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1. INTRODUCTION AND OVERVIEW

This report presents specifications for the system and subsystem components of the C2 Internet
Experiment application. C2 Internet is a complementary effort to the Cronus distributed operating
system project; both C2 Internet and Cronus are part of a larger program to develop and support an
appropriate technology base for building the types of distributed systems which are expected to be
fundamental in future command and control systems. The Cronus system development project is an
ongoing project which is developing an architecture, an operating system, and software development tools
to support distributed command and control applications. Under the C2 Internet Experiment we are
designing and building prototype applications to demonstrate Cronus concepts and to evaluate Cronus'
current suitability for supporting command and control applications.

This report focusses on specifications for various components and how those components are
designed and built. This report represents a continuation of the design initially presented in C2 Internet
Experiment: Interim Technical Report IBBN-6073], and includes details of components which have been
designed after that report was published. We assume that the reader is already familiar with the
functional description of the application presented in IBBN-59421.

1.1. Background

It is inevitable that many military systems of the future will be both automated and physically
distributed. These systems are well-matched to the potential benefits of a distributed architecture.
Collections of these systems are necessarily larger and more complex than their component systems. With
current technology, there is no alternative to a distributed architecture for such cooperating systems.
Many systems obtain survivability through physical dispersal and redundancy [ADDCOMPE83, TRW80].
In these cases too, a distributed system architecture is essential.

Once we have accepted the idea that future systems will be distributed, there are a number of other
desirable characteristics which the support architecture should exhibit. Functional specialization generally
necessitates that different types of computers will be available and used to solve different parts of an
overall problem, yet the result must continue to perform as an integrated system. System distribution
should not diminish the usual requirements for effectively controlling the management of system resources
or the desire to control access to these resources, although it does render ineffective current mechanisms in
these areas which are limited to a single computer system. Experience has shown that large complex
systems cannot be conceived whole and remain static, but rather need to evolve with time, changing
requirements, and technology. No matter what support components we choose for an implementation,
there will inevitably be frequent growth and changes which need to be anticipated. A distributed system
architecture typically contains many components. This results in a situation of constant chaige due to
the number of components involved. Taken together, there are many formidable barriers toward
achieving the sought after benefits of a distributed system architecture.

A system development project incorporating the above requirements using available off-the-shelf
technology would currently have available only a collection of independent host computers, some
communication medium, and some standard software communication protocol support for transporting
uninterpreted data between hosts. The gap between the problem-oriented requirements and the system-
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oriented support is huge. As a consequence, the application designer is forced to deal directly with a
variety of support areas to fill this void. This added burden will at best make such projects much more
complex and expensive, and at worst cause many of them to fail.

One approach to changing this situation is through the development of a distributed operating
system (DOS) and its support functions. A distributed operating system provides computing and
communication resources to application programs, while promoting resource sharing among interconnected
computer systems, and managing the collection of resources that are shared. A DOS bridges the gap
between applications and communication by providing a coherent and integrated system for supporting

the development and operation of distributed applications.

Recognizing the existence of such a gap, the Rome Air Development Center (RADC) has for a
number of years been supporting research into the design and implementation of distributed operating
systems. In 1981 the design of the Cronus distributed operating system was begun as an attempt to
capture and extend much of what had been learned from previous research, including early investigations
under the sponsorship of the Defense Advanced Research Projects Agency (DARPA). The intent was to
provide a testbed for application developers to gain hands-on experience with designing, building, and
evaluating distributed applications. The Cronus testbed provides application developers with exposure to
Cronus concepts and software for developing distributed applications, and direct experience with the
effects of distribution on their application.

As a means of testing and evaluating the implementation of Cronus to date (see
ISchantz86, Gurwitz86, BBN-5879; and BBN-5884]) we are now developing an exemplary application
chosen from the command and control area. This testbed approach to demonstrating the utility of the
Cronus tools and concepts for developing distributed applications is referred to as the C2 Internet
Experiment. The application area is a set of battle management functions which encompass the various
aspects of distributed systems. The emphasis in the application development at this time is on the
interfaces between components that comprise the application, and the use of distributed resources by
these components. It is not on the fidelity of the command and control system components implemented.

There are a variety of uses of Cronus to be explored in the experimental application. One
important role of the DOS is to support and control interoperability between resources available on
different host systems. A second role is to facilitate the development of a multi-host implementation of
an integrated function or subsystem (e.g., one of the application resources) as an alternative to a single
host implementation, to achieve survivability, scalability, and other desirable attributes. A third role is
to facilitate the gradual evolution from existing but largely non-integrated computing resources towards
an effective integration and management of resources and services better able to capitalize from
interconnection. Each of these uses of Cronus are discussed further within the context of the C2

experiment.
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1.2. Project Objectives

There are a number of objectives being simultaneously pursued in the C2 Internet Experiment,
among them the following.

" We are attempting to demonstrate and evaluate the Cronus concepts and tools in developing a
prototype application with requirements similar to projected uses.

- We are using the existing Cronus testbed hardware;software implementation to evaluate its
performance and reliabihy characteristics under conditions approximating intended

application uses.

X\e are using the experience gained from matching application requirements to Cronus support
mechanisms, and from developing the prototype application, to help guide the direction of

future system enhancement, extension and repair, and to further refine the methodology used

for migrating from application definition to running system.

"e are using the application domain to focus appropriate problem-specific support for various
system attributes such as survivability, global resource management. and multi-cluster

operation, as well as to provide a means for the hands-on evaluation of an initial

implementation of these properties within the context of the application.

One of the first tasks accomplished under this effort was the selection of an appropriate application

or set of applications. The variety of areas in which distributed system approaches apply has had an

impact on application selection. If the application was too limited, we would surely miss important areas

for both demonstration and evaluation- if it was too large and dependent on details, we could never make
any initial progress under limited budget constraints. It is desirable to have an application domain which

includes a rich set of distributed system problems. can be adequately demonstrated without excessive
attention to details of the application, and is extensible to allow incorporation of improvements in the

tec nolog and additional effort in application development. To make test and evaluation more
meaningful. we selected a suite of applications which are immediately identifiable as close to possible

intended usage patterns: we hope that the application-independent nature of much of the underlying

system support is clearly recognizable. The application was described in detail in the Functional
Description report ;BBN-5942 . We have subsequently established prototype scenarios of use within this
application domain for demonstration and evaluation purposes.

As an initial step in the application design process. we have decomposed the application along

functional lines in keeping with the Cronus application development paradigm. and established
preliminary interactions among functions to support the selected scenarios. We have done a detailed

design for distributed versions of a few of these application functions and client programs to exercise
these functions. The functions designed to date include sensor simulation. sensor data collection and

display. support functions for meteorological and cartographic services, support for a limited C2 resource

data base. application monitoring functions, and support for initiating and controlling experiments.

We have implemented initial versions of each of the functions which have been designed to date,

using the Cronus development tools and other Cronus support mechanisms. We have intentionally
designed and implemented some subsystems before even designing other subsystems both to achieve an

early demonstration capability and to reinforce the utility of an evolutionary approach to system

development. Similarly, the components developed to date represent only a preliminary implementation
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of the full functionality appropriate to the application, emphasizing those aspects which focus on
distributed system technology. These functions will themselves evolve with time. In the course of
developing these initial system components to run under Cronus, and in using the Cronus application
development tools, there have been numerous enhancements and refinements to Cronus, and a number of
other areas have been targeted for future development.

These design and implementaion activities have now been integrated into the first significant C
Intrnet application demonstration capabilit..

1.3. Report Overview

The remainder of this report is divided into five sections and an appendix. Section 2 briefly reviews
the application description and functional components of the C2 Internet Experiment application; a more
complete discussion can be found in BBN-5942. Section 3 focuses on the use of Cronus supplied system
services and tools in the development of the C' Internct Experiment application. Sections 4 and 5 each
focus on a particular phase of the specification and implementation process. The final section briefly
rexieus our experience. A more detailed reviem of the prject call be found in tile C2 Internet
Experiment: Final Report iBBN-6251 . The appendix presents detailed specifications for the application
managers that havf, been built to manage resources used by the apphcation.

-4.
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2. APPLICATION DESCRIPTION

Of primary importance in choosing a C Internet application is that the application be a non-trivial
example in the command and control area requiring a distributed heterogeneous architecture. To make
the test and evaluation of Cronus meaningful. it is important that the application be immediately
recognizable as pertinent to planned or desired usage patterns, and that the system achieve satisfaciory
interoperability in those activities performed during the experiment scenario.

The development of the application builds upon Cronus both in approach and in the use of
underlying support. The object-oriented development approach that was used to develop the Cronus
distributed operating system. has also provided the methodology for developing the C Internet
architecture and components: the existing Cronus system functions. as we] as Cronus support for
distributed software development, implementation, and maintenance are being used to support the
development of the experimental application.

For us to make an adequate appraisal of the value of Cronus in developing distributed applications,
an application is desirable that includes a rich set of distributed system problems, yet can be adequately
demonstrated without excessive attention to details. The application should also be easily extensible in
order to allow it to follow improvements in technology and the future development of underlying Cronus
system support. This will facilitate evolution of the evaluation environment in concert with the evolution
of Cronus. In the remainder of this section. we will summarize the (2 Internet application detailed in the
Functional Description document ;BBN-5942 and describe a typical scenario which will be used to

exercise the application.

2.1. Application Architecture

The overall architecture of the C 2 Internet Experiment application reflects a process which recurs in
many diverse C 2 applications, namely repeatedly performing the following tasks:

I Collect data from several sources, recording it when appropriate:

2. Process the data to assess a given situation, either by computer or ,ii operator:

3. Take action. either to gain additional information, dispatch forces to intercept an intruder, or

otherwise react to th- data received; and

4. Verify the effects of the actions.

The application architecture selected for the C 2 Internet Experiment is shown in Figure 1, and in
more detail in Figure 2. It represents a collection of interconnected sources of data and processing
elements which are the relevant constituent parts of a hypothetical tactical air control system for
planning and supervising attacks against selected ground targets. Target data obtained from simulated
remote sensing systems is the primary source of input for data fusion (target data correlation) and other
processing. The target data correlator produces target reports for subsequent target situation analysis and

assessment. The target track reports are the primary input to mission support operations such as target
track prediction. target classification, identification. and prioritization, target/weapons pairing, and

0
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mission tasking. Other data sources, including cartographic, meteorological, and logistics and support
information, are also planned. Functions are also provided to support the monitoring and control of both
experiment and application resources.

Some of these elements will be simulated; however, the process of application design,
implementation, and user interface development mirrors the construction of an actual command and
control system using Cronus tools and concepts. A detailed functional description of these components
can be found in IBBN-5942i.

2.2. The Application Scenario

The architecture of the C2 Internet Experiment is, by design, capable of accommodating a wide
variety of command and control elements. In order to clarify the relationship between the application
architecture, its use in a C2 situation, and the underlying distributed system base, we will outline an

application scenario within which we expect to exercise the C application and (indirectly) Cronus. This
specific scenario will also provide the framework for a demonstration of Cronus within a specific command
and control context.

2.2.1. Initial Scenario Configuration

The application will run on a heterogeneous collection of computers, eventually spread across at
least two physically dispersed areas. Application functions will be assigned to these computers in a
manner that exploits their specialized features. The assignment reflects the way in which functions might
be assigned in a real system, where aspects of the computing environment may constrain component
placement. Many of the functions provided are supported by a collection of several cooperating elements.
This redundancy can be used to provide survivability of the services and the data they manage. It also
allows duplicate resources to be placed near computers that use those services, potentially improving
performance by reducing the delays that arise from communication and competition for the resource.

We will create several functional elements to participate in this simulation. The list we present here
is just an initial one needed to build the backbone of the scenario. The underlying architecture allows
this scenario to be extended by adding such detail as maps for new geographic regions, additional sensor
systems to track vehicles, additional targets, etc., as well as by adding new functional elements to
augment the scenario.

The setting for the scenario is a geographic region, currently 100km square, for which actual
cartographic data is available. Within this region, a number of clusters of enemy vehicles will enter, be
detected, tracked and identified as they move along roads. Their target, currently a power plant, will be
predicted and interceptors will be dispatched to attempt to stop the vehicles before the power plant is
destroyed. The progress of the experiment will be displayed from several perspectives, with cartographic
information used as a background for regional displays.

q
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Each cluster of vehicles will consist of several individual vehicles on similarly scheduled routes; the
routes for the clusters will differ but initially have the same destination. These simulated targets and
their routes are managed by. a target simulator function

Initially, a combination of radar and infrared airborne sensing systems will be used for target
detection. These sensors are deployed on aircraft, but can be controlled remotely from the command
center through a ground station to which they relay their information. The sensors will be capable of
sensing target results for only a portion of the repion where the scenario takes place (Figure 3).
Computers representing each ground station will simulate the entire sensor configuration. The processing
of the sensor data will be done by ground-based, special purpose, sensor data fusion processing equipment.

The experiment will be performed under various meteorological conditions ranging from very clear
to heavy rain or snow. This will affect the sensor performance, in terms of the accuracy of the target
data the sensors report, and will be a consideration in the use of the available sensor resources,
target/weapons pairing, and mission planning operations. The meteorological service will be accessed for
all of these planned uses of weather information.

The target detections produced by the processing will be forwarded to operators in the command
center for review. We will provide the capability of displaying the sensed targets. both as detected by the
initial sensor processing. and as refined by the fusion processing. These operators will be equipped with
their own computers, their exact number scaling to meet the number of expected targets.

The Resources and Logistics Data Management System will include a limited set of data in the
initial scenario. It will contain basic aircraft capabilities for different types of aircraft, airfield
capabilities, such as runway length, and aircraft availability at the airfields.

2.2.2. Details of the Scenario

The sensor and battle management functions provide numerous opportunities for demonstrating.
exercising, and evaluating distributed system architecture and Cronus support functions for
interoperability, controlled remote access, survivability, and resource management in an application
context. A detailed look at our initial scenario sequence will help to highlight these points.

As the scenario begins, sensors are deployed to various sections of the region. Two different types of
sensors, one radar and one infrared, will provide overlapping coverage in a single section; the remaining
sensors will observe other sections of the region. The output of each of the specific sensors may be
examined by an operator from an appropriately configured access point.

Vehicles will be detected in the section being monitored by both radar and infrared sensors.
Normally, these reports include a mixture of actual and false detections. The detection threshold of the
sensors can be set to produce various experimental situations. Any operator with appropriate access
control rights can adjust the threshold to regulate the fraction of false detections that can be expected. If
the threshold is set high, possible targets may to go unnoticed when they enter the observed area. If the

.9.
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Sensor Observing Ground Targets
Figure 3
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threshold is set low, a large number of false detections may lead the operator to dismiss the reports1.

When a potential target is identified, effective interoperability can be demonstrated by a timely and
successful response to the event. For example, a target's appearance might warrant the redistribution of
sensor resources or the reconfiguration of processing, display, and human operator resources. In this
scenario, the initial operator review of radar image data will show an inconclusive situation.

Combining data from multiple sensor types will give more accurate target detections. To realize the
full benefit of the multisensor configuration, that data must be remotely accessible in a timely and reliable
manner. The primary user of such distributed data is a Target Data Correlation system, which is
responsible for managing target data for a particular geographic region. When the new targets are
discovered, an appropriate Target Data Correlation station will be chosen to assess the situation and
determine what action is appropriate. This is essentially a resource management issue, where the
resources being managed are the processors, displays, and operators associated with the Target Data
Correlation stations.

The discovery of a new target, either by automatic processing or by an operator's observations, will
result in an alert event. The target alert events will be used to set the command and control part of the
demonstration into action. The end result of the various sensing functions will be a list of identified
targets consisting of target location, speed, direction, and other distinguishable features such as size or
temperature.

Following a target's discovery, target prioritization can take place. Periodically, priorities are
assigned to active target objects. In our current scenario, targets will be assigned absolute priorities on a
periodic basis. That is, groups of targets will be classified as the need arises. The priority of a target
could be updated a number of times, by operators performing functions anywhere in the configuration, as
the battle situation changes.

For convenience, we choose a particular threshold priority. Targets above that priority threshold
are important and need to be acted on. Targets below the threshold will be ignored, although they may
be examined by an operator. Prioritization acts, in some sense, as a target filter, separating important

and unimportant targets.

Prioritization is probably done by someone who has a relatively global view of many aspects of the
entire system. In order to make well-informed prioritization decisions, various state information must be
readily available: target positions, weather, cartographic information, etc. Thus an operator station,
responsible for the prioritization function, must be provided with convenient access to and flexible
displays of this information, accumulated from the various computers which support those functions.

C2 resource capability data, such as aircraft range, will be the primary information source in the
target/weapons pairing function. Target/weapons pairing is concerned with the capabilities of classes of
resources, not the availability of particular assets. In addition to resource capability, other data such as
meteorological data may be needed to make appropriate target/weapon decisions. This data is
dynamically accessed as needed from the operator's station.

'By controlling the simulated weather, we can also show the effect of weather conditions on the target data reported
by the various sensors.

1 19
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Mission tasking is another focus in the command and control part of the demonstration. The
mission tasking function assigns specific resources to designated targets. Thus it relies heavily on resource
availability data. The Mission Tasking function will choose from the available resources, based on
information pertinent to a number of aircraft and airfields, and assign them to targets. Combinations of
available resources can be assigned to the targets in a variety of ways. Some of this expertise will be
embodied in a program which serves as an aid in avoiding inappropriate choices (e.g., using a non-all-
weather aircraft during a storm, or an aircraft based too far away from the target).

Throughout the scenario, selected failures will be induced, such as taking one or more computers
off-line. This allows us to demonstrate and evaluate the survivability properties of both functional

elements and the application-oriented procedures which comprise the C2 scenario. In addition, scenario-
oriented loading factors, such as number of targets, will be varied to demonstrate and evaluate scalability
and resource management features.

An application monitoring and control station will be used to initiate, evaluate, and control system
behavior under the simulated conditions. Additional experiment control programs are used to construct
and control the simulation. These comprise another functional element of the architecture; however, its
role is not to participate directly in the simulation, but rather to exercise global control of the simulation
environment. This function can be used by any suitably authorized user, from anywhere in the
configuration, to start and stop the simulation, create or modify objects that participate in the simulation,
change the simulated weather conditions, and perform other operations that affect the simulated --

environment under which the experiment takes place.

-12-
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3. THE CRONUS DISTRIBUTED OPERATING SYSTEM

The Cronus distributed operating system is intended to promote resource sharing among
interconnected computer systems, and manage the collection of resc rces which are shared. Its main
purpose is to provide a coherent and integrated system to support the el velopment and use of distributed
applications. In this section, we will briefly review the Cronus environment, system architecture, and
programming support tools and discuss how they relate to the development of an application such as C2

Internet. The foundation developed here will be used as the basis for a detailed discussion of the design
and implementation of the C2 Internet application in the following sections.

3.1. The Cronus System Environment

Cronus exists in an environment of processors (or hosts) interconnected by computer communication
networks. A Cronus cluster consists of some number of logically (and usually physically) grouped and
interconnected hosts. Intracluster communication typically is characterized by relatively high available
bandwidth and relatively low delay. Clusters may be interconnected; intercluster communication usually
exhibits lower available bandwidth and higher delay than intracluster communication.

In the development of Cronus, we have taken the view that processing elements are heterogeneous.
This assumption rests on the premise of functional specialization. That is, certain processors and systems
will be more capable of (or more tailored for) certain functions than others. It is, however, highly
desirable for these functionally specialized units to interwork so that they can cooperatively perform some
larger task. Often each of the processors has its own native or constituent operating system (COS; for
example, DEC's VMS). Instead of a tight coupling to one COS, Cronus is typically made minimally
reliant on COS services. As a result, Cronus is largely independent of both the processor hardware and
the constituent operating system upon which it is implemented. This increases the portability of Cronus
functions, while minimizing changes to the COS due to the installation of Cronus. In addition,
application programs may make use of both Cronus- and COS- provided services, thereby increasing their
overall flexibility.

Consideration has been given to integrating Cronus more tightly with the native operating system
on various hosts for efficiency reasons; however at this time the costs of this approach seem to outweigh
the short-term benefits. Development is also under way toward the use of Cronus as a base operating
system, initially for selected special-purpose system components.

3.2. The Cronus Model

In order to provide the desired integrated view of diverse resources, a system model has been
developed. The development of the model has been motivated by a number of factors including: the
need for a coherent system decomposition, the need to provide easy to use "off-the.shelf" facilities to
address distributed system problem areas for a wide range of potential applications, and the need to
customize some of these facilities for various application components. A model which meets these needs
is the object mode on which Cronus is based. This model allows resources to be viewed abstractly,
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shielding consumers of the resources from the actual implementation details that determine how and
where the resources are provided. Using the object model, the distributed system is thought of as
consisting of a collection of typed and uniquely-identified objects. Resources within the distributed

system are viewed as objects, for example files, processes, and access control groups. Using its unique

identifier, an object can be referenced uniformly from anywhere in the Cronus system. The object
abstraction allows uniform system facilities to be used for a wide variety of interactions. An added

benefit of the object model is that it is, by nature, easily extensible through the addition of new object
types. Application resources are viewed as objects as well, and may make use of existing system
mechanisms supporting the object model. Thus, in general (and more specifically within the context of

the C2 Internet application), part of the application design process is to define appropriate application
objects and their attributes.

Associated with the objects of a particular type are a number of permissible operations. The
operations on an object type are implemented within an object manager. An object manager is
responsible for all objects of a particular type on a given host; one or more managers collectively manage

a given object type within the Cronus environment. In order to perform tasks, clients (or other

managers) invoke operations on objects. A client invokes an -'peration by sending a message to an
appropriate manager over the network. These operations are then carried out by the object managers (see

Figure 4). The Cronus system provides mechanisms for clients to manipulate objects without concern for
their location in the network or for the implementation of the operations within the manager. This allows

both transparent access to an object from anywhere in the network and the evolution of the mechanisms

implementing various operations without necessitating changes to their external view.

Objects may be classified as primal, replicated or migratory. Primal objects are always located on

the host on which they were created. Migratory objects may move from host to host as situations change.
For example, when the storage resources on a given host are exhausted, a migratory file could be moved

to another host to make more space available. Replicated objects are duplicated on one or more hosts and
are used to enhance survivability. By having more than one active copy of an object, failures can be

mitigated by using the redundant copy (or copies) of the object. The location of objects is, in general.
transparent. That is, performing "local" and "remote" operations are functionally equivalent. However
clients can control, if they wish, the placement of objects or the site for an operation invocation. The

facilities for transparently locating and invoking operations on both primal and non-primal objects within
the operating environment are supported by the Cronus kernel.

Clients and object managers communicate using an interprocess communication (IPC) mechanism
contained within the operation switch which is part of the Cronus kernel ISchantzs86. The operation
switch provides an object-based message passing facility. It implements or provides a supporting role for
such functions as message routing, transparent location of migratory and replicated objects, and access
control. The Cronus operation switch, in turn, relies on the datagrarn and virtual circuit services of the

underlying communication network(s) to provide host-to-host communication. Figures 5 and 6 illustrate
the structured communication and computation concepts of Cronus in general and for the C Internet
application respectively. Object managers communicate with both clients and other managers using
standardized message formats and data representations. These canonical data representations allow

convenient communication between heterogeneous hosts with differing internal host-specific

representations. A set of built-in canonical types are contained within the basic Cronus system, such as
the EBOOL (i.e., TRUE or FALSE), the S161 (a signed, sixteen-bit integer) and the EDATE (a

canonical Cronus date and time representation); the set of data representations is easily extensible to

include additional canonical types to suit particular applications. The use of canonical types in Cronus is
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described in more detail in(Dean8$6.

This simple system model is used and extended to provide a number of important functions for
distributed applications, including survivability, multi-host resource management, and system-wide access
control. In the remainder of this section we briefly outline how these functions are provided within our
system model in an application-independent manner.

Cronus provides facilities to make both its system functions and its applications survivable.
Functional redundancy is offered by simultaneously providing more than one object manager (on different
hosts) for a given object type. Data redundancy is provided by having multiple copies of objects.

Managers of replicated objects cooperate to maintain the desired degree of consistency between the copies
of the objects. This redundancy of both function and data is used to minimize the effects of failures and
outages. Cronus authentication currently is implemented using replicated objects so that users may
reliably be granted system access.

In a distributed system, the need arises for the formulation of global resource management policies,
and for the mechanisms to implement these policies. (Resource management within specific hosts is
generally the responsibility of the COS.) These strategies are necessary in order to effectively and
conveniently control redundant resources. In Cronus, managers cooperate to enforce resource
management policies. The Cronus resource management model is based on providing a set of mechanisms
capable of supporting a variety of policies. These mechanisms are based on making resource allocation as
transparent as possible to client processes; they include: the ability of managers to redirect requests to
other managers of the same type (i.e., peer managers), the ability of managers to accumulate information
about the status of their peers, and the ability of users or applications to indicate preferred hosts. For
example, a file manager answering a request to create a file may discover that it has little storage
available. Instead of rejecting the request, it is redirected to another file manager with available storage.
An example of resource management in the C2 Internet application is the assignment of a newly identified
target to an appropriate target manager.

In virtually all computer systems, access control mechanisms are necessary to prevent the
unauthorized use of services and data, and to preserve system and component integrity; Cronus is no
exception. In fact, robust access control techniques are particularly crucial in Cronus, since by design
Cronus users have access to a potentially large number of hosts and facilities. All Cronus operations are
subject to access control restrictions. Access control is provided in two phases: identification and
authorization. When a Cronus process is started, it obtains a particular verified identity. Then, when
operations are invoked on objects, the responding manager receives (from the operation switch) the
identity of the invoking process. This identity is examined by the manager to see if it is valid for the
object and operation requested. If so, the operation progresses; if not, it is rejected. For example, when a
user session is- started, its controlling process is associated with a user identity by the Cronus
Authentication Manager using a user-supplied name and password. Future operations invoked by this
process are authorized by the manager responding to the requested operation, using the user identity
received for the procens and an access control list associated with the referenced object. Obviously, the.
appropriate rights and who they are given to varies considerly for system and application objects. With
C2 Internet, we define appropriate rights for application objects as they are designed, and take advantage
of existing mechanisms for the enforcement of access control.
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3.3. Cronus Core Functionality

In addition to the Cronus kernel, a number of Cronus managers provide the core functionality
traditionally expected of an operating system. The resources provided by these services may be used both
by other managers and by application programs. These managers are:

" Primal Process Manager: The Primal Process Manager manages Cronus processes. It
provides a facility for remotely starting and stopping other managers, as well as a remote
execution capability. The Primal Process Manager also maintains the access control

information for each Cronus process.

" File Managers: Several types of storage objects are provided by a number of File Managers
with varying characteristics (e.g., speed, survivability, etc.).

" Catalog Manager: The Catalog Manager provides the mechanism for the location-
independent symbolic naming of any type of Cronus object. The Catalog Manager provides
support for replicated directories to ensure that objects may be referenced symbolically despite
system outages. In conjunction with file managers, the Catalog Manager provides the
functionality of a traditional file system (i.e., access to symbolically named storage objects).

" Authentication Manager: The Authentication Manager implements the Principal and
Group objects associated with the various identities and roles of the users of the system. and
performs user validation functions. This manager, along with the abstract access control
rights associated with each type, the access control list associated with each particular object,
the collection of identities and affiliations associated with each process, and the automated
checking of access rights during operation invocation provides a uniform Cronus access control
system.

" Constituent Interface Manager: The COS Interface Manager allows local host files and
directories to be manipulated as_ Cronus objects. This facility is particularly useful for
integrating existing local resources into distributed applications and for providing a mechanism
for accessing resources using both Cronus and constituent-based applications.

One Cronus cluster is presently in operation; a subset of the Cronus manager configuration in that cluster
is shown in Figure 7.

For the C 2 Internet application, the process manager provides support for application processes and
for remotely starting and stopping managers. Cronus files are used to archive data generated by the
sensors. The catalog is used to support global symbolic names for experiment timers, targets, sensors, and
other objects when the object must be identified by a user, as is the case when the experiment is being
configured. The authentication manager is integral to the access control mechanism; this mechanism
controls access to sensor data, cartographic data and the resource and logistics data. Access to the
simulation control operations is also restricted using existing mechanisms. Finally, COS files are used for
recording and processing large amounts of data when there already exists a program which runs on a
constituent host for performing some application-related task.

,4t
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3.4. Cronus Monitoring and Control

An overall view of system operation is provided using the Cronus Monitoring and Control System
(MCS). The MCS passively monitors the status of various system components, and controls various
parameters affecting the management of system resources. The MCS monitors both object managers and

the Cronus kernel in order to provide a complete view of the operational system.

The data collected by the MCS is recorded, producing time-series data for later examination and
evaluation. Both the instantaneous and aggregated data can be displayed to a system operator in

graphical format. The MCS operator interface also supports invoking operations on both system and
application components, and allows input parameters to be selected by picking values from a screen

display.

The difference between application and system monitoring and control is largely in the training of
the person operating the MCS and the ways in which data is presented for review, not a matter of how
the data is collected or how control is accomplished. However, to understand the effects of Cronus
behavior on the application, an operator must understand how the application uses Cronus resources. At
the application level, we monitor the status of and control the managers and other components that
constitute the application itself. At the lower level, we monitor and control the Cronus system
components that support the application; this includes the Cronus interprocess communication
mechanisms, the process manager, the catalog manager and other system components. This distinction is
really only one of how familiar the components are to an operator of the system and of who can sensibly
deal with situations requiring operator intervention. Components at the application level will be readily
familiar to an application operator who understands the C2 Internet Experiment architecture. Such a
person, with experience, will also understand how those components interact.

3.5. Cronus Support for Design

In summary, Cronus supports the development of distributed systems and applications by providing:

- A uniform, consistent system architecture which addresses many distributed systemissues, and
the realization of this architecture with an implementation on a variety of computers.

- Support for commonly used system f unctions, such as naming, storage, and processing.

- Facilities for system monitoring and control.

• Software development tools to support the development of additional object managers and user
interfaces to simplify the interaction with these managers.
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4. SYSTEM DESIGN DETAILS

The purpose of this section is to discuss the design of the C2 Internet application and, more
generally, to describe the Cronus application design process. The application design precedes and hence

provides direction for an implementation. Within the context of the present application, the design
should insure that the planned experiment objectives are met, as well as insure that existing Cronus
mechanisms are fully utilized and evaluated. Although the emphasis in this section is on the design of the
planned experiment, the design process used models the design of other Cronus applications as well. One
objective of building the C 2 Internet distributed application is to further gain insight, from theapplication perspective, into the development of complex distributed applications.

In the present design, some of the application subsystems were selected for stubbing. By stubbing
we mean a simplistic design and implementation of the actual subsystem desired. A subsystem may be
stubbed for a variety of reasons:

" The software in question is not particularly relevant to Cronus evaluation or application
demonstration. That is, the contribution to the experiment's goals does not warrant the
software development cost of a full-fidelity subsystem.

" The relevant subsystem would most appropriately be constructed using anticipated Cronus
enhancements or extensions not yet available, e.g., a database management capability.

" The subsystem serves as a placeholder (to support testing and integration of related
components) for a component which may be independently developed at a later date or is not
yet scheduled for full-scale implementation.

Application stubbing during the early stages of development is consistent with the Cronus concept of
system evolution. The system is thought of as dynamic: changing, growing and improving as technology

advances.

In the remainder of this section, we initially discuss overall design issues, and then discuss the design
of specific components of the C2 Internet Experiment application. The material presented is indicative of
the design process that must precede any serious implementation efforts. In an operational distributed
application, however, the design process will often be more thorough than required here.

4.1. Functional Decomposition

The preliminary decomposition of the proposed experimental system emphasized the functional
aspects of the individual constituent elements. For example, individual components such as a remote
sensing system, cartographic data management system, sensor data collection system, resource data
management system, and mission planning support system were identified. Two distinct monitoring and
control functions were also identified: one for monitoring and controlling the experiment in real time, and
the other for monitoring and controlling the distributed computing environment of the application. This
decomposition was shown in Figure 2. The functional boundaries selected for this experiment isolate
constituent elements that can be independently developed and then integrated, achieving varying degrees

of coupling.

-22-
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The partitioning along functional boundaries is both a common and natural approach, and well
suited to many of the benefits anticipated from a distributed system architecture. For example, the
evolution of an existing system for the purpose of improving performance and capability night require
the replacement or addition of system functions and/or hardware. Such functions could be developed

independently and then integrated into the existing system.

The next level of design decomposition involved the distribution of -the functional components to
available computing resources. Two clusters of hosts will be used for the C2 Internet Experiment. The
fuanctions described in Section 2 will be implemented and distributed over these clusters and hosts.
Presently one cluster is operational at BBN. The second cluster is being established at RADC, Griffiss
Air Force Base. The distribution of the application data sources and processing elements will be arranged
to fully test the attributes afforded by a distributed system architecture within the constraints of the
communication networks involved. The initial multicluster assignment is shown in Figure 8. This
decomposition attempts to utilize the networks efficiently, and is based on the concept that the
application processing elements within a cluster will be functionally related.

Next, host machines within a cluster were selected for implementation of the various functions. The
emphasis at this time is on the allocation of the machines within the BBN cluster. The extension to the
RADC cluster will take place when the appropriate resources become available. This will provide a
valuable opportunity to demonstrate and evaluate the versatility of the Cronus concepts supporting

system evolution and multicluster configuration. The allocation of functions to specific machines is not
intended to be a hard and fast assignment. In fact. as the planned experiment evolves, changes to the
allocation of hosts are inevitable. Two main reasons for this are the addition of new machines to the
existing BBN cluster, and the inclusion of the RADC cluster and appropriate wide-area networks into the
experiment. The inherent portability of most Cronus programs greatly increases the flexibility in choosing
host assignments for various system elements.

4.2. Design Details

The remainder of this section contains a detailed description of the experiment components which
have been designed to date. This corresponds to the portion of the system shown in Figure 9. Although

this represents only a portion of the entire system, it is already sufficiently complex to warrant the need
for access control. resource management, survivability, etc. It also affords the opportunity to test and
evaluate the Cronus mechanisms available for distributed system development. The insight gained during
this development period will be used extensively during the subsequent development of the remainder of

the system.

For each functional unit in the application, the design will be discussed using the following

organization:

• A description of the function and its role in the application.

* A discussion of design-related issues pertaining to application and experiment objectives.

* A description of the mapping of the function into the Cronus model; that is, a definition of the
object type(s) and operations needed.
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- A discussion of the relationship between the design objectives and the object type(s) and
operations defined.

* A discussion of any additional design-related and experiment-related issues.

The various functional elements described fall into three basic classes: prototype, simulation, and

experiment control. A prototype subsystem is a functional element that might be found in an actual
command and control system in a form very similar to that described here (although probably in a more
complete design and implementation). An example of such a subsystem is the Meteorological Data

Management System. A simulation subsystem is used to emulate the characteristics of some functional
element of an actual command and control system. An example of a simulation subsystem is the Sensor
Manager which emulates the operation of an individual Remote Sensing System. Finally, an experiment
control subsystem is a functional element that exists to support the experimental environment. The
Target Simulator is an example of such a subsystem.

4.2.1. Timer Manager

Early in the design phase, it was determined that an experiment clock was needed in order to
control and synchronize the progression of events during the experiment. To achieve this control and
synchronization, the experiment time must be available to the various managers and clients distributed
throughout the multicluster configuration.

A simulation timer provides a common time to all managers and clients so that a coherent view of
the C2 Internet simulation can be constructed. A manager or application program determines the current
simulation time by' sampling a simulation clock, which, from the client's perspective, appears to be a
single object provided by the timer service. The manager or application may then collect information
from other managers, and thereby construct a temporally consistent view of part of the simulated
environment for analysis or for presentation to users or client programs. For example, a sensor performs
surveillance over a time interval using a mission schedule. By using this mission schedule in conjunction
with the experiment time, target detections in accordance with the planned progression of the experiment
are generated.

The simulation timer regulates the progress of the C2 application. Thus by changing the rate at
which a simulation timer runs, we can manually control the progress of the overall application simulation.
The experiment clock can also be stopped at any time. Additionally, in order to simplify program
development, we provide multiple, independent simulation timers; this allows independent developers to
develop, test, and debug various subsystems independently.

After identifying the need for an experiment clock and determining its desired features, the Cronus
model and mechanisms are applied to its design. The timer object type was devised to support these
requirements. The following information characterizes each instance of a timer object.

* Current Time specifies the current simulated time.
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* Rate specifies how many seconds of simulated time elapse for each second of real time.

- Running specifies whether the timer is running or not. Conceptually, a timer that is not

running has an effective rate of zero; if it is restarted at some later time, the rate reverts to
the value maintained by the rate parameter.

The following set of operations control timer objects.

- Create a new timer.

* Get the current experiment time of the timer.

* Set the current experiment time of the timer.

- Set the rate at which the timer runs.

• Start the timer.

9 Stop the timer.

For convenience, a few operations which allow a user to control the timer directly were added.

These additions allow the experimenter or software developer to reset the timer to an initial value, set a
stop time so the timer will run to a specified time and then stop automatically, or step the time by a

specified interval. These additional operations are:

* Set reset value specifies the desired setting of the timer after a reset operation.

" Reset Ivalue! resets the experiment time. The default for the optional value is set with the set
reset value operation.

" Set stop time causes the timer to stop automatically when the specified time is reached. The
stop time can be specified as an optional parameter on the start operation as well.

" Set step interval allows time step to be set or changed.

* Step linterval' advances the timer by one step. The default for the optional interval is set
with the et step interval operation.

Since the timer is required for the continued operation of the simulation, it must survive host

failures. Further, since it is widely used, the cost of sampling the timer in our design must not dominate

the overall cost of running the simulation. Both of these requirements lead to the decision to replicate
the timer manager across several hosts. Properly done, this ensures continued availability and reduces the
overhead of sampling the time since local timer managers are used and the load for sampling is

distributed across several hosts.

The need for replication occurs in two forms. First, the state information associated with each

timer must be replicated so that changes performed by one manager are propagated to its peers. In
addition, a synchronized source of the real time is needed to ensure that matching time values are

returned by independent managers.
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While the details of how this is carried out are left to the implementation, it is important to note
that we allow the times supplied by various timers to vary by a few seconds since each manager
constructs its view of the simulated world by sampling the current real time from the local system clock
and then deriving the experiment time from that time.

The accuracy of experiment synchronization depends, in part, on the frequency with which timer
managers compensate for discrepancies in local host times. In our design this period is adjustable by an
operator. However, care is needed to insure that the frequent resynchronisation of the timers does not
unnecessarily increase the cost of maintaining the experiment time.

We believe that a synchronization error of a few seconds is tolerable for this application, and that
this level of synchronization can be provided at a minimum cost in overall experiment resources.

It is important to note that the timer manager is both a tool for the C 2 application and a more
general support capability. All distributed simulations require coordinated behavior which can be

achieved through simulation timers. Maintaining a global time base is also a general purpose
synchronization tool with a variety of applications.

4.2.2. Target Simulation

A number of components were constructed to simulate the action of real C2 functions. Each
Remote Sensing System (see Figure 2) is composed of two components, which together emulate the
operation of a sensor system. These components interact with the Timer Manager to synchronize with
the rest of the experiment.

In order to drive the command and control application, there is a need for a function that simulates
the movement of targets. These simulated targets move in accordance with a prescribed scenario built up
of concatenated track segments. Each target is represented as a Cronus object of type target and is
characterized by the following.

- A name.

- A target type i.e., jeep, tank, etc.

- A series of track segmenis which represent the movement of the target over time.

We require the following operations to manipulate target objects:

- The create operation produces a target with the specified name and type; an initial position for
the target and the time at which it can first be observed in the scenario are also specified.
This operation assigns a unique identifier (UID) for subsequently referencing this target
instance. The target instance is also cataloged using the target name specified, which provides
a user-oriented mechanism for naming specific targets. This global symbolic name for the
target is maintained by the Cronus Catalog Manager.

-
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- The moveto operation adds a segment to the target trajectory. The segment begins at the end
position and time of the previous segment and ends at the specified new location and time.

- The targetsnregion operation returns, to the requesting client, the target segments that fall
within the specified region and time-interval: a region is denoted by two pairs of latitude and
longitude coordinates which define the Southwest and Northeast corners of a rectangular area.
The time interval is denoted by the beginning time and ending time specified.

The following example demonstrates how a single target track would be set up.

CREATE jeep j10 N50degOO'00" ElOdegOO'00" 19:00:00
MOVETO jl0 NS0deg0!'00" El0deg02'00" 19.10:00
MOVETO jl0 N50degO'00" El~deg02'00" 19:21:00
MOVETO jl0 N50degO7'00" El0deg0l'00" 19:57:00

By creating a number of simulated targets, a complete scenario such as the one described in Section 2 can
be constructed. Composite targets, such as a battalion level force, may be simulated using a collection of
individual targets.

4.2.3. Sensor Manager

One of the primary functions selected for the planned C experiment is ground target situation
assessment. Therefore, part of the design focuses on the simulation of remote sensing systems that sense
ground target activity from an airborne platform. The quality of the simulated sensor data, which is
intended for use in the situation analysis process, should depend upon such factors as sensor technology,
target type, and environmental characteristics such as terrain and weather. The goal of the present
design is to capture the salient aspects of sensor systems for supporting the rest of the C2 Internet
Experiment with a minimal amount of software development.

Functionally, the sensor simulation can be viewed as follows. The control of a specific sensor is
maintained through a mission schedule: a planned list of surveillance regions and associated times for a
specific sensor. The mission schedule can be generated and modified during the course of an experiment
by authorized personnel from anywhere in the Cronus system, subject to appropriate Cronus access
controls. This mission schedule is used in conjunction with the experiment time to generate simulated
sensor output data. As the experiment time progresses, the mission schedule is examined and the target
data appropriate for the surveillance region and time is acquired by the sensor from the target simulator.
The target data is then transformed into a simulated view of ground activity in accordance with the
sensor characteristics and other attributes mentioned above. The raw simulated sensor data is recorded
locally for archival purposes, while a concise summary of detections is stored remotely in a multihost
repository.

The Cronus system model forms the basis for the design. We define a sensor object type, which (for
the experiment) is completely characterized by the following.
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* A sensor type (presently, radar or infrared).

* A sensor name (e.g., Radar-1),

* The sensor's resolution (e.g., I degree of solid angle).

* A (mission) schedule consisting of a sequence of regions and time durations for surveillance.

The following operations were identified as pertinent to the sensor simulation:

• Create an instance of the sensor object on the host local to the manager. The sensor created
will be characterized by name, type, and resolution.

• Move To adds a mission to a specific sensor's schedule.

S ShowSchedule retrieves the schedule for a particular sensor.

* Edit allows alteration of the description of a particular sensor.

* Operateenasor, performs the sequence of procedures necessary to generate real-time sensor data
for experiment purposes.

* GetDetections returns the sensor's target detections for the current mission up to the present

(simulation) time.

* SetDetectionThreshold adjusts the threshold above which a sensor reports a target that is

detected. (Below the threshold, the sensor interprets the data as noise only.)

A multisensor scenario is Ai aed for the experiment. To realize this configuration, independent

sensor simulations will run concurrently on different hosts distributed throughout the multicluster 0
configuration. Each will perform in accordance with a prescribed sensor characterization and mission
schedule. Time synchronization will be maintained by the experiment clock facility and consistent target
conditions will be coordinated through the simulated target manager.

4.2.4. Mission Data Manager

Sensor data, produced by each sensor as it carries out its mission, must be available for use in

analysis and review. The majority of these analysis tasks emphasize numeric and symbolic processing
techniques and work best when applied to the information collected from several sensor missions. By
providing a logically centralized service to provide information from all sensor missions, and providing a
simple query facility for retrieving this information, the Mission Data Managers simplify the task of

developing the automatic processing components. The Mission Data Managers both provide a single point
of contact for requesting sensor data, and insulate clients of the data from the process of carrying out
data queries: identifying the sensors with relevant data, collecting the data, and normalizing its format.

Storage of the detection data by the Mission Data Managers also improves the availability of detection
data, since the Mission Data Managers are much less vulnerable to damage or loss than the sensors
themselves. The raw sensor data, which is much more voluminous and which is less often used in

analysis, is available only from the sensors.

3
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For each mission, the following information is stored by the Mission Data Manager:

" Sensor ID identifies the sensor which is reporting the data.

* Threshold value reports the signal-to-noise ratio threshold which is used to distinguish events
from noise in the data set.

" Mission Number identifies which of the sensor's scheduled missions acquired the data.

Sensor Variable describes various charactericts of the sensor.

- Mission ID, generated by the Mission Data Manager, uniquely identifies each data set.

The data records for each mission are stored as a Cronus object. Thus, the request to start data
recording is just a request to create a Mission Data Object. A round-robin resource management
algorithm is used to select the location for the new object. (In round-robin, managers are assigned a
circular, numerical ordering and missions are assigned to each manager in turn.) Discarding old data is
done by removing the appropriate mission data objects. Adding new data records to a recorded mission
requires invoking an operation on the mission data object, created for use by the sensor, and including the
time the sensor data sample was taken and a list of detections. Each detection gives the following
information:

" Location gives the latitude, longitude and aJtitude where the detection is thought to be
positioned.

" SNR gives the signal to noise ratio of the detection, which measures how strongly the
detection is being received.

* Target ID gives additional information about the detected object.

Detections lists are requested by clients through queries submitted to any Mission Data Manager.
Each request identifies characteristics of the desired detections. Each request must specify the geographic
region which should be examined for detections, and may optionally specify the time range and reporting
sensor ID. The manager performing the request submits similar queries to its peer managers and then
combines all the results; thus data from all relevant mission objects will be returned to the client.

4.2.5. Fusion (Detection Correlation) Processing

In its initial version, the detection report fusion processing will be performed by a simple client
program that uses cues in the target id field of each detection to eliminate false alarms, correlate
detections provided by different sensors, and identify target trajectories. This program will request
detection lists from the Mission Data Managers, perform the correlation processing, and submit the
resulting target reports to the Target Report Manager for later review and action by system users.
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4.2.6. Target Report Manager

Suspected targets, detected by the sensors and verified by the fusion processing, are recorded by the
Target Report Manager. Each target report, stored as a Cronus object, summarizes the information
known about a detected target. This information includes:

" Name, selected by a user, mneumonically identifies the target.

- Type identifies the kind of target, such as tank or aircraft.

* Destination is the known or projected destination of the target..

" Priority measures the relative importance of the target.

" Weapon identifies which weapon, if any, has been assigned to deal with the target.

" Start Time specifies when the target was first detected.

* End Time specifies when the target was last detected.

The information in these reports is initially provided by automatic processing components, and may
be incomplete. Later review by human analysts may lead to changes in the information, or the addition
of fields that could not be assigned automatically. Requests on objects of this type include:

- Store Target Report creates a new target report. The initial description of the target is
included in the request.

* Get Target Descriptions returns a list target reports for all detected targets in a particular
region. A time range may also be specified.

* Get Target R~port returns the description of particular target.

4.2.7. Meteorological Data Manager

Convenient access to meteorological data enables mission planners to choose appropriate sensor
systems and weapon resources to match chosen targets in varying weather conditions. It also provides
information to personnel performing target data correlation on the relative accuracy of various sensor
types (since sensor performance is affected by varying weather conditions).

The Meteorological Data Management System provided by one or more meteorological data
managers allows a meteorologist to enter or modify meteorological data for later retrieval by other
personnel or client programs. In designing the meteorological data manager, two basic object types were
identified, weather reports and weather forecasts. Weather reports contain observations of existing
weather; weather forecasts contain projections of weather for the future.

An instance of a weather repot object is characterized by the following attributes.

• A location specified using latit 4e and longitude coordinates.
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• The time at which the report was made.

* Report data summarizing the observed weather conditions.

We require the following set of operations to manipulate weather reports:

* Create produces a new report.

- ShowWeatherNearLocation retrieves the most up-to-date report for the location nearest to the
location specified.

An instance of a weather forecast object is characterized by the following attributes.

- A location specified using latitude and longitude coordinates.

• The time at which the forecast was made.

. The validity period for the forecast specified using a beginning time and an ending time.

• Forecast data summarizing the predicted weather conditions.

We require the following set of operations to manipulate weather forecasts:

- Create produces a new forecast.

• ShowForecastNeearLocation retrieves the most up-to-date forecast for the location nearest to
the location specified, and for the appropriate validity period.

* DeleteOutdatedForecaats disposes of old, unneeded information.

4.2.8. Cartographic Data Manager

Handling cartographic data is an important part of almost any C2 application. For example,
cartographics can serve as a user interface aid in the planning of a sensor mission schedule, in a ground
force situation analysis, or in a target track prediction function. Thus it is desirable to provide a uniform
but general-purpose mechanism for clients to obtain cartographic data.

Our initiaJ design for this part of the system follows. Cartographic data is viewed as a collection offeatures. Each feature is a descriptive element of the area of interest; a forest, a road, and a bridge are
examples of features. A collection of the cartographic features in a given geographic region is referred to
as a feature map, which is the basic object type managed by the cartographic data manager.

An instance of a feature map object is characterized by the following attributes.

* Two locations (specified using latitude and longitude coordinates) denoting the southwest and
northeast corners of the region represented by the feature map.

.
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* A list of feature identifier. identifying features that are contained in the feature map (e.g.,
forests, lakes, roads, buildings).

* An array of locations (latitude and longitude) for each feature describing the extent of that

feature.

We require the following set of operations to manipulate feature maps.

* Create a new feature map.

* ShowFeaturealnArea which retrieves the features in a specified region. This may entail
retrieving all of the features, or specific kinds of features. In the latter case, the manager
filters out those features not of interest to the client before responding to the request.

4.2.9. Resources and Logistics Data Management System

In the C 2 Internet Experiment, the availability of resource and logistics data will assist in the
target/weapons pairing and mission planning functions. The Resources and Logistics Data Management
System maintains two kinds of information: capability and availability. Capability information contains,
for a given resource, the characteristics which appropriately summarize the resource's performance. For
example, the capabilities of an airfield would include airfield location, runway lengths and directions, etc.
An aircraft could be described using such characteristics as maximum speed, maximum range, takeoff
length, fuel capacity, etc. Availability information details the readiness of specific resources. For
instance, the location and quantity of a specific type of aircraft.

Convenient access to capability and availability data enables mission planners to make effective use
of those resources at their disposal. The Resources and Logistics Data Management System (provided by
one or more managers) allows capability and availability data to be entered (or modified) for later
retrieval by authorized personnel or client programs.

One possible design for the Resources and Logistics Data Management System would be as a
collection of managers for a hierarchy of object types. Each type would represent either capability or
availability information for the appropriate resources. A partial hierarchical type structure for capability
data might look like the following:

-
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Resource
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At present, a limited version of the resources and logistics data manager maintains capability data
for the vehicle object type. (In its present state this capability data is oriented toward aircraft
characteristics.) This initial design is intended to demonstrate a limited database-like functionality
within the application.

An instance of a vehicle object is characterized by the following:

" The name of the vehicle.

° A list of capabilities (e.g., maimum speed) for the vehicle.

We require the following set of operations to manipulate vehicles:

" Create a new vehicle.

• ListVehicles to list all of the known vehicles.

" List Vehicles WithCapability to list those vehicles having particular characteristics (e.g., a
certain minimum speed).

" ShowCapabilit yFor Vehicle to show the characteristics of a particular vehicle.

4.3. Design Evolution

In this section, we have described those C2 Internet Experiment components designed to date. The
application was decomposed along functional boundaries. Each of the functional elements was then
analyzed in terms of Cronus support mechanisms. It is expected that these components will evolve as
additional development of the application and Cronus takes place. We also continue to design and
integrate additional components into the experiment architecture as outlined in Section 2.
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In the following section, we will discuss the implementation details for those components whose
design has been outlined. The implementation will, we expect, feed back into the design process, both for
the C2 Internet application and Cronus itself, resulting in an evolution of both of these elements. Such
insight and feedback is especially relevant at this time, due to the limited application experience in the
development of complex distributed systems. In addition, initial hands-on experience with a small set of
integrated components will improve our understanding of the operational characteristics of Cronus.
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5. SYSTEM IMPLEMENTATION

In previous sections, we have described the design phases of developing the C2 Internet distributed
application. There, we identified the functions the system had to perform, refined the definition of the
functions by designing objects and operations on the objects, and identified requirements of that
application, such as the degree of survivability for particular functions, that must be satisfied through the
interaction of the objects. To reduce the complexity of those pre-implementation phases, in general, we
try to avoid in-depth consideration of algorithms, performance, and existing support code. However,
these considerations become a primary concern for the implementation phase. 4

During the implementation phase we:

1. Formalize specifications for objects and operations developed during the earlier phases;

2. Choose specific representations for the objects and for the parameters that are relevant for
each operation; and

3. Implement the code using the Cronus system and its software development tools as a support
base.

Our primary goals in this phase are to produce an implementation which is sufficiently thorough to
form the basis for an evaluation of the quality and suitability of the underlying Cronus support for
distributed application development, and to demonstrate Cronus' operational capabilities. This effort is
also being used to direct refinements of the Cronus distributed systems development approach and
modifications to the facilities Cronus provides.

5.1. Implementation Strategy

Although the scale of the C2 Internet Experiment is more limited than that of an actual C2 system,
it reflects most of the complexity of managing development in a C2 environment. The experiment
involves several computers, employs components whose interaction reflects the interactions of the
components of a real application, and is being implemented by several developers. It is particularly
important that developers be insulated from hardware and software changes made by other developers as
existing hardware and software components are added or evolve as improved versions become available.
Throughout the experiment, implementation has deliberately been structured incrementally. An
incremental approach more closely resembles a natural product life cycle and offers an opportunity to
evaluate the effectiveness of the Cronus object model and support for this approach. In addition, from
the application perspective, the implementation of initial components provides early experience with such
issues as sizing, performance estimation and user community exposure.

We have completed initial versions of the components that form the a significant subset of the C2

application. This set of components was selected for initial implementation because they are sufficient to
provide a rich, self-contained environment capable of supporting non-trivial demonstrations. Additional
components can be added to the system, and the existing implementation provides a framework for
providing simulated input data, a user interface for entering commands and examining results, and
monitoring and control facilities for monitoring component status and controlling the progress of the
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experiment. The components which have been implemented include the following: Tinwr Manager for
control and synchronization of an experiment simulation clock; Target Manager for simulation of real-
world targets; Sensor Manager for simulation of remotely sensed surveillance data for radar and infrared
systems; Meteorological Data Manager for generation of simulated weather conditions and reports;
Cartographic Data Manager for manipulation of available "standardized" cartographic data; and Resource
and Logitics Manager providing remote access to information about the availability and capabilities of
various C2 application resources. This subset is depicted in Figure 10.

5.2. Component Implementations

Subsystem implementation is the subject of the remainder of this section; descriptions of each
subsystem implementation follow. We also have included numerous examples which help to illustrate the
present state and use of the experiment implementation.

5.2.1. Timer Manager

The timer manager provides a survivable source of system-wide experiment timers. The current
implementation derives the value of an experiment timer by transforming the real time of day in
conjunction with rate and reference values recorded in the attributes of the particular timer object. The
time of day clocks are periodically synchronized to correct for the variation between processor clocks.

Our implementation consists of two, loosely coupled parts: an upper layer which supports the
operations on timer objects, and an underlying layer which provides a system-wide, synchronized time of
day used by the timer objects, and which synchronizes the attributes of the replicated timer objects
among their instances.

We implemented an initial version that supported only the upper layer, on a single host, using the
local processor clock to provide the time of day; this offered an immediate source of experiment time to
,ther C2 application managers. We then added the lower layer to provide survivability and more
immediate accessibility. The conversion did not require any major changes to the existing manager code
since the replication strategies are largely separate from the functions and algorithms used to support the
timer operations. Adding replication was not visible to clients, since the replicated manager provides the
same client interface and the underlying Cronus support makes the cardinality of the manager logically
transparent to the clients. The remainder of this section describes how each of these layers was
implemented.

When the timer is running, the current experiment time is derived from the last time setting made
by a user, the time of day when that setting was made, and the rate at which the timer is running. Thus,
if ten minutes ago the timer was set to to time T, and the rate is 2, the time is now T+20 ainute,.
Similarly, if the rate had been 1/2, the timer value now would be T+5 minute.. This is expressed
formally as:
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if TimerRunning
then

ElapsedTime = RealTime - ReferenceRealTime
TimeValue = ElapsedTime * Rate + ReferenceExpTime

else
TimeValue = ReferenceExpTime

end

Setting the value of the timer then consists of setting ReferenceEzpTime to the new timer value and
setting ReferenceReaITime to the time of day at the moment the reference experiment time is set.
Thereafter, calculating Time Value produces the experiment time.

Special treatment is required whenever starting, stopping or changing the rate of a timer: the
timer's value must be preserved. This is done by calculating the experiment time before changing the
parameters, then changing the parameters, and finally updating the reference experiment time to the time
calculated before the parameters were changed.

A few additional object attributes support the remaining operations. A stop time is used to record
when the timer should stop running; if we sample the timer and discover that we have passed the stop
time, we set the reference time to the stop time and set TimerRunning to false. We store a react value
which we use to set the timer whenever the reset command is issued. We store a step increment to handle
the step mode of running the timer; whenever the step command is invoked, we set the stop time to
Time Value + StepIncrement and start the timer.

Although we were not bound to use Cronus canonical types in our implementation, we chose to use
them for portability and because it would simplify our transition to replicated timer objects later. We
simply include a description of the object attributes, similar to that appearing in Table I 2, along with the
operation specifications we provide to the Cronus application development tools. The tools, in turn,
generate code to handle storage and retrieval of the timer objects, and code to dispatch operations to
operation subroutines we provide. We complete the code for the manager by writing these subroutines in
C. Since the Cronus application development tools generate appropriate code for each of our target
machines and the C code we write can be transported among out target machines unchanged, the timer
manager can be easily transported from one machine to another. In addition, specifying that the timer
objects should be replicated in the manager specification activates Cronus library software that handles
the synchronization of replicated objects.

The survivable timer required two forms of cooperation between instances of the manager, one to
replicate the attributes of each timer object and another to correct for drift between the time of day
clocks on various hosts. We use the Cronus application development tool's support for automatically
handling object replication for timer attribute replication, as we mentioned earlier. For synchronization,

2The primitive types that are provided by Cronus software support and the routines that implement them are
described in the Cronus User's Manual IBBN-6180] and the Cronus Programmer's Manual [BBN-6161. Here, we
have used three different canonical types. For time values, we chose the Cronus primitive canonical type EDATE,
The EDA TE is used to represent time values; for each host, Cronus library routines are provided for calculations
involving these values and for reading and printing these values. The U161 provides a 16 bit unsigned integer,
similar to the unagned short of C. And the EBOOL to represents a boolean, with values of either TRUE or FALSE.
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Attribute Name Cronus Type Description

ReferenceTime EDATE Last setting of timer

ReferenceRealTime EDATE Time when timer was set
Running EBOOL True when running,

False when stopped

RateMultiplier U6I1 Numerator for rate of timer
RateDivisor U161 Demoninator for rate of timer
AwaitingStop EBOOL True if timer should be

stopped at StopTime

StopTime EDATE Time when timer should stop

ResetValue EDATE Setting of timer used
by Reset command

Steplncrement EDATE Interval timer will run for

when step command given

Timer Object Attributes

Table I

we implemented a strategy that elects one of the managers, thereafter called the master clock as the

primary source of time of day. If the master clock fails, another manager will be elected.

Timer object replication is handled in the following way. To modify the value of an object
attribute, such as the rate, the manager retrieves the attributes for that object, changes the value, and

then records the results. When the changes are recorded for a replicated object, the new attributes are
instantly broadcast to other instances of managers for the same type. Managers which are responsible for
copies of the modified object will then record the changes. Reintegration proced..es for managers which
have been temporarily inactive or unavailable, are also provided as part of the automated replication

support.

The implementation for time of day synchronization relies upon selecting a master clock, which is
then responsible for periodically reporting the time of day to the other slave clocks. The slave clocks, then
calculate an adjustment to their local processor time of day clocks, which will be used to correct the local
time of day value whenever it is used. Synchronizing the clocks every few minutes requires very little
processing and corrects for short term drift between the time of day clocks on the various machines.

Election of a new master clock occurs when a timer manager is first started, when the master clock
fails, or when an operator manually selects a new master clock. When a timer manager is first started, it
asks for the time of day from its peers; if none answer, the manager assumes the role of master clock.
Thereafter, whenever another manager is started, it receives the time of day from the master clock,

becomes a slave clock, and expects to receive periodic synchronization messages from the master clock. A
watchdog timer is used by the slave clocks to detect when two consecutive synchronization messages have

been missed, which is assumed to mean the master clock has failed.
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A slave clock becomes a candidate for election when either its watchdog timer expires, indicating
that the master clock has failed, or when an operator selects the slave clock as the new master clock. The
slave announces its candidacy by broadcasting a bid to the other managers. All candidates exchange bids.
If the master clock is actually available, it will exchange bids with the candidates too. The winner is
chosen by comparing the bids in a pairwise fashion.

" If one member of the pair was chosen by the operator, it wins. If both members where chosen
by operators, the remaining attributes determine the winner.

* If one of the pair is the original master clock, it wins.

" If one has a higher, operator assigned quality factor, it wins; the operator assigns low quality
values to managers on hosts with poor time of day clocks, and high values to managers on
hosts with very accurate time of day sources, such as WWV clocks.

* If one of the pair has received a synchronization message more recently from the master clock,

it wins.

" Otherwise, to resolve ties, the one with a higher host address wins.

If no counterbids are received, or if the manager wins against all counterbids, it will become the
master clock. Otherwise, the winner of the bidding becomes the master clock. In either case, the new
master clock begins to periodically broadcast synchronization messages. The remaining slave clocks then
resume awaiting synchronization requests from the new master.

This strategy for assigning the function of master clock is an example of global resource
management among the timer managers. Over time, we anticipate that this approach will be generalized
for use with other resource management strategies.

5.2.2. Target Simulation

The major role of the Target Simulation Manager is to supply the target scenario selected. This
scenario is used primarily by the various sensor system simulations, for experiment execution. The
motion of a target trajectory is described by a series of a straight line segments. Each segment
approximates the path of a target over a distance sufficiently short that significant turning maneuvers do
not occur. Each target object also has an associated type and name. The target object attributes are
shown in Tables 2 and 3. These objects can be used to represent an instance of a single element, such as

a jeep, or a collection of elements of one specific target type associated with a convoy unit (e.g., a
collection of jeeps travelling in proximity with one another). A composite target, such as an airfield or a
battalion, consists of an appropriate collection of the target objects of the appropriate types. Associated
with each target is a UID which uniquely identifies the object and is used by the underlying Cronus
support to locate the object, mediate access control, store symbolic references in the catalog, and identify

replicated copies.

The two operations pertinent to generation and modification of the target scenario are Create and
Move To. Create produces a new instance of a target with specified target type, name, initial location and
time. The MoveTo operation is used to add track segments to an existing target object. Another
important operation performed by the Target Simulation Manager is TargetuInRegio. A client, such as
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Object Attributes Cronus Type Description

Name ASC target name

TargType TARGETTYPE jeep, tank, bridge, power plant, etc.
Segments array of SEGMENT target track segments

Target Object Attributes
Table 2

Attributes Cronus Type Description

StartTime EDATE beginning time
StartLoc LOC3D beginning location
EndTime EDATE ending time

EndLoc LOC3D ending location

SEGMENT Attributes

Table 3

the sensor simulator, uses this operation to obtain a list of target track segments representing target
activity in a specified geographic region over a specified period of time. This is a good example of the
Cronus concept of moving a high-level processing request to the data, rather than moving the raw data to

the remote processing element.

Presently, a target scenario is generated by invoking a sequence of Create and MoveTo commands.
This can be done with the aid of the user interface utility described earlier. Alternatively, the commands
for certain target scenarios can be stored in a command file, which, when executed, generates or modifies
the target scenario by creating the appropriate target objects and initializing their associated target track
segments. In the future, the process of scenario generation will be further aided through the use of

cartographics in conjunction with the experiment clock and a display cursor.

5.2.3. Sensor Manager

Simulated sensor data is the major source of data for ground target situation assessment. Presently,
sensor data is generated through the simulation of several remote sensing systems employing varying
sensing technologies. The generation of simulated sensor data requires the interaction of various

components since the data giving the experiment time, the weather conditions, and the actual target state
must be collected from different managers. The integrated operation of these managers with multiple
instances of the sensor managers, relies totally upon the Cronus system for communication and

coordination. Although this represents only a portion of the C2 application planned for implementation,
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it has produced numerous preliminary conclusions. For example, it became clear that subsystems could

be designed, implemented and integrated quickly; however, certain software development tools were

changed in response to difficulties discovered in their early use.

During this phase of implementation and evaluation, we believe that a high-fidelity sensor
simulation is not necessary for application demonstration or Cronus system evaluation, and software
development effort is more valuable elsewhere. However, this subsystem is a candidate for integration of

independently developed, high-fidelity sensor simulations at a later time.

Although we have elected to limit the fidelity of the sensor emulation, we have made some effort to

imitate the effects of environmental conditions on sensor performance. To accomplish this, the sensor
manager uses a filtering algorithm to distort the view of the targets supplied by the target manager, as a

function of weather conditions and the sensor type. Presently, only the effects of weather conditions are
considered, and only for radar and infrared sensing systems. However, our design is well suited to adding

sensitivity to other environmental conditions such as terrain, and to simulating other sensing technologies

as well.

The functioning of an instance of a sensor can be described as follows. A flow chart of this process
is shown in Figure 11. When the OperatSensor operation is invoked, generally by an application
operator, to activate the sensor, the manager examines the specified sensor object's attributes to

determine the sensor's type, name, performance parameters, and mission schedule. The manager
periodically requests the experiment time from the Timer Manager; at times consistent with the mission

schedule, the manager requests the details of the actual targets in the region under surveillance and filters
the target data as a function of the weather conditions obtained from the Meteorological Data Manager
and the sensor performance characteristics.

The simulated sensor data is stored in a file on the local host. This file preserves the sensor data,
consisting of an image array of signal amplitudes, for a given sensor mission. Presently, due to the large

amount of data stored, this file is accessed primarily by a local user for graphical display purposes.
Remote users are given access to this file, using the Cronus COS directory interface; these interactions are

mediated by Cronus access control mechanisms.

A more concise data format has been adopted for sharing the simulated sensor data with other
processing components of the application. This format consists of a list of detections, each identifying a

position whose sensed energy or temperature exceed a specified threshold for the particular region under
surveillance. This list is an object which is collected and recorded for all of the sensor system instances
by a common sensor data management service. Sensor data maintained in this format can be accessed

remotely by any user authorized to do so. It is such data, collected from all sensor systems, that is used
in the target data correlation process. However, this data can also be requested for display purposes.

As previously mentioned, the Cronus system model has been adopted for implementation of the
sensor simulation and integration with other managers. Each sensor object stores the information
necessary for the representation of an instance of a sensor system. The attributes of this object are

described in Tables 4 and 5. Several operations can be performed on the sensor object. C-eate produces a
new object describing an additional sensor system; Move To appends a mission to an existing sensor object;
Edit can be used to modify the existing sensor description, including mission schedule; and OperateSen or

is used to activate a sensor, starting the process of generating simulated sensor data.
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Object Attributes Cronus Type Description

Type SENSORTYPE radar, infrared, or sigint
Name ASC sensor name
XYResolution SI6I 1 to 10 used presently (1->low resolution)
FrmDefs array of FRMDEF mission description

Sensor Object Attributes
Table 4

Object Attributes Cronus Type Description

TStart EDATE starting time of surveillance mission
TEnd EDATE ending time of mission

TInc EDATE incremental time for scan of region
Location LOC3D location of platform performing surveillance
Region REGION coordinates describing rectangular region under surveillance

FRMDEF Attributes
Table 5

The implementation described above has been influenced by the need to have multiple remote sensor
systems supplying data to the ground target situation analysis component. A multiple sensor system
configuration is obtained by operating the appropriate number of sensor software modules simultaneously;
generally these instances are managed by different managers running on separate hosts to emulate real
sensors existing as distinct physical resources.

As an example, a two sensor scenario was constructed. The sensor object descriptions are shown in
Tables 6 and 7. A mission consists of moving the appropriate sensor to the specified location at time tatart
and keeping it there until tend. At the end of each interval, specified by tinc, the sensor produces an
image of the region bounded by lowerleft and upperright, saves the data and sends a detection report to
the sensor data collector.

The target scenario consists of three targets whose true trajectories are shown in conjunction with a
cartographic background in Figure 12, which is a photograph of a prototype display for C2 Interret.
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name: newrad

type: radar

xyresolution: 400 P
frmdefs:

tstart: 0 minutes

tend: 50 minutes
tinc: 2 minutes

location:

Latitude: N50 deg 30'0.0"
Longitude: El0 deg 0'0.0"
Altitude: 12000

region:

lowerleft:
Latitude: N50 deg 36'0.0"
Longitude: ElO deg 24'0.0"

Altitude: 0

upperright:

Latitude: N51 deg 0'0.0"
Longitude: Ell deg 0'0.0"

Altitude- 0

Mission Schedule for Radar Sensor newrad

Table 6

5.2.4. Mission Data Manager

The Mission Data Manager records detection lists produced by the sensors during reconaisance
missions. Because this service must acquire data from a potentially large number of sensors, several

managers collectively support the Mission Data Management service. A simple resource management
algorithm is used to select which manager will be responsible for recording data acquired by a particular
sensor, and mechanisms are included to redirect the recording function to another Mission Data Manager

after a failure of the manager that was initially assigned.

The data for each mission is stored as a Cronus object, using the object database functions provided

by the development tools. The attributes of this object are displayed in Tables 8 and 9.

Several operations can be performed on Mission Data objects. StoreSensorData applied to the
generic mission data object, creates a new mission data object and stores an initial detection frame with
the object. The UID of the object is returned to the client; subsequent StoreSensorData operations should

be applied directly to this newly created object. CetSensorData retrieves a set of detection lists. The
client submits, with the request, the region which should be checked for detections, the time range during
which the detections should have occured, and the ID of the sensor that reported the detections; the time

range and sensor identity are optional: if omitted, all entries for the given region will be reported.
GetMissionDetections is similar to GetSenaorData, except the search will be restricted to data recorded for
a particular mission.
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naeme: ifS

type: infrared

xyresolution: 500
frmdefs:

tstart: 10 minutes

tend: 45 minutes

tine: 2 minutes
location:

Latitude: N50 deg 30'0.0"

Longitude: E10 deg 0'0.0"

Altitude: 12000

region:

lowerleft:
Latitude: N50 deg 33'0.0"

Longitude: El0 deg 24'0.0"
Altitude: 0

upperright:
Latitude: N50 deg 51'0.0"

Longitude: El0 deg 48'0.0"

Altitude: 0

Mission Schedule for Infrared Sensor ifS

Table 7

One additional feature of the Mission Data Manager is its use of resource management to select
which site should be reponsible for data reported during a particular mission. When the StoreSensorData

for a new mission is first recieved by a manager, it selects which manager should be responsible by using a
simple round-robin algorithm. In this algorithm, managers are assigned a sequence number when they are
initially started. Missions are then assigned to managers in circular order. That is, if there are three
managers, they would be numbered 1-2-3. The first mission goes to manager 1, the second to manager 2,

the third to manager 3. and the fourth again to manager 1.

The selection is made by the manager that first recieves the request. The request is then forwarded
to the selected manager using standard Cronus message forwarding mechanisms. The underlying Cronus
support for object caches records the location of the new object so that additional requests to store data
associated with the mission data object will be routed to the correct site.

These same basic mechanisms could be used with a more sophisticated selection algorithm. Such an
algorithm might take account of proximity to the reporting sensor, the actual load at each recording site,
or the reliability of each recording site. We chose a simple algorithm to expedite the initial
implementation; a more complex algorithm might be introduced at a later time.
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Example Target Trajetories
Figure 12
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Object Attributes Cronus Type Description

SensorlD EUID sensor reporting the detections

Threshold U161 sensor's detection threshold for the mission
MissionNo U321 sensor's scheduled mission number for mission
FrameArray array of DETECTIONFRAME list of detections

Mission Data Attributes
Table 8

Object Attributes Cronus Type Description 4

SampleTime EDATE date and time when detections where recorded
Detections arrya of DETECTIONDATA list of detections

DETECTIONFRAME Attributes
Table 9

5.2.5. Fusion (Detection Correlation) Processing

The fusion processing component takes collections of target events, detected during sensor missions,
and performs various numeric and symbolic processing tasks to eliminate false alarms, correlate detections
provided by different sensors, and identify target trajectories. Eventually, this function will be performed
by a processor which is functionally speciallized to the task of target correlation processing. In its initial
version, the detection report fusion processing will be performed by a simple client program which is run
manually by the operator.

The fusion algorithm itself is quite simple, and is intended for demonstration purposes only. Each
detection submitted by the sensor manager is marked with the identity of the target which caused the
event, or is marked as a false alarm resulting from noise. These markings are stored with the data in the
Mission Data database, and are used by the fusion processor to determine the trajectory of each detected
target. Entries which are false alarms are cast out; the remaining entries as sorted by target identity to
collect together all entries for each target.
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5.2.6. Target Report Manager

The Target Report objects each describe an object that has been detected by one of the sensing
systems and verified by the fusion processing system. Each object may have additional data associated
with it that describes attributes such as anticipated destination and priority.

Target reports are stored as Cronus objects, using the functions provided by the development tools.

Object Attributes Cronus Type Description ,...___

TDesc TARGETDESC summary of the target description
Sensors array of SENSORDATA detections associated with target

Target Report Attributes
Table 10

Object Attributes Cronus Type Description

ReportUID EUID unique ID assigned to the report
TargUID EUID ID of the simulated target associated with report
Name ASC user chosen name associated with the target
Type ENUM kind of target, eg. tank, aircraft
Destination LOC3D known or anticipated destination
Priority S321 relative importance of the target
Weapon ASC weapon assigned to the target
Region REGION area in which the target has been detected
StartTime EDATE time the target was first detected
EndTime EDATE time the target was last detected

TARGETDESC Attributes
Table 11

Each report has the attributes displayed in Tables 10, 11, 12, and 13.

Several operations can be performed on Target Report objects. StoreTargetReport creates a new
target report. The initial description of the target is included in the request. GetTargetDese returns a list
target reports for all detected targets in a particular region. A time range may also be specified.
GetTargetReport returns the description of particular target.
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Object Attributes Cronus Type Description

Sensor EUID ID of sensor providing data
SensorName ASC name of sensor providing data
Detections array of DETECTIONS detections associated with target

SENSORDATA Attributes
Table 12

Object Attributes Cronus Type Description

SampleTime EDATE time at which target was sensed
Location LOC3D target's position at that time
snr U321 signal-to-noise ratio of the detection

DETECTIONS Attributes
Table 13

5.2.7. Meteorological Data Manager

The meteorological data manager provides a logically central source of weather report and forecast
data, which can be used in the mission planning process. It is also used by the sensor simulator to imitate
the effects of meteorological conditions on sensor performance.

To implement the Meteorological Data Manager, a set of weather attributes and appropriate
canonical representations common to both reports and forecasts were chosen. These are maintained in the
appropriate object structures shown in Tables 14 and 15. Note that weather reports and and weather
forecasts are identical, except for their time-tagging information.

The operations which have been implemented to date include Create and Show WeatherNearLocation
(correspondingly, Create and ShowForecautNearLocation, for weather forecasts). The Create operation
produces a weather report for a particular region as of a particular time. To process
ShowWeataerNearLocation, the manager searches the weather report object database. For each report, it
computes the distance between the requested location and the location tagging the report. The manager
returns to the client the report for the location nearest to the location requested and includes the actual
position represented in the report. This has the advantage that the client program does not need to
specify the report by name or identify the precise location where the reporting station is located.
Conversely, it has the disadvantage that the client might receive a report that is distant from the desired
location, if none were from closer locations.
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Object Attributes Cronus Type Description

ReportDate EDATE

Location LOC
Ceiling U161 in meters

CloudCoverage CLOUDCOVERAGE
CloudTypes array of CLOUDTYPE
SurfaceVisibility U321 in meters
VisibilityRestrictions ASC
Weather WEATHERTYPE

BarometricPressure U161 in millibars
Temperature S161 degrees Centigrade

DewPoint S161 degrees Centigrade
Surface WindDirection U161 in degrees, 0-360
AvgSurfaceWindSpeed U16I km per hour
MaxSurfaceWindSpeed U161 km per hour
Remarks ASC
Station ASC weather station name

Weather Report Object Attributes

Table 14

The elimination of outdated weather reports is performed by the Delete OutdatedForecasts operation.
When the weather report is submitted, the meteorologist specifies an EndValidityPeriod When
Delete OutdatedForecasts is invoked, each weather forecast object in the object database is examined and
those whose validity period have expired are removed. Since the DeleteOutdatedForecasts affects
processing on a collection of objects rather than on one specific object, this operation is implemented as an
operation on the generic object (as is ShwwWeatherNearLocation also). The implementation of the
operation uses Cronus routines to scan all elements in the object database and to delete the objects that

are out of date.

6.2.8. Cartographic Data Manager

Cartographic data is available in a variety of formats and from a variety of sources. We want to
use available sources of cartographic data, and then provide a standard format for cartographic data used
within the system. We also have to consider the speed with which data can be supplied by the manager
due to the large volume of data needed to describe any given region. Both of these considerations are
important in chosing a representation and in implementing the cartographic manager. Several sources

and formats where reviewed prior to implementation and one was chosen: the Defense Mapping Agency's
(DMA's) Digital Landmass System (DLMS) Data Base formats.
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Attribute Name Cronus Type Description

ForecastDate EDATE
Begin ValidityPeriod EDATE
EndValidityPeriod EDATE
Location LOC
Ceiling U16I in meters

CloudCoverage CLOUDCOVERAGE
CloudTypes array of CLOUDTYPE

SurfaceVisibility U321 in meters
VisibilityRestrictions ASC
Weather WEATHERTYPE

BarometricPressure U161 in millibars
Temperature S161 degrees Centigrade

DewPoint S161 degrees Centigrade
Surface WindDirection UI61 in degrees, 0-360

AvgSurfaceWindSpeed U161 km per hour
MaxSurfaceWindSpeed U161 km per hour
Remarks ASC
Station ASC weather station name

Weather Forecast Object Attributes

Table 15

The implementation of the manager will be built using Digital Feature Analysis Data (DFAD)
available from DMA. This data provides, in a standardized format, a description of the planimetric
features in a given geographic region. For each feature contained in a DFAD description, there is a
feature type identifying the feature as an area, line, or point, a feature identification code describing the
feature (e.g., forest, road, industry), and a list of latitude and longitude coordinates specifying the
location of the feature. Using this basic information, a manager implementing the desired operations can

be constructed.

In order to improve performance, the manager will rely on both the local filesystem and the object
database for storage. Since parsing a DFAD is a processor-intensive operation, it is desirable to minimize
the delay when retrieving feature information for a client. In order to decrease this retrieval delay, the
manager will use the object database as a cache for the (less compact but more detailed) information
stored in the file. The local filesystem will be used to store the complete DFAD for a particular area (a
map). Creating a new feature map object from the data provided from DMA will involve a number of
steps, including the creation of the appropriate cache information.

1. The operator loads the raw DMA feature data into a local file;

2. The operator then creates a feature map object that corresponds to the feature data file using

the operations to
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" Parse the DFAD file; and

" Create the cache by recording an object database entry for the newly created

object which describes the geographic area covered by the file, and which includes a

sorted list of the identification codes of features in the file.

The ShowFeatureaInArea operation retrieves classes of features for a given region. The operation

involves the following process.

1. Look at a feature map's cache in the object database.

2. Based on the cached information, does this feature map cover the correct geographic region

and contain the features requested?

3. If so, reparse the corresponding local file containing the raw feature data and return the

appropriate features; otherwise continue searching the object database.

Object Attributes Cronus Type Description

Name ASC map name
Host EHOST host on which the map resides
COSPath ASC file in which the map resides

SWCorner LOC SW corner of the map object

NECorner LOC NE corner of the map object
FeatureldList array of U321 cache of features contained in the map

Feature Map Object Attributes
Table 16

The information characterizing a feature map can be found in Table 16.

Since retrieving information from the cartographic data manager can potentially return a large

quantity of data, the implementation will use Cronus large message support to return the requested
information. This also has performance benefits, since the overhead associated with initiating the data

transfer with the client is incurred only once, rather than once for each of several small messages needed

to pass the data.

Since the total volume of cartographic data is quite large, it might prove inefficient to store it in one
cluster and frequently transmit it to the other on each request. Therefore, the cartographic data will be

replicated and exist in both clusters. This replication also improves survivability since requests from

members of one cluster could automatically be processed by the cartographic data manager of the other
cluster, should one of the cartographic data managers fail.

0
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The particular data we are now using contains such features as power generation and distribution
facilities, wooded areas and clearings, settlements, agricultural facilities, and significant surface water such
as streams and ponds. A sample of the cartographic information is shown in Figure 13, which is a
photograph of a prototype display for C2 Internet.

5.2.9. Resources and Logistics Data Management System

The Resources and Logistics Data Management System will ultimately provide capability and
availability data for a variety of command and control resources. At present, the resources and logistics
data manager is a stubbed component which supports a minimal facility for managing capability data for
the vehicle object type. The List Vehicles WithCapabiliy operation performs a database-like function: it
allows a client to specify a number of vehicle attributes and returns the names of vehicles having those
characteristics. This operation is currently implemented by having the manager scan the objects in its
object database and perform the appropriate matching. This type of processing seems well suited for
implementation using a traditional database system: this is a possible future direction for the development
of this component.

Object Attributes Cronus Type Description

VehicleName ASC e.g., "A-10A"
VehicleType ASC e.g., "single-seat close support aircraft"
MaximumSpeed U16I kilometers per hour
MaximumWeight U161 kilograms at takeoff
MaximumRange U161 kilometers without refueling
Ma.ximumFuel U161 liters
TakeoffLength U161 meters
LandingLength U16I meters

Vehicle Object Attributes
Table 17

The attributes of a vehicle object are shown in Table 17.

5.2.10. Application Monitoring and Control

The MCS for the C2 application must be capable of acquiring status information about application
components at sites throughout the cluster, and be capable of organizing the display of that information
so that it can be easily used by an operator. Control of the application components must be integrated
with the monitoring function, since component status often affects operator decisions. The operator may
regulate the monitoring activities of the MCS, by changing the focus of attention as monitoring needs
change.
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Cartographic Display Image with Target Tracks
Figure 13
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We built the monitoring and control facilities for the C 2 Internet application using the facilities of
the existing Cronus MCS, which provides integrated monitoring and control of the underlying Cronus
operating system and the hosts on which it operates. The Cronus MCS was extended by identifying the

application components that were to be monitored and describing how their status information should be
displayed.

One view of the system, Figure 14, is a photograph of the MCS showing several hosts that support
the C2 application. Each host is represented by a toggle switch with the name of the host underneath;
tht up position of the switch indicates that the host is available; the down position of the switch indicates
that the host is unavailable. Each available host has an associated status summary. For example, we see
that host bbnv is available; it has been running since Oct 7, 1985, has 9 Cronus processes running, and
has sent 5734 messages to 6 other hosts since it was started. The view also displays a summary of
selected services at the bottom of the screen. In this particular view, the status of the timer, target,
sensor and weather services are shown; all of those services are available.

The control of the hosts and managers monitored by the MCS is integrated with the status display.
For example, Cronus operation on a host can be suspended or resumed through the MCS by selecting the
icon that represents the component and then choosing either suspend or resume from a menu that the
MCS displays. Individual managers can be started or stopped in a similar way. This type of interaction
with the MCS may also be used to adjust how often status data is requested from various managers and
to change the status information that is displayed.

A view of the status of the services is shown in Figure 15, another photograph of the MCS display.
The managers for each type are grouped together, with a summary of their status displayed at the left of
the grouping. For the timer manager, we see that the service is available, supported by three operating
managers. The sensor service is also available, but only one of the four instances of the manager is
currently active. The target service is supported by only a single manager (which is active), and the
weather service is supported by two managers (one of which is active).

The MCS also will notify the operator when irregular events occur, using a window at the bottom of
the display. When event reports from managers arrive, or when the MCS notices an important change in
status, a message will be displayed in the this lower window. In the examples we have given, reports
about the availability of the sensor manager and the two instances of the weather manager are visible.
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6. SUMMARY AND CONCLUSIONS

To date we have designed and implemented a number of C2 Internet functional components in
accordance with the Cronus system architecture and using the Cronus application development tools.
This activity has so far been highly successful. It has resulted in working, demonstrable, integrated
prototypes of a number of parts of the application with relatively little manpower applied to the
development and integration tasks. It has also resulted in initiating a number of improvements to both
the Cronus system and its support tools based on the initial design and implementation experience.
Finally, it has substantiated the already anticipated need for the introduction and refinement of
supplemental technologies within the Cronus context in order to extend the domain of integrated
resources available for application use.

In follow-on phases we anticipate incorporating additional technology areas such as flexible multi-
cluster support, integration of database functionality, support for symbolic processing systems to
experiment with "expert systems" substituting for simple stubbed programs or user interaction in current
scenarios, and integration of high performance processing elements for comp:ite-intensive application
functions. Obviously, a prerequisite to evolving the C 2 Internet scenarios to incorporate these
technologies is the integration of the raw technology base into the Cronus environment.
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A. APPENDIX: APPLICATION COMPONENT DOCUMENTATION

The articles in this section describe the interfaces and canonical types for invoking requests on
objects supported by each of the application services that have been developed for the C2 Internet
Experiment application. The information in these articles is maintained along with other descriptive
information kept by the Cronus type definition manager; the formatting of the articles is performed
automatically by the tools to the type definition manager.
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Cronus type: CT_Airfield (subtype of CT C21nternetObject)

The CTAirfield object contains information describing an airfield: its location and runway
configuration.

Generic operation: Create

An airfield object is created and the supplied description of it is stored. The airfield is cataloged
in the Cronus directory :user:c2inet:airfields with the specified name.

This operation requires generic create rights.

Create(Airfield: AIRFIELDINFO;
lObjectUID: EUIDJ;
IIACLHints: array of EUID])

=> (ObjectUID: EUID)

Airfield
is the description of the airfield.

ObjectUID
is an optional specification of the UID to be assigned to the newly created object.

IACL Hints
provides optional hints for initializing the Access Control List for the new object. A
detailed description may be found in the annotations for the Create operation on type
CT_Object.

ObjectUID
is the UID of the newly created object.

Generic operation: FindNearestAirfield

The FindNearestAirfield operation returns the airfield closest to the specified location.

This operation requires generic search rights.

FindNearestAirfield( Where: LOC)
=> (Airfield: AIRFIELDINFO)

Where
is the location for which the nearest airfield is being requested.

Airfield
is the description of the nearest airfield.

Operation: DescribeAirfield

The DescribeAirfield operation returns a description of the specified airfield
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This operation requires showfield rights.

DescribeAirfield 0
=> (Airfield: AIRFIELDINFO)

Airfield
is a the description of the requested airfield.

Opeiation: ListRunways

The ListRunways operation returns the runways of a particular airfield.

This operation requires showfield rights.

ListRunways()
-> (RunwayList: array of RUNWAY)

RunwayList
is a description of the runways at the requested airfield.

Canonical Types

Cantype: SURTYPE

A SURTYPE is one of the possible runway surface types.

SURTYPE: { GRASS, CONCRETE, ASPHALT 1;

GRASS
indicates a grass runway.

CONCRETE
indicates a concrete runway.

ASPHALT
indicates an asphalt runway.

Cantype: RUNWAY

The RUNWAY cantype describes an airfield's runway.

RUNWAY: record
Length: UI61;
Bearing: U161;
Surface: SURTYPE;
end;

Length
is the runway length in meters. 0
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Bearinig
is the runway bearing 0 - 360 degrees.

Surface
is the runway surface type. 4

Cantype: AIRFIELDINFO

The AIRFIELDINFO cantype describes a complete airfield.

AIRFIELDINFO: record
AirfieldName: ASC;
Where: LOC3D;
RunwayList: array of RUNWAY;
NavAidList: ASO;
end; 0

AirfieldName
is the name of the airfield.

Where
is the airfield's location.

RunwayList
is a list of the configuration of the airfield's available runways.

NavAidList
is a textual description of any available navigational aids.
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Crmus type: CTC21nternetObject (subtype of CTObject)

The C21nternet Object type defines those canonical types which are shared by more than one of the C2
Internet managers.

Canonico Types

Cantype: LOC

The LOC cantype represents a location on the earth using latitude and longitude coordinates.
Each of these is represented in integer tenths of seconds. North latitude and east longitude are
represented as positive quantities, while south latitude and west longitude are represented as
negative ones.

LOC: record
Latitude: S321;
Longitude: S321;
end:

Latitude
is the north / south position.

Longitude
is the east / west position.

Cantype: LOCSD

The LOC3D cantype represents a location on the earth using latitude, longitude, and altitude
coordinates. Latitude and longitude are represented in integer tenths of seconds. North latitude
and east longitude are represented as positive quantities, while south latitude and west longitude
are represented as negative ones. Altitude is in meters above sea level.

LOC3D: record
Latitude: S321;
Longitude: S321;
Altitude: S321;
end;

Latitude
is the north / south position.

Longitude
is the east / west position.

Altitude
is the height in meters above sea level.

Cantype: REGION
@
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h.
A REGION specifies a rectangular volume using the locations specified by its two corners.

REGION: record
lowerleft: LOCSD;
upperright: LOC$D;
end;

lowerleft
is the southwest corner of the region.

upperright
is the northeast corner of the region.

Cantype: FRMDEF

A FRMDEF stores one element (or frame) of a sensor's schedule. Each FRMDEF is equivalent
to a sensor mission.

FRMDEF: record
tstart: EDATE;
tend: EDATE.
tinc: EDATE;
location: LOC3D;
region: REGION;
end;

tstart
is the time at which the sensor will begin observing the specified area.

tend
is t e time at which the sensor will finish observing the specified area.

tinc
is tie interval the sensor will pause between subsequent observations. !

loc ation
is the sensor location during the mission.

region
is t..e region of surveillance for the sensor.

Cantype: SENSORTYPE

A SENSORTYPE denotes a class of similkr remote detectors.

SENSORTYPE: { radar, infrared, sigint };

radar
is a system for locating an object by means of ultrahigh-frequency radio waves reflected
from the object and received, observed, and analyzed such that characteristics of the
object may be determined. 4
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izfrared
is a system for locating an object by means of 'thermally sensing and analyzing the spec-
trum emitted by the object such that characteristics of the object may be determined.

sigint
is a system for locating an object by means of intercepting and analyzing emitted radio
signals such that the characteristics of the object may be determined.

Cantype: SENSORVARIABLE

A SENSORVARIABLE stores the complete description of a sensor, and consists of the sensor's
name, type, resolution, and a sequence of missions.

SENSORVARIABLE: record
name: ASC;
type: SENSORTYPE;
xyresolution: S161;
frmdefs: array of FRMDEF;
end;

name
is the sensor's name.

type
is the kind of sensor.

xyresolution
is the resolution performance parameter for the sensor (in deciseconds).

frmdefs
is the sensor's schedule.

Cantype: DETECTIONDATA

The DETECTIONDATA canonical type represents a target that has been detected by a sensor.

DETECTIONDATA: record
location: LOCSD;
targetuid: EUID;
snr: U161;
end;

location
is the location of the detected event.

targetuid
is the UID of the target.

Snr
is the signal-to-noise ratio of the detection.
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Cantype: SEGMENT

The SEGMENT cantype is a parametric description of one segment of a target track trajectory.

SEGMENT: record
starttime: EDATE;
startloc: LOC3D;
endtime: EDATE;
endloc: LOCSD;
end;

starttime
is the time at which the target will begin this track segment.

startloc
is the initial position of the target.

endtime
is the time at which the target will complete this track segment.

endloc
is the final position of the target.

Cantype: TARGETTYPE

The TARGETTYPE cantype describes various kinds of objects of interest to the sensing sys-
tems.

TARGETTYPE: { jeep, tank, footsoldier, airplane, building, airfield, truck, bridge, powerplant, railroad,
dam };

jeep
is a small general-purpose motor vehicle.

tank
is an enclosed, heavily armed and armored combat vehicle that moves on two endless
metal belts.

footsoldier
is an infantryman.

airplane

is a fixed-wing heavier-than-air vehicle driven by a propeller or jet.

building
is a roofed and walled structure built for permanent use.

airfield
is a field maintained for the landing and takeoff of aircraft and for receiving and
discharging passengers and cargo.

truck
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is a wheeled vehicle for moving heavy articles.

bridge
is a structure carrying a pathway or roadway over a depression or obstacle.

powerplant
is an electric utility generating station.

railroad
is a line of track providing a path for cars or equipment drawn by locomotives or pro-
pelled by self-contained motors.

dam
is a barrier preventing the flow of water or of loose solid materials.

Cantype: TARGETVARIABLE

The TARGETVARIABLE cantype contains the complete description of a simulated target.

TARGETVARIABLE: record
name: ASC;
targtype: TARGETTYPE:
segments: array of SEGMENT:
end;

name
is the name of the target.

targtype
is the kind of target.

segments
is a description of the targets path.
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Creous type: CTFeatureMap (subtype of CTC21nternet_Object)

The Feature Map Manager maintains and facilitates retrieval of cartographic information. A
CTFeatureMap object consists of two parts. The primary object is a file in the host's local filesystem
that contains Digital Feature Analysis Data in the format specified by the Defense Mapping Agency (Pro.
duct Specifications for Digital Landmass System Data Base DMA stock #SPEXDLMS2). The manager is
capable of parsing data in this format and providing it remotely to client programs. For each feature file,
corresponding summary information is kept in the Feature Map Manager's object database. The object
database is used as a caching mechanism to enhance the retrievad speed of the cartographic information.

Generic operation: Create

The create operation attempts to create a MAPIDRECORD for the file on the specified Host and
with the specified COSPath. If the manager is able to open the file and parse through the first
feature in the file, success is assumed for the remainder of the file and create returns. The
manager will continue to parse the file and any errors occurring subsequently will be recorded in
the manager's log file.

This operation requires generic create rights.

Create(Name: ASC:
Host: EHOST;
COSPath: ASC;
fObjectUID: EUIDj;
IIACLHints: array of EUIDI)

> (SWCorner: LOC;
NECorner: LOC)

Name
is the name assigned to the map.

Host
is the host on which the map resides.

COSPath
is the local file in which the map will be found.

ObjectUID
is an optional specification of the UID to be assigned to the newly created object.

IACLHints
provides optional hints for initializing the Access Control List for the new object. A
detailed description may be found in the annotations for the Create operation on type
CT_Object.

SWCorner
is the latitude and longitude of the southwestern corner of the map.

NECorner
is the latitude and longitude of the northeastern corner of the map.

72

-J



FMAP (3) C2 Internet Manager Definitions FMAP (3)

Generic operation: ShowFeatureslnArea

The ShowFeaturesInArea operation will return all features contained in the region specified by
SWCorner and NECorner whose Featureld's match those requested. Omitting the FeatureldList
on the request returns all features for the specified region. Varying degrees of granularity may
be obtained by requesting categories of Featureld's. For each Featureld in the FeatureldList
specified as input parameter, the following algorithm for returning features is used:

xOO returns all features with Featureld xnn (general category); xy0 returns all features with
Featureld xyn (specific category); xyz returns features with Featureld xyz only.

For example, specifying a FeatureldList of 200, 403, 510 would return all features with
Featureld's 200-299, 403, or 510-519.

It is important to note that the Feature Map Manager is currently implemented only for the 32
bit architecture, byte-within-word and bit-within-byte ordering used on the SUN workstation.
To increase efficiency, the manager does not do internal to canonical conversion prior to return-
ing data from the ShowFeaturesInArea operation. A description of the client interface to be
used when invoking this operation may be found in the C2 Internet Program Maintenance
Manual.

This operation requires generic search rights.

ShowFeat uresln Area(SWCorner: LOC;
NECorner: LOC;
iFeatureldList: array of U3211)

=> 0

SW Corner
is the southwest corner of the region for which feature data is wanted.

NECorner
is the northeast corner of the region for which feature data is wanted.

FeatureldList
is a list of the kinds of features which are wanted.

Generic operation: ReportStatus

The ReportStatus operation dumps a collection of statistics that are accumulated as the Feature
Map Manager runs.

This operation requires generic status rights.

ReportStatus()
=> (Bootdate: EDATE;

OpCount: U321;
OctetsSent: U321;
UserCPUSeconds: U321;
SystemCPUSeconds: U321;
AvgOctetsPerOp: U321;
AvgUserCPUSecPerOp: U321;
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AvgOctetsPerUserCPUSec: U321;
MgrSize: U161)

Bootdate
is the date and time at which the manager was most recently started.

OpCount
is the number of operations that the manager has processed since it was started.

OctetsSent
is the number of octets the manager has sent out as feature data returned as responses
to the ShowFeatureslnArea operation. This number does not include octets sent as the
result of other operations.

UserCPUSeconds
is the number of seconds of user processor time the manager has used since it was
started.

SystemCPUSec onds
is the number of seconds of system processor time the manager has used since it was
started.

AvgOc tetsPerOp
is the ratio of the number of octets the manager has returned as responses to the
ShowFeaturesInArea operation to the total number of operations completed.

AvgUserCPUSec PerOp
is the ratio of the number of seconds of user processor time the manager has used since
it was started to the total number of operations it has completed.

AvgOc tetsPerUserCPUSec
is the ratio of the number of octets the manager has returned as responses to the
ShowFeatureslnArea operation to the total number of seconds of user processor time
the manager has used since it was started.

MgrSize
is the maximum resident set size of the manager in kilobytes.

Canonical Types

Cantype: MAPIDRECORD

A MAPIDRECORD is the representation used to cache information about a feature map file in
the manager's object database. 6

MAPIDRECORD: record
Name: ASC;
Host: EHOST;
COSPath: ASC;
SWCorner: LOC; 6
NECorner: LOC;
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FeatureidList: array of U321;
end;

Name
is the name assigned to the map.

Host
is the host on which the map resides.

COSPath
is the local file in which the map will be found.

SW Corner
is the latitude and longitude of the southwestern corner of the map.

NECorner
is the latitude and longitude of the northeastern corner of the map.

FeatureidList
summarizes the kinds of features to be found in the file. Each feature is assigned a
Featureld that classifies it into a well-known category (for example, lake, power plant,
agricultural building). Each element in the array indicates the number of features of
each kind to be found in the feature file.
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Cronus type: CTMissionData (subtype of CTC21nternet_ Object)

The Mission Data Manager is responsible for the long-term storage of targets detected by the Sensor
Managers. Each sensor is chronologically scheduled to perform one or more missions. When a sensor runs
a mission, the resulting data is stored as one complete MissionData object (in the absence of failures)
made up of one or more DETECTIONFRAMEs. A Sensor Manager stores mission data by initially
invoking the StoreSensorData operation on the generic Mission Data object. This, in turn, causes the
Mission Data Manager to perform resource management, and either accept the sensor's request, or
redirect it to an alternate Mission Data Manager. Subsequent storage of sensor data for the same mission
is achieved when the Sensor Manager invokes the (non-generic) StoreSensorData operation on the UID
returned by the initial (generic) invoke. Clients may retrieve data from the Mission Data Manager by
invoking the GetSensorData operation and specifying any desired parameters. The responding Mission
Data Manager uses the GetMissionDetection operation to collect the relevant information from its peer
managers, aggregates this information, and finally returns the results to the requesting client.

Generic operation: StoreSensorData

The generic StoreSensorData operation stores a set of detections with a Detection Data Manager.

StoreSensorData(SensorID: EUID;
SampleTime: EDATE:
Threshold: U161;
MissionNo: U321:
SensorVar SENSORVARIABLE"';

Detections: array of DETECTIONDATA)
=> (MissionID: EUID)

SensorlD
is the UID of the sensor attempting to store the data.

SanrpleTime
is the date and time when this data set was recorded by the sensor.

Threshold
is the threshold that the sensor has used to discern events from noise in this data set.

MissionNo
is the mission for the specified sensor for which detections are being stored.

SensorVar 0
is a description of the sensor.

Detections
is a list of the detections in this data set.

MissionID S
is the UID of the mission being stored.

Operation: StoreSensorData

The StoreSensorData operation stores a set of detections with a specified Detection Da.1
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Manager.

StoreSensorData(SensorID: EUID;
SampleTime: EDATE;
Threshold: U161;
MissionNo: U321;
SensorVar: SENSORVARIABLEJ;
Detections: array of DETECTIONDATA)

=> (MissionID: EUID)

Sensor]D
is the UID of the sensor attempting to store the data.

SampleTime
is the date and time when this data set was recorded by the sensor.

Threshold
is the threshold that the sensor has used to discern events from noise in this data set.

MissionNo
is the mission for the specified sensor for which detections are being stored.

SensorVar
is a description of the sensor.

Detections
is a list of the detections in this data set.

MissionID
is the UID of the mission being stored.

Operation: SetObjectiveVar

The SetObjectiveVar operation allows an operator to set a variable that will control the behavior

of the manager when the resource management algorithm is executed.

SetObjectiveVar(ObjectiveVar: U321)
=> ()

4 ObjectiveVar 0
is the variable.

Generic operation: GetMgrStatus

The GetMgrStatus operation retrieves resource management information from a Mission Data
Manager's peers.

GetMgrStatus()
=> (ObjectiveVar: U321;

LastMission: U321)
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ObjectiveVar
is an operator-controllable variable that affects the behavior of the manager during
resource management.

LastMission
is the number of seconds since the manager last began storing a mission.

Generic operation: GetSensorData

The GetSensorData operation aggregates sensor information from a collection of Mission Data
Managers, and returns it to the requesting client.

Get SensorData(Region: REGION;
jStartTime: EDATEJ;
lEndTime: EDATE;
jSensorID: EUID])

=> (]Detections: array of DETECTIONEVENTI)

Region
is the area for which sensor information is requested.

StartTime
is the beginning of the time window in which the client is interested.

EndTime
is the end of the time window in which the client is interested.

SensorlD
is the UID of the sensor for which data is being requested. Omitting the SensorID
retrieves data from all available sensors.

Detections
is a list of the detections meeting the specified requirements.

Operation: GetMissionDetection

The GetMissionDetection operation retrieves any detections for the specified mission, region,
time window, and sensor.

GetMissionDetec tion (MissionID: EUID;
Region: REGION,
[StartTime: EDATE:;
jEndTime: EDATEi:
ISensorli.. SUIDI)

=> (IDetections: array of DETECTIONEVENT])

MissionID
is the mission from which detections will be retrieved.

Region
is the area within which detections will be retrieved.
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StartTime
is the beginning of the time window in which the client is interested.

EndTime
is the end of the time window in which the client is interested.

SensorlD
is the UID of the sensor for which the mission was created.

Detections
is a list of the detections meeting the specified requirements.

Operation: Remove

The Remove operation removes the specified Mission_Data object.

This operation requires remove rights.

Remove()
=> ()

Canonical Types

Cantype: DETECTIONFRAME

The DETECTIONFRAME cantype is a time-tagged list of events detected by a sensor.

DETECTIONFRAME: record
SampleTime: EDATE;
Detections: array of DETECTIONDATA;
end;

SampleTime
is the date and time when the detections were recorded.

Detections
is a list of detections.

Cantype: MISSION

The MISSION cantype details the detections found during a sensor mission.

MISSION: record
SensorID: EUID;
Threshold: U161;
MissionNo: U32I;
FrameArray: array of DETECTIONFRAME;
end;
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SenorID
is the UID of the sensor reporting the detections.

Threshold
is the sensor's threshold for the mission.

MissionNo
is the mission for the specified sensor during which the detections were reported.

FrameArray
is the list of the detections reported.

Cantype: DETECTIONEVENT

The DETECTIONEVENT cantype describes a single detection made by a sensor.

DETECTIONEVENT: record
time: EDATE:
sensor: EUID:
detection: DETECTIONDATA;
end;

time
is the date and time when the detection were recorded.

sensor
is the UID of the sensor that recorded the detection.

detection
is a description of the event reported by the sensor.

W
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Cronus type: CT_Sensor (subtype of CTC21nternetObject)

A Sensor Manager mediates access to one or more CTSensor objects. A CTSensor object represents a
real, physical sensor system. The Sensor Manager emulates the operation of these sensor systems by
obtaining true target state information from the Target Simulation Manager and altering it in a manner
consistent with the specified sensor performance parameters. Each CT_Sensor may be chronologically
scheduled for one or more missions. These missions specify where and when particular sensors should be
performing observations. The conglomeration of the assigned missions for a sensor is known as the
sensor's schedule. Each Sensor Manager is capable of simulating at most one physical sensor at a time.
That is, a Sensor Manager cannot run more than one mission simultaneously, either for different or the
same CTSensor objects.

Sen sor Configuration and Scheduling

Generic operation: Create

The Create operation defines a new sensor.

Create(Name: ASC;
SensorType: SENSORTYPE;

Resolution: S321)
=> (ObjectUID: EUID)

Name
is the sensor's name.

SensorType
is the kind of sensor (radar, infrared, or signal interception).

Resolution
is the resolution of the sensor in deciseconds. This value wil] determine the geographi-
cal precision with which the sensor is capable of detecting targets. At the equator, one
decisecond is equal to approximately three meters. Hence values in the hundreds of
deciseconds are usually appropriate.

ObjectUID
is the UID of the newly created sensor object.

Operation: MoveTo

The MoveTo operation adds a mission descriptor to a sensor's schedule.

MoveTo(StartTime: EDATE;
EndTime: EDATE;
Timelnc: EDATE;
SurRegion: REGION;
SenLocation: LOC3D)

=> 0

StartTime
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is the time at which observations of the specified region will commence.

EndTime
is the time at which observations of the specified region will cease.

Timelne
is the time increment between successive observations of the specified region.

SurRegion
is the region to be observed.

SenLocation
is the location of the sensor.

Operation: ShowSchedule

The ShowSchedule operation retrieves the schedule for the specified sensor.

ShowSchedule()
=> (SenSchedule: SENSORVARIABLE)

SenSchedule
is the schedule for the specified sensor.

Generic operation: GetUIDs

The GetUIDs operation returns a list of sensor objects managed by the responding sensoi
manager.

GetUIDs()
=> (UIDs: array of EUID;

Names: array of ASC;
Types: array of SENSORTYPE)

UIDs
is an array of the sensor UIDs.

Names
is a corresponding list of the sensor names.

Types
is a corresponding list of the sensor types.

Operation: Edit

The Edit operation allows an operator to alter the description of an existing sensor.

Edit(Changes: SENSORVARIABLE)
=> 08
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Changes
is the revised sensor description.

Senior Operation

Operation: OperateSensor

The OperateSensor operation starts a sensor beginning with the specified mission.

OperateSensor(Mission: U16I)
=> 0

Mission
is the first mission to be performed.

Operation: GetDetections

The GetDetections operation retrieves targets detected by the sensor.

GetDetections()
=> (Detections: array of DETECTIONDATA)

Detections
are the sensed targets.

Operation: SetDetectionThreshold

The SetDetectionThreshold operation alters the sensor's threshold which is used to discern detec-
tions from ambient noise.

SetDetectionThreshold (Threshold: U161)
=> ()

Threshold
is the new threshold to use.

Canonical Types

Cantype: FRMDATA

The FRMDATA cantype stores a 2-D image of surveillance data.

FRMDATA: record
time: EDATE;
threshold: S161;
frame: array of DETECTIONDATA;
end;
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time
is the time at which the sensor performed the observation.

threshold
is the threshold applied to this frame.

frame
is the perceived image.

Cantype: MISSIONDATA

A MISSIONDATA cantype is used to store a mission's detection data.

MISSIONDATA: record
name: ASC;
type: SENSORTYPE;
resolution: S161;
mission: FRMDEF;
detectfrms: array of FRMDATA;
end;

name
is the name of the sensor.

type
is the kind of sensor.

resolution
is the sensor's resolution in deciseconds.

mission
is the mission schedule corresponding to the detection data.

detectfrms
is the time-series of 2-D frames of detection data that constitute the mission.
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CronuR type: CTTarget_Simulator (subtype of CTC21nternet_Object)

The Target Simulation Manager implements operations that manage a simulated target movement
scenario. Each CTTarget Simulator object represents a simulated target. Each target consists of a
name, a type, and a sequence of track segments. Each of these track segments is linear and begins at the
end of the previous segment.

Target Manipulation Operationz

Generic operation: Create

The Create operation creates a new simulated target.

Create(Name: ASC;
Type: TARGETTYPE;
StartTime: EDATE;
Location: LOC3D)

=> (ObjectUID: EUID)

Name
is the name of the simulated target.

Type
is the kind of target that will be simulated.

StartTime
is the simulated time at which the target will first appear.

Location
is the initial location of the target.

ObjectUID
is the UID of the created target.

Operation: MoveTo

The MoveTo operation adds a track segment to the target trajectory of an existing simulated
target. The segment begins at the end location and time of the last previously defined segment.

MoveTo(EndLocation: LOC3D;
EndTime: EDATE)

=> 0)
EndLocation

is the desired location of the target at the end of the segment added.

EndTime
is the time at which the target will reach this location.

45
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Target Retrieval Operation

Generic operation: TargetsInRegion

The TargetslnRegion operation returns the track segments for those targets present in a specified
rectangular region during a particular time interval.

TargetslnRegion (StartTime: EDATE;
Endbime: EDATE;
Region: REGION)

=> (Segments: array of SEGMENT;
TargetUIDS: array of EUID;
TargetTypes: array of TARGETTYPE)

StartTime
is the beginning of the time interval for which targets are requested.

EndTime
is the end of the time interval for which targets are requested.

Region
is the geographic area in which targets are requested.

Segments
are the track segments.

TargetUIDS
are the UIDs of the targets corresponding to the track segments.

TargetTypes
are the target types of the targets corresponding to the track segments.
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Cronus type: CT_Timer (subtype of CT_ReplicatedObject)

The timer manager maintains a globally synchronized time of day clock and a collection of experiment
timers. The global standard time is periodically broadcast from a selected master clock manager to all
other managers, each of which then calculates the difference between the time of their particular processor
clock and the global time of day time. Thereafter, the managers estimate the global standard time by
adding this adjustment to the time of their local processor clock. We do not correct for the delay
incurred while constructing the broadcast message, broadcasting the message to the timer managers or
unbundling the message; we assume this delay is small enough not to cause errors in the time calculations.
If we require more precise samples, or the time delays prove to be more than we anticipated, the algo-
rithm can be improved.

The manager also supports a collection of replicated timer objects. Each timer object operates as a
stopwatch and has an adjustable rate. So, the client of a time object may set the current value and may
choose to have it run at twice real time during a demonstration. The timer may be started and stopped
at arbitrary instants.

Implementation: Time on each timer elapses along a series of time segments. The inflection points of
these segments occur whenever the rate changes, of which starting and stopping the clock are particular
cases, and when the timer value is explicitly changed. The timer object records a global and timer refer-
ence time for the most recent inflection point and estimates the current time from these vaiues using the
following formula:

TimerValue = TimerTimeRef -+ ElapseRate * (GlobalTime - GlobaTimerRef)

The GlobalTime value is calculated using the broadcast algorithm described above.

Generic operation: GetHostTime

This returns the current value of the host clock.

GetHostTime()
=> (HostTime: EDATE)

HostTime
Processor clock time for this particular manager

Generic operation: GetTime

This returns the current global standard time.

GetTime()
=> (Time: EDATE)

Time
Global standard time value

Generic operation: SetTime
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This allows a client to change the global date, as when a misguided manager changes the date to
an incorrect value. The new value will be propagated throughout the collection of managers.
This operp.tion does not effect the ID of the master clock. If the new global time is omitted, the
receiving host's host clock will be used to get the new date.

This operation requires generic operator rights.

SetTime([Time: EDATE])

=> 0

Time
New global standard time value

Generic operation: SelectMasterClock

Invoking this operation nominates the manager receiving the request for the role of master clock.
The manager will then determine if another master clock exists and, if so, demote any such
managers from the master clock status. Thereafter, every <interval> seconds, the newly elected
master clock will synchronize the global times of all other manager.

This operation requires generic operator rights.

SelectMasterClock (!nterval: U161])
=> 0

Interval
New synchronization interval for global standard time, in seconds

Generic operation: DeselectMasterClock

When sent to the master clock, causes it to no longer be the master clock.

This operation requires generic operator rights.

DeselectMasterClock ()
=> 0

Generic operation: SetSynchlnterval

Used to change the synchronization interval. May be submitted to any manager and it will be
forwarded to the master.

This operation requires generic operator rights.

SetSynchlnterval(Interval: U161)
=> 0

Interval
New synchronization interval for global standard time, in seconds
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Generic operation: SetQuality

Used to set quality assessment of a particular clock.

This operation requires generic operator rights.

SetQuality(Quality: S161)
=> ()

Quality
New quality rating for given manager; low numbers, near zero denote prefered masters

Generic operation: BidForBecomingMaster

This is used by a manager, during an election, who wants to become the master clock. The
manager receiving this request compares his own credentials to those in the bid and invokes a
corresponding bid on the sender if the se ,der loses the bid. Otherwise, it is assumed that the
sender will become the master.

BidForBecomingMaster(ElectionBid: BID)
=> ()

ElectionBid
Our qualifications for becoming the new master clock

Generic operation: Synchronize

This is used, only by t.e managers, to propagate the global date among the managers. If a mas-
ter clock manager receives this request from another manager, the receiving manager will assume
that the manager issuing the command has been elected master clock manager the receiving
manager will then resign its role as master clock manager. A manager does not process its own
invocations of SynchronizeGloba]Time.

Synchronize(Time: EDATE;
Synchlnterval: U161)

=> ()

Time
Current global standard time

SynchInterval
Time until we will send the next synch, in seconds.

Generic operation: SetLoggingLevel

Change logging parameters of the timer manager.

SetLoggingLevel(LoggingLevel: U161)
=> 0
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LoggingLevel
New logging level, by bits: OxI-synchronization protocol, 0x2-bidding and elections,
0x4-all generic operations, 0x8-all object operations

Generic operation: ReportStatus

This operation returns the local date of the host performing the operation, the global date being
used by the system and manager specific status information.

ReportStatus() --
=> (Status: TIMERMGRSTATUS)

Status
Status description

Generic operation: Create

This function creates a new timer object and returns its UID. If the 'StartRunning' flag is true,
the timer will be set to the current time of day and set running in real time (that is, Rate= 1). If
the 'StartRunning' flag is false, the timer will be set to zero and will await setting by the other
timers. The default, when StartRunning is omitted, is true.

This operation requires generic create rights.

Create( StartRunning: EBOOL];
1ObjectUID: EUID];SIACLI'ints: array of EUID])

=> (ObjectUID: EUID)

StartRunning
New timer should be running after creation

ObjectUID
Timer should have this particular UID

IACLHints
Hints for filling in ACL of new timer object

ObjectUID
UID of new timer object

Operation: GetTime

* Returns the current setting of timer.

GetTime()
=> (Time: EDATE)

Time
Current simulated time
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Operation: SetTime

Sets the current time of timer. With no argument, sets sample time to match global timer. If
the stop time is set and the timer value is set beyond the stop time, the pending stop command
will be cancelled. If the stop time is set and the timer value is set before the stop time, the
timer will run until the pending stop time and then stop.

This operation requires operator rights.

SetTime(!Tirne: EDATEJ)

=> () __
Time

New simulated time setting

Operation: Reset

Set timer to value stored in InitialValue field.

This operation requires operator rights.

Reset()
=>()

Operation: SetResetValue

Sets the value saved in InitialValue for use in Reset operation.

This operation requires operator rights.

SetResetValue (Time: EDATE)
=> 0

Time
New reset value for restarting timer

Operation: SetRate

Sets the rate associated with timer.

This operation requires operator rights.

SetRate (IRateMultiplier: U16Il;
IRateDivisor: U1611)=> 0)

RateMultiplier
Numerator of elapsed time rate

RateDivisor
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Demoninator of elasped time rate

Operation: Start

Starts the timer running from its current value. If the StopTime is specified, the timer will run
until the specified time and then stop. This command cancels any pending stop request.

This operation requires operator rights.

Start(!StopTime: EDATE])
=> 0

StopTime
Timer will run until it reaches this time

Operation: Stop

Stops the timer. Its value will not be reset.

This operation requires operator rights.

Stop()
=> 0

Operation: SetStopTime

The timer will run until the specified time and then stop. If the specified time has already
passed, the timer will be stopped immediately at its current setting.

This operation requires operator rights.

P
SetStopTime(StopTime: EDATE)

=> ()

StopTime
Timer will run stop when reaches this time

Operation: SetStepIncrement

Sets the default value for advancing the timer in steps.

This operation requires operator rights. p

SetStepIncrement (Steplncrement: EDATE)
=> 0

StepIncrement
Timer will advance this many seconds on next step
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Operation: Step

The timer is started running until count steps have elapsed. If specified, StepIncrement becomes
the new default.

This operation requires operator rights.

Step(!Count: UI6I];
IStepincrement: EDATE])

=> ()
Count

Number of steps to allow time to advance

StepIncrement
Increment to use for each step; this becomes the new default step increment

Operation: ReportStatus

This operation describes the status and parameters of a particular timer object. It returns the
current simulated and true time, and the object parameters describing whether the timer is run-
ning or not. what rate the timer is set to run at, and whether the timer is set to automatically
stop.

ReportStatus()
=> (Time: EDATE;

GlobalTime: EDATE;
Attributes: TIMEROBJECT)

Time
Current simulated time value

GlobalTime
Current global standard time value

Attributes
Timer object instance variables

Operation: SetLoggingLevel

Change logging parameters of a particular object.

SetLoggingLevel(LoggingLevel: U161)
=> 0)

LoggingLevel
New logging level; non-zero enables logging

Canonical Types
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Cantype: BID

Bids are broadcast by each candidate manager running for election. If a candidate recieves a
counter-bid, better than its own, it will withdraw from the election. This competition will even-
tually leave only one candidate, which will then become the master clock.

BID: record
SelectedByUser: EBOOL;
IsMaster: EBOOL;

" Quality: S161;
SynchGlobalTime: EDATE;
SynchInterval: U16I;
end;

SelectedByUser
user elected this manager for new master. Wins if only one has been so selected.

IsMaster
Manager won last election. Wins if no user selected a different one.

Quality
Quality assessment of host processor clock, usually set by operator. Managers with
better clocks have higher quality values.

SynchGlobalTime
Slave clocks: global time synch command last was received. Most recently synchronized
slave manager will win the bid.

SynchInterval
Synchronization period that will be used if we win the bid.

Cantype: TIMERMGRSTATUS

A Timer Manager Status structure is kept by each manager in the system. The contents of the
structure can be retrieved by invoking the "ReportStatus" operation on the generic timer object.

TIMERMGRSTATUS: record
HostTime: EDATE;
GlobalTime: EDATE;
Adjustment: EDATE;
AdjAvg: S321;
AdjDev: S321;
AdjSamples: S321;
LoggingLevel: UI61;
Candidate: EBOOL;
Bid: BID;
MasterlsKnown: EBOOL;
MasterHostID: EHOST;
Synchlnterval: U161;
TimeUntilSynch: UI61;
end;
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HostTime
Host processor time for this particular manager.

GlobalTime
Global standard time of day

Adjustment
Difference between local and global timer 'alues.

AdjAvg
Average adjustment value.

AdjDev
Std dev of adjustment value in hundredths

AdjSamples
Number of adjustment settings used in avg amd std dev

LoggingLevel
Generic logging level. Each timer may have an individual level too.

Candidate
Manager is a candidate for becoming master clock and hasn't lost yet.

Bid
Bid submitted for election

MasterlsKnown
Set when we know who the master clock is, ie. after we become master or another clock
sends a synchronize to us.

MasterHostID
For slave clocks, host that invoked last synchronize command.

SynchInterval
Number of seconds between synchronizations of global standard time clocks.

TimneUntilSynch
Time until next automatic synchronization will be sent.

Cantype: TIMEROBJECT

The parameters (instance variables) for each timer object are collected into this "Timer Object"
record. The parameters distinguish each timer object, indicated when the timer was last set,
whether it is running, what rate it is running at, etc. The values of these parameters can be
modified using the timer operations described elsewhere.

TIMEROBJ ECT: record
TimerTimeRef: EDATE;
GlobalTimeRef: EDATE;
InitialValue: EDATE;.
StepIncrement: EDATE;
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Running: EBOOL;
AwaitingStop: EBOOL;
StopTime: EDATE;
RateMultiplier: U161;
RateDivisor: UI61;
LoggingLevel: UI61;
end;

TimerTimeRef

Timer time when GlobalTimeRef was last sampled.

GlobalTimeRef
Global time sampled when current timer segment began

InitialValue
Initial setting. The reset operation sets time to this.

StepIncrement
Period to use when stepping time in regular increments.

Running
True if timer is running

AwaitingStop
True if stop is pending

StopTime
Time when pending stop command should take effect

RateMultiplier
Number of experiment seconds that elapse every real second

RateDivisor
Number real seconds for every experiment second

LoggingLevel
Logging level for this object

* 6
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Cronus type: CTTarget Report (subtype of CTC2lnternetObject)

The CT_TargetReport type describes an object that has been detected by one of the sensing systems.
Each object may have additional data tagged to it that describes its attributes, such as anticipated desti-
nation or priority.

Generic operation: GetTargetDesc

The GetTargetDesc operation returns to the invoker a list of target descriptions for those targets
that have been detected within the specified area during the specified time window.

GetTargetDesc (Region: REGION:
IStartTime: EDATE :
iEndTime: EDATEI)

=> (TargetDesc: array of TARGETDESC)

Region
is the rectangular area within which reported targets are of interest.

StartTime
is the beginning of the time window of interest.

EndTime
is the end of the time window of interest.

TargetDesc
is the list of selected target descriptions.

Operation: GetTargetReport

The GetTargetReport operation retrieves the information stored in a Target Report object.

GetTargetReport()
=> (Target: TARGETREPORT)

Target
is the information retrieved.

Generic operation: StoreTargetReport

The StoreTargetReport operation creates a Target Report object, and stores the data provided.

StoreTargetReport (TargetReport: TARGETREPORT)
=> (ReportUID: EUID)

TargetReport
is the information to be stored.

ReportUID
is the unique identifier of the newly created object.
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CanonicalTypes

Cantype: TARGETDESC

The TARGETDESC cantype briefly summarizes the information known about a detected target.

TARGETDESC: record
ReportUID: EUID;
TargUID: EUID;
Name: ASC;
Type: ENUM;
Destination: LOC3D;
Priority: S321;
Weapon: ASC;
Region: REGION;
StartTime: EDATE;
EndTime: EDATE;
end;

ReportUID
is the identifier assigned to the report.

TargUID
is the identifier of the simulated target that is associated with this report.

Name
is a user-defined name associated with the target.

Type
is the kind of target.

Destination
is the known or anticipated destination of the target.

Priority
is the relative importance of the target.

Weapon
is the weapon assignment for the target.

Region
is the bounding rectangle of the area in which the target has been detected.

StartTime
is the time at which the target was first detected.

EndTime
is the time at which the target was last detected.

Cantype: DETECTIONS

98



TREP (3) C2 Internet Manager Definitions TREP (3)

The DETECTIONS cantype describes a snapshot in time of a single target detection.

DETECTIONS: record
SampleTime: EDATE;
Location: LOC3D;
snr: U321;
end;

SampleTime
is the time at which the target was sensed.

Location
is the target's position.

is the signal-to-noise ratio of the detection. This value indicates the confidence of the
sensor that a target was indeed present at the time and position specified.

Cantype: SENSORDATA

The SENSORDATA cantype is a collection of target detections that have been reported by a
sensor.

SENSORDATA: record
Sensor: EUID;
SensorName:, ASC;

Detections: array of DETECTIONS
end:

Sensor
is the unique identifier of the sensor providing the data.

SensorName
is the name of the sensor providing the data.

Detections
is the collection of target detections.

Cantype: TARGETREPORT

The TARGETREPORT cantype contains a complete description of the status of a detected tar-
get.

TARGETREPORT: record
TDesc: TARGETDESC;
Sensors: array of SENSORDATA;
end;

TDesc
is the summary of the target description.
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Sensors
is the sensor data for the target.
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Cranus type: CTVehicle (subtype of CTObject)

The CT_Vehicle type stores information about the operational capabilities of various vehicles (e.g, their

maximum speed or range). At the present time, the orientation is toward aircraft.

Generic operation: Create

The Create operation defines the capabilities of a new aircraft. When information for a new air-
craft is entered, the name of the aircraft is cataloged in the Cronus directory
:user:c2inet:vehicles.

This operation requires generic create rights.

Create(Plane: PLANEDESC;
[ObjectUID: EUIDI;
IACLHints: array of EUID])

=> (ObjectUID: EUID)

Plane
is the description of the new aircraft.

ObjectUID
is an optional specification of the UID to be assigned to the newly created object.

lACLHints
provides optional hints for initializing the Access Control List for the new object. A
detailed description may be found in the annotations for the Create operation on type
CT_Object.

ObjectUID
is the UID of the newly created object.

Generic operation: ListVehicles

The LiiztVehicles operation returns a list of all vehicles for which capability data is available.

This operation requires generic listvehicles rights.

ListVehicleso
=> (VehicleNarneList: array of ASC)

VehicleNameList
is the list of vehicles for which data is available.

Generic operation: ListVehiclesWithCapability

The ListVehiclesWithCapability operation looks up all of the available vehicles and returns a list
of those matching or surpassing the specified capabilities.

This operation requires generic listvehicles, capabilitysearch rights.
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ListVehiclesWithCapability( VehicleName: ASCI;
VehicleType: ASC];
IMaximumSpeed: U161];
Maximrnum Weight: U16I];
MaximumRange: UI6I1;
IMaximumFuel: U16I;
ITakeoffLength: U161];
ILandingLength: U1611)

=> (VehicleNameList: array of ASC)

VehicleName
is a character string that matches all or part of the vehicle name.

VehicleType
is a character string that matches all or part of the vehicle type.

MaximumSpeed
is the required aircraft speed (in kilometers per hour).

MaximinunW eight
is the required aircraft weight (in kilograms).

MaximumRange
is the required aircraft range (in kilometers).

MaximuxnFuel
is the required aircraft fuel capacity (in liters).

TakeoffLength
is the required aircraft takeoff distance (in meters).

LandingLength
is the required aircraft landing distance (in meters).

VehicleNameList
is the list of the vehicles meeting the specified requirements.

Canonical Types

Cantype: VEHJCLEDESC

The VEHICLEDESC cantype is used to represent the characteristics of a vehicle.

VEHICLEDESC: record
VehicleName: ASC; 4
VehicleType: ASC;
MaximumSpeed: U161;
MaximumWeight: U321;
MaximumRange: U161;
MaximumFuel: U321;
end; 4

1 Q2
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VehicleName
is the name of a vehicle, e.g. F16.

VehicleType
is the vehicle class, e.g., attack aircraft, light truck, etc.

MaximumSpeed
is the maximum vehicle speed in kilometers per hour.

MaximumWeight
is the maximum vehicle weight in kilograms.

MaximumRange
is the maximum vehicle range in kilometers without refueling.

MaximumFuel
is the maximum fuel capacity of the vehicle in liters.

Cantype: PLANEDESC

The PLANEDESC cantype is used to represent the characteristics of an aircraft.

PLANEDESC: record

Vehicleinfo: VEHICLEDESC;
TakeoffLength: U161;
LandingLength: U161;
end;

Vehiclelnfo
is a description of the vehicle attributes.

TakeoffLength
is the minimum takeoff distance in meters.

LandingLength
is the minimum landing distance in meters.
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II

Crionu type: CT_WeatherForecast (subtype of CTWeather_Data)

A CT .WeatherForecst is a summary of the weather forecast at a given location for a given time win-
dow.

Generic operation: Create

Allow the user to create a forecast for a specified time period.

This operation requires generic create rights.

Create(JObjectUID: EUIDI;
fIACLHints: array of EUIDI;
WeatherForecast: WXCASTDATA)

=> (ObjectUID: EUID)

ObjectUID
is an optional specification of the UID to be assigned to the newly created object.

IACLHints
provides optional hints for initializing the Access Control List for the new object. A
detailed description may be found in the annotations for the Create operation on type
CT Object.

WeatherForecast

is the weather being forecast.

ObjectUID
is the UID of the forecast created.

Generic operation: ShowForecastNearLocation

The ShowForecastNearLocation operation returns the weather forecast for the requested forecast
date and the location nearest to the one specified.

This operation requires generic listforecasts rights.

ShowForecastNearLoc ation (RequestedForecastDate: EDATE;
Location: LOC)

=> (WeatherForecast: WXCASTDATA)

RequestedForecastDate
is the date and time for which the forecast is wanted.

Location
is the place for which the forecast is wanted.

WeatherForecast
is the requested weather forecast.

1

104



WXCAST (3) C2 Internet Manager Definitions WXCAST (3)

Generic operation: DeleteOutdatedForecasts

The DeletedOutdatedForecasts operation deletes weather forecasts that have outlived their use-
fulness. A forecast is considered to have expired if the current date is later than the end of the
forecast validity period.

This operation requires generic deleteoutdated rights.

DeleteOutdatedForecasts()
=> (NumberOfDeletedForecasts: U161)

NumberOfDeletedForecasts
is the number of forecasts successfully deleted by the operation.

Canonical Types

Cantype: WXCASTDATA

The WXCASTDATA cantype summarizes the relevant weather parameters for a weather fore-
cast.

WXCASTDATA: record
ForecastDate: EDATE;
BeginValidityPeriod: EDATE;
EndVaidityPeriod: EDATE;
ForecastData: WXINFO:
end;

ForecastDate
The date and time when the forecast was formulated.

BeginValidityPeriod
The beginning of the period for which the forecast is valid.

EndValidityPeriod
The end of the period for which the forecast is valid.

ForecastData
is the weather forecast data.
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Cromus type: CTWeatherData (subtype of CTC21nternetObject)

CTWeatherData defines meteorological information for a given geographical location. The informa-
tion that is defined is that which is common to both weather reporting and forecasting. No operations are
defined for CTWeatherData.

Canonical Types

Cantype: CLOUDCOVERAGE

The CLOUDCOVERAGE cantype describes the relative density of the cloud cover.

CLOUDCOVERAGE: { NONE, LIGHT, HEAVY);

NONE
indicates no clouds.

LIGHT
indicates light clouds.

HEAVY
indicates heavy clouds.

Cantype: CLOUDTYPE

The CLOUDTYPE cantype describes a particular kind of cloud formation.

CLOUDTYPE: { CIRRUS, NIMBUS. CUMULUS, STRATUS. CIRROCUMULUS, CIRROSTRATUS,
NIMBOSTRATUS, CUMULONIMBUS, STRATOCUMULUS, ALTOCUMULUS,
ALTOSTRATUS).

CIRRUS
is a wispy white cloud usually of minute ice crystals formed at altitudes of 6000 to
12000 meters.

NIMBUS
is a rain cloud that is of uniform grayness and extends over the entire sky.

CUMULUS
is a massy cloud form having a flat base and rounded outlines often piled up like a
mountain.

STRATUS
is a cloud form of greater horizontal extension and comparatively lower altitude (1000
to 2000 meters) than the cumulostratus or cirrostratus.

CIRROCUMULUS
is a cloud form of small white rounded masses at a high altitude usually in regular
groupings forming a mackerel sky.
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CIRROSTRATUS
is a fairly uniform layer of high stratus clouds that are darker than cirrus clouds.

NIMBOSTRATUS
is a low dark gray rainy cloud layer.

CUMULONIMBUS
is a cumulus cloud spread out in the shape of an anvil extending to great heights.

STRATOCUMULUS
is a stratified cumulus cloud consisting of large balls or rolls of dark cloud which often
cover the whole sky, especially in winter.

ALTOCUMULUS
is a fleecy cloud formation consisting of large whitish globular cloudlets with shaded
portions.

ALTOSTRATUS
is a cloud formation similar to cirrostratus but darker and at a lower level.

Cantype: WEATHERTYPE

The WEATHERTYPE cantype summarizes the weather conditions for a given location.

WEATHERTYPE: { CLEAR. CLOUDS, FOG, RAIN, SNOW );

CLEAR
indicates clear weather.

CLOUDS
indicates overcast conditions.

FOG
indicates fog.

RAIN
indicates precipitation.

SNOW
indicates precipitation.

Cantype: WXINFO

The WXINFO cantype summarizes the relevant weather parameters.

WXINFO: record
Location: LOC;
Ceiling: U161;
CloudCoverage: CLOUDCOVERAGE;
CloudTypes: array of CLOUDTYPE;
SurfaceVisibility: U321;
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VisibilityRestrictions: ASC;
Weather: WEATHERTYPE;
Barometric Pressure: U 161;
Temperature: S 161;
DewPoint: 5161;
SurfaceWindDirection: U161;
AvgSurfaceWindSpeed: U161;
MaxSuirfaceWindSpeed: U161;

-Remarks: ASO;
* Station: ASC;

end;

Location
is the site for which thr weather is specified.

Cflgin meters.

CloudCoverage
is the extent of cloud coverage.

Cloud Types
are the kinds of clouds present.

Surface Visibility
in meters.

VisibilityRestrictions
describes any abnormal conditions impeding visibility.

Weather
is a summary of the weather condition.

Barometric Pressure
in mnillibars.

Temperature
in degrees Centigrade.

0 DewPoint
in degrees Centigrade.

Surface WindDirec tion
in degrees, 0 - 360.

AvgSurface Wind Speed
in kilometers per hour.

MaxSurface WindSpeed
in kilometers per hour.

Remarks
are miscellaneous comments provided by the meteorologist.

108



WXDATA (3) C2 Internet Manager Definitions WXDATA (3)

Stationi
is the name of the responsible weather station.
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Cronus type: CTWeather Report (subtype of CTWeatherData)

A CT Weather Report is a summary of the weather reported at a given location and time.

Generic operation: Create

Report the weather conditions for a given location. The report provided will replace any existing
previously provided report for the given location. Hence performing a create operation requires
(non-generic) remove permission.

This operation requires generic create rights.

Create (fObjectUID: EUID;
llACLHints: array of EUID;
WeatherReport: WXREPORTDATA)

=> (ObjectUID: EUID)

ObjectUID
is an optional specification of the UID to be assigned to the newly created object.

IACLHints
provides optional hints for initializing the Access Control List for the new object. A
detailed description may be found in the annotations for the Create operation on type
CT_Object.

WeatherReport
is the weather being reported. S

ObjectUID
is the UID of the report created.

Generic operation: ShowWeatherNearLoc ation 0

The ShowWeatherNearLocation operation returns the most up-to-date weather report for the
location nearest to the one specified.

This operation requires generic listreports rights.

Show WeatherNearLocation (Location: LOC)
=> (WeatherReport: WXREPORTDATA)

Location
is the location for which the reported weather is desired.

WeatherReport
is the requested weather report.

Canonical Types
1 1
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Cantype: WXREPORTDATA

The WXREPORTDATA cantype summarizes the relevant weather parameters for a weather
report.

WXREPORTDATA: record
ReportDate: EDATE;
ReportData: WXINFQ;
end;

ReportDate
is the date and time at which the report was formulated.

ReportData
is the weather report data.


