
FTD-IDCRS) T-0538-88

FOREIGN TECHNOLOGY DIVISION

THE BEHAVIOR OF SHELLS MADE OF COMPOSITES DURING THE DYNAMIC APPLICATION
OF AXIAN COMPRESSION

by

A.S. Vol'mir, L.N. Smetanina

*OCT 06 19880

88 10 ()4O30



FrD- ID(RS)T-0538-88

HUMAN TRANSLATION

FTD-ID(RS)T-0538-88 10 August 1988

MICROFICHE NR: FTD-88-C-000630L

THE BEHAVIOR OF SHELLS MADE OF COMPOSITES
DURING THE DYNAMIC APPLICATION OF AXIAN
COMPRESSION

By: A.S. Vol'mir, L.N. Smetanina

English pages: 5

Source: Stroitel'naya Mekhanika i Raschet

Sooruzheniy, Nr. 4(70), July-August 1970,
pp. 34-37

Country of origin: USSR
Translated by: John A. Miller
Requester: FTD/TQTAV
Approved for public release; Distribution unlimited.

THIS TRANSLATION IS A RENDITION OF THE ORIGI-
NAL FOREIGN TEXT WITHOUT ANY ANALYTICAL OR PREPARED BY:
EDITORIAL COMMENT. STATEMENTS OR THEORIES
ADVOCATED OR IMPLIED ARE THOSE OF THE SOURCE TRANSLATION DIVISION
AND DO NOT NECESSARILY REFLECT THE POSITION FOREIGN TECHNOLOGY DIVISION
OR OPINION OF THE FOREIGN TECHNOLOGY DIVISION. WPAFB, OHIO.

FTD- ID(RS)T-0538-88 Date i0 August 19 88



U. S. BOARD ON GEOGRAPHIC NAMES TRANSLITERATION SYSTEM

Block Italic Transliteration Block Italic Transliteration
Aa A a A, a PP P P R, r

5 5 6 B, b C c C c S, s
BB B. V, v TT Tm T, t

F r r 8 G, g Y y Y y U, u

A 8 D, d ED 0 # F, f
E e E e Ye, ye; E, e* X x X x Kh, kh

M W Zh, zh LA 1 u Ts, ts

3 3 3 s Z, z C q V Ch, ch

H H H U I, i W AU W Sh, sh

a a Y, y 1U X U1 Shch, shch

K K K x K, k b .6

n JI a L,1 bl k/ f Y, y

MM Al M, m b b 6 1

HH HN N, n 33 $ s E, e

0 o 0 0, o HO 10 10 Yu, yu

n n 7 x P, p 2 8 j? a Ya, ya

*je initially, after vowels, and after b, b; e elsewhere.
When written as d in Russian, transliterate as y# or t.
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THE DYNAMIC APPLICATION OF AXIAL COMPRESSION tDist stcial

A. S. Vol'mir (Moscow) and L. N. Smetanina (Voronezh 6

In nonlinear formulation we examine the problem of the dynamic stability
of cylindrical shells made of composites, e.g., glass7reinforced plastic, un-
der dynamic axial compression. We assume as given the law of mutual displace-
ment of the ends of the shell. Using the Bubnov-Galerkin method, the equa-
tions of the nonlinear theory of shells in partial derivatives are reduced to
ordinary differential equations with aperiodic coefficients. The equations
obtained were integrated numerically using a BESM-2M computer for various
loading rates and shell parameters relative to certain brands of glass-rein-
forced plastics. Similar problems for isotropic metal shells have been exam-
ined previously [1, 2]. The case of dynamic application of extern#l pressure
to an orthotropic shell was examined in [1. le. . . t,..

Let us examine the behavior of a closed, round, cylindrical, reinforced-
plastic shell subjected to dynamic axial compression (Fig. 1). We will solve
this problem in the geometrically nonlinear formulation. Let us assume that
the shell is attached by its ends with frames whose points can obtain certain
radial displacements while the frames themselves remain curved. In view of
the fact that the scatter of the experimental values of the critical loads is
most influenced by the initial irregularities in the shape of the shell, let
us study the behavior of shells that have initial camber. Let us use for the
shell made of a composite a model of orthotropic design. We will consider
that the principle directions of rigidity coincide with the generatrix of the
cylinder and the cross-sectional arc. The elastic properties of orthotropic
shells are characterized by moduli El and E2 in directions x and y, by shear
modulus G, and by Poisson coefficients jul and 12 , which correspond to trans-
verse strain along lines y and x. Let us mention the familiar relationship

E1 2 - E2 1 .



Let us select the coordinate system such that its _,_ _ _

Xorigin coincides with a point belonging to the median Z " _

trix, y - along the arc, and z - along the normal to 4
the median surface; let us consider coordinate z as Fig. 1.

positive along the direction to the center of curva-

ture. Let us designate the displacements of some point of the median surface
in these directions as u, v, w. !At us write the equation of motion of an
element of the shell, when the deflections are comparable with the thickness,

in the presence of initial imperfections (when q - 0) [2]:

D, d' (s-) ,2D O(w-w) + D, &(w-we)

A +9 As 62V h 4
dew PePw P o P# I ! O 1 IF Mw

- - -;- 7 WS 2 li;4 --W _T g I (1)

Here w and w0 are the total and initial deflections; I is the specific weight
of the shell material; flexural rigidities in the axial and circular direc-
tions D, 2 - E1, 2 h 3 /12(l -PO;2); the derived rigidity D3 - Djp 2 + 2D;;
the torsional rigidity DG - Gh 3 /12; 0 - the stress function - is introduced

by the formulas

ag0a P0

To determine the stress function * let us use the equation of strain compati-
bility:

6 0 +2 060 PuP IV as Sa.-- sa-0+ a&--- 7. V +  d-ra -) +
+ P _(_,\.' I P(.-ws) (2)

+~ TI

where

.g-IEt.g; S2-I/O-2 1 ,/E,.

We will not take into account the inertial forces corresponding to dis-

placements of u and v in the median surface. Thus, in this solution we re-

frain from studying the propagation of elastic waves.

Let us use the problem solution plan as in (1, 3]. The total deflection

is approximated as follows:

*-- l(*Ifnezsinag+husiez sinSn), (3)

where a - mr/L; P - nlR; m is the number of half-waves along the generatrix;

n is the number of waves around the perimeter of the shell. The expression
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for initial deflection is obtained from (3) by substituting f0 for f.

Let us consider that the shape of the initial wave formation, character-
ized by the parameter 0, is "in resonance" with wave formation of the shell

during strain, and that the only preassigned parameter is the value of f0.
Such an assumption intensifies somewhat the influence of the initial inaccura-

cies.

The boundary conditions for deflection w will be:

V - 0; a2V/ax 2 - 0 when x - 0, L.

Substituting function (3) into the right side of strain compatibility
equation (2), we get the integral of this equation in the form

0- [C,(aU-$ (1+P)+C;1,#] coS2a,+CP(,- o) (1+,M ,c2p,+

+C( l'-o) f.cos4g,+C. (-?) V,=c4 AM + [C., +C;(P-fO) #] X

x sinax sin g + [c@ (,- Po) e3 + C;f,V cos2ax cos2 y+C? (fs- f2) x
x $3cos4ax cos2 +C(p-po) $s cas2ax cos4 /+C, (P-o)sin3azsin~y+

+C 1, ('-o) $#siaa sin 3 y-py/2.

In the expression for 9 we introduce the term py/2, which corresponds

to basic compressive stress p.

Parameters C1 ... C1 0 depend on the values of a, P which characterize
wave formation of the shell.

Let us solve Eq. (1) using the Bubnov-Galerkin method. As a result, we

get equations which connect the deflection parameters with the time-changing

load:

A

+ As.t:,r, + y g-1 (68,C / M. RI, LES ;- 1 (5)

,,I+ A; C K- W + A; (C2'- 4)- C (C - 4) ,*, + B;(C,- 4) Vs+
+ 1 -: 4 ~ C, - s ,- 4) ,0- : €. t . (5a)

In these equations the following dimensionless parameters and designations are

introduced:

Ce--I, lk; I& p--lk - |-unR/sL; ,-o.,hIR.

The values of A, ... A5 and B,' ... B7 ' correspond to parameters , A, which
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characterize the form of wave formation of a shell and the mechanical proper-

ties of the material. Solving the problem in the first approximation, in Eq.

(5) we drop the inertia term and use for parameter 0 the expression that re-
sults from Eqs. (5) and (5a). Relative shortening of the shell along the

generatrix is defined by the formula

S)+ d . (6)
L IOx L O-X J 2 )J

Substituting into (6) the expressions for v, w0 and ', and converting to di-

mensionless parameters, we get

A A
,-pA+ I( -) to/& + 31 (CO-CD t,*/32, A VE . (7)

Henceforth we will consider that the value of e changes in proportion to time
e - c't/L, where c' is the rate of convergence of the ends, in m/s. Let
us turn to dimensionless parameters

A A ASei-c'RILh; t.,e'IR/LAA, =.e(A,. (8)

Dividing Exp. (7) by Al and substituting the obtained dependence, and
also substituting (8) into (7), we get

A I_ (_IL'C~ +'~
S8 +- A A, 32A, A

_( _%)A6,' (t-A4 C, .(C-C.) Ag (C ,-4) -o

A, A, A, 0

where

s, - eW)-2 (i / (LI), t g, I' p.

Equation (9) was integrated by the Runge-Kutta

method using a BESM-2M computer, with the following
A A

starting data: - 0; d /dt - 0 with t - 0. Cal-

culations were performed for shells with initial cam-

her o - 0.001 relative to various brands of rein-
_forced plastics. During the calculation we varied

the shell parameters; the value of was taken as 2,

3.5, and 5; the convergence rate of the ends was tak-
en constant and equal to c' - 3.5 m/s. All curves

I . I A, Awere constructed so that parameter r' -tAI/0.605-

Fig. 2. - e'R/0.605 Lb was taken as the base.
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Figure 2 gives functions L(t') for shells
__ with parameters LIR - 2.2; h/r - 1/250 for various

,.13- K corresponds to the convergence of the ends Au a t

which the upper critical pressure is reached. From
I-15 n-0 the figure it is evident that the rapid increase in

L/R-5 deflections begins earliest at curve 1, for which
E- E2 - i, n - 14, then curve 2 with El - E2 - 2,

L/R.' n - 15, and curve 3 with El - E2 - 5, n - 14. Fig-
ures 3 and 4 give analogous curves for shells with

parameters L/R - 3.5 and 2.2; h/R - 1/250 when El -
to s -X2 - 1. In Fig. 3 (when 1 - ) in the case L/R -

Fig. 3. - 3.5 the curve for which -1.3 deviates earliest
from the abscissa; for the case L/R - 2.2 the curve

n-f "to the left corresponds to n - 14. In Fig. 4 (when
1.5 n .. n - 1) the curve to the left corresponds to n - 7 in

the case L/R - 3.5 and when n - 8 in the case LIR -

- 2.2. Figure 5 shows the dynamic coefficient k. vs.

_.0_ n8 the ratio El - E2 for shells with parameters LIR -

"" /n,- -2.2; hIR . 1/250, n - 2. As can be seen from the
figure, the lift of a shell increases with increasing

ratio El - E2 . With an increase in the parameter n
tR-2 the number of depressions along the peripheral arc

I decreases. With increasing ratio R/h the dynamic co-

efficient increases. Thus, the dynamic effect during
Fig. 4. the axial loading of a cylindrical shell made of a

composite is expressed in the appearance of higher
1Jjfj forms of stability loss and an increase in the criti-

F~i. cal load parameter. With an increase in the degree
- of aisotropy, corresponding to an increase in shell

Srigidity in the longitudinal direction, the dynamic
ig. 5. coefficient increases.
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