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ESTIMATION OF THE YIELD STRENGTH OF METALS
FROM CRYSTAL DEFECT ENERGIES

INTRODUCTION

There is a growing need for new materials that are able to meet increasingly severe and complex
performance criteria. The development of new materials often takes an empirical approach which 6
forces designers to choose between several existing materials that meet only parts of a particular set
of design requirements. A need, therefore, exists for a systematic approach to materials development
so that "designer microstructures' may be produced to meet specific technological requirements. One
of the purposes of this study is to take a first step towards relating microstructural variables to contin-
uum scale material properties in order to provide a basis for the rational development of new materi-
als.

Many metals and alloys exhibit a dependence of their yield strength on grain size as described
by the Hall-Petch equation (1,2):

a = ao + kD - / 2  (1)

where u is the yield strength, D is the average grain diameter and a0 and k are empirical constants.
Among the metals shown to follow this relationship are aluminum (3,4,5), silver (6), zinc (7), copper
(8), nickel (9) and iron (10,11). Generally, a0 has been interpreted as the 'friction' stress opposing
dislocation motion within a grain (2,5,12) and k is termed the 'unpinning constant" which is inter-
preted as a measure of the extent to which dislocations are piled up at barriers (5,11,13,14). How-
ever, some uncertainty still exists in the physical interpretations of these parameters (5) which is evi-
denced by the fact that the determination of the Hall-Petch constants for any particular material is
generally dependent on running a series of tensile tests on specimens with various grain sizes and
applying linear regression to a a) vs D- 1/2 plot.

Grain boundaries are regions of misorientation between adjacent grains in which the atoms are
not aligned with the lattice of either grain. The displacement of these atoms from normal lattice posi-
tiom creates a local increase in the energy of a polycrystal. This interfacial energy associated with
grain boundaries may be measured by several methods including calorimetry (15) and thermal groov-
ing (16). Similarly, characteristic energies are associated with other crystal defects such as vacancies.
impurities, dislocations, stacking faults and twin boundaries. The purpose of Liils paper is to determine
any relationships between these defect energies and Hall-Petch behavior in high purity metals.
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PROCEDURE

Data relating the yield strength to the grain size of high purity metals have been generated in
several previous investigations (3-11). In order to facilitate the comparison of these data to values of
grain boundary energy, which are reported as energy per unit area, the ay vs D- 12 data were con-
verted to elastic strain energy per unit volume at yield (we) vs grain boundary area per unit volume of
material (S,). The elastic strain energy per unit volume at yield is related to the yield strength by:

2w = (2)
2E

where E is Young's modulus of elasticity and all other terms are as previously defined. The grain
boundary area per unit volume of material is related to the inverse of the average grain diameter by:

S, = 2.25D -  (3)

where all terms have been previously defined (17). The w, vs. Sv data were then plotted and
analyzed using linear regression to obtain the slope and intercept of the data. The grain boundary
energies for several metals and alloys have been previously measured. The grain boundary free ener-
gies of aluminum, silver and zinc were measured using calorimetry. Thermal etching was used to
determine the grain boundary free energies of copper, nickel and iron. In all cases, the measurements
were preformed on high purity metals at temperatures high enough to insure that the metals were well
annealed. These values have been gathered and tabulated in a review by Inman and Tipler (18).

RESULTS AND DISCUSSION

Figure 1 shows the observed variation between w, and S, for high purity zinc. It is apparent
that a proportional linear relationship exists between these two quantities. This observation is physi-
cally and dimensionally consistent because grain boundaries have a characteristic energy expressed in
terms of energy per unit area. When this energy per unit area is multiplied by S,, the grain boundary
area per unit volume, the product has the same units as we; namely, energy per unit volume. This
observation is also consistent with Hall-Petch behavior because the two terms, w, and S,, are propor-
tional to the squares of o, and D -1/2 respectively. Similar relationships were found for silver, alumi-
num. copper, iron and nickel. Linear regression was performed on the data in order to determine the
slopes (dwe/idS,) and intercepts (w0) for these relationships. The results of these calculations are
given in Table 1. Whenever possible, handbook and textbook values (19,20) were used to insure that
"typical" values of a0 were used for a given material. In the cases of silver and nickel, some
discrepancy existed between the data, so the data was averaged. In the case of aluminum, the value
range found (19) was used to choose the data which would best typify general behavior.

The grain boundary free energies (Ftb) of a number of metals are given in Table 2. A quick
comparison between the values and the (dw,/dS,) values in Table 1. which are the grain boundary
contributions to we, shows that a direct correlation of these two quantities may be drawn only for
iron. However, among the metals being considered, iron is unique in that its body centered cubic cry-
stal structure contains no close packed planes. It is the presence of these close packed planes in the
hexagonal close packed structure of zinc and the face centered cubic structure of the remainine metals
wat accounts for the greater degree of cross-slip tound in the-e metals. A pdrametet describing the
relative abilities of metals to cross-slip may be assigned based on the crystal structure of that metal.
Presently, this parameter is designated c' and is defined as the number of close packed slip systems
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available for cross slip plus the one system on which slip is already occurring. In a face centered
cubic crystal, there are twelve equivalent close packed slip systems. If slip is already occurring on
one of these, that leaves eleven slip systems available for cross-slip. When the one operating system
is added back, this yields a value of c equal to twelve for a face centered cubic metal. Similarly,
values of c equal to three and one would be assigned to hexagonal close packed and body centered
cubic metals respectively. In Table 3, the crystal structure and cross-slip parameter, c, are given for
the metals being presently considered. Also in Table 3, the grain boundary free energy (Ft,) is com-
pared to the quantity obtained by multiplying the (dwe/dS,) of each metal with its cross slip parame-
ter. Very good agreement between these values is found for the metals in this study with a maximum
difference of five percent.

These results may be rationalized by considering how grain boundaries inhibit dislocation
motion. When a dislocation encounters a grain boundary, extra energy is required to continue defor-
mation because the misorientation between adjoining grains interferes with slip processes. This extra
energy is related to the grain boundary free energy. However, in face centered cubic and hexagonal
close packed metals, there are multiple equivalent slip systems on which deformation may continue
past the grain boundary. Therefore, the ability of a grain boundary to impede dislocation motion is
reduced by a factor related to the ability of the metal to cross-slip. Consequently, the slope of the we
vs S, relation is related to the grain boundary free energy and the ability to cross-slip by:

dW _1 Fgb- (4)
dS, c

where all terms are as defined previously.

The Peierls stress (21,22) is the stress needed to move a dislocation through an otherwise perfect
lattice. For most metals, the Peierls stress is on the order of 10-6 to 10 -5 where G is the shear
modulus of the metal. The stress calculated from the Peierls-Nabarro model, however, is much lower
than the yield stress observed in even the highest purity metals. This difference between the observed
yield strength and the stress predicted by the Peierls-Nabarro model is due to the strain energy caused
by the presence of defects in the metals which impede dislocation motion. These defects include, in
addition to grain boundaries, other dislocations, solute atoms, vacancies, interstitials, stacking faults
and annealing twin boundaries. In this paper, high purity metals are being considered, so the con-
sideration of solute atoms is not necessary. The effects of vacancies and self-interstitials may also be
neglected because room temperature mechanical properties are being considered. Typical equilibrium
volume fractions of these defects at 300 K are on the order of 10-15 for vacancies and 10-100 for
interstitials (23). At this point the effects of dislocations, stacking faults and annealing twin boun-
daries are left to be considered.

The first of these defects to be considered will be other dislocations. The strain energy per unit
length of dislocation line has been determined from elasticity theory (24) and may be expressed by:

U . = fGb2 (5)

where U± is the elastic strain energy, G is the shear modulus of a material, b is the Burger's vector
of the dislocation and of is a material constant with values ranging from 0.5 to 1.0. In order to calcu-
late U,, the constant u h4d to be determined. These values were not available for individual metals .
so values based on the relationships between the magnitude of the unit Burger's vector and the lattice
constant a0 for each crystal structure were calculated. This approach was taken because much of the
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strain energy associated with a dislocation is due to atoms in the vicinity of the dislocation being
pushed or pulled out of their normal lattice positions. The strain energy resulting from the presence of
a dislocation in a crystal, is therefore, going to depend on the equilibrium positions of the surrounding
atoms. These equilibrium positions are defined by the crystal structure of a metal. In face centered

2

cubic crystals, slip occurs in the [11101 direction; therefore, 2 = 2, where I b I is the magnitude
jb 2

of the Burger's vector. Similarly, because slip occurs in the [111] direction in body centered cubic
22a0  a 0

crystals, -- = 4/3. For basal slip in hexagonal close packed metals, -- = 1. These relative
lb 12  1lb 12

values for the different crystal structures were then normalized to the range of 0.5 to 1.0. These
values for a according to crystal structure are given in Table 4.

In order to calculate the elastic strain energy per unit volume due to dislocations, the dislocation
line length per unit volume (dislocation density) is needed in addition to U,. Because actual meas-
urements of the dislocation densities (p .) of the metal specimens in question were not made, a rea-
sonable estimate of this value was necessary. Several sources (20,24,25) state that a typical value of
the dislocation density of a well annealed metal is on the order of 101°M 2 . Because the specimens
used in the cited studies (3-11) were in the annealed condition, this value of the dislocation densir
was used to calculate the strain energy per unit volume due to the presence of dislocations by multi-
plying it with U .L.

Annealing twins are most prevalent in face centered cubic metals (20,26) and are formed at the
edges of grain boundary triple junctions as the junction migrates during recovery and grain growth at
elevated temperatures (26). One explanation for this is that during grain growth, the possibility exists
for a growing grain to meet another in such a way that the interface is near or at the coincidence
boundary for a coherent twin, the I1111 plane (26). It has been calculated (27) that grains in face cen-
tered cubic metals meet in this manner about once per 16000 times. From this information, a rough
estimate of the contribution of twin boundaries to the elastic strain energy of a face centered cubic
metal may be made. The twin boundary energies (28) for the four fcc metals being considered are
given in Table 5. From the calculation involving the probability of grains meeting in such a way to
allow twin boundary formation, the twin boundary area per unit volume may be estimated by

sv
A = 10 (6)

where A,,. is the annealing twin boundary area per unit volume of metal and S, is the grain boun-
dary surface area per unit volume. In order to calculate the maximum possible contribution of twin
boundaries to the elastic strain energy per unit volume, the calculation was made for the metal with
the greatest twin boundary energy (Al) using the smallest grain size used in the grain boundary studies
(5), which yielded the highest S, and therefore, the highest A,,. Using these values, the maximum
contribution of annealing twin boundaries to the elastic strain energy was found to be about three ord-
ers of magnitude smaller than the contribution due to the presence of dislocations. The metals in this
study have twin boundary energies (y, ) that are generally of the same order of magnitude as their
grain boundary contributions to the elastic strain energy per unit volume (dwe/dS,). However. the
occurrence of twin boundaries is over four orders of magnitude less than that of grain boundaries (Eq.
6). Consequently, twin boundary contributions to the equilibrium elastic strain energy of a pure metal
will be considered negligible for the purposes of this study.

The contributions of stacking faults to the elastic strain energy should be of concern only in
metals with low stacking fault energies such as copper and silver. In metals with high stacking fault
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energies (Al, Ni, Zn), the stacking fault probability is much too low to be of consequence. The con-
tribution of stacking faults to the elastic strain energy may be estimated by:

.f= p ej(7)

where U is the elastic strain energy due to stacking faults, p4 is the stacking fault density, df is
the stacking fault width and -,fis the intrinsic stacking fault energy. Values for "Yi have been measured
using weak beam electron microscopy. Values of p# have been measured using X-ray techniques for
both copper (29) and silver (30). The stacking fault width may be calculated using an equation relat-
ing it to the stacking fault energy (31). Calculations of USf show that it is also three orders of
smaller than the elastic strain energy due to dislocations for both copper and silver. Consequently,
U is considered negligible in this study.

The intrinsic stacking fault energies of these metals are of the same order of magnitude as their
twin boundary energies as well as their grain boundary contributions to we. However, the stacking
fault density of a metal is related to its dislocation density by:

ps= ffi nP. L  (8)

where n is the measured ratio of the density of dissociated partial dislocations to the total dislocation
density and all other parameters are as previously defined (29,30). The stacking fault density is about
three orders of magnitude smaller than the total dislocation density. Also, the stacking fault width is
generally no more than several atomic diameters (31). Therefore, the contributions of stacking faults
to the elastic strain energy per unit volume at yield are negligible because the total stacking fault areas
in the metals considered in this study are relatively small.

From the information given above, it may be concluded that for high purity metals, the contribu-
tion of defects other than grain boundaries, to the elastic strain energy may be estimated by calculat-
ing the elastic strain energy per unit volume due to dislocations. This quantity has been calculated for
the metals considered in this study and are presented in Table 6. Also shown in Table 6 are the
experimentally determined values for w0 from Table 1. Fairly good agreement between these values is
found with the average difference around ten percent. These results allow the following relation
between w0 and the strain energy per unit volume due to crystal defects in high purity metals to be
drawn:

wo = U .p . (9)

where w0 is the contribution of defects other than grain boundaries to the elastic strain energy per unit
volume, and all other terms are as previously defined.

Because actual dislocation density measurements were not made, it may be argued that the
agreement between the experimental w o and the calculated strain -nergy per unit volume of defects is
due to fortuitous selections of values for x in the calculation of U. and of the dislocation density.
However, it should be noted that when using reasonable values for these parameters, the results of the
calculations give results that are of the correct order of magnitude which suggests that this concept
may warrant more rigorous study involving the actual measurement of dislocation densities using
transmission electron microscopy.

The results of the comparisons of data from grain size studies and of characteristic strain ener-
gies of crystal defects Meake it possible to define the elastic strain energy per unit volume in terms of
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these characteristic energies and the quantities of these defects present in high purity metals. From
Equations 4 and 9, the following may be derived:

W, = U.p . + FLb S (10)
C

Equation 2 gave the relationship between the elastic strain energy per unit volume at yield and the
yield strength as:

we = a;/2E (2)

where all terms are as defined previously. Substituting Equation 2 into Equation 9 yields the follow-
ing result:

ay = '2E U ,p + 2E Fbs (11)
C

thereby allowing the estimation of the yield strength from the characteristic energies and the volume
fractions of dislocations and grain boundaries. Equation 11 shows that the yield strength of a metal
increases as both the dislocation density and the grain boundary surface area per unit volume increase.
This is in agreement with the general observations that the yield strength of a metal increases with
cold working and with decreasing grain size.

CONCLUSIONS
S

(1) The elastic strain energy per unit volume at the yield point of high purity metals at room
temperature may be accounted for by considering the strain energy introduced into a crystal lattice by
the presence of dislocations and grain boundaries.

(2) The contributions of stacking faults, twin boundaries, vacancies and interstitials to the elastic
strain energy at yield are negligible in high purity metals because of their relatively low volume frac-
tions.

(3) The room temperature, quasi-static yield strength of high purity metals can be estimated by
calculating the contributions of the appropriate crystal defects to the elastic strain energy of a metal.

6

S



REFERENCES

1. E.O Hall: Proc. Roy. So,-., 1951, vol. B64, pp. 747-753.

2. N.J. Petch: 1. Iron Steel Inst., 1953, vol. 174, pp. 25-28.

3. R.P. Carreker and W.R. Hibbard: Trans. AIME, 1957, vol. 209, p. 1157.

4. M. Dollar and A.W. Thompson: Acia Met., 1987, vol. 35, pp. 227-235.

5. H. Fujita and T. Tabata: Acta Met., 1973, vol. 21, pp. 355-365.

6. R.P. Carreker: Trans. AIME, 1957, vol. 209, p. 113.

7. R. Armstrong, 1. Codd, R.M. Douthwaite and N.J. Petch: Phil. Mag., 1962, vol. 7, pp. 45-58.

8. P. Feltham and J.D. Meakin: Phil. Mag., 1957, vol. 2, pp. 105-112.

9. A.W. Thompson: Acta Met., 1975, vol. 23, pp. 1337-1342..

10. R.A. Jago and N. Hansen: Acta Met., 1986, vol. 34, pp. 1711-1720.

11. J. Harding: Acta Met., 1969, vol. 17, pp. 949-958.

12. A.H. Cottrell: Trans. AIME, 1958, vol. 212, p. 192.

13. N.J. Petch: Phil. Mag., 1958, vol. 3, p. 1089.

14. J.C.M. Li: Trans. AIME, 1963, vol. 239, p. 239. S

15. H.U. Astrom: Acta Met., 1956, vol. 4, p. 562.

16. J.E. Hilliard, M. Cohen and B.L. Averbach: Acta Met., 1960, vol. 8, p. 26.

17. G.F. Vander Voort: "Grain Size Measurement", Practical Applications of Quantitative Metal-
lography, ASTM STP 839, J.L. McCall and J.H. Steele, Jr., Eds., ASTM, Philadelphia. 1984.
pp. 85-131.

18. M.C. Inman and H.R. Tipler: Metall. Rev., 1963, vol. 8, pp. 105-166.

19. "ASM Metals Handbook, 9th ed., vol. 2", ASM, Metals Park, Ohio, 1979. 0

20. G.E. Dieter: 'Mechanical Metallurgy, 2nd ed.'. McGraw-Hill, New York. 1976.

21. R. Peierls: Proc. Roy. Soc., 1940, vol. 52, p. 34.

22. F.R.N. Nabarro: Proc. Roy. Soc., 1947, vol. 59, p. 256.

23. O.F. Devereux: "Topics in Metallurgucal Thermodynamics". Wiley & Sons. New York. 1983.

7



II I I I I I I 1 E~ Ii i I m im

24. D. Hull and D.J. Bacon: 'Introduction to Dislocations, 3rd ed. ', Pergamon Press, Oxford,
1984.

25. R.E. Reed-Hill: 'Physical Metallurgical Principles, 2nd ed. ", D. van Nostrand, New York,
1973.

26. L.E. Murr: 'Interfacial Phenomena in Metals and Alloys', Addison-Wesley. Reading, Mass.,
1975.

27. J.P. Nielson: Acra Met., 1967, vol. 15, p. 1083.

28. J.P. Hirth and J. Lothe: "Theory of Dislocations, 2nd ed. ', Wiley & Sons, New York, 1982.

29. R.E. Smailman and K.H. Westmacott: Phil. Mag., 1957, vol. 2, p. 669.

30. R.P.I. Adler, H.M. Otte and C.N.J. Wagner: Met. Trans., 1970, vol. 1, pp. 2375-2382.

31. T. Jossang, J.P. Hirth and C.S. Hartley: J. Appl. 0hys., 1956, vol. 36, p. 2400.

-S i-i l I imili iim mH



TABLE 1: Slopes and Intercepts of we vs S, Data

Slope Intercept
Metal dw, / dS, (J/m 2) wo (J/m 3) References

Ag 0.0349 2123 6,20

Al 0.0284 2312 3,4,5,19

Cu 0.0539 3013 8

Fe 0.7800 3429 10,11

Ni 0.0560 5208 9,20

Zn 0.1190 1517 7

TABLE 2: Grain Boundary Free Energies for Pure Metals
(from Ref. 18)

Grain Boundary
Free Energy,

Metal Fgb (J/m)

Ag 0.420

A] 0.340

Cu 0.625

Fe 0.780

Ni 0.690

Zn 0.340

9 9
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TABLE 3: Crystal Structure, Cross-slip Parameter and Product of Cross-slip
Parameter and Slope of w, vs S,

Crystal Cross-slip c (dwe / dS.,) Fgb

Metal Structure Parameter, c (J/m 2) (J / m2 )

Ag fcc 12 0.419 0.420

Al fcc 12 0.341 0.340

Cu fcc 12 0.647 0.625

Fe bcc 1 0.780 0.780

Ni fcc 12 0.672 0.690

Zn hcp 3 0.357 0.340

TABLE 4: Values of Parameter a Assigned by Crystal Structure

Crystal
Structure c

hcp 0.5

bcc 0.67

fcc 1.0

4I
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TABLE 5: Twin Boundary Energies (from Ref. 28)

Metal ,(J / m 2)
Ag 0.008

Al 0.075

Cu 0.024

Ni 0.043

TABLE 6: Total Strain Energy per Unit Volume Due to Dislocations and w0

Metal U p (J/m 3 ) Wo( / m3)

Ag 2228 2123

Al 2125 2312

Cu 2878 3013

Fe 3193 3429

Ni 4827 5208

Zn 1289 1517

Ii S
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