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Executive Summary

Herein we address the question of whether'the techniques of nonlinear dynamics

system theory c=n be usefully applied in a physical oceanography context. The tentative ;

answer to this question is , yes, the dynamics of a numerically generated one-dimensional

0 sea surface is shown to take place on a low-dimensional attractor. Further, the dimension

of the attractor is fractional (noninteger) and therefore the trajectory describing the sur-

face evolution is chaotic.

The report is segmented into four sections. In the first section we review the tradi-

tional wisdom of the mathematical modelii.g of waves on the sea surface. In the second

section a mini-review of nonlinear dynamics is presented, in which the basic concepts of

importance in understanding the influence of nonlinearities on the evolution of a system

are discussed in a straightforward way. How these concepts have been applied in geo-

physical context, including the ocean surface, is discussed in Section 3. In particular it is

shown that both climate and weather have chaotic attractors using a technique that allows

one to reconstruct the attractor directly from observational data. The properties of the

sea surface modeled as a fractal surface are also discussed.

In Section 4 some original research is presented in which the attractor reconstruc-

tion technique is applied to a numerically generated one-dimensional sea surface having

a Phillips spectrum of waves. In these preliminary calculations we find that, like the cli-

mate and weather attractorszkhe water wave attractor has a low-order fractional dimen-

sion. This implies that as few as five or six degrees of freedom may be sufficient to

describe the dynamics of a surface that required 512 degrees of freedom to numerically

generate. The implications of this for such problems as data processing are still being

considered and one discussed inpart in Section 5. We emphasize that these results are

preliminary and may require substantial investigation before they can be substantiated.

9
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1. Introduction

It is well known that the geophysical data sets seem almost capricious in ther varia-

bility. Indeed it is this mercurial nature of geophysical flows that makes the prediction of

weather patterns, or sea states, from deterministic primitive equations so uncertain. One

strategy for taking this changeability into account has been to introduce noise directly

into the equations of motion, thereby replacing the deterministic equations of motion by

stochastic differential equations [Landau and Lifshitz, 1959]. From these stochastic

equations it is then possible to construct transport equations for the evolution of average

flow properties, sucn as the mean velocity, the average energy, etc.. In physical oceanog-

raphy, at least, this technique has not been very successful in describing the evolution of

the energy spectral density of gravity waves [see eg., West, 1981]. In large part this

failure arises because such transport equations do not properly take into account such 0

strongly nonlinear effects as wave breaking and long wave/short wave interactions. In

this report we wish to focus on certain techniques which may be able to determine the

influence of strong nonlinear interactions on the evolution of water waves, as well as on

* weather patterns and climate. These techniques have been developed in the area of non-

linear systems theory.

In Section 2 of this report we present a mini-review of nonlinear dynamics which

may be skipped over by the experts, but which the novice might find useful. In this sec-

tion one will discover that dynamic systems theory emerged from a fusion of two classi-

cal areas of mathematics, topology and the theory of differential equations. Its impor-

tance to the experimental and observational sciences lies in its capacity to quantitatively

characterize complex dynamical behavior. Herein we review how dynamical systems

theory is applied in various geophysical contexts. One way in which it is applied is in the

construction of simple dynamical models that give rise to solutions that resemble the

observed time series data. Another way in which it is applied is through the development

of data processing algorithms that capture the essential features of the dynamics of the

system, such as its degree of irregularity and the structure of the attractor on which the

system's dynamics takes place [cf. Section 21. It is obvious that the theory of differential

equations is useful because it enables one to construct the dynamic equations that

All technical terms, from nonlinear dynamics, used in the Introduction are defined in Section 2.
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describe the evolution of the geophysical system of interest. Topology is of value here

because it allows us to determine the unique geometrical properties of the resulting

dynamic attractors. The degree of irregularity or randomness of calculated time series is

closely related to the geometrical structure of the underlying attractor.

Mandelbrot (1977, 1982), the father of fractals, argues that we need a new kind of

geometry to study such structures. Euclidean geometry is concerned with the under-

standing of straight lines and regular forms, and it is usually assumed, in geophysic'j and

oceanography, that the world consists of continuous, smooth curves in spaces of integer

dimension. When we look at billowing clouds, trees of all kinds, breaking waves and

coastlines, we observe that the notions of classical geometry are inadequate to describe

them. Detail does not become less important as regions of these various structures are

magnified, but perversely more and more detail is revealed at each level of magnification.

The rich texture of these structures is characteristic of fractals [Mandelbrot, 1977, 1982].

In Section 3 we show that a fractal structure is not smooth and homogeneous, and that the

smaller-scale structure is similar to the large-scale form. The aspect of such structures

that makes them different from what we usually experience is that there is no characteris-

tic length scale.

But it is not only static structures that have fractal properties but dynamical

processes as well. In Section 3 we also review how the fractal concept has been applied

to time series in some geophysical applications and in Section 4 some preliminary appli-

cations are made to a spectrum of deep water gravity waves. Because this latter applica-

tion is particularly important to us, let us now review some of the traditional wisdom

regarding such wave fields.

The generation, growth, propagation and eventual dissipation of waves on the ocean

surface have, over the past quarter century, been described in terms of weakly interact-

ing, nonlinear waves [see eg., Phillips, 1966; West, 1981]. The equations of motion for

the nonlinear wave field are determined by a Hamiltonian [Zakhorov, 1968; Miles, 1977)

for an incompressible, inviscid, irrotational fluid. To describe the process of wave gen-

eration, evolution, and the subsequent development of wave instabilities, it is often con-

venient to express the observables at the ocean surface as series expansions in the eigen-

function of the linearized system. For water waves these eigenfunctions are simple sines

and cosines and the eigenfunction expansion is merely a Fourier decomposition of the

9
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surface. The expansion coefficients are interpreted as the constant amplitudes of

0 independent waves in a linear wave field, and as the time varying amplitudes in a non-

linear wave field. The Hamiltonian for this system can be expressed as a series in which

the nonlinear terms appear as products of the mode amplitudes, see eg. West (1981).

These nonlinear interactions, interpreted as the scattering or coupling of the once linearSt
waves, induce variations in both the amplitudes and phases cf the linear modes in the

equations of motion.

The sea surface gravity wave field is described as a conservative Hamiltonian sys-

* tem and Hamilton's equations of motion provides a deterministic description of its evolu-

tion [Hasselmann, 1968; Broer, 1974; Watson and West, 1975; Miles, 1977; West, 198 1].

If we assume that this field is well represented b', N degrees of freedom, where N may

be large but finite (a field has an infinite number of degrees of freedom), then the system

can be represented by 2N coupled, deterministic, nonlinear rate equations for the mode

amplitudes. Moser (1973) separates the interactions into resonant and nonresonant

groups. The nonresonant interactions provide for a stable evolution of the wave field,

• whereas the resonant interactions produce instabilities. The existence of resonances in

water wave dynamics was explicitly pointed out by Phillips (1960). He demonstrated

that just as for resonances in linear systems, the nonlinear resonances in wave/wave

interactions produce an initial secular growth of new waves. Benny (1962) extended

* these arguments to show how the nonlinear interactions also saturate, thereby quenching S

the apparent instability. Chirikov (1979) pointed out that the instabilities generated by

such nonlinear resonances are always bounded, unlike linear resonances which grow

without limit. This bounding of the instability is produced by the nonlinear dispersion

relation, i.e., the amplitude dependence of the frequencies in the equations of motion.

Weak nonlinearities, therefore, act to stabilize the water wave system and inhibit explo-

sive instabilities.

The concept of dominant resonant interactions have formed the basis for many S

analytic-numeric calculations of the properties of surface water waves [Hasselmann,

1962, 1963a, b; Zakhorov, 1968; Yuen and Lake, 1982; Peregrine, 1983; Bryant, 1984].

The evolution of capillary and gravity-capillary waves has been described by mode rate

equations with cubic nonlinearities, i.e., four-wave interactions. The nonresonant

interactions had been thought to be unimportant in describing the evolution of the wave

field; however, Watson and West (1975), using perturbation theory, and West (1981),

495.chapter.1 9-12-'88
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using canonical transformations of variables, demonstrated that the nonresonant terms

contribute substantially to the strength of the resonant interactions among the surface

waves and are therefore not negligible. Thus, in the numerical results discussed in Sec-

tion 4, we include both resonant and nonresonant effects.

The motion of the free surface of an incompressible, irrotational, inviscid fluid

(x, t) is determined by Bernoulli's equation

t +/vv+g=O , , (1.1)at
with the fluid velocity v ( x, z, t) given by the gradient of the velocity potential ( x, z, t),

v = VO (1.2)

and the vertical motion of the free surface by

_ -W z (1.3)

In the interior of the incompressible fluid,

V-v = 0 (1.4)

so that the velocity potential satisfies Laplace's equation

V20 =0 . (1.5)

These equations can be converted to equations at the free surface, where

4s(x,t) =0X,Z = (X,t),t] (1.6)

with the result [Watson and West, 1975],

at
- T O., + '/2(Vst0)2+g = '1 [ I + (Vs )2]W 2  (1.7)

1+ VS ,~s OSV f I + (VS ) 21w , (1.8)
at

where V s is the horizontal gradient operator. The numerical integration of (1.7) and

(1.8) is based on the method of Watson and West (1975) and is done by taking the indi-

cated products of the field quantities in configuration space; fast Fourier transforming

• (FFT) the configuration c'a:,--,_ q-d time incrementing the transformed equations to

obtain the components of the appropriate field variables, then transforming (FFT) back to

configuration space to again evaluate the nonlinear products and start the process again.

495.chapter.1 9-12-'88
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This numerical procedure, developed by West, Brueckner, Janda, Milder and Milton
S (1987), does not distinguish between resonant and nonresonant interactions, so that it

includes terms explicitly neglected or approximated by most calculations involving the

use of nonlinear mode rate equations.

0 The question of interest here is whether the sea surface described by these equa-

tions, and therefore explicitly determined by the evolution of 2N degrees of freedom can

also be described by a low-dimensional dynamic attractor. This question is addressed in

Section 4, where the techniques discussed in Section 2 and 3 are applied to the time

series generated by the numerical code. The tentative answer to the question is, yes, the

dynamics of the one-dimensional sea surface does take place on a low-dimensional

attractor. Further, the attractor seems to have a fractional (fractal) dimension and there-

fore the trajectory describing the evolution is chaotic. We emphasize that these results

are preliminary and may require substantial investigation before they can be substan-

tiated.

495.chapter.l1 9-12-288
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2. Mini-Review of Nonlinear Dynamics

In this section we sketch the concepts from nonlinear dynamics that will be the most

useful in attempting to determine if the surface, or interior, of the ocean can be usefully

modeled as a low-dimensional attractor. One of the most fruitful and brilliant ideas of the

second half of the 1600's was the idea that the concept of a function and the geometric

representation of a curve are related. Geometrically the notion of a linear relation

between two quantities implies that if a graph is constructed with the ordina:c denoting

the values of one variable and the abscissa denoting the value; of the other variable, then

the relation in question appears as a straight line. In general, the graph or curve lies in

the "space" defined by the independent coordinate axes. In a dynamic system the coor-

dinate axis are defined by the possible values of the independent dynamic variables.

The state of a given system is defined by a point in the above space, often called

either the state space or phase space of the system. As time moves on the point traces out

a curve, called an orbit or trajectory, which describes the history of the system's evolu-

tion. This geometrical representation of dynamics is one of the most useful tools in

dynamic systems theory for analyzing the time-dependent properties of nonlinear sys-

tems. By nonlinear we mean the output of a system is not proportional to the input. One

implication of this is the following: If the system is linear, than two trajectories initiated

at nearby points in phase space evolve in close proximity, so that at any point in future

time the two trajectories (and therefore the states of the system they represent) are also

near to one another. If the system is nonlinear then two such trajectories could diverge

from one another and at subsequent times the two trajectories could be arbitrarily far

apart, i.e., the distance between the orbits does not evolve in a proportionate way. Of

course this need not necessarily happen in a nonlinear system, it is a question of stability.

This brings us back to our recurrent example of the weather and to the question of

its predictability. Its elusive nature has only recently come into sharper focus and made

clear two distinct views of the character of the evolution of deterministic dynamic sys-

tems. These views were articulated by their respective proponents, Laplace and

Poincard, writing nearly 100 years apart.

9
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Laplace (1825) believed in strict determinism and to his mind this implied complete

predictability. Uncertainty for him is a consequence of imprecise knowledge, so that

probability theory is necessitated by incomplete and imperfect observations. This view is

clearly expressed in the quotation:

"The present state of the system of nature is evidently a consequence of what it was
in the preceding moment, and if we conceive of an intelligence which at a given instant
comprehends all the relations of the entities of this universe, it could state the respective
positions, motions, and general affects of all these entities at any time in the past or
future."

"Physical astronomy, the branch of knowledge which does the greatest honor to the
human mind, gives us an idea, albeit imperfect, of what such an intelligence would be.
The simplicity of the law by which the celestial bodies move, and the relations of their
masses and distances, permit analysis to follow their motions up to a certain point; and in
order to determine the state of the system of these great bodies in past or future centuries,
it suffices for the mathematician that their position and their velocity be given by obser-
vation for any moment in time. Man owes that advantage to the power of the instrument
he employs, and to the small number of relations that it embraces in its calculations. But
ignorance of the different causes involved in the productions of events, as well as their
complexity, taken together with the imperfection of analysis, prevents our reaching the
same certainty about the vast majority of phenomena. Thus there are things that are unc-
ertain for us, things more or less probable, and we seek to compensate for the impossibil-
ity of knowing them by determining their different degrees of likelihood. So it is that we
owe to the weakness of the human mind one of the most delicate and ingenious of
mathematical theories, the science of chance or probability."

Poincard 1906 on the other hand sees an intrinsic inability to make predictions due

to a sensitive dependence of the evolution of the system on the initial state of the system.

He expressed this in the following way:

"A very small cause which escapes our notice determines a considerable effect that
we cannot fail to see, and then we say that the effect is due to chance. If we knew
exactly the laws of nature and the situation of the universe at the initial moment, we
could predict exactly the situation of that same universe at a succeeding moment. But
even if it were the case that the natural laws had no longer any secret for us, we could
still only know the initial situation approximately. If that enabled us to predict the
succeeding situation with the same approximation, that is all we require, and we should
say that the phenomenon had been predicted, that it is governed by laws. But it is not
always so; it may happen that small differences in the initial conditions produce very
great ones in the final phenomena. A small error in the former will produce an enormous
error in the latter. Prediction becomes impossible, and we have the fortuitous
phenomenon."

495.chapter.2 9-12-'88
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Thus we can clearly distinguish between the "traditional" view of Laplace and the

modem" view of Poincar. The latter is considered modem because we have now

discovered that deterministic systems with only a few degrees of freedom can generate

aperiodic behavior that for many purposes is indistinguishable from random fluctuations.

We emphasize that the random aspect is fundamental to the system dynamics and gather-

ing more information will not reduce the degree of uncertainty. Randomness generated

in this way is now called chaos [see eg. Crutchfield et al., 1987]. To understand chaos

we need to discuss the dynamics of nonlinear systems.

We introduced the notion of a phase space and a trajectory to describe the dynamics

of a system. Each choice of an initial state for the system produces a different trajectory.

If, however, there is a limiting set in phase space to which all trajectories are drawn after

a sufficiently long time, we say that the system dynamics are asymptotically described by

an attractor. The attractor is the geometric limiting set on which all the trajectories even-

tually find themselves, i.e., the set of points in phase space to which the trajectories are

attracted. Attractors come in many shapes and sizes, but they all have the property of

occupying a finite volume of phase space. As a system evolves it sweeps through the

attractor, going through some regions rather rapidly and others quite slowly, but always

staying on the attractor. Whether or not the system is chaotic is determined by how two

initially adjacent trajectories cover the attractor over time. As Poincar6 stated, if a small

change in the initial separation of trajectories (error) produces an enormous change in

their final separation (error), then the evolution is unpredictable. One question is how

this growing separation, indicative of chaos, is accomplished on an attractor of finite size.

The answer has to do with the layered structure of the attractor necessary for it to be

chaotic.

Rossler (1976) described chaos as resulting from the geometric operations of

stretching and folding. Two initially nearby orb:ts cannot rapidly separate forever on an

attractor of finite size, therefore the attractor must eventually fold over onto itself. Once

folded the attractor is again stretched and folded again. This process is repeated over and

over yielding an attractor structure with an infinite number of layers to be traversed by

the various trajectories. The infinite richness of the attractor structure affords ample

opportunity ior trajectories to diverge and follow increasingly different paths. The finite

size of the attractor insures that these diverging trajectories will eventually pass close to

one another again, albeit on different layers of the attractor. Crutchfield et al. (1987)

495.chapter.2 9-12-'88
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visualize thes orbits on a chaotic attractor as being shuffled by this stretching and folding

process, much as a deck of cards is shuffled by a dealer. Thus the randomness of the

chaotic orbits is a consequence of this shuffling process. This operation of stretching and

folding creates folds within folds ad infinitum, resulting in the attractor often having a

fractal structure in phase space.

The degree of irregularity (chaos) of the dynamic observable is closely related to the

geometrical structure of the underlying attractor. There are a number of measures of the

degree of chaos of these attractors. One is its dimension; integer values of the dimension

indicate a simple attractor, non-integer dimension indicates a chaotic attractor in phase

space.

A second measure of the degree of irregularity generated by a chaotic attractor is

the "entropy" of the motion. The entropy is interpreted by Crutchfield et al. (1987) as

the average rate of stretching and folding of the attractor, or alternatively, as the average

rate at which information is generated. The application of the information concept in the

dynamic systems context has been championed by Shaw (1981,1984) and Nicolis

(1985,1986). One can view the preparation of the initial state of the system as initializ-

ing a certain amount of information. The more precisely the initial state can be specified,

the more information one has. This corresponds to localizing the initial state of the sys-

tem in phase space, the amount of information is inversely proportional to the volume of

state space localized by measurement. In a regular attractor, trajectories initiated in a

given local volume stay near to one another as the system evolves, so the initial informa-

tion is preserved in time and no new information is generated. Thus the initial informa-

tion can be used to predict the final state of the system. In a chaotic attractor the stretch-

ing and folding operations smear out the initial volume, thereby destroying the initial

information as the system evolves and the dynamics create new information. Thus the

initial uncertainty in the specification of the system is eventually smeared out over the

entire attractor and all predictive power is lost, ie., all causal connection between the

present and the future is lost.

Let us denote the region of phase space as initially occupied by Vi (initial volume)

and the final region by Vf. The change in the observable information I is then [Shaw,

1981; Nicolis and Tsuda, 19851

1(2.0.1)

495.chapter.2 q-12-'88
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The rate of information creation or dissipation is given by

Id/ 1ldV=l (2.0.2)

dt V dt

In non-chaotic systems, the sensitivity of the flow to the initial conditions grows with

time at most as a polynomial, eg., let co(t) bethe number of distinguishable states so that

O(t) -
n  (2.0.3)

since Vf /V, = of 1oi we have (Shaw 19811

dl - (2.0.4)
dt t

Thus the rate of information generation converges to zero as t -+00 and the final state is

predictable from the initial information. On the other hand, in chaotic systems the sensi-

tivity of the flow to the initial conditions grow exponentially with time,

co(t) - e (2.0.5)

so that

d- n (2.0.6)
dt

This latter system is therefore a continuous source of information, the attractor itself gen-

erates the information independently of the initial conditions.

The final measure of the degree of chaos associated with an attractor with which we

will be concerned is the set of Lyapunov exponents. These exponents quantify the aver-

age exponential convergence or divergence of nearby trajectories in the phase space of

the dynamical systems. Wolf, Swift, Swinney and Vastano (1985), among others,

believe the spectrum of Lyapunov exponents provides the most complete qualitative and

quantitative characterization of chaotic behavior. A system with one or more positive

Lyapunov exponents is defined to be chaotic. The local stability properties of a system

are determined by its response to perturbations; along certain directions the response can

be stable whereas along others it can be unstable. If we consider a d-dimensional sphere

of initial conditions and follow the evolution of this sphere in time, then in some direc-

tions the sphere will contract, whereas in others it will expand, thereby forming a d-

dimensional ellipsoid. Thus, a d-dimensional system can be characterized by d

exponents where the j"h Lyapunov exponent quantifies the expansion or contraction of

495.chapter.2 9-12-'88



the flow' along the jth ellipsoidal principal axis. The sum of the Lyapunov exponents is

the average divergence of the flow, which for a dissipative sstem (possessing an attrac-

tor) must always be negative.

Consider a three dimensional phase space in which the limiting set (the attractor)

can be characterized by the triple of Lyapunov exponents (X1,X2,3). The qualitative

behavior of the attractor can be specified by determining the signs of the Lyapunov

exponents only, ie., (sign X ,signX2,signX3). As shown in Figure (2.0.1a) the triple (-,-,-)

corresponds to an attracting fixed point. In each of the three directions there is an

exponential contraction of trajectories, so that no matter what the initial state of the sys-

tem it will eventually wind up at the fixed point. This fixed point need not be the origin,

as it would be for a dissipative linear system, but can be anywhere in phase space. The

arrows shown in the figure do not necessarily represent trajectories since the fixed point

can be approached at any angle by the evolving nonlinear system.

An attracting limit cycle is denoted by (0,-,-) in which there are two contracting

directions and one that is neutrally stable. In Figure (2.0.1b) we see that this attractor

resembles the orbit of a harmonic oscillator with a particular energy, but that is not the

case. The orbit of a harmonic oscillator does not attract points from off the orbit onto

itself. On the other hand in a nonlinear dynamical system an orbit has a basin of attrac-

tion so that all systems whose initial state lies in the basin eventually wind up on the limit

cycle.

The triple (0,0,-) has two neutral directions and one that is contracting so that the

attractor is the 2-torus depicted in Figure (2.0.1c). An example of such a system would

be two coupled harmonic oscillators, where the two positions and two velocities would

describe the dynamics. The constant energy (no dissipation) reduces the n,,mber of vari-

ables in this coupled system to three so that the system is described by the two constant

radii and the two angles locating the trajectory on the surface of the torus.
0

Finally (+,0,-) corresponds to a chaotic attractor in which the trajectories expand in

one direction, are neutrally stable in another and contracting in a third. In order for the

trajectories to continuously expand in one direction and yet remain on a finite attractor,

B By "flow" we mean the behavior on phase space of a bundle of trajectories having a distribution of initial conditions.

9
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the attractor must undergo the stretching and folding operations in this direction as dis-

cussed by Rossler (1978). Figure (2.0.1d) is the two-dimensional projection of the

Rossler attractor.

The resolution of the apparent conflict between the traditional and the modem view

of dynamic systems theory as presented in classical mechanics is that chaos is not incon-

sistent with the traditional notion of solving deterministic equations of evolution. As

Ford (1987) states:

"...Determinism means that Newtonian orbits exist and are unique, but since
existence-uniqueness theorems are generally nonconstructive, they assert nothing about
the character of the Newtonian orbits they define. Specifically, they do not preclude a
Newtonian orbit from passing every computable test for randomness of being humanly
indistinguishable from a realization of a truly random process. Thus, popular opinion to
the contrary notwithstanding, there is absolutely no contradiction in the term "determin-
istically random." Indeed, it is quite reasonable to suggest that the most general
definition of chaos should read: chaos means deterministically random..."

2.1 Nonlinear Oscillator
m

In the physical sciences the dynamics of a system are determined by the equations

describing how the physical observables change in time. These equations are obtained

by means of some general principle, such as the conservation of energy and/or momen-

tum, applied to the system of interest. The appropriate conservation law follows from a

symmetry of the system which determines a rule by which the system evolves. If a set of

circumstances is specified by an N-component vector X = (X 1,X 2, .. , XN,) then in order to

predict the future state of the system from its present configuration, we must specify a

rule for the systems' evolution. In the physical sciences the traditional strategy is to con-
struct a set of differential equations. These equations are obtained by considering each

component of the system to be a function of time, then as time changes so too do the cir-

cumstances. If in a short time interval A t we can associate an attendant set of changes

AX = (AX 1 , ..., AXN) as determined by AX = F (X, t )At then in the limit A t -- 0 one

would write the "equations of motion"

d X(t) = F(X,t)2.1.1)
dt

which is a statement about the evolution of the system in time. If at time t = 0 we

495.chapter.2 912'88
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specify the components X(O), i.e., the set of circumstances characterizing the system, and

if F(X, t) is an analytic function of its arguments, then the evolution of the system is

determined by direct integration of the equations of motion away from the initial state.

The mathematicians have categorized the solutions to such equations for the sim-

plest kinds of systems. One way to describe such systems is by means of geometric con-

structions in which the solution to an equation of the above form is depicted by a curve in

an appropriate space. The coordinate axes necessary for such a construction are the con-

tinuum of values that the vector X(t) can assume, each axis is associated with one com-

ponent of the vector X; this is called a phase space. Consider a two-dimensional phase

space having axes labeled by the components of the dynamical system X=(X 1,X 2). A

point in the phase space x = (x ,x 2) gives a complete characterization of the dynamical

system at a point in time. As time proceeds this point traces out a curve as shown in Fig-

ure (2.1.1), starting from the initial state [X 1(0),X 2(0)] and proceeding to the final state

[X I(t ),X 2(t)] at time t. A trajectory or orbit in phase space traces out the evolution of

the dynamical system. Time is a parameter which indexes each point along such a solu-

tion curve. The field of trajectories initiated from a set of initial conditions is often S

referred to as the flow field. If for example the flow field asymptotically (t -+ o) con-

verges to a single point in phase space, this is called a fixed point (or focus) [cf. Fig-

ure (2.1.2)]. If the flow field converges to a single closed curve this is called a limit cycle

[cf. Figure (2.1.3)]. Such limit cycles appear as periodic behavior in the variables of

interest.

A nonlinear oscillator which is "weakly" nonlinear is capable of oscillating at

essentially a single frequency and can produce a signal that is very low in harmonic con-

tent. Although the output from such an oscillator system is sinusoidal at a single fre-

quency, there are fundamental and crucial differences between such an oscillator and the

classical harmonic oscillator, the latter being a conservative system which is loss-free.

The basic difference is that the nonlinear oscillator can oscillate at one and only one fre-

quency and one and only one amplitude, the amplitude and frequency being dependent

on one another for a given configuration of parameters. In contrast, the amplitude and

frequency are independent in the classical linear oscillator, which can oscillate at any

arbitrary level for a given set of parameter values. These differences are illustrated in the

description of the limit cycle. The phase plane of a Hamiltonian (loss-free) oscillator is
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depicted in Figure (2.1.4) together with the limit cycle for an oscillator with nonlinear

dissipation [cf. Figure (2.1.3)]. Although there are superficial resemblances between

these diagrams, there are, in fact, fundamental differences between these two physical

systems. While the linear conservative oscillator can be described by an infinite family

of closed ellipses, as shown in Figure (2.1.4), the nonlinear oscillator approaches a single

limit cycle as seen in Figure (2.1.3). This limit cycle is reached asymptotically whether

the initial conditions correspond to an infinitesimal perturbation near the origin or to a

finite perturbation far beyond the limit cycle. In either case the phase point spirals to the

limit cycle, which is a stable final state. On the other hand, the conservative linear oscil-

lator does not display this "structural stability." Any perturbation causes it to leave one

ellipse and move to another, i.e. the orbits are neutrally stable.

In linear systems the term equilibrium is usually applied in connection with conser-

vative forces, with the point of equilibrium corresponding to the vanishing of all forces

with the system being at rest. The stability of such an equilibrium state is then defined by

the behavior of the system when it is subject to a small perturbation i.e., a small displace-

ment away from the equilibrium state in phase space. Roughly speaking, the terms sta-

bility and instability indicate that after the perturbation is applied the system returns to

the equilibrium state (stable) or that it continues to move away from it (unstable) or that

it does not move (neutral stability).

(a) Strange attractors (deterministic chaos)

The appellation "strange attractor" was given to those attractors on which, unlike

the system just discussed, the system dynamics are aperiodic. This means that a deter-

ministic equation of motion gives rise to a trajectory whose corresponding time series

nowhere repeats itself over time; it is chaotic. The term "chaotic" refers to the dynam-

ics of the attractor, whereas "strangeness" refers to the topology of the attractor. From

the point of view of classical statistical mechanics the idea of randomness has tradition-

ally been associated with the weak interaction of an observable with the rest of the

universe. The traditional view requires there to be many (an infinite number) degrees of

freedom that are not directly observed, but whose presence is manifest through fluctua-

tions in the physical observations [see eg., West and Lindenberg, 1987). More recently it

has been learned that in a nonlinear system with even a few degrees of freedom chaotic

motion can be observed [Lorenz, 1963].
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What we present in this subsection are some of the recent results obtained in non-

linear dynamics that lead to chaos. First we briefly review the classical work of Lorenz

(1963) on a deterministic continuous dissipative system with three variables. The phase

space orbit for the solution to the Lorenz system is on an attractor, but of a kind on which

the solution is aperiodic and therefore strange. We discuss this family of aperiodic solu-

tions and discover that chaos lurks in a phase space of dimension three. Rossler (1978)

points out that if oscillation is the typical behavior of low-dimensional dynamical sys-

tems, then chaos, in the same way, characterizes three-dimensional continuous systems.

The modem view of randomness discussed in the Introduction can be traced back to

Poincard, but the recent avalanche of interest dates from the attempts of Lorenz to under-

stand the short term variability of weather patterns and thereby enhance their predictabil-

ity [see eg., Halloway and West, 19841. His approach was to represent a forced dissipa-

tive geophysical hydrodynamic flow by a set of deterministic nonlinear differential equa- 0

tions with a finite number of degrees of freedom. By forcing we mean that the environ-

ment provides a source of energy for the flow field, which in this case is a source of heat

at the bottom of the atmosphere. The dissipation in this flow extracts energy from the

* temperature gradient but the forcing term puts energy back in. For the particular physical

problem Lorenz was investigating, the number of degrees of freedom he was eventually

able to use was three, let's call them X, Y, and Z. In the now standard form these equa-

tions are

dX 0
dT = - aX + TY (2.1.2)
dr

'= -XY~rX-Y (2.1.3)

dZ

= XY -bZ (2.1.4)

where aT, r and b are parameters. The solutions to the Lorenz model can be identified

with trajectories in phase space. What is of interest here are the properties of the non-

periodic bounded solutions in this three dimensional phase space. A bounded solution is

one that remains within a restricted domain of phase space as time goes to infinity.

The phase space for the set of equations (2.1.2) - (2.1.4), is three-dimensional and

* the solution to them traces out a curve F (x,y,z) given by the locus of values of

X(t)=[X(t),Y(t),Z(t)] [cf. Figure (2.1.5)]. We can associte a small volume

Vo(t) =Xo(t)Yo(t)Zo(t) with a perturbation of the trajectory and investigate how this
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volume of phase space changes with time. If the original flow is confined to a region R

then the rate of change of the small volume with time aVo/at must be balanced by the

flux of volume J(r) = V 0(t) X(t) across the boundaries of R. The quantity i(t) in the

flux J represents the time rate of change of the dynamical variables in the absence of the

perturbations. i.e., the unperturbed flow field that can sweep the perturbation out of the

region R. The balancing condition is expressed by an equation of continuity and in the

physics literature is written

SVO(t) + V J(t) = 0 (2.1.15)

at

or in detail

1 d
V(t) dtVO(t)=ax X +eay Y +az Z (2.1.16)

where d/dt (=_ t + . V.) is the so-called convective or total derivative of the volume.

Using the equations of motion (2.1.2) - (2.1.4) in (2.1.6) we obtain

I dtVo(t) = - (a+ b + 1) (2.1.7)
Vo(t) dt

Equation (2.1.7) is interpreted to mean that as an observer moves along with an element

of phase space volume Vo(t) associated with the flow field, the volume will contact at a

rate b +c+ 1, i.e., the solution to (2.1.7) is Vo(t)=Vo(t =0) exp [- (b + 0+ 1)t]. Hence

the volume goes to zero as t --*- at a rate which is independent of the solutions

X(t),Y(t) and Z(t). As pointed out by Lorenz , this does not mean that each small

volume shrinks to a point in phase space; it may simply become flattened into a surface,

one with a fractional dimension, ie. a non-integer dimension between two and three.

Consequently the total volume of the region initially enclosed by the surface R shrinks to

zero at the same rate, resulting in all trajectories become asymptotically confined to a

specific subspace having zero volume and a fractal dimension [Ott, 1985].

To understand the relation of this system to the kind of dynamical situation we were

discussing in the preceding section we must study the behavior of the system on the lim-

iting manifold to which all trajectories will be ultimately confined. This cannot be done

analytically because of the nonlinear nature of the equations of motion for the Lorenz

model. Therefore, these equations are integrated numerically on a computer and the

resulting solution is depicted as a curve in phase space for particular values of the
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parameters a, b and r. The technical details associated with the mathematical under-

standing of these solutions is available in the literature, see e.g., Ott (1985) or Eckmann

and Ruelle (1985) and of course the original discussion of Lorenz (1963).

In Figure (2.1.6) we display the behavior of Y (t) for 3000 time units. After reach-

ing an early peak at t = 35, Y (t) relaxes so a relatively stable value at r = 85 which per-

sists, subject to systematically amplified oscillations, until near t=1650. Beyond this

time Y (t) becomes pulse-like and appears to change signs at apparently random inter-

vals. This irregularity is not just in the spacing between maxima but also in the sign of

the adjacent maxima, i.e., the irregular occurrence of a number of peaks of one sign

before a peak of the opposite sign occurs.

In Figure (2.1.7a) the solution manifold in the three dimensional phase space is

shown and (2.1.7b) projects the solution manifold onto the (z ,y )-plane and the (x,y)-

plane. The trajectory indicated is not complete, but is that segment traversed in the time

interval t = 1400 to 1900. The points C and C' are the fixed points of the equations, i.e.,

the values ofx,y, and z for which X = Y =Z =0 in (2.1.2)-(2.1.4), which for r>l yield

X = Y = +[b (r-1)]1 12 , Z = r-1. These two views of the trajectory indicate that the

erratic behavior apparent in the Y(t) plot [cf. Figure (2.1.6)] arises from the orbit spiral-

ing around one of the fixed points C or C' for some arbitrary period and then jumping to

the vicinity of the other fixed point, spiraling around that for a while and then jumping

back to the other and on and on. If the number of times the orbit circled C and C' were

recorded and ordered, the resulting sequence would be random. Virtually all trajectories

finally end up on this highly unstable manifold.

The strange attractor depicted in Figure (2.1.5) is not the only solution to the Lorenz

system of equations. This solution was obtained for the parameter values

a = 10,b = 8/3,r = 28. If the values a = 10 and b = 8/3 are held fixed and r is increased

from zero, a wide range of attractors and subsequent dynamic behaviors are obtained.

The possible flow patterns make the transition from stable equilibria independent of ini-

tial conditions, to chaotic attractors that are sensitively dependent on initial conditions, to
"chaotic transients" [Yorke and Yorke 1979] in which, for certain initial conditions, an

apparently chaotic trajectory emerges and asymptotically decays into a stable equilibria.

The decay time is a sensitive function of the initial state.
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Lorenz, in examining the solution to his equations, deduced that the trajectory is

apparently confined to a surface. Ott (1985) comments that the apparent "surface" must

have a small thickness, and it is inside this thickness that the complicated structure of the

strange attractor is embedded. This is where the folding discussed in the Introduction

actually occurs. If one were to pass a transverse line through this surface, the intersec-

tion of the line with the surface is a set of dimension D with 0_.D _1. The structure of

the attractor is therefore fractal, and the stretching and folding of the trajectory discussed

earlier is a geometric property of the attractor.

The erratic behavior in the time series depicted in Figure (2.1.6) is also apparent in

the associated spectrum. The spectrum is the mean square value of the Fourier transform

of a time series, i.e., the Fourier transform of the correlation function. Consider the solu-

tion X (t); it will have a Fourier transform over a time interval T defined by

T/2

XT(wO)= f X(t)e 2n (2.1.8)
-T12 2t(

and a power spectral density (PSD)
Ir ,T(O 1) 2

S (c0) -lim (2.1.9)

In Figure (2.1.8) we display the power spectral densities (PSD) S.x (o) and S, (o) as . al-

culated by Fanner, Crutchfield, Froehling, Packard and Shaw (1980) using the trajectory

shown. It is apparent from the power spectra density using the X (t) time series that there

is no dominant periodic x-component to the dynamics of the attractor, although lower

frequencies are favored over higher ones. The power spectral density for the Z (t) time

series has a much flatter spectrum overall, but there are a few isolated frequencies at

which energy is concentrated. This energy concentration would appear as a strong

periodic component in the time trace of Z(t). From this one would conclude that X (t) is

non-pcriodic, but that Z (t) possesses both periodic and non-periodic components. In fact

from the linearity of the Fourier transform (2.1.8) we would say that Z (t) is a superposi-

tion of these two parts:

Z(t )=Zp (t)+ZP(t) (2.1.10)

The implication of (2. 1. 10) is that the auto-correlation function
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CZ(.)= im <Z(t)Z(t +) > (2.1.11)

may be written as the sum of a nonperiodic components < Zw (t)Z (t + T) > that decays

to zero at -4 -0 and a periodic component < Zp (t)Zp (t + c) > that does not decay.

To summarize: we have here a new kind of attractor that is referred to as "strange"

whose dynamics are "chaotic" and with a power spectra density resulting from the time

series of the trajectory that has broadband components. Dynamical systems that are

periodic or quasi-periodic have a PSD composed of delta functions, i.e., very narrow

spectral peaks; non-periodic systems have broad spectra with no dramatic emphasis of

any particular frequency. It is this broad band character of the PSD that is currently used

to identify non-periodic behavior in experimental data.

So what does this all mean? In part what it means is that the dynamics of a complex

system might be random even if its description can be "isolated" to a few (three or

more) degrees of freedom that interact in a deterministic but nonlinear way. If the sys-

tem is dissipative, i.e., information is extracted from the system on the average, but the

*P system is open to the environment, i.e., information is supplied to the system by means of

boundary conditions, then a "strange attractor" is not only a possible manifold for the

solutions to the dynamic equations; it, or something like it, may even be probable.

We show subsequently that the aperiodic or chaotic behavior of an attractor is a
consequence of a sensitivity to initial conditions: trajectories that are initially nearby

exponentially separate as they evolve forward in time on a chaotic attractor. Thus as

Lorenz observed: microscopic perturbations (unobservable changes in the initial state of

a system) are amplified to affect macroscopic behavior. This property is quite different

from the qualitative features of nonchaotic attractors. In the latter, orbits that start out

near one another remain close together forever. Thus small errors or perturbations

remain bounded and the behavior of individual trajectories remain predictable.

Of course these considerations are not of much practical value unless they can be

implemented in the determination of the properties of a real data set. This will be done

subsequently. The rationale for their application was also developed by Lorenz in his

seminal work, but the full extent of its importance has only recently begun to emerge, see

e.g. Lanford (1976). He (Lorenz) observed that the trajectory leaves the spiral centered

at C say, [see Figure (2.1.5)], only after exceeding some critical distance from the center.
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Further, the degree to which this critical distance is exceeded determines the point at

which the next spiral, i.e., that centered at C', is entered as well as the number of circuits

executed prior to making the transition back to the C center again. Thus he concludes

that "some single feature of a given circuit should predict the same feature of the follow-

ing circuit." As an example he selected the maximum value of the Z(t) variable along

the trajectory which occurs whenever the circuit is nearly completed.

In Figure (2.1.9) the abscissa is labeled by the value of the nth maxima Z, of Z (t)

and the ordinate is labeled by the value of the following maximum Z,,,. It is clear that

the points generated lie along a curve if the spaces between points are filled in. This is

shown for example by Shaw (1981) using the increased computing capacity that has

developed in the intervening years. The computer generated function clearly prescribe a

two- to-one relation between Z and Z, , . From this relation one could formulate an

empirical prediction scheme using the geometry of the attractor as a data set without a

knowledge of the underlying dynamic equations. In the next section, after we learn about

mappings, we will see how this is done.

A second example of a dynamic system whose solutions lie on a chaotic attractor

was given by R6ssler (1976) for a chemical process. He has in fact provided over half a

dozen examples of such attractors [cf. R6ssler (1978) ], but we will not discuss all of

them here. It is useful to consider his motivation for constructing such a variety of

chaotic attractors. In large part it was to understand the detailed effects of the stretching

and folding operations in nonlinear dynamical systems. These operations mix the orbits
in phase space in the same way a baker mixes bread by kneading it, i.e., rolling it out and

folding it over. Visualize a drop of red food coloring placed on top of a ball of dough.

This red spot represents the initially nearby trajectories of a dynamic system. Now as the

dough is rolled out for the first time the red spot is stretched into an ellipse, which even-

tually is folded over. After a sufficiently long time the red blob is stretched and folded

many times, resulting in a slab of dough with alternating layers of red and white.

Crutchfield et al. (1987) point out that after 20 such operations the initial blob has been

stretched to more than a million times its original length, and its thickness has shrunk to

the molecular level. The red dye is then thoroughly mixed with the dough, just as chaos

thoroughly mixes the trajectories in phase space on the attractor.
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The dynamic equations for R6ssler's (1976) three degree of freedom system is

X= -(Y +Z) (2.1.12)

Y =X +aY (2.1.13)

Z =b +XZ -cZ (2.1.14)

where a, b and c are constants. For one set of parameter values, Farmer et al. (1980)

referred to the attractor as "the funnel," the obvious reason for this name is seen in Fig-

ure (2.1.10). Another set of parameter values yields the "simple R6ssler attractor," [cf.

Figure (2.1.1 ld)]. Both of these chaotic attractors have one positive Lyapunov exponent.

As we mentioned earlier, a Lyapunov exponent is a measure of the rate at which trajec-

tories separate one from the other [cf. Section (2.0)1. A negative exponent implies the

orbits approach a common fixed point. A zero exponent means the orbits maintain their

relative positions; they are on a stable attractor. Finally, a positive exponent implies the

orbits exponentially separate; they are on a chaotic attractor.

Equations (2.1.19) - (2.1.21) is one of the simplest sets of differential equation

models possessing a chaotic attractor. Figure (2.1.11) depicts a projection of the attractor 0

onto the (x,y)-plane for four different values of the parameter c. Notice that as c is

increased the trajectory changes from a simple limit cycle with a single maximum [Fig-

ure (2.1.1 la)], to one with two maxima [Figure (2.1.1 lb)] and so on until finally the orbit

becomes aperiodic [Figure (2.1.1 id)]. Here again, as with the Lorenz attractor, we can

relate the n'h maximum of say X(t) to the (n+I) s' maximum. This can be done by not-

ing the intersection of the trajectory in Figure (2.1.11) to a line placed transverse to the

attractor. In this way we obtain the plot of the maximum shown in Figure (2.1.12), the

curve yielding the functional equation x,+1 =f (xn ) which is a difference equation. This

figure suggests how we can replace a continuous model by one which is discrete. We

shall return to this procedure in the following section.

2.2 Nonlinear Mappings

Now that we have seen the brand of chaos that a continuos strange attractor gives

we examine a one-dimensional noninvertible nonlinear map. This mapping is the

discrete analog of the logistic equation and leads to a subharmonic bifurcation of the

solution eventually resulting in a kind of chaos that is distinct from that generated by the

Lorenz attractor. The results are quite general for maps with a single maxima. A third
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kind of chaos is related to that found on the Lorenz attractor in that a two-dimensional

invertible map is shown to have an attractor which is strange, i.e., it is the discrete analog

of the Lorenz attractor.

One of the fascinating aspect of these maps is that they appear to be the natural way

in which to describe the time development of systems in which successive generations

are quite distinct. The result of the mathematical analysis is that for certain parameter

regimes there are a large number of classes of discrete dynamical models (maps) with

chaotic solutions. The chaos associated with these solutions is such that the orbits are

periodic or erratic in time, but the chaos of one class has not been shown to be the same

as that of another class. However, they all indicate that one must abandon the notion that

the deterministic nonlinear evolution of a process implies a predictable result. One may

be able to solve the discrete equations of motion only to find a chaotic solution that

requires a distribution function for making predictions. 0

Just as in Section 2.1 we wish to describe the dynamics of a system characterized by

an N -component vector X = (X I,X2 ... , XN) and again in order to determine the future

evolution of the system from its present state we must specify a dynamic rule for each of

the components. For many systems the variables need not be considered continuous

functions of time, but rather to be functions of a discrete time index specifying succes-

sive generations. The minimum unit of time change for the dynamic equations would in

this case be given by unity, i.e., the change of a single generation. Thus the equations of

motion instead of being given by (2.1.1) would be of the form

X(n + 1) = F[X(n)} (2.2.1)

where the changes in the vector X(n) between generation n and n i- I is determined by

the function F[X(n )]. If at generation n =0 we specify the components of X(0), i.e., the

set of circumstances characterizing the system, then the evolution of the system is deter-

mined by iteration (mapping) of the recursion relation (2.2. 1.) away from the initial state.

Even in systems that are perhaps more properly described by continuous time equations

of motion it is thought by many, see e.g. Collete and Eckmann (1980), that a discrete

time representation may be used to isolate simplifying features a certain dynamical sys-

tems.
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(a) One-dimensional maps

The evolution equation in a discrete representation is called a map and the evolution

is given by iterating the map, ie., by repeated application of the mapping operation to the

newly generated points. Thus iterations of the form X n -- Xn+ =f (X,,), where f maps

the one-dimensional interval [0,11 onto itself, is interpreted as a discrete time version of a

continuous dynamical system. The choice of interval [0,1] is arbitrary since the change

of variables Y = (X -1) / (b-a) will replace a mapping of the interval [a ,b ] into itself by

one that maps [0,1] into itself. For example, consider the continuous trajectory in the

two-dimensional phase space depicted in Figure (2.2.1). The intersection points of the

orbit with the X-axis are denoted by X 1,X 2 , - . The point X,+1 can certainly be

related to X, by means of the function f determined by the trajectory. Thus, instead of

solving the continuous differential equations that describe the trajectory, in this approach

one produces models of the mapping function f and studies the properties of

Xn+ 1 =f (Xn). Here, as we have said, n plays the role of the time variables. This stra-

tegy has been applied to models for biological, social, economic, chemical and physical

systems. May (1976) has pointed out a number of possible applications of the fundamen-

tal equation for a single variable

XR+ 1 =f (X,) (2.2.2)

In genetics, for example, X n could describe the change in the gene frequency between

successive generations; in epidemiology, the variable X, could denote the fraction of the

population infected at time n; in psychology, certain learning theories can be cast in the

form where X, is interpreted as the number of bits of information that can be remem-

bered up to generation n; is sociology, X, might be interpreted as the number of people

having heard a rumor at time n and (2.2.2) would then describe the propagation of

rumors in societies of various structures see, e.g., Kemeny and Snell (1972). The poten-

tial applications of such modeling equations are therefore restricted only by our imagina-

tions.

Consider the simplest mapping, also called a recursion relation, in which a popula-

tion X n of organisms per unit area, on a petri dish for example, in the n t h generation is

strictly proportional to the population in the preceding generation with a proportionality

constant g:
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X, = tX,,_ , n = 1,2, (2.2.3)

The proportionality constant is given by the difference between the birth rate and death

rate and is therefore the net birth rate of the population. Equation (2.2.3) is quite easy to

solve. Suppose that the population has a level X 0 =N 0 at the initial generation, then the

recursion relation yields the sequence of relation

X 1 =p-N0 , X 2 =p- X 1 =p-2N 0 ,"" (2.2.4)

so that in general

X, = pn No (2.2.5)

This rather simple solution already exhibits a number of interesting properties. Firstly, if S

the net birth rate . is less than unity, then we can write p.' = e - " where 13>0, so that the

population decreases exponentially between successive generation (note 13=- In).

This is a reflection of the fact that with p.<I, the population of organisms fails to repro-

duce itself from generation to generation and therefore it exponentially approaches S

extinction:

lim X n = 0 if . < 1 (2.2.6)
n - -

0
On the other hand if . > 1, then we can write t'f =e where P ( = In g)> 0, so the popula-

tion increases exponentially from generation to generation. This is a reflection of the fact

that with p.>l the population has an excess at each generation resulting in a population

explosion. This is the Malthus' exponential population growth:

lim X n = o if . > 1 (2.2.7)
n --

The only value of .t for which the population does not have these extreme tendencies is
S

p. = 1, when, since the population reproduces itself exactly in each generation, we obtain

the unstable situation:

lim X, =N o  (2.2.8)
Pt -9.1,'o
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Of course this simple model is no more valid than the continuous growth law of

Malthus (1798), which he used to describe the exponential growth of human populations.

A more scientifically oriented investigator, Verhulst (1844) , put forth a theory that

somewhat mediated the pessimistic view of Malthus. Verhulst noted that the growth of

real populations is not unbounded. He argued that such factors as the availability of

food, shelter, sanitary conditions, etc. all restrict (or at least influence) the growth of

populations. He included these effects by making the growth rate .t a function of the

population level. His arguments allows us to generalize the discrete model to include the

effects of limited resources. In particular, the birthrate is assumed to decrease with

increasing population in a linear way:

It-->g(X,, ) = gt [ I -X,/® ] (2.2.9)

Where E is the saturation level of the population. Thus the linear recursion relation

(2.2.3) is replaced with the nonlinear discrete logistic equation,

Xn+ 1 =X,1[l-Xn/01 . (2.2.10)

It is clear that when Xn < < the population grows exponentially since the nonlinear

term is negligible. However at some point the ratio Xn/0 is going to be of the order

unity and the rate of population growth will be retarded. When X, = ) there are no more

births in the population. Biologically the regime Xn> ( corresponds to a negative

birthrate, but this does not make biological sense and so we restrict the region of

interpretation of this model to (1 -Xn/01 >0. Finally, we reduce the number of parame-

ters from two, t and 0, to one by introducing Yn =Xn/0 the fraction of the saturation

level achieved by the population. In terms of this ratio variable the recursion relation

(2.2.10) becomes

Yn+ 1 =IY[ 1- Yn . (2.2.11)

Segal (1984) challenges the readers of his book (at this point in the analysis of this map-

ping) to attempt and predict the type of behavior manifest by the solution to (2.2.11 ), e.g.

Are there periodic components to the solution? Does extinction ever occur?, etc. His

intent "as to alert the reader to the inherent complexity contained in the deceptively sim-

ple looking equation (2.2.11). We will examine some of these general properties shortly,

but first let us explore our example a bit more fully. Our intent is to introduce the reader
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to a number of fundamental dynamical concepts that will be useful in the subsequent

study of water wave data. Note that saturation inducing models such as (2.2. 11) have

been used to describe the transport of energy in physical oceanography.

We noticed that extinction was the solution to the simple system (2.2.3) when g.< 1.

Is extinction a possible solution to (2.2. 11)? If it is, then once that state is attained, it

must remain unchanged throughout the remaining generations. Put differently, extinction

must be a steady-state solution of the recursion relation. A steady-state solution is one

for which Y,, =~ Y+,1 for all n. Let us assume the existence of a steady-state level Y,, of

the population such that (2.2.11) becomes

Y.. = jt Y.'(1 - Y.) (2.2.12)

for all n, since in the steady-state Yn~ = Y,= Y, Equation (2.2.12) defines the qua-

dratic equation S

Ys + (1/ - 1) Yss = 0 (2.2.13)

which has the two roots Ys =0, and Yss =(1 - 1/p). The Ys, =0 root corresponds to

extinction, but we now have a second steady solution to the mapping, that being S

Ys, = 1 - 1/gt. One of the questions that is of interest in the more general treatment of this

problem is to determine to which of these steady states the population evolves as time go

by, ie., extinction or some finite constant level.
0

Before we examine the more general properties of (2.2.11) and equations like it, let

us use a more traditional tool of analysis and examine the stability of the two steady

states found above. Traditionally the stability of a system in the vicinity of a given

value is determined by perturbation theory. We use that technique now and write

Y' = Ys+ , (2.2.14)

where < <1 so that (2.2.14) denotes a small change in the relative population from its

steady-state value. If we now substitute (2.2.14) into (2.2.11) we obtain

Ys + 4+l = +wy( +"') [1 -Yss -n] . (2.2.15)

Then using (2.2.12) to eliminate certain terms and neglecting terms quadratic in , we

obtain S

,+= (.- 2Yss) (2.2.16)
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as the recursion relation for the perturbation. In the neighborhood of extinction, the

Y,, =0 steady state, (2.2.16) reduces to (2.2.3) in the variable 4,, rather than X,. There-

fore if 0 <IX<1 then the fixed point Y,, =0 is stable and if I>1 the fixed point is unstable.

By stable we mean that 4. -*0 as n -- *00 if 0 < pL <1 so that the system returns to the

fixed point, i.e., 4. decreases exponentially in n. By unstable we mean that -*0 as

n -+- if pi> 1 so that the perturbation grows without bound and never returns to the fixed

point, i.e., 4,, increases exponentially with n. Of course g= 1 means the fixed point is

neutrally stable, i.e., it neither return to nor diverges from Ys = 0.

In the neighborhood of the steady state Ys = 1 - 1/p. the recursion relation becomes

4n+1 = (2 -4)4, . (2.2.17)

The preceding analysis can again be repeated with the result that if 1 > 2 - .> - I the

fixed point Ys, = 1 - l/g is stable and implies that the birthrate is in the interval 1<z<3.
The stability is monotonic for I<gp<2, but because of the changes in sign it is oscillatory

for 2<pg<3. Similarly the fixed point is unstable for 0<p.<1 (monotonic) and .>3 (oscilla-

tory).

Following Olsen and Degn (1985) we examine the nature of the solutions to (2.2.11)

as a function of the parameter gt a bit more closely. This can be done using a simple

computer code to evaluate the iterates Y,. For 0< p. <4 insert an initial value 0_<Y 0<I

into (2.2.11) and generate a YI, which is also in the interval [0,1]. This second value of

the iterate is then inserted back into (2.2.11) and a third value Y2 is generated; here again

0:5Y 2<1. This process of generation and reinsertion constitutes the dynamic process,

which is a mapping of the unit interval into itself in a two- to-one manner, i.e., two

values of the iterate at step n can be used to generate a particular value of the iterate at

step n +1. In Figure (2.2.2a) we show Yn as a function of n for g = 2.8 and observe that

as n becomes large (n >10) the value of Yn becomes constant. This value is a fixed point

of the mapping equal to 1-1/p.=0.643, and is approached by all initial conditions 0

0 < Y0 < 1 i.e., it Ls an attractor. Quite a different behavior is observed for the same initial

point when gt= 3.2. In Figure (2.2.2b) we see that after an initial transient the process

becomes periodic, that is to say that the iterate alternates between two values. This

periodic orbit is called a 2-cycle. Thus, the fixed point becomes unstable at the parame-

ter value p. = 3 and bifurcates into a 2-cycle. Here the 2-cycle becomes the attractor for
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the mapping. For a slightly larger value of g., I/ = 3.53, the mapping settles down into a

pattern in which the value of the iterate alternates between two large values and two

small values [cf. Figure (2.2.2c)]. Here again the existing orbit, a 2-cycle, has become

unstable at p. = 3.444 and bifurcated into a 4-cycle. Thus, we see that as p. is increased a

fixed point changes into a 2-cycle, a 2-cycle changes into a 4-cycle, which in turn will

change into an 8-cycle and so on. This process of period doubling is called subharmonic

bifurcation since a cycle of a given frequency o0o bifurcates into periodic orbits which

are subharmonics of the original orbit, i.e., for k bifurcations the frequency of the orbit is

t%/2k . The attractor for the dynamic process can therefore be characterized by the

appropriate values of g.

As one might have anticipated, the end point of this period doubling process is an

orbit with an infinite period (zero frequency). An infinite period implies that the system

is aperiodic, that is to say, the pattern of the values of the iterate does not repeat itself in

any finite number of iterations, i.e., finite time interval, [cf. Figures (2.2.2d)]. We will

see presently about any process that does not repeat itself as time goes to infinity is com-

pletely unique and hence is random. It was this similarity of the mapping to discrete ran-

dom sequences that motivated the coining of the term chaotic to describe such attractors.

The deterministic mapping (2.2.11) can therefore generate chaos for certain values of the

parameter p.

Returning now to the more general context it may appear that limiting the present

analysis to one-dimensional systems is unduly restrictive; however, we recall that the

system is pictured to be a projection of a more complicated dynamical system onto a

one-dimensional subspace [cf. e.g., Figure (2.2.1)]. A substantial literature based on

(2.2.11) has developed in the past decade, much of which is focused on the purely

mathematical properties of such mappings. The physicists and mathematicians have been

quite actively exploring the consequences of these results for physical and chemical sys-

tems.

For the moment we shall make the assumption that the maps (dynamic systems) of

interest contain a single maximum and that f (X) is monotonically increasing for value of

X below this maximum and monotonically decreasing for values of X above this max-

imum. Maps such as these, i.e., maps with a single maximum, are called noninvertible,

since, given X,,, there are two possible values of X, and therefore the functional
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relation cannot be inverted. If the index n is interpreted as the discrete time variable, as

we did above, the recursion relation generates new values of X, forward in time but not

backward in time, see e.g. Ott (1985). This assumption corresponds to the reasonable

requirement that the dynamic law stimulates X to grow when it is near zero, but inhibits

its growth when it reaches some saturation value. An example of this is provided by the

discrete version of the Verhulst equation for population growth that we have just exam-

ined. Equation (2.2.10) is often called the discrete logistic equation and has been inten-

sively studied in the physical sciences, usually in the scaled form (2.2.11). Thus the

mapping function is f ( Y,,) = p Y,, (1 - Yn) and when graphed versus Y, yields the qua-

dratic curve depicted in Figure (2.2.3).

The mapping operation is one that is accomplished by applying the function f to a

given initial values Y0 to generate the next point, and applied sequentially to generate the

successive images of this point. The point Y, is generated by applying the mapping f, n

times to the initial point Y0 :

Yn =fn(Yo) (2.2.18)

using the relation fn( Y0) =f f '-( Y0)]. This is done graphically in Figure (2.2.3a) for

n = 3 using the rule: starting from the initial point Y0 a line is drawn to the function

yielding the value Y I =f ( Y0) along the ordinate, then from symmetry the same value is

obtained along the abscissa by drawing a line to the diagonal (450) line. An application 0

off to YI is then equivalent to dropping a line from the diagonal to the f -curve to yield

Y2=f (Y 1) =f [f ( Y 0 )] =f2 ( Y0 ). The value Y3 is obtained in exactly the same way from

Y3 =f 3(Yo). The intersection of the diagonal with the function f defines a point Y*

having the property

Y* =f(Y.) (2.2.19)

which is called a fixed point of the dynamic equation, i.e., Y* is the Yss from (2.2.12).

The fixed point corresponds to the steady-state solution of the discrete equation and for

(2.2.11) Y* = 1 - I/li (nontrivial) and Y* =0 (trivial). We can see in Figure (2.2.3b) that

the iterated points are approaching Y* and as n -- oo they will reach this fixed point. To

dete.rmine if a mapping will approach a fixed point asymptotically, i.e., if the fixed point

is stable, we examine the slope of the function at the fixed point, see e.g., May (1976) ;

Li and Yorke (1975) ; Collet and Eckmann (1980). The function acts like a curved
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mirror either focusing the ray towards the fixed point under multiple reflections or

diverging the ray away. The asymptotic direction (either towards or away from the fixed

point) is determined by the slope of the function at Y*, which is depicted in Figure

(2.2.4) by the dashed line and denoted by f "(Y*) i.e., the (tangent) derivative of f (Y) at

Y =Y As long as I f '(Y*) <1 the iterations of the map are attracted to Y = Y*, just as

,he perturbation r approaches zero in (2.2.14) near the stable fixed point. Again using a

logistic map as an example, we have f '(Y* ) = 2 - p., so that the equilibrium point is

stable and attracts all trajectories originating in the interval O<Y <1 if and only if 1 <.<3.

This is of course the same result we obtained using linear stability theory [cf. Eq.

(2.2.17)] for the logistic map.

When the slope of f is such that the fixed point becomes unstable, i.e., when

f '(Y* )I >1, then the solution "spirals" out. If the parameter . is continuously

increased until this instability is reached then the orbit will spiral out until it encounters a

situation where Y2 =f (Y ) and Y* =f (Y2), i.e., the orbit becomes periodic. Said dif-

ferently, the mapping f has a periodic orbit of period 2 since Y2 =f (Y*) =f 2(y2) and

Y1 =f (Y) =f2 (YI) since Y and Y2 are fixed points of the mapping f 2 and not of the

mapping f. In Figure (2.2.4a) we illustrate the mapping f 2 and observe it to have two

maxima rather than the single one off. As the parameter gt is increased further the dim-

ple between the two maxima increases as do the height of the peaks along with the slopes

of the intersection off 2 with the diagonal [cf. Figure (2.2.4b)].

For l<pt<3 the fixed point is stable and Y* is a degenerate fixed point of f 2, i.e.,
y* =ff2(y*). At .=3.414 the fixed point becomes unstable and two new solutions to

the quadratic mapping emerge. These are the two intersections of the quadratic map with

the diagonal having slopes with magnitude less than unity, Y* and Y*. The chain rule of

differentiation of the derivative of f 2 at Y and Y2 is the product of the derivatives

along the periodic orbit

f2,(y*) =f,[f(y*]f,(y*)=f,(y*)f,(y2)=f ,(y2) (2.2.20)

so that the slope is the same as both points of the period 2 orbit, see e.g., Li and Yorke

(1975), and in fact the slope is the same at all k of the values of a period k orbit. This is

in fact a continuous process starting from the stable fixed point Y* when I f 'I <1; as p. is

increased this point becomes unstable at If 'I = 1 and generates two new stable points

with If 2' <1 for a period 2 orbit; as . is increased further these points become unstable
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ati fi = 1 and generates two new stable points with I f 2' <1 for a period 2 orbit; as . is

increased further these points become unstable at I f 2,1 = 1 and generates four new stable

points with I f 4'I <1 for a period 4 orbit. This bifurcation sequence is tied to the value of

the parameter g. As this parameter is increased the discrete equation undergoes a

sequence of bifurcations from the fixed point to stable cycles with periods 2, 4, 8, 16, 32

... 2 k. In each case the bifurcation process is the same as that for the transition from the

stable fixed point to the stable period 2 orbit. A graph indicating the location of the

stable values of Y for a given p. is given in Figure (2.2.5). Here we see that the . interval

between successive bifurcations is diminishing so that the "window" of values of p.

wherein any one cycle is stable progressively diminishes. If we denote by P-k the value

of g. where the orbit bifurcates from length 2k-1 to 2k, then

li - 9k- - universal constant (2.2.21)

a result first obtained numerically by Feigenbaum (1979). This result indicates that a

constant g. is being approached by this sequence. This critical parameter value is a

point of accumulation of a period 2 k cycles. For (2.2.11) the critical value of this param-

eter is g,. = 3.5700. The numerical value of g,. is dependent on the particular map con-

sidered, although the existence of an accumulation point does not, and more importantly

the universal constant in (2.2,21) has a value 4.69210 ... and is also independent of the

specific choice of the map.

In Figure (2.2.5) we use the logarithm of p. as the abscissa in order to clearly distin-

guish the bifurcation points. In Figure (2.2.6) we replot this sequence linearly in p.. In

the latter figure we distinguish from left to right, a stable fixed point, orbit of period 1; a

stable orbit of period 2, then 4, 8 and then a haze of orbits starting along the in p.-*, then

another orbit of period 6 then 5, and 3. Collet and Eckmann (1980) comment: "The

astonishing fact about this arrangement of stable periodic orbits is its independence of the

particular one-parameter family of maps." The haze of points beyond .. consists of an

infinite number of fixed points with different periodicities, along with an infinite number

of different periodic orbits. In addition there are an uncountable number of aperiodic tra-

jectories (bounded) each of which is associated with a different initial point Y0 . Two

such adjacent initial points generate orbits that become arbitrarily distant with iteration
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number; no mater how long the time series generated by f (Y) is iterated, the two pat-

terns never repeat. As mentioned, Li and Yorke (1975) have applied the term chaotic to

this hazy region where an infinite number of different trajectories can occur.

Thus we have arrived at the remarkable fact that a simple discrete deterministic

equation can generate trajectories that are aperiodic. In particular in order to form a

one-dimensional map to exhibit chaotic behavior, it must noninvertible.

(b) Two-dimensional maps

In the above discussion we defined a mapping in terms of a projection of a higher

order dynamic system onto a one-dimensional line. This same definition can be applied

for the intersection of the trajectories of a hieher order dynamic process with a two-

dimensional plane. In Figure (2.2.7) a sketch of a trajectory in three dimensions is

shown, the intersection of the orbit with a plane defines a set of points that can be

obtained by means of the two-dimensional map:

Xn+I -f1(Xn, Yn) , yn+I=f2(Xn,Yn) (2.2.22)

Here we follow Ott (11035) and consider only invertible maps where (2.2.22) can be

solved uniquely for X,, and Y,, as functions of Xn+1 and Y,,; Xn =g 1(X, 1, Yn+1 ) and

Yn =g 2(Xn 1l, Yn+)" If n is the time index then invertibility is equivalent to time rever-

sibility, so that these maps are reversible in time whereas those in the preceding discus-

sion were not. The maps in this section are analogous to the Hamiltonian dynamic equa-

tions discussed in physics and chemistry and not the dissipative equations leading to the

strange attractors such as the Lorenz model.

The reason for examining higher order maps, such as the two-dimensional example

given by (2.2.22) is that under certain conditions these maps have many of the properties

of the so called strange attractors discussed earlier even though they are conservative. In

particular we will establish the connection between these invertible maps and the strange

attractor of Lorenz as well as the fractal dimension discussed earlier.

The one-dimensional noninvertible maps were obtained by projecting a higher order

trajectory onto a one-dimensional line. Let us now reverse the process and expand the

space of the noninvertible map from one to two-dimensions by introducing the coordi-

nate Y,, in the following way:

Xn+ = f (Xn) + Yn (2.2.23)
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Y.+1 =- PX. • (2.2.24)

Of course, if f is noninvertible and 3=0 (2.2.23) collapses back onto the one-

dimensional map (2.2.11). For any non-zero 3, however, the map (2.2.23) is invertible,

i.e., X, =Y.+ 1/[P and Y. =X,,.+ -f (Y. +115). Thus we have transformed a noninvertible

map to an invertible one by extending the space. As Ott (1985) points out, however, if 3

is sufficiently small the distinction between the invertible two-dimensional map and the

noninvertible one-dimensional map may not be measurable.

Let us examine the behavior of a small phase space volume as the two-dimensional

map is iterated from X,, Y,, = V,, to X,. 1 Y,+, = V,+ 1 in analogy to what was done with the

Lorenz model. The relation between the two volumes is

V,+ 1 = JV. (2.2.25)

where J is the Jacobian of the map:

axn+l aXn+l

J - DY. (2.2.26)

()Xn ay,

Inserting (2.2.23) and (2.2.24) into (2.2.26) we find J = -13 so that the volume at con-

secutive times (2.2.25) is given by

Vn+ 1  -V n  (2.2.27)

which for an initial volume V0 has the solution

* V,+ 1 = (- 1)n+ 1 1n + l V0 , (2.2.28)

so that if 13( < 1 the volume will contract by a factor I 31 at each application of the map-

ping. This contraction does not imply that the solution goes over to a point in phase

* space, but only that it is attracted to some bounded region of dimension lower than that

of the initial phase space. If the dimension of the attractor is non-integer, then the attrac-

tor is fractal; see e.g. in Mandelbrot (1980) where the observation that the fractal dimen-

sion of a set may or may not be consistent with the term strange. Following Eckmann

* (1981), we employ the property that, if all the points in the initial volume V0 converge to

a single attractor, but that points which are arbitrarily close initially separate exponen-

tially in time, then that attractor is called strange. This property of nearby trajectories to

" "0
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exponentially separating in time is called sensitive dependence on initial conditions and

gives rise to the aperiodic behavior of strange attractors. There exists however a large

variety of attractors which are neither periodic orbits nor fixed points and which are not

strange attractors. All of these, states Eckmann (1981), seem to present more or less pro-

nounced chaotic features. Thus there are attractors that are erratic but not strange. We

will not pursue this general class here.

As an example of the two-dimensional invertible mapping we first transform the

logistic equation (2.2.1) into the family of maps Xn+1 = 1 -cXn 2 with the parametric

identification c = (i/2 - I)pJ2 and 0 < c < 2, since 2 < t! < 4 and X n maps the interval

[ - 1, 1] onto itself. Then using (2.2.23) and (2.2.24) we obtain the mapping first studied

by Henon (1976):

,+ 1 = 1 - cX.$ + (2.2.29)

Y I+ = 1Xn (2.2.30)

In Figure (2.2.8) we have copied the loci of points for the Henon system in which 104

successive points from the mapping with the parameter values c = 1.4 and P3 = 0.2 ini-

tiated from a variety of choice of (xoyo). Ott (1985) points out that, as the map is

iterated, points come closer and closer to the attractor eventually becoming indistinguish-

able from it. This, however, is an illusion of scale. If the boxed region of the figure is

magnified one obtains Figure (2.2.9a) from which a great deal of structure of the attractor

can be discerned. If the boxed region in this latter figure is magnified, then what had

appeared as three unequally space lines appear in Figure (2.2.9b) as three distinct parallel

intervals containing structure. Notice that the region in the box of Figure (2.2.9a)

appears the same as that in Figure (2.2.9b). Magnifying the boxed region in this latter

region we obtain Figure (2.2.9c), which aside from resolution is a self-similar representa-

tion of the structure seen on the two preceding scales. Thus we observe scale invariant,

Cantor-set-like structure transverse to the linear structure of the attractor. Ott (1985)

concludes that because of this self-similar structure the attractor is probably strange. In

fact it has been verified by direct calculation that initially nearby points separate

exponentially in time; [see eg. Feit, 1978; Curry, 19791, thereby coinciding with at least

one definition of the strange attractor.
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(c) The Lyapunov exponent

We have adopted the definition that chaotic systems are those that have a sensitive

dependence on initial conditions. This sensitivity requires that orbits initially near to one

another exponentially separate as they evolve forward in time. A computable quantita-

tive measure of the rate at which orbits separate is the Lyapunov exponent. For a one-

dimensional map the Lyapunov exponent is defined by the slope of the map:

a-ur N df (Y,)
Y I In I -- I (2.2.31)n -*- N dY

where Yn,,=f (Yn). Shaw (1981) has shown that a is also the average information

change over the entire interval of iteration. He argues that a map may be interpreted as a

machine that takes a single input Y0 and generates a string of numbers during the itera-

tion process. If the string has a pattern such as would arise for an attractor that is a fixed i
point or periodic orbit, then after a very short time the machines gives no new informa-

tion. On the other hand if tie orbit is chaotic so that the string of numbers is random,

then each iterate is new to the observer, and gives a new piece of information. Shaw

convincingly demonstrates that a chaotic process is a generator of information. He argues 0

that a negative a implies a periodic orbit and the magnitudc of T measures the degree of

stability of that orbit against perturbations. If an orbit is initiated at a point off the

periodic orbit, but within its basin of attraction, the initial data will be lost as the orbit

damps to its stable values. The parameter a determines the rate at which this information

is lost to the macroscopic world. If a is positive, then it determines the rate of diver-

gence of nearby trajectories which is the same as the rate of information production, set

Oseledec (1968). 0

As an example let us take gt = 4 in (2.2.11). Then if we define a new variable

Z.= I sin-' (Nfj") (2.2.32)

the logistic map transforms to the "tent map"

2 , 0!-_Y,, <0.5

Z+ = 2 (1- Z,) 0.5<Y <- (2.2.33)

From this we obtain for the slope of the map to be used in (2.2.31)

df (Zn)
= 2 

(2.2.34)
dZ
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for all Z, so that

a = In 2 == 0.693 > 0 (2.2.35)

Since this quantity is invariant under coordinate transformations this proves that the

logistic map with !L=4 meets our definition of a chaotic dynamical system, i.e., 0.693

bits of information are generated in each iteration. In fact this mapping is chaotic for all

o > (Y_ = 3.57 ... since a > 0 for all these values.

Let us consider an N-dimensional map, i.e., X = (X 1,X2 .... ,XN),

Xn+1 = f(Xn )  (2.2.36)

for which we have a trajectory X' n in this phase space with initial condition X0 and a

nearly trajectory X,, with initial condition X0 + A X0 andI A XJ < <I X01 . Here the dou-

ble bars denote the norm of the vector. The difference between the two trajectories A X0

defines the tangent vector u, = A Xn such that (2.2.36) can be used to write

u,+ = f(X' n ) - f(X n ) a u, + (2.2.37)

which defines the linearized mapping

Un+1 = A(X, )" -u n  (2.2.38)

where A is the N xN matrix defined by

A(X,) f(X,) (2.2.39)

so that the map (2.2.38) is linearized along the trajectory X n . Following Nicolis (1986)

the solution to (2.2.38) for a given initial condition 0 at the ntt h iteration can be written

as

Uln = Un,n1 Un-l,n_2 -.. U 2 1 U 10 (2.2.40)

where U is the fundamental solution matrix. The indexing on U indicates the iteration

for which it is the solution to the mapping. Let us interpret (2.2.40) starting with the

right-most factor: U1 0 e0 =ul, is the solution (2.2.38) for the initial condition X0. The

solution u 1 is a vector of length d I and director e1:

U10 0=d1 , (2.2.41)

and el has a unit norm. Now we apply U21 to el and obtain a vector of length d 2 and
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direction 2. Finally we can rewrite (2.2.40) as the product of n numbers

u, =dn d,.- 1 ... d, 6n , I n = 1 (2.2.42)

instead of a product of n matrices. The maximal Lyapunov exponent is then defined as

a= lim 1InId1e,1
n--+- nl

1 n
Slir - Y, In dn  (2.2.43)
n--* n j=1

We see from the definition of dk =1 Ukkt -n_11 that In dk is the exponential change of

the length of i0 during the time interval when the system (2.2.36) moves between the

iterates Xk_ 1 and Xk.

Rather than finding just the maximal Lyapunov exponeat we can define a Lyapunov

exponent for each of the N variables that describe the dynamic system. To do this we

note [cf. Benettin, Golgani and Strelcyn, 1976 ] that one can introduce eigenvalues Xj(n)

of the matrix

An = [A(X,,) A(X,, 1) ... A(X] , (2.2.44)

where An is defined by (2.2.39) and is the Jacobian matrix of f. The Lyapunov

exponents are then given by

j= = lim In I X(n) (2.2.45)

These eigenvalues X are often called the Lyapunov numbers.

Let us consider the example given by Ott (1985) [cf. Figure (2.2.10)]. For a two-

dimensional map, the Lyapunov numbers are given by X, and X2 and are interpreted as

the average principle stretching factors for a very small initial circular area of radius c(0).

More formally we can write

= limn magnitude of the jh eigenvaues of

A(XnY,) A(X,- 1 , Y,-1) " A(X 1, Y  } (2.2.46)

where A(X, Y) is the Jacobian matrix of the map:
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af 1 (XY) af I(X,Y)

A(X, f 2 x,) f 2 X,y) (2.2.47)

ax a
The functions f 1 and f 2 are the components of the mapping vector f in (2.2.36); and, of

course, (X1 Y ), , (Xn, Y,) is a sequence generated by the map. Then the Lyapunov

numbers specify the average stretching rate of nearby points. If the map is to be chaotic,

for X1 >X2 say, then X, must be greater than unity, so that the distance between almost

nearby points increases in successive iterations. If the map is area contracting then

XI X2 < 1, the distance between almost nearby points decreases in successive iterations; if

it is area preserving then X1,X2 = I and the distance remains unchanged.

2.3 Measures of Strange Attractors

In broad outline we have attempted to give some indications of how simple non-

linear dynamic equations can give rise to a rich variety of dynamic behaviors. In particu-

lar we have, in large part, focused on the phenomenon of chaos described from the point

of view of mathematics and modeling, but little or no effort was made to relate these

results to actual data sets. Thus the techniques may not appear to be as useful as they

could be to the experimentalist who observes large variations in his/her data and wonders

if the observed fluctuations are chaos or noise. For a number of geophysical phenomena

there may be no reliable dynamical model describing the behavior of the system, so the

investigator must use the data directly to distinguish between the two. As we mentioned

earlier, a traditional method for determining the dynamic content of a time series is to

construct the power spectrum for the process by taking the Fourier transform of the auto-

correlation function, or equivalently by taking the Fourier transform of the time series

itself and forming its absolute square [cf. (2.1.9)]. The autocorrelation function provides

a way to use the data at one time to determine the influence of the process on itself at a

latter time. It is a measure of the relation of the value of a random process at one instant

of time, X (t) say, to the value at another instant t seconds later, X (t + C). If we have a

data record extending continuously over the time interval (-T/2, T/2), then the autocorre-

lation function is defined as

T/2

C" (T) - lim f- X(t)X (t +T)dt (2.3.1)
-Tf2
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Note that for a finite sample length, i.e. for T finite, the integral defines an estimate for

the autocorrelation function C, (r, T) so that C. (t) = lim C, (,, T). In Figure (2.3.1)
T--

a sample history of X (t) is given along with its displaced time trace X (t + T). The point

by point product of these two series is given in (2.3. 1) and then the average over the time

interval (- T/2, T/2) is taken. A sine wave, or any other harmonic deterministic data set,

would have an autocorrelation function which persists over all time displacements. Thus

the autocorrelation function can provide a measure of deterministic data embedded in a

random background.

Similar comments apply when the data set is discrete rather than continuous, as it

would be for the mappings in Section 2.2. In the discrete case we denote the interval

between samples as A(=T/N) for N equally spaced intervals and r as the lag or delay

number so that the estimated autocorrelation function is
1 N-r

C,(rA,N)= N- r I XjXj+r' r=0,1, m (2.3.2)
y=l

and m is the maximum lag number. Note that C,, (r A, N) is analogous to the estimate of

the continuum autocorrelation function and becomes the true autocorrelation function in

the limit N-+o*. These considerations have been discussed at great length by Wiener

(1949) in his classic book on time series analysis, and is still recommended today as a

text from which to capture a master's style of investigation.

The frequency content is extracted from the autocorrelation function by applying a

filter in the form of a Fourier transform. This yield the power spectral density

S,()= 1 f e - iWIC.(t)dt (2.3.3)

of the time series X (t). Equation (2.3.3) relates the autocorrelation function to the power

spectral density and is known as the Weiner-Khinchine relation which is in agreement

with (2.1.8). One example of its use is provided in Figure (2.3.2a) where the exponential

form of the autocorrelation function C,, (t) = e - ' used in Figure (2.3.2b) yields a fre-

quency spectrum of the Cauchy form

S = 1+ + 2 2 (2.3.4)

At high frequencies the spectrum (2.3.4) is seen to fall-off as oC2.
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As we mentioned, a periodic signal in the data will show sharp peaks in the spec-

trum corresponding to the fundamental frequency and its higher harmonics [cf. Section

2.1 (b)]. On the other hand the spectrum corresponding to aperiodic variations in the time

series will be broadband in frequency with no discernible structure. In themselves spec-

tral techniques have no way of discriminating between chaos and noise and are therefore

of little value in determining the source of the fluctuations in a data set. They were in

fact very useful, as shown in Section 2.1(b), in establishing the similarities between sto-

chastic processes and chaos defined as the sensitive dependence on initial conditions in a

dynamic process.

One way in which some investigators have proceeded in discriminating chaos from

noise is to visually examine time series for period doublings. This is a somewhat risky

business, however, and may lead to misinterpretations of data sets. Also, period doubling

is only one of the possible routes to chaos in dynamic systems.

It has been suggested that fractal processes associated with scaled, broadband spec-

tra are "information-rich." Periodic states, in contrast, reflect narrow-band spectra and

are defined by monotonous, repetitive sequences, depleted of information content. In

Figure (2.3.3) we depict the spectrum of the time series X (t) obtained from the funnel

attractor solution of the equation set (2.1.2)-(2.1.14). The attractor itself is shown in Fig-

ure (2.1.10). We see that the spectrum is broad band as was that of the Lorenz attractor

[cf. Figure (2.1.8)], with a number of relatively sharp spikes. These spikes are manifesta-

tions of a strong periodic components in the dynamics of the funnel attractor. Thus the

dynamics could easily be interpreted in terms of a number of harmonic components in a

noisy background, but this would be an error. One way to distinguish between these two

interpretations is by means of the information dimension of the time series. The dimen-

sion decreases as a system undergoes a transition from chaotic to periodic dynamics.

Thus we conclude that more systematic methods for distinguishing between chaos

and noise are desirable and necessary. We turn to those methods now.

(a) Correlational dimension

In the preceding discussion we presented the standard example of a correlation

function having an exponential form. Such a correlation function could describe a ran-

dom time series having a memory or correlation time tc . It could not describe a dynami-

cal system having an asymptotic stationary or periodic state. Similarly it could not
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describe a nonlinear dissipative dynamical system that has a chaotic attractor.

Grassberger and Procaccia (1983a, b, c) developed a correlational technique by which

one can exclude various choices for the kind of attractor on which the dynamics for a

given data set exists. They wanted to be able to say that the attractor for the data set is

not multiply periodic, or that the irregularities are not due to external noise, etc. As we

have just seen Fourier analysis would tell us if the attractor were multiply periodic, but

not the source of the fluctuations. They proposed a measure obtained by considering

correlations between points of a time series taken from a trajectory on the attractor after

the initial transients have died away.

Consider the set {Xj, j = 1,2, , N } of points on the attractor taken from a time

series X(t), i.e., we take Xj - X(jA) where A is a fixed time interval between successive

measurements. We see that this set of points could also be determined from a mapping

where j denotes the iterate of the map. If the attractor is chaotic then since nearby trajec-

tories exponentially separate in time, we expect that most pairs of points Xj, Xt j * k will

be dynamically uncorrelated. Even though these points may appear to be essentially ran-

dom, they do all lie on the same attractor and therefore are correlated in phase space. As S

we discuss in the next section, the single time series can be used to construct an m -

dimensional representation of the data by shifting the data as follows:

Xj')=X (jA);Xj(2 =X (jA-t),..., XJ"')=X [jA- (m - 1),t], where t has a value

that is after determined by trial and error. The single time series Xj is thus replaced by

the vector time series Xj {X= I ,XJ2 ,) ..2 . XJt' ) } where m is called the embedding

dimension.

Grassberger and Procaccia (1983) introduced the correlation integral C(r) defined

by
Cm (r)- - . e (r -1 Xi -Xj)

N .oo N 2  , j = 1

r
- Jdm r' c (r') (2.3.5)

0

where 0(x ) is the Heaviside function, = 0 if x !< 0 and = 1 if x > 0, and c ( r') is the tradi-

tional correlation function in Euclidian volume of m -dimensions

I N
c(r)= lim -- 5 , ( Xi - Xj - r) (2.3.6)

N i,j = t,i j
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and Xi - Xj is the Euclidean norm of the m-dimensional vector. The virtue of the

integral function is that for a chaotic or strange attractor the correlational integral has the

power-law form

lir C. (r) - rv (2.3.7)
m -4.

and moreover, the "correlation exponent" v is closely related to the fractal dimension D

and the information dimension a of the attractor. They argue that the correlation

exponent is a useful measure of the local properties of the attractor whereas the fractal

dimension is a purely geometric measure and is rather insensitive to the local dynamic

behavior of the trajectories on the attractor. The information dimension is somewhat sen-

sitive to the local behavior of the trajectories and is a lower bound on the Hausdorff

dimension. In fact they observe that in general one has

v <a<D . (2.3.8)

Thus if the correlation integral obtained from an experimental data set has the power-law

form (2.3.7) with v <im, one knows that the data set arises from deterministic chaos

rather than random noise, because noise will result in Cm (r) - r ' for a constant correla-

tion function over the distance r. Note that for periodic sequences v = 1; for random

sequences it should equal the embedding dimension, while for chaotic sequences it is

finite and non-integer.

Grassberger and Procaccia (1983) point out that one of the main advantages of the

correlation dimension v is the ease with which it can be measured. In particular it can be

measured more easily than either a or D for cases when the fractal dimension is large

(> 3). Just as they anticipated, the measure v has proven to be most useful in experimen-

tal situations, where typically high dimensional systems exist.

To test their ideas they studied the behavior of a number of simple models for which

the fractal dimension is known. In Figure (2.3.4) we display three of the many calcula-

tions they did. In each case the logarithm of the correlation integral is plotted as a func-

tion of the logarithm of a dimensionless length which according to the power-law rela-

tion (2.3.7) should yield a straight line of positive slope. The slope of the line is the

correlational dimension v. We see from these examples that the technique successfully

predicts the correlational behavior for both mappings and differential equations having

chaotic attractors.
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(b) Attractor reconstruction from data

More often than not the geophysical observer does not have the luxury ot a

mathematical model to guide the measurement process. What is usually available are a

few partial theories, securely based on assumptions often made more for convenience

0 than for reality, and a great deal of phenomenology. Therefore in a system known to

depend on a number of independent variables it is not clear how many kinds of measure-

ments one should make. In fact it is often unrealistically difficult to take more than the

measurement of a single degree of freedom. What then can one say about a complex sys-

* tem given this single time series? It turns out that quite a lot may be learned using

methods developed in nonlinear dynamics. In particular a method has been devised that

enables one to reconstruct a multidimensional attractor from the time series of a single

observable. The application of this technique to a number of geophysical data sets will

be reviewed in the next chapter, but for the moment we concentrate on the exposition of

the underlying theory.

Packard, Crutchfield, Farmer and Shaw (1980) who constituted the nucleus of the

0 Dynamic Systems Collective at the University of California, Santa Cruz in the late 70's

and early 80's, were the first investigators to demonstrate how one reconstructs a chaotic

attractor from an actual data set. They used the time series generated by one coordinate

of the three-dimensional chaotic dynamical system studied by R6ssler (1978) i.e.,
(2.1.12)-(2.1.14) with the parameter values a = 0.2, b = 0.4 and c = 5.7. The reconstruc-

tion method is based on the hueristic idea that for such a three-dimensional system, any

three "independent" time varying quantities are sufficient to specify the state of the sys-

tem. The three dynamic coordinates X (t), Y (t) and Z (t) are only one of the many possi-

ble choices. They conjectured that; "any such sets of three independent quantities which

uniquely and smoothly label the states of the attractor are diffeomorphically

equivalent." In English this means that an actual dynamic system does not know of the
particular representation chosen by us, and that any other representation containing the

same dynamic information is Just as good. Thus, an experimentalist sampling the values

of a single coordinate need not find the "one" representation favored by nature, since

this "one" does not in all probability exist.
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Packard et al. (1980) playing the role of experimentalists sampled the X (t) coordi-

nate of t,l Pissler attractor. They then noted a number of -.sble Ilternatives to the
phase space coordinates (x, y , z ) that could give a faithful representation of the dynamics

using the time series they had obtained. One possible set was the time series itself plus

two replicas of it displaced in time by t and 2%, i.e. X (t), X (t -T) and X (t -2). Note that

implicit in this choice is the idea that X (t) is so strongly coupled to the other degrees of

freedom that it contains dynamic information about these coordinates as well as itself. A

second representation set could be obtained by making the time interval T an

infinitesimal, so that by taking differences between the variables we would obtain

X (t), (t) and X (t).

Figure (2.3.5a) shows a projection of the Rossler chaotic attractor on the (x,y)

plane. Figure (2.3.5b) depicts the reconstruction of that attractor from the sampled X (t)

time series in the (x,.i) plane. It is clear that the two attractors are not identical, but it is

just as clear that the reconstructed one retains the topological characteristics and

geometrical form of the experimental attractor. One quantitative measure of the

equivalence of the experimental and reconstructed attractors is the Lyapunov exponent

associated with each one. This exponent can be determined by constructing a return map

for each of the attractors and then applying the relation (2.2.31).

A return map is obtained by constructing a Poincard surface of section. In this

example of an attractor projected onto a two-dimensional plane, the Poincard surface of

section is the intersection of the attractor with a line transverse to the attractor. We indi-

cate this by the dashed line in Figure (2.3.5b) and the measured data are the sequence of
values {X, } denoting the crossing of the line by the attractor in the positive direction.

These data are used to construct a next amplitude plot in which each amplitude X, 1 is

plotted as a function of the preceding amplitude X,. It is possible for such a plot to yield

anything from a random spray of points to a well defined curve. If in fact we find a curve
with a definite structure then it may be possible to construct a return map for the attrac-

tor. For example, the oscillating chemical reaction of Belousov and Zhabotinskii was

shown by Simoyi, Wolf, and Swinney (1982) to be describable by such a one-

dimensional map. In Figure (2.3.6) we indicate the return map constructed from the

experimental data of Simoyi et al. (1980), also Figure (2.1.9) for the Lorenz attractor.
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Simoyi et al. (1982) point out that there are 25 distinct chemicals in the Belousov-

Zhabotinskii ieacdon, many more than can 'u reliably monitured. Theiefoie thure is no

practical way to construct the twenty-five dimensional phase space {Xf(m)},

m = 1, • • • , 25 from the experimental data. Instead they use the embedding theorems of

Whitney (1936) and Takens (1981) to justify the monitoring of a single chemical species,

in this case the concentration of the bromide ion, for use in constructing an m-

dimensional phase portrait of the attractor {X (t), X (t -,r), -'' X [t - (m -1)T] I for

sufficiently large m and for almost any time delay T. They find that for their experimen-

tal data m=3 is adequate and the resulting one-dimensional map [cf. Figure (2.3.6)] pro-

vided the first example of a physical system with many degrees of freedom that can be so

modeled in detail.

Let us now recap the technique. We assume that the system of interest, a geophysi-

cal time series say, can be described by m variables, where m is large but unknown, so

that at any instant of time there is a point X(t) = (X ()(t),X(2)(t), . ,X(m)(t)) in an

m -dimensional phase space that completely characterizes the system. This point moves

around as the system evolves, in some cases approaching a fixed point or limit cycle

asymptotically in time. In other cases the motion appears to be purely random and one

must distinguish between a system confined to a chaotic attractor and one driven by

noise. In experiments, one often only records the output of a single detector, which

selects one of the m components of the system for monitoring. In general the experimen-

talist does not know the size of the phase space since the important dynamic variables are

usually not known and therefore he/she must extract as much information as possible

from the single time series available, XM')(t) say. For sufficiently long delay times T one

uses the embedding theorem to construct the sequence of displaced time series

{X()(t), X(1)(t +,t), • • • , XO ) [ t -(m - 1)T] } . This set of variables has been shown to

have the same amount of information as the m-dimensional phase point. Thus, as time

goes to infinity, we can build from the experimental data a one-dimensional phase space

X(1)(t), a two-dimensional phase space with axes {X( 1)(t),X(1)( -X)}, and so on. One

then determines if the system dynamics are confined to a low-dimensional attractor.
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3. Review of Some Geophysical Applications of the Reconstruction technique and

other Nonlinear COncepts

Ir, the previous Sections we have made every effort to develop some rather difficult

mathematical concepts and techniques in a context that would make their importance

self-evident in a geophysical setting. In the present section we review how a number of

these ideas have been applied to geophysical problems and argue for their continued

refinement and application. This list of examples is representative -Ither than exhaus-

tive. In particular we focus on the attractor reconstruction technique because it provides

a way to extract the greatest amount of modeling information from observational data.

The attractor that is reconstructed from the data is shown to clearly distinguish between

noise and chaos, and since the way to i.,fluence systems contaminated by noise are quite

different from those manifesting fluctuations due to low order nonlinear interactions,

being able to distinguish between the two is often crucial. When such an attractor can be

reconstructed from a time series it explicitly gives the number of variables required to

faithfully model the phenomenon of interest.

In this section, our discussion spans the realm of activity from that of climate to

weather to fully developed wave fields on the ocean surface.

3.1 Weather and Climate Attractors

A dominant characteristic of meteorological data is its extreme variability. As dis-

cussed by Monin (1972), it is this broadband response that makes the predictability of

weather patterns from deterministic primitive equations so uncertain. The fluctuations in

atmospheric flow field that give rise to indeterminacy have been associated with small-

scale turbulence. The scales of these fluctuations are unresolved in global circulation

models even though their effects are manifest on these large scales. One technique for

treating these fluctuations analytically is to replace the deterministic equations by sto-

chastic equations [eg. Thompson, 1957; Landau and Lifshitz, 1959; Lorenz, 1969;

Hasselman, 1976; Egger, 1982]. Such replacements have in the past been purely

phenomenological, but more recent studies [West, 1982; Lindenberg and West, 1984]

suggest how one may proceed more systematically from the deterministic to the stochas-

tic representation. A third alternative has been to replace these complex field models

with low-order dynamical models having chaotic solutions, such as first done by Lorenz

(1963). It is this last approach that we adopt in this section.
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We discussed the Lorenz model at some length in Section (2.1b) and showed that

thz basic stru,;tare of tl. cserved flow depends on only a small number of degrees of

freedom in phase space. The general hypothesis (hope) is that this may be true for

observed flow fields. Nicolis and Nicolis (1984) were the first to apply the attractor

reconstruction technique to a geophysical data set in hopes of finding a climatic attractor.

They applied the technique to the isotope record of a deep sea core to estimate the

number of variables governing the long-time climate evolution during the past million

years. They used the method of Grassberger and Procaccia (1983) to measure the dimen-

sionality of the data set, and thereby deduce the number of degrees of freedom necessary

to control the underlying dynamics of the climate. They used 500 single variable values

of the isotope record which were actually interpolated from 184 actual measurements.

The value of the correlation dimension they obtained, v = 3.1, was criticized by

Grassberger (1936) as resulting from the smoothing process implicit in extending the

data set and noL from the dynamics of the climate attractor. Subsequent analyses have

not suffered from such criticism [Essex, Lookman and Nerenberg, 1987; Tsonis and Els-

ner, 1988; Fraedrich, 1986].

In Section (2.3a) we discussed the correlation dimension as a measure of the kind of

attractor on which the dynamics for a given data set exists. Here we follow the more

intuitive approach used by Fraedrich (1986) toward a general definition of dimension. A

number of small boxes N ( L), each of side L, are used to fill a d -dimensional volume V:

V= Y, L =N(L)Ld (3.1.1)
N(L)

Thus, for a constant volume V, the number of boxes filling the volume increases

inversely with L - . The dimension is obtained from (3.1.1) to be

d InN(L) + lnV . (3.1.2)
lnL lnL

Taking the limit of decreasing box size leads to the more general definition of dimension

d = lim InN(L) (3.1.3)
L-0 In(I/L)

first developed by Hausdorff and more recently called the fractal dimension by Mandel-

brot (1977). If the volume V denotes the attractor in phase space, then N(L) is the

number of boxes required to cover the attractor, and the attractor has a fractal dimension

d.
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The exponent d determines how fast N (L) increases with decreasing L and may be

determined by plotting in N (L) versus In(I/L). However, algorithms to count these

boxes have been shown to be impractical in determining the dimension of chaotic attrac-

tors because of their slow convergence. This motivated Grassberger and Procaccia

(1983) to develop another method which would estimate a lower bound on the fractal

dimension, i.e., the correlation dimension in Section (2.3a). Recall that X( tj) denotes the

trajectory at time tj in an m-dimensional phase space X = (X(1),X (2) , -.- ,X(m)). The

number N () of pairs of points whose separation distance is smaller than r,

r >I X(t) - X(tk)I 'is formally determined by

N
N(r)= Y, E[r -IX(tj)-X(tk)[] (3 1.4)

j'k = 1

and N is the total number of points. The cumulative distribution function C (r) is nor-

ralized by the total of N 2 [=N(N - 1)] pairs and describes how the number of pairs

grows with increasing distance threshold r. For N---*, the growth rate changing with

the dimension d is determined by

N(r) dC(r)= lim 2 r (3.1.5)N--. N2 - 315

For example, consider data points homogeneously distributed on a line, then the number

of all points that are up to a distance r apart grow linearly with r, i.e., are proportional to

r. For data homogeneously distributed over a plane (in a volume), the number of points

grows quadratically (cubically) with r, i.e., are proportional to r 2 (r 3 ). Thus, the dimen-

sion of the attractor in phase space can be obtained from
d= lnC(r) (3.1.6)

Inr

where C ( r) is the frequency distribution of distance of the pairs of points situated on the

time trajectory of the dynamical system in an m -dimensional phase space.

Because we do not know the dimension of the attractor in advance, one successively

determines the correlation dimension d and correlation integral C ( r ), for various values

of the embedding dimension m, i.e., d (m ) and Cm( r):

lnCm(r)
d(n) (3.1.7)
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and d(m)--v as m increases. This corresponds to the m -dimensional phase space

X(t)= {X(t),X(t +t), "",X(t - [m - I] r)} where T is the time lag [Ruelle, 1981].

In experimental data, noise always destroys part of the attractor. If the noise has a

characteristic scale rnos e then in an m-dimensional phase space the noisy trajectory is

space filling on a length scale r smaller than rnnise:

Cm(r)-r m  forr<r,ise. (3.1.8)

Whereas for length scales greater than that of the noise level:

Cm(r)-r for r>rise. (3.1.9)

Thus, on a plot of In C ( r) versus In r, thcre should be a break in the curve denoting the

change in slope between (3.1.8) and (3.1.9). The position of the break r = rnoise supplies

information on the noise level of the system.

(a) Surface Pressure and Relative Sunshine

To test the above ideas on real data sets Fraedrich (1986) selected daily values of

surface pressure and relative sunshine duration as time series. In Figure (3.1.1) is dep-

icted a three dimensional embedding of the single pressure time series p (t) for three dif-

ferent time delay. Note how the trajectory changes from one tightly constrained to nearly

a plane when r = 3 hours, to one that seems to fill the three dimensional volume for 'r = 3

days.

In Figure (3.1.2) the In Cm(r) versus In r is given for different embedding dimen-

sions (1 <_ m <_ 20 ) for r = 3 days corresponding to the decorrelation time of the synoptic

disturbances. The cumulative distribution of pressure distances grows with increasing

threshold distance r. When r reaches its upper limit, the distribution function converges

to unity. Distribution functions are shown for 15 year records and the related random

series having the same mean, variance and number of data points. A random data set of

finite length (number of observations), and produced by a random number generator, is

not expected to follow the proportionality d = m, but merely the inequality d_<m. In

Figure (3.1.2) we see that the observational data and the random time series for the daily

surface pressure appear quite similar. In Figure (3.1.3) Fraedrich shows the d(m) versus

m for a number of time lags and we see that there is some tendency for d ( m) to saturate

at a value d,, but what that value is, is not clear from the figure. It is clear, however, that

the dimension is below that of the random time series. Fraedrich points out that the data
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in Figure (3.1.3) may not be sufficiently embedded ,ecause the time series include

weather phenomena from winter and summer, the long-range process from season to sea-

son and the interannual variability.

Separating the records into winter seasons (commencing on November 1) and sum-

mer seasons (commencing on May 1), Fraedrich processes the data for 14 winters and 15

summers in Figures (3.1.3b) and (3.1.3c). In these figures the dimension values clearly

saturate; d-=3.2 for the winter seasons and d-*=3.9 for the summer seasons. Thus we

conclude that although summers and winters separately have a weather attractor, that the

combined data does not. Such a situation could arise if there are distinct flow regimes in

phase space for each of the seasons rather than just one region for which the value of a

parameter is changing between seasons.

Similar results were obtained by Fraedrich for the sunshine duration data, d-=3.1

for winter and d---4.3 for summer, and the zonal wave amplitudes of the 500 mb geopo-

tential waves along 50 ° N (d_=3.0 for winter and d-=3.6 for summer).

Essex, Lookman and Nerenberg (1987), as well as Fraedrich, also used these ideas

from dynamical systems theory for the study of global climate. These authors used two

variants of the embedding method on nine sets of 12,084 measurements yielding 108,756

values in all of daily local geopotential values at 500 mb taken at 12 UT extending over

a span of 40 years. These data are very like one of the sets used by Fraedrich, however,

the earlier study had less than 7.1 X 103 data points. The first method of Essex et al.,

treated the data from each location as independent measurements from a single site by

concatenating the different time series from each site to create one large time series. The

results of this method are shown in Figure (3.1.4) and summarized by the crosses in Fig-

ure (3.1.5). The straight line fits in Figure (3.1.4) of In Cm (r) to In r ae fairly good over

a reasonable range of r.

The second method used the data from each site as a separate coordinate of a point.

The embedding was done by introducing the data from progressively more sites as addi-

tional coordinates. The results are indicated in Figure (3.1.5) as triangles. Figure (3.1.6)

shows the value of d (m) at each r for m = 9 using this method. In spite of the variation

in the data points the plateau region is quite clear. In Figure (3.1.5) both methods are

seen to yield a convergence to d-=6. This suggest that on the time scale of decades, cli-

mates might be represented as a system with as few as seven degrees of freedom. Thus
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Essex et al., agree with the earlier conclusion of Nicolis and Nicolis that the atmosphere

and oceans exhibit properties of a low dimensional attractor, although the two analysis

involve data that differ by orders of magnitude.

This shortening of the time scales was brought to its logical conclusion by Tsonis

and Eisner (1988) who used data on the order of hours, again orders of magnitude shorter

time scales than those considered by Essex et al.. Nicolis and Nicolis using single-

variable values of the oxygen isotope records of deep-sea cores spanning the past million

years calculated a climatic attractors dimension of 3.1. Fraedrich and Essex et al.,

analysed weather data over time scales of 15 to 40 years and obtained a dimension of the S

weather attractor of between 6 and 7. Tsonis and Eisner using wind velocity measure-

ments over time scales of minutes calculated a weather attractor of 7.3.

The time series consisting of 10 second averages of the vertical wind velocity

recorded 10 m above the ground over an 11 hour period is shown in Figure 3.1.7a. The

total number of data points is 3,960. The autocorrelation function and spectral density

are also in Figure (3.1.7). From the autocorrelation function a conservative estimate of

the time lag was made; 20 seconds. In Figure (3.1.8) the logarithm of the number of

pairs versus In r for t = l0sec for embedding dimensions m = 4, 6, 8, 10, 12 are depicted.

The scaling regions are indicated by the straight line segments indicated. These d (m) are

denoted by crosses in Figure (3.1.9) where as m increases we see that d(m )--*d_, = 7.3.

Therefore, we can conclude that the system reresented by the vertical wind velocity

series possesses an attractor. The non-integer dimension of the attractor suggests that it

is chaotic, i.e., that the submanifold is a fractal set.

3.2 Fractal Dimension and the Ocean Surface

Recently the importance of nondifferentiable curves and surfaces have become

apparent in different areas of the physical science. This growing awareness is due in no

small part to the efforts of Mandelbrot (1977, 1982) in drawing attention to the fractal

paradigm in modeling a wide variety of natural phenomena. We have pointed out that a

fractal object is one that possesses no smallest scale. Of course in real systems there is

always a largest and smallest scale, it is a question of the size of the interval overwhich

no characteristic scale is apparent. For some applications a single decade of data is

sufficient, for others one would want two or three decades of scale-free data before the

process was pronounced a fractal. In a geophysical context Ausloos and Berman (1985)
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have recently used a fractal function to model undersea topography and Stiassne (1988)

used one to model the surface of the ocean. We review these two applications in this sec-

tion.

The German mathematician Karl Weirerstrass cast the argument for fractals into a

particular mathematical form. His intent was to construct a series representation of a

continuous, non-differentiable function. His function was a superposition of harmonic

terms:

**1
W(t) = - cos (bno0o) (3.2.1)

n=Oa

a fundamental with frequency wn and unit amplitude, a second periodic term of fre-

quency b co0 with amplitude I/a, a third periodic term of frequency b2coo with amplitude

1/a2 , and so on. The resulting function is an infinite series of periodic terms, each term

of which has a frequency that is a factor b larger (b > 1) than the preceding term and an

amplitude that is a factor 1/a smaller (a >1).

Note that for this concept of a fractal function, or fractal set, there is no smallest or

characteristic scale. For b > 1 in the limit of n terms, n -- oo, the frequency b n 0o--+-, and

there is no highest frequency contribution to the Weierstrass function. Of course, if one

thinks in terms of periods rather than frequencies, then the shortest period contributing to

the series is zero. Consider what is implied by this lack of a smallest scale in period, or

equivalently by the lack of a largest scale in frequency. Imagine a continuous line on a

two-dimensional Euclidean plane and suppose that the line has a fractal dimension

greater than unity but less than two. How would such a curve appear? In this case we

are superimposing smaller and smaller wiggles, the curve would be like the irregular line

on a map representing a very rugged sea coast.

At first glance this curve would seem to be a ragged line with many abrupt changes

in direction, as in Figure (3.2.1a). If we now magnify a small region of the line, as in

Figure (3.2.1b), we see that the enlarged region appears qualitatively the same as the ori-

ginal curve. If we now magnify a small region of this new line, as in Figure (3.2. lc), we

again obtain a curve that is qualitatively indistinguishable from the first two. The pro-

cedure can be repeated indefinitely [as long as n--.oo in (3.2.1)], and the behavior of the

mathematical function is analogous to the discontinuous, inhomogeneous clumping of

matter in space. The equivalence of the function from one scale to the next is called
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self-similarity and the measure of the degree of self-similarity in the Weierstrass function

(in terms of frequency and amplitude), is precisely the fractal, or Hausdorff-Bessiovich

dimension: d = In a/In b.

Because of the infinite layers of detail, one cannot draw a tangent to a fractal curve,
which means that the function, although continuous, is not differentiable. It also means

that the more terms one allows to contribute to the function (the more accurately one
maps the coastline), the longer the curve becomes, and there is no upper limit to its

length.

Ievy introduced a generalization of the Weierstrass function which was later dis-

cussed by Mandelbrot (1977) and subsequently analysed in extensive detail by Berry and
Lewis (1980). This function was called the Weierstrass-Mandelbrot function by the last

authors, but here we refer to it as the extended Weierstrass function since there will be a
number of such generalizations. Here again we have a superposition of sinusoidal terms

with geometrically spaced frequencies and amplitudes that follow an inverse power law:

W(t)= b-n(2-D)[I - eib'°tIe iO, (3.2.2)
fl --- -- o

where the phase On is arbitrary, I<D < 2, and we have set 2- D =ln a/ln b. In the fol-

lowing discussion we scale time in such a way that coo = 1. For a complete discussion of

the properties of (3.2.2) we refer the reader to Berry and Lewis (1980); here we merely
record some of them that are important for our discussion.

The set of phases {On } may be chosen either deterministically or randomly. If On is

a random variable uniformly distributed on the interval (0, 27r), then each choice of {4,, }

constitutes a member of an ensemble for the stochastic function IV (r). If the phases are

also independent and b--l +, then W(t) is a Gaussian random function. The condition ,

1< D < 2 is required to ensure the convergence of the sum.

To generalize the extended Weierstrass function Ausloos and Berman preserved two

properties: homogeneity and scaling (statistical properties). Consider the increments of
WV:

AW(t,tr)=W(t +'c)-W(t)

2: b-n(2 -D)[eiblt -eib (t +)e ", (3.2.3)
1 --=0

and assume that the On are independent, random variables uniformly distributed on the
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interval (0, 2n). The mean square increment is then

V('r)-<1 aW(t,"t)l 2 >

- _ b-n(4 -2O)2[1-cos(b't)] (3.2.4)

where the brackets denote an average over an ensemble of realizations of the 0n-

fluctuations. The right hand side of (3.2.4) is independent of t, i.e., it depends only on

the time difference t, so that W (t) is homogeneous (also called stationary when t refers

to the time).

Equation (3.2.4) also leads to the scaling property of the extended Weierstrass func-

tion:

V(bt) =b2(2-D)v(t). (3.2.5)

If the sum giving the extended Weierstrass function (3.2.2) covered the interval from

n = 0 to n = 00, then the scaling property expressed in (3.2.5) would hold only approxi-

mately. A two-variable scalar extended Weirerstrass function W(r) is proposed by

Ausloos and Berman to be one such that

V(p) = <1 AW(r, p)1 2> (3.2.6)

so that for all r

V(bp) = b2 3- D) V(p) (3.2.7)

where in this case 2< D < 3.

After discussing some candidate functions that for one physical reason or another

were considered unsatisfactory, Ausloos and Berman decided on one that is a random

superposition of weighted "ridge-like" surfaces:

rlnb j 12 M 0 bn D - 3I[ ib'korcos (9 - a.) i6W(r) =E . I (kob)[1- le '" . (3.2.8)

Here k0 is a wave number that can be used to scale horizontal variations; the normaliza-

tion factor is chosen to make the series converge as b -1 + and M--00; the angle a~m

gives the orientation of the corrugation of the surface having an amplitude Am; and the

phases O,, are again defined as random variables. It is a simple matter to verify that

(3.2.8) has the scaling property of (3.2.7) and that V(p) is homogeneous.

495.chapter.3 9-13-'88



- 55 -

Ausloos and Berman present a number of computer plots of the surfaces generated

* by the extended Weirerstrass function (3.2.8). Their interest was in measuring the effect

of the small length scales on long-range acoustic propagation in the ocean. Here we are

more interested in the possible use of this function to model the ocean surface. Therefore

let us examine some of their computer plots interpreted as snap-shots of the sea surface.

In Figure (3.2.2) we see a figure that could be interpreted as a one-dimensional sea

surface consisting of long ridges of random height and wavelength. This is not "nlike the

surface profiles shown on pages 330 and 331 of Neumann and Pierson (1966). In Figure

* (3.2.3) two of these surfaces at right angles are superposed to give rise to a two-

dimensional random surface which resembles that of a high sea. To the unaided eye the

most convincing example of a sea surface is given in Figure (3.2.4). Here we seem to see

the ever present small scale structure riding on top of a large scale wave.

A different extended Weierstrass function, but one that has both properties of

(3.2.1) and its extension to two spatial dimensions (3.2.2) is considered by Falconer

(1985) to be

* W(r) = TAm b [kobn(XCOm +ysin0 ) + .I) • (3.2.9)

If we interpret the phase as the time-dependent quantity

(DM, = OM. - o t (3.2.10)

where co,, is the frequency of a deep water gravity wave having wavenumber kn = kob",

O n = g- = gkob n (3.2.11)

and g is the acceleration of gravity. Thus we have

W(r) A b-n(3 D)cos [kob'(xcosOm +ysinOm)
M = 1 n=0

+ ,b n /" tj , (3.2.12)

in which a superposition of propagating waves has been made to form W (r). Following

Stiassnie, the amplitudes A. can be chosen in such a way that the mean square value of

W(r) is the same as that of the sea surface. To do this we recall that the surface wave

spectrum is given by

5(k) :p I G G(O)/k. (3.2.13)
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where the function G (0) accounts for the directionality of the waves, u., is the wind

function velocity and B -0.012. Noting that we have selected a geometric series in
wavenumber we replace the differential kdkd 0, by the discrete versions 0 . = m AO and

dkn = kIn b so that

~2rBu,
SMk)kdk-4-k dkl A 2  nbG(O )k-b(3.2.14)

Using (3.2.14) to replace Am in (3.2.12) therefore yields

W~) 21E Bu, In b M -n(*-D= 6k23D [G(Om)]'h lb
M gk m= n 0

cos [kobn(xcos 0m +ysin0m) + , n -ofb 12t] (3.2.15)

if the exponents of ko are equal, i.e.,

D =4 - 3/2 (3.2.16)

Thus the surface represented by (3.2.15) has a fractal dimension D dependent on the

index of the observed surface wave spectrum. If we take 1 = 7/2 as suggested by

Kitaigorodskii (1983) then the fractal dimension of the sea surface is D = 2.25.

As Stiassne points out, surface tension introduces a cut-off at say k = k, so that the

actual sea surface is only approximately fractal. It has a fractal-like structure, over

length scales from 2nt/k s to 2nt/k o, which corresponds to approximately 0.1 m to 100 m in

the open ocean.

9 .
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4. Water Wave Attractor

We now turn to the question of whether these dynamic techniques are useful in

interpreting data sets from either the open ocean or from wave tanks. Traditionally we

think of surface wave interaction phenomena as consisting of both broad band and nar-

row band processes. The mode/mode energy transfer resulting from the nonlinear hydro-

dynamic interactions is broad band, as is the general wave train instability. On the other

hand, the Benjamin Feir instability mechanism and recurrence, as well as surface

envelope solitons are narrow band phenomena. These processess have been understood

on the basis of the weak interaction theory of interacting nonlinear gravity waves [see eg.

West (1981)].

Many of these weak interaction effects are discussed by West (1981) and as sum-

marized by Phillips (1079) thsse phenomena share the following characteristics:

(1) The weak interaction phenomena may be manifest only by the longer (dom-

inant) waves in the wave field; the behavior of short waves (wavelengths less than the

dominant one) is determined by strong interactions with long waves rather than by weak

interaction processes. This is due in part to the fact that only the dominant waves main-

tain their integrity sufficiently long for the mechanism to work.

(2) They are evolutionary phenomena with a common time scale of order C-2 times

the wave period, where e is the slope of the dominant wave. Under most oceanic condi-

tions, this time scale is of order 100 wave periods (minimally) of the dominant wave.

Equivalently, the distance that waves travel before these effects become significant is of

order E72 times the dominant wavelength. The shorter waves disappear and are refreshed

by the wind on a much shorter space-time scale. These interactions lead to Gaussian

statistics of the surface wave field [Benny and Newell (1967), Hasselmann (1968)].

(3) The state of a wave field at a given point is, in part, the result of these processes

acting over the preceding time, but the modification they can produce in the wave field in

a limited distance or time (a few wavelengths or periods) is small, of order e 2, character-

istically one percent or less. Consequently, they are intrinsically unable account for any

observed local response in the wave field to a local disturbance such as the modulation of

a short wave near the peak of a long wave in a wind generated field. 0

495.chapter.4 9-13-'88



-58-

The strong interactions are those which occur on a time scale of the same order as

the wave period of interest. They include the instability leading to wave breaking, wave

breaking itself, wave-current interactions, the distortion of a short wave energy packet by

a long wave, the process of parasitic capillary formation and micro-scale breaking

induced by surface wind drift. These phenomena provide the possibility of a rapid

response to oceanic perturbations and are much less studied than the above weak interac-

tions. Again summarizing the discussion of Phillips (1979) and West (1981):

(1) The surface wave train modulation produced by internal waves or other currents

is a strong interaction effect in that it can be produced by a single internal wave pulse

(though it is frequently described as a "resonance," a weak interaction phenomena).

(2) A wave train or packet of short waves, interacting with a longer wave, varies in

amplitude and scale with respect to its position on the long wave. The modulation pat-

tern of the packet has a spectral signature that is distributed over a range of frequencies

proportional to the long wave speed and is approximately proportional to the long wave

slope. As the long wave slope increases, the spectral signature is dominated more and

more by the properties of the short waves near the long wave crest, and less by those at

other points of the long wave cycle. This implies that the surface fluctuations cannot be

homogeneous in space.

(3) Micro-scale surface properties such as the formation of parasitic capillary

waves and microscale breaking, i.e., the formation of sheets of bubbles, have densities

(number of occurrences per unit area) that, in an active wind-generated sea, respond

rapidly to energy exchanges with short gravity waves and more sensitively than changes

in the short wave amplitudes themselves. In this way, they can serve as indicators to per-

turbations on the scale of internal waves and other internal flow-fields. This appears as

large scale and long time correlations in the surface statistics.

Here we wish to determine if the surface wave field can be described by a low-
dimensional attractor, which in the present context would be viewed as a strong interac-

tion. To do this we need to analyze a "time" series characteristic of the sea surface. For

this we use a numerically generated surface wave field using the new numerical method

for surface hydrodynamics developed by West, Brueckner, Janda, Milder and Milton

(1987).
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4.1 Numerically Generated Data

We use the computer code of West et al., (1987) to numerically generate a one-

dimensional surface displacement (x, t). For this purpose we use 512 wavenumber

modes in units such that k0 = 2x/L = I and the acceleration of gravity is unity:

512 - -nt(x, t) = m -m =a, (r)ei( 411

The initial mode amplitudes {an (0)} are selected so as to have a Phillips spectrum k

and independent random phases uniformly distributed on the interval (0, 2t). The equa-

tions of motion given in West et al. are then integrated forward in time to their values

{an ()} on a Cray computer. The surface displacement is then used in two ways. First,

at a fixed time t, the frozen surface on the spatial interval (0, 27r) is segmented into M

points which constitute the "time" series. Secondly, at a fixed spatial point, x, the varia-

tion in the surface elevation in time is treated as the time series. The latter use of the data

is what one would re-',rd with a wave staff located at x measuring the passage of a wave

field.

We compare the above data with a completely random data set generated by the

function
N

R(t)= I cos (Vn"t +On) (4.1.2)
,z=l

where On is a random variable uniform on the interval (0, 27t) and N is the number of

modes in the sum. The variable R (t) becomes a zero-centered Gaussian random vari-

able for large N which we also segment into M points for our random time series.

The "experimental" data in method 1 are given by the set { j-(xj, t)} where we

divide the continuous spatial curve into 1024 equally spaced points. We use these data to

construct the set of variables I j _, • - , j _ (m - 1),d in an m -dimensional embed-

ding space and apply the Grassberger-Procaccia correlation algorithm to determine the

dimensionality of the data. In Figure (4.1. 1) we depict In Cm ( r) versus In r for a number

of embedding dimensions. In Figure (4.1.2) we show the correlation dimension for the

data set using two lag times T as a function of embedding dimension. The random data,

partitioned in the same way, yields the result d(m) = m as expected. The surface data,

however, clearly show a tendency to saturate for both T = 8 and t = 15. This implies that
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although the surface was generated using 512 degrees of freedom (in the spectral sense)

as few as five or six degrees of freedom may be adequate to describe its spatial behavior.

Note that in method 1 our data describe points in space, not points in time. Therefore the

interpretation of these results is not as straightforward as the earlier applications.

We note the kink in the In C. (r) versus In r curve in Figure (4.1.1) for large m. At

first 't was not clear how one might interpret this result, but analyses due to Theiler in his

Ph.D. thesis (1987) suggests hat the kink may be due to correlation in the data set. In his

analysis, Theiler considers a stochastic data set that is Gaussian with a prescribed correla-

tion time a. The correlation time is observed to produce a kink [cf. Figure 4.1.31 just of

the form seen in Figure (4.1.1) and to result in the correlational dimension not increasing

linearly with the embedding dimension. This observation suggests that the longest

wavelength waves on the sea surface modulate the short wavelength waves, and this

modulation is picked up as a correlation of the small scale structure at the higher embed-

ding dimensions. Theiler developed a technique to suppress this correlation which we

propose to tcst in *hc prcscnt context. The method involved deleting the n- nearest

neighbors in the calculation of the correlation function, but we will not pursue that tech-

nique further here.

We now turn to the second method of collecting data in which we record the height

of the sea surface as a function of time at a fixed spatial location. We segment the spatial

interval (0, 27t) into 16 equi-distant points. At each point we record the surface elevation

for an interval of time four units long. This corresponds to two periods of the longest

wave present on the sea surface. Each of the 16 time series is discretized into 1024

points, yielding a total of 16,384 data points if we were to concatenate all the data as

done, for example, by Essex et al., (1987) in their global climate study.

We concatenate the data from eight adjacent locations to define a single time series

consisting of 8,192 data points. In method 1 we picked the value of 't by inspection. In

the present method we were guided in our choice by calculating the time at which the

auto correlation function first goes through zero. The preferred technique would have

been to calculate the first minimum in the mutual information, but calculating the auto-

correlation function was faster. The t value determined by the autocorrelation function is

50, so we selected a value substantially above that, i.e., t = 80. In Figure (4.1.4) we see

that there are two distinct scaling regimes for the data above m = 8. The largest regime
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has v=2 and is fairly independent of the embedding dimension. The second regime is

plotted in Figure (4.1.5) as a function of embedding dimension and is seen to saturate

around v = d-6.

• 9

Io •
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5. Conclusions and Speculations

The physicist-mathematician Mars Kac was fond of pointing out the difference

between a demonstration and a proof. He maintained that a demonstration would con-

vince a reasonable man of the truth of a mathematical statement, whereas it required a

proof to convince a mathematician. Herein we have demonstrated the utility of certain

generic concepts fforn nonlinear dynamical systems theory in geophysics and physical

oceanography. We have reviewed how the phase space reconstruction technique can be

used to determine the minimum number of variables necessary to describe certain geo-

physical phenomena. Since we are accustomed to describing geophysical flows by fields

which are spatially continuous and therefore have an infinite number of degrees of free-

dom, this notion of representing such flows by low-dimensional attractors is admittedly a

surprising one, but not so surprising as being able to determine the dimensions of the

attractor, and thereby the number of variables needed to describe the system directly

from a single time series of sufficient length.

Let us recap the attractor (phase space) reconstruction technique. We assume the

system of interest; the isotope concentration from a deep ocean core, the duration of

sunshine as a function of time at a measuring station, the speed of the wind at a given p

location and the height of the sea surface measured by a wave staff, can each be

described by m -variables, where m is large but unknown. At any instant of time there is

a pont X(t) = {X(l)(t),X( 2)(t)...,X(m)(t)} in an m-dimensional phase space that com-

pletely characterizes the system. The point moves around as the system evolves. In the

geophysical cases discussed herein the motion had previously appeared to be purely ran-

dom so that one must distinguish between a system confined to a chaotic attractor from

one driven by noise. For many reasons geophysical observations are often restricted to

the output of a single detector which selects one of the m components of the system for

monitoring. In general the scientist does not know the dimension of the phase space

since the important dynamic variables are usually unknown and therefore as much infor-

mation as possible must be extracted from the single time series, X(1)(t) say. For

sufficiently long delay times 1 one use the embedding theorem to construct the sequence

of displaced time series {X(1)(t),X(1)(t -), . . . ,X(')[t - (m - )t]}. In this m-

dimensional phase space one then determines if the system dynamics is confined to a

low-dimensional attractor.
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This procedure was followed in the examples listed in Section 3 and the

Grassberger-Proccacia method of determining the correlation dimension was used to

determine if chaotic attractors exist in geophysical data sets. Nicolis and Nicolis (1984)

were the first to find a climate attractor albeit with an insufficient data base they found

v M 3.1. Essex et al. (1987) and independently Fraedrich (1986) found climate attrac-
tors but with a dimension more than twice that found by Nicolis and Nicolis. Using daily

values of surface pressure and sunshine duration Fraedrich found separate weather attrac-

tors for summer and winter with dimensions in the intervals 3.2 -< v ! 4.3. Essex et al.

used the local geopotential value to find a weather attractor with v = 6. Tsonis and Els-

ner used vertical wind velocity measurements to calculate a weather attractor with

v = 7.3. The time series used to determine these various attractors spanned millions of

years for the single values of the oxygen isotope records of deep-sea cores down to wind

velocity measurements over time scales of a few hours.

Our own calculation of water wave attractors in Section 4 suggests that the one-

dimensional sea surface may be describable by as few as two degrees of freedom in one

domain and as many as six in another. The first domain is not unlike the result obtained

using the generalized Weierstrass function to model the sea surface. The possible rela- 0

tion between these two approaches has not as yet been explored in the present geophysi-

cal context. It is of interest, however, to consider how these techniques may be used for

the remote sensing of the sea surface.

The fundamental problem of remotely sensing patterns on the sea surface is the

detection of a signal in a large dynamic range background. This can be seen from even a

superficial examination of the variety of physical processes underlying the signal pro-

cessing problems of interest. Consider the surface of the ocean; the nonlinear, wind-

generated, surface disturbances constitute the noisy background, [see e.g. West, 1981]

and the modulation of them by surface current disturbances constitute the signal. Prob-

ing the ocean's surface via radar relies on an understanding of the ocean surface modula-

tion mechanism since the scattering is from very short Pragg waves (wavelengths of a

few centimeters) and the currents of interest have scales of tens of hundreds of meters.

Going now into the ocean interior, the acoustic signal generated by rainfall or the break-

ing of surface is also of interest. In the far field region the pressure and/or velocities gen-

erated by these sources have been contaminated by the dynamics of the intervening

medium, e.g., by internal waves, patches of turbulence and acoustic noise from the sea
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surface. These undersea phenomena also influence surface currents and act to degrade

the signal. The motion of conducting sea water also perturbs the earth's magnetic field,

e.g. internal waves give rise to a clear magnetic field signature.

The remote detection and identification of undersea phenomena is therefore a prob-

lem of indirect measurement in that one must be able to correctly interpret the distur-

bances of the ambient surface waves using radar (or light) backscattered from the sea sur-

face and the perturbation in the earth's magnetic field produced by the currents' passage.

Techniques for processing the perturbed radiation whether electromagnetic, acoustic

or thermal run the gamut from the application of statistical pattern recognition methods,

to procedures for coherent data acquisition, to artificial neural systems. These and other

techniques have their proponents, but they by-and-large miss an essential feature of the

geophysical problem; the sea surface and interior are described by nonlinear dynawnc

(hydrodynamics) processes, [Phillips, 1977].

Historically the aperiodic component of experimental time series, such as the back

scattered radiation, has been interpreted as random noise. Thus the processing pro-

cedures have relied on techniques that separate the 'signal' from the 'noise' in a linear

additive way. This view is consistent with, and is probably a consequence of, the tradi-

tional interpretation of stochastic processes in the physical sciences. It results from a

dynamic system being coupled to a complicated environment, i.e., the environment

induces a random component into the system dynamics. A Fourier decomposition of

such a time series, one consisting of a deterministic signal linearly superimposed on a

noise, would yield a spectrum consisting of sharp spectral peaks at the natural frequen-

cies of the signal and a broad band background depicting the power of the noise. This

interpretation has become so ingrained that its inverse is often applied, that is to say that

a spectrum such as shown in Figure 2.3.3, consisting of a broad band spectral level on

which a number of peaks are superimposed, often suggests the linear additive model of

signal and noise. That interpretation cannot in fact be applied to the spectrum in Fig-

tre 2.3.3 because the underlying time series was generated by a nonlinear equation of

motion having a chaotic solution. The traditional techniques that were based on the clas-

sical signal/ noise paradigm must be modified to process data generated by processes in

which the signal and noise cannot be so separated.

Herein we have shown that low-dimensional deterministic dynamical systems can

generate time series that appear to have many of the characteristics of random noise. We

can, however, distinguish between a chaotic and a completely random time series by
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means of the attractor reconstruction technique. The time series data used in the recon-

struction of attractors can be the vertical displacement of the sea surface, a component of

the horizontal fluid velocity at a fixed point on the sea surface or in its interior, measure-

ments at multiple points, and so on. These data may then be used to reconstruct the

dynamic attractors determining the local behavior of the sea. The underlying assumption

is that the nonlinear hydrodynamic interactions are sufficiently strong that a single vari-

able is influenced by each of the other variables to such a degree that the time lagged

variables contain the same information as the original set of variables characterizing the

hydrodynamics. It is worth mentioning that the more variables that are measured, veloci-

ties at multiple space points, or the vertical velocity of the surface as well as its displace-

ment, all give additional confidence in the attractor reconstructed from the time series.

Of course, the existence of such attractors, are of interest to physical oceanogra-

phers, but what is perhaps of more interest is how the ambient attractor could be modified

by the disturbances generated by a surface current. Said differently, what we want to

accomplish is to use the time series X (t) to predict the future evolution of the wave field

beyond the available data and to e~xamine how various currents disrupt this evolution.

Barnsley (1986) has been able to use chaos to predit chaos. He developed an algorithm'

to replicate a chaotic curve generated by a laboratory experiment at a finite number of

points. The resulting numerically generated curve "fits" the experimental curve surpris-

ingly well both inside and outside the fitted interval.

Previous processing techniques assume the wave/wave and other hydrodynamic

interactions to be weak and predict a weak modulation of the surface wave spectrum in

the Bragg wave region. Such analyses have been based on perturbation theory, keeping

only the lowest order interactions between the surface waves and surface currents. The

signal is then given by the modulation in the clutter cross section of the sea surface and is

directly proportional to the surface current [Thompson and West, 1975J. Improvements

on this approach involve integrating along the direction of the current to provide a

coherent gain in the signal; using multiple frequency radars to sample the modulation in

different spectral domains as well as others. We do not have room here to critique the

relative merits of each of these techniques. We can point out, however, that none of

Ile regards the experimentally generated curve as the chaotic attractor of some descriptive map. Then he constructs this
dissipaUve map by forrmng the union of a sequence of dissipative maps randomly selected from a predetermined, finite set.
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them take the basic nonlinear hydrodynamic aspects of the sea surface and interior into

account in their processing. The attractor reconstruction approach is the only one that

intrinsically depends on the nonlinear nature of the time series for its implementation.

In the same way the contamination of the acoustic signal by undersea phenomena is

treated perturbatively, relying on the classic signal/noise paradigm to describe the

influence of internal waves and/or turbulence on the propagating pressure field. Again

there are established techniques similar to those described above intended to enhance the

signal-to-noise ratio that do not capitalize on the intrinsic nonlinearity of the dynamics of

the intervening medium and its interaction with the acoustic wave. It is not yet clear how

these traditional techniques apply when the dynamics are chaotic. We note that there

already exists a simple model of internal waves based on the strange attractor concept

[Abarbanel, 1983].

The relation between the hydrodynamic patterns observed in nature and the non-

linear dynamics of fluid particles has, over the past decade, become increasingly well

understood. Although fluid mixing remains a mystery, some of the concepts underlying

the formation of coherent structures and their eventual breakup due to chaos are becom-

ing clearer [Wiggins, 1988; Ottino, Lsong, Rising and Swanson, 1988].
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Figure (2.1.1) The (x 1,x 2) plane constitutes a two-dimensional phase space for a dynam-
* ical system. The curve is a schematic representation of the instantaneous state of the sys-

tem, starting form the initial point labeled t =0. Time (not shown) is a parameter that
locates the system along the trajectory.

i a i i i i | i | I |



Figure (2.1.2) The collection of trajectories initiated from a set of initial conditions is
called a flow field. Herre the flow field in the neighborhood of a fixed point is shown. All
the trajectories asymptotically converge on the single point in phase space, i.e., they
reside in the basin of attraction of the focus.
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Figure (2.1.3) The two points a and b in the figure are possible initial conditions for the
system. When the system can manifest limit cycle behavior the orbits approach this
cycle asymptotically and lose all memory of their initial state. ,
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Figure (2.1.4) The (x,x) phase space is shown for a harmonic oscillator with a few typi-
cal orbits. Each ellipse has a constant energy. As the energy of the oscillator is

*0 increased the system jumps from an ellipse of smaller diameter to one of larger diameter.
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Figure (2.1.5) The attractor solution to the Lorenz system. equations (2.1.2')-(2.1.4), is
depicted in a three dimensional phase space (X,Y,Z). The attractor is strange in that it
has a fractal (noninteger) dimension. (From Schaffer, 1985). S

. mn ~ mm -- dmm i mmmmmmmm m =m l mm immml - I



1000 2000

TIME

Figure (2.1.6) The time history of the Y (t) component of the solution to the Lorenz sys-
tem of equations (2.1.2)-(2.1.4) is shown for 3x 103 time units (from Lorenz. 1963).
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0Figure (2.1.7) The three dimensional attdctor solution for the Lx.renz system is pro-
'ted onto the (~ z ,-nlane in (a) and onto the (x . ~ 1-plane in (b) from Lorenz. 1963
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Figure (2.1.8) The power spectral density S,,,(co) and S,, (CO) is calculated using the solu-
tion for the x-component and z-component, separately, using Equation (2.1.16) (from
Farmer et aL, 1980).
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Figure (2.1.110) T'he "funnel" attractor solution to the Rossler Equations (2.1.12)-
(2.1.14) with parameter values a =0.343,b 1.82 and c =9.75. (From Rossler, 1979).
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Figure (2.1.11) An x -y phase plane plot of the solution to the R6ssler Equaitons
(2.1.12)-(2.1.14) with parameter values a = 0.20 and b = 0.20 at four different values
of c indicated in the graphs.
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Figure (2.1.12) Next amplitude plot of the Rbssler Equation (2.1.12)-(2.1.14) for

c =5,a =0.2 and b =0.2. Each amplitude of the oscillation of x was plotted against the

preceding amplitude.
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Figure (2.2.1) The spiral is an arbitrary orbit depicting a function y =f kx). The inter-
section of the spiral with the x-axis defines a set of points x 1,x2 ..., that can be obtained
from a mapping determined by f (x).
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Figure (2.2.2) Ile solution to the map (2.2.11) is depicted for various choices of the
* parameter ±. (a) The solution Y,, approaches a constant value as ni -4oo for g = 2.8. (b)

The solution Y, is a periodic orbit after the initial transient dies out for gi 3.2. (c) The
orbit in (b) biftircates to a 4-cycle for p = 3.53. (d) The orbit is chaotic for p.=3.9. (From
Olsen and Deng, 1985).
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Figure (2.2.3) A mapping function with a single maximum is shown. In (a), the iteration
away from the initial point Y0 is depicted. In (b), the convergence to the station pointy'
is shown. (From West, 1985).
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Figure (2.2.4) The map f with a single maximum in Figure (2.2.3) yields an f 2 map
with a double maximum. The slope at the point y* is indicated by the dashed line and is
seen to increase as the parameter . is raised in the map from (a) to (b). (From West,
1985).
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Figure (2.2.5) The bifurcation of the solution to the mapping x -- 1 - p.x2 as a function

of p. - g is indicated. The logarithmic scale was chosen to clearly depict the bifurcation

regions. (From Collett and Eckmann, 1980).
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Figure (2.2.7) An arbitrary trajectory is shown and its intersection with a plane parallel
to the x1,x 3 - plane atx 2=constani dre recorded. The points A, B, C.... define a map as
in Figure (2.2.1). This is the Poincard surface of section. (From Ott, 1985).
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Figure (2.2.8) Iterated point of the map (2.2.2a), for 10 iterations with the parameter
values c = 1.4 and 0=. 2. (From Ott, 1985).
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Figure (2.2.10) Lyapunov exponents define the average stretching or contraction of tra-

jectories in characteristic directions. Here we show the effects of applying a two-

dimensional mapping to circles of initial conditions. A sufficiently small circle of radius

£ is transformed after n iterations into an ellipse with major radius V le and minor radius

X'2E, where X, and ;L2 are the Lyapunov exponents for n -4--.

Sm

S"
.. ........ ...S.",- , -,, . ,mmumm mI m llnm m



•x M

1 -IV T-

x(t+r)

I I

I ~I
I I
I ~I

" I i I

I I

I'I
I I

Figure (2.3.1) The time trace of a random function X(t) versus time t is shown in the
upper curve. The lower curve is the same time n-ace displaced by a time interval cr. The
product of these two functions when averaged yield an estimate of the autocorrelation
function C,, (rc,T).
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Figure (2.3.2) (a) The autocorrelation function C. (T) for the typical time traces dep-icted in Figure (2.3.1) assuming the fluctuations are exponentially correlated in time
[exp (- /,c)]. The constant T, is the time required for C. (r) to decrease by a factor lI/e,this is the decorrelation time. (b) The power spectral density S (CO) is graphed as a func-tion of frequency for the exponential correlation function with a central frequency coo.0
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Figure (2.3.3) The power spectral density for the X (t) time series for the "funnel" dep-

icted in Figure (2.1.10).
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Figure (2.3.4) (a) The correlation integral for the logistic map (2.2.11) at the infinite
bifurcation point ji=p-=3.699 -. The starting point was Y0 = 1/2, the number of
points was N =3x10. (b) Correlation integral for the Henon map (2.2.29) and (2.2.30)
with c -1.I,P=0.01 andN = 1.5xl 4 . (c) Correlation integrals for the Lorenz equations
(2.1.9)-(2.1.11) (dots); for the Rabinovich-Fabricant equation (open circles). In both
cases N=1.5xl4 and T=0.25. (From Grassberger and Procaccia, 1985). (From
Grassburger and Procaccia, 1983a).
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Figure (2.3.5) A two-dimensional projection of the Rossler chaotic attractor (a) is com-
pared with the reconstruction in the (x ,x) plane of the attractor (b) from the time series

* x (t). The dashed line indicates the Poincard surface of section for this attractor (from
Packard et al., 1980).

• 5

I ol..S S,,= mmmm mm m m m mm



x +

t x(t)
C D•

/ o

+ + 4

++

x+

x(t+T) P(N)

Figure (2.3.6) Attractor from a chemical oscillator. (a) The time series X (t) is the
bromide ion concentration in a Belousov-Zhabatinskii reaction. A time interval T is indi-
cated. (b) Plot of X (t) versus X (t + r). Dotted line indicates a cut through the attractor.
(c) Cross section of attractor along cut. (d) Poincard return map of cut, P (N + 1) is the
position the trajectory crosses the dotted line as a function of the crossing position on the
previous turn around the attractor (from Roux and Swinney, 1981).
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Figure (3.1.1) Time trajectory of three-hourly surface pressure evolving in a three-
dimensional phase space of time-lagged pressure coordinates (units: 1000 mb). Horizon-
tal axis: p (t); vertical axis: p (t + r); axis into plotting plane: p (t + 2r). From left to0
right: (a) r = 3 hours, (b) r = I day, (c) r = 3 days (from Fraedrich, 1986).
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Figure (3.1.2) Cumulative distribution I unction of distances of the 15-year daily pres-

sure trajectory evolving in m -dimensional phase spaces (m = 1 to 20) of time lagged

(r = 3 days) coordinates of the same varible. Top: observed time series: bottom: related

random ser-ies of same length, mean and variance (from Fraedrich, 1986).
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Figure (3.1.3) Dimensionality (d) of the weather attractor as a function o~f the number in

of phase space coordinates, which are determined by multiples (mn) the time shifted pres-

sure record (using lags z = 1, 3 and 6 days). Randomized time series (index c) are corn- 0

pared with observations. From left to right: (a) 15 year record, (b) winter seasons. (c)

summer seasons (from Fraedrich, 1986).
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Figure (3.1.4) Plot of In Cm (r) against In r for embedding dimension, m, from 4 10
as obtained by method 1. Note the convergence of slopes as m increases (from Essex,
Lookman and Nerenberg, 1987).
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i Figure (3.1.5) Summary of results of scaling exponent, d (m ) as a function of embed-
ding dimension m, obtained by two methods (method 1, +; method 2, A). A random

, e number set of the same size as the data set was used as a control ( [] ). Note the satura-
tion of the exponent arising from the data, for both methods, while there is no saturation
for the random number set. This limiting value is identified as v (from Essex, Lookman

and Nerenberg, 1987).
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Figure (3.1.6) A sample plot of d In C (r )1d In r against In r showing the scaling regionfor embedding dimension 9 as determined by method 2 (from Essex, Lookman and* Nerenberg, 1987).
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Figure (3.1.7) (a) The data used in this study represent 10-second averages of the verti-
cal wind velocity over 11 hours. The air close to the ground is heated and rises, creating
strong convection. Positive values indicate updrafts and negative values indicate down-
drafts. (b) The autocorrelation function for the above data. The inset graph is a
magnification of the region clcse to the origin. (c) The logarithm of the spectral density
as a function of the frequency for the above data. The spectra show various peaks on a
background of a continuous frequency spectrum. This suggests that a strange zau.cto,
may be present (from Tsonis and Elsner, 1988).
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Figure (3.1.8) Plot of InCm(r) against Inr for embedding dimensions,

m = 4,6,8, 10, 12. Note the convergence of slopes as m increases (from Tsonis and

Elsner, 1988).

)I

.. m ,m, um m mm~mmlmmllmill I II I



./
12

Cl
CC

0 _-

W 4

2

2 4 6 8 10 12

Embedding dimension

Figure (3.1.9) Scaling exponent, d(m), as a function of the embedding dimension, m.
Crosses correspond to the wind velocity data and squares to a random sample of the same
size as the wind data. Note the saturation of the scaling exponent observed for the wind
data, although there is no saturation for the random set. From this figure we estimated
v = d. (from Tsonis and Eisner, 1988).
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Figure (3.2. 1) The Wejerstiass function is depicted in (a) for parameter values a =22/3
and b = 2 so that the fractal. dimension is 2/3. The curve in (b) is a magnification of the
boxed region in (a). The curve in (c) ia s mnagnification of the boxed region in (b).
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Figure (3.2.2) The Wereistrass-Ldvy-Mandelbrot. function with M = 0 and random
phases. L is the level of an artificial floor which, as it is lowered, reveals more of the

surface (M = 1,D = 2.5,b = 1.5) (from Ausloos and Berman, 1985).



Figure (3.2.3) Surfaces for M =2 with random phases (D =2.5, b =1.2). The upper
surface is the sum of the two lower surfaces (from Ausloos and Berman, 1985).
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Figure (3.2.4) Four magnifications of the surface for D = 2,05, showing self-similarity
(M = 8, b = 1.2). The upper right surface is the fivefold magnification of a section of
the upper left surface. Similarly, the lower left surface is a fivefold magnification of a k
piece of the upper right surface and the lower right surface is a fivefold magnification of
the lower left surface. The vertical extent is magnified by 5(3 - D) (from Ausloos and
Berman, 1985).
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Figure (4.1.1) The logarithm of the correlation function Cm (r) is plotted versus lnr for
a number of different embedding dimensions m. The "time" series is a one-dimensional
sea surface over a spatial interval segmented into 1024 data points.
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Figure (4.1.3) Standard correlation integrals for autocorrelated random data. (a) L.,,-

log plot of the standard (W = 1) correlation integral over a range of embedding dimen-
sion m for stochastic data with N = 10000 points, standard deviation (T = 20, and auto-
correlation cc = 0.9.
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Figure (4.1.4) The logarithm of the correlation function C..(r) is plotted versus mnr for
a numbr of different embedding dimensions m. The tme series consists of 8031 data
points obtained by concatenating the time series from 8 adjacent spatial points. The time
shift is 80 units.
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