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THE THEORY OF FINAL FOCUSING OF
INTENSE LIGHT ION BEAMS

I. INTRODUCTION

Light ion beam inertial confinement fusion experiments on PBFA II at

Sandia National Laboratories currently employ barrel-shaped applied-B

ion diodes'. In diodes of this type, the ion beam is created on the

inner surface of the barrel, and is focused on its centerline2 . Barrel

geometry diodes will be unsuitable for future high gain target

experiments because target explosions will irradiate the surrounding

structure, producing unacceptably high levels of radioactivity. High

gain target experiments will require that PBFA II be reconfigured to

provide isolation by moving the target several meters from the diode

region of the accelerator. The currently envisioned reconfiguration,

called APEX, employs an ion diode in the extractor geometry focusing the

beam into an ion transport channel that guides the beam to the
3,4target

Channel transport is a technique for transporting an intense ion

beam.over a distance of several meters 5 . The ion beam is focused on the

entrance of a long z-discharge transport channel. If the density of the

channel plasma is sufficiently high, the beam can propagate in a fully

charge and current neutralized mode 6 7 . In addition, the z-discharge

current creates an azimuthal magnetic field that can confine the

propagating beam ions to the path of the discharge8 . An intense ion

beam can travel through a z-discharge transport channel for distances of

several meters without significant energy loss9 . Channel transport is

important to the APEX project for two reasons. First, it provides an

efficient way of getting the ion beam from the diode to a target located

.cveral meters away. Second, channel transport over such distances

allows the ion beam to be axially compressed by time-of-flight bunching.

This time-of-flight bunching, produced by a careiuliy programmed

accelerator voltage waveform, provides the ion beam power levels and

pulse widths LaquJrzd ;r high :2-4. . vtire~ts

Mauscrip approved August 31. 1988.
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Several issues involved with channel transport have been considered

previously. Experimentally, the concept has been tested and verified

for relatively low power proton beams9 '' 1 2'13  Ion beam propagation

in channels and the MHD response of the channel plasma to the ion beam

have been studied theoretically8 '14 '15 '16 . Electrostatic and

electromagnetic instabilities have also been studied
17, 18, 19, 20theoretically 7  '  Many of the theoretical issues have been

summarized in terms of constraints on the beam transport channel system
21for optimal beam transport . APEX severely tests these constraints

because of the high ion beam power required at the target - on the order

of 300 TV. The beam is injected at a lower power level and axially

compressed by time-of-flight bunching so that system parameters must

satisfy the transport constraints over the entire length of the channel

with varying beam power and pulse duration taken into account. A

detailed examination of this issue has indicated that the transport

constraints can be satisfied if the channel radius is sufficiently

large. For example, channel expansion and beam energy loss

considerations both show that transportable beam power scales with the

fourth potier of the channel radius1 0'15 For the parameters of interest

to the APEX project, the smallest radius that allows all of the relevant

constraints to be consistently satisfied is between 2 and 3 cm.

However, currently envisioned high gain targets are typically less that

1 cm in radius. A soluti-i to the mismatch between the target radius

and the beam radius is to focus the beam onto the target following

transport. The final focusing cell must compress the beam radially by a

factor of three to five.

A method for producing the required radial compression using a short

z-discharge plasma at the end of the transport channel has been

proposed22 . This method relies on the radial oscillations induced in

the ion beam envelope by a sudden change in the strength of the

azimuthal magnetic field. Vhen the beam enters a region of increased

magnetic field strength, the radial osciilati,: begin with an in*.ara
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pinch. A z-discharge channel can be used to focus an ion beam if its

length is such that at the exit, the beam is in the pinching phase of

the envelope oscillation. The beam then comes to a focus at a position

downstream from the focusing cell exit. In this paper the focusing of

an intense ion beam with a short z-discharge is analyzed theoretically.

Section II will describe the basic system requirements for ion beam

transport. Section III will examine the final focusing technique with a

Vlasov equation analysis. This analysis is restricted to a highly

idealized model of the transport channel, focusing cell, and ion beam.

A simulation code has been developed that allows ion beam propagation

and focusing to be studied in less ideal situations. In Section IV,

this code is used to analyze the impact of angular momentum on final

focusing. Section V summarizes the theoretical and numerical analysis

of final focusing, and indicates the directions of ongoing and future

research in this area.

II. Requirements on System Parameters

The essential physics of intense ion beam transport in a z-discharge

channel can be understood from a single particle description. This

-_ortunate circumstance is due to the assumption that the 'on beam

propagates in a fully charge and current neutralized mode. Under that

assumption, each beam ion experiences only the force of the azimuthal

magnetic field produced by the discharge current.

The basic components of the ion beam production, transport, and

focusing system are illustrated in Figure I. Ions are produced and

accelerated in the ion diode. The voltage pulse produced by the pulsed

power generator accelerates the ions to energies in the range of tens of

MeV. The ions beam is focused by a combination of geometric focusing

produced by shaping both the anode surface and the cathode foil and by

3
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its self magnetic field in the anode-cathode gap. After passing through

the cathode foil, the ion beam enters a neutral gas region where it is

rapidly charge and current neutralized. In this region, the ions focus

ballistically onto the channel entrance. The angle with which an ion

enters the transport channel can be estimated from the geometry of the

ion diode. If F is the focal length of the diode, and R is the maximum

radius at which ions are produced in the diode, then the maximum angle

at which an ion enters the channel is

a = R / F. (1)

The spotsize produced at the diode focal plane is determined by the

microdivergence, a measure of the spread in radial velocities produced by

nonideal effects in the diode. Letting ae denote the microdivergence in

radians, the spotsize is given by

r = F 5G. (2)

Equations (1) and (2) determine the initial conditions, o = 0 and

r = rs , for that ion which is the most difficult to confine in the

transport channe . In Eq. (1), it is assumed that the mi-rodivergence

angle Ae is much less than the geometric focusing angle R/F.

The motion of an ion in the transport channel is chardcterized by a

betatron orbit. An ion propagating through the channel experiences a

radial restoring force due to the radial component of v x B. As a

result, the ion undergoes a radial oscillation as it travels down the

transport channel. In a magnetic field consisting of only an axially

uniform azimuthal component, the motion of an ion is characterized by

three constants of the motion. They are the kinetic energy, the

canonical axial momentum, and the canonical angular momentum:

4



v 2 v2 + v2 2 v2  = constant, (3a)

=z mv~ - 9 fBe(r)dr = constant, (3b)PZ mz -c (b

Pe mrve= constant, (3c)

where cgs-es units are used throughout. These three constants of the

motion may be used to derive an expression that relates the radial

position and the radial velocity of an ion to the discharge current. For

the case of an ion with zero angular momentum (P= 0), a magnetic field

of the form

21 r
Be(r) - cr r (4)

c c

and with a small axis crossing angle, this expression takes the form

r +r, (5)

where

X 0 = 2rtr 2c (6)

5



= r /v and r is the radial turning point. Eq. (5) shows that under

the assumptions noted above, the trajectory of an ion in the radial phase

space plane is an ellipse. This expression may also be derived as the

first integral of the radial equation of motion. The quantity X is the

betatron wavelength, and is the axial distance required tor an ion to

complete one full trip around the radial phase space ellipse. Because

all ions have the same betatron wavelength under this approximation, the

radial phase space distribution of the propagating beam is a periodic

function of the propagation distance. The initial distribution reappears

at intervals equal to the betatron wavelength. The terms neglected in

Eq. (5) under the small axis-crossing angle approximation cause ions with

different radial turning points to have slightly different betatron

wavelengths. This results in phase mixing that gradually washes out the

dependence of the radial phase space distribution on the propagation

distance. This is discussed in more detail in the next section. A

relation analogous to Eq. (5) exists for the more general case of nonzero

angular momentum, large axis-crossing angles, and more general radial

distributions of the azimuthal magnetic field, but the radial phase space

trajectory is then no longer an ellipse.

The combination of the constants of the motion expressed by Eq. (5)

is significant because it relates the production and focusing of the ion

beam to the transport of the beam in the discharge channel. In

particular, Eq. (5) can be used to find the minimum value of the

discharge current required to produce an azimuthal magnetic field that is

sufficiently strong to confine all the beam ionb to the transport channel

given the parameters which characterize how the beam is injected into the

channel. Setting rtP in Eq. (5) to rC, the channel radius, and setting

r = r and = R/F (Eqs. (1) and (2)), and solving Eq. (5) for the5

discharge current gives

6



2 mc2 v "R/F)2  (7)c 2q 1 - r2/r 2
s c

For example, consider injecting 30 MeV Li+ 3 ions into a 3 cm radius
1/2 7

transport channel with r - rc/2 1 2  Suppose that a beam current of I MA

is required, and that the extraction ion diode has a source density of

10 kA/cm 2 with a microdivergence of 20 mrad. To produce the required ion
2

beam current of 1 MA, the anode must have a surface area of 100 cm

Thus, the anode radius must be about 5.7 cm. From Eq. (2), the focal

length required to focus to a spotsize of 2.121 cm from an extraction

diode with a 20 mrad microdivergence is about 106 cm. Thus, (R/F) has a

value of 0.0535, and Eq. (7) indicates that the transport channel

discharge current must be about 20 kA. For the analysis presented below,

a value of I = 20 kA is chosen for the numerical simulations, but it

should be noted that the values of the parameters discussed here are

important primarily when considering transport and focusing in relation

to the rest of the beam production system.

III. Vlasov Equation Analysis of Z-Discharge Transport and Foc-sing

The single-particle analysis of the preceding section illustrated

some of the basic ideas of intense ion beam transport. In this section,

a Vlasov equation analysis will be employed to describe both transport 0

and focusing. Because of the assumption of complete charge and current

neutralization, the Vlasov equation can be decoupled from Maxwell's

equations, which would otherwise need to be solved simultaneously to

describe the se]-consistent fields. Previous analysis of this problem8

is extended here to treat the final focusing cell and the ballistic drift

zone between the focusing cell exit and the focal plane. The first

7 .!9



subsection describes the Vlasov equation analysis. The following three

subsections apply the analysis to the propagation of the ion beam in the

transport channel, the final focusing cell, and the ballistic drift

region, respectively. The areal numer density of the ion beam at the

focal plane, as well as expressions for the spotsize and focal length of

the focusing cell will be obtained.

A. Solution of the Vlasov Equation

Several other assumptions will be made in addition to the assumption

of complete charge and curren neutralization. It will be assumed that

the transport channel parameters can be chosen to minimize the

hydrodynamic response of the channel to the passage of the beam as well

as to provide an acceptably small collisional beam energy loss during
21,23propagation . This assumption has a number of helpful consequences.

First, it means that on the time scale that characterizes the ion beam

duration, the channel can be treated as a time independent configuration.

Second, the axial electric field induced by the hydrodynamic interaction

of the neutralizing return current with the discharge magnetic field
15

can be considered to be negligible. In addition to this induced electric

field, there is an axial electric field associated with the resistive

flow of the n tralizing current. However, for Spitzer resistivity the

force produced by this electric field on a beam ion is three orders of

magnitude or more smaller than the v x B force experienced by a beam ion

in the discharge magnetic field. Thus, both the resistive and the

inductive parts of the axial electric field can be neglected. This, in

conjunction with the assumption of small collisional beam energy loss,

means that the energy of the propagating beam ions can be approximated as

constant. It will also be assumed that the beam is free from elastic

scattering collisions that would lead to a diffusion of the beam in

velocity space. The above asgumptions allow the beam to be regarded as a

collection of noninteracting ions propagating through the static

8



azimuthal magnetic field of the z-discharge transport channel. The

evolution of the ion beam phase space distribution can be described by

the Vlasov equation. To simplify that equation to the point where

analytic progress can be made, three more assumptions will be made.

First, the discharge current density is assumed to be uniform inside the

channel radius, rc, and zero at greater radii. The azimuthal magnetic

field corresponding to this current density distribution then has a

linear radial profile inside the channel, as given by Eq. (4). Second,

all beam ions are assumed to have zero angular momentum. Third, the

investigation will be limited to a beam produced by a monoenergetic time-

independent source, so that time-of-flight effects are neglected. Under

the assumptions stated, the Vlasov equation describing the phase space

distribution of the ion beam is

afqIf af
S+ ~ 2J.r v rf av 0. (8)r ar z az [cr2 r 3vz  3v

Since the solution to the Vlasov equation is a function of the equations

of motion, one could immediately use the constants of the motion

discussed in Section II to develop a solution. However, because of thr

particular form of the initial radial phase sp-ce distribution to be

considered here, it is more convenient to solve Eq. (8) using the method

of characteristics. Eq. (8) will be rearranged by using the conservation

of energy to reduce the number of independent variables. Letting CX

denote the pitch angle of an ion trajectory, and letting v denote the

magnitude the velocity of a beam ion, the radial and axial velocity

components can be written as

9



vr  = v sina, (9a)

v = V COSE, (9b)

and the Vlasov equation takes the form

sin- Vos -- r 0 0. (10)3r z [c r2) a=x

This equation is posed as an initial value problem by specifying the

distribution in the plane z 0 0, corresponding to the entrance of the

transport channel. The distribution function for z > 0 is then obtained

by solving Eq. (10) using the method of characr"'istics.

The characteristic equations associated with Eq. (10) are

dr - v sin c with r(O) = r, (1a)
d- b 0

dz C Vbcos a with z(O) = Zo, (ilb

10



dcc (2q 1~dL - r with a(0) = (1(l)d-r m  r 2

and
df 0 with f(O) F(ro, ao z) (lid)
-' 0 0 0

In this analysis the initial ion beam phase space distribution will be

defined at a plane z = 0. Thus, T = 0 corresponds to z° = 0 and the

parameter z0 will be suppressed in the following analysis. Equation (10)

is solved by solving Eqs. (Ila), (lib), (11c), and (lid), inverting these

solutions to obtain r0 and a as functions of r, z, and cc, and inserting

those expressions into F(r0, o). By differentiating Eq. (lic) with

respect to T, and using Eq. (Ila) to eliminate dr/dT1 the pendulum

equation is obtained for m(T):

d2,2
2 sin cc 0, (12)

where at =0, 2

dc W o ro
d -r Vb

III

........... - -- - ,,, .w mmmmmimmmmm ml mmm i mra ai imimmmm I H mm11



and where w is defined by

2 2q I c= v b  (13)

00 2 bme r

Equation (12) may be solved exactly in terms of Jacobian elliptic

functions, however, a solution in terms of these functions makes the next

step, inverting for r and an0, very difficult. To avoid this difficulty,

Eq. (12) is linearized using the small angle approximation, namely

sin(m) = a. This approximation is justified since the strength of the

azimuthal magnetic field typically considered for the transport channel

is sufficiently strong to confine only those ions with small axis-

crossing angles. While the use of more intense magnetic fields would

certainly allow ions with larger axis-crossing angles to be confined,

there are other reasons concerning the energetics of driving a long, high

current discharge and the evolution and stability of the discharge that

make lower field strengths preferable. In the linearized version of Eq.

(12), w is the radial frequency of oscillations and is termed the

betatron frequency. The solution to the linearized version of Eq. (12)

is

c(T) = 0- /20c sin [WT - tan - I °  (14)
X /2n 60.2ar14

12



In the small angle approximation, the betatron wavelength X is related

to the betatron frequency by

X 3 = 2n vb/W .  (15)

Equation (14) and the corresponding solution to Eq. (la) may be inverted

to obtain

r o  = r cos(wo) 0 - (XIO/2n) m sin(u 0oT), (16)

=o = (2/X 0) r sin(Co0T) + a cos(W o1) (17)

The linearization that allowed Eq. (12) to be solved so easily is

equivalent to approximating the axial comporint of the velocity of a beam
ion by the constant vb. Thus, the parameter T can be replaced by

Z/Vz = z/vb . This gives

13
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r0(r, z, a) = r cos(k z) - (/k 0) sin(k z), (18a)

a(r, z, x) = (r/k0 ) sin(k0z) + m cos(k z), (18b)

where k0 = 2n/X Oo The solution to the Vlasov equation can then be

written as

f(r, o, z) - F (r0 (r, a, z), (r, a, z)) (19)

It remains only to specify the initial distribution F 0 (ro, ) .

B. Treatment of the Transport Channel

In the original analysis of intense light ion beam propagation in z-

discharge transport channels8 , the initial distribution filled a

rectangle in radial phase space centered about r = 0 and v r = 0 such that

at z = 0, the number density profile was n(r) = constant for r < r5 and

n(r) = 0 for r > rs. In this analysis, the initial radial phase space

distribution will be generalized to include rectangles in the radial

phase space plane with arbitrary boundaries. The reason for extending

this analysis to more general initial distributions is to fird what

impact the form of the initial distribution has on the focused ion beam

number density profile. The initial distributions considered here are

simple models of what would be produced by an extraction ion diode at or

near its focal plane. Figure 2 illustrates this initial condition which

can be expressed mathematically as

' .liil • i l il i l il~ i -4



F(r0 ~ t N 6(v 6)L(v tvbarot' ot) Oo t vtyt b

[((rot -rmi) - H(rot - rmax)] (

( o - in -'Max)- %ia' )] (20)

where H is the Heaviside step function (H(x) = 0 for x < 0, H(x) I for

x > 0). The subscript "ot" denotes the initial condition for propagation

in the transport channel. The delta functions are included to specify

that the beam is monoenergetic and has no angular momentum. The quantity

v is the magnitude of the velocity of an ion and vb is the specific value

of the magnitude of the velocity of the beam ions. N is the average

density of this initial distribution and for this particular distribution
2 2

is given by No/[(a - n(r - rn)], where N is the total

number of ions present at the source plane z = 0. Note that by

integrating this distribution over the velocity space coordinates, the

resulting radial number density profile is flat between r min and r max and

is zero elsewhere.

The downstream phase space density is obtained by using Eqs. (18a)

and (18b) to express rot and aot in Eq. (20) in terms of r, a, and z.

The delta function in veo t is transformed to (r/r t)6(v 9 ) using the

conservation of angular momentum and the delta function relation

(ax) = S(x)/IaI. Similarly, the cons:rvation of energy allows the

quantity v to be replaced by vb The result is a phase space density that

is periodic in z. This purely periodic behavior is a consequence of the

15



small angle linearization used to solve Eq. (13), uhich gave all beam

ions the same betatron frequency, X o. By forgoing this approximation

and solving the equations of motion exactly, one finds that the actual

betatron wavelength of an ion depends on the turning point. The

equations of motion may be posed in either the time domain, in order to

find the betatron frequency, or in the axial distance domain, in order to

find the betatron wavelength. From the calculation in the axial distance

domain, the exact result for the betatron wavelength is

X (r ) 2 X0 2E [n~ K~n] (22)
001

X X0, [1~ [r,, 2 j (23)

where K and E are the complete elliptic integrals of the first kind and

second kinds, respectively. Eq. (23) is an approximate result obtained

from the small argument expansions of the complete elliptic integrals

that is valid when the channel radius is much smaller that the betatron

wavelength. The result indicates that if the initial distribution has a

finite spread in either rot or mot' there will be a corresponding spread

in the betatron wavelengths of the propagating ions. This spread will

manifest itself as a phase mixing of t'-- downstream distribution. For a

beam with ions which cross the axis with small angles, i.e. a low

emittance beam, a propagation distance of many betatron waveleng'hs is

16
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required for phase mixing to be complete 8 , where complete phase mixing

implies that the radial phase space distribution of the beam becomes

independent of z. It will be assumed here that the transport channel is

long enough to allow complete phase mixing to occur. Rather than dealing

explicitly with the problem of phase mixing, an approximate phase mixed

distribution will be obtained by averaging the periodic distribution over

the betatron wavelength X 00

.00~ + z

fPm(r, x) = X- dz' f(r, a, z'). (24)

1z

Specifically,

17



fpm N p. -vb)
Sr (ve) v (25)

r r.
dx [HIj(- x2 ri-n- H(j, 2 - axj x

-1

( (x ~max H (x miny

mini -maxn

(H (x k' H) kx (-a))]
k0 0 P

2 2 2 k2
where p = r + o2 k .

To complete the integration, one must specify the relative magnitudes

of 'min' 'max' rmin, and rmax. To do so, it is convenient to express the

combination (X0c)/2n as a new variable y. In the r-y phase space plane,

the phase space trajec.tory of a propagating beam ion is a circle rather

than an ellipse. There are then two results, depending on the magnitude

of (Y 2 + r 2  ) 1/2 relative to (r2 x  2 1/2 The two resultsmax min  max nn
correspond to two different orientations of the rectangle that defines

the initial radial phase space distribution as illustrated in Figures 3a
2 2 2 2

and 3b. For Y + r < r 2 + , that rectangle is orientedmax min max min'horizontally, and the ion beam phase mixed distribution is

18



2 2 Y 2
0; <rmin + min

2  2 2

2 2 rmi n + )min  <

- r. - Ymin;
0 2 iri 2 2 2

min max

r +2  2 < 2+ain

fpm 2N ( - b) mi max ,
Fr e v 'max - Tmin; 2 2 2

max min

2 2 <2
2 2 max Ymin

Ymax - r4 max
max 2 <r 2  

2
max 4 max

0; 2 > r + 2
max max

For 2 r2 > r2  2 the initial phase space distribution
"max m min max m Yain ,

rectangle is oriented vertically, and the ion beam phase mixed

distribtuion is

19



0 2 < 2 + 2
min min

2 2 2rmi min < P

P2 r 2  
-

man m

min min 2 2 2

max Ymin

2 2 2
fpm 2N6  (v -Vb) p2 r 2 _ 2 r2 max + Ymin< (fp nRr (ye) v pln - a ; r (27)

2 2 2= max +  mi n

2 2 2
Yma r < 0

- p2 r2  max min

max max 2 < r2 + 2
max 4 max

0 2 2
max 4 max

Although somewhat complex in appearance, these results have a simple

geometric interpretation. After phase mixing, the radial phase space

distribution is a function of p modulated by a factor of I/r. The I/r

modulation is a consequence of the cylindrical geometry. The dependence

on p reflects the fact that in the r-y plane, ions move on circles

defined by r2 + Y = 2 = constant. The intensity of the phase mixed

distribution an any given circle is proportional to the average value of

r on the portion of that circle that lies within the region defined by

the initial radial phase space distribution. The phase mixed

distribution functions represent the state of the ion beam after many
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betatron wavelengths of propagation in the transport channel, and will be

used as the initial condition for describing beam propagation in the

final focusing cell.

C. Treatment of the Final Focusing Cell

The final focusing cell will be described by an idealized model

similar to that used for the transport channel - a uniform cylindrical

plasma carrying a uniformly distributed discharge current within radius

rc. For the present, the exact length of the final focusing cell will

not be specified. However, its length need not be greater than a quarter

betatron wavelength to take advantage of the envelope oscillations. In

the final focusing cell, the beam clearly does not propagate far enough

to phase mix and, in fact, the z-dependence of the beam distribution

function is the central issue. The analysis of beam focusing will

determine the optimal final focusing cell length.

The phase space density of the ion beam in the final focusing cell is-

obtained by propagating the phase mixed distribution (either Eq. (26) or

Eq. (27)) along the trajectories of ions. The characteristic equations

that describe the ion trajectories for the focusing cell are the same as

for the transport channel (Eqs. (1la) and (lb)) except f. the 0

difference in the magnetic field strength. Since the phase mixed

distribution is being used as an initial condition for propagation in the

final focusing cell, the quantity p in either of Eqs. (26, or (27) must

be interpreted as a function of the initial phase space coordinates. 0
2 2 2 2Thus, p = rof + mOf/ka, where the subscript "of" denotes the initial

conditions for propagation in the final focusing cell. With the

modifications appropriate to the increase in the magnetic field strength,

Eqs. (18a) and (18b) may be used for expressing P in terms of the 0

downstream radial phase space coordinates. Letting I, denote the
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discharge current in the final focusing cell and introducing the

parameters

I
f
i - 1, (28)
c

8o) - n 2 ,and (29)icj c J

A = , (30)

the combination of rof and (of denoted by p in Eqs. (26) and (27) may be

expressed as

2 r 2  
2 /k 2

- Of ~Of a

-2/ Kr 2+ Ar sin(K z) + (a/K)cos(K z3], (31)

where r and K for the final focusing cell are defined analogously to y

and k a for the transport channel, namely, K a 2rt/A 1 and r = o/K .

This expression for P is inserted into Eqs. (26) and (27) to give the ion

beam phase space distribution in the final focusing cell.
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The phase space distributions obtained in this manner depend on r and

r only through the combination which defines p. The equation
2
0 = constant defines an ellipse in the r-r plane which rotates as the

beam moves through the final focusing cell. To examine this result in

further detail, it is useful to use a coordinate system which rotates

relative to the original coordinate system in such a manner that in the

new coordinate system, the phase space ellipse does not rotate. The

equation for the ellipse may be written as

A r2 B rr + C r2  p2, (32)

where A = 1 + 4sin 2 (Kaz), (33)

B = 2&sin(Kz) cos(Kz), and (34)

C = 1 + acos 2 (Kz). (35)

The constant p in this equation denotes any of the boundaries in r-r

space at which the functional form of the phase mixed phase space

distribution changes. For example, in Eq. (26), the phase space2 22

distribution function is zero for P < r2  (X /2 ) 2a2  but attains a
2 2 min 139 min

different functional form for P > (x 2 Tt . In this case.
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2= r + (X/2n) 2a The new rotating coordinate frame is definedmin 0 inby the relations

r = r' cosP - r' sinv, (36)

r = r' sin* + r, cos*. (37)

The proper choice of the angle * will eliminate the cross term in the

rotating frame, reducing the equation for the ellipse to normal form.

The proper choice is

4, : (1/2) cot - I [(A - C)/B] = - 2a z/A 00 (38)

In the new rotating frame, the equation for the ellipse is

(r')2 / p + (r') [p 12/(1 ) = 1. (39)

This indicates that the phase space distribution is characterized by

concentric ellipses which, in the original nonrotating frame, rotate in

the clockwise sense such that the angle between their major axes and the

r-axis is 2 Tz/A radians.
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Figures 4a and 4b show how the radial phase space distribution has

changed after propagating one quarter and one-eighth of a betatron

wavelength through the focusing cell, respectively. If the beam is

allowed to propagate a quarter of a betatron wavelength into the cell,

the phase space ellipse will rotate by -90* so its major axis is

parallel to the r-axis. At this point, the radius of the beam is

determined by the minor axis of the phase space ellipse:

I
r fo c  r (40)

This could be useful for focusing, but it would require the that target

be placed immediately at the exit of the final focusing cell. A more

practical approach would allow for standoff between the final focusing

cell exit and the target. 'The best way of accomplishing this is to use a

one-eighth betatron wavelength long focusing cell. This creates a radial

phase space distribution at the focusing cell exit in which the number of

ions with negative radial velocities is maximized. The ion beam then

comes tr a focus as it ballistically propagates through the standoff

region. For the remainder of this analysis, only the one-eighth betatron

wavelength focusing method will be considered.

D. Treatment of the Ballistic Drift Region

The propagation of the ion beam in field free space may be described,

once again, by the Vlasov equation. In this case, however, the discharge

current appearing the Eq. (10) is absent; the ions follow straight line
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trajectories. The solution and inversion of the characteristic equations

is trivial:

r = z (41a)

oh =  Cc (41b)

where the subscript "ob" denotes the initial values for propagation in

the ballistic drift region. The ion beam phase space distribution in the

ballistic drift region is obtained by using Eqs. (41a) and (41b) to

propagate the phase space distribution at the final focusing cell exit

along the ballistic ion trajectories. At the exit of the final focusing

cell, the quantity p must be interpreted as a function of the initial

conditions for ballistic propagation. From Eq. (31) and using z = A~o/8,

at the final focusing cell exit p is given by

p2  o/K ) 2 + (r /K 0)2 (42a)

= ob b a 2 ( rob 'ob/f•

coordinates in terms of the downstream coordinates gives

2 = [(2 + 6) r2  + 2(/K 8 - (2 + A)z) o r

((2 )z 2  
- az/K) 2 ]. (42b)

((22+ AA)/+ (2 +iK)26
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Using this as the definition for p is Eqs. (26) and (27) then gives the

ion beam phase space distribution in field free space.

It is again useful to write the equation for the ellipse that

characterizes the phase space distribution in normal form. Proceeding as

before, the equation for the phase space ellipse can be written as

,(1 2.

(2+A) + A -(7 +A)Zjcos~sin ( Z26 (2 +A)Zjsin 2 &

p

1 2(2 + A) - [A- (2 + A)Zlcossin&- Z [26 (2 + a)Zlcos 2

2
p

- 1, (43)

where the angle between the rotating and stationary axes is now given

by

2 (2 + ) ], (44)
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where Z = 2Mz/A o. This analysis indicates that in the coordinate frame

in which the equation for the phase space ellipse appears in normal form,

the phase space ellipse undergoes an area preserving deformation

characterized by a decrease in the length of the major axis and a

corresponding increase in the length of the minor axis, as illustrated in

Figure 5. At Z = a/(2 + a) the lengths of the major and minor axes are

equal. For greater values of Z, the roles of the major and minor axes

are reversed, with the original major axis becoming the minor axis as the

ellipse grows progressively more eccentric along what was originally the

minor axis. The rotating coordinate frame, which at the exit of the

final focusing cell was oriented with its r'-axis making an angle of -450

to the r-axis, begins to rotate counterclockwise. At Z = a/(2 + 4), the

rotating frame has rotated back to 00 with respect to the r-axis. At

Z = 2a/(2 + d), it has rotated to 450 . Downstream from that point, the

direction of rotation reverses and asymptotically approaches 0* as Z

approaches infinity. It should be emphasized that what is actually

rotating is the coordinate frame defined by the major and minor axes of

the ellipse. The actual ions move along lines of a = constant with r

increasing with z.

The smallest radius of the ballistically propagating beam is achieved

at Z = 6/(2 + 4), i.e. at a distance of 2nA 30A/(2 + A) downstream from

the exit of tho final focusing cell. At that point th,. ion beam radius

is

21
r1foc f 4cI r (45)
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Note that this is a factor of 2112 greater than could be achieved

with a quarter betatron wavelength focusing cell, but that it does

provide a standoff of 2nA 0/(2 + 6) between the final focusing cell exit

and the focal plane.

The number density profile of the ion beam at the focal plane is a

quantity of central interest to target design since it is that quantity

which determines energy deposition profiles. The number density n(r, z)

of the ion beam can be obtained from the phase space distribution by

integrating over velocity coordinates:

n(r, z) dv da v dv f(r, z, v9, v, M) (46)

The integrations involved with obtaining n(r,z) from the phase space

distribution given in Eqs. (26) and (27), although elementary, are quite

lengthy. The results are summarized in the Appendix where the complete

expressions for the beam number density profile at the focal plane are

given. Due to the complicated functional form of these results, it is

convenient to evaluate n(r) for several specific cases to help illustrate

the nature of the results. In Figure 6a, rn(r) is shown for the beam at

the entrance to the final focusing cell and at the focal plane for the

case of the distribution given by Eq. (17). In this example,

rmax = 2.121 cm, amax 0.0535 radians, rmin = 0 cm, and

a m 0.025 radians. The comparison of the unfocused beam numberman
density profile to the focused beam number density profile clearly

illustrates the ability of the final focusing cell to focus the beam.

Figure 6b shows rn(r) for the beam at the focal plane for three different
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values of cmin with rmax) tmax, and rmin the same as in Figure 6a. As in

Figure 6a, these results correspond to the distribution given by Eq.

(17). Figure 7 shows results analogous to those in Figure 6a, but for

the distribution given by Eq. (18). In Figure 7, r = 2.121 cm,

%iax = 0.0535 radians, cmin = 0 radians, and rin takes on several

different values as indicated. In Figs. 6a, 6b, and 7 the transport

channel current was 20 kA, the final focusing cell current was 340 kA,

the channel radius was 3 cm, and the beam consisted of 30 MeV +3Li ions.

The quantities r max and qmax must be constrained to insure that ions

injected into the transport channel are confined by the transport channel

magnetic field, i.e. Eq. (5) must be satisfied for r = rmax, M = Mmaxt

and rp = r c. The choices of rmax and amax used in Figs. 5a, 5b, and 6

correspond tora = (m/k)2 = r2 /2.
mxmax c

The results exhibit several common features. In all cases, the

number density is singular at r - 0. This singularity is due to the

cylindrical geometry, which requires that the volume density of ions

diverge at the axis if there are a finite number of ions located there,

and to phase.mixing, which insures that there are always ions located on

the axis. Second, the radius of the ion beam at the focal plane is given

by Eq. (45). This indicates, for example, that to produce a factor of

two radial compression, the ratio of focusing cell current to transport

channel current must be 7. For very large cur--at ratios, the ratio of

focused beam radius to channel radius is approximately (21c/I f) 1/2. In

any case, the beam compression ratio depends only on the ratio of the

currents. Third, depending on the values of rmin and omin' the number

density profile exhibits an off-axis peak that occurs just inside the S

radius

r peak 2 ..(r 2 2 /k2 (47)rpek 2 + 6t min "Ma
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for the beam -haracterized by the distribution given by Eq. (26) and

rpeak 2 _ (r 2 + 2 2)' (48)
2 + A max ' min/k0J

for the beam characterized by the distribution given by Eq. (27). These

off-axis peaks are a consequence of the hole in the radial phase space

distribution of the phase mixed beam in these examples. When there are

no ions in the center of the elliptical radial phase space distribution,

the projection of that distribution onto t-he r-axis is somewhat depressed

around r = 0. The examples show that the larger the hole in the center

of the radial phase space ellipse is, the more dramatic the off-axis peak

is,
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IV. NUMERICAL TREATMENT OF Z-DISCHARGE TRANSPORT AND FOCUSING

The Vlasov equation analysis of the preceding section treats the

restricted case of zero-angular momentum ions propagating in a z-

discharge plasma with a uniformly distributed discharge current.

Analysis of less restrictive cases, in which the restriction on angular

momentum is relaxed, are interesting for a variety of reasons. For

example, the applied-B ion diode operates with magnetic fields that can

impart angular momentum to the ions it accelerates. Both pinch reflex

ion diodes and applied-B diodes suffer from microdivergence which can

produce a small level of angular momentum in the accelerated ions. The

impact of this effect on the focused beam number density profile may be

important to target design. To address these issues, a numerical

treatment has been used.

In the original analysis8 of z-discharge transport and focusing, a

computer code was used to augment the analysis. A computer code of the

same type has been developed for the present analysis. The code computes

-the trajectories of an arbitrary number of ions with arbitrary initial

conditions moving in an arbitrary magnetic field. By properly specifying

the initial conditions and the magnetic field structure, the code

simulates the propagation of an ion beam in a transport channel or final

focusi-g cell. As with the analysis of the previous section, this

numerical treatment is based on the assumptions that the beam is fully

charge and current neutralized and that the propagation medium is static.

In its current usage the code is time-independent in the same sense as

was the Vlasov equation treatment; while the trajectory of an individual

ion is computed as a function of time, time-independence in the code is

achieved by propagating a collection of ions from one plane z = z to a

downstream plane z = z1 without regard to the time-of-flight of the ions.

The main operation of the code is quite simple. It reads a file

containing the phase space coordinates of N ions, computes their

trajectories in a specified magnetic field, and, when all N ions have
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arrived at the collection plane, it writes their phase space coordinates

to a new file. An auxiliary code reads this file to perform diagnostics.

As a demonstration of the performance of the code, a run has been

performed that simulates the case of zero angular momentum ions shown in

Figure 6a. This was the case of zero angular momentum 30 MeV *3Li ions

injected into a 20 kA, 3 cm radius channel. The maximum and minimum

injection angles were 0.0535 and 0 radians, respectively. The maximum

and minimum injection radii were 2.121 and 0.0 cm, respectively. 5100

ions were used for this example.

Rather than to propagate this distribution through the many betatron

wavelengths that would be required for phase mixing, a phase mixed

distribution was obtained using an averaging procedure analogous to that

used in the Vlasov equation analysis. The resulting distribution is

illustrated in Figure 8a, where the radial phase space positions of all

5100 particles are plotted. The averaging process "smeared-out" the

initial distribution over the phase space trajectories of the ions,

producing a distribution that, aside from the effect of using a finite

number of particles, is independent of Zhe angle in the radial phase

space plane. Figure 8b shows the rn(r) profile (number density profile

time radius) of this distribution. In these plots, rn(r) is shown rather

thai- n(r) because by" multiplying the number density by the radius, the

singularity in n(r) at r = 0 can be removed, and thereby allow a better

comparison between the theoretically predicted result and the simulation

result.

This distribution was then propagated through a 340 kA, 3 cm radius

one-eighth betatron wavelength final focusing cell. Recall that in this

context, the betatron wavelength is determined by discharge current in

the focusing cell. For this example, the focusing cell betatron

wavelength is 35.22 cm. After exiting the final focusing cell, the beam

travelled ballistically to the theoretical location of the focal plane, a
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distance of 4.6 cm beyond the focusing cell exit. Figure 9a and 9b show

the radial phase space positions and rn(r) profile of the beam at the

exit of the final focusing cell. As predicted by the theory, the radial

phase space distribution fills an ellipse which has rotated in the

clockwise sense. Figures 10a and lob show the beam radial phase space

distribution and radial number density profile at the theoretical focal

plane. Fig. lOc shows rn(r) vs r on an expanded scale with the

theoretically predicted result overlaid. Aside from the noise due to the

use of a finite number of particles, there is very good agreement between

the code result and the theoretical prediction.

To assess the impact of angular momentum on final focusing, a code

run was performed using the same initial radial phase space distribution

used in the theoretical analysis of the preceding section, but with the

angular momentum of each ion elevated from zero to the largest value

consistent with the requirement that the ion remain confined within the

channel. The kinetic energy of each ion was held constant by decreasing

v as v E was increased - because v8 is much smaller than vz, the decrease

in vz necessary to keep the same kinetic energy is. not great, and does

not significantly affect the simulation. The maximum allowable azimuthal

velocity can be calculated from the equations of conservation of angular

momentum, canonical axial momentum, and energy. These equations can be

comwned to give

Vb 2-v 2 r 0 2 v 2  v 2  2 4 C-r2_r') (49)
b  - Vr - Veo b - ro- eo 2 -

r
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where wc is the cyclotron frequency corresponding to the maximum magnetic

field strength, and the subscript 'o" denotes the initial conditions for

propagation in the transport channel. Requiring that the ion have its

outer turning point at r a rc then yields a quadratic equation for v2

This equation was used to determine the maximum allowable azimuthal

velocity that each ion in the radial phase space distribution could be

given. For this simulation, the radial phase space distribution

corresponded to curve (a) of Fig. 6b, namely, ions distributed within

0 < r 2.121 cm, 0 < Iml < 0.0535 radians with a flat number density

profile. The distribution in r-v is illustrated in Figure 11. Note

that this is a highly contrived distribution, but for the given radial

phase space distribution, it will show the greatest possible impact that

angular momentum can have on final focusing.

An ion with nonzero angular momentum has two turning points as it

propagates down the channel. One turning point defines the maximum

radial excursion of the ion and the other defines the point of closest

approach to the axis. When that inner turning point is very close to the

axis, the numerical resolution of the trajectory in that region requires

very small timesteps in relation to the timestep size required for

accurately resolving the rest of the trajectory. This is so because at

the inner turning point, the radially inward v x B force must balance the

radially outward centrifugal force, but since both ":,ese quantities are

very small when the inner turning point is very close to the axis, large

numerical errors occur. In order to avoid extremely restrictive timestep

requirements, ions were excluded frum the region 0 , r < 0.05 cm to avoid

extremely small points of closest approach. Because of phase mixing, the

effect of eliminating the ions in this very narrow strip is negligible.

This distribution was then averaged over a betatron wavelength to produce

a phase mixed distribution. As in the previous example, the transport

channel was a 3 cm radius, 20 kA channel and the ions were 30 MeV .Li.

The phase mixed distribution was then propagated through a one-eighth
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betatron wavelength final focusing cell with a radius of 3 cm and

discharge current of 340 kA.

Figures 12a, 12b, and 12c show the r-vr particle positions, r-ve

particle positions, and rn(r) of the phase mixed distribution, i.e. at

the entrance to the focusing cell. The radial phase space distribution

in this example is notably different from that of the previous no angular

momentum example. The finite angular momentum of the ions prevents them

from reaching r = 0, which modifies the radial phase space distribution

by making it very sparse at small radii. Figures 13a, b, and c show the

r-v r and r-v( distributions and the rn(r) profile of the beam at the exit

of the final focusing cell. The rotation of the radial phase space

distribution that was observed in the previous example is still present,

but it is slightly modified at small radii by angular momentum effects.

Figures 14 a, b, and c show the r-v r and r-v8 distributions and the rn(r)

profile of the beam at the theoretical focal plane. Although there is a

large difference in the number density profiles between the zero angular

momentum case and this case, there is very little difference in either

the spotsizes or the focal lengths. The main effect is a slight increase

in the spotsize and a slight decrease in the focal length. This

calculation shows that while the highly contrived angular momentum

spectrum of the beam has a strong influence over the beam number density

profile at the focal plane, the -7otsize of the focused beam is not

strongly influenced. Thus, the analytic theory of the preceding section

should be adequate for predicting the spotsize and focal length of the

one-eighth betatron wavelength focusing cell even for beams with

appreciable angular momentum.

It should be noted that the dramatic modification of the number

density profile of the beam at the focal plane is mainly due to the very

contrived angular momentum distribution that was used. That distribution

forced the outer turning point of all the ions in the run to be at the

channel radius as they propagated in the transport channel, rather than

36



being distributed between r = 0 and r = rc . A more realistic angular

momentum spectrum would be expected to have a much less dramatic effect

on the radial number density profile of the focused ion beam. This

expectation has been confirmed by a simulation of the focusing of a beam

that had a spread in azimuthal velocity that was equal to the spread in

radial velocity. The initial distribution for this simulation was a

uniform distribution of ions within the region 0.05 cm < r < 2.121 cm,
< Ivr/vbI 0.0535, 0 < vO/vb < 0.0535. As in the previous run, ions

were' excluded from a small region around the axis to avoid numerical

difficulties. This initial distribution was phase-averaged in a 20 kA,

3 cm radius transport channel. Figures 15a and 15b show the radial phase

space distribution and the ve-r distribution of the phase averaged beam.

This distribution was then propagated through the same 3 cm, 340 kA one-

eighth betatron wavelength focusing cell as was used in the previous

example, and was then ballistically propagated to the theoretical focal

plane. Figure 16 shows the radial phase space distribution of the

focused beam. This figure indicates that the beam is slightly past the

focal plane. Figure 17 compares the number density profile of the

focused beam obtained from this run with the theoretical- number density

profile of the corresponding zero angular momentum beam. This comparison

indicates that the number density of the beam with angular momentum is

different from the zero angular momentum beam mainly at small and

intermediate radii. This difference can be ascribed to the difference in

the radial phase space trajectories of an ion with zero angular momentum

and an ion with finite angular momentum. This difference is greatest at

the small radii that cannot be reached by an ion with finite angular

momentum. At larger radii, the two profiles are quite similar to one

another.
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V. Discussion of Results

An analytic treatment of charge and current neutralized ion beam

transport and focusing in z-discharge channels has been developed. This

treatment has been applied to the one-eighth betatron wavelength focusing

method. The theory predicts that beam focusing can be achieved, and that

the focused beam radius depends only on = If/I c - 1 and the channel

radius, r :

rfoc 2 + 1/2 rc (50)

0

For the case of an ion beam consisting of zero angular momentum ions, an

adjustable initial radial phase space distribution has been used to

determine the effect of the initial beam distribution on the beam number

density profile at the focal plane. Results indicate that the natural

1/r number density profile can be modified to produce an off-axis peak.

However, to strongly modify the natural 1/r profile requires a very high

brightness beam source, i.e. a source with a very small spread in

injection angles. A numerical treatment has been used to investigate how

nonzero angular momentum effects focusing. A highly contrived

distribution, in which all ions had the largest amount of angular

momentum possible under the constraint that the ions remain confined in

the channel, was used in the code runs. The code runs indicated that

while the inclusion of nonzero angular momentum does have a strong effect

on the beam number density profile at the focal plane, it does not have a

strong effect on either the spotsize or the focal length predicted by the

zero angular momentum theory.
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The one-eighth betatron wavelength focusing technique provides for a

standoff of several centimeters between the exit nf the final focusing

cell and the focal plane. A one-quarter betatron wavelength focusing

cell can focus the beam to a spotsize a factor of (1/2) 1/ 2 smaller than a

one-eighth betatron wavelength cell for the same ratio of currents, but

it does not provide any standoff. Thus, there is a trade-off between the

standoff and the radius of the focused beam. Since the targets to be

used in the APEX experiments are likely to be cryogenic, the standoff

provided by the one-eighth betatron wavelength focusing technique will an

important facet of the system design, allowing the target to be isolated

from the hot, dense plasma that would be likely to exist in the final

focusing cell exit region.

The various portions of the beam production and focusing system are

strongly related to one another. The spread in injection angles and

radii produced by the extraction diode determine the minimum discharge

current, the target radius and the transport channel radius determine the

ratio of final focusing cell discharge current to transport channel

current, and so on. These relations leave very little freedom in

choosing the parameters which define the beam production, transport, and

focusing system, and can have a strong impact on the design of the APEX

experiment. In fact, by combining Eqs. (45) and (7), a single equation

reling all the relevant parameters results:

1rc oc ic2  . (51)
f - rfoc 2q - (r/r ) 2

The first term in parentheses in Eq. (51) is determined by the transport

channel radius and by the target radius. These. in turn. are determined
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by the constraints on intense ion beam transport 2 1 and by target physics

issues, respectively. The second term in parenthpses is determined

solely by the ion species and energy, which are also determined primarily

by target physics issues. The third term in parentheses is determined by

the manner in which the ion beam is focused onto the channel entrance

from the extraction ion diode, and this involves issues such as the diode

microdivergence and source density.

The observation in Part B of Section III concerning the simple

geometric interpretation of the phase mixed ion beam phase space

distribution opens up the possibility of treating more general initial

radial phase space distributions than have been treated here. That

observation, namely that the intensity of the phase mixed distribution on

any given circle in the r-y plane is, neglecting the 1/r factor,

proportional to the value of r averaged over that portion of the circle

that passes through the region of initial nonzero radial phase space

density, appears to have general validity. It has been confirmed to hold

for an initial distribution that filled an arbitrary quadrilateral in the

radial phase space plane, and there appears to be no reason that it

should not hold for any initial distribution. Thus, the methods used

here could be used for analytic treatment of less idealized initial

radial phase space distributions. This could have some value when

considering specif'., extraction ion diode designs. Of course, such

nonideal distributions can always be treated numerically.

Several features of intense ion beam transport and focusing that have

been neglected here will be examined in future investigations. The time

dependence of the ion beam source and the beam bunching caused by a

carefully programmed accelerator voltage waveform have been neglected

here under the assumption of a time-indeoendent source of monoenergetic

ions. However, because of the strong effect that the temporal behavior

of the beam pulse can have on the performance of a target. it is

important to study the time-behavior of the propagating ion beam. In
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particular, the dispersion due to the dependence on both the energy and

the turning point of the betatron wavelength could have a strong effect

on de-bunching an otherwise ideally bunched beam, and could thus be an

important feature to consider when designing the accelerator voltage

waveform. The reaction of both the transport channel and the final

focusing cell to the passage of the ion beam, neglected here under an

idealizing assumption, is also a potentially critical issue. The head of

the beam could cause a modification in the azimuthal magnetic field

profile through a combination of channel expansion and magnetic field

convection. This would cause the tail of the beam to travel through a

substantially different type of channel and focusing cell than have been

assumed here. The difference in the magnetic field profile could affect

the time-of-flight bunching through an exaggeration of the effects just

mentioned above, as well as degrading the focusing properties of the

focusing cell. An analytic investigation of focusing in a one-eighth

betatron wavelength cell with a modified magnetic field profile is

currently underway, and an investigation of these other effects will

follow in the near future.
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Appendix

The beam number density as a function of radius is obtained by

integrating the expressions for the beam phase space density, Eqs. (26)

or (27), over the velocity space coordinates. For the most part, this

amounts to doing integrals of the form

P -22 2 2
x±a dx = [ x x a a log x x _a' • (Al)

For the case of x2 + r2 < i2 + r 2 corresponding to the phaseYmax + min Ymin max'

space distribution given by Eq. 26, the number density profile is:
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(1) for 0 r < 2 , I(r'. + (A2)

nb(r) 1 Ar

ba 2 m =2+ 6)

( or 2 <mr + n' i-2 rain

rJr+ ] Kin r ]rx (2 )r ']J

+b r  =rA~ 2 y 2'-(2 +) r) 2

1[r2 ( 2 ] + [)mrx2] log:: I.ax - + -ax 2min 2 yr_ + Y2 i(2_q * ma

min +  max +  min 2

+2 r. . . . .. .+ 6 r1 [r 2 (2+-A r. 2] log Yma x  + max + max ( 2 _
1 - r2 (2r 2

mrin +  max "mrin 22 @
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[2 2 2]] F 2(2 21

(ii) for - -( rai + minJJ < r < 2+ (ma)iJ (A3)

4N (2+A-

Ymaxax 2 2 2 12 2 2 + r
r- + - +- 6r r +yma

2 tmax min +2

2 2 2 + .

2 2 +. ..a )2] log max + rmin + Ymax 2 r~ ~

m i 2 6r 2I-2 r min

2-r~ (2 + lo 2]max + max ax 2
[r -2 ) r2  log - (a

Ymin + r max ' Ymin - r
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(iii) for -I, (r m r < P2-, (r2 m in)] (A4)

nb(r) - A+r

{ max 12 2 -

2 m + Ymax- r

y in 2 2 -)2 max + Ymin 2

+ 2 a (2+ r2] log max max mrax 2

L'min +  max min (2  2

r 2. (r2 2 r < 2_r(2 2 (A5)

L+ inf Yminl -I 2r t+ a max + Ymax)l

• 4N 11 (2 + A6

2 rmax Ymax 2{ 4ma 22 2 -

1 [r2 (2 'a r2]1 o max -jmax max

max 2 1(2 22}
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2 2 2 2

For the case of Ymax + rmin > Ymin + rma x ' corresponding

to the phase space density given by Eq. 27, the number density

profile is

(i) for 0 _ r < [2 A(r 2ain Y (A6)++ min + min

rb(r) - 1r 2 -

2 max max - 2  r - m + max - 2

YIn 22 ma ma2 (2 + 4)r2 r2  2 (2+6r
- max + - - min -min -2 r

2. 2L a21 log Ymax + Irmin + Ymax 2 ( rm n 2

r 42 _ _ m_ _ .x . ..
mi .r 2  Y22 + I)r 2

2min max min ( )

+ i2a (2 +Ar 2] logax m:ax '"max 2 y r~
mn+ Jmax m 'rin-(2 A21
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(ii) for [2 (2.n(r2  2) 2 (r2 + y2 (A7)

nb~r)- Ar x

{2 + ax - _m n ) - + n & max -
(r)f 4N ~ a +(. +2A 2]-

1ma 2 2- (2~ & 2 + A 22 ( j2  1Ymin [ 2 2 (2 A 6)

2 [max + Ymin - r r2 J

y + r2 +P )r2
'[r2 r ( .. )2] lo aminx m~ax - r2

2 (2r 2

I 2 2

2 min

" Y2 2 + Ar2'

1 [r2 r 2] log ax -max max - 2
maxr(2in +A) 2 2 a 2,

mi. max Ymin -(-- 2

I
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nb  A = A r  1 2 "-' 1- x
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Figure 2 The initial ion beam radial phase space distribution

used in the Vlasov equation analysis. Note that

because of the cylindrical geometry, the distribution

function must be more heavily weighted at large radii

to produce a flat number density profile.
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Figure 2a General form of the initial radial phase space

distribution corresponding to Eq. (17).
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Figure 3b General form of the initial radial phase spae

distribution corresponding to Eq. (18).
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Figure 4a The outer boundary of the radial phas- space

distribution at the entrance and at the exit of

a one-quarter betatron wavelength focusing cell.
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Figure 4b The outer boundary of the radial phase spar'e

distribution at the entrance and at the exit of

a one-eighth betatron wavelength focusing cell.
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Figure 5 The outer boundary of the radial phase space

boundary at several locations in the ballistic

drift region. Note that the area inside the

boundary curve is constant.
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Figure 6a Comparison of rn(r) in the transport channel to rn(r)

at the focal plane. In this example, r max 0 2.121 cm,

max - 0.0535 rad, rmin ' 0, and c min a 0;

I c  20 kA, If 340 kA, and r - 3cm. The ion

beam consisted of 30 MeV Li* .
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Figure 6b Number density profiles obtained from the

disrtibution given by Eq. (17) with r max 2.121 cm,

a max -0.0535 radians, r min m 0.0 cm, and

(a) 'mi - 0.0 radians, (b) a in -0.02 radians,

and (c) ami - 0.04 radians.
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Figure 7 Number density profiles obtained from the

distribution given by Eq. (17) with r max 2.121 cm,

cz max -0.0535 radians, a min 0.0 radians for
(a) r min =0, (b) r. mi 1.0 cm, and

(c)rmin 1.5 cm.
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Figure 8a Radial phase space distribution for the zero

angular ,iomentum beam in thxe phase mixed state

at the entrance to the final focusing cell.

5100 particles were used.
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Figure 8b rn(r) profile for the zero angular momentum beam

in the phase mixed state at the entrance to the

final focusing cell.
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Figure 9a Radial phase space distribution for the zero

angular momentum beam at the final foc.ising

cell exit.
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Figure 9b rn(r) profile for the zero angular momentum

beam at the final focusing cell exit.
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Figure 10a Radial phase space distribution for the zero

angular momentum beam at the focal plane.
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Figure 10b rn(r) profile for the zero angular momentum

beam at the focal plane.
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Figure 10c rn(r) profile for the zero angular momentum

beam at the focal plane shown on an expanded scale

along with the theoretically predicted result.
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Figure 11 Distribution of particles in the r-ve plane at the

the entrance to the transport channel for the

maximum angular momentum simulation. S
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Figure 12a Radial phase space distribution for the maximum

angular momentum beam in the phase mixed state

at the entrance to the final focusing cell.

5100 ions were used in this simulation.
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Figure 12b, Distribution of particles in the r-ve plane

for the maximum angular momentum in the

phase mixed state at the entrance to the

final focusing cell.
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Figure 12c. rn(r) profile for the maximum angular momentum

beam in the Phase mixed state at the entrance
to the final focusing.
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Figure 13a Radial phase space distribution of the maximum

angular momentum ion beam at the final

focusing cell exit.
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Figure 13b The distribution of ions in the r-ve plane for the

maximum angular momentum ion beam at the exit of the

final focusing cell.
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Figure 13c The n(-) profile for the maximum angular momentum

ion beam at the exit of the final focusing cell.
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Figure 14a Radial. phase space distribution of the ma.ximum

angular momentum ion beam at the theoretical focal

plane.
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Figure 14b The distribution of iens in the r-.ve plars for the

* maximum angular momentum ion beam at the theoretical

focal plane.
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Figure 14c The rn(r) profile for the maximum angular momentum

ion beam at the exit of the theoretical focal

plane.
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Figure 15a Distribution of ions in the r-v r plane for the io

beam with initial spread in v e comparable to the

initial spread in vr after phase mixing.
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Figure 15b Distribution of ions in the r-ve plane for the ion

beam with initial spread in v9 comparable to the

IIinitial spread in v after phase mixing.
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Figure 16 Distribution of ions in thc r-v r plane for the ion

beam with initial spread in vye comparable to the

initial spread in v r at the theoretical focal plane.

82



1.0-

0.8-

~'0.6-

0.4

0.21

0.0 0.3 0.6 0.9 1.2 1.5

r (cm)
Figure 17 rn(r) profile of the ion beam with initial spread

in v e comparable to the initial spread in vr
at the theoretical focal plane.
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