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SUNKARY

Assay data are often fitted by a nonlinear regression model

incorporating heterogeneity of variance. Typically, the standard deviation

of the response is taken to be proportional to a power 0 of the mean. There

is considerable empirical evidence suggesting that for assays of a

reasonable size, how one estimates the parameter 0 does not greatly affect

how well one estimates the mean regression function. An additional

component of assay analysis is the estinntion of auxiliary constructs such

as the minimum detectable concentration, for which many definitions exist;

we focus on one such definition. The minimum detectable concentration

depends both on 0 and the mean regression function. We compare standard

methods of estimating the parameter 0 due to Rodbard (1978). Raab (1981a)

Sadler & Smith (1985) and Carroll and Ruppert (1982b). When duplicate

counts are taken at each concentration, the first method is only 20%

efficient asymptotically In comparison to the fourth for normal data, and in

an example the resulting estimate of the minimum detectable concentration is

asymptotically 3.7 times more variable. Less dramatic results obtain for

the second and third estimators compared to the fourth. Simulation results

and an example support the asymptotic theory. The results have implications

in applications other than the assay problem in which heterogeneity of

variance and issues of calibration arise.

Some key words: Calibration; Generalized Least Squares; Heteroscedasticity;

Prediction; Weighted Least Squares.



1. INTRODUCTION

Recent work in the analysis of assay data in the clinical and biological

sciences suggests that ;Ihese data can be markedly heteroscedastic. In

radlo'Immunoassay, this characteristic has been observed repeatedly and

incorporated into the analysis as discussed by Finney (1976). Rodbard (1978).

Tiede & Pagano (1979). Raab (1981a,b), Butt (1984) aud Sadler & Smith (1985).

Such analyses are for the most part special cases of the heteroscedastic

nonlinear regression model. Specifically, we observe independent count. Yij at

concentrations x i for i = 1,....N and J = 1 .... i with means and variances

given by

E ( = = f(xi*13) ; var(Yij) = {cg(x 1'P3O))
2, (1.1)

where 1 is the unknown regression parameter vector of length p, g is the

variance function, and 8 is the structural variance parameter. A standard

model for the mean in a radioimmunoassay is the four parameter log-logistic

model

f(x.P) = 91 + (92 - pI)/ [l + exp(p4 (log x - 13))). (1.2)

Almost without exception. the variances have been modeled as functions of the

mean response, usually either as a quadratic or as a power of the mean. e.g..

6= Standard deviation of Y = ag(x1 'P.') = af(xi'13) (1.3)

The fundamental contribution of Rodbard and other workers has been to
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incorporate the heterogeneity into the analysis, thus improving the quality of

statistical analysis.

Fitting model (1.1) in assays is discussed by many authors, see Rodbard &

Frazier (1975). Raab (1981a). and Finney (1976). The most common method of

estimating P is generalized least squares. in which one forms estimates of the

a and then estimates P by weighted least squares. For estimating the weights.

both formal estimation procedures for estimating 0 (Rodbard.& Frazier, 1975 and

Raab. 1981a) and the method of setting 0 to a predetermined fixed value based

on experience with a particular assay (Finney. 1976) have been advocated. We

consider estimation of the variance parameter to be an important problem

independently of whether or not 0 is- set to a fixed value in curve fitting and

subsequent analyses. For example, estimates of 0 from developmental and

validation runs of an assay are commonly used to establish a fixed value, or

range of acceptable values, for 6. as in the example of Section 5. Also.

routine calculation of 0 after assay implementation provides information that

can be helpful in monitoring for assay changes. In the development,

production, and quality control of a pharmaceutical product, for example.

assays characteristically include fewer test samples and greater numbers of

known concentrations than in many clinical applications. This is particularly

true when the substance of interest is at very low levels in the final product.

In this case, It is practical to estimate 6, as well as limits of assay

reliability as discussed below. Extreme deviations from historical values of

these parameters may be considered when evaluating the acceptability of an

assay. The intention of this paper is to demonstrate that how well one

estimates the variance function can be crucial in determining the properties of

analyses based on the fitted curve. Qualitatively, then, how 0 is

characterized, whether by formal estimation or as fixed, is an important issue.
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When 0 is formally estimated, as discussed by Jobson & Fuller (1980) and

Carroll & Ruppert (1982b), 3 has the same asymptotic normal distribution as the

weighted least squares estimator with known o. The first order asymptotics

can be optimistic, but in our experience for RIA and ELISA assays, the

asymptotics are often reasonable. Thus, if our only interest is to estimate 10

in many assays the method of estimating the variance function may not be

crucial. However, the assay problem does not always stop. with estimating 1.

but also addresses issues of calibration, such as confidence intervals for a

true x. given a new Y., the classic calibration problem, and determining the

sensitivity of the assay using such concepts as the minimum detectable

concentration of Rodbard (1978) and the critical level, detection level and

determination limit of Oppenheimer, et al. (1983). With the increase in

laboratory automation and the use of computers, routine estimation of assay

detection limits is becoming commonplace. As noted in practice by Oppenheimer,

et al. (1983) and others, a feature of these calibration problems is that

efficiency of estimation is essentially determined by how well one estimates 0.

This paper provides theoretical and empirical evidence to justify this claim.

The qualitative implications of this result are of interest regardless of how

estimation of the variance structure is performed. For example, Finney (1978.

p. 342) describes how different assumptions about the value of 6 can markedly

affect the length of confidence intervals in potency estimation for RIA assays.

To the best' of our knowledge, our paper is one of the first which shows

explicitly that how one estimates the structural variance parameter 0 can be

important in determining the behavior of estimates of interesting quantities;

this conclusion extends beyond the realm of the assay problem. Far from being

only a nuisance parameter, 6 has an important role in the analysis of

calibration and prediction problems. The implications are of interest when 6
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is important in itself, as in, for example, off line quality control, see Box

(1987) who discusses finding the levels of x which give minimum variance

subject to a constraint on the mean.

For our development, instead of pursuing a fully general theory, we focus

on the determination of minimum detectable concentration. There is no unique

definition of this concept, and for illustration we pick one of the possible

candidates (Rodbard, 1978).

Definition. Let Y(xM) be the mean response based on M replicates at

concentration level x. taken independently of the calibration data set (Ytj)

and let f(O,) be the expected response at zero concentration. The minimum

detectable concentration xc at level (1-a) is the smallest concentration x for

which

pr(Y(x.M) f(O.3)) > 1 - a. (1.4)

Other definitions replace P with P in (1.4). If t(a.N-p) is the ( 1-a)th

percentile of the t-distribution with N-p degrees of freedom, the usual

estimate x of x satisfiesc c

f(Xc) - f(O,)} 2 = (t(aN-p)}2 (a2g2 (x c,13,)/M + vlf(O,1)]). (1.5)

a a a 2where v[f(O.)] is an estimate of the variance of f(O,) and a is the usual

mean squared error from the weighted fit. To be precise one would replace the

t-percentage point with a correction based on the limit distribution of the

estimates of (13,6,a), but this has not been followed in practice since the

limit distribution has been unknown and the effect is asymptotically

-- - .,--..--.,,,,,,.,..,, )~pm mmavmm m ui~ii mm- i ii '
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unimportant. A heuristic discussion of how estimation of the variance

structure plays a role in the determination of calibration quantities can be

found in Davidian & Carroll (1987).

In Section 2. we discuss three standard methods for estimating the

variance parameter 0. In Section 3 we show that, under relatively general

conditions, two of these can be quite a bit less efficient than the third and

discuss how this difference translates theoretically to the minimum detectable

concentration problem. In assays, along with standard observations at known

concentrations, there are also test samples composed of additional observations

at unknown concentrations. The first two estimators can incorporate

information from both standards and unknowns while the third is equipped only

to use information from standards. We discuss how to combine estimators to

accomodate both types of data with an increase in efficiency. In Sections 4

and 5, we discuss a small Monte-Carlo study and an example to illustrate the

results. The key conclusion is that how one estimates 6 can affect the

relative efficiency of estimated quantities useful in the calibration of

assays.

2. KUEOIS OF ESTIMATII N AND VARIANCE PARAXTETERS

The problem of estimating 0 in models (1.1) and (1.3) has been discussed

In many places in the literature. See, for example, Rodbard (1978). Jobson &

Fuller (1980), Rab (1981a), Carroll & Ruppert (1982b) and for a general theory

Davidian & Carroll (1987). We focus our attention on three methods, two of

which were proposed in the assay context. For simplicity, we discuss only the

case of equal replication Mi = M 2. The first two methods require some

replication and do not use the form of the mean response so that standards and

unknowns both may be considered.
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2.1 Log-linearized estimation

Model (1.3) implies upon taking logarithms that the log standard deviation

- 2is linear in the log mean with slope 6. If (Yi.Si ) are the within

concentration sample means and variances, this suggests estimation of 6 as the

slope from regressing log Si on log Y1 " If we denote this estimate as 6LL

Rodbard (1978) suggests forming estimated standard deviations as the sample

means to the power 0L. and then applying weighted lea:st squares to estimate 1.

2.2 Modified maximum likelihood

Assuming independence. Raab (1981a) suggests estimating 0 without making

any assumptions about the form of the mean function. Raab proposes estimation

of 0 by joint maximization of the "modified" normal likelihood

N M
U {2wra 2g(pi,.))- 1 /2exp[- I (YiJ-pi) 2 /(2o2 g 2 (ip.e)}] (2.1)
i=l 1=l

in the parameters a. 6. 1.... *N* where we have written g(x,.P.0) as g(piO)

to emphasize the dependence of the variance function on the mean response.

Estimation of (3 may now proceed via weighted least squares in a fashion

analogous to the log-linearized method. Sadler & Smith (1985) maximize (2.1)

in a and 6 but with p estimated by Y1 " Their estimate of 0 is easier to

compute and asymptotically equivalent to that of Raab under the conditions of

Section 3.

2.3 Pseudo-likelihood

For given P the pseudo-likelihood estimator of 0 is the normal theory

maximum likelihood estimate. maximizing

N -1N M 2-MN logg~xiO,) - (N/2)log[N- I  I {Yi-f(xi.P))2g(xl,.o) 2

i=1 i=1 J=l
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see Carroll & Ruppert (1982b). To estimate 0 and 13 jointly one can (i) set (=

unweighted least squares; (ii) estimate 0 by pseudo-likelihood; (iii) form

2 J
estimated variances g (x1 .1.O); (iv) re-estimate 13 by weighted least squares;

(v) iterate (ii) - (iv) one or more times. The number of cycles T of this

algorithm is the number of times one performs step (iv). One can do step (ii)

by direct maximization or by weighted least squares as in.Davidian & Carroll

(1987).

Pseudo-likelihood requires no replication and easily copes with unequal

replication. Since pseudo-likelihood depends on the form of the mean function,

only data from standards may be used to construct the estimate.

2.4 Other methods

Other methods have been proposed; see Jobson & Fuller (1980) and Box &

Hill (1974). Robust variance function estimation methods have also been

developed by Carroll & Ruppert (1982b) and Ciltinan, Carroll & Ruppert (1986).

A final method of jointly estimating (13.6) is normal theory maximum

likelihood. There are important issues of robustness which complicate routine

use of this method, see McCullagh (1983). Carroll & Ruppert (1982a) and

Davidian aL Carroll (1987) for further discussion. For assay data,

pseudo-likelihood and maximum likelihood estimates of 0 have similar asymptotic

behavior, and we use the former largely for its ease of calculation.

At this poiht we address briefly issues related to assay design. It may

be argued that estimation of the variance structure ignores the difficulties

introduced by lack of randomization, in particular that adjacent positioning of

replicates will likely lead to underestimation of the variance. This is an

important but difficult issue which involves problems of variance component

estimation and correlated observations, and we consider it beyond the scope of
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the discussion here. It is worthwhile to note that the pseudo-likelihood

estimator includes lack-of-fit error as well as replication error while the

log-linearized estimator does not include the former. The two methods do not

estimate the same quantity without the proper assumptions.

3. ASYKPTUTIC THEM

The asymptotic theory of the log-linearized esttator. 1 1 is complicated

because regressing log Si on log Y is not a standard linear regression

problem. Likewise, the asymptotic theory for the modified maximum likelihood

estimator 6MML is complicated because the dimension of the parameter space

increases with N. Both problems may be treated as nonlinear

errors-in-variables problems as in Wolter & Fuller (1982) and Stefanski &

Carroll (1985). The error in estimating pi by Y in 8LL or by the Joint
Aa

estimator p in 8MML causes these estimators to be biased asymptotically. This

bias is typically negligible, because in most assays the parameter a in (1.1)

is quite small. It thus makes sense to define an asymptotic theory where the

sample size Ns = NM becomes large and a simultaneously is small. Because in

most assays the number of replicates M is small, we let N -+ - and a -* 0 while

keeping M fixed; Raab (1981a) suggests that M = Z is most common. The approach

of letting N -* - and a -+ 0 simultaneously is dictated by the problems of

studying LL and 0MML" The pseudo-likelihood estimator 6PL has routine

asymptotic theory even for fixed a.

The asymptotic distributions of these estimators for 6 can be obtained

from the general theory of Davidian & Carroll (1987). Throughout this

discussion we focus on model (1.3). Define &ij = {YIJ - f(xi' 3)}/{af(xi 'J3)}

v= log f(xi.i3). q2 = (M-l)- T(ejjei)2. and v = lim (N-l)- l(vi-v') 2 .

v
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THEOREM 1. As N -. and a -* 0 simultaneously and N1 / 2 o a 0(1). if the random

variables (aij} are symmetric and independent and identically distributed, then

0 LL • -_MML and 6PL are asymptotically normally distributed with mean 0 and
q)d N 2v 2 2 2

variances var~log q,)/(4Na2). var(q1 )/(4Nav), and var(62 )/(4NMa2).

respectively.

Here, the symmetry condition is necessary to ensure that the asymptotic

distributions of 0LL and 6MML have zero mean; symmetry is unnecessary for the
2

result for 9PL Since var(qi) = 2var(eij)/M} + [2/{M(M-I)], 0 MML has

uniformly larger asymptotic variance than 0PL for all M 1 2 regardless of the

distribution of the {eij}. For normal data, the efficiency of modified maximum

likelihood relative to pseudo-likelihood is (M-1)/H. A simple calculation

shows in this case that the efficiencies of the log-linearized method relative

to modified maximum likelihood are 40.5%. 60.8%. 71.3%. and 89.3% for M = 2. 3.

4. and 10. respectively, so that the efficiency of 0LL relative to 0PL is only

20.3% for M = 2 and 53.5% for M = 4. In our experience, these numbers slightly

exaggerate the inefficiency of 0LL relative to pseudo-likelihood, especially in

assay problems where N is rather small, as in the Monte Carlo study of Section

4. The asymptotic relative efficiencies of LL relative to M4L agree quite

well with the efficiencies of 39%. 62% and 77% and 39%. 64% and 74% for M = 2.

3 and 4 reported by Raab (1981a) and Sadler & Smith (1985). respectively, in

two Monte-Carlo 'studies with larger N. Davidian & Carroll (1987) show that

under the condition a -+ 0 and (1.1). pseudo-likelihood and normal theory

maximum likelihood are asymptotically equivalent. Thus, while the inefficiency

of the log-linearized and modified maximum likelihood methods is not surprising

for normal data, Theorem 1 shows the large extent to which the log-linearized

method can be inefficient for small M under normality as well as the fact that
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modified maximum likelihood is inefficient for all distributions.

A benefit of the log-linearized and modified likelihood methods is that

they can incorporate the responses at unknown concentrations to estimate 6

while pseudo-likelihood can not. One can improve upon pseudo-likelihood to

take into account unknowns by considering a weighted estimator of 0 which

combines 6PL and one of the others in the obvious way. The increase In

efficiency of such an estimator over the others alone will depend on the amount

of information available from test samples relative to standard samples. In

this discussion we have restricted our investigation to standard observations

because the improvement in efficiency by pseudo-likelihood comes from these

data.

For the minimum detectable concentration, note that in (1.5) the term

-1v{f(O.P)) is of the order (NM) and is hence small relative to all the other

terms. Of course, for normally distributed data. the solution to (1.5) is the

quantity Xc* where

0= (z(a))2226 (X*,P) - (f(X*,P) - f(O2)) (3.1)

-th

and z(a) is the (1 -a) t h percentile point of the standard normal distribution.

Here is the major result, the technical details for which are given in the

appendix. Define do = log f(O.) - lim N-I_ log f(xi.,3).

.

THEOREM 2. Let xc(LL). xc(MML) and Xc(PL) denote the estimated minimum

detectable concentrations using the log-linearized estimate LL, the modified

maximum likelihood estimate 0 4L and the pseudo-likelihood estimate 0PL"

respectively. Then under regularity conditions and the conditions of Theorem
a ab1, there is a constant A0 and a sequence bN for which Xcc(LL) , Xc(MML) and
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xc(PL) are asymptotically normal with mean xc and variances VLLcN. VML CN and
2 2 22 2 M/0

VpLCN. respectively, where cN = a/(rNbA L). = var(ei )+var(log q )dM ).

vat( 2)+var(q )d2Ma2 and VpL = var(eij)(l+do/C}2 )

From the above, the ordering in efficiency of estimated minimum detectable

concentration is the same as the ordering of estimators of 6. The asymptotic

relative efficiency of the modified maximum likelihood estimate of minimum

detectable concentration relative to the pseudo-likelihood estimate is

vra2 )a2d 2 2 2 2
a ii v d)/{var(elj)(a +d)+2d;/(M-I)). which is less than 1 for all M

regardless of the value of var( j). The asymptotic relative efficiency of the

log-linearized estimate of minimum detectable concentration to the
2• )2d2)/ 2 2 2 q2)

pseudo-likelihood estimate is var(a i2vd0)avvar(alj)+Md0var(log

Thus, pseudo-likelihood is favored over modified nximum likelihood for any

underlying distribution and is favored over the log-linearized method at least

when the data are approximately normal. For distributions other than normal,

calculations with other symmetric distributions such as double exponential and

various contaminated normal distributions show very few cases where 6LL is more

efficient than 6 The numerical efficiencies depend on the logarithm of the

true means through d2 and a2  For example, in the simulation discussed in the

next section. the asymptotic relative efficiency of the log-linearized estimate

is 26.6Z for M = 2 and 62.1% for M = 4.

The asymptotic theory thus confirms that inefficiencies in estimating the

variance parameter 6 translate into inefficiencies for estimating the minimum

detectable concentration.

4. A SIMULATION

To check the qualitative nature of the asymptotic theory, we ran a small
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simulation based on an ELISA assay. The responses Y were normally

distributed with mean and variance satisfying (1.2). (1.3), where P1 = 30.5754.

P2 = 1. 9173, P3 = 1.7235. P4 = 0.9730. 6 = 0.7 and a = 0.0848. The 12

concentrations were chosen from the example of Section 5 to represent the

number of levels typical for assay data. These were every other concentration

beginning with 0.000 in Table 1. For each of 500 data sets for M = 2 and 4. P

was estimated by unweighted least squares and by generalized least squares with

0 estimated by the log-llnearized. pseudo-likelihood, and modified maximum

likelihood methods, with weighting as in Section 2. We used the estimate of

Sadler & Smith (1985) described in Section 2 in place of modified maximum

likelihood and computed the pseudo-likelihood estimate for T = 2 cycles of the

algorithm as suggested by the results of Davidian & Carroll (1987). The

estimates of 6 were constrained to lie in the interval 0 0 j 1.50.

For M = 2. the Monte Carlo biases and standard errors, in parentheses, for

6 were -0.0371 (0.2848) for the log-linearized method, -0.0162 (0.2146) for

modified maximum likelihood and -0.0107 (0.1799) for pseudo-likelihood. For M

= 4 these were -0.0026 (0.1504), -0.0009 (0.1316) and -0.0012 (0.1247).

respectively. Thus, Monte Carlo efficiencies relative to pseudo-likelihood

based on Monte Carlo mean squared errors were for M = 2 (M = 4) 39.4% (68.7%)

for the log-linearized method and 70.1% (89.8%) for modified maximum

likelihood, compared to theoretical values of 20.3% (53.5%) and 50.0% (75.0%).

respectively. The asymptotics tend. to exaggerate the loss of efficiency;

nonetheless, this example indicates that the pseudo-likelihood estimator can be

in some circumstances a considerable improvement over the other methods.

For the minimum detectable concentration we chose a = 0.05. For all

methods, a Monte Carlo measure of (1.4) based on generating means of M new

responses at xc for each data set showed that this requirement was satisfied;
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rather than 0.95. every case was at least 0.97. Mean values of estimated

minimum detectable concentrations multiplied by 100 and their Monte Carlo

variances relative to pseudo-likelihood (in parentheses) are reported below:

Monte Carlo Results for Minimum Detectable Concentration

M=2 M=4

Least Squares 14.023 (10.5%) 9.747 (8.8%)

Log-linearized 5.102 (33.2%) 3.033 (74.9%)

Modified Maximum

Likelihood 4.685 (52.8%) 3.010 (84.6%)

Pseudo-likelihood 4.313 (100.0%) 2.928 (100.0%)

The relatively poor behavior of unweighted least squares is evident. To quote

from Oppenheimer. et al. (1983): "Rather dramatic differences have been

observed depending on whether a valid weighted or inappropriate unweighted

analysis is used." The mean minimum detectable concentration for the

log-linearized method was 18% larger than for pseudo-likelihood method for M =

2 and 4% larger for M = 4. Whether raw numerical difference is of any

practical consequence will depend on the context. The method of estimating e

seems to have important consequences for the variability of the estimate of

minimum detectable concentration. The asymptotics suggest efficiencies of

26.6% for the log-linearized method and 58.8% for modified maximum likelihood

when M = 2 and 62.1% and 81.1%. respectively, when M = 4. so overall the

asymptotics exaggerate somewhat the less of efficiency. We also computed the

estimates of minimum detectable concentration when 8 was known and equal to

0.7. so that the only difference between the methods was whether the

generalized least squares weighting depended on sample means or predicted

values. In every instance, the mean estimates of minimum detectable

concentration and their variances were very close, suggesting that the method
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used to estimate 0 was responsible for the differences among the estimates and

their variances reported above.

The qualitative implication is that the relative efficiency of the

estimated minimum detectable concentration can be affected by the algorithm

used to estimate the variance parameter 6.

5. AN EXAMPLE

We illustrate the implications of the theory by an example from the

development stage of an ELISA assay for which additional concentrations were

used to characterize the mean and variance of the standards, see Table 1. The

analysis is for illustrative purposes only and shows that the methods can lead

to nontrivially different results even with a larger sample size.

For the full data set and reduced data sets considering all possible

combinations of duplicates (except one set for which an S2 = 0). we computed

assuming (1.2) and (1.3) the pseudo-lIkelIhood, log-linearized and Sadler &

Smith estimates of 0 and xc and that of x based on unweighted least squares.

The results are given in Table 2 and show that the three estimates vary

greatly. As a crude measure of this we computed the means and standard
A A

deviations of 6 and x for the five data sets obtained from duplicates

(ignoring the fact that these are not strictly independent). Below we list

"relative efficiencies" based on these crude measures:

"Relative Efficiencies" .for Estimators of 0 and x

LL to PL KML to PL LL to MML

6 22.21 35.11 63.21

x 52.9% 65.9Z 80.21

Qualitatively, the estimators exhibit the behavior predicted by the theory:

quantitatively, the values compare favorably with the theory given the crudity
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of the comparison. The example shows that there can be wide differences among

the various methods for estimation of e and minimum detectable concentration.

6. DISCUSSION

We have addressed the general issue of estimating calibration quantities

in assays which exhibit large amounts of heterogeneity. The wrong model

assumption of not weighting at all leads to'large decreases in the efficiency

of analysis. Even when weighting is used. changes in relative efficiency occur

depending on the method of estimating the variances, especially the parameter 0

in (1.3). The key point is that while for estimation of P the effect of how

one estimates the variance function is only second order, for estimation of

other quantities such as minimum detectable concentration, the effect is first

order. The implications of the results are relevant in other calibration

contexts besides the assay problem.

We have had success using the idea of pseudo-likelihood in Carroll &

Ruppert (1982b); this method applies in general heteroscedastic models and is

easy to compute, although the reader should be aware that it is not robust

against outliers. In the assay problem, the pseudo-likelihood method may be

combined with one of the others in the case in which standard as well as

unknown observations are present, resulting in an increase in efficiency. The

gain in efficiency will depend on the particular data set.

One can also consider data transformation rather than weighting. The

transform-both-sides idea in Carroll & Ruppert (1984) applies to the assay

problem. Further results and descriptions of other methods of variance

function estimation are given by Davidian & Carroll (1987).
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APPEMDIX. PROOFS OF RESULTS.

The analysis of the minimum detectable concentration is complicated by the

behavior of the derivative of f(x.) with respect to P at x=O, especially for

the standard model (1.2). Write f(x.1) .L h(TI.1).. where T7 = e(x,f). T c =

£(x.3) and nc = e(x 4 ). In the model (1.2). qi = e(x,) = exp( 4 log x). We

assume throughout that f(O,4) > 0. and that all functions are sufficiently

smooth. Assume further that

e(O.p) = 0 : (A.1)

i/an h(OP) = h (0.) s 0 ; (A.2)

P (0,) = 0 : (A.3)

If w -# 0 and v is a random variable such that

p-lim t(v.t3)/a(w.,3) = 1. then

p-lim sup( I en(av+(l-a)wp)/e T1(w.p) - I I for Oa l ) = 0 . (A.4)

These assumptions are satisfied for the model (1.2) if 134 > 0.

The proofs of Lemmas A.2 and A.3 are at the end of the appendix. Let c =

2(z(a))

a4 + 2 and

LEKA A.I. As a -# 0 for f(O43) > 0. c= c 0(a C

(c/M) 1/21fe(O.3) {/8 h(O.1))-1 .

Proof: A Taylor series expansion of (3.1) in 7c and around zero.
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I 2 -1/2

N-, a a12o ) 2/a 2 + 2(log f(O.Pl)) N1/2(' 0)e + o p(1). (A.5)

LEMMA A.3. Consider Lemma A.2 Then

=0 (M .Dfn

(NM)I/2 (U 2 a2)/a2 =(iNM)_1/2 .1 _T(2 1)_7NM12 )+o()

i= J=l ij

so that If A0  Ml/ A I and dO0 is defined as In Section 3.

AONI22 6) C1/)-l/2 N M 2
- = (o( -Q-)12 + 2 ( 6 ) 6)+ +o 2(1). O () .

N1/2A2.. 2i (2 N-
1 2 N M2 -2/2

(M (a-a)= (NM Ilgq I~i- l)- 2 v}}(M -) +O(1)

i==1 i( p

PROPOSITION 1 The results of Theorem 2 hold for i~.where =

ij (MM.) or Ti(PL).

Proof of Proposition 1 From Davidian & Carroll (1987). using Theorem 1 we

have that

N1 /2  -1/2 N .2 2-

i=l

NI (-CLL 0) (1/2) lN-1 ' I - lo q M~ o q,) v

N (8 ( - I) (12N -. 1(v i - )+ Op(1)
PL I=1 J=1

so that by Lemmas A.1 - A.3 and equation (A.5). we have



AoN 1/ 2 ((PL - c)

= j~l(E2 - 1){l + do(vi - )/a2} +0(1);

(---1/2N 2 1) 1/2 - /  (+ ~ dolog 27l 2
(NM 1j -11 p (o1); v p(

1=1 J=1 =

AOP1/ (^ (LL) - *I

12 NM 2 -1/2 N 2 2=(NM)_ Y 1 ~(6 11l) + dM NM1  2 I (vt - 7)Iog q l + p (1);
1=1 J=1 0 ~

and

A =N1/2 (0(MML) - *)/a

12 N X 212 N22
(NM)_ I 1 ~ -1) + de 1 / 2 1 (v v)q/u + o M

i=1 J=l 1=1

Simple central limit theorem calculations yield the result.

Remark: The result for OML is based on a obtained from the residuals of the

final fit of the mean response function as for the log-linearized method and

pseudo-likelihood, so that Lemma A.3 holds. The modified maximum likelihood

method also provides a Joint estimate of a along with the estimate of 6. If

one considers this estimator in place of a in Lemma A.3. it can be shown that

the resulting estimator of minimal detectable concentration has even larger

asymptotic variance than that in Theorem 2.

Proof of Theorem 2 : By (A.5), for any of the estimators xc , since il = E(x./).

we have for some A that e(x cP) is asymptotically normal with mean t(x and

variance a2AN. Thus, for .c between xc and x. defining WN = N 1/ 2  x(Xc

(X - x)/ a. we have WN e(-c. P) / . 0  43*,) is asymptotically normal with

zero mean and variance A. where 2x (v,3) Is the derivative of the first

component of £(v.0). It thus suffices through (A.4) to prove that
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e(cp)/le(xc .P) converges in probability to 1. But this follows since /- l

e(x*.P)/a -+ a . see Lemma A.l. The result now follows from Propostion 1.

Proof of Lemma A.2: By a series of Taylor expansions and using Lemma A.l.

Nl/2h( .13) - h(0.13))2/u2

1/22 2 2N N12{h(n.1.) - h(O.)) /

+ 2a c(/vi h(O,3))2N/2N1 r c -,)/ + o (1). (A.6)

1/2Similar calculations noting that N 1 - P) = 0 (o) and , -+ 0 yield

N "h26 (TI, I/(Mo2)

= (h 2 e6 ( .1)/M)N1/ 2 + (c/N) h2o(OP)N 1 a2 - o)la2

+ (2c/M) h2(0/.) (log h(O,13)) N1(e - 6) + o p(). (A.7)

Combining (1.5), (3.1), (A.6) and (A.7) yields (A.5).

Proof of Lemma A.3: Define

-2 N M 0))2 e)x N M 2
CIl = (N)-'I I [(Yij - f(xi.))/f(Xi, 2 = ( a)IoI2a i

i=1 j=l i=1 J=1

Then. since (NM) /2(P - P) = OP(o).

()/2(2_
(NM) 112(o 2 °0]/°"2 2

N

( -)1/2 N - 22

=(NM) - I  I T [(YIa - f(xi.3)) /f2(xi43 )
i=l J=l

- (Yi -f(x 2/)) /f2 (xi.P)]a-2 + Op (1)

p
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-2(NM) 1/2 - 0) + Op(1).

completing the proof.
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Table 1. Data for example of Section 5

Concentration (x) Response (Y) I
0.000 1.700. 1.660. 1.950, 2.070

0.075 1.910. 2.270, 2.110, 2.390

0.1025 2.220, 2.250:. 3.26.0. 2.920

0.135 2.800. 2.940. 2.380, 2.700

0.185 2.780, 2.640. 2.710, 2.850

0.250 3.540. 2.860. 3.150, 3.320

0.400 3.910. 3.830. 4.880. 4.210

0.550 4.540, 4.470. 4.790. 5.680

0.750 6.060. 5.070. 5.000. 5.980

1.000 5.840, 5.790, 6.100, 7.810

1.375 7.310. 7.080, 7.060. 6.870

1.850 9.880, 10.120, 9.220, 9.960

2.500 11.040, 10.460. 10.880. 11.650

3.250 13 10. 15.470. 14.210. 13.920

4.500 16.070. 14.670, 14.780. 15.210

6.000 17.340. 16.850, 16.740. 16.870

8.250 18.980, 19.850, 18.750, 18.510

,11.250 21.666. 21.218, 19.790. 22.669

15.000 23.206. 22.239. 22.436. 22.597

20.250 23.922. 24.871, 23.815, 24.871

27.500 25.748. 25.874. 24.907. 24.871

37.000 24.441, 25.874. 25.748. 27.270

50.000 29.580. 26.698. 26.536 27. 181



Table 2. Estimates of 0 and xc based on example of Section 5

6PL iLL iMML kc(LS) fc(PL) kc(LL) ic (MML)

Full

Dupficates 0.4750 0.4757 0.4500 0.1554 0.0790 0.0793 0.0822

1 & 2 0.7000 0.9404 0.7500 0.2230 0.0728 0.0476 0.0659

2 & 3 0.3500 0.1950 0.2500 0.2385 0.1555 0.1870 0.1739

3 & 4 0.5750 0.6940 0.7000 0.2513 0.1324 0.1112 0.1104

1 & 4 0.5500 0.5931 0.5000 0.1593 0.0612 0.0601 0.0695

1 & 3 0.4500 0.4233 0.4750 0.1859 0.0938 0.0981 0.0909

Mean 0.5250 0.5692 0.5350 0.2116 0.1031 0.1008 0.1021

SD 0.1183 0.2511 0.1997 0.0763 0.0357 0.0491 0.0439

Note: Means and SDs are based only on the five reduced combinations of the data with duplicates.

Estimate of minimum detectable concentration based on unweighted least squares is denoted 5c(LS).

m - °J f n


