponding TM , wWe now supposc that
TM < T , g0 that the Lambert problem has a pair of solutions with a starting
formula required for both., For one solution we have Xy <X, 850 X is certainly
positive, and this leads to the simpler of the two starters, since To 15 not
used, In principle we get %y (the required starter) by inverting the particular
bilinear approximation to T , as a function of (x - xM)z, that (1) gives
T =Ty wvhen x = Ky v (ii) makes T tend to infinity as x tends to unity,

and (iii) has the correct second derivative (Tﬁ) at x = x This bilinear is

"
R N O L I R LIS I Al B (22)

wnd its inversion leads to the starter

Ko = ®y * [(’I‘ ~ 'J:M)/HT;1 + (T =T1)/0 = xM)ZI] . (23)

We should really not write X in equation (23), as it requives a patch that is
based on the one defined by (17) and (18) but is a little more complicated; the
details of this patch are omitted, however, but they are available from the
listing of Appendix D. (A unew constant, CA,1 , 18 involved, as well as the
constants, 4 and €y s from (18); also, m and © are arguments of the
patch.)

For the starter for the other solution we have x < ¥y o SO Ve use the sign
of T = T0 to distinguish between two possibilities (ignoring the third possi-
bility, T = T, » which is as trivial as the one-solution case, T = TM ). If
T > T0 , then x < 0 and we proceed exactly as when m =0 and x < 0 ; thus

H
we just use To , hot requiring TM , and we patch the elementary formula for
%4 in two different ways, as before (with the second involving a new constant,
€,z 0 28 well as ¢, and c, from (18)). Finally, if T < T, » we have
0<x« Xy > and now we use both To and TM » We base Xy on the particular
bilinear approximation to T , as a function of (x - xM)2 , that (i) passes
through the points with (x, T) equal to (xM , TM) and (0 , To), and (ii) has
the corsact second derivative (Tﬁ) at the former point., (We could match T; .
instead of TQ , but the resulting Formula would be as complicated as equation

(25) following.} This bilinear approximation is

2
el -
"TM(X Xy

T & T +
|+ (x - xM)Z{ug/(TO -1 - 1/;{{

M

, (24)

£20
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and ita inversion lcads to the starter

. )

, T, TM B .

" o = " - - 2 ’
by - (T - 1) {MM/TO 1) - /xM}

equation (25) is a complicated formula, but no patching of this starter has been

*0 *

found necessary.

6 COMPLETION OF CONVERGENCE

29-31 on the two Kepler equationg)

It was decided (again following the work
to aim at a fixed number of iterations for x , rather than employ a convergence
test, In program testing, carried out on a PRIME computer providing 14 decimal
digits in double precision, it was found, for m = 0 , that three iterations
always sufficed for the determination of x to 13 digits, asuggesting that (for
levels of precision up to this) no truncation error remalned; it was legitimate,
therefore, to fix the number of iterations at three. The foregoing is an over-
simplified statement of the accuracy achieved, however, and an amplified version

now follows,

It was arranged, in testing, that the relative error in x (true value
agsumed known - see section 8), after a pre-set number of iteraticns, should be
computed, as well as the relative error (residual) in the value of T finally
computed by TLAMB (as compared with the given T ); the smaller of these two
relative errors, € say, was registered for each teat case, following the
rationale given in section 1 of Ref 29, and after three iterations it was found
that ¢ never exceeded 10=13. (This rationale, to he invoked again in section 8,
is based on the proposition that the accuracy in a numerical solution of the
general equation f£(x) = Y should always be agssessed in terms of the numerically
smaller of the relative error in x and the relative residual in Y ; assessment
in terms of just the former could amount to a demand for the impossible.) For
completeness, it is worth remarking that when the process was reduced to two
iterations the maximum value of € was found to be about 2 x 10-6, this being
the relative error in x that arises when © = 1.71v and x & -0.9944 , For
just a single iteration, on the other hand, the maximum value of ¢ 1is 4.3 x 10-3,
occurring for values of O approaching 2v and for x = 2,28, Finally, the
maximum value of & prior to any iteration, fe due to the starter itself, is
about 0.5, being associated with the 100Z over-estimate by LI when 0 is
small, noted in section 4. Consideration of the convergence when m > 0 1is held

over to section 8,

[
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For the convergence of x, in the 'subsidiary problem' (as defined in

M
gection 5.3), it was soon clear that a fixed number of iterations would not be
right. There was something of a dilemma here, in repard to the philosophy to

adopt, since, on the one hand, great accuracy in x,, should not really be

M

required, as X, is only a step to the atarter for the main problem; in critical

cases, on the other hand, an incorrect xM could lead to the erroncous con-
clusion that the particular Lambert problem possesses no solution, It was
eventually decided to op . e on the (conservative) basis that Lteration would
end as soon as the value of Xy changed by less than three parts in 107 during
the current iteration. With the cubic convergence of Halley's method, this meant,
in principle, that, in a hvpothetical further iteration, Xy would not change by
more than three parts in 1020 = thig follows from the discussion of convergence,
in the context of Kepler's equation, in Ref 31, This expectation was confirmed
when it was found that there was usually no change in the value of T itself il
the 'further iteration' was actually performed. Tests for values of O covering
the full range of ¢ were carried out} the maximum number of iterations needed

to satisfy the x, criterion was found to be nine, but the number was only three

in the vast major?ty of cases. This was true even for larpe values of 0 , the
convergence being essentially dependent on ¢ tather than m . To provide a
guaranteed exit, however, it was arranged that if the criterion was not satisfied
within twelve iterations, then the process would be abandoned and a flag set;

reference to this has already been made (section 4),

It is worth noting how convergence for x,, would be affected by substitut=

ing the Newton-Raphson process for the Halley p?ocess. For most of the q-range,
the effect would be to add only a single iteration, taking the total from three
to four. For values of q approaching 1, however, ¢¢ for correspondingly small
values of Or , there is a steady rise in the number of iterations required by
the Newton—-Raphson process - the maximum number experienced in the PRIME testing
was 16, corresponding to nine for the Halley process. To avoid this behaviour,

it would be necessary to improve the starting formula, (20),

7 COMPUTATION OF VELOCITY

We come at last to the solution of an individual Lambert problem. It is
assumed that we have obtained a value of x (and also, where appropriate, x )
for the Lambert—equivalent class of problems, and it remains to compute, for
both of the points P1 and P, , the velocity components (vR and VT) correspond-
ing to the specific quantities (ri, r2. 0 and At) of the original problem. This

computation is performed by the overall Lambert-solving subroutine, VLAMB, which

e £20
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calls XLAMB (which itself calls TLAMB)., VLAMB is listed in Appendix E; it will
be seen that its arguments arec precisely the quantities summarized (for the full
Lambert solution procedure) in section 1. (For 'minimalist' derivation of the

formulae for V., and V see Ref 28,)

R T°
A formula for VR | was given by Launcaster and Blnnchardlo. This can
]
be improved upon, however, to make it more accurate and efficient. The resulting

formula is

Ve oy = v{(qz = %) = n(qz + x)}/r1 R (26)
where v = V(us/2) and p = (rI - rz)/c . The formula for VR 9 s similarly, is
VR,Z = = Y{(qz - x) + p(qz + x)}/r2 . 2n

Sarnecki's interpretatian528 of x and 2z are immediately apparent, on putting

g=1.

We must have |p| ¢ 1 , of course, except that p is indeterminate when
c =3 (P1 and P,
But if ¢ =0, q=%1, so that 2z = {x| by (7), and then for x # 0 there are

coincide), in which case VLAMB arbitrarily sets it to zero.

two possibilities, depending on whether q and x are of the same or opposite
VR’1 and VR,Z
indeterminate (see also the explanatory material in sections 1, 2.1 and 3), and

R, 1 and VR,Z .
There is no indeterminacy when q and x have opposite signs, on the other hand,
VR,l and VR.Z (also VT,1 and VT,Z )} are then independent of p ; we
now have the rectilinear orbita illustrated by (the limiting form of) Fig 4a (on

sign. Only when the signs are the same do themselves become

then the arbitrary value of ¢ yields conventional values for V
since

the right) and Fig 4e (on the left).

A formula for was not given directly in Ref 10, but only via the

v
T,1
orbital elements a and e , with a serious threat to accuracy in awkward cases.
The direct formula is
= +

VT,1 yo(z qx)/r1 , (28)
where in principle o 1is defined as (1t - pz)i ; to minimize rounding ercor,
however, in practice we compute

o = 2Dl singo, 9
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sctking o = 1 (compatible with p ) when ¢ = 0 . Similarly,

VT‘2 = yo(z + qx)/r2 . (30)

Naturally, VT 1 and VT 5 Aare indeterminate in the same circumstances as
¥ »

Vo and Voo o with compatible resolution of this indeterminacy.
4 13

For use in equations (26) to (28) and (30), the values of qz -~ x%x , qz + X
and 2z + gx ave given, to optitmum accuracy, as special-case output from the
subroutine TLAMB, in a post-XLAMB direct call by VLAMB. The special case is
signalled by the setting of (input) N to =1, which causes the quantities in

question to be computed in place of T' , T" and T" (see Appendices B and C).
P PP

8 TESTING RATLONALE AND RESULTS

The subroutines TLAMB, XLAMB and VLAMB were tested for a wide range of
data, starting with TLAMB which is a self-contained procedure implementing a
direct algorithm (for computing T from x ). Problems of accuracy with this
subroutine seemed most likely to arise with input for which q was close to %1,
or else x was close to ! or zero, so testing was particularly thorough for
data in these categories, Further, there are (for m = 0) two transitions (from
ellipse through 'series' to hyperbola), one each side of x = 1 (see Appendix B);
the regions in the vicinity of these tramsitions, defined (in TLAMB) in practice
by x = /0.6 and x = /1.4 , were tested the most carefully of all, with con-
sistency carcfully monitored. The tests were entirely satisfactory, and Fig 2
was based on the output - itg consistency with the Figure given by Lancaster

et al was an additional confirmation that all was in order.

The testing of XLAMB followed a natural procedute for validating the
iterative solution of an equation., Thus, the parameteis of this subroutine are
effectively 7 and T , but instead of ranging over T the test data actually
ranged over x . Then each 'true' x (with a given © ) was the source of a
nominal test value of T (via TLAMB), after which the testing of XLAMB could
proceed, with the true x wused (ar the end of the test) merely as an accuracy
evaluator. Only one solution (in two-solution cases) could be relevant to this
evaluation; further, the specific one-solution cases and the no-solution cases
then required separate testing. The general testing was very thorough, with
values of 0, taken very close (and even equal) to O and 2 , and (as already
remarked in section 6) it has indicated that, for m = 0 , 13-digit accuracy is

always achieved within three iterations. (The testing extended to a value of

L20 -
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25 , . . . :
10 for x ; this confirmed that full accuracy was maintained as the attractive

force was effectively reduced to zero.)

A particular case was examined in detail, namely, that for © = 1,99367%
and x %= 0.159 , chosen because this implied an input of q = 0.99 and T = 5.0,
for which the paper by Battin and Vaughan23 indicated the worst convergence
behaviour of the cases the authors considered. In fact Ref 23 registers 14
iterations as necessary in the modified version of Gauss's method of alternating
subgtitution (see Appendix A), just to get a solution to 8-dizit accuracy.
(Boltzza claims to achieve faster convergence than Battin and Vaughan, but he
does no better in the worst cases compared.) Ref 23 suggests that methods of the
Newton-Raphson type fail in these circumstances, but this is far from so (in
spite of the remark of Lancaster and Blanchardlo that originated this suggestion,
already commented upon here in gections 4 and 5.2). Thus the values of ¢
(from section 6) after zero, one and two iterations are, respectively, 0,043,
1.3 x 10-4 and 5.2 x 10-12; after three iterations, e 1is too small to detect,
but it would evidently be around & x 10-34 in the absence of rounding error.
The figures quoted are for the Halley iteration process incorporated in XLAMB,
but (as it happens) the results are no worse if the Halley process is replaced
by the Newton-Raphson proecess. lowever, this comspicuously good behaviour is
largely due to the bilinear starter, so it was worth seeing what would happen if,
for compatibility with Ref 23, we took Xy from its value for the sifiular
orbit through P1 and P2 . The formula for this is Xg = q(1 + q7) .
giving about 0.704 for the case considered. Then the values of e , with the
built-in Halley process, increased to 0.36, 0.012 and 3,4 x 10_6, for iterations
up to the second, the value after three iterations still being 'submerged in
rounding noise '. When the Halley process was replaced by the Newton-Raphson,
however, it was another story: values of € , taken now as far as the third
iteration, were 0.36, 0.23, 0.034 and 6,2 x 10_4. For this example, the con-
clusion is clear: only if the starting formula and the iteration process are
both degraded will convergence deteriorate seriously; even then our normal
criterion would be met after at most another two iterations.
13

in all cases,

though for m = 1 the maximum value obtained was still only 1.1 % 10"13. For

For m > 0 , the value of ¢ 1is no longer less than 107

m>1 , e{max) grows steadily - the initial growth rate of its common
logarithm, with respect to m , is about 0.3, but the rate falls off gradually,
e(max) being about 3 x 12—12 for m =5, 8 x 107" for w =10 , 6 x 10-8 for

m =30 and 3 x 10“‘5 for m = 100 . (Up to about this point, full accuracy would
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be restored by going to a fourth iteration, since this reduces e(max) to about

1.7 % 10713 when mw = 100 ; it rises to about 2.4 x 107 '°

when m = 200 , howevet,)
The growth of e(max) with m is entirely due to a defect in the patching, for
x < 0 , such that the condition for invocation of the pateh involving c4’2 is
sometimes not satisfied when one would like it to be. As the patching is
empirical, it could in principle be improved without much difficulty, but the
need to do this is so obviously academic that the matter has not been pursued.
it is worth remarking, however, that for large values of m , the accuracy of
XLAMB ig surprisingly sensitive to the particular values assigned to ¢y and
c4’2 -~ small changes can easily lead to a worsening in accuracy by several
orders of magnitude. In view of the empirical nature of the patching, it is
paerhaps to be wondered at that the wmultirevolution starters have performed as
well as they have.

The testing of VLAMB was based on the idea that, for each Lambert solution,
the output VR,1 and VT.1 of the subroutine can be combined with r, (together
with a pelar refetence angle, taken as zero) to constitute the four necessary
components of data, associated with the point P‘ , for input to the subroutine
PV2ELS. This subrautine27 then generates the corresponding set of four universal
two-dimensional orbital elements, one of which is 1 , the time from pericentre
(a conventional point if the orbit is circular), When 7T 1is updated te T + At ,
with the other three elements unchanged, a nominal position (plus velocity) for
the point P2 can be obtained f£rom ELS2PV, the subroutine that is inverse to
PV2ELS. This position is specified as a radius vector and a polar angle, so the
performance of VLAMB, and hence the success of the overall solution procedure,
can be assesscd by a direct comparison of these quantities with the input (test)

values r, and 6 ; we denote the (absolute values of) the differences, in r

and 6 , by dr and %58 . Ideally, looking at relative errors, we should liki
ér/r2 and §3/6 , which we can denote by 6r and 60 , to be no greater than,
say, 5 » 10 '~ (on the PRIME computer).

For various reasons, this 'ideal' requirement (in VLAMB testing) is too
stringent. First, if the velocity is (in relative terms) very great at Py
then a large magnifi:ation of the relative rounding error may occur that is
completely unavoidable. For Sr , this magnification will be allowed for, in
principle, if we do not automatically divide &r by r, but instead use t

R ’
where

e rnax(r2 , IVR,ZI ae) . (31)
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(We define ty similarly, and apply the factor rzer to 66 .) This does not
fully compensate for the velocity effecct, however, since At may have a large
derivative with respect to the value of x determined by XLAMB; this secondary
cffect is allowrd for if we replace At in (31) by max(At , [x d(At)/dx] ).
(''he rationale here is the same as the one involved in the definition of ¢ in
section 6; the value of the derivative comes at once from T' , using the

relation between At and T in equation (1).)

With the foregoing allowance for the velocity at P the modified value

]
of 6r satisfied the 'ideal requircment’ for all tests with r, »r, , but a
further complication with the test criteria was observed in tests with ry >k,
(We have hitherto thought of r, as being at least as great as £y becauge of
the acsociation with the definition of x , but this restriction did not apply
in the testing of VLAMB.) The difficulty may be understood in relation to situ-
ations with r, > 1,
with a > r, , since then the determination of the element a(=u/a) by PV2ELS

, and with a value of x corresponding to a semi~major axis

is inevitably inaccurate, 1In principle, it would be better to replace it Ly the
value given {(from x and s ) by equation (1), but as the object of the exercise
was to test the new subroutine (VLAMB) with the exiating subrcutines PV2ELS and
ELS2PV, this has not been done. Instead, the question "what empirical further
relaxation in the definition of 6r (and similarly 8q ) would cause the diffi-
culty to disappear?” was addressed, It was found that an additional division,

in computing the relative errors, by the ratio r2/rI , oY rather by

max (1, r2/r1) to cover the other case (r‘ b rz) as well, would for the most
part resolve the problem; complete resolution became possible on replacing the

empirical ratio rZ/r1 y the even more empirical (rz/r1)1°3 .

With 8, and 68 adjusted on the rationale of the last two paragraphs, it
was found that Sr always satisfied the 'ideal vequirement', but that 66
could fail to do so when © was less than about 1 radian. Under these circum-
stances, replacement of the relative error (50) by the absolute error (66)
permitted the requirement to be satisfied, but this is hardly surprising, and,
in view of the desirability of maintaining relative accuracy for Lambert problems
with small values of 3 and At , it was important to know whether the logs of
accuracy arose ir the Lambert procedure itself or in the test procedure via
PV2ELS and ELS2PV. Tests for very small values of both the input parameters
have indicated that the errors are entirely in the test procedure. The expla- ‘
nation is that PV2ELS and ELS2PV were not designed for extreme accuracy in moving

between close points on a given orbital pathj in particular, this follows from
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the subroutines' built-in refecrence to a pericentre, which is likely to be a

point that Is remote from the given points that arve neighbours, (It would be

possible to formulate the subroutines in a differcnt way, but this would involve '
consideruble complication in the solution of the two forms of Kepler's equation;
thus, for an elliptie orbit it would be necessary to solve an equation for the
eccentric-anomaly difference E1 - E2 , rather than solving the classical equation
for EZ . Lancaster has written‘3 on the Lambert problem for short arcs, whilst
Battin!2 has considcred the effective inversion of Lambert's boundary-value

problem to provide a solution for Kepler's initilal-value problem!)

With the original definitions of 6r and 60 modified as indicated,

including the replacement of the lattur by &0 when 0 is less than 1, their

values remained below 5 x 10713

in all the tests carried out. In this testing,
the gsame range of values for © was used as in testing VLAMB, with the same
range of input=~x used as source for the nominal values of At . Separate values
of r, and r, were now provided, though only their ratio was actually signifi-
cant; this meant, of course, that the input © was no longer identical with 0 .
Vatious values for r2/r1 were selected, covering the range from 1O=6 to 106,
su the fact that (modified) 6r and 60 could be held to J x 10-13, over such
a wide range of % , 6 and r1/r2 , must be regarded as an entirely successful
outcome to the VLAMB testing; it incidentally increased the confidence placed in
the robustness of PV2ELS and ELS2PV, except in regard to the point of the

preceding paragraph.
9 CONCLUSTONS

A study of the literature on Lambert's orbital boundary-value problem shows
that the crucial contribution to the subject was made by Lancaster, Blanchard
and Devzmey8 in 1966, Some of the recent papers, unfortunately, do not refer to
Ref 8 at all, and their treatment of the problem is, to this extent,

retrogressive,

The orisinal paper of Lancaster ot als was very short (less than 1} pages)
and, though their approach was amplified in a later paper10, there has been a
need for the approach to be extended to a general computing procedure for selving
the Lambert problem. The present Report f£ills this gap, and has addressed, in
particular, the following topics not covered by Lancaster et ul: the provision
of universal starcing formulae for the procedure's itcration process; the method L
of iteration; the minimization of rounding error in all circumstances (not just
around the parabolic~transition region); the accurate computation of velocity;

and the test-~validatior of the procedure (with emphasis on extreme cases).
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The overall conclusion is that the procedure provides excellent accuracy,
in an efficient manner, for any problem that might arise in practice., Three
iterations of the iteration process suffice for the effective elimination of
rounding error, when working to an accuracy of not more than 13 significant
figures, When only 5= or 6=fipgure accuracy is necessary, two iterations will

be adequate - in most cases they will be a great deal more than merely 'adequate’,

The Report has attempted to facilitate a deeper understanding of Lambert's
problem by introducing the concepts of L-similarity and L-congruence (for the
basic triangle involved in the problem) and of Lambert invariance (for physical

parameters).
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Appendix A

GAUSS'S METHOD AND THE PAPER BY BATTIN AND VAUGHAN '

Ref 23 represents the culmination of a long study of Lambert's problem by
Battin and various co-workers. Ref 2 (his text-book) and Refs 12, 18, 19 and 23
do not cxhaust the list of Battin's contributiors to the subject, but Ref 23
represents a change of approach in which the authors return to the classical
method of Gauss, The essence of Gauss's method, of which Moulton32 and Plummer33
give traditional text-book accounts, lies in its iterative determination, by
'alternating substitution' (not a standard term), of a pair of Lambert-invariant
parameters, traditionally denoted by x and y . For an elliptic orbit, Gauss's
X is sinzrf'(E2 - El) , where EI and E, are the eccentric anomalies of the

points P, and P x also identifies with 4(1 = g) , where g is defined

B
by equﬂti;n (B=9) if Appendix B. Again, y 1= a quantity defined by the Lambert
triangle CPlP2 and the required orbital path, being the ratio of the area of
the ‘curvilinear' triangle to that of the ordinary 'linear' triangle, where the
curvilinear triangle has, for its 'side' PP, , the orbital arc rather than the
chord (so y is infinite when 0 =1 ); this identifies Gauss's y with T/4qa
in the notation ol Appendix B, where o 1is given by equation (B~4), Two equations

are available for comnecting x and y , vis

y -~y s mX (A“‘)

and

X = m/y2 -2 . (A-2)

In (A-1) and (A-2), ¢ is equivalent to g (in the notation of the main text)

since
2
£ = (1 -q)7/4q (A-3a)

L 22
= gin »Or/cos ior . (A-3b)

Computation of & from © , via (A-3b), is more accurate than computation from
q , via (A-3a), when 0, is small. For computation from o, rather than Or s

Gauss recommended a formula that may be derived from the basic relation )

/(r1rz) cos 40 = gs = J(r, +x,) cosio ,

1

fxAY
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which is just a combination of equations (6a) and (6b) of the main text. (This,
incidentally, identifies G with 2f in Ref 17.) Gausa's formula is

g = (sinzil:‘et + tan’ 2u)/cos § 6, (A=3c)

where w 1is given by

1
tan(w + tn) = (rzlr1)r '

and it is evident that (A-3c) is just a generalization of (A=3b). However, we
can get a still more accurate value of 2 1if we replace t:an2 2w in (A~3c) by
(/F1 - /;2)2/4/(r1r2) , and we do best of all, when an accurate value of

lr1 - r2| is available, if the replacement is by

(r, - rz)%/{é/(rIrz)(VT} + VFZ)Z} .

To return to the quantities introduced in (A-1) and (A=2), m (actually written
m2 by Moulton, following Gauss's Theoria MotusBé) is closely related to T
(preasent main text) since '

m o= uae)?/(8s7¢%) (A-4a)

from which, using equation (2) of the main text, we get

n o= T2/e4q . (A-4b)

Finally, X 1is a function of x alone, most concisely expressed, in terms of
the usual hypergeometric function, as %F(3,1,2§;x) , but most effectively com-
puted using continued fractions. The determination of y from x in (A~1) then
involves the sclution of a cubic equation,

Gauss based the iterative determination of x and y , to satisfy (A-1)
and (A-2) simultaneously, on a method of successive substitution (a form of
relaxation) that can more descriptively be referred to as 'alternating substi~
tution® when only two equations are involved. To see how the method operates,
consider (A~1) and (A-2) generalized to y = f(x) and x = g(y) respectively,
with an initial estimate available for x ; then we compute v, = f(xo) »

Xy = g(y1) ' ¥y f(xz) et~, and need to assess how the alternating sequences
converge, if at all, So let f' and g' denote the derivatives of f and 3 ,

- = -
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and suppose that f' and g' are reagonably constant over the square defined

by (x5 » y,) and the true solution (x , y). Then if [£'g'] < 1, an error, ¢
say, in Xy leads to an error of order f'g'e in X, » On this assumption, the
process is linearly convergent; the rate of convergence is rapid if |fg| <<t ,
but still only linear. Thus, though the process is likely to be very robust, it
is inherently inferior to the standard iteration processes for solving a single
equation in a single variable - in particular31 the Newton-Raphson process which
gives quadratic convergence and the Halley process which gives cubic convergence.
The main weakness in Gauss's method comes from the infinities in £ and m when
g = 0 (which should be the simplest of all cases), and a subsidiary defect lies
with the slow convergence in other cases. Battin and Vaughan have improved the
method significantly in both respects, dealing with the infinities by a redefi~
nition of all the quantities & , m, x , ¥ and X , in such a way that (A-1)
and (A-2) are (formally) still the equations to be solved. In particular, the

redefinition of mw 1is as
m o= T2/(1 +c1)6 ;

this still leaves an infinity, but now it is for q = -1 (0 a multiple of 2m ,

in the notation of the main text), which is a lesser fault but a fault nonetheless,
Battin and Vaughan deal with the other weakness by an adjustment of the equations
(A1) and (A=2) themselves, in a way that leads to a dramatic speeding up of the
cunvergence (via a reduction in the value of |[£'g'| , though they do not express

the alternating substitution process in this way).

It may well be supposed, however, that a much more drastic modification of
Gauss's method could be devised. If we remove the denominator in (A-5), and then
formulate (A-1) and (A-2) as an equation in a single unknown (as is hinted at in
Ref 14), we remove both the deficiencies completely. In doing this in the most
efficient way, however, we effectively just recover the method of Lancaster et al,
and it is ironic that the only reference to this method made by Battin and Vaughan
is a remark to the effect that '"the difficulties arising when @ 1is a multiple of
21 were recognized by Lancaster and BlanchardIO and necessitatc the abandonment
of the Newton-Raphson process". 1t is perfectly true that the possibility that
this process might have to be abandoned was suggested in Ref 10. In reality,
however, as should be clear from section 8 of the present Report, this is the
last circumstance in which it is actually profitable to change the iteration
process: the Gauss procers is inevitably still at its worst, in spite of the

improvements of Battin and Vaughan, whereas the Newton-Raphson process (or better

£20 .
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the Halley process) continues to do extremely well in three iterations; this
success must be attributed to the use of a good starting formula for the =x of
Lancaster ¢t al.

N e ——
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Appendix B
DETAILS OF THE TLAMB ALGORLTHM

The normal function of the subroutine TLAMB, which is listed in Appendix C,
is to compute the value of the Lambert-invariant parameter T , defined in
gection 3 of the main text, together with as many of its first three derivatives
(with respect to the Lambert-invariant parameter =x ) as are requited, The input
arguments of the subroutine are m , q , 1 = q2 , x and n , where n , when
0 ¢&n <3 (normal operation), spccifies the number of derivatives to be output,
the output drguments being T , T' , T" and T"' . When n = -1 , the sub=-
routine has a special function, namely, to compute the quantities B , B and A
that will be defined in due course; these quantitics then replace the arguments
T , T and T"' , there being no output T .

The basic algorithm for T 1is unchanged from the definitive work of

Lancaster ¢t ala’lo

, and we use the same notation, except for the introduction

of a , A, 2 and B, and for the use of u a3 a quantity that is the negative
of E in Refs 8 and 10. We start by summarizing the basic algorithm for T ,
T, T and T , including such comments as seem necessary, in particular in
regard to the computation of quantities with minimal rounding errovr. The
tounding-errer problems referred to here do not extend to the most serious one

of all, that arises for orbital paths that are sufficiently close to parabolic:
the entire 'basic algorithm' then has to be replaced by a series~based algorithm,
which i also rooted in the formulae of Lancaster @t al and is summarized after

the basic algorithm.

The basic algorithm operates whenever any one (or more) of the following
three ronditions applies: (i) m > 0 (multi-revolution elliptie path); (ii)

x < 0 (remote from parabolic path, for which x = 1 ); (iii) Jul > 0.4 , where

u = 1 -x" , (B=1)

the criterion (0.4) being an essentially arbitrary one. The appropriate part of
the basic algorithm also always operates when the special function of the sub-
routine is required, since there is never a need for series expansion when the
computation does not proceed as far as T . The following formulae apply to

both ellipses and hyperbolas:

y = m [} (B-2)
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z = Y1 - q2 * qzx2 . (8-3)
o = 2z-~dgx , (B=4)
A = z+qx , (B=5)
B = qz-x , (B-6)
B = qz +x , (B-7)
£ = ay (B-8)

and
g = Xz +qu ., (B-9)

In equation (B~3), 22 is computed using the input argument 1§ = q2 ,
provided independently of q , as part of the rounding~error minimization philes-
ophy, In respect of the next four quantities, it is actually o and B8 , rather
than A and B , that are normally required, vi3 o in (B-8) above and £ in
(B=13) below, so the flow will often bypass A and B (required, in their own
right, enly in the special operation of the subroutine). However, about 50% of
the time it will be necessary to compute o and B from A and B , to avoid
rounding error in subtractions, and sometimes (in the special operation) the
opposite computations will be necessary; the connecting formulae are

oA = 1 - q2 (3-10)
and

BB = (1 - qz)(qzu - xz) . (B=11)

It will also be necessary, 507 of the time, to compute g from

g = (x2 - qzu)/(xz = qu)

instead of from (B-9).

We now require a quantity, d , for which there are formulae that differen-
tiate between ellipses and hyperbolas. For an elliptic path,

d = mr + arg(g , £) , (B-12a)

B KLY
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where the arg function is as for equation (19) of the main texc, The corre~

sponding formula for a hyperbolic path is

d = tanh=1(f/g) , (B=-12b)

which may in principle be evaluated as 1n(f + g) , as assumed by Lancaster et al
(since f and g are equal to, not just proportional to, sinh d and cosh d ,
respectively). This would lead to serious errvor when £ is small, however (not
noted by Lancaster et al), so in this case we evaluate the inverse tanh function
by series; as in Ref 29, it is more efficient to evaluate d as

2 tanh~1{f/(g - 1)} , rather than as tanh-I(f/g) . It is perhaps worth remarking
on what may appear to be curious in the preceding formulae, namely, that the
elliptic and hyperbolic régimes can be dealt with by just two versions of a single
formula, equations (B=12); the cxplanation is that the distinction really starts
with the absolute-value sign in (B-2), as a vesult of which (B=8) and (B=9) are
reached with values of £ and g such that (apart from rounding error)

gz + E2 = 1 for ellipses and g2 - f2 = | for hyperbolas.

The formula for T can now be given, to cover all orbits that are not

'too parabolic'. 1t is
T = 2(d/y + B)/u . (B=13)

This is taken directly from Refs 8 and 10, where the formula for T' 1is given

as well, viz
T' = (3xT + Aqu/z - &) /u . (B-14)

In (B~14), as in (B-13), we are nout concerned with non-zero values of the
u~denominator, since they only arise with the near-parabolic régime that we are
not yet considering, but the z-denominator requires attention, From (B-3) we see
that 2z can only vanish when x is zero and |q| = 1, so we do not get an
infinity in (B-14) but an indeterminate term of the form 0/0 (herein lies a
further explanation of the discontinuities in Fig 2 that were remarked upon in
section 5.2). The effect of this indeterminacy is entirely localized, however,
with no spread of rounding error in the vicinity of the zero in 2z ; thus all

that is necessary is that the computation of T' be bypassed when 2z 1ie zero.

To complete the description of the basic algorithm, it only remains to
present the formulae for T" and T"' . These were not given by Lancaster et al,

but are easy to derive, on proceeding from (B-14) and bLearing in mind that

£20.
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2t = 20%/z . (B~15)

The formulae may be expressed in the same way as (B-14), but it will be secn
that real infinities now arise when 2z is zero; thus the possibility of overflow
exists, even when z # 0 , but (as with T' ) there should be no question of the

spread of rounding error. The formulae are

™ w31 s st s a@/2) (0 = @D/ (8-16)
and
5 2
T = {81" * 7XT" - 12x(q/2) (1 - q )}/u : (=17)
We now come to the series-based formulae that are required for T, T',
T and T"' when m is =zero, with x positive and such that |u| ¢ 0.4 . As
Lancaster et al indicate, following Gedeon6’7, the basic expression for T can
be written
T = ¢(u) - q3 ¢(q2u) , (B-18)
o
where ou) = z Anun s (B-19)
n=0
with
a = et/ 2anian + 3 (8-20)

But (B-18) is inaccurate for computing when q has a value close to 1, so we

replace it by a single series, vtz

n
T = z Bu (B-21)

where B. = Ab (B~22)

. (B~23)

PR
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Accuracy demands that b~ be computed with minimal rounding error. The
critical computation is of bo , which we gimply set to | =~ q3 if g9 <0.5 .
If q » 0.5, however, we set

by = fa+ /e ft-dh (3-24)

The two expressions for h0 are formally identical, but computing accuracy (when
needed) is given by (B=24), because of the assumed accuracy of the independent
argument (1 - q2) of TLAMB, Ffor n >0 , bn is given by the recurrence

formula

2n+1 2
- (R~
n aey T A (1 =q7) . B-25)

The computation of An is straightforward, since we may express it as

A= an/(2n +3) (D-26)

where a is given by the recurrence formula

a, = fan-nmba . (8-27)

with a, = 4 .

In principle, then, T is computed from (B=-21), with terms continually
added until there is no further change of value. But for values of [u] close
to the maximum (0.4) for which the series would be used, the convergence was
found to be rather slow. At the expense of a little extra computation, however,
it was possible to accelerate it by computing the series for sz instead of

T , and then dividing by xz (=1 = u2 , of minimum value 0.84), Writing

%2 z cu (B-28)

n=0
therefore, we have (for n > 0 , C0 being just BO)
= - = - - -
c, B, =B 4 A An_I)bn *a b o =b ), (B-29)

where, from (B-26) and (B-27), we get

{20

.
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AR NI (R VT S DY (B=30)

Thus the computation of T 1is based on (B~28) rather than (B~21).

Two additional complications arise with the computation of T' , T" and

™' , First, it is derivatives with respect to x that we want, whercas the
geries for T is in terms of u . Writing T for dT/du etc, we have

T = =T, {B=31)

o = 2.=

T" = =2T + 4x°T (B-32)
and

™ = 1217 - 8T L (8-33)
The other complication arose from the desire to compute sz , T , T , and T

efficiently within the same loop of code., It was decided that negligible accuracy
would be lost if the criterion for an unchanging value of sz was used to
terminate the computation of all four quantities, but there was another difficulty
created by the fact that the initial value of n in the series for T , T°  and
T° should be 1, 2 and 3 respectively; to overcome this, it was decided that the
simplest procedure was to allow the initial value to be zero in each case, even

though initially-zero contributions to T , ete would be computed in consequence.,

As a footnote to the function ¢(u) , it is remarked that it can be
expressed in terms of the same hypergeometric function as was involved in the
quantity X used in Appendix A. Thus we have ¢(u) = %F(S,I,Zi;i(l - x)) s
where }(1 - x) = iu/{i + /Tifjf} when x > 0 ; this identifies (B-18) with
equatioa (28) of Ref 18, Also, Ref 18 indicates a way of expressing (B-18) with
only one occurrence of the function ¢ ; in the notation of the present Appendix,

the expression for T is then

T = a {a2¢(f2) + 4q} .
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Appendix C
FORTRAN-77 SUBROUTINE TLAMB

SUBROUTINE TLAMB (M, Q, QSQFMl, X, N, T, DT, D2T, D3T)
IMPLICLT DOUBLE PRECISIGN (A-H,0-2)
LOGICAL LM1, L1, L2, L3

DATA PT, SW /3.141552653589793D0, 0.4D0/
LML = M.EQ.~1

Ll = M.GE.1

4 L2 = N.GE.2

L3 = N.EQ.3

QSQ = Q*Q

XSQ = X*X

U = (1C0 = X)*(1D0 + X)

IF (.NOT.LM1) TMiEN

&

} [of (NEECED IF SERIES, AND OTHERWISE USFFUL WHEN 2 = J)
DT = €00
D27 = 0DO
NIT = 0bO !
END IF :
IF (LMl ,OR., M.G7.0 ,OR. X.LT.OCG .OR. DABS(U).GT.SW) IHEN
c DIRECT COMFUTATION (NOT SERIES)

¥ = DSQRT(DABS (U))
2 = DSQRT(GSQFM1 + Q5Q*XSQ)
QX = QwX
IF (QX.LE.ODO) THEN
A=12 - QX
B = 0%Z ~ X
END IF
IF (QX.L7.0D0 .AND. LM1) THEN
AA = QSQFMi/A
BB = QSQFM1*(QSQ*U - X8Q)/B
END IF ‘
IF (QX.EQ.ODO.AND.LM1 .OR. QX.4HT.0D0Q) THEN
AA = 3 + QX
BB = Q%2 ~ X
END IF
IF (Q4.GT.9D0) THEN
A = QSQFM1/AA
B = QSQFM1¥(QSQ*U - XSQ)/BB
END IF
IF {(.NOT.LM1} THEN
IF (QX*U.GE.0DO) THEN
G = X*Z + Q*U
ELSE
G = (XS - QSQ*U)/(X*2 - Q*U)
END IF
F = A*Y
IF (X.L.E.1DV0) THEN
T = M*PI + DATAN2(F, G)
ELSE
IF (F.GT.SW) THEN
T = DLOG(F + 0)
ELSE
FGL = F/(G + 1D0)
TIKM = 2DO*FGL
FGLlS8A = FGL*FG1
T = TERM
TWOIl = 1DO
1 TWOLl = TWOI1l + 200
TERM = TERM#*FG1l5Q
TOLD = T
T = T + TERM/TWOT1
{F (T.NE.TOLD) GO TO 1
o] (CONTINUE LOOPING FOR INVERSE TANH)

L0 -
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END IF
END IF
T = 2DO*(T/Y + B)/U
IF (L1 .AND. 2.NE.0DO) THEN
02 = Q/2
Q22 = ¢Z*QZ
Q2 = Q2+¥Q22
DT = (3IDO#XAT - 4DO* (A + QX¥QSQFML)/2) /U
TF (L2) D2T = (3DO*T » 35DO*A*DT + 4DO*QZ*OSQFM1) L
IF (L3} D3T = (BDO*DT » 7DO*X*D2T « 12D0*QZ*QZ2> X*OSOFML) .U
END IF
ELSE
DT = B
D2T = BR
DIT = AA
END IF
ELSE
COMPUTE BY SEKIES
UoI = 100
IF (L1) ULI = 1Do
IF (L2) U2I = 1DO
IF (L3) U3I = 1D0O
TERM = 4D0
TQ = Q*QSQFrML
I=a
IF (Q.LT.5D-1) TQSUM
IF (Q.GE.5D=1) TQSUM
TTMOLD = TERM/3DO
T = TTMOLD*TQSUM .
(START OF LOOP)
I=1+1
P=1I
U0T = UOT*U
IF (L1 .AND., I.GT.1l) ULl = ULI*y
IF (L2 .AND. I.GT.2) U2 = U2I+U
IF (L3 .AND. I.GT.3) U3l = U3I+U
TEHM = TERM*(P - 0.5D0)/P
TQ = TQ*QSQ
TQSUM = TQSUM + TQ
TOLD = T
TTERM = TERM/(2D0*P + 3LO)
TQTERM = TTERM*TQOSUM
T = T - UOI*((1.500%P - 0,25D0) *TQTERM, (P¥P - ©.25D0);
- TTMOLD*TQ;

nou

LDO = Q*QsQ
(100/(1D0 + Q) + Q) *QSQFML

g on

TTMOLD = TTFRM
TQTERM = TQTERM»pP
IF (L1) DT = DT + TQTERM*ULlI
IF (L2) D2T = D2T + TQTERM*U2I%(P - 1D0)
IF (L3) D3T = D3T + TQTFRM*UJI*(P - 1DO)*(P = 2D0)
IF (L.LT.N .OR. T.NE.TOLD) GO TO 2
(END OF LOOP)
IF (L3) DIT = 8DO*X*(1.5D00*D2T - XSQ¥DIT)
IF (L2) D2T = 2D0O*({2D0*XSQ¥D2T - DT)
IF (Ll) DT = -2DO*X*DT
T = T/XS8Q

END

END IF
RETURN
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Appendix D
FORTRAN=77 SUBROUTINE XLAMB

SUBROUTINE XLAMB (M, Q, QSQFMI, LU'LN, N, X, 4PLj
IMPLICIT DOUBLE PRECISION (A=H,0=2)
PARAMETER (PI=3.14159265358979300, TOL=3D=7, J0=1.700,
PARAMETER {C1=0.35D0, G2=0,0300, C3=0.15D0, CQd41=1D0, C42-3.2dEy,
DSRT(X) = DSQRT(DSQRT(DSQRT (X)})
THR2 =~ DATANZ (QSQFM1, 2004Q) . PI
IF (M.EQ.0) THEN
SINGLE=REY STARTER FROM T (AP X = 0} & BILINEAR (USLALL?
N =1
CALL TLAMB (M, Q, QSQFM1, 0DO0, 0, To, DT, D2T, C»T
TDIFF = TIN - TO
IF (TDIFF,LE.0O00) THEN
X = TOQ*TDIFF, (=4DO*TIN)
(=4 IS THE VALUE OF DT, FOR % = 90}
ELSE
X = -TDLFF/(TDIFF + 4D0)
W = X + CO*DSQRT(2D0%(1DO = THR2))
IF (W.LT.000)
X = X = DSQKT(DBRT(~¥])*(X ~ CSQRT(IDIFF/{TDIFF -~ i.3007I,,
W = 4D0/ (4D0 + TDIFF)
X = X% (1DO # X¥(CL*N - C2*X*DSQRT(W)})
END IF
ELSE
WiTH MULTIREVS, FIRST GET T(MIN) AS BASIS FOR STARTER
XM = 1DO/(1.500%(M + SD=1) *PI)
IF (THR2,LT.5D~1) XM = DBRT(zDU*THR2) *XA
IF (THR2.GT.5D~1) XM = (2D0 - DBRT(2D0 = 2DO*THRZ, | *iM
(STARTER FOR TMIN)
DO 1 L=1,12
CALL TLAMB (M, Q, QSQFM1, XM, 3}, TMIN, OT, D2T, 0IT)
1F (D2T.EQ.0DO) GO TO 2
XMOLD = XM
XM = XM = DT#*D2T/ (D2T*D2T = DT*DIT 2D0)
XTEST = DABS (XMOLD/XM = LDO)
IF (XTEST.LE.TOL) GO TO 2
CONTINUE
N = -1
RETURN
(BREAK OFF & EXIT I[F TMIN NCT LOCATEL - SHOULD NEVER Had®f.
NOW PROCEED FROM T(MLN, T2 FULL STARTE
COMT INUE
TOLFFM = TIN - TMIN
IF (TDTFFM.LT.ODD) THEN
N = 0
RETURN
(EXIT IF NO SOLUTION WITH TPHIS M,
ELSE LF (TDIFFM.EQ.0D0) THEN
X = XM
N =1
RETURN
(EXIT IF UNIQUE SGLUTION ALREADY FRCM X([TMIN)}
ELSE

o
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N =23
IF (D2T.EQ.0DO) D2T = 6DUWM*PL
X DSQRT(TDLFFM/ (D2T/2D0 + TRIFFM/ (100 - XW)**&

u

.______.___“

W= XM + X

W = W¥4dDO/ (4D0 + TDIFFM) + (1D0 = W)#w2

X = X%(1D0 = (1DO + M + C4L*(THR2 = 0.500))/(lD0 = £3*M)*
A X% (CL*W + C2*X*DSQRT(W))) ~ XM

D2T2 = D2T/2D0
IF (X.GE.1D0) THEN
N =1
GO TO 3
END IF
(NO FINITE SOLUTION WITH X > XM)
END IF

END IF
(NOW HAVE A STARTER, 50 PROCEED BY HALLEY,
CONTINUE
DO 4 I=1,3
CALL TLAMB (M, Q, QSQFML, ¥, 2, T, DT, D27, DIT}
T=TIN - T
IF (OT.NE.ODO) X ¢ X - T<DT/(DT*DT ~ T*D2T/200)
CONTINUE
IF (N.NE.3) RETURN
(EXIT IF ONLY ONE SOLUTION, NORMALLY WHEN ¥ =
N =2
XPL = X
(SECOND MULTI-REV STARTER)
CALL TLAMB (M, Q, QSQFMl, 0Do, 0, To, DT, D2T, D3T)
TDIFFO = TO - TMIN
TDIFF = TIN = ToO
IF (TDIFF.LE.0) THEN
X = XM - DSQRT(TDIFFM/ (D2T2 - TDIFFM*(D2T2/TDIFFQ

A - 1DO/XM**2))) ,
ELSE
X = =TDIFF/(TDIFF + 4D0)
IJ = 200

W = X + CO*DSQRT(2D0*(1D0 - THR2))
IF (W.LT.0DO) X =
A X = DSQRT(D8RT(-W))*(X + DSQRT(TDIFF/ (TDIFF + L.5D0*T0)))

W = 4D0/(4DO + TODIFF)
X = X*(1DO + (1DO * M + C42%(THR2 - 0.5D0))/ (100 - CI*M)~
A K*(CL*¥W = C2%X*DSGRT(W)))
IF (X.LE.=1DO) THEN
N=N-1

(NO FINITE SOLUTION WITH X < XM)
IF (N.EQ.1) X = XPL
END IF
END IF
GO TO 5
END




Appendix E
FORTRAN=77 SUBROUTINE VLAMB

SUBROUTINE VLAMB (GM, R1, R2, TH, TDELT, N, YRll, "/TlL},
1 VR12, VT12, VR21l, V121, VR22, YT22)

IMPLICIT DOUBLE PRECISION (A~H,0-%;

PARAMETER (PL = 3.141592653589793D0, TWOPL = 2D0+*PI;
M = TH/TWOPI

THR2 = TH/2D0 - M+PI

DR = Rl = R2

R1R2 = R1l=*R2

RIR2TH = 4DO*RIR2*DSTN(THR2) *+*2

C5Q = DR**2 + RLIR2TH

C = DSQRT(CSQ)

S = (RL + R2 r C)/2D0

GMS = DSQRT (GM45/2D0)

QSQFM1 = C/S

Q = DSQRT(R1R2) *DCOS (THR2) /3

IF (C.NE.ODO) THEN

RHO = DR/C

SIG = R1R2TH/CSQ
ELSE

RHO = 0DO

5IG = 1DO
END 1F

T = 4DONGMS*TDELT/S**2
CALL XLAMB (M, 0, QSQFM1, T, N, X1, X2}
PROCEED FOR SINGLE SOLUTION, OR A PAIR
0O 1 I=1;N
IF (I.EQ.1) THEN
X = X1
ELSE
X = X2
END IF

CALL TLAMB (M, Q, QSQFMl, X, =1, UNUSED, QZMINX, Q2PLa, ZPLIX.

VT2
VYR1
VTl

GMS*ZPLQX*DSQRT (51G)
CMS* (QZMINX - QZPLX¥RHO)/R1
VT2/R1
VR2 = -~GMS*(QZMINX + QZPLYX*RHO)/R2
YT2 = VT2/R2
[F (I.EQ.L) THEN
VRL1 = VRL
YTLl = VTL
VR12 = VR2
VP12 = VT2
ELSE
VR21
VT2l = VTL
VR22 = VR2
VT22 = VT2
END LF
CONTINUE
RETURN
END

LI |

]

L

VR1

LT0

o i v
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LIST OF SYMBOLS

(Principal usage in the main text = some symbols have different meanings im the

Appendices)

a

c

T', ete

£

P iy

uzs
N

TR ket

g

semi-major axis

chord of triangle CP1P2
centre of force

eccantricity

eccentric anomaly

arbitrary non-negative integer

number of complete revolutions included in the flight path
number of solutions of a particular Lambert problem
semi-latus section, a1 - ez)

end-points of flight path

tan $(n - ©) , whence also q2 =1 -efs

distances ce, and CP,

semi-perimeter of triangle CP1P2

times such that At(e t, = ¢t ) 1ig the flight time

1
non-dimensionalized At , defined by equation (2)

value of T(x, ) , or T(x, q, m) , when x =0

minimum value of T for given @ > 2%

partial derivatives 9T/3x ete

radial velocity

transverse velocity

empirical quantities used in starter weighting

fundamental parameter (iteration variable) such that x2 =1 -35/2
value of x estimated after iteration i (xo = gtarter)

value of x aassociated with TM

second solution for x , when relevant

(1 - q2 + qzxz)

M e
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§r, &6

L1ST OF SYMBOLS (concluded)
p/a
V(ps/2) , introduced at equation (26)
absolute values of residual differences in r, and 6
Gr/r2 and &§6/9

smaller of relative errors in (i) solved-for x and (ii)

corresponding T
angle P1CP2
0 reduced to (0, 21) range
value of © for the Lambert-equivalent isosceles triangle
empirical quantity used in starting formulae
strength of gravitational force centre (C)
(ry - r2)/c
2
(1 - 0%

time from pericentre

Lz20

Y I
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