An in situ Surface Fourier Transform Study of Complexes of Lithium, Magnesium Potassium, and Lanthanum Ferrocyanide at Platinum and Gold Electrodes

by

D.J. Blackwood and S. Pons

Prepared for publication in J. Electroanal. Chem.

Department of Chemistry
University of Utah
Salt Lake City, UT 84112

July 15, 1988

Reproduction in whole, or in part, is permitted for any purpose of the United States Government
NAME OF MONITORING ORGANIZATION

Office of Naval Research

NAME OF FUNDING/SPONSORING ORGANIZATION

Chemistry Program, Code 1113
800 N. Quincy Street
Arlington, VA 22217

ORIGINATING Sponsor/Agency Report Number

N00014-83-K-0470-P00003

TITLE OF REPORT

An In Situ Surface Fourier Transform Study of Complexes of Lithium, Magnesium Potassium, and Lanthanum Ferrocyanide at Platinum and Gold Electrodes

NAME OF PERFORMING ORGANIZATION

University of Utah

ADDRESS

Department of Chemistry
Henry Eyring Building
Salt Lake City, UT 84112

NAME OF RESPONSIBLE INDIVIDUAL

Stanley Pons

ABSTRACT

Attached.

SUBJECT TERMS

infrared spectroelectrochemistry, platinum
Short communication

AN IN SITU SURFACE FOURIER TRANSFORM INFRARED STUDY OF COMPLEXES OF LITHIUM, MAGNESIUM, POTASSIUM AND LANTHANUM FERROCYANIDE AT PLATINUM AND GOLD ELECTRODES

DANIEL J. BLACKWOOD and STANLEY PONS *

Department of Chemistry, University of Utah, Salt Lake City, UT 84112 (U.S.A.)

(Received 6th October 1987; in revised form 5th December 1987)

INTRODUCTION

The Fe(CN)₄³⁻/²⁻ redox couple has been the subject of a great deal of research [1–9], with special attention being paid to its non-ideal heterogeneous charge transfer mechanism. Peter et al. [5] have shown that the rate of electron transfer is first order in concentration of the alkali metal cation and increases in the order Li⁺ < Na⁺ < K⁺ < Cs⁺. This has led to the proposition of the existence of an activated complex formed between the cation and the complex anion which is already paired to at least one other cation. A three step mechanism for the electron transfer event has then been suggested [7]:

\[
M_nFe(II)(CN)_6^{(4-n)^+} + M⁺ \rightleftharpoons [M_{n-1}Fe(II)(CN)_6^{(3-n)^+}]^* \\
[M_{n-1}Fe(II)(CN)_6^{(3-n)^+}]^* \rightleftharpoons [M_{n-1}Fe(III)(CN)_6^{(2-n)^+}]^* + e^- \\
[M_{n-1}Fe(III)(CN)_6^{(2-n)^+}]^* \rightleftharpoons M_nFe(III)(CN)_6^{(n^-)} + M⁺
\]

If this mechanism is correct, one would expect that the infrared spectra of the ferrocyanide and ferricyanide species will change as the cation involved is varied. This has indeed been observed for the case of adsorbed hexacyanoferrate species at electrode surfaces and solution cations [1]; the result has been treated theoretically [2]. Weak interactions, such as those between totally solvated cations and anions generally do not give rise to vibrational changes in one ion when the counterion is changed. It is the purpose of this paper to provide direct infrared spectroelectrochemical data concerning the nature of the \(M_nFe(x)(CN)_6^{(x-n)^-}\) complexes.

* To whom correspondence should be addressed.
EXPERIMENTAL

The working electrode was either a platinum or gold disk (1 cm diameter), which had been polished to a mirror finish using progressively smaller diameters of alumina down to 0.05 μm. The disk was mounted on the end of a glass syringe barrel designed to fit the infrared cell. The cell construction was of the thin layer type and has been described previously [10].

All reagents were of Anar grade quality and all solutions were prepared using triply distilled water and deoxygenated with argon. The glassware was thoroughly cleaned by soaking in a HNO₃ + H₂SO₄ solution, followed by rinsing with triply distilled water and finally steamed (triply distilled water) for 30 min. The working electrode was cleaned, after polishing, by cycling between -0.2 V and +0.8 V vs. SCE, at 50 mV s⁻¹ for 15 min in 0.5 mol dm⁻³ KNO₃ 5A platinum wire quasi-reference electrode was used throughout these experiments. The spectrometer employed was a vacuum bench Brucker-IBM model IR/98 FTIR on which subtractively normalized interfacial Fourier transform infrared spectroscopy (SNIFTIRS [9]) could be performed. In SNIFTIRS difference spectra, the data are displayed so that bands extending to positive (upwards) values of relative reflectance are due to species at the base reference potential ("reactants" in the unperturbed system), while negative bands denote species formed when the potential is stepped to a new value (the "products" of the electrochemical reaction).

RESULTS AND DISCUSSION

We point out first that all spectra recorded in this work are solution spectra; no attempt was made to record the spectra of adsorbed species at the interface. Perturbations in the electrode potential were for the purpose of changing the concentrations (by migration) of the bulk ferro- and ferricyanides in the relatively (to surface spectral techniques) thick layer of solution between the electrode and the cell window.

The pH dependence of the CN stretching region of the vibrational spectra of the ferri-ferrocyanide species was determined first. In neutral solutions ferrocyanide and ferricyanide were observed to absorb at 2040 cm⁻¹ and 2116 cm⁻¹ respectively as reported previously [7] (Fig. 1).

The addition of 0.01 mol dm⁻³ HClO₄ to a solution of 0.01 mol dm⁻³ K₄Fe(CN)₆·3 H₂O and K₃Fe(CN)₆ resulted in the splitting of the ferrocyanide band into the original 2040 cm⁻¹ band and a new feature at 2054 cm⁻¹ (Fig. 2). This new band is characteristic of a protonated ferrocyanide species, the characteristics of which have been reported previously [10]:

\[
\text{Fe(CN)}_6^{4-} + \text{H}^+ \rightarrow \text{HFe(CN)}_6^{5-} \quad \text{pK}_a = 4.3
\]

On increasing the HClO₄ concentration to 0.1 mol dm⁻³, the 2040 cm⁻¹ band disappears and is replaced by a band at 2067 cm⁻¹ (Fig. 3). At the same time the
Fig. 1. SNIFTIRS spectra for a platinum electrode in contact with 0.01 mol dm$^{-3}$ K$_4$Fe(CN)$_6$.3 H$_2$O, 0.01 mol dm$^{-3}$ K$_3$Fe(CN)$_6$, 0.5 mol dm$^{-3}$ KNO$_3$. Reference potential = 0.0 mV, sample potential = +180 mV vs. Pt wire.

Fig. 2. As Fig. 1, with the addition of 0.01 mol dm$^{-3}$ HClO$_4$ to the solution.

Fig. 3. As Fig. 1, with the addition of 0.1 mol dm$^{-3}$ HClO$_4$ to the solution.
color of the solution was observed to change to green. This new band is assigned to the diprotonated ferrocyanide species [10]:

\[
\text{HFe(CN)}_6^{3-} \rightleftharpoons \text{H}_2\text{Fe(CN)}_6^{2-} \quad \text{pK}_a = 3.0
\]

Next, the dependence of the vibrational spectra of the ferrocyanide species on the cation type was investigated. The experiment was performed by adding the various cations to a neutral solution containing 0.01 mol dm\(^{-3}\) K\(_4\)Fe(CN)\(_6\) \cdot 3 H\(_2\)O and 0.01 mol dm\(^{-3}\) K\(_3\)Fe(CN)\(_6\) and recording the reflectance infrared spectra at various potentials. It was found that the addition of 0.5 mol dm\(^{-3}\) Li\(^+\) had no detectable effect on the spectra, whereas 0.2 mol dm\(^{-3}\) Mg\(^{2+}\) shifted the ferrocyanide absorption band by 2 cm\(^{-1}\) to 2038 cm\(^{-1}\). A more dramatic change, however, was observed on the addition of 0.5 mol dm\(^{-3}\) La\(^{3+}\). This cation caused the solution to turn to a fluorescent yellow, while simultaneously precipitating a pale yellow compound. The CN stretch of the ferrocyanide species was now found to absorb at 2064 cm\(^{-1}\), while the ferricyanide species CN stretch mode remained unchanged at 2116 cm\(^{-1}\) (Fig. 4).

In fact, the ferricyanide species was found to absorb always at 2116 cm\(^{-1}\) regardless of the type or concentration of cation presents, suggesting that it exists simply as octahedral Fe(CN)\(_6^{3-}\). On the other hand, the absorption of infrared radiation by the ferrocyanide species is shown to be quite dependent on both pH and the nature of the cations in the solution. This suggests that the ferrocyanide species exists as a species which is complexed to at least one cation. Although, as only one infrared active band was observed for each species the average symmetry of the complex must still be octahedral, suggesting that the cation is labile, being entropically coordinated through all six nitrogen atoms.

Evidence for the activated complexes has been limited to some observations of transient and rather weak bands at high initial concentrations of the reactants.
Table I

<table>
<thead>
<tr>
<th>Complex</th>
<th>Wavenumber \tilde{v}/cm$^{-1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fe(III)(CN)$_6^{3-}$</td>
<td>2116</td>
</tr>
<tr>
<td>K$_x$Fe(II)(CN)$_6^{2-}$</td>
<td>2040</td>
</tr>
<tr>
<td>K$_x$HFe(II)(CN)$_6^{2-}$</td>
<td>2054</td>
</tr>
<tr>
<td>K$_x$H$_2$Fe(II)(CN)$_6^{2-}$</td>
<td>2067</td>
</tr>
<tr>
<td>K$_x$Li$_2$Fe(II)(CN)$_6^{2-}$</td>
<td>2054</td>
</tr>
<tr>
<td>K$_x$Mg$_2$Fe(II)(CN)$_6^{2-}$</td>
<td>2067</td>
</tr>
<tr>
<td>K$_x$La$_2$Fe(II)(CN)$_6^{2-}$</td>
<td>2067</td>
</tr>
</tbody>
</table>

Efforts at low temperatures are continuing in an effort to isolate any activated complex that may be formed in the reaction. A likely mechanism is therefore:

$$\text{M}_x\text{Fe(II)}(\text{CN})_6^{(4-n)^-} + \text{M}^+ \rightarrow \frac{k_1}{k_2} \left[\text{M}_{x+1}\text{Fe(II)}(\text{CN})_6^{(3-n)^-} \right]^{n^-}$$

$$\left[\text{M}_{x+1}\text{Fe(III)}(\text{CN})_6^{(2-n)^-} \right] = \frac{k_5}{k_4} \text{Fe(III)}(\text{CN})_6^{2-} + (n + 1) \text{M}^+$$

with $k_1 \ll k_2$ and $k_4 \ll k_5$. Table I lists the various complex species and the observed CN stretching frequencies.

ACKNOWLEDGEMENT

We thank the Office of Naval Research for support of this work.

REFERENCES

<table>
<thead>
<tr>
<th>No. Copies</th>
<th>No. Copies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Office of Naval Research</td>
<td>2</td>
</tr>
<tr>
<td>Attn: Code 1113</td>
<td>Dr. David Young</td>
</tr>
<tr>
<td>800 N. Quincy Street</td>
<td>Code 334</td>
</tr>
<tr>
<td>Arlington, Virginia 22217-5000</td>
<td>NORDA</td>
</tr>
<tr>
<td>Dr. Bernard Douda</td>
<td>1</td>
</tr>
<tr>
<td>Naval Weapons Support Center</td>
<td>Naval Weapons Center</td>
</tr>
<tr>
<td>Code 50C</td>
<td>Attn: Dr. Ron Atkins</td>
</tr>
<tr>
<td>Crane, Indiana 47522-5050</td>
<td>Chemistry Division</td>
</tr>
<tr>
<td>Naval Civil Engineering Laboratory</td>
<td>1</td>
</tr>
<tr>
<td>Attn: Dr. R. W. Drisko, Code L52</td>
<td>China Lake, California 93555</td>
</tr>
<tr>
<td>Port Hueneme, California 93401</td>
<td>Commandant of the Marine Corps</td>
</tr>
<tr>
<td>Defense Technical Information Center</td>
<td>1</td>
</tr>
<tr>
<td>Building 5, Cameron Station</td>
<td>Code RD-1</td>
</tr>
<tr>
<td>Alexandria, Virginia 22314</td>
<td>Washington, D.C. 20380</td>
</tr>
<tr>
<td>DTNSRDC</td>
<td>1</td>
</tr>
<tr>
<td>Attn: Dr. H. Singerman</td>
<td>U.S. Army Research Office</td>
</tr>
<tr>
<td>Applied Chemistry Division</td>
<td>Attn: CRD-AA-IP</td>
</tr>
<tr>
<td>Annapolis, Maryland 21401</td>
<td>P.O. Box 12211</td>
</tr>
<tr>
<td>Dr. William Tolles</td>
<td>Research Triangle Park, NC 27709</td>
</tr>
<tr>
<td>Superintendent</td>
<td>1</td>
</tr>
<tr>
<td>Chemistry Division, Code 6100</td>
<td>Mr. John Boyle</td>
</tr>
<tr>
<td>Naval Research Laboratory</td>
<td>Materials Branch</td>
</tr>
<tr>
<td>Washington, D.C. 20375-5000</td>
<td>Naval Ship Engineering Center</td>
</tr>
<tr>
<td></td>
<td>Philadelphia, Pennsylvania 19112</td>
</tr>
<tr>
<td></td>
<td>Naval Ocean Systems Center</td>
</tr>
<tr>
<td></td>
<td>Attn: Dr. S. Yamamoto</td>
</tr>
<tr>
<td></td>
<td>Marine Sciences Division</td>
</tr>
<tr>
<td></td>
<td>San Diego, California 91232</td>
</tr>
</tbody>
</table>
ABSTRACTS DISTRIBUTION LIST, SDIO/IST

Dr. Robert A. Osteryoung
Department of Chemistry
State University of New York
Buffalo, NY 14214

Dr. Douglas N. Bennion
Department of Chemical Engineering
Brigham Young University
Provo, UT 84602

Dr. Stanley Pons
Department of Chemistry
University of Utah
Salt Lake City, UT 84112

Dr. H. V. Venkatasetty
Honeywell, Inc.
10701 Lyndale Avenue South
Bloomington, MN 55420

Dr. J. Foos
EIC Labs Inc.
111 Downey St.
Norwood, MA 02062

Dr. Neill Weber
Ceramatec, Inc.
163 West 1700 South
Salt Lake City, UT 84115

Dr. Subhash C. Narang
SRI International
333 Ravenswood Ave.
Menlo Park, CA 94025

Dr. J. Paul Pemsler
Castle Technology Corporation
52 Dragon Ct.
Woburn, MA 01801

Dr. R. David Rauh
EIC Laboratory Inc.
111 Downey Street
Norwood, MA 02062

Dr. Joseph S. Foos
EIC Laboratories, Inc.
111 Downey Street
Norwood, Massachusetts 02062

Dr. Donald M. Schleich
Department of Chemistry
Polytechnic Institute of New York
333 Jay Street
Brooklyn, New York 01

Dr. Stan Szpak
Code 633
Naval Ocean Systems Center
San Diego, CA 92152-5000

Dr. George Blomgren
Battery Products Division
Union Carbide Corporation
25225 Detroit Rd.
Westlake, OH 44145

Dr. Ernest Yeager
Case Center for Electrochemical
Science
Case Western Reserve University
Cleveland, OH 44106

Dr. Mel Miles
Code 3952
Naval Weapons Center
China Lake, CA 93555

Dr. Ashok V. Joshi
Ceramatec, Inc.
2425 South 900 West
Salt Lake City, Utah 84119

Dr. W. Anderson
Department of Electrical &
Computer Engineering
SUNY - Buffalo
Amherst, Massachusetts 14260

Dr. M. L. Gopikanth
Chemtech Systems, Inc.
P.O. Box 1067
Burlington, MA 01803

Dr. H. F. Gibbard
Power Conversion, Inc.
495 Boulevard
Elmwood Park, New Jersey 07407
ABSTRACTS DISTRIBUTION LIST, SDIO/IST

Dr. V. R. Koch
Covalent Associates
52 Dragon Court
Woburn, MA 01801

Dr. Randall B. Olsen
Chronos Research Laboratories, Inc.
4186 Sorrento Valley Blvd.
Suite H
San Diego, CA 92121

Dr. Alan Hooper
Applied Electrochemistry Centre
Harwell Laboratory
Oxfordshire, OX11 ORA UK

Dr. John S. Wilkes
Department of the Air Force
The Frank J. Seiler Research Lab.
United States Air Force Academy
Colorado Springs, CO 80840-6528

Dr. Gary Bullard
Pinnacle Research Institute, Inc.
10432 N. Tantan Avenue
Cupertino, CA 95014

Dr. J. O'M. Bockris
EmenTech, Inc.
Route 5, Box 946
College Station, TX 77840

Dr. Michael Binder
Electrochemical Research Branch
Power Sources Division
U.S. Army Laboratory Command
Fort Monmouth, New Jersey 07703-5000

Professor Martin Fleischmann
Department of Chemistry
University of Southampton
Southampton, Hants, SO9 5NH UK