
F

YM- 
r

DTIC
A ELECT,.

OCT 0 7 1988"

0 D

N] RUTGERS UNIVERSITY

Center for Expert Systems ResearchI
Technical Report:

Maximizing the Predictive Value
of Production Ruies
Contract Number
N00014-87-K-0398

Office of Naval Research

August 31, 1988

Principal Investigators:
Sholorn M. Weiss

Casimir A. Kulikowski

88 9 6 129



Table of Contents

1. Introduction 1
2. The Model of Induction 3
3. Complexity of Exhaustive Generation of Expressions 6
4. A Heuristic Procedure for Maximizing Predictive Values 7

4.1. Selection of Cutoffs 9
4.2. Expression Generation 9
4.3. Heuristics for Pruning Expressions 10
4.4. Variations on the Standard PVM Application 11

5. Estimating Error Rates 12
5.1. Basic Principles of Error Estimation 12
5.2. Resampling with PVM 14

5.2.1. Leaving-One-Out 14
5.2.2. Random Resampling 15

6. Empirical Results 15
6.1. Optimality and Model Adequacy 16

6.1.1. Production Rule Optimality 16
6.1.2. Comparative Analysis for Normally Distributed Data 17

6.2. Comparison with Alternative Machine Learning Methods 18
6.2.1. Alternative Rule Induction Methods 18
6.2.2. Alternative Decision Tree Induction Methods 19

7. Discussion 22

ii

! - ° - . . .. . . .. . .. . . . . .

~~~~ 't I rF G TED 
III

6;



Maximizing the Predictive Value
of Production Rules 1

Sholom M. Weiss*, Robert S. Galen*, and Prasad V. Tadepalli*

Department of Computer Science, Rutgers University, New Brunswick, NJ 08904
"Department of Biochemistry, Cleveland Clinic Foundation, Cleveland, Ohio

Abstract

A new approach to finding a solution for an important empirical learning problem is described.

The problem is to find the single best production rule of a fixed length for classification. Predictive
Value Maximization (PVM), a heuristic search procedure through the space of conjunctions and

disjunctions of variables and their cutoff values, is outlined. Examples are taken from laboratory

medicine, where the goal is t, find the best combination of tests for making a diagnosis. Resampling

techniques for estimating error rates are integrated into the PVM procedure for rule induction.

Excellent results for PVM are reported on data sets previously analyzed in the Al literature using

alternative classification techniques.

1. Introduction

MIanv decision-making problems fall into the general category of classification [Ciancey,
1985, Weiss and Kulikowski, 1984, James, 19851. Diagnostic decision making is a typical example.

Empirical learning techniques for classification span roughly two categories: statistical pattern

recognition [Duda and Hart, 1973, Fukunaga, 19721 (including neural nets [McClelland and

Rumelhart, 19881) and machine learning techniques for induction of decision trees or production

rules. While a method from either category is usually applicable to the same problem, the two

categories of procedures can differ radically in their underlying models and the final format of

their solution. Both approaches can be used to classify a sample pattern into a specific class.
However, a rule-based or decision tree approach offers a modularized, clearly explained format for

a decision, and is compatible with a human's reasoning procedures and expert system knowledge

bases.

Methods of induction of decision trees from empirical data have been studied by researchers in

both artificial intelligence and statistics. Quinlan's ID3 [Quinlan, 19861 and C4 [Quinlan,
1987a] procedures for induction of decision trees are well known in the machine learning

community. rhe classification and Regression Trees (CART) [Breiman, Friedman, Oishen, and

'This research was supported in part by ONR CvnLiact N00014-87-K-0398 and NIH Grant P41-RR02230.



2

Stone, 19841 procedure is a major nonparametric classification technique that was developed by

statisticians during the same period as ID3. These procedures developed for decision tree

induction are quite similar. The major distinction between CART and ID3/C4 is that the CART
procedure uses resampling techniques for both accurate error estimation and tree pruning [Stone.,
1974]. Empirical comparisons of CART-derived decision trees with traditional statistical

discriminant analysis has show that the decision trees are very competitive in finding a minimum

error solution. In almost all ;.t-rces studicd, -.. Ldjced decision trees were equal or better than
traditional statistical methods [Breiman, Friedman, Olshen, and Stone, 19841.

Production rules are related to decision trees; each path in a decision tree can be considered a

distinct production rule. Unlike decision trees, a disjunctive set of production rules need not be
mutually exclusive. The principal techniques of induction of production rules from empirical data

are Michalski's AQ15 system [Michalski, Mozetic, Hong, and Lavrac, 1986] and recent work by
Quinlan in deriving production rules from a collection of decision trees [Quinlan, 1987b].

Machine learning techniques for induction of decision rules have evolved from procedures that
cover all cases in a data base to more accurate procedures for estimating error by train and test
sampling. Procedures that prune a set of decision rules and the components of these rules have

been successful in increasing the performance of an induced rule set on new unseen test
cases : . , .chalski, Mozetic, Hong, and Lavrac, 1986, Quinlan, 1987a]. Empirica' -esults reported in
the literature indicate that often a relatively short rule may provide a better solution than a more

complex set of induced rules [Michalski, Mozetic, Hong, and Lavrac, 19861.

In this paper, we describe Predictive Value Maximization (PVM), a heuristic procedure for

learning the single best decision rule of a fixed length. In contrast to the decision tree induction
techniques, a commitment is not made to split a single test node at a time. Instead, this method is a

heuristic approximation to exhaustive generation of all possible rules of a fixed length. While a

exhaustive search is not feasible in most -pplications, a small number of heuristics reduce the

search space to manageable proportions.

In Section 2, a detailed description of the underlying model is given. The complexity of

exhaustive search is presented in Section 3. The PVM procedure is described in Section 4. In
section 5, the concept of resampling and honest error estimation is introduced. In a fashion similar
to CART procedure for deciding appropriately sized trees, the PVM procedure is modified to use

resampling for finding the appropriate length rule. In Section 6.1 two data sets are analyzed, and

the results of PVM are compared with the optimal production rule solution and with several

statistical pattern recognition solutions. A comparison of results for two other data sets reported in

the machine learning literature is given in Section 6.2.
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2. The Model of Induction

In our discussion, examples from laboratory medicine will be used. However, the solution is

general and should be applicable to many areas outside medicine. Let us assume that we are
developing a new diagnostic test whose measurement yields a numerical result in a continuous
range. For a single test, the problem is to select a cutoff point, known formally as a referent value,
that will lead to satisfactory decisions. For example, a physician may conclude that all patients
having a result greater than a specific cutoff have the disease, while others do not. There are
well-known measures to describe the performance of a test at a specific cutoff for a sample
population. These measures are sensitivity, specificity, positive predictive value, negative predictive

value, and accuracy [Galen and Gambino, 19751. Thus, results at each cutoff can be described in
terms of these measures. Using a specific cutoft, there are four possible outcomes for each test case
in the sample. 2 This is illustrated in Figure 2-1.

Rule Positive (R+) Rule Negative (R-)

Hypothesis Positive (H+) True Positives (TP) False Negatives (FN)

Hypothesis Negative (H-) False Positives (FP) True Negatives (TN)

Sensitivity TP / H+

Specificity TN / H-

Predictive value ( ) TP / R*-

Predictive value (-) TN / R-

Accuracy (TP-TN) / ((H+) + (H-))

Figure 2-1: Formal Measures of Classification Performance

While all of these measures have their purpose, the one that is implicitly used in large-scale
rule-based systems is positive predictive value. Positive predictive value measures how often a

decision is correct when a test result is positive. Thus one may use a positive test that has high
predictive value in rules that confirm a diagnosis, and apply different tests when the result is
negative. Many rule based systems may be thought of as collections of rules with very highly

positive predictive values. The two types of errors, false positives and false negatives need not be
weighted equally. For example, in medical applications it is often required that the sensitivity be
high, i.e. few false negatives with perhaps more false positives.

We illustrate these points by describing data taken from a published study on the assessment of
8 laboratory tests to confirm the diagnosis of acute appendicitis for patients admitted to an

emergency room with a tentative diagnosis of acute appendicitis [Marchand, Van Lente, and

2 For purposes of this discussion, we are eliminating the possibility of unknowns.
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Galen, 1983]. Following surgery, only 85 of 106 p. ents were confirmed by biopsy to have had
appendicitis. Thus, the ability to discriminate the true appendicitis patients by labs tests prior to
surgery would prove extremely valuable. In the example of Figure 2-2, the white blood cell count
(WBC) is used as a test to determine the true appendicitis patients.

T+ T-

H+ 71 14

H- 6 15

Sensitivity 83.5%

Specificity 71.4%

Predictive value (+) 92.2%

Predctive value (-) 51.70

Accuracy 81.1%

Figure 2-2: Example of the 5 Measures of Performance for WBC>10000

In summary, for a single test with a given cutoff and the application of an arithmetic operator, 3

these five measures can be determined for a population. The problem of determining an optimal
cutotf can be described as maximizing one of these measures sublect to specific constraints oe
other measures. 4  Constraints are the minimum required values for sensitivity, specificity,

predictive values, and accuracy. Finding the Optimum cutoff for WBC can be posed in the form
illustrated in Figure 2-3.

MAXIMIZING Predictive value (+) of WBC

The constraints are given below:

Sensitivity _ 100.00%
Specificity > 0.00%
Predictive value (-) _ 0.00%
Accuracy > 0.00%

Figure 2-3: Example of Problem Constraints for a Single Test

3These operators are less than or greater than.

4Sensitivity and specificity move continuously in opposite directions. For example, a 100% sensitivity cutoff with 0%
specificity can always be found by classifying every sample as having the hypothesis. Predictive values have no such
relationship and vary greatly.

5The interrelations among these performance parameters, limit the possible patterns of constraints for any given set of
data.
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Referent value analysis, or cutoff selection, is commonly done for single tests. We have

developed procedures that allow for the possibility of choosing the set of constraints and

maximizing the remaining measure not only for one or two, but for a larger number of tests. 6

When more than one test is specified, combinations are formed by using logical AND or OR

operators. We formulate the problem as finding the best combination of tests that will satisfy the

given constraints for the data base. An additional constraint is added to the problem, in that the

length of the expression is limited by a chosen threshold.7 In Figure 2-4 using the appendicitis data

base, the problem is to find the best solution in the form of a logical expression whose length is no

greater than 3 tests.8

MAXIMIZING Predictive value (+)

The constraints are given below:

Sensitivity _ 100.00%
Specificity > 0.00%
Predictive value (-) 0.00%
Accuracy 0.00%
Number of terms < 3

Figure 24: Example of Problem Constraints for 3 or Fewer Tests

At this print wr note that the rules are just like many found in typical classification expert

systems, since, like productions, they are described as logical combinations of findings that are not

mutuallv exclusive.9  Thus, they have the intu"W.'e appeal of explaining decisions in a format

consistent with human reasoning, while being supported empirically by their performance over

the data base. Starting with undetermined cutoffs for continuous variables, these rules classify
under conditions of uncertainty, where two types of classification errors, false positives and false

negatives, need not be considered of equal importance,

61f two tests have the same value for the optimized measure, then its conjugate measure is used to decide which test is
better. Sensitivity and specificity are treated as conjugates to one another and so are positive and negative predictive values.
When maximizing accuracy, either sensitivity or specificity can be chosen as the next decisive function.

7This sets a limit on the number of tests that may be used in the decision rule. Some tests may be also deliberately
excluded from consideration and some tests may be designated as mandatory. This allows for further pruning of the search
space.

SAs noted in Section 6.1.1, the optimal solution is a disjunction of 2 tests.

9An OR condition may encompass several conditions that are not mutually cx- w,. 7'c ,*idsbificaion may have less
than 100% diagnostic accuracy.
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3. Complexity of Exhaustive Generation of Expressions

In Section 2, we described the problem as find;-- , the best logical expression of a fixed length or
less that covers a sample population. In this section, we consider the complexity of exhaustively
generating and testing all possibilities. Except for relatively small populations or numbers of
tests, 10 the exhaustive approach is not computationally feasible.

Equation 1 is the number of expressions having only ANDs; Equation 2 is for expressions having
either ANDs or ORs. 11 In these equations, n is the number of tests, k is is the maximum number of
tests in the expression, c is the number of constants (cutoff values) to be examined for each test,
and c1 is c raised to the ith power. While the number of distinct values that must be examined for
each test may vary, we have have used a fixed number, c, to simplify the notation and analysis. In
Equation 2, expressions are generated in disjunctive normal form.12

k

X lc' (2)

where B, is the ith Bell number.The Bell number is the number of wavs a set of i elements can be
split into a set of disjoint subsets. For i=0,1,2,3, B,=1,1,2,5 respectively [Andrews, 19761. The Bell
number is defined recursively as

The most computationally expens: (exponential) component of Equation 2 component is ci. It

is possible to devise exhaustive procedures that do not require the examination of every value of a
test found in the data base. For each test, one may examine only those points that overlap in the
H+ and H- populations. Moreover, only the smaller set of the two sets of points in the overlapping

zone need be candidates for cutoffs. 13 Even taking this into account, relatively small values of c
will make the computation prohibitive.

"°These are tests with relanvely few potential cutoffs.

"it is assumed that the less than or greater than operators are selected simply on the basis of the means for each class.

12This normal form corresponds to that used by the heuristic procedure described in Section 4.

'3Each test would have a a distinct number of cutoffs that must be examined, c,. In the equations, instead ot c', the
products of c, for each generated expression must be summed.
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Because one may allow for the repetition of a test in an expression, the number of generated

expressions may be substantially greater than Equation 2.14 For the appendicitis data base having

a sample of 106 cases, we computed an average of 65 expressions/second on a VAX/785.'5

Very effective branch and bound methods are known for finding the optimal feature subset of a

given size [Narenda and Fukunaga, 1977, Roberts, 1984, Foroutan and Sklansky, 1985]. These

procedures start with all the features, eliminate one test at a time, and evaluate classification

performance for a test subset. If a test subset has poorer performance than the current best, for

many types of classifiers (or distance measures) there is no need to consider further subsets of this

test subset. These procedures work well for some statistical classifiers because it is possible to

readily compute a unique classifier or distance measure using n features. The complexity of
production rule enumeration is largely due to the number of cutoffs that must be evaluated. Even

before feature subset evaluation, it is not feasible to evaluate rules with all n features over all

possible cutoff instantiations.

4. A Heuristic Procedure for Maximizing Predictive Values

Because of the computational complexity of an exhaustive search, we have developed a heuristic

search procedure for finding the best combination. In this section, we describe the procedure.

While this procedure is not guaranteed to find an optimal solution, the expression found should

a.most always be quite good. In Section h, 2mpircal evience is proviieu to demonttrate thc: h
several situations the optimal production rule is found. In almost every real experimental

situation, the logical expression found by the computer should be better than what a human

experimenter could compose. These are situations where the experimenter is analyzing new data
and does not know a priori the best rule.

Before specifying the heuristic procedure, a few general comments can be made. In an

exhaustive search approach, it is possible to specify a procedure that needs no additional memory.

Logical expressions are generated and they are compared with the current best. The heuristic
procedure is based on an alternative strategy. A relatively small table of the most promising

expressions is kept. Combinations of expressions are used to generate longer expressions. The

most promising longer expressions in turn are stored in the table and are used to generate even

longer expressions. Thus memory is needed to store the most promising or useful expressions. In

Equation 2, the exponential component is the ci . Thus, if one can reduce the number of points in c,

i.e. the number of cutoffs for a test, the possible combinations are greatly reduced.

The Predictive Value Maximization (PVM) procedure was originally developed for finding the

"For exai.,ple, a>50 OR (a >30 AND b <20).

"3This is the average for length less than 4.
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best logical combination of laboratory tests for making a diagnosis. In this section, we give a brief
overview of the procedure.

The goal is to find the single best rule of length less than or equal to n. A rule for a hypothesis or
class consists of variables, constants, arithmetic operators and logical crators. The arithmetic

operators are less than, greater than, ,r equals. The logical operators are AND or OR. For example,
X>30 OR Y<100 is a valid rule format. In terms of overall accuracy of classification, the best rule is
the one that has the fewest number of errors in classification where the number of variables in the
expression is no more than the stated length. The method is an approximaiiun to exhaustive
generation of ail possible rules of a fixed length or less.

For each variable, interesting constants are determined. These cutoff points are local maximums
of the predictive values. Logical expressions with variables are generated (in disjunctive normal
form) and instantiated with constants. A relatively small table of the most promising expressions
is kept. Combinations of the stored expressions are used to generate longer expressions. The most
promising longer expressions in turn are stored in the table and are used to generate even longer
expressions.

Figure 4-1 illustrates the key steps of the heuristic procedure. In Section 4.1, the approach taken,
to greatly reduce the number of (interesting) cutoffs is discussed.

CONSTANTS v oEXPRE SSIONcu f EXPRESSIONS

COMBINATION | RULES IN L=CANDIDATES

OF LENGTH /EXPRESSN[ WITH

N4 OR LESS . TABLE J .HEURiST ICS

Figure 4-1: Overview of Heuristic Procedure for Best Test Combination
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4.1. Selection of Cutoffs

For each test in the data base, the mean is found for the cases satisfying the hypothesis (H+) and

the cases not satisfying the hypothesis (H-). If the H+ has the greater mean, the ">" operator is

used. If H+ has the smaller mean, the "<" operator is used. The equality operator "=" may also be

used for discrete (categorical) tests corresponding to simple encodings such as multiple choice

questions. A discrete test is considered to be a test whose values are always integers between 0 and

10.

The next task is to select the test cutoffs. For a test, cutoffs that fall at interesting Ioiindarics are

selected. Interesting boundaries are those wherc the predictive values (positive or negative) ar.>

locally maximum. For example, if WBC>10000 has a positive predictive value of 97% a:.",

WBC>9000 and WBC>10100 each has a positive predictive value less than 97%, then 10000 is arv

interesti:ng boundary for WBC. The procedure first determines the interesting boundaries on a

coarse scale. Then it zooms in on these boundaries and collects all the interesting boundaries on a

finer scale.16 Finally, the boundaries are srnioothened without changing the predictive statistics of

the rule. Test cutoffs that have very low sensitivity or specificity are immediately pruned. 17

4.2. Expression Generation

L.ogical cxpre-:ons of a1 tes: .. rab it'. a, con'i::'.:o., are Ie'er, ted ;n d:- etive :-, t-m,
>,"U 
'  Th _: 'c h' axo~ ,:, dt-'. C'".,,", ',: c,',O'a2 . .. t e,,Fre _-,:: .s ,,::',,e .A\. D ,, a [- ,

-::':et::e. l'h'..e e\ 0re>,,:'-, ,ae s:oruUj : . o\: nr\.'c ->,o ta .'e , :' :d i,:.:er C.\ r,>:,. ,:

Cceratcd comb:ing shorter eAres~:on.s..s eachf rew eipre-sion is generated, tile test varLan.>

are instantiated in all combinations of cutoff va:ues. The test cutoffs were selected prior to

e\pression generation. Figure 4-2 is a sin'ple :2n>tra,:on of this process for 3 te sts, , b, c i:-'

es\ressions of length 2 or less.

If b has interesting cutoffs at b> 10, b>20 and c has interesb:'.g cutoffs at c<30, c<40, c<50, then tle

exp-ession b AND c would lead to the possibilities of Figure 4-3.

Because new longer expressions are generated from shorter expressions that have been stored in

a table, those expressions that have been pruned will no longer appear in any longer expression.

During the course of instantiation of the variables, some hetlr.stics can be applied to prine the

possibilities. These are discussed in Section 4.3.

:6A local maximum corresponds approximately to the following conditions for the cutoff and its two nieighbors One

neighbor of the cutoff has the same number of correct classifications but more errors. The other neighbor has fewer correct
classifications but the same number of errors

1
7In the current version of the program, 10 equally spaced intervals are used for the region where the two populations

ovcrlap. For zooming in on an interval, 20 finer intervals are used between its 2 neighbors on the coarse scale The
minimum acceptable sensitivity or specificity for a tes. Is currently set to be 10%

18For example, a AND (b OR c) must be written as (a AND b) OR (a AND c)
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a

b

C

a AND b

a AND c

b AND c

a O b

aOR c

b OR c

Figure 4-2: Example of Expressions with Variables (tests)

b >10 AND c <30

b >10 AND c <40

b >10 AND c <50

b >20 AND c <30

b >20 AND c <40

b >20 A'D c <50

Fi g .:e 4-3: Exambqe o ,t i ', !,',d= ,'.;

4.3. Heuristics for Pruning Expressions

Although the heuristic cutoff analysis limits the -,earch space to tile most interesting cutoffs, the

search space may still remain relatively large. Several heuristics and some provably correct
pruning ru I c, are employed by the procedure. The first 3 pruning rules are always correct, the

others are heuristics that attempt to consider the most promising candidates for combination into

new longer rules.

1. If the sensitivity and specificity values of an expression are both less than the
constraints, then that expression does not contribute to any useful rules.

2. If an expression has les specificity than required, then any expression formed by
ORing that expression with another will also have less specificity than required.

3. If an expression cannot be extended to one that contains all the mandatory tests, while
satisfying the length constraint, it is immediately pruned.

4. If an expression has better positive and negative predictive values than another
expression that differs from the first only by the constants in the expression, then the
expression with lower predictive values is ignored.
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5. If there are rules shorter and better than a new candidate rule, compute the sum of
their lengths. If this num, including the length of the current rule, exceeds the
maximum length possible for any rule, then ignore the new rule. 19

After all interesting expressions have been generated, the best expression in the expression table

is offeori as the answer.: °  Because all promising expressions are stored, a program that
implements this procedure can readily determine its next best expression. If the constraints are
made stricter, the expression table remains valid, and the procedure's new best expression is

immediately available.

4.4. Variations on the Standard PVM Application

The standard application of PVM was described in the previous section. The basic model is for
two-class discrimination. Modifications can be made to the procedure to handle multiclass
problems and step-wise refinement.

For multi-class problems, PVM is applied to a each class vs. not that class, and the single best

rule for each class is found. Thus the n-class problem is solved as n 2-class problems. For n classes,
n rules are found, and the best n-I are used. The remaining class is selected when no rule is
sa":Ied,. In some difficult instances, it may be necessary to generate the n best rules, select the best
one, retrove the cases satisivig the rule, and then recursively re-apply the procedure. For -:>c
c\amples given in 'Sction 6, it was not necestarv to recursively apply PV%.

In some situations, another form of step-wise refinement is valuable. Because PVM may initially

screen out some variables, the standard application of PVM may not work well for large numbers
of variables or a low prevalence situation (i.e. many more cases of one hypothesis than another).
PVM currently works with 18 variables at a time, and it uses only tests that have a minimum of
10% sensitivity or specificity. It does not apply both arithmetic operators (greater than and less
than) simultaneously to the same variable. With step-wise refinement some o. these restrictions
can be overcome. Assuming a 2-class model, two strategies are worthwhile mentioning:

1. Find a highly predictive nle for a class; remove the cases satisfying the rule, and
re-apply the procedure to fhe remaining cases that did not satisfy the rule.

1
91n the current implementation, the maximum rule length is fixed as 6. As the expression length increases, the

number of potential combinations greatly increases. The objective of this heuristic is to emphasize the most
promising shorter rules that will be combined into lengthier rules.

20During expression generation, whenever a superior expression is found, it is displayed. If no expression is found
meeting the constraints, this is indicated when the search terminates. Depending on the allocated table space for storing
intermediate expressions, the program may terminate from an overflow of the table. This is unlikely to occur with
relatively small expressions.
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2. Find a highly sensitive rule for a class, i.e. a rule that covers most or all of the cases in
the class; remove the cases not satisfying the rule, and re-apply the procedure to the
remaining cases that did satisfy the rule.

Situation (1) is equivalent to an OR condition, i.e. finding multiple rules to covering a class. An
example of this variation is given in Section 6.1.2. Situation (2) is equivalent to an AND condition,
i.e. extending a rule in step-wise fashion to create a longer rule. An example of this variation is
given in Section 6.2.2.

5. Estimating Error Rates

5.1. Basic Principles of Error Estimation

A procedure has been described that finds a single rule that best covers the cases. It is well
known that the apparent error rate 21 of a classifier learned from all cases can lead to highly
misleading estimates of performance [Duda and Hart, 1973]. This is due to overspecialization of
the classifier to the data.?

Techniques for estimating error rates have been widely studied in the statistics [Efron, 19821 and
pattern recognition [Duda and Hart, 1973, Fukunaga, 19721 literature. The simplest technique for
'honestv" estimating error rates, the hodout or H method, is a single train and test expcrimcnt.
The sample caes are broken into two groups of cases: a training group and a test group. The
classifier is independently derived from the training cases, and the error estimate is the
performa:nce of the classifier on the test cases. A single random partition of train and test cases can
be somewhat misleading. The estimated size of the test sample needed for a 95% confidence
interval is described in [Highleyman, 1962]. The following interpretation of these results is offered
in [Duda and Hart, 19731: "If no errors are made on 50 test samples, with a probability 0.95 the true
error rate is between zero and eight percent. The classifier would have to make no errors on more
than 250 test samples to be reasonably sure that the true error rate is below two percent."

Instead of relying on a single train and test experiment, multiple random test and train
experiments can be performed. For each random train and test partition, a new classifier is derived.
The estimated error rate is the average of the error rates for classifiers derived for the independently
and randomly generated partitions. Random resampling can produce better error estimates than a
single train and test partition.

21sometimes referred to as the resubstitution error rate

221n the extreme, a classifier can be constructed that simply consists of all patterns in the given sample. Assuming
identical patterns do not belong to different classes, this yields perfect classification on the sample cases.
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A special case of resampling is known as leaving-one-out [Fukuniga, 1972, Efron, 1982].

Leaving-One-Out is an elegant and straightforward technique for estimating classifier error rates.

Because it is computationally expensive, it is often reserved for relatively small samples. For a

given method and sample size n, a classifier is generated using n-1 cases and tested on the

remaining case. This is repeated n times, each time designing a classifier by leaving-one-out. Each

case is used as a test case and, each time nearly all the cases are used to design a classifier. The

error rate is the number of errors on the single test cases divided by n.

Evidence for the superiority of the leaving-one-out approach is well-documented {Lachenbruch

and Mickey, 1968, Efron, 19821. While leaving-one-out is a preferred technique, with large samples

it may be computationally expensive. However as the sample size grows, traditional train and test

methods improve their accuracy in estimating error [Kanal and Chandrasekaran, 1971].

The leaving-one-out error technique is a special case of the general class of cross validation error

estimation methods [St ane, 1974]. In k-fold c. ss validation, the cases are randomly divided into k

mutually exclusive test partitions of apprc:imately equal size. The cases not found in each test

partition are independently used for training, and the resulting classifier is tested on the

corresponding test partition. The average error rates over all k partitions is the cross-validated

error rate. The CART procedure was extensively tested with varying numbers of partitions and

10-fold cross validation seemed to be adequate and accurate, particularly for large samples where

leaving-one-out is computationally expensive [Brciman, Friedman, O1,,hen, and Stone, 19A4: 21 For

small samples, bootstrapping, a method for ream.pling with replacement, has shown some

promise as a low variance estimator for classifiers [Efron, 1983, Jain, Dubes, and Chen,

1987, Crawford, 19881. This is an area of active research in applied statistics.

Figure 5-1 compares the techniques of error estimation for a sample of n cases. The estimated

error rate is the average of the error rates over the number of iterations. While these error

estimation techniques were known and published in the 1960s and early 1970s, the increase in

computational speeds of computers, makes them much more viable today for larger samples and

more complex classification techniques [Steen, 19881.

Holdout Random Resampling Leaving-One-Out 10-fold CV

Training cases j j n-I 10%

Testing cases n-j n-j 1 90%

Iterations I B<<n n 10

Figure 5-1: Comparison of Techniques for Estimating Error Rates

23Empirical results also support the stratification of cases in the train and test sets to approximate the percentage
(prevalence) of each class in the overall sample.
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Besides improved error estimates, there are . number of significant advantages to resampling.
The goal of separating a sample of cases into a training set and testing set is to help design a

classifier with a minimum error rate. With a single train and test partition, too few cases in the

training group can lead to the design of a poor classifier, while too few test cases can lead to

erroneous error estimates. Leaving-One-Out, and to a lesser extent random resampling, allow for

accurate estimates of error rates while training on most cases. For purposes of comparison of

classifiers and methods, resampling provides an added advantage. Using the same data,
researchers can readily duplicate analysis conditions and compare published error estimates with
new results. Using only a single random train and test partition introduces the possibility of

variability of partitions to explain the divergence from a published result.

While error rates on test cases should be used to estimate the overall error rate for competing

classifiers and methods, the best classifier design uses all cases in the sample set [Kanal and

Chandrasekaran, 1971]. Resampling techniques provide better estimates of the error rates than a
single train and test partition of the sample set [Efron, 1982].

5.2. Resampling with PVM

Because PVM searches for a single rule of a fixed length, the prcecdure is particularly amenable

to resampling techniques. Resampling is not limited to error estimation and can be used to

estirnate any population parameter [Efron, 19821. PV\I can be used in conjunction with

resampling to estimate the expression length having the minimum expected error rate. The PV\1

induction procedure described in Section 4 does not directly indicate the specific ru-e length that

yields the best performance. While increasing the length will never decrease performance on the
training cases, performance on test cases may decrease. ThLls after a certain length, estimated error

rates may increase, due to overspecialization of the rule. Leaving-One-Out and random

resampling techniques can be used to provide estimates of the err(-- rates for a specific expression
length. In addition, these techniques can help perform a sensitivity analysis on competing

expressions. Two estimating techniques are described: leaving-one-out and random resampling.

5.2.1. Leaving-One-Out

PVM uses leaving-one-out in the following manner:

" For each expression length i, let Ji be the estimated error rate by leaving-one-out.

Choose length k, such that Jk is minimum, i.e. choose the len.igth that has the minimum
expected error rate. Choose the best expression of length k for all n cases in the sample
set.

" Alternatively, let k be the length of the rule with the minimum error rate. The
leave-one-out procedure will generate n classifiers, where n is the sample size (total
number of cases). Choose the rule that repeats the most times, i.e. the modal rule. This
corresponds to a form of sensitivity analysis. Since only a single case is left out in each
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cycle, the pattern that is most stable and consistent with the estimated error rate is
selected.

5.2.2. Random Resampling

When the data set is large, or the length of the expression is relatively long, leaving-one-out may

be computationally too expensive. PVNI uses random resampling or 10-fold cross validation in the

following manner:

* For each expression length i, let RS i be the estimated error rate by random resampling.
Choose length k, such that RSk is minimum, i.e. choose the length that has the
minimum expected error rate. Select the best expression of length k for all n cases in
the sample set.

* Alternatively, let k be the length of the rule with the minimum error rate. For each of
the B test samples, generate the best rule of length k or less. If a rule frequently repeats,
i.e. the mode is relatively large, choose the modal rule. If a pattern of variables and
operators frequently repeats, but the constants vary (e.g. X> ? & Y< ?), apply the
induction method to all n cases. However, limit the process to the same variables and
logical operators, adjusting only the constants.

6. Empirical Results

Because of the underlying empirical nature of the problem, by examiing hundreds o

possibilities, the program should be able to find better logical expressions than the human experts

when the samples are representative. This is particularly true when the human experimenter is

examining new tests or performing an original experiment.

In the previous sections, the PVM procedure for rule induction was described. In the following

sections, we will explore a number of remaining issues related to the performance of this

procedure. Several data sets for which published studies are available were analyzed. The analysis

of these data sets should help address the following questions:

" How close is the PVM solution to the optimal solution for the underlying model of a
production rule formed by conjunction or disjunction of variables with constant
cutoffs?

* How competitive is the rule-based model to other models, such as traditional statistical

models?

" How competitive is PVM with other machine learning procedures?
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6.1. Optimality and Model Adequacy

6.1.1. Production Rule Optimality

Several years after the appendicitis data used in our examples were reported in the medical

literature, we re-analyzed the data. The samples consisted of 106 patients and 8 diagnostic tests.

Because only 21 patients were normal, it is possible to construct an exhaustive procedure. In

original study, the experimenters were interested in maximizing accuracy, subject to the constraint

of 100% sensitivity. Failure to treat was much less desirable than treating too many patients. In
their paper, they cited a logical expression consisting of the disjunction of 3 diagnostic tests with
positive predictive value of 89%. Using the heuristic procedure, the following results can be

reported:

" A superior logical expression composed of only 2 tests can be cited. This test has
positive predictive value of 91%. The analysis takes 3 minutes of cpu time on a VAX
785.

" Using exhaustive search, the optimal expression of length 3 or less is identical to the
one found by the heuristic procedure. The exhaustive search took 10 hours of cpu time
on a VAX 785. The result reported in the literature was WBC>10500 OR MBAP>1l% OR
CRP>1.2. _he optimal solution is WBC>8700 OR CRP>l.8, Figure 6-1 compares the
results for these two rules.2 4

Iginal Rule New Rule

Number of tests 3 2

Sensitivity 1.000 1.000

Spccificity 0.474 0.579

Predictive value (+) 0.895 0.914

Predictive value (-) 1.000 1.000

Accuracy 0.904 0.923

Figure 6-1: Comparison of Performance of Rules

Figure 6-2 compares the apparent error rate for this rule, ErrApp, and the leaving-one-out error

rate estimate, Errcv.

24
Both rules do not classify 2 cases because of missing data.
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ErrApp  Error

Sensitivity 1.000 1.000

Specificity 0.579 0.526

Predictive value (+) 0.914 0.904

Predictive value (-) 1.000 1.000

Accuracy 0.923 0.913

Figure 6-2: Apparent and Leaving-One-Out Error
Estimates for the Appendicitis Study

6.1.2. Comparative Analysis for Normally Distributed Data

The iris data was used by Fisher in his derivation of the linear discriminant function [Fisher,

19361, and it still is the standard discrirninant analysis example used in most current statistical

routines such as SAS or IMSL. Linear or quadratic discriminants under assumptions of normality

perform extremely well on this data set. Three classes of iris are discriminated using 4 continuous

features. The data sets consists of 150 cases, 50 for each class. Figure 6-3 summarizes the results for

the ruled-based solution and several statistical methods. The optimal rules of size two were found

by exhaustive search. These rules are quite simple and fully ccmpetitive with the other classifiers.
Petal length < 3 perfectly separates Iris Setosa from the other classes and Petal length > 5 OR Petal
.. Ith > I.7 separates Iris Virginica from the other classes vith 3 errors. The PVNI proccdu.:-o,

directly finds two rules for Iris Virginica that have one more error than the optimal solution. By
re-applying PVM to cases that did not satisfy oae of the initially derived rules, the resultant ORed

rule is equivalent to the optimal rule.25

Method ErrApp Errc.

Linear .02 .02

Quadratic .02 .027

Nearest Neighbor .04 .04

Optimal Rule .02 .02

PVM direct .027 .04

PVM indirect .02 .02

Figure 6-3: Comparative Performance on Fisher's Iris Data

We see that even in the classic normal case, the rule based approach does well, and PVM finds
an excellent expression. The CART work showed that decision trees perform extremely well
relatively to competitive statistical classifiers [Breiman, Friedman, Olshen, and Stone, 19841.

25The rule is in the form of F3>5.1 OR r-4>1 .8 OR F3>4.9 OR F4>1.6.
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Because production rules are related to decision trees, we can expect that rule-based solutions

should do well. In the next sections, we turn our attention to comparisons with alternative machine

learning methods.

6.2. Comparison with Alternative Machine Learning Methods

6.2.1. Alternative Rule Induction Methods

A data set for evaluating the prognosis of breast cancer recurrence was analyzed by Michalski's

AQ15 rule induction program and reported in [Michalski, Mozetic, Hong, and Lavrac, 19861. There

are 286 samples, 2 decision classes (recurrence of cancer or nonrecurrence) and 9 tests. They

reported a 64% accuracy rate for expert physicians, and a 68% rate for AQ15, and a 72% rate for ti"e

pruned tree procedure of ASSISTANT [Kononenko, Bratko, and Roskar, 1986], a descendant of
ID3.26 The authors derived the accuracy rates by randomly resampling 4 times using a 70% train

and a 30% test partition.

Because the authors randomly resampled, the experimental conditionscan be replicated. Figure
6-4 is a summary of performance results (on the test cases). For length 2, the same expression,

lnc'cd Nocdes>O & Degrec=3

was selected by PV\1 on each of four 70"!r training samples, with an avcrage accuracy of 77% on

the test samples.2 7 For these data, it is feasible to attempt to derive more accurate error estimates

than can be found by randomly resampling four times on a 70% train, 30% test partition of the data

set. By leaving-one-out the complete data set for rule length 2 and 3, one can see that the accuracy

peaks at length 2 (.773 vs .. 769 for length 3), and the same expression repeats itself each of the 286

times. Thus the modal rule is the only expression that is generated.

Method Variables Rules Error Rate

AQI5 7 2 32%

PVM 2 1 23%

Figure 6-4: Comparative Summary for AQ15 and PVM on Breast Cancer Data

26 The prevalence of the larger class is 70%.

27Using the same size partition, 20 additional trials were performed. The rosultant error estimate was 76% on the test
cases, and this rule appeared 16 times.
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6.2.2. Alternative Decision Tree Induction Methods

Quinlan briefly reported on results of his analysis of hypothyroid data in [Quinlan, 1987b], and

in greatf'r detail in [Quinlan, 1987a]. The data consists of 3772 thyroid cases, representing almost

all thvroia tests done at the Garvan Institute during 1985. Four hypotheses are considered, 3 types

of hypothyroid disease (7.6% of the samples) and nonhypothyr-:dism. One of the classes is

represented by only one case. Over 10% of the lab tests were unavailable, but all cases were

classified. In the original study, a single random train and test partition was used: 3143 cases for

training and 629 cases for testing. In some instances, only 2514 cases were used for training. 28

Quinlan's C4 program produced decision trees, and he used pruning routines to produce a small
set of production rules that performed better (than the original tree) on the test cases [Quinlan,

1987a1. In the published study we are given a set of two induced rules. 29

The question we address is whether there are better rules that can be induced from the 3772

cases. A number of factors, which taken together, make a comparative analysis between the

published results and PVM's results seem difficult. These include the use of a single random

partition of test cases, the low prevalence of 7.6% for hypothyroidism, and the excellent very low

error rates achieved by Quinlan's C4 program. However, a new analysis is quite feasible because
3428 new cases for the year 1986 are also available. Without training on them, the 3428 new cases

can provide objective verification as to whether improved results have been achieved.

Figure 6-5 summarizes C4's published results and PVN,'s on all 3772 cases from the year 19S5

and on the 3428 new cases from 1986. Only the cases from 1985 were used for rule induction. The

cases from 1986 are used solely for verification of the results. Because of the large number of cases

and high accuracy levels, the number of errors is cited instead of error rates.

Method Variables Rules Errors (1985) Errors (1986)

C4 pruned rules single holdout 8 2 31 43

PVM random resampling 8 2 17 30

Figure 6-5: Comparative Summary for C4 and PVM on t-ypothyroid Data

PVM's performance was achieved using the random resampling procedure described in Section

5.2.2. The leaving-one-out procedure is computationally too expensive for this size data set. While

standard procedure would involve using 3143 cases training cases, we used only 2514 training

28Quinlan performed experiments to examine whether it is advantageous to have a separate set of cases that are used

during training to guide the induction procedure. A second set of 629 cases were drawn from the 3143 training cases for this
purpose, leaving 2514 training cases.

21)A third rule cited for nonhypothyroid is equivalent to the absence of either of the two rules for the specified diseases.
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cases and 629 test cases for consistency with all of Quinlan's pruning experiments. Ten randomly
drawn samples of train and test cases were drawn for each of the two diagnoses and the average
number of errors (on the 629 test cases) for each length is given in Figure 6-6. Lengths beyond 6
were not considered. A length of zero represents the number of errors for no rule, i.e. the
prevalence.

For the primary hypothyroid diagnosis the minimum error length is ' and the modal rule is
TSH>6.1 & FTI <65. This is also the rule that PVM induces for all 3772 cases. The characteristics of
the random resampling analysis for the primary diagnosis are listed in Figure 6-7.

Class length 0 1 2 3 4 5 6

Primary 16 8.0 2.9 3.0 3.4 3.3 3.4

Compensated 32 28.1 17.3 17.0 2.8 2.2 1.9

Figure 6-6: Estimated (average) Errors for Hypothyroid Diagnoses

For the compensated hypothyroid diagnosis, the minimum error length is 6, and the modal rule
is

TSH>6 & TF4<149 & On Thviroxin=falsc & (FTI>c.4 or unknown) & T"['4>50 & Surgcry=Z'Ic.

is also the rule that PVM induces for all 3772 cases. A shorter rule also ,v.elds good results. If
the rules are restricted to length 4 or less, the results are 24 errors for the year 1985 cases and 3o

errors on the year 1986 cases.)0

PVM was originally designed to find the best combinations of medical lab tests. A typical
application of this type would have a few hundred cases and relatively few unknown test results.
The PVM procedure eliminates from consideration tests not having at least 10% sensitivity or
specificity, because these are not considered good tests for a diagnostic class. We also prefer not to
classify cases when the induced rules cannot make a decision because of missing data.

As presented, the original hypothyroid data analysis is somewhat atypical of an expected PVM
application. The sample sizes are quite large, and most classes have a low prevalence. While the
PVM procedure was not modified for this application, PVM was applied in two stages. This was
also necessary for computational reasons. Lengths beyond 3, were calculated in two parts: (a) the
best rule cf ,,igth 3 with 90% sensitivity, and the continuation, (b) the best rule up to an additional
length 3 for cases satisfying rule (a). In a low prevalence environment, the two part application is
helpful in the selection and filtering of useful tests and in the classification of unknowns. Tests that

30A more direct comparison with the with the original C4 experiments can be made when each trial is considered a single
holdout trial, and the minimum error rule on 629 test cases is selected. None of the 10 PVM runs had more than 26 errors on
the cases from 1985 or 39 errors on the cases from 1986, and the average was 21.5 errors for year 1985 and 33.8 for 1986.
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Attribute Value

Number of runs 10

Training sample size 2514

Test sample size 629

Minimum error length 2

Modal rule TSH>6.1 & FTI<65

Rule mode j=2514 5

Modal variables TSH>? & FTI<?

Variables only mode j=2514 [ 10

Figure 6-7: Summary of Analysis of Primary Hypothyroid Diagnosis

have less than 10% sensitivity for all cases are not used in finding rule (a). These same unused tests
may have greater than 10% sensitivity for cases satisfying rule (a) and may be used in finding rule

(b) While some class prevalences may be low over all cases, the prevalence for classes satisfying
rule (a) may be high. This may change the classification of cases that satisfy rule (a) but are
urknown for the continuation, i.e. rule (b). PVM does not induce rules that e\plicitly state that a

test must be unknown to reach a conclusion. However, for the rule induced for compensated
hypothyroidism, FTI is the only test that has unknown values in the data set. The FT component
of the rule is induced in the second stage, when the odds have already shifted to compensated

hypothyroidism.

The same 3772 cases from 1985 were used in a separate study of rule induction for

hyperthyroidism [Quinlan, 1987c]: 2800 cases for training and 972 cases for testing. There are

sufficient cases to attempt to diagnose 3 hyperthyroid conditions. Again we ask the question
whether better rules can be induced from the 3772 cases than those cited in [Quinlan, 1987c].

Using a 2100 case training set and 700 case test set, the error rates (on the 700 test cases) for each
length is summarized in Figure 6-8.

Class length 0 1 2 3 1 4 5 6

Hyperthyroid 14 13.2 7.9 4.6 2.8 3.1 3.8

T3 toxic 2 13.7 3.2 2.6 2.2 2.2 2.2

Toxic goiter 2 7.4 2.2 1.2 1.4 1.3 1.3

Figure 6-8: Eshmated (average) Errors for I lyperthyroid Diagnoses

Two sets of rules are cited in [Quinlan, 1987c]: the rules implied by a single decision tree and a
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Method Variables Rules Errors (1985) Errors(1986)

C4 pruned tree single holdout 13 3 41 54

C4 pruned rules single holdout 38 7 28 48

PVM random resampling 7 2 31 46

Figure 6-9: Comparative Summary for C4 and PVM on Hyperthyro .. 'a

collection of decision trees. Their performance and that of PVM using 10 randomly drawn samples
for each diagnosis is given in Figure 6-9.3 1Interestingly, there are insufficient data for inducing a
rule for T3 toxic, because the expected error rate is greater than the prevalence. The rule found by
PVM for hyperthyroidism is

FTI>155 & TT4>149 & On Thyroxin=false & (TSH<0.3 or unknown)

and the rule found for toxic goiter 32 is Goiter & T3>2.S & FTI< 153.

7. Discussion

The PVM procedure was onginally developed for laboratory medicne applications \,es_.
Ga'en, and Tadepalli, 19871. It was intended to help researchers rind combination, of numer:ic',
tes that have greater predictive value than single tests. P\,I assumes that a sz t'e ,hort rn:e ex:
to classify a hypothesis. It does not expect perfect classification, and it can tradeoff false positive vs.
false negative error rates.

Because relatively few tests are expected to be analyzed, an approximation to exhaustive

enumeration was considered. For several hundred (varying) cases, exhaustive enumeration is not
feasible, but experimental results support the contention that the PVM procedure will yield
excellent, sometimes opti-nal results. In two studies where the optimal results for rules of a fixed
length can be determined, PVM was able to find an optimal or near-optimal solution. Rule-based

solutions appear to be quite competitive with alternative statistical procedures, with the advantage

of simplicity and clarity of presentation. In its current implementation, PVM handles up to 18 tests
at a time; filtering procedures and multi-stage analysis can be employed to reduce the number of

tests to 18 at each stage.

In this paper, we re-analyzed data that had been analyzed using prominent machine learning

311f each trial is considered a single holdout trial, and the minimum error rule on 700 test cases is selected, then none of
the 10 runs had more than 38 errors on the cases from 1985 or 53 errors on the cases from 1986, and the average was 33.4
errors for year 1985 and 46.1 for 1986. Only one of the ten trials had more than 46 errors on the cases from 1qS6.

32This is the result for length 3 with 90% sensitivity.
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techniques. We showed that superior rules could be induced from these data sets. In the case of
Michalski's cancer data, a simple two variable rule produces better results than the more complex
rules cited in the literature. While Quinlan's original data analysis produced excellent results, we

showed that somewhat better rules can be induced than those cited in the original studies.

As is used in the CART procedure, resampling techniques are employed by PVM to estimate

error rates for induced production rules. These techniques can be time-consuming, but can lead to
better induction results. Because PVNI induces rules for a fixed, relatively short length, resampling
procedures are a natural extension of the basic method. The major advantage is that error estimates
can be derived, while essentially the complete data sample may be used for classifier design.

PVM is not always superior to other empirical rule or tree induction procedures. Unlike the
alternative methods, PVM in practice is limited to the induction of single short rules. However, if a
good solution exists in the forrr. of a single short rule, PVM should have an advantage. Unlike
incremental empirical induction procedurps that select one test at a time, PVM examines

combinations of tests with varying constants. There are many applications, such as when testing is
expensive, where a short rule is highly desirable.

Researchers in machine learning have noted that relatively small pruned rules often yield better
re,,ults than more complex sets of induced rules ,Q:ir:an, IOS,-b, Michalski, Mozetic, Hon., and
Lav.rac, IL),]. The number and s,:ze o r',cs t:"at can le efcctivcv ::ltted from evL n large da:a
sCts :s often srprlgv ,mall. The ofmber o, rn> in ma~v nr:2e-based c\pert systems far

e\ceeds those found in these machine lcarn..lg appca:os.. However, the rules in an expert
system knowledge base are based on current known expertise. Induction procedures offer the
potential to learn rules that are are currently unknown. Clearly, humans are not competitive in
this form of analysis. Using strictly empirical data, it is unlikely that a hunan can find a better rale
than the computer. While the same argument could be made for a purely statistical analysis,

decision rules are more consistent with human decision-making. With improved techniques and
faster computers, we can expect to see greater use of induction techniques to help discover new
decision rules and to verify and refine the quality of current rules acquired from experts.

In terms of knowledge base acquisition, this approach can prove valuable in both acquiring new
knowledge, refining existing knowledge [Wilkins and Buchanan, 19S6, Ginsberg, Weiss, and

Politakis, 19881, and verifying correctness of old knowledge. Because a knowledge base of rules
summarizes much more experiential knowledge than is usually covered by a data base of cases, in
many instances this approach can be thought of as supplementary to the knowledge engineering
approach to knowledge acquisition in rule-based systems.
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