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SUMMARY

Assay data are often fitted by a nonlinear regression model
incorporating heterogeneity of varjance. Typically, the standard deviation
of the response is taken to be proportional to a power 8 of the mean. There
is considerable empirical evidence suggesting that for assays of a
reasonable size, how one estimates the parameter 0 dpes not greatly affect
how well one estimates the mean regression function. . An additional
component of assay analysis is the estimition of auxillary constructs such
as the minimum detectable concentration, for which many definitions exist;
we focus on one such definition. The minimum detectable concentration
depends both on 6 and the mean reg?ession function. We compare standard
methods of estimating the parameter 6 due to Rodbard (1978), Raab (198la)
Sadler & Smith (1985) and Carroll and Ruppert (1982b). When duplicate
counts are taken at each concentration, the first method {s only 20X
efficient asymptotically in comparison to the fourth for normal data, and in
an example the resulting estimate of the minimum detectable concentration is
asymptotically 3.7 times more variable. Less dramatic results obtain for
the second and third estimators compared to the fourth. Simulation results
and an example support the asymptotic theory. The results have implications
in applications other than the assay problem in which heterogeneity of

variance and issues of calibration arise.
)

Some key words: Calibration: Generalized Least Squares; Heteroscedasticity;

Prediction; Weighted Least Squares.




1. INTRODUCTION
Recent work in the analysis of assay data in the clinical and biological
sciences suggests that .hese data can be markedly heteroscedastic. In
radi;'imunoassay. this characteristic has been observed repeatedly and
incorporated into the analysis as discussed by Finney (1976), Rodbard (1978),
Tiede & Pagano (1979), Raab (1981a,b), Butt (1984) and Sadler & Smith (1985).

Such analyses are for the most part special cases of the heteroscedastic

nonlinear regression model. Specifically, we observe independent count: Yij at
concentrations X; for 1 = 1,....Nand §J = 1....1(i with means and variances
given by
2
E (Yij) = lii = f(xiOB) , var(Yij) = {ag(xi.ﬁ.e)} . (1‘1)

where B is the unknown regression parameter vector of length p, g is the
variance function, and 0 is the structural variance parameter. A standard

model for the mean in a radioimmunoassay is the four parameter log-logistic

model

£(x.B) = B, + (By - B)/[1 + exp{B,(log x - B3)}]. (1.2)

Almost without exception, the variances have been modeled as functions of the

mean response, usually either as a quadratic or as a power of the mean, e.g.,

o, = Standard deviation of Y” = ag(xi.ﬁ.e) = af(xi.ﬁ)e. (1.3)

The fundamental contribution of Rodbard and other workers has been to

i
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incorporate the heterogeneity into the analysis, thus improving the quality of
statistical analysis.

Fitting model (1.1) in assays is discussed by many authors, see Rodbard &
Frazier (1975). Raab (1981a), and Finney (1976). The most common method of
est;;Qting B is generalized least squares, in which one forms estimates of the
LA and tﬁen estimates B by weighted least squares. For estimating the weights,
both formal estimation procedures for estimat?ng 0 (Rodbard.& Frazier, 1975 and
Raab, 198la) and the method of setting G‘to a predetermined fixed value based
on experience with a particular assay (Finney., 1976) have been advocated. We
consider estimation of the varjance parameter to be an important problem
independently of whether or not 8 is set to a fixed value in curve fitting and
subsequent analyses. For example, eétimates of 6 from developmental and
validation runs of an assay are commonly used to establish a fixed value, or
range of acceptable values, for 6, as in the example of Section 5. Also,
routine calculation of 0 after assay implementation provides information that
can be helpful in monitoring for assay changes. In the development,
production, and quality control of a pharmaceutical product, for example,
assays characteristically include fewer test samples and greater numbers of
known concentrations than in many clinical applications. This is particularly
true when the substance of interest is at very low levels in the final product.
In this case, it is practical to estimate 0, as well as limits of assay
reliability as discussed below. Extreme deviations from historical values of
these parameters may be considered when evaluating the acceptability of an
assay. The intention of this paper is to demonstrate that how well one
estimates the variance function can be crucial in determining the properties of
analyses based on the fitted curve. Qualitatively, then, how 08 is

characterized, whether by formal estimation or as fixed, is an important issue.




When 6 is formally estimated, as discussed by Jobson & Fuller (1980) and
Carroll & Ruppert (1982b), B has the same asymptotic normal distribution as the

weighted least squares estimator with known o The first order asymptotics

T
can be optimistic, but in our experience for RIA and ELISA assays, the
asy-n’:;-totics are often reasonable. Thus, if our only interest is to estimate f3,
in many .assays the method of estimating the variance function may not be
crucial. However, the assay problem does no.t always stop.with estimating pB,
but also addresses issues of calibration., such as confidence intervals for a
true x, given a new Y, the classic calibration problem, and determining the
sensitivity of the assay using such concepts as the minimum detectable
concentration of Rodbard (1978) and' the critical level, detection level and
determination limit of Oppenheimer, et al. (1983). With the increase in
laboratory automation and the use of computers, routine estimation of assay
detection limits is becoming commonplace. As noted in practice by Oppenheimer,
et al. (1983) and others, a feature of these calibration problems is that
efficiency of estimation 1s essentially determined by how well one estimates 6.
This paper provides theoretical and empirical evidence to justify this claim.
The qualitative implications of this result are of interest regardless of how
estimation of the variance structure is performed. For example, Finney (1978,
p. 342) describes how different assumptions about the value of 6 can markedly
affect the length of confidence intervals in potency estimation for RIA assays.

To the best’ of our knowledge, our paper is one of the first which shows
explicitly that how one estimates the structural variance parameter 6 can be
important in determining the behavior of estimates of interesting quantities;
this conclusion extends beyond the realm of the assay problem. Far from being
only a nuisance parameter, @ has an important role in the analysis of

calibration and prediction problems. The implications are of interest when 0

[\ %



is important in itself, as in, for example, off line quality control, see Box
(1987) who discusses finding the levels of x which give minimum variance
subject to a constraint on the mean.

For our development, instead of pursuing a fully general theory, we focus
on ;};e determination of minimum detectable concentration. There is no unique
definitio-n of this concept, and for illustration we pick one of the possible
candidates (Rodbard, 1978).

Definition. Let Y(x,M) be the mean response based on M replicates at
concentration level x, taken independently of the calibration data set {Y“}
and let f(0,B) be the expected response at zero concentration. The minimum

detectable concentration x, at level (1-a) is the smallest concentration x for

which

pr{Y(x.M) > £(0.8)} > 1 - a. (1.4)

Other definitions replace f with f 1in (1.4). If t(a.N-p) 1is the (l-a)th
percentile of the t-distribution with N-p degrees of freedom. the usual

estimate xc of xc satisfies

(G .B) = 10.5)) = (e(a.N-p)Y2(G%P (%, ..M + v£(0.B)]).  (1.5)

!
where v[f(O.B)] is an estimate of the variance of f(O.B) and o2 is the usual
mean squared error from the weighted fit. To be precise one would replace the
t-percentage point with a correction based on the limit distribution of the
estimates of (B,6,0), but this has not been followed in practice since the

limit distribution has been unknown and the effect is asymptotically

wiJ
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unimportant. A heuristic discussion of how estimation of the variance
structure plays a role in the determination of calibration quantities can be
found in Davidian & Carroll (1987).

In Section 2, we discuss three standard methods for estimating the
var{;;ce parameter 8. In Section 3 we show that, under relatively general
conditioﬂg. two of these can be quite a bit less efficient than the third and
discuss how this difference translates theore}ically to the minimum detectable
concentration problem. In assays, along_with standard observations at known
concentrations, there are also test samples composed of additional observations
at unknown concentrations. The first two estimators can incorporate
information from both standards and unknowns while the third is equipped only
to use information from standards. We discuss how to combine estimators to
accomodate both types of data with an increase in efficiency. In Sections 4
and 5, we discuss a small Monte-Carlo study and an example to illustrate the
results. The key conclusion is that how one estimates 6 can affect the

relative efficiency of estimated quantities useful in the calibration of

assays.

2. METHODS OF ESTIMATING MEAN AND VARIANCE PARANMTETERS

The problem of estimating 0 in models (1.1) and (1.3) has been discussed
in many places in the literature. See, for example, Rodbard (1978), Jobson &
Fuller (1980), Raab (1981a), Carroll & Ruppert (1982b) and for a general theory
Davidian & Carroll (1987). We focus our attention on three methods, two of
which were proposed in the assay context. For simplicity, we discuss only the
case of equal replication Hi = M 2 2. The first two methods require some
replication and do not use the form of the mean response so that standards and

unknowns both may be considered.




2.1 Log-linearized estimation
Model (1.3) implies upon taking logarithms that the log standard deviation
is linear in the log mean with slope 6. If (7}.812) are the within
concentration sample means and variances, this suggests estimation of 0 as the
slog;ufrqy regressing log Si on log ?i. If we denote this estimate as aLL'
Rodbard (1978) suggests forming estimated standard deviations as the sample
means to the power BLL. and then applying weighted least squares to estimate J.
2.2 Modified maximum_likelihood
Assuming independence, Raab (198la) suggests estimating 6 without making

any assumptions about the form of the mean function. Raab proposes estimation

of 8 by joint maximization of the "modified” normal likelihood

M

\ |
AUT L CE S TRD) B ERY

ul(zwczg(ui.e))(“")’zexp[—

i= J

in the parameters o, 0, HyveeooHye where we have written g(xi.ﬁ.e) as g(ui.e)
to emphasize the dependence of the variance function on the mean response.
Estimation of B may now proceed via weighted least squares in a fashion
analogous to the log-linearized method. Sadler & Smith (1985) maximize (2.1)
in 0 and 68 but with My estimated by ?}. Their estimate of 6 is easier to
compute and asymptotically equivalent to that of Raab under the conditions of
Section 3.
2.3 Pseudo-likelihood
For given 6 the pseudo-likelihood estimator of 6 is the normal theory

maximum likelihood estimate, maximizing

N ~ N A2 A D
- M Ellog{g(xi.ﬁ.e)} - (N/2)log[N ~ = le(yij-f(xi'p)) g(xi.ﬁ.e) J.

i= =




see Carroll & Ruppert (1982b). To estimate 6 and B jointly one can (i) set 5 =
unweighted least squares; (i1i) estimate 6 by pseudo-likelihood; (iii) form
estimated variances g2(x1.5.8); (iv) re-estimate B by weighted least squares;
(v) ,:i‘"terate (i1) - (iv) one or more times. The number of cycles € of this
algorithn; is the number of times one performs step {iv). One can do step (ii)
by direct maximization or by weighted least squares as in Davidian & Carroll
(1987). N

Pseudo-likelihood requires no replication and easily copes with unequal
replication. Since pseudo-likelihood depends on the form of the mean function,
only data from standards may be used to construct the estimate.

2.4 Other methods

Other methods have been proposed; see Jobson & Fuller (1980) and Box &
Hill (1974). Robust variance function estimation methods have also been
developed by Carroll & Ruppert (1982b) and Giltinan, Carroll & Ruppert (1986).

A final method of Jjointly estimating (B.6) is normal theory maximum
likelihood. There are important issues of robustness which complicate routine
use of this method, see McCullagh (1983), Carroll & Ruppert (1982a) and
Davidian « Carroll (1987) for further discussion. For assay data,
pseudo-likelihood and maximum likelihood estimates of 6 have similar asymptotic
behavior, and we use the former largely for 1its ease of calculation.

At this point we address briefly issues related to assay design. It may
be argued that estimation of the variance structure ignores the difficulties
introduced by lack of randomization, in particular that adjacent positioning of
replicates will likely lead to underestimation of the variance. This is an

important but difficult issue which involves problems of variance component

estimation and correlated observations, and we consider it beyond the scope of
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the discussion here. It is worthwhile to note that the pseudo-likelihood
estimator includes lack-of-fit error as well as replication error while the
log-linearized estimator does not include the former. The two methods do not
estimate the same quantity without the proper assumptions.
3. ASYNPTOTIC THEORY

The asymptotic theory of the log—-lineari.zed esttmtor.aul is complicated
because regressing log Si on log ?1 i:e. not a standard linear regression
problem. Likewise, the asymptotic theory for the modified maximum likelihood
estimator Bm is complicated because the dimension of the parameter space
increases with N. Both problems may be treated as nonlinear
errors-in-variables problems as in Wolter & Fuller (1982) and Stefanski &
Carroll (1985). The error in estimating My by Yl in aLL or by the joint
estimator ;:1 in Em causes these estimators to be biased asymptotically. This
bias is typically negligible, because in most assays the parameter ¢ in (1.1)
is quite small. It thus makes sense to define an asymptotic theory where the
sample size Ns = NM becomes large and ¢ simultaneously is small. Because in
most assays the number of replicates M is small, we let N » ® and o = O while
keeping M fixed; Raab (1981a) suggests that M = 2 is most common. The approach
of letting N - ® and o0 -» O simultaneously 1is dictated by the problems of
studying ELL and Bm The pseudo-likelihood estimator GPL has routine
asymptotic theory even for fixed o.

The asymptotic distributions of these estimators for 0 can be obtained

from the general theory of Davidian & Carroll (1987). Throughout this

discussion we focus on model (1.3). Define €y = {Yij - f(xi.B)}/{of(xi.ﬁ)e}.
v, = log f(xi.ﬁ). q? = (M-l)—l}l(e”-zi)z. and 0‘2,

im (N-1)"'3(v,-0)%.
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THEOREM 1. As N -» @ and o - O simultaneously and N'/%0 = 0(1), if the random

variables (eij} are symmetric and independent and identically distributed. then

eLL' GHHL and BPL are asymptotically normally distributed with mean 6 and
variances var{log qi)/(4N03). var(q?)/(4No%). and var(e?J)/(éNMa%).
respeétively.

Here, the symmetry condition is necessary to ensure that the asymptotic

distributions of BL.L and BMML

result for aPL' Since var(qi) = {var(efj)/l(} + [2/{M(M-1)}]. am

uniformly larger asymptotic variance than ePL for all M > 2 regardless of the

have zero mean; symmetry is unnecessary for the
has

distribution of the {e For normal data, the efficiency of modified maximum

ij}'
likelihood relative to pseudo-likelihood is (M-1)/M. A simple calculation
shows in this case that the efficiencies of the log~linearized method relative
to modified maximum likelihood are 40.5X%, 60.8X%, 71.3%, and 89.3X for M = 2, 3,
4, and 10, respectively, so that the efficiency of ELL relative to 8PL is only
20.3%X for M = 2 and 53.5X for M = 4. In our experience, these numbers slightly
exaggerate the inefficiency of 81.].. relative to pseudo-likelihood, especially in
assay problems where N is rather small, as in the Monte Carlo study of Section
4. The asymptotic relative efficiencies of SLL relative to 8MML agree quite
well with the efficiencies of 39X, 62X and 77X and 39X, 64X and 74X for M = 2,
3 and 4 reported by Raab (198la) and Sadler & Smith (1985). respectively, in
two Monte—Carlo ‘studies with larger N. Davidian & Carroll (1987) show that
under the condition o - 0 and (1.1), pseudo-likelihood and normal theory
maximum likelihood are asymptotically equivalent. Thus, while the inefficiency
of the log-linearized and modified maximum likelihood methods is not surprising

for normal data, Theorem 1 shows the large extent to which the log-linearized

method can be inefficient for small M under normality as well as the fact that

pesy e P—
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modified maximum likelihood 1s inefficient for all distributions.

A benefit of the log-linearized and modified likelihood methods is that
they can incorporate the responses at unknown concentrations to estimate 0
vwhile pseudo-likelihood can not. One can improve upon pseudo-likelihood to
take’:)-into account unknowns by considering a weighted estimator of 6 which
combines‘aPL and one of the others in the obvious way. The increase 1in
efficiency of such an estimator over the others alone will depend on the amount
of information available from test samples r;lative to standard samples. In
this discussion we have restricted our 1;vestigation to standard observations
because the improvement in efficiency by pseudo-likelihood comes from these
data.

For the minimum detectable concentration, note that in (1.5) the term
v{f(O.B)} is of the order (NM)_l and is hence small relative to all the other

terms. Of course, for normally distributed data, the solution to (1.5) is the

quantity x:. where

0 = {2())%? (.M - (1(:5.B) - £(0.B)Y°. (3.1)

and z(a) is the (1 - a)th percentile point of the standard normal distribution.
Here is the major result, the technical details for which are given in the

appendix. Define dj = log £(0.) - lim N log f(x,.B).

THEOREM 2. Let xc(LL). xc(MML) and xc(PL) denote the estimated minimum

detectable concentrations using the log-linearized estimate 8 the modified

u"
maximum likelihood estimate eMML and the pseudo-likelihood estimate aPL’

respectively. Then under regularity conditions and the conditions of Theorem

1, there is a constant Ao and a sequence bN for which ;c(LL). ;C(MML) and

Al

A
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~ 2
xc(PL) are asymptotically normal with mean x, and variances VLLCN' Vi Sy @nd

2 2,2 2 2 2
VPLCN' respectively, where cy =0 /(NbNAo). VLL = var(eij)+var(log qi)dgH/av).

MLL

2 2 2
A/ = var(eij)+var(q1)dgulav. and VPL

= var(efj){l+d§/03} .
’n;rom the above, the ordering in efficiency of estimated minimum detectable
concentra;ion is the same as the ordering of estimators of 0. The asymptotic
relative efficiency of the modified maximum likeliliood estimate of minimum
detectable concentration relative to _the pseudo-likelihood estimate is
var(e?j)(03+d0)/{var(efj)(03+dg)+2dg/(u—l)). which is less than 1 for all M
regardless of the value of var(efj). The asymptotic relative efficiency of the
log~linearized estimate of wminimum detectable concentration to the
pseudo-likelihood estimate 1{s var(efi)(03+dg)/(03var(efj)+Md§var(log q?)}.
Thus, pseudo-likelihood is favored over modified maximum likelihood for any
underlying distribution and is favored over the log-linearized method at least
vwhen the data are approximately normal. For distributions other than normal,
calculations with other symmetric distributions such as double exponential and
various contaminated normal distributions show very few cases where 8LL is more
efficient than aPL' The numerical efficiencies depend on the logarithm of the

true means through dg and 03.

For example, in the simulation discussed in the
next section, the asymptotic relative efficiency of the log-linearized estimate
is 26.6X for M = 2 and 62.1X for M = 4.

The asymptotic theory thus confirms that inefficiencies in estimating the

variance parameter 6 translate into inefficiencies for estimating the minimum

detectable concentration.

4. A SINMULATION

To check the qualitative nature of the asymptotic theory. we ran a small




12

simulation based on an ELISA assay. The responses Y1 were normally

J
distributed with mean and variance satisfying (1.2), (1.3), where Bl = 30.5754,
By = 1.9173, BS = 1,7235, ﬁ4 = 0.9730, 8 = 0.7 and o = 0.0848. The 12
concentrations were chosen from the example of Section § to represent the
numl;er of levels typical for assay data. These were every other concentration
begiminé with 0.000 in Table 1. For each of 500 data sets for M = 2 and 4, B
was estimated by unweighted least squares and .by generalized least squares with
8 estimated by the log-linearized, pseudo-likelihood, and modified maximum
likelihood methods, with weighting as in Section 2. We used the estimate of
Sadler & Smith (1985) described in Section 2 in place of modified maximum
likelihood and computed the pseudo-likelihood estimate for € = 2 cycles of the
algorithm as suggested by the results' of Davidian & Carroll (1987). The
estimates of 6 were constrained to lie in the interval 0 { 6 ¢ 1.50.

For M = 2, the Monte Carlo biases and standard errors, in parentheses, for
6 were -0.0371 (0.2848) for the log-linearized method, -0.0162 (0.2146) for
modified maximum likelihood and -0.0107 (0.1799) for pseudo-likelihood. For M
= 4 these were -0.0026 (0.1504), -0.0009 (0.1316) and -0.0012 (0.1247),
respectively. Thus, Monte Carlo efficiencies relative to pseudo-likelihood
based on Monte Carlo mean squared errors were for M = 2 (M = 4) 39.4X (68.7X)
for the log-linearized method and 70.1X (89.8%) for modified maximum
likelihood, compared to theoretical values of 20.3X (53.5X) and 50.0% (75.0%),
respectively. The asymptotics tend. to exaggerate the loss of efficiency:
nonetheless, this example indicates that the pseudo-likelihood estimator can be
in some circumstances a considerable improvement over the other methods.

For the minimum detectable concentration we chose a = 0.05. For all

methods, a Monte Carlo measure of (1.4) based on generating means of M new

responses at X for each data set showed that this requirement was satisfied:
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rather than 0.95, every case was at least 0.97. Mean values of estimated
minimum detectable concentrations multiplied by 100 and their Monte Carlo

variances relative to pseudo-likelihood (in parentheses) are reported below:

Monte Carlo Results for Minimum Detectable Concentration

M=2 M=4
" Least Squares 14.023 (10.5%) 9.747 (8.8%)
Log-linearized - 5.102 (33.2%). - 3.033 (74.9%)
Modified Maximum
Likelihood 4.685 (52.8%) 3.010 (84.6%)
Pseudo-likelihood  4.313 (100.0X) 2.928 (100.0%)

The relatively poor behavior of unweighted least squares is evident. To quote
from Oppenheimer, et al. (1983): "Rather dramatic differences have been
observed depending on whether a valid weighted or inappropriate unweighted
analysis 1s used.” The mean minimum detectable concentration for the
log-linearized method was 18X larger than for pseudo-likelihood method for M =
2 and 4% larger for M = 4, Whether raw numerical difference is of any
practical consequence will depend on the context. The method of estimating 6
seems to have important consequences for the variability of the estimate of
minimum detectable concentration. The asymptotics suggest efficiencies of
26.6% for the log-linearized method and 58.8% for modified maximum likelihood
when M = 2 and 62.1X and 81.1X, respectively, when M = 4, so overall the
asymptotics exaggerate somewhat the less of efficiency. We also computed the
estimates of minimum detectable concentration when 8 was known and equal to
0.7, so that the only difference between the methods was whether the
generalized least squares weighting depended on sample means or predicted
values. In every instance, the mean estimates of minimum detectable

concentration and their variances were very close, suggesting that the method
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used to estimate 6 was responsible for the differences among the estimates and
their variances reported above.

The qualitative implication 1s that the relative efficiency of the
estimated minimum detectable concentration can be affected by the algorithm

used to estimate the variance parameter 6.

5. AN EXANPLE

We illustrate the implications of -the theory by an example from the
development stage of an ELISA assay for which additional concentrations were
used to characterize the mean and variance of the standards, see Table 1. The
analysis is for illustrative purposes only and shows that the methods can lead
to nontrivially different results even with a larger sample size.

For the full data set and reduced data sets considering all possible
combinations of duplicates (except one set for which an Sf = 0). we computed
assuming (1.2) and (1.3) the pseudo-likelihood, log-linearized and Sadler &
Smith estimates of 6 and x, and that of x, based on unweighted least squares.
The results are given in Table 2 and show that the three estimates vary
greatly. As a crude measure of this we computed the means and standard
deviations of 8 and ;c for the five data sets obtained from duplicates
(ignoring the fact that these are not strictly independent). Below we list
"relative efficiencies” based on these crude measures:

"Relative Efficiencies"” for Estimators of 8 and X,

LL to PL MML to PL LL to MML
6 22.2X 35.12 63.2X
X, 52.9% 65.9% 80.2%

Qualitatively, the estimators exhibit the behavior predicted by the theory:

quantitatively, the values compare favorably with the theory given the crudity
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of the comparison. The example shows thai there can be wide differences among

the various methods for estimation of 6 and minimum detectable concentration.

- 6. DISCUSSION

';'i?e have addressed the general issue of estimating calibration quantities
in assays \;hich exhibit large amounts of heterogeneity. The wrong model
assumption of not weighting at all leads to'large dc;ereasc':,s in the efficiency
of analysis. Even when weighting is used, changes in relative efficiency occur
depending on the method of estimating the variances, especially the parameter 0
in (1.3). The key point is that while for estimation of B the effect of how
one estimates the variance function‘ is only second order, for estimation of
other quantities such as minimum detectable concentration, the effect is first
order. The implications of the results are relevant in other calibration
contexts besides the assay problem.

We have had success using the idea of pseudo-likelihood in Carroll &
Ruppert (1982b): this method applies in general heteroscedastic models and is
easy to compute, although the reader should be aware that it is not robust
against outliers. In the assay problem, the pseudo-likelihood method may be
combined with one of the others in the case in which standard as well as
unknown observations are present, resulting in an increase in efficiency. The
gain in efficiency will depend on the particular data set.

One can al;o consider data traﬁsformat!on rather than weighting. The
transform-both-sides idea in Carroll & Ruppert (1984) applies to the assay

problem. Further results and descriptions of other methods of variance

function estimation are given by Davidian & Carroll (1987).
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APPENDIX. PROOFS OF RESULTS.

,";!'he analysis of the minimum detectable concentration is complicated by the

behavior of the derivative of f(x.B) with respect to f at x=0, especially for

the standard model (1.2). VWrite f(x.B) 2 h(n.B). 'whex:e, n = &(x.B). ‘n* =

c
e(x:.ﬁ) and N = 8(xc.B). In the model (1.2), n = &(x.B) = ex'p(B4 log x). Ve
assume throughout that f(0.,8) > O, and that all functions are sufficiently

smooth. Assume further that

2(0.p) =0 : (A.1)
8/8n h(0.B) = hn(o.p) £0: (A.2)
¢5(0.5) = 0 (A.3)

If w =0 and v i{s a random variable such that
p-lim &(v.p)/&(w.B) = 1, then

p~lim sup{ | en(av-f(l-a)w.ﬂ)/!n(w.[i) -1 | for 0¢agl } =0 . (A.4)

These assumptions are satisfied for the model (1.2) if 54 > 0.

The proofs of Lemmas A.2 and A.3 are at the end of the appendix. Let ¢ =

{z{a)}>.

LEBMMA A.1. As o = O for £(0.8) > O, my = ca_ + O(c”) and a

C
(eM)2:%(0.p) (a70n n(0.8)) 7 .

Proof: A Taylor series expansion of (3.1) in 17: and around zero.
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2). Define A, =

L=
1725 - 6) = 0 (1).

LEMMA A.2. Assume that as N » @, g » 0, ('nc - n:) = Op(aNI/

2Ma_{3/6n h(0.)}°/{c£?%(0.p)}. Then as N»®, o >0, 1f N

172,~ »*
;‘le (n, - n Yo
= N2(02 - ?) /02 + 2{1og £(0.8)) N*/3(6 - 6) + o (1). (A.5)
LEMMA A.3. Consider Lemma A.2. Then
/2,2 2.2 a2 Mo, — 172~
(NM)™" “(0™ - 06)/0” = (NM) 2 E(eij—l)-2v(NM) (6 - 8) + 0 (1)
i=1 j=1 P
so that if Ao = M1/2A1 and do is defined as in Section 3,
1/2,~ »* 12N M5 172,
AN E(n, - m )/0 = (M) 151 Jfl(eij - 1) + 2d,(NH) 5(6-8) + o (1).

PROPOSITION 1 : The results of Theorem 2 hold for ;}c. where n_ = n (LL).
nc(MML) or nc(PL).

Proof of Proposition 1 : From Davidian & Carroll (1987), using Theorem 1 we
have that

- ) _ N . - -
N/2(8,, - 6) = (1/2) N 1’2121(10;; a; - E(log 42)) (v - ¥) + 0,(1) :
- _ N -
N2(8,0 - 0) = (172) N 1’2izl(qf - E(a2)} (v, - V) + 0 (1) :
N M
172, 172 - _
N2, - 8) = (1/2) N2 ¥ ‘131 le(eii -1 (v - V) +o (1) .

so that by Lemmas A.1 - A.3 and equation (A.5), we have
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/2, u
(n (PL) - n_ )/c
N M
-1/ 2 ~ 2
= (M) 1 2121 3 (¢=_1.1 = {1 + dy(v, - v)/o} + op(l):
= J:l
H26
2(n (L) - n)/o
N M N _
=235 32 -1+ a A2 3 (v, - Dlog q2/a° + o (1)
1= 1 j=1 1 o1 : v P
N2 (0L - n%)/o
N M N
=23 3 (B - 1)+ g A2 3 (v, - Mall + 0 (1),
2 o e 0 20 i

Simple central limit theorem calculations yield the result.

Remark:

The result for 8MML is based on ; obtained from the residuals of the

final fit of the mean response function as for the log-linearized method and

pseudo-likelihood, so that Lemma A.3 holds. The modified maximum likelihood
method also provides a joint estimate of o along with the estimate of 6. If
one considers this estimator in place of ; in Lemma A.3, it can be shown that
the resulting estimator of minimal detectable concentration has even larger

asymptotic variance than that in Theorem 2.

Proof of Theorem 2 : By (A.5). for an& of the estimators ;c' since n = &(x.B). i

we have for some A that e(xc.B) is asymptotically normal with mean e(x:.B) and

2 > »* 172

%
variance o“A/N. Thus, for Te between X, and X, defining WN = N ex(xc.ﬁ)

-~
(x,

- x:) / o. we have WN cx(vc.ﬂ) / ex(x:.B) is asymptotically normal with

zero mean and variance A, where Ex(v.p) is the derivative of the first

component of &(v.B). It thus suffices through (A.4) to prove that




8(1 ﬁ)/e(x .B) converges in probability to 1. But this follows since n:/a =

e(xc.ﬁ)/a =a_, see Lemma A.1. The result now follows from Propostion 1.

Proof of Lemma A.2: By a series of Taylor expansions and using Lemma A.1,

Pty

1/2 2

{h(n, 3) h(0.8)}%/0
Y2m(ny.p) - n0.B)2®
+ 2a_(a/6n h(0.B))°N"2(n, - )70 + o (1). (A.6)

172 .4

Similar calculations noting that N°"“(f - B) = O (a) and n - 0 yield

l/2h26 ~oa\02

.+ Plo /(MU )
- {hze(n* BYMINY2 & (cm) 128(0.8IN2(5 - o) /02
+ (2c/M) 128(0.8) {log h(0.8)} N/2(8 - 6) + 0,(1). (A.7)
Combining (1.5), (3.1), (A.6) and (A.7) yields (A.5).
Proof of Lemma A.3: Define
. N M N M
2 -1 6 123 2
=z oz oY, - f(x,.B) % x. . NM s €2,
%= 00T 3 0 - 16 s o s 2l

Then, since (NH)llz(B -B) = Op(a),

()12 - 32702
12N ¥ ) 2,20
=(NM) ifl f [(YIJ f(xy.B)} /87" (x,.B)

- Yy —f(xi.p))zlfze(xi.ﬁ)]a- + 0, (1)
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172 2

= ~2v(NM) "°(8 - 8) + op(l).

completing the proof.
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Table 1. Data for example of Section 5

Concentration (x) Response (Y)
0.000 1.700, 1.660, 1.950, 2.070
0.075 1.910, 2.270, 2.110, 2.390
0.1025 2.220, 2.250, 3.260, 2.920
0.135 2.800, 2.940, 2.380, 2.700
0.185 ‘2.780. 2.640, 2.710, 2.850
0.250 3.540, 2.860, 3.150, 3.320
0.400 y 3.910, 3.830, 4.880, 4.210
0.550  4.540, 4.470, 4.790, 5.680
0.750 6.060, 5.070, 5.000, 5.980
1.000 5.840, 5.790, 6.100, 7.810
1.375 7.310, 7.080, 7.060, 6.870
1.850 9.880, 10.120, 9.220, 9.960
2.500 11.040, 10.460, 10.880, 11.650
3.250 13 10, 15.470, 14.210, 13.920
4.500 16.070, 14.670, 14.780, 15.210
6.000 17.340, 16.850, 16.740, 16.870
8.250 18.980, 19.850, 18.750, 18.510
111.250 21.666, 21.218, 19.790, 22.669
15.000 23.206, 22.239, 22.436, 22.597
20.250 23.922, 24.871, 23.815, 24.871
27.500 25.748, 25.874, 24.907, 24.871
37.000 24.441, 25.874, 25.748, 27.270
50.000 29.580, 26.698, 26.536, 27.181




Table 2. Estimates of § and x. based on example of Section 5

fpL b1 ML %c(LS) %c(PL) %c(LL) k¢ (MML)

Full

Dupiicates | 0.4750 0.4757 0.4500 0.1554 0.0790 0.0793 0.0822
1&2 0.7000 0.9404 0.7500 0.2230 0.0728 0.0476 0.0659
243 0.3500 0.1950 0.2500 0.2385 0.1555 0.1870 0.1739
34 0.5750 0.6940 0.7000 0.2513 0.1324 0.1112 0.1104
144 0.5500 0.5931 0.5000 0.1593 0.0612 0.0601 0.0695
1&3 0.4500 0.4233 0.4750 0.1859 0.0938 0.0981 0.0909
Mean 0.5250 -0.5692 0.5350 0.2116 0.1031 0.1008 0.1021
SD 0.1183 0.2511 0.1997 0.0763 0.0357 0.0491 0.0439

Note: Means and SDs are based only on the five reduced combinations of the data with duplicates.

Estimate of minimum detectable concentration based on unweighted least squares is denoted x¢(LS).




