
RADC-TR-88-133, Vol I (of three)
Final Technical Report
June 1988

AD-A200 169

THE C2 SYSTEM INTERNET
EXPERIMENT

BBN Laboratories Incorporated 0

Kenneth J. Schroder, James C. Berets, Ronald A. Mucci and Richard E. Schantz

40

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

DTIC
S "LECTE

I

NOV 0 7 19881

D ROME AIR DEVELOPMENT CENTERDAir Force Systems Command

Griffiss AFB, NY 13441-5700

88 11 07 092

This report has been reviewed by the RADC Public Affars Division (PA)
and is releasable to the National Technical Information Service (NTIS). At
NTIS it will be releasable to the general public, including foreign nations.U

RADC-TR-88-133, Vol I (of three) has been reviewed and is approved for
publication.

APPROVED: 7/ - (/h/,',

THOMAS F. LAWRENCE
U Project Engineer

S ~APPROVED: ~~lO 6
7 ~ .~ -

RAYMOND P. URTZ, JR,
Technical Director
Directorate of Command & Control

FOR THE COMMANDER:,

JOHN A. RITZ
Directorate of Plans & Programs

If your address has changed or if you wish to be removed from the RADC mailing
list, or if the addressee is no longer employed by your organization, please
notify RADC (COTD) Griffiss AFB NY 13441-5700. This will assist us in
maintaining a current mailing list.

Do not return copies of this report unless contractual obligations or notice
on a specific document requires that it be returned.

UNCLASSIFIED7
SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE Fo. oved

la. REPORT SECURITY CLASSIFICATION lb. RESTRICTIVE MARKINGS
UNCLASSIFIED N/A

2a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION /AVAILABILITY OF REPORT
N/A Approved for public release; distribution

2b. DECLASSIFICATION / DOWNGRADING SCHEDULE unlimited.
N/A I__

4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)

6251 RADC-TR-88-133, Vol I (of three)

6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION

BBN Laboratories Incorporated (If applicable) Roe Air Deelopment Center (COTD)

6c. ADDRESS (City, State, and ZIP Code) 7b. ADDRESS(City, State, and ZIP Code)

10 Moulton Street Griffiss AFB NY 13441-5700
Cambridge MA 02238

8a. NAME OF FUNDING/SPONSORING 8b. OFFICE SYMBOL 9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (If applicable)

Rome Air Development Center COTD F30602-84-C-0140

c. ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS
PROGRAM PROJECT TASK WORK UNIT

Griffiss AFB NY 13441-5700 ELEMENT NO. NO. NO ACCESSION NO.

62702F 5581 21 70
11. TITLE (Include Security Classification)

THE C2 SYSTEM INTERNET EXPERIMENT

12 PERSONAL AUTHOR(S)
Kenneth J. Schroder, James C. Berets, Ronald A. Mucci and Richard E. Schantz

13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPOFT (Year, Month, Day) 15. PAGE COUNT
Final FROM Aug 84 TO Mar 86 June 1988 44

16 SUPPLEMENTARY NOTATION

N/A

17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)~System Monitoring and
FIELD GROUP SUB-GROUP Distributed Operating System) y I12 07Interoperabilty , Control 1 -. ,

Heterogeneous Distributed System , Survivable Application ,--

19. ABSTRACT (Continue on reverse if necessary and identify by block number)

This is the Final Technical Report representing work performed for the C2 System Internet
Experiment project. The C2 Internet Experiment project is a complementary effort to the
CRONUS Distributed Operating System (DOS) project. Under the C2 Internet Experiment, we
designed and built a prototype distributed application to demonstrate CRONUS concepts and
to provide an environment for evaluating CRONUS' current suitability for supporting
distributed applications, especially applications that pertain to the command and control
environment. Both the C2 Internet Experiment and CRONUS DOS projects are part of a larger
program being supported by the Rome Air Development Center (RADC) to design, develop and
support an appropriate technology base for building the types of distributed systems which
are expected to be fundamental in future command and control applications and elsewhere./

20 DISTRIBUTION /AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION
0UNCLASSIFIEDUNLIMITED C3 SAME AS RPT C1 DTIC USERS UNCLASSIFIED

22a NAME OF RESPONSIBLE INDIVIDUAL 22b TELEPHONE (Include Area Code) 22c. OFFICE SYMBOL
Thomas R. Lawrence I RADC (COT

OD Form 1473, JUN 86 Previous editions are obsolete SECURITY CLASSIFICATION OF THIS PAGE

U74.CLASSIFIED

BBN Laboratories Inc. Report No. 6251

Table of Contents -

7

1. INTRODUCTION 1

1.1 Project Objectives 2

1.2 Project Summary 3

1.3 Report Overview 5

2. DISTRIBUTED SYSTEM DEVELOPMENT METHODOLOGY 6

2.1 Divide Application by Functional Decomposition 10
2.2 Identify Distributed Function Characteristics 13
2.3 Specify Components in Terms of Cronus Object Model 15

2.4 Map Functional Elements onto Appropriate Host Resources 17

2.5 Implement and Debug 18

3. EXPERIMENTAL FINDINGS 20

3.1 Methodology 20

3.2 Available System Facilities 21

3.3 Application Development Tools 22

3.4 User Interface 23
3.5 Development Testbed 24

3.6 System Configuration Maintenance 25

3.7 Monitoring and Control 26

3.8 Debugging Cronus Applications 27

3.9 Performance Improvements 29

3.10 Documentation 29

4. CONCLUSIONS 31

4.1 Review 31

4.2 Future Directions 32

5. REFERENCES 34

Accesion For

N IS CRA&I
D!: TAB []

, .': -

0 4 ' AL4=

BBN Laboratories Inc. Report No. 6251

1. INTRODUCTION

21

This is the Final Technical Report representing work performed for the C2 System Internet Experiment

project. The C Internet Experiment project is a complementary effort to the Cronus Distributed Operating

System (DOS) project. Under the C2 Internet Experime!nt we designed and built a prototype distributed

application to demonstrate Cronus concepts and to provide an environment for evaluating Cronus' current

suitability for supporting distributed applications, especially applications that pertain to the command and control
2environment. Both the C Internet Experiment and Cronus DOS projects are part of a larger program being

supported by the Rome Air Development Center (RADC) to design, develop and support an appropriate

technology base for building the types of distributed systems which are expected to be fundamental in future

command and control applications and elsewhere.

The Cronus system development project has been ongoing since 1981'. The goal of this effort is to

develop an architecture, an operating system, and software development tools to support large scale distributed

systems and applications. The development to date has produced a Cronus testbed which serves to provide

application developers with exposure to Cronus concepts and software for developing their distributed

applications and to provide an opportunity for direct experience with the effects of distribution on their

applications. This testbed is comprised of operational computer systems and software located at BBN in

Cambridge, Mass; the testbed is currently being extended to include additional resources located at RADC in

Rome, NY. The Cronus testbed currently supports the C2 Internet development and operation. Work on the

testbed development and on enhancements and extensions to the Cronus system are being performed

concurrently with the development of the C2 Internet Experiment application.

The C 2 Internet effort has focused on developing a representative application chosen from the command

and control area. The particular application area chosen is a set of battle management functions whose

integration is representative of larger systems, and whose function can be enhanced through the use of

distributed system architectures and technologies. Application development to date has proceeded in a top-down

fashion, emphasizing the interfaces and functions of components that comprise the application and their use in a

distributed environment by other components. Once this architectural framework is established, the fidelity and

functionality of the individual components can be enhanced. We believe that this approach reflecs the actual

need to be able to integrate components whose functions and capabilities will evolve after their interface and

functions have been established initially.

See Cronus Functional Definition [Schantz85] for further details.

-.-

Report No. 6251 BBN Laboratories Inc.

1.1. Project Objectives

There are a variety of uses of the Cronus system which have been explored in the experimental

application. One important role of Cronus is to support and control interoperability between otherwise

independent functions and resources available on a heterogeneous collection of host systems. Support for this

interoperability is also meant to facilitate the evolution from existing but largely non-integrated computing

resources towards an effective integration and management of resources and services which can capitalize on

information and control shared through interconnection. A second role is to facilitate the development of a

multi-host implementation of particular functions or subsystems as an alternative to single host implementations.

Such distributed implementations can provide special properties, such as scalability and survivability, which are

not possible through single host implementations. A third role is to facilitate the long-term evolution of newly

constructed, large-scale distributed systems. This includes the replacement of existing components with new,

more technologically advanced counterparts, and the integration of new, possibly unanticipated functions and

resources.

The C2 Internet Experiment was also meant to serve as a vehicle for demonstrating the potential role of

distributed system technology in supporting C2 applications. In this role, the development of the C2 Internet

Experiment application served as a basis for evaluating the support provided by the Cronus distributed operating

system and its tools. It also served as a preliminary basis for evaluating the relevance of distributed system

techniques to the C2 Internet environment. To be an effective basis for this evaluation, it was essential that the

particular application domain we chose be visibly relevant to the C2 Intemet environment and offer many

opportunities to incorporate and to present distributed system benefits. Because the level of effort allocated to

the effort was limited, it was important that the application be adequately demonstratable without excessive

attention to details of particular application components. The application also needed to be extensible to serve

as a foundation for future enhancements through technological improvements and additional application

development effort.

Beyond the relevance of the application to the C2 environment, we hope that the application-independent

nature of much of the underlying system support is also clearly recognizable. Distributed systems offer an

opportunity both to support the interoperation of an existing heterogeneous collection of resources and to allow

functional specialization of subsystems for which particular technologies can be exploited, including concurrent

multiprocessors, symbolic processors and high-performance display processors and workstations. Distributed

systems also offer many benefits to the support of particular system components and their use of the available

system resources. These include:

" Survivability: the entire system and essential functional components continue to be available
when hosts and other physical system components are unavailable, when multiple failures occur,
performance should degrade gradually (graceful degradation), not suddenly.

* Scalabiity: system capacity can be increased by adding additional physical resources but
without substantial change to the software or system architecture.

-2-

BBN Laboratories Inc. Report No. 6251

Resource Management: resources are assigned to clients, and system components are placed, to
ensure efficient use of these resources and components; configuration choices can be changed to 9
improve performance and ensure efficient use of all available resources.

Evolvability: hosts, resources, subsystems and other components of the system can be changed
to accommodate redesign and technological improvements without requiring substantial changes
to other components of the system.

Extensibility: new components can be added to the system without requiring substantial changes 0
to other system components beyond what is required to support the use of the new component.

The C2 Internet Experiment also provides an opportunity to test and evaluate the relevance and

effectiveness of the Cronus approach, and to test and evaluate system and application support within the context

of complex, prototype C2 applications with requirements similar to projected uses. Our evaluation has focused

on the qualitative aspects, such as the suitability of the Cronus object model and development methodology to

system development; and the adequacy and flexibility of the underlying system and development tools. Some

instrumentation and quantitative evaluation has also been performed, largely oriented toward establishing a small

set of general purpose tools for identifying areas for more detailed analysis.

The process of evaluation also serves to establish a source of feedback, gained from experience in

matching actual application requirements to Cronus support mechanisms and from developing the prototype

application, to help guide the direction of future Cronus system enhancement, extension and repair. This has

been especially useful to developers, who provide support for various system attributes such as survivability,

global resource management, and multi-cluster operation, as well as providing a means for the hands-on

evaluation of an initial implementation of these properties within the context of the application. This also

guided the effort to further formalize, extend and refine the methodology used for designing distributed

applications, and the tools and system support used to implement distributed applications.

1.2. Project Summary

Because of the ap,,',:ation's central role, one of the first tasks accomplished under this effort was the

design of an appropriate application, summarized in a paper by Berets, et. al. [Berets85] and described in more

detail in the C2 Internet Functional Definition (Berets86]. The design included both identification and

specification of the functional components needed to support the application, and a set of prototype scenarios of

use within this application domain for demonstration and evaluation purposes. This application definition was

then submitted for review and accepted.

-3-

[0

F
Report No. 6251 BBN Laboratories Inc.

Using the Cronus development tools and other Cronus support mechanisms, we refined the component

designs and implemented initial versions of the application functions, as described in the System/Subsystem

Specification [Berets86a]. Initially, development focused on a subset of key functions, both to achieve an early

demonstration capability, and to reinforce the utility of an evolutionary approach to system development. The

collection of components we have developed has substantially increased, representing a preliminary

implementation simulating the full functionality appropriate to the application, emphasizing those aspects which

focus on distributed system technology. To date, our development has successfuUy accommodated changes in

the application implementation, both revisions to existing components and the addition of new components,

without dramatic impact on other system components. These functions will continue to evolve over time.

A working configuration of C 2 Internet Experiment application has been operational for several months.

and is used regularly in demonstrations. We intend to continue development of the application during ongoing

and future efforts, both to enhance the properties of existing components and to introduce new functions and

system architectures into the application environment. One major extension is the recent integration of a second

testbed cluster into the application environment; communication between the two clusters is provided by the

DARPA Internet, including the Arpanet and Wideband Satellite networks. Other changes will include modifying

existing components to introduce survivability and resource management in areas where they were not essential

for the initial demonstrations, adding symbolic processors to support experimentation with artificial intelligence

based approaches to application functions, and possibly adding more extensive use of distributed database

technology. Changes to the underlying Cronus system environment will include better user interface support,

enhancing the development tools and possibly introducing better debugging support.

The C2 Internet Experiment has served to guide our emphasis in the ongoing Cronus development work.

In particular, our emphasis on relatively high-level tool support has grown, with less emphasis on extending the

capabilities of lower level communications primitives. In the course of developing the application components.

and in using the Cronus system and application development tools, there have been numerous enhancements and

refinements to the Cronus system and tools: a number of other areas, such as database and program development

support, have been identified for fiiture development. The underlying Cronus system and tools have evolved

substantially during the course of this effort, and we have found that the system and application has quite readily

afforded the necessary changes. We believe that the integration of the system and application development

activities, in which the C2 Internet Experiment provides a basis for evaluation and goal setting for the

underlying Cronus activities, has been quite effective.

.4-

BBN Laboratories Inc. Report No. 6251

1.3. Report Overview

The rest of this report is divided into three sections. Section 2 discusses the overall application design and

development process. This includes a description of the design methodology, clarified with examples from the

C" Internet Experiment application, and a description of the use of Cronus system support and distributed

software development tools in relation to development methodology. It briefly reviews the Functional Definition

[Berets86], System/Subsystem Specification [Berets86a], and demonstration application [Berets86b] produced as

part of the development effort and identifies how distributed system benefits are visible in the demonstration.

Section 3 discusses our experimental findings. This includes both strong points and weaknesses. Where

weaknesses have been corrected, we include a discussion of what was discovered and how it was corrected.

Particular emphasis is given to the existing Cronus software, including the development tools, and some

discussion of the status of the experiment configuration and demonstration capabilities.

Section 4 discusses our conclusions and recommendations. In general, the experiment has been extremely

successful, based both on our subjective evaluation of the current Cronus system in supporting the development

of distributed applications, and in the response we have received from people who have seen the software

demonstrated. The Cronus system model and the Cronus system software and development tools were readily

applied to the application architecture; the application software itself was developed by a combination of

experienced and novice project staff. The application provided the complexity needed to exercise the Cronus

DOS testbed, demonstrates integrated functioning of resources on a variety of hosts and makes extensive use of

existing Cronus utilities. The areas where weaknesses were discovered were not surprising, reflecting areas

where little design and development effort had been focussed. Problems which might prevent effective use of

the system were fixed immediately, concurrent with continued application development. Other enhancements

which would make development more comfortable or convenient have been scheduled for later development.

A final section includes references to other C2 Internet and Cronus reports and publications.

I

-5-

I

Report No. 6251 BBN Laboratories Inc.

2. DISTRIBUTED SYSTEM DEVELOPMENT METHODOLOGY

The basic goal of the Cronus distributed system development methodology is to simplify and facilitate the

process of developing distributed systems and applications. The methodology defines a series of loosely coupled
stages, ranging from functional decomposition and architectural design in the early stages through

imlementation and evolutionary revision in the later stages. The tasks of considering operational functions,

ensuring various component properties such as survivability and scalability, choice of implementation language,

selection of support hardware, and loter revision are decoupled in this methodology. The resulting series of

stages are collectively less complex and easier to manage than a less structured, ad-hoc approach.

The choice of object orientation as the architectural model of this methodology serves to modularize the

system and to decouple the development of independent system components. In the Cronus model, applications

are conceived as a collection of services managing various kinds of resources, and clients which submit requests

to use or affect the resources provided by the services. Each service is responsible for a set of object types;

each object type describes a kind of resource (objects of the given type) and an appropriate set of operations

available to clients for affecting objects of that type. The specification of the essential, unchanging properties of

the interface to a service and the discrete identification of resources as named objects independent of their

location, promote application architectures which quite naturally support interoperability and portability, which

allow existing application components to be applied to new, similar problems, and which afford smoother

evolution of an existing application as new functional needs are identified. Object types can also be used to

describe the characteristics of a generic kind of resource, such as a file. Subtypes will inherit the characteristics

of such a generic parent type. The subtype specification may also identify additional object characteristics and

operations.

Services are implemented by one or more managers which are responsible for carrying out operations on

objects. Each manager exists as a process on one of the host systems and is responsible for a subset of the

objects provided by the service. Managers may also act as clients of other services. Managers for a particular

service may cooperate to provide resource management and survivability properties for the objects provided by
the service. These strategies often include maintaining duplicates of an object at several sites to provide

alternative paths, both in the interest of improved efficiency for resource management, and in the interest of

ensuring survivable access if one copy of an object should become unavailable.

The diagram in Figure I shows how a collection of manager-s support the operations on objects provided

by a particular service. In this case, a client program has invoked an operation on an object supported by one of

the managers. The route to the desired object is determined and selected by the Cronus kernel and the operation

is routed to the appropriate manager on the destination host. That manager then carries out the required

operation processing and returns a reply to inform the client of the results.

-6.

BBN Laboratories Inc. Report No. 6251

Service

Operation
In vocation

ClintManager 2 Objects
- - 4 Reply

Cronus Object Model
Figure 1

-7-

Report No. 6251 BBN Laboratories Inc.

Tools are also provided to support the software development of client and manager programs. These tools

include specification tools that facilitate work by the program developer writing software in selected

programming languages. Cronus system services and support libraries provide resources and mechanisms as a

foundation for the implementation and operation of a distributed application. Guidelines are given for deciding

how support should be provided for properties such as survivability, scalability and resource management. The

tools and libraries often provide default mechanisms for supporting these properties. Additional details of these

tools can be found in [Gurwitz86, Sands86].

The object oriented methodology used to develop the C2 Internet Experiment application was originally

devised to guide the development of the Cronus Distributed Operating System (DOS). A discussion of how the

object model was applied to the Cronus DOS Architectur'e can be found in [Schantz86]. The model proved

qIte effective in organizing the types of resources commonly found in traditional operating systems, including

processes, directories, files, users and groups; and for extending support for these resources through a distributed

collection of heterogeneous host systems, providing controlled remote resource access, survivable operation,

scalability, and resource management. The model also proved effective for supporting a collection of tools for

* program development and system management. Our goal in applying this methodology to the C2 Internet

Experiment was to discover whether the techniques could be effectively applied in an application context,

partcularly in the C2 domain.

We currently divide the development process into a series of five phases:

1. Divide Application by Functional Decomposition

2. Identify Distributed Function Characteristics

3. Specify Components in Terms of Cronus Object Model

4. Map Functional Elements onto Appropriate Host Resources

5. Implement and Debug

These steps are diagramed in Figure 2. The first two phases of the process involve decomposition of the

problem into distinguishable functional elements and specification of particular properties that each element must

* support. Then, in phase three, the resources associated with and operations performed by each functional

element are specified as Cronus object types, and their relationship to Cronus support for properties such as

survivability and scalability is established. In the fourth phase, particular physical resources are identified to

support the operation of the function. with managers being appropriately placed to support use of the associated

objects. During the last phase, the functions are implemented, either by using existing Cronus system

components in new ways, by developing new type managers, or by using a combination of both system

components and new type managers. Integration with existing application components follows, and continuing

evolution of the components through further changes can occur. For the initial development of an application or

of an application component, these phases are conducted sequentially. However, once an application is in place,

its continuing evolution will often involve repeating the process for particular components and for collections of

components. As a result, the development of most installed applications cannot be characterized as being

-8-

BBN Laboratories Inc. Report No. 6251

Appliatio Areatao

S. Functional Decomposition 5 . Implementation

Application 1Tools
Crnu DO
Cronus IOS

..... .. Cronus Crnu LibrariesfNetwork Comm. Sys. Mgmt.

_JI

2-Function Characterization 4 .Resource Selection

Survivable Wdbn

*Scalable BBN RADC

*Resource Management -P N\

3 .Object Specification

object type..
operation
operation ...

C 2Internet Experiment Development Methodology
Figure 2

.-.

Report No. 6251 BBN Laboratories Inc.

completed, but rather as evolving with each component at an independent stage of development.

These phases are described in more detail in the following sections. Each section briefly describes the

charactenstics of the development stage and includes examples taken from the C2 Internet Experiment

application.

2.1. Divide Application by Functional Decomposition

The functional decomposition follows the application area specification. Primarily, this identifies the

major subsystem elements, defines their role in the overall processing tasks of the application, and describes how

the elements interact and rely upon each other when performing the tasks required of the application. This is a

fairly high-level specification. Each identified element should be functionally autonomous, representing a

portion of the system that can be sensibly isolated from the other components, and which might be suitable for

functionally specialized computer support. However, since Cronus mechanisms operate transparently across hostI
boundaries, with local and remote communication handled uniformly, and because software which does not rely

on specialized computer support can be written to be relatively portable, we can essentially ignore computer

related issues at this stage.

A collection of typical application scenarios are identified during the functional definition phase.

Reviewing the expected behavior of the system in these scenarios helps to ensure that all critical elements are

identified during the design phase, when changes can be more easily accommodated. This will also help

determine the order in which components should be built, with more commonly used components typically

developed before those whose use is more limited.

The functional elements of the C 2 Internet Experiment are displayed in Figure 3. The application consists

of gathenng and reviewing situation information provided by mobile sensing systems to track the movement of

incoming targets. The application also includes some of the support functions needed to plan and initiate an

appropriate response. Three, essentially different, kinds of processing are cyclically performed.

Reconnaissance where image and other data describing the field situation is sensed, and transmitted for

storage and analysis;

Analysis where targets are detected and identified in preparation for planning appropriate
actions:

Mission Planning where the field situation is displayed for review, responses to the targets are evaluated,
and appropriate actions are initiated.

The process repeats both to determine the effectiveness of whatever action was initiated and to detect new
threats.

I

-10-

I-

BDN Laboratories Inc. Report No. 6251

Taarget/Weaponsse

____Data ManagementInefc
ClusterteB

nTasking

S PriFuntionsio-

artograpic

Reouc Meteorologica
Data Managementsen

Shadedn fuctansaekepicte
Synsottcuser

Supr Fucin entEprnn rcsigFnun

CartFigureic

Data Maagemen

Report No. 6251 BBN Laboratories Inc.

Support functions were also identified, initially to include cartographic and meteorological data
management. These data resources are used in a variety of ways for the other components, and operate

independently of the principal processing flow. System and application monitoring and control is also required

to track the status of the distributed system cmponents.

The processing was further decomposed into finer grained activities. The particular functions we chose

were not meant to be comprehensive, because we had limited resources to build the system and had limited

knowledge of the application domain. Our goal was to elaborate the specification in enough detad to guide

implementation, and to cover enough of the salient features of the application area to support a credible

demonstration. The more realistic the application description, the greater the relevance of the benefits achieved
will be to the observer of the demonstration. However, since it is only a demonstration, realism had to be

weighed against the cost associated with building the necessary components. We also believe that additional

functions can be added to the application, in an evolutionary manner, after the essential processing functions

have been installed.

Reconnaissance is decomposed into Remote Sensing Systems and Mission Data Management. This

separation captures the fact that a variety of sensing systems provide data to one logically central mission data
management system. The Mission Data Management System is logically central both to the sensors which store

the data. and to the fusion and other processing functions which retrieve the data for analysis.

Analysis is comprised of three components, distinguished by function and use: Fusion Processing, Target

Report Data Management, and Target Prioritization. Fusion Processing correlates target detection information

from several sensor missions to yield improved estimates of where targets are located, to determine what their
trajectories are, and to identify the kind of vehicle the target represents. The resulting target reports are stored

for later processing by the Target Report Data Management System. This information is then reviewed by an
operator using the Target Prioritization system, which assigns priorities reflecting how quickly a target should be

considered and dealt with.

Mission Planning is a much more interactive processing activity, initially divided into three components.

During Target/Weapons Pairing, particular weapons are assigned to intercept selected targets. Resource and
* Logistics Data Management is used to determine available weapons and reconnaissance resources, and to track

their use. The Mission Tasking System is used to dispatch selected weapons and sensors on their missions.

-12-

BBN Laboratories Inc. Report No. 6251

2.2. Identify Distributed Function Characteristics

The initial functional description serves to decompose the processing tasks to be performed by the system.
Our next phase is to elaborate the component descriptions to identify the distributed system properties each

component should possess. Once these characteristics are specified. a combination of standard Cronus
mechanisms and customized support mechanisms will be selected to provide these characteristics as part of the

implementation phases. These properties. currently include:

- Access Control

- Scalability

- Survivability

- Resource Management

One goal of the Cronus system is to support these properties through mechanisms which are convenient to the

developer's use. These mechanisms are often provided through the tools and are selected through a high-level

specification language. The underlying support mechanisms may also be used by the developer when particular

features are not available through the higher-level interfaces. Both approaches were used in developing the C2

Internet Experiment application.

For an example of how these properties apply to a system resource, consider a collection of files which
store the source code for a project. The owner of each file should be able to restrict access to his files and

should be able to modify the restrictions periodically. As the project grows, additional storage space must be
added, scaling the available amount of space for file storage. Also, we might like to ensure that the fies are

always available, possibly keeping duplicate (replicated) copies of the files so that if one host fails another can
supply the data. And finally, when the files are spread across a variety of hosts, both as the scale increases and

as replicated fie copies are introduced, automated management of the file space is needed. This includes
chosing the original file placement, matching clients to particular file copies, and relocating files to improve

performance as the number of files and their use changes.

We consider how these special properties apply to each of the C2 Internet Experiment application

* components. To review, the components are:

- Remote Sensing Systems

- Mission Data Management

* Fusion (Target Data Correlation)

- Target Report Data Management

* Target Prioritization

- Target/Weapons Pairing

-13-

Report No. 6251 BBN Laboratories Inc.

* Resource and Logistics Data Management

• Mission Tasking System

* Cartographic Data Management

• Meteorological Data Management

• User Interface

* System/Component Monitoring and Control

Access control, scalability, survivability and resource management are appropriate properties for each of
these components. However, because our development resources and testbed size were limited, we chose to

focus on particular considerations for each component, chosing the properties we believed were most important

and, for each service, chosing resources where the Cronus system support for these properties could be most

readily evaluated and presented in a demonstration. Access control of operations on all application resources is

supported through the standard Cronus mechanisms. For example, access control is used to restrict who may

schedule and reschedule the missions for particular sensor systems. The standard access control mechanisms

were tailored to restrict access to the Resource and Logistics Data Management, which catalogs available

weapons systems and other tactical resources. In this case, the standard mechanisms where used to control

access to information about particular weapons systems and a tailored mechanism was developed to ensure that

queries on the database would not reveal the existence of or information about weapons systems which the client

did not have the right to examine. Scalability was important to the Remote Sensing Systems since they

represent physical components in the field that may be added in indefinite numbers. This makes scalability and

resource management essential to the Mission Data Management System, which collects and records partially

processed data from each sensor system. Scalability is less of an issue in other components because they need
to process only a subset of the total data at any one time, and because they are not required to record or process

the data in real-time, but can rely instead on the data recorded by the Mission Data Management System.
Survivability is essential for the Mission Data Management data recording functions because a remote sensor

may become unavailable during the course of its mission. However, if several Mission Data Managers are

configured, the data retrieval functions of a particular Mission Data Manager is less important, as long as the
failure of one manager affects the availability of only a small portion of the data for a particular region or

• mission.

There were a number of considerations for the User Interface and for the simulation control subset of the

Experiment Monitoring and Control. The user interface was built so that several could be running

simultaneously, either to monitor different regions of a single simulation or to monitor various regions of

4 different simulations. For the simulation control, all components must be survivable and the commands that

control a simulation must be available through several access points. We planned to use the monitoring and
control facilities offered by the Cronus system to support monitoring and control of the application. Because

this was an experimental context, we were less concerned with access control to these monitoring and control

functions during this stage of development than we would be in an operational system; we do allow for their

later addition.

-14-

BBN Laboratories Inc. Report No. 6251

After reviewing our needs for the User Interface and simulation control we determined that two additional

components would be needed: a simulation clock to control the progress of experiment simulations, and a target

simulator to provide simulated target trajectories. The simulation clock provides a synchronized time of day and

multiple simulation clocks whose rate and time setting can be varied under operation control. The target

simulator stores target trajectories entered by an operator and allows clients to request a list of the target that

pass through a particular geographic region during a selected time interval. Both of these components can be

used to orchestrate multiple, concurrent C2 Internet Experiment simulations, and can be applied to other

simulation applications in the future.

2.3. Specify Components in Terms of Cronus Object Model

Having identified and characterized the functional components of the application, the next phase is to

identify services that will support the functions identified in the previous phase, and to specify the distributed

system properties that each of these functions must support. Similar types should be identified since they are

candidates for introducing a type hierarchy. Characteristics common to several types can be specified by a

* 'generic parent type and particular subtypes can then elaborate and tailor particular aspects of the parent types.

This use of a type hierarchy ensures compatible interfaces and allows clients using those types to inte ,perate

more freely.

In the Cronus operating system, services include processes, files, directories, authentication, and many

others. Files and directories are actually generic types representing more than one service: files represent both

Cronus migratable files and COS files; directories represent both the Cronus catalog and COS directories. In the

C2 Internet Experiment, most services correspond to functional componerts such as Remote Sensor Systems and

Mission Data Management. Many of these application services rely on support from a system service, such as

the catalog or file system. Operation of the application itself is performed by the interaction of these application

and system services. In larger applications, functional components would likely be supported by several

interacting services.

Perhaps the major activity at this stage is specifying the operations that may be used to affect particular

objects, and the instance variables which characterize each individual object. For an example from the C2

Internet Experiment consider the simulation clock service. Managers of this service support two major types of

objects: a collection of independent simulation clocks called timers; and a synchronized time of day clock. The

simulation clocks may be created and removed. Each timer is distinguished by the time when it was last

restarted and the rate at which it is running; from this information, the current simulation time value can be

calculated. Each timer may also have a stop time-the timer will be automatically stopped if the specified time

occurs. Operations on timer objects may be used to set its rate and stop time, and to start and stop it. There is

only one time of day clock, which is replicated by all simulation clock managers. One of these managers is

selected, by election among the managers, to be responsible for keeping all the other managers synchronized.

Operations on the time of day clock include changing the time of day and manually selecting the master clock.

-15-

0 lIao m m m mll ~ ~ lk dlm,~mmw o~u n,

Report No. 6251 BBN Laboratories Inc.

Election and synchronization operations are also supported and restricted to use by the simulation clock

managers.

The Cronus tools offer a specification language for formally identifying thes4. object instance variables and

operations. It also supports the definition of canonical types. Canonical types are used to communicate

information in a host independent format, unlike object types which are used to identify system and application

resources. Thus, an operation may take as parameters several canonical types such as an the new time or rate
setting for a simulation clock. Descriptions of the system object types can be found in the Cronus User

Reference Manual [Sands86]. The object specifications for the C2 Internet Experiment application components
are included in the System/Subsystem Specification [Berets86a]. These descriptions are machine translated from

the actual object type specifications to improve their readability for use as reference material.

The Resource and Logistics Data Management System is readily described as operations on a collection of

object instances. Currently, two object types are used to specified the resources managed by this service:

vehicles (jeeps, tanks, planes, etc.) and airfields; others will be added in the future. The use of the resource and
* logistics data has some additional requirements beyond those of the sensor systems. We still require operations

on individual vehicle and airfield object instances, but we must also support query operations that scan all

available objects and return a list of the appropriate subset of objects. This is used, for example, when an
:, operator needs to know which fighters are within flying range of a particular area. These queries are supported

through operations on the generic object, which is used in this case to denote a collection of objects: the generic
vehicle object is used to denote the collection of all known vehicles; the generic airfield object is used to denote

the collection of all known airfields2 .

The choice of objects is less obvious in the case of the Mission Data Management service where
operations may refer to different collections of data. The Mission Data Management service provides data
storage and query based retrieval to clients, essentially a small database facility. It is essentially a special

purpose distributed database service which might be replaced by a more general purpose database service when

one becomes available. Typically, a deployed sensor system will submit a list of target relevant detections,
identifying the estimated target position at the time of detection. The most natural object boundary for this time

series data is either individual detections, contemporaneous detections, or the detections associated with a

particular mission. The processing and analysis components will typically request a list of all detections that

2Use of the generic object as a reference to all objects of a particular type is not yet fully supported by the underlying
system. By default, the generic object will refer to the objects handled by the manager which initially receives the request.
To affect the comprehensive set of objects managed by a service requires either additional support by the managers to
propagate the request. or requires the client to contact all managers through a broadcast mechanism. The major use of the

4 generic object in this way has been in searching for the object identifier associated with a symbolically named object, as is
done by the catalog manager mapping pathnames to identifiers and by the authentication manager mapping principal and
group names to principal and group objects. Special support is implemented in these managers: the authentication managers
maintain copies of all objects at each site for survivability, so it does not matter which manager processes the request; the
catalog manaicr forvards requests to appropriate managers as the pathname is decoded. Because the Resource and Logistics
manager was not a major focus of the effort, we chose to expedite implementation by operating just a single instance of the
manager. so no additional support for cooperation among the managers was required. In the future this function will be
facilitated by additional support from the Cronus tools and mechanisms.

-16-

....

BBN Laboratories Inc. Report No. 6251

occurred in a particular region over some period of time. The most natural object boundary for this time series

data is either individual detections or detections within the specified region that occurred contemporaneously or

during the specified time period. To match these boundaries seems to require that all detections be stored

separately. However, storing data as a large collection of small objects might allow objects to be scattered at
several different sites and would complicate the mechanics of performing query requests because a large number

of sites must cooperate and each must search a relatively large number of objects. We chose to exploit the fact

that mission schedules tend to focus on particular regions and so retrieval requests are likely to select
information that corresponds to a set of missions. This allows us to store the object information as missions and

to perform our retrievals by extracting detections from appropriate missions. The results of a retrieval identify
the list of detections with each detection marked to indicate which mission supplied the data.

This approach to the Mission Data Management requires additional peer cooperation among mission data

managers so that the data provided is comprehensive. The specification of this peer protocol is also part of this

stage of development. In particular, when a query request is received by one manager for the service, that

manager broadcasts the query request to its peers so that all managers collect the relevant information from their

mission data objects. The peer responses are then sent to the controlling manager which combines the peer data

with its own response and returns the comprehensive report to the client. Peer cooperation is also used to

support a round-robin scheduling algorithm to select which manager will be responsible for recording data for a

new mission. When a manager receives a request to store data for a new mission, it broadcasts a request to its

peers to determine which one has least recently stored a mission. The manager responding to the initial

invocation then forwards the invocation to the manager chosen by the resource management strategy. This

resource management algorithm is also used to reassign the recording site when a manager fails3 .

2.4. Map Functional Elements onto Appropriate Host Resources

Once the functions have been specified, we identify special host characteristics that their operation may

require. Since Cronus supports a wide variety of heterogeneous host systems, currently including Digital
* Equipment Vax Systems, SUN Workstations, and more recently a Symbolics Lisp Machine, one type of system

may offer substantial advantages over others. Even within similar types of systems, one site may offer more

disk space or an array processor or other specialized resource.

For the C2 Internet Experiment, most elements can be freely located, at the operator's discretion. This is
largely because the host independent Cronus system mechanisms promote component portability, because host

boundaries are made transparent through object based communication mechanisms and canonical data

representations, and because intra-host and inter-host communication mechanisms are provided through a

31n the current implementation the data which have already been recorded are lost but can be recovered from raw data kept
by the sensors. The mission data objects could be replicated for survivability, but we felt that experimenting with a variety
of recovery techniques better served the goals of the experiment.

-17.

f h ~ m~ iga a l wa im li N iia b m mnr

Report No. 6251 BBN Labo.'atorles [ac.

uniform interface. Generally, components which were actively being developed were located on the

workstations, which had the most productive development environment, and components which were more

mature were migrated to less productive development environments, such as the timesharing systems and C70

minicomputers. This included migrating components from 16/32-bit workstation architectures to 20/40-bit BBN

C/70 architectures with little or no modifications.

We are also in the process of establishing an additional cluster at RADC which will share resources with

the existing cluster at BBN. These clusters are interconnected by the DARPA Internet, including a high

bandwidth connection through the Wideband Satellite Network. This will allow the RADC cluster to make

remote use of symbolic processors and other resources unique to BBN's installation, in addition to providing

additional support for functions operating within the RADC cluster. This will also allow us to experiment with

functional specialization at the cluster level, perhaps focusing one cluster on reconnaissance and preliminary

analysis functions and the other on forecasting and operational and review functions

The one major exception to portability is the user interface and MCS console interface, which run on

workstations. These components make extensive use of the graphics support facilities offered on the

workstations since more portable user interface foundations have not been developed for Cronus so far. Also, in

the future, more sophisticated fusion processing might be provided by the Lisp Symbolic Processors and various

data management functions might be provided by a set of specialized database machines.

2.5. Implement and Debug

There are two important phases to our program development phase: initially, key components were

developed and tested in isolation; next, this initial subset of application components were integrated. At this

stage, development became incremental, adding new functions to enhance the existing components and adding

new components to the configuration. The initial configuration consisted of the components needed to support

the simulation: a target simulator and a replicated simulation clock to establish a global time base for

synchronizing the events in the simulation. Then additional components that relied only on these components

where added: the sensor manager and the resource and logistics data manager. Once initial versions of these

components were completed, the remaining functions were added as needed and were enhanced as we gained

experience with using the system.

Development of the components relied both on the application development tools and on the services

provided by the Cronus DOS. Cronus applications are organized around a high-level object type specification

language and a companion manager specification language. These are described in detail in Section 4 of the

Cronus User Reference Manual [Sands861. The object type specification language accepts a source language

that describes the characteristics of each object instance, the operations that can be invoked on objects ,)f the

given type, and the parameters to the object operations. The object type descriptions are stored by a type

definition service: another program takes the stored object type description and generates code for invoking

-18-

BBN Laboratories Inc. Report No. 6251

operations by clients and for handling operation dispatching, access control and other customary manager

operation processing actions.

The system support services that we used included authentication and access control, the replicated

catalog, constituent operating system file and directory access, and system and application configuration

management. Appropriate status reporting operations are supported by all managers to allow the Cronus

monitoring and control system to be used for both system and application resources.

9

0

0

-19

0•

Report No. 6251 BBN Laboratories Inc.

3. EXPERIMENTAL FINDINGS

The C- Internet Experiment set out with two primary goals:

- evaluating the current Cronus implementation for its suitability in building an exemplary
distributed application, and

- providing a demonstration capability for Cronus through an application in the command and
control area.

The application we developed works and demonstrates many advantages of the distributed system architecture in

the context of C 2 applications. Many areas of Cronus were evaluated by building the C2 Internet Experiment

application. The Cronus system served effectively in supporting this particular application and in facilitating

development. We also believe that the methodology can be effectively applied to distributed applications in

general, and the Cronus mechanisms will support a wide variety of applications outside the C2 Internet

environment as well.

The evaluation also proved useful in revealing some of the deficiencies of the Cronus environment.

Where deficiencies were discovered, our goal was to test whether the Cronus facilities could be changed to suit

the needs of the application developer within the framework of the existing system and system model. In

general, our conclusions have been positive, calling largely for elaboration and refinement of the existing system.

This section will discuss our findings.

3.1. Methodology

One of the significant benefits Cronus provides is its methodology, supported by Cronus system services,

tools and mechanisms. The Cronus design philosophy provides a coherent abstraction under which a wide

variety of distributed application attributes can be united. This uniformity extends to cover both the application

and underlying Cronus system components, allowing application components to easily make use of available

system components and promoting an economy of mechanisms which the system must support, which lead to

simpler and smaller systems. The Cronus object model abstraction naturally supports the decomposition of a

problem into a number of communicating components. This in turn supports a multi-person development

environment in which both software and hardware evolution is easily accommodated and can track different and

evolving support technology bases. This is demonstrated in the C 2 Internet application development.

The application development tools were especially valuable, providing a tangible link from the abstract
decomposition and design steps performed early in the process to the configuration and implementation steps

performed later in the process. High level specification reduced the amount of effort both through its support

for generating client/manager interface code and common manager structure functions, and through an

established format for specifying the objects and operations supported by the application. The common format

-20-

BBN Laboratories Inc. Report No. 6251

allowed managers to be designed before beginning implementation and allowed type interfaces to be read and

understood much more easily.

3.2. Available System Facilities

Cronus provides a variety of system facilities to application developers. Many of the ones used during the

C2 Internet experiment were discussed earlier in this report. These included system supported services such as

the catalog manager, tool supported mechanisms such as access control and survivability through object

replication, and support by other system services and libraries. These facilities were adequate and effective to

support the application development.

Within the context of the application, some of the available Cronus mechanisms were found to be

inadequate. These included both bugs, such as failure of tools support replication, and areas where an existing

mechanism needed to be more elaborate. Bugs were generally minor and were corrected. Where mechanisms

needed improvement, the C 2 Internet Experiment needs were evaluated against other development requirements

and the improvements were made as soon as could be accommodated. We include here two examples of the

kinds of improvement that were required.

The Catalog Manager originally used a locking scheme that only allowed updates to a replicated directory

when all copies of the directory were available. Thus, if a host supporting the catalog manager failed or was

shut down for servicing, it was likely that updates to several replicated directories would be refused. Allowing

this limitation expedited the development of the original replicated catalog implementation. After suggestions

by various users of this facility were made, the catalog was modified to use a version vector technique allowing

updates to be made to a directory when only a single copy of the directory object is available; this approach has

proved much more robust. Since the interface to the catalog manager was not affected by this change to the

implementation of the catalog operations, no other system or application components had to be modified.

As another example, at the beginning of the C2 Internet effort, it was not possible to use the multi-tasking

* facilities of the automatically generated manager software simultaneously with the Cronus large message facility.

This defect was acceptable in the early versions of the manager development tools because the initial operations

required only the small message capabilities; supporting task switches between fragments of a large message

would have complicated implementation during the early experimental stages of development. This was

changed also, to allow C2 Internet managers to send back substantial amounts of data in response to operation

invocations, while still maintaining the ability to respond to new operation invocations. The large message

support capabilities were used in the development of the Cartographic data manager, which often must transmit

large amounts of map data to its clients in response to a single retrieval request.

-

-21-

Report No. 6251 BBN Laboratories Inc.

3.3. Application Development Tools

The implementation of a set of tools for object manager development is perhaps the single most important

productivity enhancement mechanism provided for distributed Cronus appli.ations. The C 2 Internet experiment

was built exclusively using these toots and was the first major application to exercise them. It is clear that the

number of managers comprising the C2 Internet experiment could not have been successfully hand-coded given

the limited resources available-the availability of the manager development tools made this possible.

The manager tools provide a number of functions:

1. Create and register a new type and its definition including new canonical types, operations and
their parameters, and access control restrictions.

2. Generate code for the manager, including operation dispatching routines, message parsing
functions, and canonical-to-internal format conversion routines (and vice versa).

3. Generate procedure-call client interfaces to invoke operations on objects handled by the
manager.

4. Generate documentation in UNIX manual page format using the comments provided within

the definition of the manager.

5. Generate a type list of currently defined Cronus type numbers and names.

6. Generate an error list of currently defined Cronus error code numbers and their corresponding

printable strings.

Based upon the high-level specification the developer registers with the type definition service, the service

will generate source code for invoking operations from within a client and for dispatching operations within a

manager. Library functions support generic object operations such as creating and removing objects, and

support storing the instance variables of the objects for which each manager is responsible. These tools also

provide support for access control and replication through a combination of code generated from the developer's

specification and functions provided by the library.

* The support for access control and replication provided by the Cronus tools was especially effective.

Access control checking for most operations is quite routine, requiring the retrieval of client privileges and the

access control list for the intended object and then verifying that the client has sufficient rights to perform the

operaiion. The tools allow the developer to customize and symbolically specify the rights which are required for

a user to perform each operation and then provides code as part of the manager dispatching routines to perform

O 0 the access checks.

Replication was also useful. The replication facilities offered by the tools operate by maintaining copies

of replicated objects at all sites supporting managers for the given service. No special support is provided by

the developer; all the coordination and control is performed by software provided by the tools. This was

invaluable for expediting development, and shows that high-level specification of replication is a feasible and

useful capability. However, replication of all objects at all sites does not scale well. In larger configurations a

-22-.0

MIN .aboratories Inc. Report No. 6251

more controlled replication strateg y, such as what the catalog manager supports, would he more effective. Also,

the built-in strategy uses a simple timestamp to detect discrepancies anong the copies; in the future, other

detection mechanisms such as version vectors and voting schemes should be provided as speciliable alternatives

to the current scheme.

The major drawback of these tools was their immaturity during the early stage of our development. The

tools were initially built to facilitate the development of small set of system managers, and focused on the needs

of those managers. Additional features were added to the tools as we began to use them for the C2 Internet

Experiment. Because the tools were so new, they were not as reliable or robust as we would have desired, and

conventions that tools users were required to follow when writing software to combine with tool generated code

often changed. Documentation was usually sparse and out-of-date, with many new features missing completely.

And the diagnostic messages offered by the compiler were often limited and difficult to interpret. Application

developers were able to overcome these shortcomings only because of their close working relationship with the

system developers.

However, as a result of this effort the tools have evolved into a much more suitable base for application

component development. We are largely satisfied with the functions they now provide for developing

applications such as C Internet. We do believe additional effort is needed to improve the reliability of the

tools, particularly in areas such as error reporting. We also believe additional functions will need to be added to

support larger applications and larger development teams. The need for the system, rather than developers, to

manage sharing information such as canonical types descriptions and operation specifications will increase, as

will the need to manage configurations in which some components have fallen out-of-date. These areas are now

handled by limited mechanisms for sharing provided by the tools and by cooperation among the developers.

However, additional changes should not introduce the substantial recoding that earlier changes required. Most of

the extension of these tools can be done transparently for existing application and system managers built using

the manager development tools.

3.4. User Interface

Cronus provides rather limited user interface utilities so the programming and command languages of the
component hosts must often be used to build specialized user interfaces. This ha.i c advantage that developers

are encouraged to use the facilities available on a particular access host when building an interface or command

component. However, this also means Cronus does not yet offer a uniform interface standard, especially one

that is well integrated with the object oriented development methodology.

The C 2 Internet application was one of the first Cronus components to make extensive use of graphics in

-23-

Report No. 6251 BBN Laboratories Inc.

its user interface 4. Because we expect that many other interfaces to systems such as C will rely or. graphics

interfaces, it is worth considering user interface development support. integrated in a useful way with the Cronus
object model and with the Cronus software development tools. In the case of C2 Internet, the SunWindows
graphics interface supported on the Sun workstation was used quite successfully, providing a display in which

target reports and other data could be easily displayed against a cartographic background. However, this part of
the application is not easily transported to other systems.

The flexibility afforded the developer by allowing the use of any available programming language also

allows each developer to adopt personal, idiomatic user command formats. This was true in many cases for
system command names: sometimes the command name was the name of the operation, e.g. list; and sometimes
the command name was a mixture of words and abbreviations, e.g. setwdir for set working directory. With
regard to parameters, parameter formats often varied from one command to another. In particular, some

cooimands required that the user indicate the type of any object whose name was given, other commands
required that the argument be of a particular type. In developing the C2 Internet Experiment we tried to avoid
such inconsistencies and made efforts to build interactive menu and prompt driven programs for the principal

* user interfaces.

3.5. Development Testbed

The Cronus cluster located at BBN provided testbed support for all development activities performed
under this effort. This testbed was comprised of Cronus support operating on several host systems of varying
type and architecture. This Cronus cluster was under development and being maintained by the primary Cronus
development project. The C2 Internet Experiment used this environment concurrently with the primary project,
both for Cronus support and to satisfy general application development and processing requirements.

One of the major hindrances 'o application development was the instability of the underlying Cronus
system software on which the application was being built. This was caused by the inability to easily isolate
application developers from Cronus DOS developers in the resource-limited environment. Typically, application
and system development were conducted on the same set of host computers. Intermittent problems caused by
ongoing changes to the system software often caused stable C2 Internet components to fail. Such problems were
difficult to diagnose largely because known changes to the system were often not recognized as relevant. This
situation is more manageable now, as we begin to separate the system and application development

* e.~nvironments and acquire additional hardware to enforce configuration management disciplines.

0 'The Cronus Monitoring and Control System also makes extensive use of graphics.

-24-

BBN Laboratories Inc. Report No. 6251

The obvious conclusion we have reached is that in an environment where multiple people will be

developing both application and system software, it is very important to have a relatively stable, bug free, and

complete version of the Cronus DOS and its associated support utilities and documentation. It is rarely the case,

though, that sufficient resources are available for these purposes, especially for as yet unproven systems.

Initially developing the application in the same environment as the system did lead to much more effective

feedback to system developers regarding the needs of the application developers, and faster turn-around when

addressing problem areas. In the future we plan to divide the host resources between system and application

development and move toward a more formal release structure with formal bug reporting and repairing

mechanisms in place.

3.6. System Configuration Maintenance

Configuration management of the services provided by the Cronus DOS was relatively simpler than that of

components for the C2 Internet Experiment project. The interfaces to most system services were well defined by

the time client programs were developed to use them. Few system managers require interaction with managers

for other system services to complete client requests. And, once a manager was installed on a host it was likely

to remain there and be operational for a long period of time.

The management of the C 2 Internet Experiment components is somewhat more complex. When a client

invokes an operation on an object, the manager for that object often has to invoke operations on other secondary

objects before the initial request can be completed. The interfaces to C2 Internet Experiment components

evolved as the application was developed, sometimes interfaces where revised and frequently new functions

were added to the interfaces. Also, because the collection of services was growing regularly, the placement of

the service managers changed several times during the development process; old versions of managers might

remain at inactive sites and need to be updated whenever the active managers where revised.

As a result of this increased complexity, the C 2 Internet experiment raised a number of interesting

questions related to system configuration maintenance that had not been previously examined within the Cronus

• environment with smaller-scale client-manager and manager-manager interactions. The first of these was how to

ensure that managers and clients were using the same specification for each operation supported by the manager.

During early development operation specifications sometimes change; this happens less frequently once the

initial version of the manager has been developed, but does happen occasionally. For a manager to successfully

interpret an operation request, both the client and manager must be using the same description of the operations.

To some extent this problem is remedied by automatically generated interface routines, which ensure that the

operation message encodings match if both the client invocation and manager dispatch code were generated

from the same description. For a client to talk to a manager, it merely uses the automatically generated

interface. However the management of these automatically generated routines was not so straightforward. If a

client wants to talk to a manager of a given type, and the interface for that type has changed, the client must

know about the change.

-25-

. . ~~~. * ., . _ ,

Report No. 6251 BBN Laboratories Inc.

The problems of occasional inconsistency between client and manager that we encountered during the

course of C2 Internet implementation required two complementary solutions to this problem. First, all interface

routines for the managers relevant to the particular overall application are kept in a common up-to-date library.

If a manager is updated, its interface routines in the library are also adapted. Thus when a client is updated, it

will obtain (at compile time) the up-to-date interface routines from the library. The second addition detects

operations invoked by out-of-date interface routines to guard against the manager being changed without the

library being updated. When the manager and client routines are generated, a software checksun is included

with the automatically generated code. This checksum is then compiled into the corresponding manager and

interface routines. At run-time, the client includes this checksum value with each operation invocation message

and the checksum is verified by the manager. If the manager discovers an incorrect checksum, it assumes the

client is using an out-of-date specification for the operation and the operation is rejected.

Another problem in organization that was encountered in C I emet was the sharing of data
representations through Cronus canonical data types. For example, many C2 Internet Experiment managers

needed to have a common representation for the location of a simulated physical object: [latitude, longitude, and

altitude]. We chose to represent locations and each of the necessary shared data structures as Cronus canonical

data types. To ensure that all application components used the same representation for each data type, we

defined a generic parent type associated with the overall application, in which all the shared representations

where described. Most of the C 2 Internet Experiment object types where defined as children of this generic

application data type, and inherited identical descriptions for the shared data types. This is an adequate solution

for our present problems, but does not scale well as more and more shared data types are required; many object

types, and thus managers for objects of those types, will inherit canonical types that they never use. A better

solution that has been proposed is to allow reference canonical types, in which a particular manager may use a

canonical type defined by anothei manager by explicitly importing the definition of that type.

3.7. Monitoring and Control

While the services provided by the Monitoring and Control System, such as event reporting and

configuration management, were effectively used in the C2 Internet Experiment application, the console interface

was not at all effective for viewing and controlling the status of the application. The existing MCS console

interface serves to illustrate the role of monitoring and control, and its possible effectiveness, but the

responsiveness and stability of the component is not adequate for routine demonstrations or operational use. Its

implementation was experimental in both the icon oriented interface it provided and in the underlying

programming support that was used to implement it. Significant portions of the MCS are undergoing redesign

and will need to be retmplemented to make it operational.

-26-

L. BBN Laboratories Inc. Report No. 6251

The data collection and evaluation tools of the MCS should also be extended. The focus of the current
MCS was largely instantaneous status monitoring and control, rather than long term data collection and analysis.

The availability of chart graphics for comparison and analysis of long term system performance would greatly
improve the usefulness of the MCS as a system management tool.

3.8. Debugging Cronus Applications

One of the most difficult parts of developing a distributed application is its debugging. Not only does one

have the difficulties associated with debugging a more traditional program, but additional complexity is added
by having a number of components acting in harmony to perform some overall function. This section attempts
to discuss some of the issues that were raised during the distributed application development and which will
influence the development of a debugging tool for Cronus.

A variety of debugging facilities are used within the current Cronus application development environment:

- Existing local debuggers for the environments in which Cronus is built (adb, dbx, xmd, etc.).

- General purpose operation-oriented interfaces (i.e., the auth/ui family of programs5) for
invoking a single operation at a time.

- Object dumps generated by invoking a particular operation on an object.

- Logging both by managers and by the Cronus kernel.

- Hand-crafted test programs oriented toward particular managers or applications.

- Miscellaneous tools that can be used with programs to assist in finding bugs (e.g., specialized
versions of the malloc and free memory allocation routines).

These tools are adequate much of the time, when debugging a single manager or a single interacting client and
manager. One thing that we are discovering in C2 Internet, however, is that as we get more complex multi-
manager interactions, it is more difficult to determine which component is at fault when something doesn't work

as expected. Because of the size and complexity of distributed systems, application developers are often

unaware of the underlying interactions necessary to perform the requests submitted by their applications. As a

result, diagnosing intermittent problems often requires examining detailed logs kept by the Cronus kernel and

system services.

Some system designers (e.g., the authors of "A Debugger for Message-based Processes" [Smith85], and "A

Distributed Programs Monitor for Berkeley UNIX" [Miller86] take the view that a valuable tool for multi-

process debugging is one that allows the programmer to observe and control the interaction between processes.
This kind of debugger is oriented more toward finding bugs that occur when components interact, rather than

finding bugs that are isolated in a particular component.

5See Cronus User's Manual [Sands86] for details of these programs.

-27-

I.
Report No. 6251 BBN Laboratories Inc.

In the Cronus environment, a tool would be desirable that could:

, Trace objects (i.e., signal a user when an operation is invoked on a particular object).

- Breakpoint multi-operation interactions on an operation-by-operation basis.

- Trace and intercept messages to or from a given host or manager.

- Trace and intercept messages with particular contents.

- Allow the formatted display of message contents.

. Allow the alteration of message contents.

Some problems arise with any approach to a debugging facility. The first of these is performance.

Obviously interposing any kind of filter into the message path will increase the message transit time. However

this should not be a major difficulty during debugging. What is more important is that when manager's aren't

being debugged, the amount of additional overhead imposed by the presence of available but unused debugging

mechanisms be minimal.

A second difficulty is the current use of timeouts to detect component failures. It would be helpful to

have some kind of timeout cooperation in the debugging process. This is particularly important when a user

wishes to 'breakpoint' a multi-operation transaction somewhere and then 'continue' it. If timeouts are not

somehow controlled within the debugging environment, then the delay caused by a user examining the system's
6state at a breakpoint may cause the overall transaction to timeout and hence be unsuccessful

Another problem is security. If the debugger has the ability to alter an operation (either the source

address to make it appear to be from its actual sender, or the contents, in order to alter the receivers behavior),

there is a chance that the facility will be abused.

Our experience shows that enchanced application debugging facilities are needed for system and

application development. Because of the complexity of the problem, we believe additional experience with

application development is required before significant development can proceed. As with the language

development tools, we expect that debugging tools will be initially developed as a prototype and evolve as they
are exercised by application developers.

6We have successfully experimented with such mechanisms in previous projets, such as the National Software Works, but
have not yet added such mechanisms to Cronus.

-28-

BBN Laboratories Inc. Report No. 6251

3.9. Performance Improvements

In general, the performance of the underlying system in quantitative terms was adequate for our needs.
This allowed us to focus on qualitative evaluation, as we had hoped to do. We did, however, develop several
performance measurement tools to help pin-point delays in operation processing. These tools measured message
transit times and profiled operation processing within managers and clients. These routines were used largely as
a diagnostic tool to identify areas where the implementation of particular components should be improved and
where operation protocols should be revised. The tools also indicated that an inappropriate amount of time was

being spent encoding and decoding the data in messages; the libraries and application development tools were
modified to improve the performance of these message translation activities.

3.10. Documentation

Most users ae introduced to a computer system initially through its documentation. For various reasons,
, the Cronus documentation available to application developers during the initial implementation phase of the C2

Internet Experiment was difficult to use.

The first and foremost of the difficulties was that there was no tutorial documentation for Cronus. Such a
document might include introductory discussion of what Cronus is about, how the Cronus system software is
structured, and how to navigate through the rest of the documentation. The suitability of the existing

documentation at the time to application development was limited. Most of the documentation was written for
system, rather than application, developers and was difficult for use by programmers whose primary purpose was

to build a distributed application.

A second difficulty was that, although the system-level documentation was relatively complete, it was

often out-of-date. To a great extent this was caused by the fast pace at which the system was developed: the
documentation often lagged behind the actual state of the system. This is another consequence of the limited
resources available in the development environment. A sound way to alleviate this problem in the future would

. Ibe to enforce a stricter separation between the application and system development environments, maintain an
up-to-date set of documentation for the former, and limit the rate of change in the application development

environment. This could only be accomplished with a high degree of confidence now that we have completed

the C2 Internet demonstration application.

" Finally, confusion was often caused by the format of the documentation itself. The initial Cronus standard

of UNIX-style manual pages was adopted for convenience to the system developers producing and maintaining
manual entries. it is not particularly easy for an application developer to use. Finding a subroutine that performs

a particular function, even when one knows it exists, is quite difficult unless the name of the subroutine or the

-

! -29-

,V

Report No. 6251 BBN Laboratories Inc.

name of the subroutine package that includes it is known 7. The Cronus software is organized in a layered

architecture, both logically and in its implementation. A documentation style and organization that mirrored this
layering would make considerable headway in simplifying the use of Cronus documentation.

7i i more a problem that the Cronus project inherited from UNIUX by adopting the UNIX tools for manual maintenance
rather than a problem inherent in Cronus itself.

-3o-

6rY

BBN Laboratories Inc. Report No. 6251

4. CONCLUSIONS

4.1. Review

Our experience with Cronus in the course of the C2 Internet Experiment has been very positive. From our

experience, we believe Cronus provides a good unifying element for building distributed applications. Our

initial goals have all been met:

1. We demonstrated that a prototype demonstration complex distributed application could be built
naturally and with relative ease using Cronus and its support services.

2. The application seems relevant to the C2 domain and makes considerable strides toward
architecturally organizing these activities.

3. The demonstration uses a wide variety of Cronus mechanisms to support distributed system

benefits. In particular, approaches to access control, survivability and resource management are

successfully operational in the demonstration context.

* 4. The development served to build a feedback cycle from system users to guide system
developers.

With a limited amount of effort, we were able to successfully implement a relatively complex distributed

application simulation. Despite the newness of the Cronus system and the lack of appropriate support or

documentation, the application development was successfully carried out by a mixture of novice and experienced
programmers from both system and application programming backgrounds. Also, the initial architecture of the

application required very little modification during the course of development. Collectively we believe that this
provides validation that the Cronus object model and associated system, software development tools, and utilities

are an effective approach to distributed application development.

The C2 Internet Experiment application selected appears to be relevant to some initial intended uses of

Cronus and appears to be relevant to future DoD goals. This was our belief after initial reviews of our proposed

application architecture and demonstrations scenarios and has been confirmed by evaluations made by audiences

• who have seen the application demonstrated. We also believe the application can be easily extended, both by

the addition of new components and by the enhancement or replacement of existing components. As such, the

existing application provides a foundation for continuing application evolution and for the integration,

experimentation and evaluation of new and enhanced C 2 and technology components.

el The application itself uses a variety of Cronus mechanisms to support distributed system benefits such as

survivability, scalability, and resource sharing and management. In many cases, facilities offered by the

application development tools were used directly. This was particularly true of the replication and access

control facilities. In other cases, more primitive mechanisms were used to support more specific needs of an

application component, prior to their inclusion in the application tools set. The underlying Cronus system

services were also used extensively. The catalog is one of the most visible of these components, since it

-31-

Report No. 6251 BBN Laboratories Inc.

provides symbolic names for sensors and mission data reports which would otherwise be referenced by a

numerically encoded unique identifier, or an ad hoc application specific mechanism.

The feedback offered by the C 2 Internet Experiment to Cronus developers was instrumental in guiding

current and future system development. In particular, additional emphasis was placed on tool development since

the underlying IPC mechanisms and system services seemed adequate for our use. As a result, the development

tools became much more useful and substantially improved our productivity in developing the application.

Many other bugs and weaknesses in the underlying system were corrected. Additional areas, such as

documentation and debugging, and the extension of Cronus to other computer systems and support technologies

were identified for future work.

4.2. Future Directions

Several areas were identified as suggestions for future work. Development in these areas will make the

services and tools available to application builders more powerful and accessible. Some of these areas are

currently being addressed or are planned for work under the current RADC program.

1. Documentation is needed to support new users. A tutorial introduction to Cronus is planned.
We should also consider developing appropriate training materials and a training program for

new users, as well as better documentation at all levels.

2. The current demonstration is being expanded to a multi-cluster demonstration scenario.
Although demonstration scenarios still involve only resources from a single cluster because no
other clusters were available during the course of early development, the scenarios will be
extended to employ resource sharing among multiple clusters s .

3. Addition of new resources to the Cronus clusters such as LISP machines, multiprocessors, and
personal computers to enhance the opportunity for functional specialization. A pilot
investigation of integrating a Symbolics LISP machine has already begun. This includes
adapting the application development tools to support both client operation invocation and
manager operation support within the LISP language. C Internet Experiment components that

* .exploit the advantages of such systems should be designed and integrated into the demonstration
application.

4. Separate facilities for application development and Cronus system development should be
created. Some effort is being expended in this area, but limited hardware resources make it
difficult. We are also working to improve the reliability and stability of the Cronus DOS and

4 tools. As part of this effort, we are also moving toward a more formal release structure for
software distribution to sponsor sites.

SA cluster installed at RADC in Rome, NY, currently communicates through the DARPA Internet and the Wideband Satellite
Network to the original Cronus cluster located at BBN in Cambridge, MA. We have presented initial demonstrations of
remote access to BBN resources from the RADC cluster, including access to symbolic processing and database services. We4 are working to improve the reliability of the intercluster interactions so that they can be routinely used in demonstrations and
so the more extensive resource sharing can occur between the two clusters.

-32-
,I

BBN Laboratories Inc. Report No. 6251

5. The current MCS system serves to illustrate the use of distributed monitoring and control of the
Cronus DOS and applications, but is not functional enough, nor is its performance adequate, to

be used in operation or flexibly in new demonstration environments. Monitoring and Control
System support should be made more reliable and should be expanded to serve in a more
functional role. It should also be expanded to provide better support for performance

monitoring and control of resource management.

6. Debugging support for application software development in distributed heterogeneous computer

environment should be improved, as well as additional tool support for other parts of the
software development cycle, especially to support larger, multi-person projects.

Larger research areas are also indicated. The availability of an integrated database management would

simplify many component functions which are not easily rendered in object terms. This includes the Mission

Data Management System, where the object model was effectively applied to support a database storage and

retrieval function, but which could have been more readily and flexibly implemented using a database system.

Such a system would also have afforded a much richer set of query requests at little implementation cost,

essentially requiring the interface manager to compose the appropriate query syntax rather than supporting all

the record scanning and selection. We anticipate development work will begin in this area under a separate

contract quite soon.

As the system grows to span several clusters, integrated distributed system security also becomes an issue.

The existing system supports discretionary controls, although a system expert can undoubtedly circumvent this

protection. The system does not support administrative distinctions between clusters, so members of one cluster

can freely make use of resources within another cluster, subject to the existing access control mechanisms.

Beyond this is the issue of mandatory, multi-level security mechanisms, which are not at all supported within

the existing system. A project to explore and devise strategies for ensuring mandatory, multi-level security

within the object/operation invocation framework of a distributed operating system is currently underway. Issues

of this level of control have not been relevant to the current effort.

We are encouraged by the success we have had with the Cronus testbed, both with its support for high-

level application development and with the ease with which we have been able to modify and improve the

underlying system support base. We believe that Cronus will provide a sound and effective foundation for

distributed application development in the future. We anticipate that additional testbid applications will be

developed, that new technological components with be incorporated, and that the number of participants will

grow in the near future. This practical, ongoing testbed validation of Cronus capabilities, combined with

continued research into new areas, form a strong program for improving the support offered to distributed

applications developers working within the Cronus intercluster environment.

-33-

Report No. 6251 BBN Laboratories Inc.

5. REFERENCES

[Berets85] James C. Berets, Ronald A. Mucci, and Richard E. Schantz, Cronus: A Testbed for

Developing Distributed Systems, 1985 IEEE Military Communications Conference

(October 1985).

[Berets86] James C. Berets, Ronald A. Mucci, Richard E. Schantz, and Kenneth J. Schroder, C2

System Internet E£rperiment: Functional Definition, BBN Laboratories, Technical Report

No. 5942 (May 1985, Revised May 1986).

[Berets86al James C. Berets, Ronald A. Mucci, and Kenneth J. Schroder, C2 System Internet

Experiment: System/Subsystem Specification. BBN Laboratories. Technical Report No.

6248 (July 1986).

• [Berets86b] James C. Berets, Ronald A. Mucci, Richard E. Schantz, and Kenneth J. Schroder, C2

System Internet Experiment: User's Manual. BBN Laboratories, Technical Report No.

6249 (May 1986).

IGurwitz86] R. Gurwitz, M. Dean, and R. Schantz, Programming Support in the Cronus Distributed

Operating System. Sixth International Conference on Distributed Computing Systems

(May 1986).

(Milier861 Barton P. Miller, Cathryn Macrander, and Stuart Sechrest, "A Distributed Programs

Monitor for Berkeley UNIX," Software - Practice and Experience 16(2) pp. 183-200

(February, 1986). Presented at the 5th International Conference on Distributed

Computing Systems

[Sands86] R. Sands and K. Schroder, eds., Cronus User's Manual, BBN Laboratories, Technical

Report 6180 (February t986).

[Schantz851 Richard E. Schantz and Robert H. Thomas, Cronus. A Distributed Operating System:

Functional Definition and System Concept. BBN Laboratories, Technical Report 5879

(June 1982, Revised January 1985).

[Schantz86] R. Schantz, R. Thomas, and G. Bono, The Architecture of the Cronus Distributed

Operating System, Sixth International Conference on Distributed Computing Systems

(May 1986).

[Smith851 Edward T. Smith, "A Debugger for Message-based Processes," Software - Practice and

Experience 15(11) pp. 1073-1086 (November, 1985).

-34-

9-

