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*ye initially, after vowels, and after b, b; e elsewhere.
When written as ¥ in Russian, transliterate as y¥ or &.

Russian

sin
cos
tg
ctg
sec
cosec

RUSSIAN AND ENGLISH TRIGONOMETRIC FUNCTIONS

English

sin
cos
tan
cot
sec
csc

Russian

sh
ch
th
cth
sch
csch

Russian

rot
1g

GRAPHICS DISCLAIMER

English

sinh
cosh
tanh
coth
sech
csch

English

curl
log

Russian

arc sh
arc ch
arc th
arc cth
arc sch
arc csch

Transliteration

R, r

3
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-
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]

3
Kh, kh
Ts, ts
Ch, ch
Sh, sh
Shech,

"

shch

Y, y
!

E, e
Yu, yu
Ya, ya

English

sinh:1
cosh_1
tanh_!
coth_1
sech_!
csch’!

All figures, graphics, tablzs, wquations, etc.
merged into this translation were extracted
from the best quality copv available.
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In nonlinear formulation we examine the problem of the dynamic stability
of cylindrical shells made of composites, e.g., glass/reinforced plastic, un-
der dynamic axial compression. We assume as given the law of mutual displace-
ment of the ends of the shell. Using the Bubnov-Galerkin method, the equa-
tions of the nonlinear theory of shells in partial derivatives are reduced to
ordinary differential equations with aperiodic coefficients. The equations
obtained were integrated numerically using a BESM-2M computer for various
loading rates and shell parameters relative to certain brands of glass-rein-
forced plastics. Similar problems for isotropic metal shells have been exam-
ined previously [1, 2]. The case of dynamic applicat;on‘of external pressure

to an orthotropic shell was examined in [#]. Ezt;;a<u~\‘7'k', ce Tean L

Let us examine the behavior of a closed, round, cylindrical, reinforced-
plastic shell subjected to dynamic axial compression (Fig. 1). We will solve
this problem in the geometrically nonlinear formulation. Let us assume that
the shell is attached by its ends with frames whose points can obtain certain
radial displacements while the frames themselves remain curved. In view of
the fact that the scatter of the experimental values of the critical loads is
most influenced by the initial irregularities in the shape of the shell, let
us study the behavior of shells that have initial camber. Let us use for the
shell made of a composite a model of orthotropic design. We will consider
that the principle directions of rigidity coincide with the generatrix of the
cylinder and the cross-sectional arc. The elastic properties of orthotropic
shells are characterized by moduli E; and E, in directions x and y, by shear
modulus G, and by Poisson coefficients u, and pu,, which correspond to trans-
verse strain along lines y and x. Let us mention the familiar relationship
Eypp = Egp, .
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Let us select the coordinate system such that its
origin coincides with a point belonging to the median
surface. Coordinate x will be read along the genera-
trix, y — along the arc, and z — along the normal to
the median surface; let us consider coordinate z as Fig. 1.
positive along the direction to the center of curva-
ture. Let us designate the displacements of some point of the median surface

in these directions as u, v, w. Let us write the equation of motion of an
element of the shell, when the deflections are comparable with the thickness,
in the presence of initial imperfections (when q = 0) [2]:

l_)_,_ 0'(-—:._)_ 2Dy O (w—umy) +D_, a'(-—-.)=

A ax A ostop A Fw"
Pre B0 I ’_O 9 P P +L Q+i Yy Ftw
= o o oy Oxt dxdy Odxdy R o A g o’ (1)

Here w and w, are the total and initial deflections; v is the specific weight
of the shell material; flexural rigidities in the axial and circular direc-
tions D; , = E1'2h3/12(1 — Bi#y); the derived rigidity D; = D,u, + 2Dg;
the torsional rigidity Dy = Gh3®/12; & — the stress function — 1is introduced
by the formulas

020 _#o__ a0
x h.o y a"'-_ala'.

To determine the stress function & let us use the equation of strain compati-
bility:

N0 -NQ *o P P Pw \?
b G b te o == (e )
+ 2% &_(!_’_L)'_L Sw-wn) (2)
a op \asy) R ax

where

6", - I/E‘.’ H 26.- I/G _2PIIE|.

We will not take into account the inertial forces corresponding to dis-
placements of u and v in the median surface. Thus, in this solution we re-
frain from studying the propagation of elastic waves.

Let us use the problem solution plan as in (1, 3]. The total deflection
is approximated as follows:

@o=f(sinaxsinly + Psin*asxsintly), (3)

where a = mx/L; B8 = n/R; m is the number of half-waves along the generatrix;
n is the number of waves around the perimeter of the shell. The expression
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for initial deflection is obtained from (3) by substituting f, for f.

Let us consider that the shape of the initial wave formation, character-
ized by the parameter ¥, is "in resonance" with wave formation of the shell
during strain, and that the only preassigned parameter is the value of f,.
Such an assumption intensifies somewhat the influence of the initial inaccura-
cies.

The boundary conditions for deflection w will be:
w=0; 32w/8x® = 0 when x = 0, L.

Substituting function (3) into the right side of strain compatibility
equation (2), we get the integral of this equation in the form

@=[C,(P—=A A+ +C 19| cu2ax+Co (P—fD) (1 +¥9) cos2By +
+C (P —f) vembaz +C(P—f) PPeondBy+ [Ch+Cs(P—f) ¥] x
X sinax sinSy + [C. e 3] \p’+C;f,¢] cos2ax cos23y+Cy (P — ) x

X yicosd4ax cos23y+Co (P —f2) ¢* cos2az cosd43y+Cy (P —f3) psin3axsin3y+

+Cu (P —P) vsinazsin33y—pyt/2. (4)

In the expression for & we introduce the term py2/2, which corresponds
to basic compressive stress p.

Parameters C, ... C,, depend on the values of a, B which characterize
wave formation of the shell.

Let us solve Eq. (1) using the Bubnov-Galerkin method. As a result, we
get equations which connect the deflection parameters with the time-changing
load:

Pilm A=)+ AL =D + AV C—D + AP C =1 +
FAY@-D +yg~ @M R (B Y EE) (5)

PINHBIR—W+ B —D Bl =D P+B,—D v+
+BE—W P — B~ P P—B R—L) 9=0. (5a)

In these equations the following dimensionless parameters and designations are
introduced:

Smfo/h; Lomf/h; pom pRIVEE, K EmmuR/AL; ymndh/R.

The values of A, ... Ay and B,’ ... B,’ correspond to parameters £, A, which
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characterize the form of wave formation of a shell and the mechanical proper-
ties of the material. Solving the problem in the first approximation, in Eq.
(5) we drop the inertia term and use for parameter ¥ the expression that re-
sults from Eqs. (5) and (5a). Relative shortening of the shell along the
generatrix is defined by the formula

) L L
L (s (e (29 _, 2O\ 1/0w\e 1 dm, s
L) as 45=— LS[E‘(ar —h 0:')-2-(61) +T\ax)]“" (6)
Substituting into (6) the expressions for w, w, and ¢, and converting to di-
mensionless parameters, we get

=A@ —D /B 4+ I (@ —D Be/32, A=VEIE. )
Henceforth we will consider that the value of e changes in proportion to time

e = c’t/L, where ¢’ 1s the rate of convergence of the ends, in m/s. Let
us turn to dimensionless parameters

e=CIR/Lh; (= tRILAA =¢/Ay. (8)

Dividing Exp. (7) by A; and substituting the obtained dependence, and
also substituting (8) into (7), we get

@ ([a [ AL C i @—3) by
o - (354 - o] - 258
ALCe-3 ¥ AWy AC-—QY

—C=0) - ) A N

}- 0, ¢))
where

Si=RE) TN/ (LIR 2 YVEE P/

Equation (9) was integrated by the Runge-Kutta
msthod using a BESM-2M computer, with th: following
starting data: ¢ = ¢p; df/dt = 0 with ¢t = 0. Cal-
/ culations were performed for shells with initial cam-
2 ber {, = 0.001 relative to various brands of rein-

7 forced plastics. During the calculation we varied

[ the shell parameters; the value of £ was taken as 2,
) 3.5, and 5; the convergence rate of the ends was tak-
L'T en constant and equal to ¢’ = 3.5 m/s. All curves

~

' 1.5 ) were constructed so that parameter t - ?A1/0.605 -
Fig. 2, = ¢’RT/0.605 Lh was taken as the base.
- & -

N J




®

Figure 2 gives functions L(?’) for shells
with parameters L/R = 2.2; h/r = 1/250 for various
ratios E;/E, in the case £ = 2. As is known, 2 -1
corresponds to the convergence of the ends au at

which the upper critical pressure is reached. From
the figure it is evident that the rapid increase in
deflections begins earliest at curve 1, for which
E, = E, =1, n =14, then curve 2 with E; = E, = 2,
n =15, and curve 3 with E;, = E, = 5, n = 14, Fig-
ures 3 and 4 give analogous curves for shells with
parameters L/R = 3.5 and 2.2; h/R = 1/250 vwhen E; =
= E;, =1. In Fig. 3 (when £ = 1) in the case L/R =
= 3.5 the curve for which £ = 1.3 deviates earliest
from the abscissa; for the case L/R = 2.2 the curve
to the left corresponds to n = 14, In Fig. 4 (when
n = 1) the curve to the left corresponds to n = 7 in
the case L/R = 3.5 and when n = 8 in the case L/R =
= 2.2. Figure 5 shows the dynamic coefficient k, vs.
the ratio E; = E, for shells with parameters L/R =
= 2.2; h/R =~ 1/250, n = 2., As can be seen from the
figure, the 1ift of a shell increases with increasing
ratio E; = E,. With an increase in the parameter n
the number of depressions along the peripheral arc
decreases. With increasing ratio R/h the dynamic co-
efficient increases. Thus, the dynamic effect during
the axial loading of a cylindrical shell made of a
composite is expressed in the appearance of higher
forms of stability loss and an increase in the criti-
cal load parameter. With an increase in the degree
of anisotropy, corresponding to an increase in shell

; 3 1 &k, rigidity in the longitudinal direction, the dynsumic
Fig. 5. coefficient increases.
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