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ABSTRACT

In this report we present a statistical model for the signals of an

acousto-optic spectrum analyzer (AOSA). Using this model, we calculate the
Cramr-Rao bound for the estimation of the carrier frequency of radar signals
and the performance of the peak detector estimator. We also present an
algorithm for sidelobe rejection.

RESUM9

Ce rapport prisente un module statistique pour les signaux d'un analyseur

de spectre acouto-optique. A partir de ce dernier, on y calcule la limite

Cramfr-Rao pour l'estimation de la fr~quence des signaux radar ainsi que la

performance d'un algorithme bas6 sur la d~tection d'un pic local. On y

pr~sente aussi un algorithme pour le rejet des lobes adjacents.
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1.0 INTRODUCTION

It is expected that the Radar Electronic Support Measures (RESM) systems

of the future will be exposed to extremely dense electromagnetic
environments. Peak data rates from 500 thousand to one million pulses per
second have been postulated for future scenarios [1). This implies that the
simultaneous arrival of different radar pulses will likely be frequent.
However, conventional receivers using the Instantaneous Frequency Measurement
technique tend to make erroneous measurements and miss signals when this
occurs. This situation has prompted interest in channelized receivers which
are able to measure the frequency of different radar signals that are
simultaneously present at the front end of the receiver.

The acousto-optic spectrum analyzer (AOSA) is a viable contender among
the general class of channelized receivers for use in future RESM environments
and its frequency measurement performance is investigated in this report. In
the next section, we present a model for the signals produced by the AOSA and
in the third section we present the Cram6r-Rao [9] bound for this problem. In
the fourth section, we present the performance of a practical estimator for
this problem, namely the peak detector estimator. And finally, in the fifth
section we present a simple solution to the sidelobe rejection problem which
might arise in certain cases where we apply the peak detector estimator.

2.0 MODEL

This section presents a model for the signal and the noise at the output
of the AOSA which will form the basis of the performance analysis in the rest
of the report. The first part presents a frequently used model for the
configuration considered in this report and the second part discusses some of
the reasons for assuming that additive Gaussian noise is a reasonable model of
the corruption of the signal to be processed.

2.1 Signal

A block diagram of the AOSA configuration considered in this report is

shown in Figure 1. The collimated light wave generated by the laser impinges
on the Bragg cell at the Bragg angle eB. The diffracted field distribution in
the frequency plane contains the frequency analysis of the input signal.

Therefore, an array of photodetectors placed at the frequency plane can be

used to transform the result of this analysis, which is in the form of optical

signals, into electrical signals which can be further processed and analyzed.
The input signal, which is typically an electrical signal from an antenna

feed, is transformed by the Bragg cell to an acoustic wave which interacts
with the optical beam with the result that part of the light entering the cell

is diffracted at an angle proportional to the frequency of the input signal.
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The technological details and performance of the various components of
this spectrum analyzer are beyond the scope of this report but are currently
the object of active research. It should be noted that the input signal is
usually mixed with a local oscillator signal to obtain a signal within the
passband of the Bragg cell transducer.

Theoretical formulation and experimental results of the spectrum analysis
performed by this type of configuration can be found in [2]. A mathematical
model that is frequently used to describe the signal processing of this AOSA

with an integrating photodetector array and the one that will be used

throughout this report is represented by the following equation [3][4]:

(j+l)I 2

Xjk = J { H(f-fk) J w(z)u(t-z)exp(-i21rfz)dz df dt (1)

jI -w -

where Xjk is the voltage produced at the output of the kth detector for the
jth time frame. In this equation, u(t) is the input signal, w(z) is the

window function determined by the Bragg cell and the shaping of the laser

beam, fk is the frequency associated with the kth detector, H(f) is a spectral
weighting function that describes the spatial response of an individual

detector element and I is the integration time of the detectors. This
equation implies that the instantaneous light intensity distribution shining
on the array of photodetectors is the magnitude squared Fourier transform of
the part of the signals that are contained in the Bragg cell at that time
windowed by the function w(z). Each photodetector in the focal plane

spatially integrates the light intensity distribution and converts it to

currents which are integrated and sampled at periodic intervals.

Figure 2 illustrates the time variation of the light intensity

distribution shining on the array of photodetectors as the pulse modulated

carrier signal of frequency fo propagates through the Bragg cell for the case
where the pulse width (PW) is smaller than T, which is the time duration

needed for the acoustic wave to travel completely across the Bragg cell. In

that Figure, the dotted line represents the Bragg cell and the solid line
represents the envelope of the pulse modulated carrier as it propagates

through the cell.

Figure 3 is the same as Figure 2 except that it illustrates the time
variation of the light intensity distribution for the case where PW T. We

note that for that case, the narrowness of the light distribution is limited
by the finite width of the Bragg cell.
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In both Figures 2 and 3 we have represented the Bragg cell window, w(z),

as a rectangular window which means that the instantaneous light distribution

is a squared Sinc function. This is the window that will be used in this
report but in [5] we show how the signals can be calculated when we take into

account the exponential losses of the Bragg cell and the Gaussian shaping of

the laser beam.

In this report, it will be assumed that H(f) is a rectangular function of
unit amplitude and width B Hz, symmetrical about f = 0. As it was mentioned

before, H(f) is in fact a spatial weighting function describing the response
of an individual photodetector, but there is a linear one-to-one
correspondence between the spatial and spectral responses due to the fact that
the angle of diffraction is proportional to the frequency of the input signal.

As an example of the types of signals that need to be processed, Figure

4 shows the output of the AOSA for a continuous wave (CW) signal of frequency

fo and when TB = Y for the case where w(z) is a rectangular function. Figure

5 shows the output when TB = 6 with the other parameters being the same as for
Figure 4. Both of these figures show the output when fo corresponds to one fk

as well as when fo is exactly in the middle of two fk's.

In this report we will assume that the input is a CW signal, but as

discussed in [5] the analysis can easily be applied to pulse modulated signals
by changing the constant TB. For example, if the pulse width is T/5, then

considering the case for TB/5 where TB is the actual constant will give

accurate results. For a certain range of pulse widths this will introduce

errors but these will be ignored. The reader is referred to [5] for a more

complete discussion of this matter.

2.2 Noise

Harms and Hummels [4] have done some numerical calculations on the

probability density functions for the noise at the output of the AOSA assuming

that Gaussian noise is present at the front end of the receiver. However,

depending on the receiver, it is not clear whether this will be the dominant

source of noise. It could be that the photodetectors are the dominant source

of noise. In [61 we have measured the noise of an Avalanche Photodiode (APD)

array and we have found that it can be well characterized by the Gaussian or

Normal distribution. Other components such as logarithmic amplifiers and

buffers will also introduce noise and the Central-Limit Theorem [7] tells us

that the distributions of a large number of independent noise sources will

tend toward the Normal or Gaussian probability distribution function (PDF).

Hence, for the above reasons and for mathematical simplicity, we will assume

in this report that the noise components of each photodetector can be modelled

by independent Gaussian random variables with equal variance. In practice,

the mean values of these random variables will not be zero but we have shown

in [81 how we can correct for these offset errors. Therefore the noise model

that will be used in this report represents each photodetector output as a

signal component plus a zero-mean Gaussian random variable that is independent

of the other random variables but that has the same variance as the other

random variables.
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3.0 CRAMER-RAO BOUND

Using the model described in the preceding section, we will, in this
section, present the Cramr-Rao bound for the estimation of the carrier
frequency fo. To this end, we let R = (rl, r2, r3, ... rN) be the received
vector where the ri's are the pixel output values for a given integration time
frame. We can write

ri = m i + ni ,  i = 1, 2, 3, ..., N (2)

where the ni's are independent, zero-mean, Gaussian random variables with
variance o2, the mi's are the signal components and N is the number of pixels
in the photodetector array. It should be noted in relation to equation (1)
that mi,= Xji. This means that the conditional probability of the received
vector R given that the carrier frequency of the input signal is fo is:

N ( -(ri - mi)2

P(AIfo) = N I exp (3)

2a2

where the mi's are the signal components for frequency fo. From [9) we have
that an expression for the Cram~r-Rao inequality is:

-l

Var [foe C)-fo] .1 ( E ( [8 %n p"l ' (4)
a fo - ) )

e

where fo (R) is any unbiased estimator of fo.

Taking the natural logarithm on both sides of equation (3) we get:

N

9.n j(RPfo)) - -N 2n (/11 a) - Or m1)2

i=l 2a2

Taking the partial derivative with respect to fo we get:

N

a In P(Rlfol = - (ri - mi) mi ' (6)
fo

02 i.,
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where mi ' = m-. Squaring both sides of equation (6) we get:

N N N
8 n] = __ ( (ri mi' - mi mi')

2 +

afo  04  i=l i=1 j=l
j *i

(ri mi' - mi mi')(r j mj' - mj mj') ) (7)

expanding the terms of equation (7) we obtain:

N N N

a an P(Rlfo) = I (ri2(mi) 2 + mi2(mi') 2  2 ri mi(mi')
2 +__afo

C4  i=l a4 i=l j=l

j~i

(ri mi ' rj mj' - ri m i ' mj mj' - mi mi ' rj mj' + mi mi ' mj mj') (8)

Now E(ri) = mi and E(r) = mi and since ri, rj are independent provided that
isj, then E(ri ri) = E ri)E(rj) = mi m. Also, it is easy to show that
E(ri 2 ) = a2 + . Using these identities and simplifying we get that:

N

E a Q~n P(RJf 0)
2 )\~ (mi')2 (9

afo  i=l o2

Combining equations (4) and (9) we get that the Cram~r-Rao inequality for this
problem is:

Var f o  (R) - fo 1 a 2 (10)

r (mi')2

i=l
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We have shown in [5] that for a sinusoidal input, u(t) = A cos (21f o t

mk = A2 1 0(fk - fo) (11)
4

where O(f) is the convolution between the functions G and H,

O(f) = f H(f - f') G(f')df' (12)

where G(f) is the magnitude squared of the Fourier transformed window function,

CO 2

G(f) = j w(z) exp(-i21fz)dz (13)

As it was mentioned in the previous section, in this report we will use an
H(f) which is a rectangular function of unit amplitude and width B Hz
symmetrical about f=0 and a w(z) which is a rectangular window whose duration
is the time taken for the acoustic wave to travel across the Bragg cell and we
will call this time t. For this case we have that

sin 2 (21rfT/2)
G(f) = T2 (14)

(2nfT/2)
2

There is no closed form solution to equation (12) but using numerical
integration and differentiation programs we can calculate the variance of the
efficient estimator, Vareff which is the equality case of equation (10). We
are interested in knowing how the efficient estimator varies as a function of
the frequency fo. We found that for a given TB the variance of the efficient
estimator was periodic with a period of B Hz provided that the frequency of
the input signal did not correspond to a frequency near the edge of the array.

We are also interested in knowing how the efficient estimator varies as a
function of the constant TB. This constant is a basic design parameter and
does not change for a given system. It is a measure of the coarseness of the
spatial sampling from the photodetectors as can be seen by comparing Figure 4
and Figure 5.
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It should be noted that the number of pixel values that we include in our
calculations does not have to be N, which is the number of photodetectors in
the array. The reason for this is that, for many of those pixels, the values
of the mi's are relatively small. Hence, we have included in our calculations

as many pixels as was required but not more since this would uselessly
increase the number of computations and we will call this number n. Using 55
pixels, we find that for %B = A the variance of the efficient estimator is
quite constant as we vary the input frequency and

Vareff = 1.27 x 4a

T2 A
2 I

whereas for TB = Y we find that it is also fairly constant except that in this
case

ZV-areff = 0.98 x 4a

E2 A
2 I

where iv-areff is the root mean squared (RMS) error for the efficient estimator
which we will henceforth call RMSeff. Letting

K = A21T

4o

Figures 6 to 10 show RMSeff x(KT) as a function of the frequency offset x(x),
which is the difference between the input frequency f. and the corresponding
frequency of the closest pixel. When fo exactly corresponds to one of the

fk's then this frequency offset is zero. In these Figures we have only
plotted RMSeff over one period because as was mentioned earlier, RMSeff as a
function of frequency is periodic with period B Hz.

It should be noted that the constant K is a figure of merit for the
detection probability. This means that the detection probability for a given
signal increases as the value of K increases, everything else remaining the
same. It is important to note that the integration time of the photodetectors
(I) and the Bragg cell aperture time (x) are equally strong contributors to
the increase of K. However, in the case of pulse modulated signals, this
latter contribution will only be efficient if the signal is present during the
whole time that the photodetectors are integrating. For example, if we have a
50 nsec pulse that enters a Bragg cell with a 1 psec aperture time and the
integration time of the photodetectors is 10 psec, then increasing the
integration time of the photodetectors beyond 10 psec will not increase the
detection probability for that signal.
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Since the input frequency fo could be any frequency, it is interesting to
know what is the average RMSeff. This can be done by averaging curves such as
those in Figures 6 to 10. This has been done for several values of the
constant TB and the result is as shown in Figure 11. We see from this curve
that the average RMSeff is relatively small when xB is between 0.25 and 1.25

but it increases exponentially as TB is closer to 2. Figure 12 demonstrates
this more clearly as it shows the average RMSeff for higher values of TB. It
should be noted on this Figure that the average RNSeff for values of the
constant %B in the proximity of 2, 3 and 4 are actually off scale. The actual
value of the average RMSeff for TB = 3 is 241/KT whereas for TB = 2 and 4 it
is several orders of magnitude higher.

Since Figure 12 gives us a lower bound for any unbiased estimator, it is
clear that any such estimator would have a very undesirable performance for TB
greater than 1.75. In fact, we could even doubt that an unbiased estimator

even exists for some of these values of TB.

4.0 PEAK DETECTION

In the previous section, we have presented the Cramir-Rao lower bound on

the variance of any unbiased estimator for this problem. We have found that

this bound increases exponentially as the value of the constant TB increases

higher than 1.75 and that it even peaks at extremely high values in the

vicinity of certain values of TB. This means that any unbiased estimator for
this problem would have a poor performance for values of TB greater than 1.75

and, in fact, it is probably impossible to find an unbiased estimator for this

problem for some of these values of TB.

In this section, we present the performance of the peak detector

estimator for this problem. That is, we present the performance of the

algorithm that assumes that the frequency of the input signal is the frequency
that corresponds to the highest pixel value. This is a very natural and

simple algorithm to use for this problem and it does not depend on the shape

or the width of the light intensity distribution. This latter characteristic
is especially attractive in the RESM context where the receiver would have to

detect signals with many different pulse widths, some being very small and

others very large.

To this end, let us first assume that XI, X2 , X3 , ... , XN are N

independent Gaussian random variables with equal variance o2 for which the

means are XI, X 2 , X3 , ''', XN respectively. This means that the probability

density functions for these random variables are

1 (-(xi - Xi) 2 )

f(xi) = __ exp ), i = 1, 2, 3, ..., N (15)

o2I 2a2
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and since these random variables are independent we can write their joint

density function as

1 N ( -(xi - Xi)2

f(xl, x2, x3 , ..., XN) = U exp (16)

(a/r)N  2a2

If we define %j as the probability that the random variable Xj is higher

than all the others, then it can be evaluated by the following N integrals

(N-1) times

,j J... f(xl, x2 , x3, .... xN) 11 dxi dxj (17)

- -w - -w -w i~j

which, after a change of variables, can be rewritten

j =exp -(x N) ( (x i

____ exp 2H02 1 + derf dxj (18)

a o /-" 2a2 itj V2 a

where

y
2 r

derf(y) = _ exp(-t 2 )dt, for y positive

Vw o
(19)

-y
-2
- J exp(-t 2 )dt, for y negative

4/r 0

Using equation (18) we get the RMS error for the peak estimator
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N

RMSpk (fj fo) 2 +j (20)

j=1

and also the mean error for this estimator

N

Meanpk = (fj - fo) j (21)

j=l

Figures 13 and 14 show RMS k and Meanpk respectively for the case of TB =

0.5, n = 15, and K = A2 1T/4o = 0.

Figures 15 and 16 show RMSpk and Meanpk respectively for the same case
except for K = 20. Again in these figures we have plotted only one period of
these functions since they are periodic with period B Hz.

We see from Figures 14 and 16 that the peak estimator is actually a

biased estimator for a given input frequency. However, it has the desired
characteristic of a zero average bias over many different input frequencies.
This can be seen by the symmetry of Figures 14 and 16.

As we have done with the Cramir-Rao bound, we can obtain the average
RMSpk by averaging curves such as those of Figures 13 and 15. This has been
done for several values of the constant TB for a given K. Figure 17 shows the
resulting family of curves for several values of K. These curves have all
been obtained by assuming 15 photodetectors in our calculations (i.e. n=15) so
that we could compare the performance from a common basis. It should be noted
that, for any given value of K, there is a value of xB which is really the
smallest that would be used in practice. This is because the signal is so

buried in the noise that the corresponding false alarm rate would be
exceedingly high. We have not plotted points beyond that point on Figure 17.
We see from that Figure that the smallest useful TB increases as we decrease
the value of K. We also see from Figure 17 that for any given value of K,

there is an optimum TB which gives the smallest RMS error. As in the case of
the smallest useful xB, we see that this optimum TB increases as the value of

K decreases.
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Finally, we note from Figure 17 that, for any value of K, the average RMS

error for the peak estimator asymptotically tends towards a straight line as

we increase the value of TB. So that we can see this better, we have plotted

a straight line on Figure 17 that has a slope of 0.25/T and that passes

through the origin.

This behaviour is to be expected and to see why let us consider the case

of no noise or infinite signal to noise ratio. Figures 18 and 19 show the RMS

error and the mean error (or the bias) of the peak detector estimator for this

latter case. It is easy to see that the average RMS error in that case is B/4

and hence if TB = a, then the average RMS error will be B/4 = a/4T which is in

agreement with Figure 17.
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5.0 SIDELOBE REJECTION

In the previous section, we have analyzed the performance of the peak

detector estimator as it is used to estimate the frequency of a radar signal.
We have seen that this estimator, although being a biased estimator, is fairly
well behaved and gives reasonably good performance aside from being simple and
easy to implement. However, in the implementation of this algorithm, if we
say that we have detected a peak whenever we have a situation where a pixel is
higher than the two adjacent pixels on either side of it, then there may be
cases where this algorithm will detect multiple frequencies when there is in
reality only one signal present in the receiver of our AOSA. This situation
occurs when the input signal has a very narrow pulse width (PW) in relation to
T and 1/B. For example, if we have an AOSA with a 500 MHz bandwidth, 125
photodetectors (hence, B = 4 MHz) and a Bragg cell aperture of 1 psec (i.e. t
= 1 psec), then the integrated photodetector outputs for a pulse modulated
signal of 62.5 nsec (assuming I z 1 psec) would be as shown in Figure 20. As
we can see from this Figure, the sidelobes of the signal give us a number of
local peaks and it would be a serious mistake for an RESM receiver to report
that there are multiple signals present simultaneously when in reality there
is only one. It should be noted, however, that the extent to which this will
be a problem will depend on the energy of the pulse that enters the AOSA front
end and on the dynamic range and sensitivity of the AOSA. Since the AOSA
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basically measures the energy of the input signal in the respective frequency
bins (which are determined by the photodetector widths), either the AOSA will
have to have the required sensitivity and dynamic range or the pulse will have
to enter the receiver with significant power for the sidelobes to show as they
do in Figure 20. But nonetheless, since this would be a very undesirable
situation, then something should be done so that the signal is not
interpretted as a multiplicity of signals. This means that we must find an

algorithm that rejects the sidelobes of a narrow pulse and does not
erroneously assume that they are multiple signals.

The solution that we propose for this problem is that we should define a
local peak by considering more pixels than simply the two adjacent pixels on

both sides of the pixel under consideration. This algorithm is explained by
the conceptual block diagram of Figure 21. We see in that Figure that we

consider a window of L pixels (where L is an odd number) to determine whether
a signal is present or not. That is, the pixel in register L/2 + 1 must be
higher or equal to the L/2 pixels on each side of it in order for us to assume

that there is a signal present which has a carrier frequency equal to the

frequency associated with the L/2 + 1 register. We assume in that Figure that

the data is coming in serially although we have shown in [8] how we could

easily handle data that is parallel.

This algorithm is easy to implement even at high speeds. It works

equally well on linear or logarithmic data and it adapts well to different

signals. It should be noted that, since the condition applied is that B ) A,
there could be instances where we report two signals being present. This

would happen, for example, if the input signal frequency is exactly between
two fk's as in Figures 4 and 5. This would be a very unlikely situation in a

practical system especially in the presence of noise but it could happen and

it should be taken into consideration in further stages of processing.

It should be pointed out that this algorithm will limit our ability to

resolve two signals closely spaced in frequency. Therefore, the choice of L

should be made judiciously according to the knowledge that we have about the
types of signals that we could be processing. Making L equal to the number of

photodetectors in our array, for example, would completely preclude us from

detecting more that one signal per integration frame, a situation which is

completely unacceptable. Or making L = 3, as another example, would cause us

to report multiple signals for the situation of Figure 20, a situation which

is equally unacceptable. However, relatively small filter lengths are

required for this algorithm. A filter length of L = 9, for example, would be
adequate for the situation of Figure 20.

-6
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6.0 CONCLUDING REMARKS

We have presented a model for the signals of an AOSA and we have used it

to study the problem of estimating the carrier frequency of radar signals. To
this end, we have calculated the Cram6r-Rao bound which indicated that any

unbiased estimator for this problem would have a poor performance for TB
greater than 1.75. In our quest for a good biased estimator, we have

calculated the performance of the peak detector estimator which, although
being a biased estimator, actually has the desired characteristic of having a
zero average bias over many different input frequencies. Finally, we have

also presented an algorithm to reject the sidelobes, a problem which may arise
in certain cases where we apply the peak detector estimator.
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