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ABSTRACT

Conventional approaches to the formal specifications of computing systems do

not provide a facility for leaving elements undefined. The purpose of this thesis is

to introduce a formalism for such a facility and to examine its affect on the

underlying semantics. These ideas are thus a modification of conventional

formalism using algebraic semantics.
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I. INTRODUCTION

Within software engineering, there are several models to aid and direct the life-

cycle software development of programs. Each model has some type of phase

where program specification must occur. With the complexity of today's problems,

one would prefer to increase the amount of automation involved in each software

engineering phase. This thesis will present a procedure toward aiding the

automation of the software engineering specification phase. It is an extension of

previous work accomplished at the Naval Postgraduate School in the area of

automation (Ref. 1, 2, 3, & 4). Previous work toward automating the specification

ph3se produced a realization of the difficulty in formally handling errors in

algebraic specifications (Ref. 5). Instead of only handling error conditions in. a

specification, this thesis presents a procedure to deal with both error conditions and

a broader class of conditions which will be called "undefined conditions." Error

conditions are defined as conditions which should not occur within an

implementation of a specification. On the other hand, undefined conditions are

defined as both error conditions and what we will call "don't care" conditions.

"Don't care" conditions are conditions which, if implemented (note that they need

not be implemented) do not affect correctness of the implementation.

This new concept of "undefined conditions" (or "undefined objects") in a

specification reduces some problems that have occurred with specifying only error

conditions, but still requires a method to identify and define what is an "undefined

condition." In order to understand the problems involved with error conditions in

specifications; formal specifications, syntax and semantics will be discussed in the

next two chapters.
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H. FORMAL SPECIFICATIONS

A desire for automation within the specification phase of software engineering

influences the choice of specification methodology. We chose formal specifications

because of the desire for rigor and the ability to use associated mathematical

concepts in automating the specification phase.

The concept of formality within a specification, in computer science, is

"...devoted to, or done in accordance with, forms or rules ...." (Ref. 6) But the

intent of formality is deeper than just the rules when discussing specifications.

Formality not only deals with the rules of the specification, but also creates a strict

methodology of developing the specification. In this sense, formal specifications

will have "...rigorously defined syntax and semantics ...." (Ref. 7)

A formal specification is therefore defined as "...a specification that is written

entirely in a language with an explicitly and precisely defined syntax and

semantics." (Ref. 8) Through formalism, one develops an in-depth understanding

of the problem being dealt with and furthermore, formalism allows logic and

mathematics to be applied more readily toward solving or analyzing a problem.

This formalism then leads to the development of algorithms and techniques which

are translated to the computer and therefore automated.

Some of the following are salient features which a formal specification should

include:

1) we must be able to check whether the specification is consistent

2) the methodology should be implementation independent
3) the specification language should be simple, clear and easy to use
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4) the specification should be faithful to the intent of the specifier
(MacLennan describes this as Preservation of Information - a principle of
programming languages (Ref. 9).

5) the specification language must mirror the problem complexity in terms of
expressibility (i.e., a simple object in the program should be simple to
describe in the specification language - a concept of cost regularity in terms
of expressing programming objects (Ref. 10).

With the above features, formal specifications provide several benefits to the

software engineering process. The first advantage results from the specification

being implementation independent. This abstraction allows multiple

implementations of the same concept with only one specification. Not only does this

reduce the amount of effort required for implementing several programs in

different environments, but also provides a coherent data base upon which one can

provide maintenance to that "family" of programs. The process of transforming a

mental image of a program into a specification and then into a family of individual

programs if depicted in Figure 1 (Ref 11).

CONCEPT VALIDATION

PROCESS

(often informal
techniques)

SPECIFICATION

IMPLEMENTATION

PROCESS
(use mathematical

tools and processes)
PI P2 Pn

programs correctly

implementing the specification

Figure 1. The Development of a Concept into an Implementation of the Concept.



A second advantage of a formal specification is its ability to reduce ambiguity.

The specification should describe the essence of what is desired from the

implementation. With precise syntax and semantics, formal specifications have less

chance for error due to an implementation misunderstanding or misinterpretation.

Thus, the formality of the specification language reduces the equivocality that can

be encountered in other specification techniques.

A third advantage is the fact that language (and specification) formality provide

a basis for rigor in the construction of the specification (Ref. 12). Rigor and

reduction of ambiguity reduces errors when implementing a family of programs.

Consequently, this early elimination of error is capable of:

1) monetary savings in the software engineering process

2) time savings in the software engineering process

3) improved relationship in the final product

According to Faibian (Ref. 13), the cost of correcting an error increases a

factor of approximately 2.5 times for each stage of the software engineering process

that the error goes undetected (see Figure 2). If the specification deals with

hardware rather than software, this factor increases to approximately four and

increases up to a factor of 100 for embedded systems (Ref. 14). Thus, the potential

for monetary savings due to reduced errors in the specification stage of software

engineering is significant.
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Figure 2. Cost of Errors in Software Engineering Cycle (Ref. 13)

A fourth and foremost advantage of formal specification is automation.

Automated processes (such as proof of correctness programs) can check for

syntactic correctness and semantic consistency. This in turn provides evidence to

the degree of which the specification is well formed and error free. Furthermore,

either the implementation process could (theoretically) be automated or the process

of checking the consistency of the implementation to the specification could be

automated.

However, formal specifications have some problem areas which counteract

their benefits (Ref. 15):
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1) they require a great deal of mathematical background and can therefore be
difficult for the layman to read and understand

2) they can be very expensive to produce (one of the reasons a "family" of
programs is hopefully developed from one specification)

3) they can be more verbose than the program itself

The bottom line is that we know no other way to accomplish automation of the

specification phase without formal specifications and since automation is our final

goal, a formal specification approach becomes an ipso facto choice for the

requirements phase in software engineering. Recalling that a rigorous formal

specification requires rigorously defined syntax and semantics, the next chapter will

deal with syntax and semantics.
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I. SYNTAX AND SEMANTICS

Within the computer world, a specific execution of a given program is defined
through the use of semantics. Thus, semantics defines how input values are

related to output values. Beckman (Ref. 16)

A formal specification can be divided into three definitive areas: 1) syntax , 2)

semantics, and 3) pragmatics. Pragmatics deals with implementation time

dependencies of specification operators and will not be discussed further because of

its irrelevance toward this thesis (we are not trying to dismiss the importance of this

area, but only state that pragmatics will not directly effect the proposed procedure).

Secondly, since rigorously defined syntax has a great deal of literature describing

the process, the following section concentrates on rigorously defining the semantics

of a formal specification (which will include the use of syntax).

As stated above by Beckman, semantics defines how input values are related to

output values. Thus, input values are literally given meaning by our understanding

or notions of what they mean. These notions are further defined through the

operations that are allowed to occur on input values. This development of

"acreptable" or "desirable" operations on input values to produce our desired output

values literally defines the semantics of a program. Thus, the assignment of

meaning is "arbitrary" within each individual in the sense that one individual's

mental concept of a real world object can be constructed and stored completely

different from the next individual's concept. For example, one individual's concept

of a bench may be another individual's concept of a chair. (Could a bench not

substitute for a chair and if so, can it not be classified as a chair?) A more thorough

understanding of this problem of semantics can be achieved through an
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understanding of the human process of abstracting meaning within the field of

computer science.

A. SYNTACTIC REPRESENTATION

In order to understand the process of abstraction in computer science the two

concepts of form and meaning must be defined. The first concept to be defined is

the concept of form, also known as the syntactic domain or the world of

expressions. It is the set of all syntactic expressions. These expressions are

identified as either correct or incorrect through well formed formulae. The

correctness of the expressions is therefore simply a matter of following rules in

constructing well formed formulae and parallels the underlying concepts of parsers

in computer science. For example, "chair" is an acceptable expression in the

syntactic domain of expressions when considering the English language because the

word is found in the English dictionary. Note that no meaning has been placed on

the word chair; the fact that it is recognized as an expression is acceptable.

Similarly, when a computer program is parsed, syntactic errors are pointed out to

the programmer. The parser is not stating that the meaning of the program is

wrong because the parser is not concerned with meaning. Instead, the parser is

saying it cannot recognize the structure of the program (in terms of control flow,

variables, etc).

B. SEMANTIC REPRESENTATION

The second concept requiring definition is the world of meaning, also known as

the semantic domain. Within the ordinary world of reality, objects have meaning

just because they exist. However, within the computer science field, there is no

simple method to handle semantics. But, just as the syntactic domain is handled
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similar to human language, the semantic domain is also handled similar to a human

language. In a dictionary, the word "chair" is given meaning by describing the

object in terms of other real world concepts or objects. The dictionary is literally

using pointers to point toward other objects in order to derive a meaning for the

object being defined. These pointers do not always have to be other physical

objects, but when we interpret the dictionary, we must have some base knowledge in

order to understand the pointers.

How then does the computer science field implement a "dictionary?" There are

three approaches toward a formal semantic description. They include Axiomatic,

Operational, and Denotational Semantics.

C. AXIOMATIC SEMANTICS

The axiomatic approach describes the meaning of programs by describing the

logical properties of each linguistic feature in the language. Through this process

the logical properties of a program can be inferred (Ref. 17). For example, R.W.

Floyd (Ref. 18) presents a series of axioms that must be true in order for a desired

program to be satisfactory (or faithful to the "intent" of the program). These

axioms then describe the semantics or "deep meaning" of the program. Axiomatic

specifications have the advantage of ease in accomplishing proofs (whether you are

proving correctness of the complete program, logical properties, or only a sub-

program or function). However, this specification is very difficult to implement

upon a specific real machine.

D. OPERATIONAL SEMANTICS

The operational approach toward semantics in formal specifications describes

program meaning by specifying algorithms for translating any specification into an

9



executable process on a hypothetical machine (Ref. 17). This approach is called
"operational" because it was meant for ease of implementation. To implement this

system, one would first construct a run time system that transforms the real

processor into the hypothetical processor. Then, it is jus. a matter of changing the

specification into executable code on the hypothetical processor. One should

immediately note that problems of efficiency would be a concern and more

importantly, this methodology does not allow an individual to easily reason about

properties of programs. (The language FL/I has been defined in the ANSI standard

by means of the operational approach. (Ref. 19))

E. DENOTATIONAL AND ALGEBRAIC SEMANTICS

Finally, the denotational approach describes the meaning of a program by

describing how to construct mathematical objects from the syntax which in turn

denote the meaning of a program (Ref. 17). Thus, denotational semantics assigns

meaning to programs by pointing to something that the program denotes. Although

this has not worked very well with imperative languages, it has met with success in

functional programming such as LISP (Ref. 17). A major problem area with

denotational semantics (and functional languages) is that "time" is very difficult to

describe within the specification. Advantages include: 1) it parallels our present

concept of abstract data types, and 2) it subsumes algebraic semantics, therefore

simplifying reasoning about program specifications. Algebraic semantics, a form

of denotational semantics, will be the basis for our methodology in assigning

meaning to objects. For a more thorough introduction on denotational semantics,

see Tennent, R.D., "The Denotational Semantics of Programming Languages,"

Communication ACM Vol 19, No 8 1976.
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Underlying the denotational theory is the belief that mathematical primitive

concepts have a clear meaning and if these concepts are then pointed to, the meaning

of the program will then become clear (or at least unambiguous). A problem with

this approach is the same problem underlying the English "chair" example. That is,

without some base knowledge of the English language one can never hope to use the

dictionary nor acquire meaning from the objects which the dictionary points to in

defining "chair." Similarly, without an extensive knowledge of mathematical

concepts one can never expect to be able to derive meaning from the objects pointed

to by denotational semantics.

F. PROBLEM AREAS IN DENOTATIONAL AND ALGEBRAIC
SEMANTICS

As an understanding of the problem of assigning meaning to objects within the

syntactic domain is unveiled, a deeper, more profound problem arises. A concrete

object within the semantic domain can be an abstract concept -- for example, a stack

can be a real world object in a semantic domain which depicts an abstraction of the

FILO (first-in-last-out) concept. If an abstract object is allowed in the semantic

domain, then the object may be abstracted and a hierarchy of abstractions are

created. Each level of abstraction requires another level of indirection to find a

pointer providing definition of the object (using the denotational definition of

semantics).

Furthermore, applying a semantic definition to abstract objects is not equally

easy for all objects. Some objects (such as love) may be very difficult to point at,

while others (such as a basketball) can be considerably easi r to point to In addition

to the above problems, what may appear to be easy to semantically define may be

very difficult to semantically implement. For example, can a large bean bag be a

11



"chair" or is a "chair" really just an abstract concept which defines a complete

semantic definition. These problem areas directly impact our ability to determine

whether we can provide a pointer to all objects within a syntactic world which gives

them meaning. This is not stating that semantic problems are intractable, but instead

it states that we cannot determine at the outset whether the problem we are working

on is always tractable. The question boils down to: How does one approach the

problem of providing meaning to the abstract concepts in the syntactic domain in a

consistent manner which preserves the essence of our real world?

We have elected to assign meaning within the syntactic domain through an

interpretation. An interpretation of a syntactic object is defined to be the process of

pointing to some specific object within the semantic domain (which could be

considered the syntactic co-domain in this case). One can think of an interpretation

as a mapping of the syntactic domain into the semantic domain. The attributes of

the semantic object are therefore transferred to the syntactic object which infers a

meaning onto the syntactic object. However, when implementing this mapping, one

must deal with conditions/objects such as "undefined terms." "Undefined terms" are

objects within the syntactic domain which require no interpretation to an actual

object in the semantic domain (i.e., they need not map to any object within the

semantic domain). These concepts are depicted in Figure 3.

However, the problem is actually worse than stated above. What is normally

done when humans abstract reality (creating a semantic domain within their

understanding of the world), is to create a model that is a partial realization of

reality. Note that this model is not a projection of the semantic domain (world of

reality) nor is the semantic domain a projection onto the model (as the latter would

12



disagree with most concepts of models). Figure 4 describes this improved depiction

of how we implement an interpretation to achieve the assignment of meaning to

syntactic objects.

nINTERPRETATION

SYNTACTIC DOMAIN SEMANTIC DOMAIN
(WORLD OF EXPRESSIONS) (WORLD OF REALITY)

Figure 3. Assigning Meaning to the Syntactic Domain

IN 

MODEL

nterp ..-ti n

SYNTACTIC DOMAIN

SEM ANT IC DOMA

Figure 4. Assigning Meaning to the Syntactic Domain
Through a Model (Concrete Algebra)
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For example, if "chair" is the syntactic object, possible interpretations could

point to real world objects such as "bean bag chairs," "sofas," "Sar stools," etc. If

we use the following rule to confirm whether the interpretation -i correct: "a chair

is any object which is used for the purpose of sitting," then the above interpretations

are all correct. One could argue that this is not a very satisfying interpretation for

our intuitive notion of the object "chair" but this certainly displays the difficulty in

trying to apply a meaning to a syntactic object.

On the other hand, if we use the following to confirm whether the

interpretation is correct: "a chair is any object used for only one person to sit on,"

we would have to remove "sofas" from the above interpretations. This may be a

more satisfying interpretation of our notion of "chair."

Another problem displayed in Figure 4 deals with the mapping between the

model and the semantic domain. The model is a partial realization in defining the

semantic domain, just as our notion of the integers within a computer is only a

partial realization of our mathematical understanding of integers (there can only be

a finite number of integers represented within the computer, yet axioms are based

on the ability of integers to be infinitely large). Thus, the model is predestined to

fail in capturing the complete true essence of the semantic domain. Problems of

interpreting the modeling process will not be analyzed here, but if the task of

creating software is to be approached, then a methodology to approach the problem

of mapping the syntactic domain into the model must be developed. This mapping

function will be defined as an interpretation. One of the most perplexing problems

with developing a consistent methodology toward an interpretation (and certainly a

stumbling block for software engineering) is the problem of handling the undefined

14



terms found within the syntactic domain. One proposed approach is to not even

allow undefined terms in the syntactic domain.

G. AN APPROACH TOWARD HANDLING ERROR CONDITIONS

Goguen did not allow "don't care conditions" by explicitly defining all

"undefined terms" as errors. The errors were then individually described within the

specification (Ref. 20). Thus, he required each object within the syntactic domain

of a specification to be either 1) a representation of an object/concept or 2) an

actual error condition. This creates a total function when mapping a syntactic

representation into its semantic meaning (using denotationa: semantics). Not only

did this cause combinatorial explosion problems (since every syntactic object must

be defined), but it can lead to inconsistencies within the specification axioms.

Goguen carefully provides strict definition to every possible term to prevent his
"error" terms from being considered undefined terms. However, Davis contends

that many undefined conditions within the specification are "do not care" situations

and can create a consistent specification and implementation whether or not each

particular "undefined" condition is considered an error or not (Ref. 21). Goguen's

approach, as stated earlier, causes not only combinatorial explosion, but can also

create inconsistences within the axiomatic understanding of the interpretation. The

inconsistencies occur because several exceptions must now handle each "error" case

within the syntactic domain. On the other hand, Davis' approach to undefined

conditions is more general than error conditions because undefined conditions

includes both "error" and "don't care" conditions.

Whether one prefers defining these conditions as "undefined" conditions or

"error" conditions one is still concerned with identifying the undefined terms within

the syntactic domain in order to achieve a precise and consistent implementation of

15



their respective model. If one could identify these undefined terms, then any

implementation of those terms would create consistent axiomatic systems (just as we

have different, but consistent, axiomatic geometries or set theories). However,

conceptualizing the individual "undefined conditions" as a class of terms (as

depicted in Figure 4) has some problems as will be discussed in the next chapter.

16



IV. THE PROBLEM OF IDENTIFYING UNDEFINED TERMS

One of our goals is to reduce the combinatorial explosion problem of dealing

with individual "error conditions" within a specification. By creating "undefined

conditions" we effectively reduce the number of "error conditions" which we must

deal with (or prove something about) in a specification. We can further reduce the

combinatorial problem by treating all undefined terms as a single class of terms

within the specification. Therefore, even though undefined terms may look very

different, they can be logically handled in a single consistent manner within a proof

of the specification. For example, although x/y and 4x/4y may look different, the

second expression reduces to x/y and therefore is semantically equivalent (even

though it is not syntactically equivalent) to the first term of x/y. Both of these terms

should be semantically handled the same within a specification. Thus, it would be

beneficial to equate these two expressions together into one equivalence class and

just deal with the equivalence class.

If we are to equate undefined terms for the purpose of identification then we are

creating an equivalence class of undefined conditions/syntactic objects. However, to

define an equivalence class, one must have a notion of equality. Remember that

semantically, the notion of equality (or semantic meaning) is derived from having

terms within the syntactic world map into the model (an interpretation) which

consequently points to the same concrete object in the semantic domain. All terms

that map into the same semantic domain object then create their own equivalence

class. Those items which do not map to an object representation within the model

then create the "undefined" equivalence class.
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To understand whether two items are equal or not, one must be able to

determine whether there are any undefined terms that are a part of that term since

such a part, makes the term undefined also. But note that the concept of equality is

used to define the "undefined" equivalence class. And since the equivalence classes

are used in providing meaning to concepts such as equality (through the use of an

interpretation), a circular reasoning problem has arisen.

A more insidious problem actually occurs with the above circular reasoning

problem. This problem can best be displayed by an arithmetic example. First, we

define an undefined term as "any term that has a division by zero." Next, we want to

know whether xy = y. In the analysis we divide both sides by y and get x = 1. If we

errorneously conclude that x = I is the only solution, we have not considered all of

the underlying assumptions with our algebraic system. Note that if y equals zero,

then x can equal anything, and the equality still holds. This problem occurs because

we have used an "undefined term" in solving the equality (the undefined term was

the division by y when y equals zero). Thus, the solution is exclusively x = 1 if and

only if y does not equal zero. Thus, we must not only look for undefined subterms

but also for any undefined subterm that appears within any process of proving two

terms equal. This considerably complicates the circular reasoning problem and

may account for a programmar's inability to identify and properly implement a

completely consistent model of a specification.

In order to break the circular chain of definition, we will go back to the original

concept of identifying undefined terms within the syntactic domain. Thus the

process proposed is to identify undefined terms within formal specifications by

identifying syntactic terms which are undefined. To accomplish this, a grammar

will be used to syntactically identify objects which lead to undefined terms. This

18



grammar will then create an equivalence class of undefined terms which will point

toward the concept of "undefined objects." The implementer of the specification

can then select whether he/she desires to implement this class of "undefined objects"

as either "errors" or as "don't care" situations (remembering that "don't care"

situations could include anything from a system crash to a system call which simply

ignores an undefined term).

19



V. METHODOLOGY

In the next section, "Identifying Undefined Objects," we show we can identify a

class of undefined terms within a specific syntactic world. The example is a

specification for stacks. Stacks are extremely useful within computer science and

yet relatively simple data structures; thus, they appear to be a logical beginning for

showing how we can identify "undefined objects" within a specification.

A. THE PROOF PROCESS

As previously discussed, many specifications have functions which create

undefined objects. For example, if we deal with a specification for real numbers,

the division operator is certainly an accepted operator. However, if we attempt to

divide a real number by zero, an undefined term results. This idea of undefined

terms is also found in a stack specification.

We first identify undefined conditions within the stack specification. Then,

undefined terms are analyzed in order to develop a grammar which can identify all
"undefined conditions" within the syntactic domain. Thus, the concept of

undefinedness is being identified at the syntactic level from which we can

unambiguously deal with "undefined objects" of the specification. These syntactic

terms, identified by a grammar, will then become the "don't care" situations within

the specification. In other words, once we have identified a class of "undefined

objects" within the specification, they will be given semantic meaning by pointing

them (denotational semantics) toward the semantic world (real world meaning) of

"I don't care how you implement this class of objects." Thus, the implementer of
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the specification is free to handle this class of "don't cares" in any consistent manner

which he/she so desires. The critical step then becomes:

Can one unequivocally say that the grammar which identifies this
class of "undefined objects" truly identifies all "undefined objects" as
stated in the specification?

This is the purpose of Chapter 6 - "Identifying Undefined Objects." In order to

accomplish this aim, we need to introduce the use of dendrogrammars.

B. DENDROGRAMMARS

Initially a textual grammar was used in proving the capability to semantically

identify undefined objects within a formal specification. When this grammar

caused confusion with the subtle problems underlying the proof, the author decides

to use a dendrogrammar. Tree structures are a common data structure within

computer science. Their utility is derived from not only a hierarchical structure (to

include nested or one-to-many relationships) but also the regul -_ity involved with

the algorithms that manipulate these structures. By using a dendrogrammar, the

author hopes that the tree structured grammar provides the aigonthlmic clarity that

the problem requires.

Note that there is no difference between a textual grammar and its equivalent

dendrogrammar. In fact, this is a fundamental concept underlying the theory of

parsing. For example, if we have a sentence defined by a context-free grammar,

parsing that sentence is the same as constructing its syntax tree, starting at the leaf

nodes (reference Figures 5 and 6). However, the additional benefit of the tree

representation, is that it provides structural information in a clear and precise

manner.
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An additional advantage of dendrogrammars when dealing with semantics is the

fact that the structure of a concept can provide more information (and therefore

more meaning) to the reader toward understanding a concept. For example, the

following sentence is ambiguous as stated:

They are shooting birds.

One does not know whether a person is pointing at fowl named "shooting birds" or

whether there is a group of hunters ahead.

But a tree structure can readily clarify the meaning of the sentence as observed

in Figures 5 and 6. This is due to additional information that the tree structure is

capable of providing through structural meaning.

sentence

noun verb noun
phrase I phrase

noun noun

they are shooting birds

Figure 5. Unambiguous Tree Structure
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sentence

noun verb noun
phrase phrase

noun adjective noun

they are shooting birds

Figure 6. Unambiguous Tree Structure

Because dendrogrammars are equivalent to textual grammars, the

dendrogrammars used in Chapter 6 will be defined to operate in the same manner as

classical textual grammars to include the use of rewrite rules, productions, and

reductions.

C. REWRITING SYSTEMS

A grammar is equivalently called a rewriting system (Ref. 22), and a rewrite

rule is called a production within a grammar. The rewrite rule is considered to be

the replacement of specific symbols within a string by other symbols. The syntactic

rules of the system describe which symbols are allowed to be replaced and which

symbols are allowed to do the replacing. Note that there is no requirement that the

replacement either increase or decrease the size of the overall term.

Graml in Figure 7 is an example of rewrite rules for a textual rewrite system.

This textual grammar, or series of rewrite rules, creates strings of zero or more
"a"s and none or one b where the "a"s must always come before the b. This
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grammar is redundant in the fact that it could be rewritten in a simplified manner as

shown in Figure 8.

D -> aD
D -> aB
D -> a
D -> b
aB -> B

where 0 is the starting symbol

D and B are variables

a and b are terminals

Figure 7. Graml

D -> aD
D -> a
D -> b

where D is the starting symbol and solitary variable

a and b are terminals

Figure 8. Gram2

Note that Graml could also be written with a dendrogrammar.

This is depicted in Figure 9, Dendrol.
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0 DD

aD -> a\
D

D -> \

B

D -> a

B -> b

a
\ -> B

B

Figure 9. Dendrol

Although Graml and Dendrol generate the same language, the dendrogrammar

provides spacial separation and a hierarchial ordering which can aid ones ability to

understand internal symbol manipulation as grammars become complicated.

Now armed with a general concept of dendrogrammars and rewriting systems,

the author will illustrate an approach to handling "undefined objects" within a

specification. As stated before, this method of handling "undefined objects" leads to

a consistent understanding of the specification and reduces the combinatorial

explosion problems which Goeguen encountered when he enumerated every case of

possible error conditions.
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VI. IDENTIFYING UNDEFINED OBJECTS

A. STACK SPECIFICATION

The stack specification in textual format is depicted in Figure 10. The term

mtstk( ) is a nullary operator which returns an empty stack. Additionally there are

three operators for stacks: push, pop, and top. The push operator accepts a stack

term and a value and returns another stack. This operation will be considered to be

logically equivalent to placing a value on the top of a stacked set of zero or more

previous values (defined as a stack). The pop operator similarly accepts a stack

term and returns another stack. This operation will be considered to be logically

equivalent to removing the top term from a stacked set of values. Finally, the top

operator accepts a stack and returns a value. The value it returns will be the top

term of the set of stacked terms.

push (S,v) -> S (1)

pop (S) -> S (2)

top (S) -> v (3)

mtstk() -> S (4)

Figure 10. Textual Stack Specification - Stext

The stack specification can equivalently be described with a tree structure as

depicted in Figure 11.
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push/ \ -> S (1)
v S

pop

-> v (2)
S

top
-> S (3)

S

mtstk() -> S (4)

Figure 11. Tree Structure Stack Specification - S

B. UNDEFINED TERMS

The stack specification has certain characteristics which must be further

defined. One of those areas is undefined terms. Thus, Figure 12 describes a

dendrogrammar representation of the undefined terms, Usp, within the stack

specification.
pop

\ (1)

mtstk()

top
(2)

mtstk()

Figure 12. Usp - Undefined Terms Within the Stack Specification

Recall that by declaring equations (1) and (2) in Usp as undefined terms one is

stating that if such a situation arises in the program/hardware, absolutely nothing is

guaranteed about the execution of that system. Methods of resolving an undefined
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situation is left to the implementation of the specification and therefore, anything

from system shutdown to ignoring the expression and continuing processing could

occur in actuality.

Note that both terms (1) and (2) from Usp have the term "mtstk( )" within them.

Thus, identifying all undefined terms within the stack specification requires

recognition of an mtstk( ) term. By recognizing whether a term contains an mtstk()

expression or subterm, one could then check for undefined terms through pattern

matching techniques to recognize the trees (1) and (2) in Usp. But in order to

manipulate stack tree structures, one requires a rewrite system (or grammar) which

describes the legal process to create (or recognize) a stack tree structure.

C. SPECIFICATION DENDROGRAMMAR

From the specification, Stext, we develop the syntactic rules which describe

how a stack may be created. This grammar is depicted in Figure 13 and is called

Tsp. The starting symbol for the grammar is "S." The variables are "A" and "B."

Additionally, "v" is any terminal that is being manipulated in the stack term (pushed

and popped).

S -> mtstk()

S -> A mtstk()

A -> A pop

A -> A push B

A -> epsilon (null string)

B -> topS

B -> v

Figure 13. Textual Stack Specification - Tsp
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Just as a textual grammar was developed from Stext, we can develop the

syntactic rules which describe how a stack may be created from a dendrogrammar.

The stack specification dendrogrammar, Dsp, is depicted in Figure 14. The starting

symbol for the grammar is Ts. The variables are A and B and "v" is any terminal

that is being manipulated in the stack term (pushed and popped).

Ts -> mtstk() (1)

A
Ts -> (2)

mtstk

A -> A
(3)

pop

A
A -> (4)

push
/

B

A -> epsilon (null string) (5)

B -> top
1 (6)

Ts

B -> v (7)

Figure 14. Stack Specification Dendrogrammar - Dsp

In analyzing the operation of a stack, there are distinct points within the stack

tree at which the tree may be expanded (by the addition of the terms pop or push).

These "expansion points" occur either: 1) prior to a pop or push operator or 2)

immediately after a pop or push operator. This observation is consistent with the
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concept that the terms pop and push must always operate on a stack term (as

required by the specification). Thus, the concept of expansion points is

implemented in the ambiguous specification grammar, Dasp, in Figure 15 and the

variable Tsx represents the expansion points.

Ts -> mtstk() (1)

Tsx
TS -> (2)

mtstk()

pop
Tsx -> (3)

Tsx

Tsx
Tsx -> (4)

poP

push
Tsx -> / \ (5)

Tv Tsx

Tsx

Tsx ->

push (6)
/

TV

Tsx -> epsilon (null string) (7)

top
TV -> I (8)

Ts

TV -> v (9)

Figure 15. Ambiguous Stack Specification Grammar - Dasp
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Note that Dasp is an ambiguous grammar by the fact that it could be reduced to Dsp.

(An ambiguous grammar is a grammar which allows a well formed sentence to be

parsed in more than one way (Ref, 23).) The grammar Dasp will be used to prove

the validity of a grammar which recognizes stack terms logically equivalent to

empty stack terms (mtstk( )). The ambiguous grammar allows a sufficient degree

of freedom to permit pattern matching techniques require in the proof.

D. SPECIFICATION AXIOMS

Next, axioms are defined to give the stack specification the logical properties

desired by the designer of the specification. Figure 16 describes the required stack

axioms (Da).

G G

Tsx .- . pop (1)

S push
I \

TV S

top
I

push <---> v (2)

v S

Figure 16. Axioms - Da

Since the concern is to recognize mtstk( ) terms, the rewrite equations dealing

with stack values, rewrite equation (2) in Da , and rewrite equations (8) and (9) in

Dasp will now be ignored. This is done with no loss of generality since the stack
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values and their associated axiom do not affect the structure of a stack and it is the

structure "mtstk( )" that is of concern - not the values in the stack.

E. AN MTSTKO GRAMMAR

Because the goal is to recognize stack terms logically equivalent to mtstk( ), an

mtstk( ) grammar is presented in Figure 17. Again note that this is an ambiguous

grammar. Also note that the Tv variable is disregarded in the present grammar,

Dmt.

Tmt -> mtstk (1)

Tsx
Tint-> (2)

mtstk()

Tx

pop
Tx -> (3)

Tx

push
/ \

TV Tx

Tx -> epsilon (null string) (4)

Figure 17. MTSTK( ) Grammar - Dint

With the given stack specification (Dint - Figure 15), and the axioms (Da -

Figure 16), recognition of undefined objects within the specification is

accomplished by recognition of logically equivalent mtstk( ) terms through the use
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of the empty stack grammar, Dint. Thus, we must show that Dmt properly

recognizes all mtstk( ) terms.

F. PROVING DMT VALIDITY

The following proof is presented to show the consistency of Dmt in properly

recognizing all terms that are logically equivalent to mtstk(.

1. Overview of the Proof

Goal: Prove that any term provably equal to mtstk( ) is generated by Dmt
grammar (the empty stack grammar)

In order to show that any term provably equal to mtstk( ) (according to the

specification and axioms) is generated by Dmt, the following two cases must be

addressed:

case 1: Any term provably equal to mtstk( ) is generated by Dmt.

case 2: The grammar only generates terms provably equal to mtstk().

Case 1 of the proof will be accomplished by induction on the number of

times the axiom, Da (1) has been applied to the originating term (starting symbol)

mtstk(). Case 2 of the proof will be a proof by contradiction.

2. Case 1. Any Term Provably Equal to mtstk() is Generated by DMT"

a. Base Step:

Let n be the number of times that Da (1), the specification

dendrogrammar axiom, is applied to the originating term of mtstk().

If n = 0, we are left with he originating term mtstk( ) from the

specification dendrogrammar, Dasp.

By applicati3n of rewrite rule (1) in Dmt, mtstk( ) is trivially

generated.
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b. Inductive Step:

The inductive assumption follows:

Any tree which is provably equal to mtstk in n steps is generated by

Dmt. In other words, if we have P(n) = T (some tree), we are assuming that P(n) is

provably equal to mtstk( ) and we must now prove that P(n+1) = T is generated by

Dmt.

We must now consider 2 cases of the axiom application to the tree T

(or P(n)):

Case la: The axiom, Da (1) , could be applied to T in a manner which expands
the tree. In other words, the axiom adds another push and pop to the
original tree, T, to generate T.

Case Ib: The axiom, Da (1), could be applied to T in a manner which reduces
the tree. In other words, the axiom removes a push and pop from the
original tree, T, to generate T.

Inductive Step I a. Expansion of the Original Tree.

As discussed before, there will be expansion points in the specification

term, T', where the axiom Da (1) will be applied. Da (1) can be applied at any Tsx

(specification expansion point) and the questions to be answered include:

1) Where are the specification expansion points located?

2) Does the dendrogrammar, Dit, Properly recognize the expansion when Da
(1) is applied to one of the points specified above?

By analyzing Dasp (the specification dendrogrammar), we notice that Tsx occurs in

three places:
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1) Just prior to the term mtstk( ), as noted in Dasp (2)

2) Just prior or immediately after the operator pop, as noted in Dasp (3) or
(4)

3) Just prior or immediately after the operator push, as noted in Dasp (5) or
(6)

The above 3 cases are similar in the fact that Tsx occurs just prior to

any stack term. In number one above, Tsx occurs prior to the stack term mtstk().

Next, note by the original stack specification, S, both the push and the pop operators

return terms of type stack. This implies that (3) and (5) in Dasp both have placed

Tsx prior to stack terms. Again, referring to the specification, S, we note that pop

operates on a stack term and therefore, Tsx, in rewrite rule Dasp (4) is placed

immediately prior to a stack term. Finally, by rewrite rule (1) in S, we note that

push operates on both a stack term and a value. Tv is a value and therefore Tsx is

once again placed immediately prior to a stack term.

If Dmt did not allow for expansion for a term at one of the points

which are recognized for expansion in Dasp, then Dmt would not be able to

recognize all Dasp terms which are equivalent to mtstk( ). We have already

qualified each Tsx point to occur prior to any stack term and therefore have the

requirement that Tx (the mtstk( ) then dendrogrammar expansion point) must occur

prior to any (and all) stack terms.

To prove that Tx occurs prior to all stack terms in Dmt we will look at

all possible cases where Tx can occur. By rewrite rule (2) in Dmt, Tx occurs prior to

mtctk(). The only transition allowed after rule (2) in Dmt are (3) and (4). If we

strictly apply transition (3) we will note that each Tx expansion is depicted in Figure

18.
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popTx

push
/ \

TV Tx

Figure 18. Tx Expression

From this expansion, there is not a stack term (designated by a point prior or after

the operators push and pop) that does not have a Tx prior to it.

Next, if we apply transition (4), we are only removing Tx from the

tree structure and therefore not adding operators. If no operators are added, no

additional stack terms could be created. Thus, this case is moot when considering

whether we have a Tx prior to every stack term.

With Tx occurring every where that Tsp may occur, our next concern

is whether the dendrogrammar Dint, properly recognizes the expansion of Tsp by

the axiom Da (1). The axiom Da (1) is a rewrite rule where Tsp is replaced with

Figure 19.

pop

push
/

TV

Figure 19. Axiom Da (1) Replacement

Thus, we need to show that the transition in Figure 20 is equivalent to the transition

in Figure 21.
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pop Tx

Tsx --> push Tx --> poP
/\TV Tx

push

TV Tx.

Figure 20. Tsx Transition Figure 21. Tx Transition

This is clearly seen through the use of Dmt (4) following the initial transition of Dmt

(3) as observed in Figure 22.

Tx

pop pop

T-> Tx -> Tx ->

push push
/ \ / x

TV Tx TV TX

Dmt Dm= Dmt
(3) (4) (4)

pop pop

push -> push
/ \ /TV Tx TV

Dmt
(4)

Figure 22. Reduction of Tx
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Therefore a transition of Tsx of the axiom is equivalent to a transition of Tx by

rewrite rule (3) of Dmt and then three transition by rewrite rule (4) of Dmt.

Inductive Step lb. Reduction of the Original Tree.

Next we consider what happens to T when Da (1) is applied in the

opposite direction as depicted in Figure 23.

G

pop G

push S
/ \

TV S

Figure 23. A Tree Reduction

To show that the reduction case is also recognized by the

dendrogrammar Dmt, we allow only rules (1), (2), and (3) of Dmt to be applied

during expansion of the tree, Tint. This does not affect the generality of the proof

because Dmt (4) only eliminates the expansion points, Tx, from the tree.

In the specification grammar, the tree created prior to application of

the axiom is defined as Tsp (and after the axiom is Tsp'). Additionally, recall that

we are assuming that Tsp was created by n steps of the axiom Da (1) and Tsp is

semantically equivalent to Trt.

Since our dendrogrammar rules are rewrite rules, we are using a

substitution or "tree replacement" (expansion/contraction) concept implementation

of the grammar. Because our dendrogrammar Dint will recognize Tsp (Tsp is

equivalent to Tot), and all previous expansions to this point have been provably

recognized by Dint, any reduction of the tree, Tsp, will place the new stack term,
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Tsp', at a previous stack term state which equates to one of the previously
"recognized" states by Dmt. Therefore, any reduction is equivalent to not

accomplishing the previously recognized (by Dmt) expansion of the stack term Tsp'

which is equivalent to mtstk().

3. Case 2. The Grammar Only Generates Terms Provably Equal to mtstko.

This will be a proof by contradiction:

Assume the grammar generates a term other than one provably equal to

mtstk(). The axiom Da (1) states that we can always remove any pair of pop-push

operators in the stack term S as noted in Figure 24.

G

pop G

push S
/ \
TV S

where: G is any combination of pop and push operators (to include the null
set)

S is any stack term

Figure 24. Axiom Da (1)

We can use this axiom to reduce the original stack tree into a "smallest

stack tree" (minimized stack term). After we have eliminated all pop-push

combination, we are left with four subcases of stacks:

1) We have only pop operators in the stack term (which also includes the
nullary operator mtstk( )).

2) We have only push operators in the stack term (which also includes the
nullary operator mtstk()).
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3) We are left with only the terminal stack - mtstk(.

4) We have some series of operators where the push operators come before
the pop operators and we are therefore "popping" an mtstk().

In analysis, subcases one and two degenerate to the same argument and

therefore only one proof for both subcases is presented. Subcase 1 will be

specifically proven.

Subcases 1 and 2:

Let S be any stack term which is not provably equal to mtstk( ) and yet was

generated by Dmt.

If Dmt generated S, and S has no push operators to match the multiple pop

operators, then Dmt must have at least one production (rewrite rule) which will add

a pop to the stack term without adding a push. Note that rewrite rule (3) is the only

rule that adds a pop to the stack term: however, it also adds a push to the stack term.

Therefore, there is no rule which adds a pop operator to the stack term without

adding a push operator -- a contradiction of the original assumption.

Subcase 3:

In this situation we can see that Dmt (1) generates the terminal mtstk( ) --

which is also a contradiction of the original assumption.

Subcase 4:

If our dendrogrammar is to generate a stack term where the push

operators come before the pop operators, then the dendrogrammar, Dint, must be

able to position a pop operator directly in front of the terminal mtstk(). This is

only possibility because any pop operator prior to a push operator would be

reduced from the stack tree.
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By analyzing the Dint dendrogrammar, we see that the only variable that

precedes the terminal mtstk( ) is Tx. Now note that the Tx variable has two possible

rewrite rules, rewrite rule Dint (4) and rewrite rule Dint (3).

If rule (4) is applied to the variable Tx, we could not achieve an operator

(specifically a pop) prior to the terminal mtstk(.

If rule (3) is applied to the variable Tx, the transformation of Figure 25

occurs.

TxI

pop
TXT\

\ -->T x 2

mtstk()
push
/ \

Tv TO3

mtstk()
P(n) P(n + 1)

note: The Tx terms in P(n + 1) are numbered for discussion purposes only
and equate to the variable Tx.

Figure 25. Tx Transition by Dit (3)

Thus we can now apply the Dmt rewrite rules to Tx3 in P(n + 1). If Tx3 is

converted by rewrite rule Dit (4) we end up with a push just prior to the term

mtstk( ) which is contradictory to the original assumption. Additionally, if Tx is

converted by rewrite rule Dnt (3) then another Tx is placed just prior to the term

mtstk(). By a simple inductive proof one can see that either a Tx variable will be
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placed prior to mtstk( ) or the Tx variable is replaced with epsilon causing a push

operator to be placed prior to the term mtstk( ) (which again contradicts the

assumption that a pop operator is before the mtstk( ) term). Thus both of these

possibilities result in a contradiction of the original assumption.

With all four subcases contradicting the original assumption that Dmt can

generate some term other than a term equivalent to mtstk( ), we have shown that

Dmt can only generate terms equivalent to mtstk(.
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VII. APPLICATION OF THE EMTY STACK GRAMMAR

Once we have a grammar which syntacticly identifies terms which lead to

undefined objects in the specification, we now identify the actual undefined objects.

Referring to Usp, the two terms identified as undefined objects are reiterated in

Figure 26.
pop

mtstk()

top
(2)

mtstk()

Figure 26. Undefined Objects Within the Stack Specification

Notice that Dint identifies all mtstk( ) terms. Thus, we use a rewrite system

(grammar) to identify all undefined objects through the use of pattern matching

techniques (parsing). Now it becomes a simple matter of looking for a pop or a top

operator prior to any mtstk( ) term. This is similar to finding undefined objects

within the real number specification referred to earlier. For example, if divide by

zero is undefined, then look for zero terms and check if they are in the denominator

of any division equation.

Once the undefined objects are identified, then, using denotational semantics,

we can place meaning on this class of objects by declaring them as "don't care"

situations.
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VIII. A PROCEDURE FOR HANDLING UNDEFINED OBJECTS

WITHIN A SPECIFICATION

The following procedure is a summary of the steps which can be used to

identify undefined objects within a specification:

1) Define the specification.
2) Define specification axioms which provide the meaning desired from the

specification.
3) Specify basic undefined terms within the specification.

4) Create a grammar to identify "undefined objects".
5) Include the "undefined object" grammar as part of the specification and

declare these objects as "don't care" situations.

Note: the rewrite rules of the "undefined object" grammar will be used to

properly recognize and classify "undefined objects" within the specification.
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IX. CONCLUSIONS

Objects which have no interpretation from the syntactic domain into the

semantic domain are treated as "undefined objects" in order to avoid the

combinational explosion problems encountered when treating these objects as error

conditions. "Undefined objects" are considered to encompass both error conditions

and "don't care" conditions. "Don't care" conditions are conditions which, if they

are implemented, their implementation does not affect the consistency of the

specification.

By declaring a class of "undefined objects" in the specification we avoid having

to enumerate each specific situation where a syntactic term does not map into a

semantic meaning. This class of terms is then uniformly treated when proving the

automation of the specification. Therefore, accomplishing automation of the

specification phase is more probable.

Although this procedure will work for a class of formal specifications, how

broad a range of specifications this procedure will apply to is yet known. Areas of

future study might attempt to characterize properties of specifications to which this

procedure applies.
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