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PREFACE

The numerical model investigation of the Howard A. Hanson Reservoir,
reported herein, was conducted at the US Army Engineer Waterways Experiment
Station (WES) at the request of the US Army Engineer District, Seattle,

The investigation was conducted during the period November 1985 to
January 1987 in the Hydraulics Laboratory (HL), WES, under the direction of
Messrs. F. A. Herrmann, Jr., Chief, HL; J. L. Grace, Jr., former Chief, Hy-
draulic Structures Division (HSD); and G. A. Pickering, Chief, HSD; and under
the direct supervision of Dr. R. E. Price, former Acting Chief, Reservoir
Water Quality Branch (RWQB); and Mr. J. P, Holland, Chief, RWQB, This report,
prepared by Mr, M, L, Schneider, RWQB, and Dr. Price with assistance from
Mr. R. C. Berger, RWQB, was reviewed by Messrs. Holland and Pickering, and
edited by Mrs. M. C. Gay, Information Technology Laboratory, WES.

COL Dwayne G. Lee, EN, is the Commander and Director of WES.

Dr. Robert W. Whalin is the Technical Director.
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UNITS OF MEASUREMENT

(metric) units as follows:

Multiply By
acres 4,046,873
acre-feet 1,233.489
cubic feet 0.02831685
inches 2.54
feet 0.3048
miles (US statute) 1.609347
square miles 2.589998

CONVERSION FACTORS, NON-SI TO SI (METRIC)

Non-SI units of measurement used in this report can be converted to SI

To Obtain

square metres
cubic metres
cubic metres
centimetres
metres

kilometres

square kilometres




LT T AR

hent . Lo
R A :
Vi e HANSON DAM
' : L WATERSHED
4 ¥ariag : ) /‘\F AL
Wuchlesnoo! Inshan Paymar ' ‘f ®Nort Fark) A \
Audurn Resecyitue Wells - Py g
P AN ~~\
Ay N EEN 'y R'VEQ/ o . T
A ; P ¥
\ / C \ ;

TACOMA N et AN
Frpchng 1o onstn, u..t“» ,.V._ ‘/“_,\”

\"\ /J"-'\h" -
SCALE 1N MILES \

5 [ S
CTINC T N

HOWARD A. HANSON DAM

H
ol

Figure 1. Location of Howard A, Hanson Reservoir

®
d
4
[ ]l
T
s iemstsssnseti ittt R mead




TEMPERATURE ANALYSIS
HOWARD A, HANSON RESERVOIR, WASHINGTON

Mathematical Model Investigation

PART I: INTRODUCTION

Purpose and Scope of Study

1. The Howard A. Hanson Project was authorized by Congress on 17 May
1950 to provide standard flood protection and minimum flow requirements for
fisheries and other purposes in the Green River, WA. The US Army Engineer
District, Seattle, is presently evaluating a proposed additional water storage
modification to the project involving the raising of the maximum conservation
pool by 40 ft.* Consequently, the present withdrawal structure may be inade-
quate to maintain preproject release temperatures (before the proposed in-
crease in pool level). The purpose of this investigation is to examine the
project release temperatures after the pool has been raised and, if these
temperatures are significantly different from preproject conditioms, provide
the location and number of additional selective withdrawal intakes that will

allow operation of the system to maintain downstream temperature objectives.

Project Description

2., Howard A. Hanson Dam is located 65 miles upstream from the mouth of
the Green River and 35 miles east of the city of Tacoma in western Washington,
as shown in Figure 1. The project drains 221 square miles of protected water-
shed in the Cascade Mountains, The earth- and rock-fill dam reaches a height
of 235 ft above the streambed. The tainter gate controlled spillway is
located in the right abutment of the dam with a maximum discharge capacity of
107,000 cfs at maximum project pool (el 1,220%*), Normal releases are pres-

ently passed through a 19-ft horseshoe~shaped sluiceway controlled by

* A table of factors for converting non-SI units of measurement to metric
(SI) units is found on page 3.
** All elevations (el) cited herein are in feet referred to the National
Geodetic Vertical Datum (NGVD).




regulating tainter gates located at the bottom of the pool. The sluiceway
releases about 22,000 cfs at maximum project pool. Low-flow releases are made
through a 48-in. bypass intake located about 40 ft above the bottom of the
pool. This outlet has a capacity of about 500 cfs at maximum conservation

pool (el 1,141)., The existing outlet tower is shown in Figure 2.

PLAN GATE TOWER
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EL 11650
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Figure 2. Howard A. Hanson outlet works

3. The reservoir operation rule curve is designed to prevent flooding
downstream in the winter months and to augment low flows during the summer and
fall for fishery enharcement. The reservoir is maintained at a depth of about
30 ft during the nonconservation period of the year (from 31 October through
31 March) except during unusually high rainfall conditions. The average
yearly rainfall in the drainage basin is 89 in. with 75 percent of the pre-
cipitation occurring during tlLis nonconservation season. Runoff hydrographs
are characterized by frequent short-duration, sharply peaked events during the
winter months followed by longer duration, smaller peaked hydrographs
associated with snowmelt.

4. Beginning 1 April, the reservoir begins filling to a maximum conser-
vation pool depth of el 1,141, as shown in Figure 3, while retaining water of
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Figure 3. Existing and proposed rule curves

as low a turbidity as possible. Inflowing water impounded by Howard A. Hanson
Reservoir i1s of good quality with low concentrations of dissolved minerals and
nutrients. Turbidity levels in the tailwaters are the only parameter known to
exceed water quality objectives at any time.

5. The reservoir impounds 25,650 acre~ft at full conservation pool with
a surface area of 732 acres. During the summer-fall low-flow period, the pool
is generally drawn down from minimum release requirements consisting of a
110-cfs discharge for fishery and conservation flows plus a 113-cfs discharge
for water supply for the city of Tacoma. The city of Tacoma operates a con-
crete water supply diversion dam approximately 3.5 miles downstream of the
project. No treatment except chlorination 1s generally required of this water
supply for public use, However, during high-flow events, water in the Green
River 1is sometimes too turbid for effective chlorination without dilution. At
these times the city uses water from a well field to dilute the river water
such that the combined water does not exceed 5 Nephelometric Turbidity Units
(NTU's). Once the pool is established, the impoundment becomes thermally
stratified in the late spring and early summer. Low~level releases provide

for downstream temperatures slightly cooler than those which occur naturally

X J
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in the Green River during the conservation period.

6. The Green River is one of Washington State's primary habitats for
salmon and steelhead. No anadromous fishery existed above the city of
Tacoma's diversion structure prior to the construction of Howard A. Hanson Dam
in 1961; the construction only further precluded the migration of fish up-
stream of the project. However, downstream passage is possible through the

existing sluiceway, and fish have recently been planted above the dam. There
.II is a strong commitment by both State and Federal resource agencies to preserve
and enhance the anadromous fishery resources in the Green River Basin, The
water resources demands in western Washington, however, are changing. The

city of Tacoma has requested additional storage in Howard A. Hanson Reservoir
. for the purpose of water supply while the State of Washington would like to
further augment Green River flows during the summer and late fall to enhance
the fishery in the lower Green and Duwamish Rivers., These additional water
] supply demands would involve raising the maximum conservation pool 40 ft and
} impounding almost three times the existing conservation storage. This can be
accomplished by beginning pooling operations on 1 March rather than 1 April
and raising the pool to el 1,190. Over 500 additional acres of land would

be inundated regularly by this proposed change. Specific concerns about rais-
ing the pool cenfer on the impacts to the reservoir thermal stratification.
With a deeper maximum conservation pool, a stronger stratification is pos-
sible. This stratification may alter release temperatures significantly and
possibly impact the steelhead and salmon habitat downstream in the Green
River. If this situation appears likely, a selective withdrawal structure may
be needed to provide adequate control of release temperatures along with an
operational plan to minimize depletion of desired thermal resources in the
reservoir and to control release temperature fluctuations. Since fisheries
upstream of Howard A. Hanson Dam are being developed, in-reservoir impacts may

also be significant.

ABgroach

7. The approach taken in the investigation of proposed storage modifi-
cations to Howard A. Hanson Reservoir involved the application of a one-

dimensional mathematical thermal reservoir model. The model was verified

|

initially against historical data from 1982, Data collected during 1979 and




1983 were used for final verification. The impact of changing the storage
allocation in the reservoir while still using the existing outlet tower was
investigated by comparison of predicted release temperatures to release tem-
perature objectives. Release temperature objectives providing an optimal
environment for the varied downstream fisheries were specified by the Seattle
District not to exceed 14.4° C throughout the year, Addition of selective
withdrawal capability to the existing outlet was simulated to predict impacts
on in-reservoir thermal profiles and release temperatures. Although other
water quality characteristics may be affected by changes to the operating

schedule, the influence on temperature was of primary concern in this study.




PART II: MATHEMATICAL METHODOLOGY

8. The downstream release and in-lake temperature characteristics for
Howard A. Hanson Reservoir were modeled using a one~dimensional thermal simu-
lation model. The model WESTEX used in this investigation was developed at
the US Army Engineer Waterways Experiment Station (WES). The WESTEX model can
be used for examining the balance of thermal energy imposed on a reservoir.
This one-dimensional model includes computational methods for predicting
dynamic changes in thermal content of a body of water through simulation of
heat transfer at the air-water interface, heat advection due to inflows and
outflows, and internal dispersion of thermal energy. The reservoir is con-
ceptualized as a series of homogeneous layers stacked vertically. The time-
history of thermal energy in each layer is determined through solving for con-
servation of mass and energy at each time increment subject to an equation of
state regarding density. The boundary conditions at the water surface, in-
flow, and outflow regions are required to conduct these simulations. A
numerical procedure for the withdrawal zone computation allows prediction of
release temperature, Mathematical optimization routines have been added to
this model enabling the systematic evaluation of optimal outlet configurations
subject to specified release water quality objectives., A more detailed dis-
cussion of the WESTEX model may be found in Holland (1982).

Thermal Model Inputs

9. The WESTEX model required input data on the physical, meteorologi-
cal, and hydrologic characteristics of Howard A. Hanson Reservoir. Hydrologic
input included daily values for reservoir inflow and outflow volumes and in-
flow temperature., Meteorological data (air temperature, cloud cover, relative
humidity, and wind speed) were used to compute surface heat exchange at the
alr-water interface. Physical characteristics required included the stage-

storage relationship of the reservoir and the rating curves for the outlet

structure,

Studz Years

10. The years studied in this investigation were determined in

10




consultation with the Seattle District and were based on the inflow during the
conservation period. Historical events of varying return periods were modeled
to study reservoir thermal properties under a wide range of hydrometeorologi-
cal conditions. The calendar year 1979 was chosen as representative of a
low-flow year, 1972 as a high-flow year, and 1982 as an average-flow year,

The year 1983 was added as an additional study year because of available field
data. Simulations were run January through December, although the primary
period of concern was during the conservation period after spring filling

through the fall overturn.

Meteorological Data

11. Meteorological data required by the model were daily average values
for wet and dry bulb temperatures, wind speed, and cloud cover. These data
were available from the US Air Force Environmental Technical Applications
Center (USAF-ETAC) at Scott Air Force Base, IL, for the Tacoma, WA, airport
weather station, which is the nearest meteorological station to the Howard A.
Hanson Dam, Meteorological data received from USAF-ETAC were averaged on a
daily basis. Equilibrium temperatures, surface heat exchange coefficients,
and daily average solar radiation quantities for the years of study were com-
puted using the HEATEX program (Eiker 1977).

szrologz

12, Hydrologic data provided by the Seattle District consisted of daily
discharge from the project (Figure 4) and pool level fluctuations from which
the average daily inflow (Figure 5) was computed. The existing operating
schedule for the project and the proposed rule curve were also provided.

13. Historic inflow temperatures were available for 1970 to 1973 and
1985 at Humphrey, WA, on the Green River. Since inflow temperatures for
several of the study years were not avallable, a multiple regression technique
was used to predict inflow temperature.

14, The regression analysis (Statistical Analysis System 1985) used
water temperature of the inflow as the dependent variable. The independent
variables included flow, logarithm of flow, alr temperature, and logarithm of

air temperature. This first-order model assumed that the parameters and the

11
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independent variables were linearly related. The general form of the model
tested was
Yi = Bo + Bi xi

+ 82 xi, + € 1)

1 2 i

where
Yi = gtream water temperature for day i
Bo’ Bl’ 82 = parameter or coefficients for the model

xil, x12 = independent variables (i.e., air temperatures, flow,
logarithm of flow, logarithm of air temperature)

ei = error term which is assumed to be zero

The regression analysis consisted of 672 observations over a 4-year period. A

summary of the regression analysis follows:

2 9 Total

Step Parameter Entered Partial R R Squared Error
1 Air temperature 0.74 0.74 865.8
2 Logarithm of flow 0.14 0.88 36.4
3 Flow 0.01 0.89 3.1

Because the addition of flow in the third step improved the coefficient of
determination R2 by only 0.01, it was left out of the final equation.
Therefore the resulting equation describing inflow temperature was

Inflow temperaturei = (0.297 x air temperaturei) (2)
- (1.932 x logarithm flowi) + 5.726

where 1 1s the day of the year. Inflow temperatures computed for 1972,
1979, 1982, and 1983 are presented in Figure 6.

Release Temperature Data

15. Daily release temperature data from the dam were monitored at the
city of Tacoma's water supply intake located approximately 3.5 miles down-
stream from the project, These data proved to be an unreliable measure of
release temperatures from the project through a comparison with tailrace

temperatures collected in the summer of 1985, Therefore, with the exception

14
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of 1985, release temperature data were not available for measuring the

performance of the numerical model.

Physical Characteristics

16. The physical characteristics of the xisting outlet at Howard A.
Hanson Reservolr were required data for simulation of historical events. The
port elevations, dimensions, and rating curves were obtained from project
records. Operating conditions for given historic events were also required
during model adjustment and verification. A third-order polynomial was fitted
to the rating curve of the existing water quality port to calculate the flow
capacity of this port for a given submergence. This calculation was required
because of the significant pool fluctuations that occurred throughout the
year.

17. The area-capacity data for Howard A. Hanson Reservoir as furnished
by the Seattle District indicated the lake storage curve 1is typical of moun-
tainous terrain. Only 7 percent of the storage at maximum conservation pool
occurred at or below the elevation of the low-flow outlet, indicating little

storage in the lower levels of the reservoir.

Model Verification

18, The WESTEX model requires determination of coefficients character-
izing certain reservoir processes. The hydrodynamic processes representing
entrainment of inflows and internal mixing resulting from circulation within
the reservoir are approximated through the application of mixing coefficients

ey and a, respectively. The distribution of thermal energy absorbed into

the pool is governed by the surface absorption coefficient B (which provides
the percentage of incoming shortwave radiation absorbed in the surface layer)
and the light extinction coefficient A ., These model coefficients were
modified until modeled conditions most nearly approximated field observations
for the year 1982. The resultant model coefficilents were as follows: a, !q
= 0.50 , a, = 1.00, B=0.8, and ) = 0.08 .,

19. The 1982 simulation was initiated on 1 January with an initial
uniform temperature of 4° C. Conditions during the nonconservation period of

the year were nearly isothermal with an average depth of only 30 ft. Storm

16
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events during this period resulted in significant fluctuation in the pool
level., Storage was quickly released after these events to provide additional
flood-control benefits. Generally, spring filling began on the receding side
of the snowmelt hydrograph in May to minimize total lake turbidity. Once the
pool was established, thermal stratification developed rapidly. The maximum
stratification occurred during the early summer when cool inflows were still
available. As the summer progressed, surface temperatures ranged up t» 20° C.
Release water temperatures were significantly cooler than objective tempera-
tures in the spring and early summer. Release water temperatures increased
linearly from 6° C at the beginning of April to 14° C by the end of June.
Temperatures exceeding 14° C were released throughout most of the summer and
early fall. At the beginning of September, lake overturn began with the re-
maining stratification quickly dissipating. The low-flow outlet was operated
until the pool was drawn down near the end of ‘‘ovember., Plots of these ob-
served profiles along with predicted profiles for 1982 are shown in Figure 7.
Modeled and observed results were generally within 1° C throughout the simu-
lation period. The reliability index (RI), which is a general measure of the
degree of fit of a predicted profile to an observed profile, for all profiles
in 1982 was 1.1342, An RI of 1.00 indicates a perfect fit of predicted to
observed data, and as the RI increases, the degree of agreement diverges. A
more detailed discussion of this computation appears in Appendix A. The

RI improved as the meteorological conditions become the significant source of
heat flux into the reservoir. This improvement corresponded with the estab-
lishment of the pool during the conservation period. Prior to this period,
calculated temperature properties were only as good as the simulated inflow
temperatures.

20. The release temperatures from the project were highly variable dur-
ing the nonconservation portion of the year and reflected the rapidly changing
hydrological and meteorological weather conditions. Spring filling initiated
the stabilization of release temperatures with a near-linear increase in proj-
ect release temperatures. Only large hydrologic events significantly influ-
enced release temperature during this period. The releases were dominated
primarily by the meteorological warming of the reservoir. Since the releases
came from the hypolimnion, tailwater temperatures were consistently cooler

than the naturally occurring stream temperatures during the spring and early

17
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summer. In the late summer and fall, release temperatures exceeded ambient

stream temperatures.

Final Model Verification

21. The mathematical model was verified through comparison of predicted
and observed thermal conditions for the years 1979 and 1983 (Figures 8 and 9,
respectively) using model coefficients determined during the initial adjust-
ment phase. The degree of agreement between observed and simulated thermal
properties was similar to the results for 1982. The composite RI's for all of
the 1979 and 1983 temperature profiles were 1,0408 and 1.0673, respectively.
During the pooled conservation period, the predicted and observed temperature
profiles deviated by no more than 1° C, This degree of agreement between
modeled and observed temperature characteristics remained throughout the

stratified period and into the fall overturn for both verification years.

Existing Reservoir Conditions

22, The current operational schedule for Howard A. Hanson Reservoir as
discussed in Part I calls for release of all inflow from January through
March., Beginning the first of April, the pool is raised until the maximum
conservation pool is reached (el 1,141). However, in the years under study,

pooled conditions were not initiated until late May or early June. The

inflows (Figure 5) during April were still sufficiently large to require
operation of the flood-control gate. 1In 1972, the highest flow year under
investigation, inflows during May frequently exceeded 30,000 cfs. The peak
inflow for the 4 years approached 100,000 cfs and occurred between January and
March of each year. This inflow pattern created the fluctuating stages ob-
served during the nonconservation period. Once the conservation period was
initiated, the pool filled rapidly, usually in less than 2 weeks. In 1983,
low flows during May extended the filling period to almost 4 weeks.

23, Thermal stratification began with conservation pool operation as
1llustrated by the annual temperature contours shown in Figure 10. A rapid
warming of the reservoir was indicated by the nearly vertical temperature con-
tours in late May through July. During midsummer to late summer, a relatively

stable temperature profile developed, followed by rapid cooling and overturn

19
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in the fall. Surface temperatures fluctuated much more rapidly than hypo-
limnetic temperatures due to the insulation characteristics of the water body.
Although the degree of stratification was relatively weak, as indicated by the
lack of a well-defined thermocline, the temperature difference between the
surface and the bottom reached 15° C. Surface water temperatures equal to or
exceeding the maximum objective release temperature of 14° C generally first
appeared from mid-May to early June., The 14° C water appeared at the level of
the low-flow outlet during the month of July followed by a period of approxi-~
mately a month where the entire pool was warmer than 14° C.

24, Durirgz the nonconservation periods, the pool was shallow, release
rates were high, and there was little stratification, thereby causing water to
be released from the entire profile. As a result, the release temperatures
fluctuated considerably in response to local weather trends. During the con-~
servation period, the withdrawal zone developed in the lower two-thirds of the
pool as shown in Figure 11. Epilimnetic waters remained outside the with-
drawal zone despite the lack of a strong thermocline because of small release
rates during this period. The historic release water temperature characteris-
tics as simulated by the WESTEX model exceeded the designated objective tem-
perature ceiling of 14.4° C for all study years. Releases during August con-
sistently exceeded 14.4° C with maximum daily release temperatures ranging
from 17.1° to 16.2° C for 1979 and 1983, respectively. The worst-case condi-
tions occurred during the study year 1979 when the average daily release tem-~
perature exceeded 14.4° C for 97 days during the months of July through Octo~
ber. For the remaining three study years, 1972, 1982, and 1983, daily release
temperatures exceeding 14.4° C occurred for 63, 61, and 44 days, respectively.
The daily release temperatures for existing conditions are illustrated in Fig-
ure 12, This figure shows the variability of release temperatures decreasing
as the pooled conditions develop. Monthly temperature release statistics for
existing conditions are tabulated by study year in Table Bl.

25. The stability of stratification index is a measure of the degree of
stratification in a reservoir. Stability of stratification can be defined as
the condition which occurs during the summer stratification period in which
there is a certain degree of stability or resistance to mixing of the epilim~
nion with the hypolimnion. It 1is measured by computing the amount of work
required to mix the lake to a uniform density neglecting heat losses or gains

through the system boundaries. By definition, 2 uniform temperature profile

24
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has a stability of stratification index equal to O, Thus the larger the
index, the stronger the stratification, The method of computing stability is
after Idso (1973):

Z

m
1 -
§ = A—f (o, = 0) (4,)) (z - zp) dz (3)
oJz
o
where
Ao = gurface area, square centimetres
z, = maximum depth, centimetres
z, = surface or zero depth, centimetres
p_ = density at 2z depth, grams per cubic centimetre

z
¢ = mean density resulting from total lake mixing, grams per
cubic centimetre

A = Area at 2z depth, centimetres
z = depth from free surface, centimetres
z= = depth where the mean density p exists prior to mixing

p
dz = integration variable, centimetres

Stratification began in May or June for the existing pool conditions with the
exception of 1979 where hydrologic conditions delayed the peak stability until
late July. The general progression of the stability plot (i.e., initial peak
followed by a gradual decline) indicated that the thermocline was weak. In
general terms, stability will increase as a thermocline moves down in the
water column but will decrease as it passes below the center of gravity of the
pool (Rutner 1963). Because the stratification was weak in Howard A. Hanson
Reservoir, stability peaked once the full pool was reached and declined with
the stage of the reservoir. This also suggests the strong influence of the
operation of the project on the thermal characteristics of the pool

(Figure 13).
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PART III: RESULTS OF PROPOSED STORAGE REALLOCATION

Existing Structure with Raised Pool

26. The proposed operational changes enabling additional storage at
Howard A. Hanson Reservoir were incorporated into the release schedule for
each of the study years subject to the hydraulic constraints of the existing
outlet configuration. The proposed rule curve specifies spring storage to
begin the first of March and to reach a maximum conservation pool of el 1,189.
The minimum low-flow release from the project is proposed to almost double to
412 cfs: 212 cfs for Tacoma water supply and 200 cfs for low-flow augmenta-
tion for fisheries enhancement. The proposed rule curve is showa in Figure 3.

27. The operational changes dictated by the proposed rule curve were
simulated for each of the study years, Daily operational releases were deter-

mined to meet the rule curve subject to constraints of minimum release., The

low-flow port was operated from early June through November (the current
operating procedure) although releases through this outlet could be initiated
earlier in the year. The maximum release through the port was increased due
to the greater submergence of this outlet. Compared with existing conditions,
the raised pool scenario required operation of both sluiceway and ports for
longer periods in the spring and fall to meet scheduled releases (Figure 14).
28, The 1in-reservoir thermal characteristics resulting from the raised
pool scenario were slightly different from existing conditions. The surface
water temperatures started to warm earlier in the year because of longer resi-
dence times as well as increased surface area. The comparison of predicted
thermal profiles in the raised pool with observed profiles from the existing
pool indicated a warmer profile earlier in the stratification period and the
retention of more thermal energy with the raised pool. However, by midsummer
to late summer, the shape of the predicted raised pool temperature profile was
analogous to the profile observed in the existing reservoir. The maximum
hypolimnetic temperature generally occurred several weeks later in the fall

for the raised pool because the hypolimnetic storage was much greater than

that of the unmodified pool., The raised pool did not become isothermal until
late November as compared to early November for the existing pool.

29. The stratification for the raised pool was more stable than that of
the existing pool conditions (Figure 15). Even though the temperature - 1
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contours in the epilimnion were not altered significantly by the raised pool,
the volumetric availability of temperature resources was significantly
changed. The storage volume in the top 10 ft of the raised conservation pool
was two times greater than that of the same region of the existing pool. The
shape of the stability of stratification plot for each year was similar to
that of the existing pool (Figure 13) with one exception. The maximum peak
for 1972 was not reached until August in the raised pool scenario (Figure 15),
while in the existing conditions the maximum stability was reached in July
(Figure 13). This difference may be due to a relatively large cool inflow
volume during June and July of 1972,

30. The impacts of the raised pool on release temperatures were most
significant during the spring and early summer (Figure 16). The day-to-day
release temperature fluctuations were not as prevalent under the proposed
conditions because of the temperature stability of the deeper pool. Release
temperatures from April through August were several degrees cooler than the
existing conditions for all study years, as shown in the following tabulation,

which 1lists the projected change in monthly release temperatures:

Projected Change, °C

Year Apr May Jun Jul Aug Sep Oct Nov
1972 -0.8 -0.7 1.0 -1.1 -1.5 0.2 1.1 0.6
1979 -0.8 -0.5 -1.9 2.1 -1.7 0.3 1.0 1.0
1982 -1.7 -0.6 ~0.9 -1.,7 -1.1 0.0 0.8 0.6
1983 -1.7 -1.1 -2,2 -1,0 -1.0 0.3 0.8 0.6

The maximum release temperature can be expected to be lowered up to 1° C by
employing the proposed operating schedule as compared with existing condi-
tions. The length of time release temperatures exceed 14.4° C will also be
reduced 2 to 4 weeks. 1In the fall, the effects of raising the pool will
slightly warm releases from Howard A. Hanson Reservoir because of the larger
heat content in the raised pool. Monthly temperature release statistics are
listed in Table B2 for all study years assuming the proposed rule curve and
existing outlet,

31, The withdrawal limits for the raised pool reflected the minimal
stratification in the bottom of the reservoir, The withdrawal zone consis-
tently reached the bottom and was limited to approximately el 1,135 in the
pool., The epilimnetic layers were effectively isolated from the withdrawal

zone as shown in Figure 17.
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32, Warmer water was available for withdrawal much earlier in the
spring for the raised pool, but the existing outlet structure was not capable
of accessing this resource due to location of the ports. The capability to
release epilimnetic water would not just warm spring releases but also con-
serve cooler water for release later in the summer and fall. Modification of
the existing outlet structure would be required to reallocate the thermal

resources available in the reservoir under the proposed operating scenario.

Impacts of Selective Withdrawal Operations

33. The existing project releases allow for establishment of a certain
quality environment downstream from the dam., If the raised pool is put into
effect, changes would be expected in the downstream environment as it seeks a
new equilibrium in response to the modified release temperatures., The Green
River downstream of Howard A, Hanson Dam supports a rich anadromous fishery
resource. If the anticipated response of the downstream environment to modi-
fied release temperatures is unacceptable to resource managers, then several
alternatives are available to minimize these impacts. One alternative is the
incorporation of a multilevel selective withdrawal system to allow release of
water to meet specified objectives., The chief advantage of a multilevel
selective withdrawal system is flexibility in meeting release water quality
objectives over a wide range of operating conditioms.

34. The need for a multilevel outlet to compensate for pool raising on
Cowanesque Lake was investigated by Holland (1982). His study, which involved
the reallocation of flood-control storage for water supply use, determined the
additional intakes needed to meet existing release temperatures. Similar con-
clusions were reached by Dortch (198l) in his investigation of Kinzua Dam in
Pennsylvania and by Peters (1978) in his report of modifications to Flaming
Gorge Dam in Utah., In the investigation of release water quality from Sutton
Dam (George, Dortch, and Tate 1980), a riser was designed to improve water
quality releases.

35. The addition of a port or ports higher in the pool at Howard A.
Hanson Reservoir should allow releases to meet release temperature objectives
downstream adequatelv. The withdrawal of water from the epilimnion will pro-
vide for warmer rele-. :s earlier in the year while conserving hypolimnetic

water for release later in the year. The effectiveness of the outlet system

35
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depends upon the type of withdrawal structure, withdrawal capacity, port size,
port location, and number of ports together with operational criteria to

achieve a given release water quality subject to the available resources.

Optimization of Outlet Structure Design

36. To arrive at an efficient outlet structure design for the raised
pool, the number and location of additional intakes needed to meet release
temperature objectives must be determined. The design of the outlet structure
is greatly simplified through the coupling of mathematical water quality
models like WESTEX to mathematical optimization techniques (Dortch and Holland
1984). This combination enables the consideration of numerous hydrological,
hydraulic, meteorological, physical, and operation conditions in the formula-
tion of tower design, Prior to the implementation of such optimization tech-
niques, selective withdrawal intake configurations were based on judgment and
experience of the design engineer. Optimized outlet configurations may
involve fewer ports, as compared to traditionally accepted designs, to meet a
glven downstream temperature objective, thereby reducing both operational
complexity and the costs associated with design, construction, and mainte-
nance. Additionally, the use of optimization techniques should further
enhance tower design by allowing systematic evaluation of the flexibility
needed in the design for multiple or anticipated quality objectives.

37. The purpose of the mathematical optimization procedure is to sys-
tematically screen numerous outlet tower designs in terms of performance in
meeting a specified release water quality criterion. The goal of releasing
water with a temperature of no greater than 14.4° C was expressed earlier.
This objective was modified slightly to represent the cyclical nature of
available thermal resources. The objective temperature was defined as the
naturally occurring Green River stream temperature as defined by a sine func-

tion up to a maximum temperature of 14.4° C where

Water temperature = 6.0 x sin (0,0174 x Julian day - 2.234) + 8.0 (4)

This relationship was derived from available Green River temperature data as

shown in Figure 18. Employing a cyclical objective temperature avoids
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Figure 18. Green River temperature versus sine curve used as
target temperature objective

temporal biasing of optimization results characteristic of constant-release
temperature objectives,

38. A satisfactory measure of system performance must also be specified
if optimum outlet configurations are to be determined. The objective function
is a mathematical reflection of how well one possible decision (i.e., number
and location of outlets) meets a given set of objectives. The objective func-
tion chosen in this study was the sum of squares of deviations between pre-
dicted release and target temperatures during the conservation period.
Minimization of the objective function yields the optimal location of addi-
tional ports for release temperature control. This form of objective function
was chosen since its minimization tends to produce outlet configurations that
reduce the magnitude of objective deviations experienced. The formula chosen
to represent the objective function is project dependent and may include
mathematical representations of such factors as State and Federal water
quality regulations, temporal weighting of deviations, or numerous water
quality constituents.

39, To evaluate the potential impacts of adding selective withdrawal
capabilities to Howard A. Hanson Reservoir, a type of withdrawal structure

must be identified. Two alternative structures were considered for this
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study. The first alternative investigated involved modifying the existing
outlet works to include additional levels of ports connected to the 48-in.
bypass conduit, Two operational policies associated with the modified outlet
were investigated. A second alternative involved replacing the existing out-
let system with a dual wet well structure with two water quality collection
wells, The design of both structural alternatives was based upon the applica-

tion of the reservoir model coupled with mathematical optimization techniques.

Modification of the Existing Outlet Structure

40, The existing structure could be modified to provide selective with-
drawal capabilities if a riser is added to the existing 48-in. bypass conduit.
This modification would maintain the existing outlet at el 106 while adding
additional ports at higher elevations. Ports located at different pool levels
could be activated to withdraw water of a given quality. Only a single 6- by
6-ft outlet leading to the 48-in. bypass could be activated at one time. If
flow control did not change, the maximum release through this system would be
about 600 cfs at maximum conservation pool el 1,189, Any scheduled release in
excess of this amount would have to be passed by the sluiceway. The opera-
tional policy associated with the modified outlet would involve releases
through the 48-in. bypass during the conservation season. The drawback of
this design is that only discrete levels of withdrawal are possible unless
measures providing for single wet well blending are incorporated into the
design.

41. The number and location of additional ports were addressed by
applying the reservoir optimization model. Scenarios involving the addition
of one, two, three, and four ports were investigated. The utility of a given
design was defined as the summation of squared deviations of the daily release
temperature from the daily target temperature over the conservation period.
The optimal locations of the additional ports and the associated objective
function value are given in Table 1 for each of the study years simulated.

42, The performance of the proposed outlet structure improved as ports
were added to the design as indicated by decreasing objective function values
for an increasing number of ports. The low-flow year 1979 exhibited the poor-
est release conditions relative to the objective function. Warmer atmospheric

conditions coupled with little watershed runoff during the spring and summer
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resulted in a smaller amount of colder water resources being available during
that year. The design involving three additional ports was selected as the
best design since the addition of a fourth port provided only marginal bene-
fits. The.three-port configuration provided additional operational flexibil-
ity over the two-port configuration by providing releases over a wider range
of pool levels. The optimal location of ports near el 1,139 and 1,119 was
consistent for all study years. A third port located at el 1,159 is recom-
mended to provide upper level releases during the spring and early summer. A
port near this location was required during simulation of conditions for the
average year (1982) to meet target release temperatures.

43, The in-reservoir thermal characteristics were significantly altered
through the release of epilimnetic water from the proposed additional ports.
The proposed ports began operation by the month of May and commonly required
sluiceway releases to meet scheduled releases during this period (Figure 19).
The depression of the thermocline was delayed through the summer months by
upper level releases. As the thermocline progressed more deeply in the pool,
lower level ports were activated to release cooler water. It should be noted
that once the existing port at el 1,073 was activated, hypolimnetic water
warmed quickly. The stability of stratification for the raised pool with a
single wet well (Figure 20) exhibited patterns similar to those for the raised
pool with the existing structure (Figure 15). There is a minor difference in
that the stability is somewhat stronger in the single wet well scenario. This
stronger stability is due to the capability of the wet well to release
epilimnetic water, thereby retaining a stronger degree of stratification
through the summer.

44, Project release temperatures were highly discontinuous when outlet
level changes were performed during the summer months (Figure 21). Day-to-day
release temperature fluctuations as great as 6° C were experfenced during
summer outlet changes. These conditions may be much more detrimental to the
downstream ecological environment than conditions resulting from a continuous
lower level release. This outlet design does provide for warmer releases
earlier in the year and a shorter period of release water temperature exceed-
ing 14.4° C for years 1972 and 1983 compared to anticipated conditions for
the existing outlet. The average monthly releases during April through July
were up to 1.4° C warmer than conditions expected with the raised pool and

existing outlet configuration while releases in August through October were up
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to 2.3° C cooler as listed in Table B3, Temperature deviations from naturally
occurring Green River temperatures as estimated using Equation 4 are
illustrated in Figure 22,

Sluiceway Blending with Modified Outlet Structure

45. The major shortcoming of the modified single wet well structure is
its assumed inability to blend water from different pool levels. The poten-
tial to blend releases using the modified outlet structure at Howard A. Hanson
Reservoir exists if operational policy concerning sluiceway releases is
modified. This scenario assumes the sluiceway control gate could be throttled
to release a discharge that, when combined with the bypass release, meets a
specific target temperature. In the past, both systems have been used
together to meet only release quantity constraints. Hydromechanical con-
straints such as gate vibration and debris blockage may prevent the use of the
flood~control system for release temperature control, This type of water
quality outlet would be more complicated to operate since frequent gate
changes would be required to maintain the appropriate distribution of flow
between systems. However, the benefits of this scenario would include greater
continuity and control over release temperature characteristics.

46. Once again, the number and location of additional ports were
investigated using the optimization model assuming sluiceway operation to meet
water quality objectives. Scenarios involving the addition of one and two
ports were investigated. The optimal locations of the additional ports and
the associated objective function value are given in Table 2.

47. The performance of the modified outlet structure with sluiceway
blending was better than the no-port condition (existing condition) or the
nonblending alternative as indicated by the smaller objective function values
for the same number of additional ports (Tables 1 and 2). The addition of a
single port in the epilimnion provided access to warmwater resources to blend
with cooler low-level releases. The optimal location of a single port ranged
from el 1,159 to 1,175, The higher the elevation of this port, however, the
shorter the period of its operation due to fluctuating pool levels. There-
fore, the lower range of optimal single-port location (el 1,159) was selected
as the best design.

48. Very little improvement resulted from the addition of a second port
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in terms of temperature release characteristics. The second port did not
significantly improve releases because very little stratification existed when
the pool dropped below the upper port, thus minimizing any benefits associated
with retaining selective withdrawal capabilities. However, the addition of a
second port below the optimal single-port location may be necessary to main-
tain an epilimnetic release if pool drawdown in excess of simulated conditions
is anticipated. Other water quality concerns, such as turbidity, may also
dictate the need for a second port located in the upper pool.

49, The in-reservoir thermal characteristics assoclated with this
scenario (Figure 23) were similar to conditions simulated for the raised pool
with the existing outlet due to the similar operational pattern requiring
hypolimnetic releases. A strong thermocline did not develop under this opera-
tional scheme. The pool was warmed at a slower rate due probably to the use
of some epilimnetic releases as opposed to strictly hypolimnetic releases in
the previous case. As midsummer approached, releases strictly from the upper
level were warmer than the target release temperatures; thus lower level
releases were required at this point to blend with epilimnetic releases. This
type of operating condition was continued throughout the summer with increas-
ing rates of hypolimnetic releases. Hypolimnetic releases exhausted cooler
water resources to the point where the minimum pool temperatures by mid-
September approached 14° C. At this point, the bottom level release became
the sole outlet. This condition may lead to release temperatures signifi-
cantly warmer than objective temperatures as simulated in 1979. The stability
of stratification for the proposed outlet (Figure 24) 1is similar to the single
wet well raised pool scenario (Figure 20). Although there are obvious dif-
ferences in the seasonal temperature contours for both cases, the impacts to
the stability of the stratification are minimal.

50, Release temperatures from this scenario closely met objective
temperatures through the summer months (Figure 25). The variability in
release temperatures decreased once the pool was filled during the spring.
Storm events did cause some deviations from objective release temperatures as
illustrated by the discontinuities during June and July of 1972, The selec-
tive withdrawal capabilities from the project were effectively eliminated at
the end of the summer when coldwater resources were exhausted. This occur-
rence was represented by the renewed variability in project releases during

the fall months and increase in the deviation between target and release
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temperatures as shown in Figure 26. Spring and summer release temperatures
were warmer than the conditions expected for the existing outlet structure
under the same rule curve while late summer and fall releases were signifi-
cantly cooler as shown in Table B4, Maximum project releases were kept at or
below 14° C except for the low-flow year 1979, Further, this alternative did
not experience the sharp discontinuity in project releases as was simulated

for the modification of the existing outlet structure without blending.

Dual Wet Well Selective Withdrawal Tower

51. Replacing the existing outlet tower with a dual wet well outlet
structure with multilevel ports would allow additional control over release
temperature characteristics. The dual outlet structure would enable outlet
gate changes to meet a desired release rate through each wet well. If the
desired objective temperature exists in the pool, it may be possible to blend
water from both outlets to meet project release goals. This outlet design may
have more flexibility in conserving cooler water resources for releases later
in the year than the blending scenario discussed earlier because dual wet
wells provide for blending between two upper levels, thereby conserving
hypolimnetic resources,

52, The number and locations of ports in each wet well were again
investigated through optimization. Each wet well was assumed to have the
capacity of the existing 48-in., bypass conduit. The characteristics of the
flood-control system were not altered. Scenarios involving the design of one
and two ports in each wet well were investigated. The optimal port locations
of each design and associated objective function value are given in Table 3.

53. The objective function values for the single port per wet well
indicated a considerable improvement in meeting release temperature criteria
as opposed to operation of the existing structure (zero-port scenario in
Table 3)., The optimal port elevations for the single port design were grouped
around el 1,084 and 1,159 for study years 1979, 1982, and 1983. Ports were
located higher in the pool for the study year 1972 because of the abundance of
cooler inflows. One limitation of the single-port design is that the port may
be operational for only a portion of the year due to fluctuating pool eleva-
tions. Also, depletion of cooler water resources via the low-level release

was required to meet release targets once stratification developed. This

49




Buppuafq LemadINTs Y3ITM 3IATINO0 TIam 3am a[3urs pasodoad pue

ainjona3s JuyrasIxs #yj 103j jood pasTexr YIFM UOIIeTAdp danjeisdmel aseayal ATTeq

€861 P
330 AON 1D0 d3S 5NV N NN AVW  Hdv dvW 834 Nvf
S S -
e T
e
+1 * 1
+ ﬁ.f
I
+ & 4
e 3 +
e ¥ 1
T
¥ +

6461 9

03@ AON 100 d3S 9NV INF NNF AVIN Hdv Wy 834  Nvr

I
T T T T T T t T t T

3 2

'NOLLVIA3Q

o 1

'NOILVIAIQ

De

— \a e
[ [ ) )
. 8
9¢ 9aNnsEyq
2861 0
030 AON 100 d3S 9Av N NOL AVW  HdV  Hyw 834 Nvr
S } + —t — + } + s
- vs
% le
Ha
+H%§M T¢
B o
w + -Vv_. m
+ s
>
g i o 2
7] ]
r % -2

+
ol

03@ AON 100 d3s 9nv

nr

ci6L B
NNC  AVIN  ddVY  Hvn 834

; —_ 4

NVP

4 —

At

§
—+ +

4
t

— t T 1 t

‘NOILVIA3Q

oY

50




-

| __Siaiiaiet  Snceimmadetele - Ul

®

»
i
|
!
°

operational policy exhausted the availability of cooler water for release
later in the year for all study years. Both of these limitations were miti-
gated when intermediate-level outlets were included in the design. The two-
port design provided additional flexibility in meeting release temperature
objectives except for the low-flow year 1979: thermal (cool bottom) resources
were not available during 1979 to meet release temperature goals later in the
fall. This alternative does provide operational flexibility to minimize the
impacts associated with thermal resource deficits.

54, Optimal port locations varied significantly between study years for
two ports per wet well configuration. The critical year in terms of release
temperature criteria was the low-flow year 1979, The addition of a second
port in each wet well resulted in no improvement in performance for 1979. The
best performance was achieved by providing an upper level release around
el 1,157 and a lower level release near el 1,080 for this year. A design
using two ports per wet well will provide similar release characteristics if
outlets are provided over this range of elevations.

55. Fo both study years 1982 and 1972, release performance was
improved if outlets higher in the pool were provided for accessing warmer
water earlier in the spring., The optimal port configuration associated with
the study year 1982 was recommended as the best dual wet well design since it
also approximated the levels of release required during the years 1979 and
1983, This configuration of two ports per wet well will provide reliable
access to epilimnetic water during the spring and summer months. As the
thermocline becomes depressed, intermediate and lower level outlets are avail-
able for blending project discharges to achieve specific release temperature
objectives. Thus, the optimum outlet configuration included port locations at
el 1,171 and el 1,125 in one wet well and el 1,153 and el 1,079 in the second
wet well. This outlet tower design was simulated for all the study years with
only a small degradation in release performance over that of the optimal
design given for the individual years.

56. The in-reservoir characteristics resulting from the operation of
the proposed dual wet well outlet tower (Figure 27) were similar to the condi-
tions that developed with the modified outlet structure without blending
(Figure 23). This similarity was due to reliance on epilimnetic releases in
meeting objective release temperatures. The depression of the thermocline

during the summer was gradual due to upper level release while the
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hypolimnetic temperatures remained almost constant during this period. As
cooler water was released in the fall months, the thermocline was drawn down.
The reservoir cooled off rapidly from top to bottom during October as indi-
cated by an increase in project release temperatures. With the exception of
1972, coldwater (hypolimnetic) resources in the reservoir became exhausted by
the month of October as occurred during all previous simulations. The average
reservoir temperature during this period approached 14° C. The stability of
stratification for this scenario (Figure 28) was much stronger than previous
scenarios. With the capability to draw water from two ports to meet a release
temperature, water is drawn from a larger number of layers in the pool, This
capability minimizes the effect of withdrawal zone formation in any one layer,
thus allowing a more stable thermal profile to be maintained.

57. Release temperatures from the dual wet well outlet were able to

meet target releases closely for most of the conservation period (Figure 29).

Resources for blending to a specific release objective temperature were avail-
able throughout the summer and into the early fall. Cool-water resources
generally became exhausted during September resulting in releases warmer than
objective temperatures. The maximum project release temperature was limited
to 14,4° C for all years except 1979. Release temperatures in May, June, and
July were on average 0.5°, 1.2°, and 1.1° C warmer, respectively, than condi-
tions for the operation of the existing outlet structure with storage real-
location (Table B5). Release temperatures during August, September, and
October were predicted to be cooler than those predicted for the existing wet
well configuration. The largest impact occurred during September when re-
leases were from 1° C to 3.6° C cooler from the dual wet well outlet compared
with those of the existing outlet., Releases during the fall continued to be
warmer than the naturally occurring stream temperature as indicated in Fig-
ure 30, The single wet well outlet with sluiceway blending, which was dis-
cussed in the previous section, displayed similar trends; however, the dual
wet well scenario, with greater operational flexibility, had smaller objective

function values for all years except 1979. These improvements were observed

primarily in the fall since that was when resource limitations exhibited the
strongest impact on release temperatures. Deviations from release temperature
objectives were observed during the low-flow year 1979 for all outlet con-

figurations simulated. However, the operational flexibility of the dual wet

@
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well structure can be used to redistribute the available thermal resources to
minimize adverse impacts to the downstream environment.

58. To illustrate the operational flexibility of the dual wet well out-
let tower, release temperature objectives were changed to a constant 14.4° C
during the conservation period. This criterion resulted in the operation of
the two uppermost ports throughout most of this period (Figure 31). This
operational criterion also resulted in a stronger thermocline coupled with
larger coldwater storage. Maximum release temperatures were limited to near
14.4° C for all study years (Figure 32). The period of 14.4° C temperature
release was extended several months into the summer compared to the previous
release objective. Spring release temperatures were up to 5° C warmer than
releases predicted for the existing outlet with the raised pool (Table B6).
During the fall, when the lake began to cool off, release temperatures were
slightly cooler than the previous operating conditions due to the conservation
of hypolimnetic water.

59. The six operating scenarios have been discussed relative to their
ability to meet a given release temperature objective. However, to summarize
the effects of each scenario on the release temperature, the average monthly
release temperature for April through November was compiled by year for each
scenario (Table Cl). These results indicate the releases from the raised pool
with the existing structure (B series) are much cooler in the spring and early
summer months than existing releases (A series). With the addition of a
single wet well (C series), warmer release temperatures, similar to the exist-
ing conditions (A series), were observed during the spring months while late
summer and fall releases were significantly cooler. The addition of sluiceway
blending with the single wet well (D series) added the operational ability to
blend water from two ports in the stilling basin, which provides for a con-
tinuity of release temperatures not characteristic of the nonblending alterna-
tives. The dual wet well configuration (E series) was able to maintain the
coolest release temperatures in August through November for most of all the
years simulated. Although average release temperatures for the remaining
months were similar to those for the single wet well with the sluiceway blend-
ing, the ability to maintain the cooler release in the late summer and early
fall makes this the better overall structural configuration. The flexibility
of the dual wet well alternative was further illustrated by employing a con-

stant release temperature objective of 14,4° C (F series) throughout the year,
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The results indicated that the dual wet well with its operational flexibility

could significantly extend the period when 14.4° C releases can be made.
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PART IV: CONCLUSIONS AND RECOMMENDATIONS

60. Modifying the operating policy at Howard A. Hanson Reservoir by
initiating spring storage earlier and increasing the maximum conservation pool
will impact the project releases and in-reservoir thermal characteristics.

The increased volume and surface area of the reservoir will result in a sig-
nificant increase in total heat content of the reservoir. The deeper conser-
vation pool will provide for larger temperature gradients to develop from top
to bottom, resulting in stronger stratification and increased water column
stability., Release temperatures from the raised pool through the existing
outlet works will be cooler during the spring and summer but slightly warmer
during the late summer and fall, The maximum release temperature would be
reduced if the proposed storage reallocation is implemented. The existing
outlet configuration, however, has little flexibility in altering the release
water quality characteristics from the raised-pool project. During low-flow
years, late summer and fall release temperatures may significantly exceed
downstream temperature objectives.

61. The addition of selective withdrawal capability through epilimnetic
releases provides a means of effectively managing the thermal resources in the
reservoir. The location of an additional port in the epilimnion allows warmer
surface water to be released earlier in the spring while conserving cooler
water resources. A single wet well structure with single-port operation may
not provide the desired degree of control over release temperatures under the
anticipated stratification. Storage reallocation will result in sufficient
stratification to warrant blending releases from multilevels. A dual wet well
outlet structure with two ports per wet well will provide the operational
flexibility required to meet release temperature objectives for most of the
hydrometeorological conditions simulated. This outlet configuration will also
provide latitude in scheduling releases to meet other water quality objectives
such as turbidity as well as providing the maximum degree of stability of
stratification. For certain low-flow years, Howard A, Hanson Reservoir will
be resource limited. For these events it is critical to manage the available
thermal resources to minimize the damage to the downstream environment.
Dynamic optimization procedures when used in conjunction with the numerical
reservolr model can also provide operational guidance for mitigating the

damage caused by release temperatures deviating from project objectives.
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62. The recommendation that best meets the stated objectives therefore
includes a dual wet well outlet structure with ports located at el 1,171 and
i el 1,125 in one wet well and el 1,153 and el 1,079 in the second wet well.
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Table 1
Optimal Port Elevation and Objective Function Value

for Single Wet Well Outlet Configurations

1972 1979 1982 1983
Addi-~ Objective Objective Objective Objective
tional Port Function Port Function Port Function Port Function
Ports El Value El Value El Value El Value
0 - 729 - 1,223 - 520 - 372
1 1,132 582 1,111 966 1,123 607 1,123 336
2 1,147 379 1,136 808 1,163 390 1,133 242
1,125 1,115 1,139 1,111
3 1,145 351 1,139 738 1,163 274 1,136 219
1,125 1,118 1,139 1,116
1,113 1,092 1,119 1,103
4 1,142 356 1,139 722 1,158 212 1,151 186
1,129 1,119 1,140 1,136
1,117 1,096 1,130 1,123
1,098 1,083 1,112 1,110
Table 2

Optimal Port Elevation and Objective Function Value
for Single Wet Well with Sluiceway Blending

1972 1979 1982 1983
Addi- Objective Objective Objective Objective
tional Port Function Port Function Port Function Port Function
Ports El Value El Value El Value El Value
0 - 729 - 1,223 - 520 - 372
1 1,175 140 1,159 805 1,167 216 1,1~9 224
2 1,176 140 1,159 805 1,182 185 1,159 222
1,144 1,063 1,158 1,130
[ )
J
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APPENDIX A:

COMPUTATION OF THE RELIABILITY INDEX
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1. The reliability index (RI)* was proposed by Leggett and Williams
(1981) as a general test that can be used to evaluate the correspondence, or
precision of fit, between predicted values from mathematical models and ob-
served data. Thus, the test allows inference of a model's predictive capabil-
ity. An interpretation of the index is that it indicates, in some sense, the
degree to which predictions and observations agree. An RI of 1.0 indicates a
perfect agreement, and the RI increases as predicted and observed values

diverge. The RI is computed from

- 2
1+ li i L= (Ytn/xtn)
N
— — 1+ (Y /X )
RI = t=1 n=1 i tn' "tn (A1)

+

[ 2
. \[li g [1 i
N
t=1 n=1 1 (Ytn/xtn)

= number of x,y pairs for a specific sampling period

where

= number of sampling periods
index for sampling period
= index for x,y pairs

= observed value

o3 o 32
]

= model—predicfed value

2. Some caution must be exercised in interpreting the RI since it is
affected by variability in observations as well as the degree of correspon-
dence between observed and predicted values. It is a measure of the capabil-
ity of the models only to the degree to which the observed data are considered
"true." However, comparisons between simulations with a given model or
between different models which result in a smaller RI for the same observed
data would generally indicate an improvement. The RI was compared to other
commonly nsed statistical tests by Wlosinski (1984) and was considered the

best statistic for aggregating model results.

* This discussion was taken from Martin (1986)., All references cited in this
Appendix are listed in the References at the end of the main text.
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APPENDIX B:

CALCULATED MONTHLY TEMPERATURE RELEASES
FOR HOWARD A. HANSON RESERVOIR
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APPENDIX C:

CALCULATED AVERAGE RELEASE TEMPERATURES
FOR HOWARD A, HANSON RESERVOIR

Cl




Table Cl

Calculated Average Release Temperatures

Plan Apr May Jun Jul Aug Sep Oct Nov
1972
A-72 5.83 8,40 9.56 13.42 15,97 13.50 9.78 7.13
B-72 5.05 7.69 10.52 12,29 14,43 13.72 10.91 7.71
C-72 5.73 7.86 10.95 12,99 14,27 12,70 10.53 7.65
D-72 5.74 7.86 10,91 13.14 13.94 13.06 10.53 7.68
E-72 5.81 8.28 11,39 13.64 13.92 12,40 10.25 7.56
F-72 6.26 8.13 11.42 13,93 14,51 13.55 10.14 7.31
1979
A~79 7.15 9.43 12,74 14.76 16.81 16.15 12.93 7.26
B-79 6.37 8.98 10.84 12.64 15,13 16,42 13.97 8.26
c-79 6.48 9,21 11.85 14,02 14.69 14,13 13.63 8.30
D-79 6.50 9.27 11.80 13.62 14.06 15,63 13,72 8.30
E-79 6.07 8.94 11.80 13.63 13.44 12.80 13.12 8.14
F-79 7.74 9.99 13.82 14.49 14,51 14,18 12,11 6.88
1982
A~82 7.15 8.45 11,22 14.14 15.66 14,90 11.51 5.78
B-82 5.45 7.82 10.31 12,44 14,56 14,94 12.27 6.33
c-82 5.85 8.04 11.15 13.51 14,29 13.54 11.90 6.38
D~-82 5.88 8.30 11.39 13.64 13,90 13.50 11.98 6.30
E~82 5.87 8.57 11.96 13.63 13.89 12,62 11.49 6.36
F~82 7.55 8.68 12.86 14,46 14,47 14,45 11,28 5.96
1983
A~-83 8.37 9.58 12,77 13,68 15.63 13.97 11.53 6.02
B-83 6.76 8.46 10.55 12.70 14,62 14.30 12,34 6.65
C-83 6.77 8.84 11.54 13.30 14,40 13,25 12,22 6.66
D-83 6.76 9.05 11.79 13.50 13,93 13.62 12.19 6.65
E-83 6.77 8.90 11.78 13.52 13.91 13.30 12,07 6.65
F-83 9.41 11,77 14,20 14.12 14,51 13.99 11,00 6.19
Note: Plan A = Calculated average release temperature for existing project
Plan B = Calculated average release temperature for existing structure
with raised pool using the sine function as release
temperature objective
Plan C = Calculated average release temperature for single wet well
outlet with raised pool using the sine function as release
temperature objective
Plan D = Calculated average release temperature for single wet well
outlet and sluiceway blending with raised pool using the sine
function as the release temperature objective
Plan E = Calculated average release temperature for dual wet well with
raised pool using the sine function as the release temperature
objective
Plan F = Calculated average release temperature for dual wet well with .1

raised pool using 14.4° C as the release temperature objective
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