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8.

PREFACE o

This work deals with the problem of direction finding using the

matrix-pencil approach. Consider a linear array of m sensors and assume
there are d narrowband sources. the signal received at the ith sensor is

modeled as

d
yi(t,9) -ktlak(ek)sk(t) + ng(t) ; i=1,2,. . .,m.

Having collected the data at the m sensors, the problem is to estimate
the directions of arrival of these sources. The matrix-pencil approach
is a non-search procedure, thus very easy to use.

In this study, a generalization of the method to a linear array
of m identical sensors with some arbitrary beam pattern was performed.
It is also shown that the method still works when using different
wvindows. The only restriction is that at least d elements of the window
be non~-zero to ensure the validity of the algorithm. A perturbation
analysis due to unequal sensor spacing was also performed. The concept
of the chordal metric was introduced. It is shown that the bound derived
on the chordal metric is eqivalent to the chordal metric itself. The

problem of estimating both the angular frequencies and the angles of ar-

rival of the sources was then posed. It is proven that the method still

works; i.e, the angular frequencies and the locations of the sources
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vere estimated using two matix pencils. The rank reducing values of
these matrices is shown to contain both the angles of arrival and the
angular frequencies of the sources. A computer simulation was performed

each time to ensure the effectiveness of the method.
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CHAPTER 1
INTRODUCTION

1.1 GOAL OF THE RESEARCH

High resolution direction of arrival (DOA) estimation is very impor-
tant in many sensor systems such as radar,sonar,etc... Over the years
several methods have been proposed to solve this kind of problem. OQur
vork is closely related to the work done by H. OUIBRAHIM [1]). This ap-
proach called the MATRIX PENCIL APPROACH addresses the problem of using
a passive array of sensors to find the direction of sources assumed to
be in the far field . The array is called passive because the sources
generate the signals received at the sensors. The received signal at the

1th gensor is modeled as

d
yi(t,9) sktlsk(t)ai(ek) + nj(t) ;i=1,2,. . .m (1-1)

vhere we assume the existence of d sources and an array of m sensors,
a;(8¢) is the relative response of the ith sensor to the kth
source,
skg(t) is the complex envelope of the kth signal,
nj(t) is the additive noise, considered as the sum of the external

and internal noise.

o,
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Throughout this work we deal with narrowband signals.A problem is
referred to as narrowband if the bandwidth of the impinging signals from
the sources is much less than the reciprocal of the propagation time of
the vavefronts across the array. Hence, given m measurements collected
at the sensors we would like to estimate the angles of arrival of the

sources.

1.2 LITERATURE SURVEY

The problem of estimating the location of sources is of great im-
portance and has been approached in many ways [1-3]. Recently several
authors have suggested a subspace signal approach [4-8]. This approach
is based on an eigenvalue-eigenvector decomposition of the spatial cor-
relation matrix.This makes use of the fact that there is a relationship
betveen the eigenvectors of the spatial correlation matrix and the
source angles of arrival. Moreover, C.R. RAO {9] showved that one need
only know the first few eigenvectors of the correlation matrix. Ve now
present the background of the eigenstructure approach.

Assume there are d sources emitting signals sp(t) ;ke1,2,. . . ,d,
vhich are impinging on a linear array composed of m sensors.It is as-
sum;d that d < m.

The received signal vector X can be written as

X=AS+N (1-2)




.
vhere ‘
gT = {X1,%X2, . . . yXp}= (mx1l) received vector signals,
]
-9
sT = (31,89, . . . »Sq}= (dx1) impinging signals,
NT = (ny,ng, . . . ,Ng}= (mx1) vector noise, ]
L |
A={a) ag .. . aq }= (mxd) direction matrix,

aj = (mx1) i*h direction column vector of A.

nj is the additive noise assumed to have zero mean and an unknown

variance o2

In all the subspace approaches that have been proposed the noises
ny are assumed to be independent from sensor to sensor and their cor-
relation matrix is the diagonal matrix a?I vhere I is the identity
matrix. Let the subscript H denote the Hermitian Transpose. The spatial

covariance matrix is

R = E[X %) = E[(AS+N)(as+M) ]
= E[as sHaB} . E[N N (1-3)
= AE(sSH]al . 21

Let S=E[S §ﬂ]. Then R can be written as

R = asall + 21 (1-4)

@
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vhere

R is an (mxm) matrix.
Let {A\ €A £A3 & . . . ,€ Ay )} be the set of eigenvalues of R.
Let {V1,V5,V3, . . . ,Vy ]} be the set of the corresponding eigenvectors.
If S is non singular and with the assumption that m > d,we can show that

1) the minimum eigenvalue of R is o2 with multiplicity (m-d),i.e,

N+1=Ms2=Ms3= + - - =dp=dmin=’-

2)the eigenvectors associated with the minimum eigenvalue, V4,1,
V4+2+ V4.3+» - - - ¥V, are orthogonal to the space spanned by the
columns of A. This can be written as

(Vda+1-¥442: Y4430 « « « oV} 1 (a3,33,23, - . . ,aq) (1-5)
where

.l., denotes orthogonality,

a; = ith column of A.
This algorithm can be summarized as follows:

1) determine the number of sources d from the multiplicity of Ayjn-.

2) the orthogonality relation (1-5) between the direction vectors
of the impinging sources and the eigenvectors corresponding to A\pip
yields the directions of arrival of the sources. We just have to
"se;tch" for those directions vectors that are orthogonal to the eigen-
vectors corresponding to Apjh. For this reason these methods are called

search procedures. They assume the eigenvalues and the eigenvectors to
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be perfectly known. However,in practice this is not alvays true. Ve then
need to perform some kind of optimal estimation. Such a procedure wvas
developed by LIGGET,LAWLEY and BARTLETT {10-12). In such procedures some
hypothesis testing is introduced. One difficulty is the subjective
judgement required to set the thresholds. An approach, which is consid-
ered as one of the best, is the Aikake Information Criterion (AIC),since
it does not require any objective judgement on the thresholds. Another
approach is the Minimum Description Length (MDL) approach. But one of
the most promising techniques is Multiple Signal Classification (MUSIC)
proposed by SCHMIDT [5]..This algorithm provides asymptotically unbiased
estimates of

1) number of signals,

2) directions of arrival,

3) strengths and crosscorrelation among the directional waveforms,

4) polarizations

5) strength of noise/interference.
More recently, other methods are being developed. Some of them are non-
search procedures. These approaches have very importants advantages over
search procedures. A. PAULRAJ,R. ROY and T. KAILATH [8), in their ap-
pro#ch known as ESPRIT, have shown that their algorithm

1) does not require knowledge of the array geometry and element

characteristics (directional pattern,gain/phase),




2) is computationally much less complex because it does not use the
search procedure,

3) does not require a calibration of the array,therefore eliminat-
ing the need for the associated storage of the array manifold which can
be very large for multidimensional problems,

4) simultaneously estimates the number of sources and DOA’'s .

1.3 OUTLINE OF THE WORK

H. OUIBRAHIM [1] proposed a generalization of the ESPRIT method.
This method consists of applying an operator to the received signals in
order to form a matrix pencil M-AN. The rank reducing values of X\ are
shown to contain the information needed to estimate the DOA’s.

The pencil theorem, presented in chapter 2, establishes the rela-
tionship between the rank reducing values of X and the functional form
f(4;) generated by the operator applied to the measurements.

In chapter 3 a generalization of the method to arbitrary but
identical beam patterns is presented. Both the cases of deterministic
signals and zero-mean random signals are considered.

Previously, only rectangular vindows have been applied. In chapter
4 i; is shown that the method still works using different windows. As in
chapter 3, the cases of deterministic signals and zero-mean random sig-
nals are considered. A comparison of the different windows is obtained

by means of a computer simulation.




signals is performed. The concept of CHORDAL METRIC introduced by

'
f
p In chapter 5 a perturbation analysis for the case of deterministic
L STEVART [13] is used. The chordal metric is a very good measure of the

perturbation between the perturbed eigenvalue and the true one. A bound

is derived which is shown to be effictive by means of a computer simula-

k tion.

estimation of the angular frequencies and the angle of arrival of d

Chapter 6 is devoted to a new technique for the simultaneous

sources assumed to be in the far field. The technique makes use of the

N i

decomposition of two (2) matrix pencils.
Finally, a summary and some suggestions for future work are given

in chapter 7.
g
®
®
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CHAPTER 2
REVIEV OF MATRIX PENCIL

Our problem is the estimation of the angles of arrival of d sources
given measurements collected at the m sensors. The expression for the
received signal presented in equation (1-1) of chapter 1 shows that
the measurements are linear combingtion of d exponentials whose ex-
ponents jé¢y ; k=1,2,...,d, contain the information needed to determine
the locations of the sources. Specifically,

¢ = &/c D sin(6) ;k=1,2,....,d. (2-1)

The pencil theorem establishes the relationship between the rank

reducing values of A\ and the functional form f(4;) generated by the

measurements.

2.1 PENCIL THEOREM

Denote by C the field of all complex numbers.Consider two matrices
M and N of size (kxp).The set
{ M-AN ; A £ C } is said to be a pencil.
The matrices M and N are required to have the following decompositions
M-EF
NsEDF

where

8.
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B is a (kxd) matrix and k 2 d
F is a (dxp) matrix and p > d
D is a (dxd) diagonal matrix.

Theorem

If M and N are two m;trices which have the decompositions cited

above and if E,F and are all of rank d, then the rank of the matrix

pencil M-)N is decreased by 1 whenever

A = (dii)'l ; i=1,2,...,d.

Proof
Since M=EF and F-EDP,
M-AN = EF-)AEDF
= E(I-)D)F.
Thus
rank (M-)N) = rank(E(I-)D)F)
= min{rank(E),rank(F),rank(I-AD)}.
Howvever, by assumption
rank(E)=rank(F)=d
and
rank(I-)\D) is of rank d as long as
1-0dy3.0-

If 1-Adj;=0 which implies that A;=(dj;)~! ,rank(I-AD)=d-1.

(2-2)




Therefore, the rank(I-A\D) is reduced by 1 whenever

Xil(dii)-l ; i-l’z’ooco,do

In our vork,the matrix D has all its entries of the form
eJ¥ .

Thus, the rank reducing values of )\; are

A o= (eI)-1 2 eI jia1,2,....,d.

2.2 EVALUATION OF THE RANK REDUCING VALUES ’

Ve have assumed previously the existence of d sources and a linear
array composed of m sensors with the condition that d < m/2. Ve then
formed two matrices M and N of size (m-d)xd. Ve see that two cases may
occur. If ma2d, M and N are two square matrices. The set of the
generalized eigenvalues of the pencil M-)N is defined to be the set of
all elements Aj such that

det(M-A;N)=0.
Vhen the generalized eigenvalues are distinct,the rank of M-MN is
reduced by 1 whenever )\ equals one of these values. In the case where
d < m/2, M and N are non square matrices.Det(M-A{N) no longer exists
siﬁce the pencil is not square. For this reason we have to"make" the
pencil matrix a square one. This can be done by premultiplying the

pencil M-)N by either MB or NH,

10
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Ve obtain
ME(M-2N) =MEM-\MEN
or

NE(M-AN) =NHM-ANEN.

HH(H-AN) and NB(H-XN) are both square matrices (dxd). Notice that
ME(M-\N) = (EF)H(EF- AEDF ) =FHEREF- APHEEDF
=FHEBER(I-)D)F
and
NH(M-\N) « (EDF)H (EP-)EDF ) «FEDHEREP - APHDERHEDP
=FEDHEBE(I-)D)F.
Both equations have the decompositions required by the pencil theorem
since
FHEBE and P are of rank d
and
PHDHEHE and P are of rank d.
Because (I-AD) arises in all of these equations, we can say that the
generalized eigenvalues of HB(H-AN) and NH(H-XN) are identical to

those obtained for the case vhere M and N were square matrices.

11
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i CHAPTER 3
GENERALIZATION TO ARBITRARY BUT IDENTICAL BEAM PATTERN

The moving window developed by H. Ouibrahim {1] was shown to be
a non search procedure. It was applied for azimuth only DOA (direction
of arrival) estimation of far field point sources. A generalization of

this approch to arbitrary but identical beam pattern is presented here.

3.1 DETERMINISTIC CASE

Assume ve have a linear array composed of m identical sensors
with uniform spacing D. Assume there are d< m/2 narrowband sources lo-
cated at azimuthal angles 6,k=1,2,...,d, which are impinging on the ar-
ray as planar wvavefronts and emitting signals whose complex envelopes
are denoted by sy (t) , k«1,2 ,3,...,d. The received signal at the ith

sensor is modeled as

d
716 D=L 5 ()ay (O (1) 51=1,2,....m, (3-1)

where
. a4(6y) is the relative response of the ith gensor to the kth
source,
nj(t) is the additive noise assumed tb be zero-mean Gaussian.

aj(6) can be written as

12




aj (8 )=a(g) el(1-1)(w/c) D sin(®) .43 2, .. ,m, (3-2)
vhere
® :center frequency of each of the spatial sources,
¢ :speed of propagation of the plane waves,

a(9) : beam pattern of each sensor.

If ve let ¢y = w D sin(&)/c, y;(t,0) can be rewritten as

d
yi(t,9)=L sp(t)a(g)ed (-4 4 n(t) ,1a1,2,...,m. (3-3)
k=1

Taking the expected value of equation (3-3), we get

d
x4(t,8)=E[y{(t,9)] -kzlsk(t)a(ek)ei“-l)ﬂc ji=1,2,...,m  (3-4)

Define the rectangular window

15 isnN

0 ;elsevhere

Rn(n)-{
Given the number of sources d and the m averaged data points , x;(t,9) ,

ve create (d+1) vectors X, s n=1,2,. . . ,d+1 ,vhere the ith component

of X, is

13
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S ———

xn+i-1(t)9)km_d(i) H n=1,2 ,...,d+1

and 1< i ¢ m-d.

Specifically, if the argument (t,8) is omitted for simplicity,

ng = {xl,xZ,....,xm_d)
-x_zT = {x2'x3,oooo,xm_d+1}

.

XqT = (%gsXge10e- -0 1%p1)
Xde1T = (Xgy11%de2re-- 2 Xpl

The matrix pencil M-AN is then formed where

b T 1T 4+ T ceens +
[ I I | I
M= 11X X2..... X4 i N= | X X3 X441
|| | | I |
y ¢ $ | & 3 ¢ y

Letting ay=a(9) and omitting the argument t in sp(t), X; can be writ-

ten as

14
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X =

x oW zzs;?iﬁ PO M-SR |
L;“"“. ajsyed(m-d-1éy’y +agsgel (@-4-1)4g
a, aj . - aq 11 a) W
?lejﬁ ?ze-“Z . ?dej’d a2. 0
PR RI Tt | B
In general, X, is given by
o | E;:gﬂé'#i“.*. SRR~~~
f"""‘*““ ajsed(B-d+n-2)81 | | | | ajsqed(m-den-2)44

15
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alej(n‘1)¢1 azej(n‘1)¢2

a103“¢1 azeJ"

X, can also be written as:

;lej(m-d+n-2)¢1 agel(m-dsn-2)¢;

16
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Let
1 1, P |
ed®1 el ®2 ... el

eI (m-d-1)8; j(m-d-1)8y  oI(m-d-1)ey

[ a
a2
. 0
B =
0 .
ad J
[ ej ‘1
eJ
. 0
$=
0 .
ei¥q

§T = [Sl,SZ,....,Sd ]o

Then X, can be rewritten as :

18




Xy = A #®(n-1) Bs

and the matrices M and N become

t 1 1

M. | ABS ABSS AB#S . . . . .

]

L R .
[t 1 +
.
N= | AB#S AB#2S AB#3S . . . . .
.
I

(3-3)

R

|
aB#(d-1)g

!

H ]

|
AB#ds

Factoring out AB in M and AB# in N , ve get

19




n —
——

N = AB¢

S
- —_—

Let F be the matrix

p=| s #s #s. #(d-1)g
A . ]

and E the matrix
EaAB.

Ve see that M and N have the decompositions

M=EF

N=E ¢F.
The matrix pencil then becomes

M-AN = EF-AE$F

= E(I-A$)F (3-6)

vhich satisfies the requirements of the pencil theorem. Since E=AB,

rank(E)=min(rank(A),rank(B)). But A is of rank d as long as the direc-

@
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hl tions of arrival of the signals are distinct and A < d/2. B is of rank d
as long as aj=a(9;) ,i=1,2,...,d, are different from zero. F is of rank

d even in presence of coherent sources.

_l Hence, the values of A\ for which the rank of M-)N decreases by 1 are
given by
N, = e-I% ;k-l,é,...,d.
hl The angles of arrival are given by '

8 = sin-1(jeln(N)/wd) ; kel,2,...,d.

H? 3.2 ZERO-MEAN RANDOM CASE.

As before the signal ‘received at the ith sensor is modeled as

follows;

d
yi(t,g)lzlsk(t)ai(ek)mi(t) ;i=1,2,....m.

Analogous to the previous section, we form (d+l) vectors Y, ;n=1,2,...,m
vhere
3T = (y1(1,0),52(t,8),. .« .,Yp_g(t, )

YT = {y9(t,0),y3(t,8),. « « 4 ¥p_ds1(t: O}

@
YaT1= (¥d+1(6:8)1¥4,2(6,8),. « - - ¥p(t,®)).
-
21
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Define the inner product

B,k = < YnoXy > = B[ %Y, 1.

Ve then form the matrices M; and Ny as follows

nl’l ml,z e o s e
mz’l mZ,z ¢« o o

Bd+1,1 Md41,2 ¢ ¢ -

The vector Y, can be decomposed as

[
n ( ajs1ed(n-1#y
Yn+1 alslejn ......
9m-d+n-1 alslej(m'd*“‘2)¢1'+ .....

.+ adsdej(“'1)¢d

+ adsdej“’d

+adsdej(m-d+n-2)¢d

Let N, denote the noise vector. Y, can be written as

22
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|
?.w FZ:@. ﬁ Pe. 0 g Po(i-p-m)f? © T TCg(r-pw) (7 Tg(1-p-u) ]
ug +| - . . . -] = vy
. 0 0 : . :
& ST . e LS Zor? RS Q
il s(r-ue® || 1 |
F o1l P r L . y
s ® Po(z-u+p-u)(? Tg(z-u+p-u) (2 lg(1-u+p-uw)(®
uy . 0 . . S
|| O . D e
s v Ppup® * ° Zpul uf
LT ] | ey -l Tew e
— o LWL B L A L. L. [ N




—

F Let S be the vector
§T = (Sl,SZ,--..,Sd ]

Then Y, can be revritten as

Y, = o #n-1) BS + Ny

vhere

1 1
el®1 el®2

L

P |
. el¥d

ej(m-d-1)¢ oj(m-d-1)¢p . |

8y W
a
2. 0
B =
0 .
ag |
red®1
SL/]
. 0
¢ =
0 .
eJ¥q
L
24
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AHA.

.
-

Ve know that
o, = <ThoYi> = < AB#A-Dsuny  ape(k-Ds.yy >
«B( LB .11 = B(aAB#(K-D)son)B(aBe(h-Ds.n)].  (3-9)
Assuming the signals and noise to be statistically independent, we can
wvrite
my, i =E[SHOH(k-1)pBrHape(h-Lls) , gl ). (3-10)
Suppose the noise components are statistically independent Gaussian ran-

dom variables with zero-mean and variance o2. Then

. { 0 sk#h
E[N. "Ny 1= (3-11)
= (m-d)o? skeh
and m, | is
g(sHe(k-1)pHpHppe(h-1)5] ; kah
my = { (3-12)
’ p(sHel(k-1)pHpHpe(h-1)5) . (m-d)o? ; k=h.

A more convenient expression for my \ is nov derived. Note that

e
=it L L e-i(m-d-1)# 1 1 B |
PO PR EV Yo I BT oty L el%g

1 3% . . . e-d(m-d-1)84 | | eJ(m=d-1)4y oi(m-d-1)4y . . ci(m-d-1)e4
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m-
Let P = g
Pa 40

ej(i‘l)(¢p‘¢q). Then

(m-d) Foa, ¢ v v o0 F41
Fq12 (m-d) . . . . « « . Fq9
Aba. :
Fi4 éid ....... (m-d)
Next we compute
-3(k-1)4 (m-d) F
e
e‘j(k'1)¢2 Fi9 (%—d)
. 0 .
$(k-1),8, |
0 .
e~d(k-1)44 Fi1a  Faq
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Multiplying #H(k-1),Hy by #(b-1) ye get

#(k-1) By (h-1),

Since

Flze k‘l)‘ZQj (h-1)#% (m-d)ej(h‘k)’z

Fae-3 (k-1 éged (=101 p, e-3(k-1)4geI (h-1) 4y,

!
a2

.ad

27

. (m-d)e-3(k-1)44

(n-d) -i(k-l)h Fppe-dtk=-1)¢1 . . pyie-
Puej -1) %, (%—d)e‘j(k‘l)’Z Ca pf,‘;e
Prge-I(k-14g  pyye-Ck-1)4g
L

—d)eJ(h-K)# e-(k-1)¢1,5(h-1)99 | ¢!
(-5 &t . L iPpe-3Ck-1)#g¢3(h-

(k1)
“3(k-1)4

Pdle-j(k'l)

. (a-d)ed (h-k) &g

.0

1@




W

3

and

§*B* -

a2

|

Sd

a1

*
az

ok
aq

a1s1
azs2

adsd

Thus, Qn(k'l)AHAQ(h‘l)Bg is equal to
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r818]_(l-d)0-1(h-k)ﬁ. + azstue‘j(k‘l)ﬁ ej(h'l)” P e e e e e e e e e e e e e )
h ....... + adsdl’dle'j (k-1)#1 ¢i(h-1)44
agsyPrpe- -1y IM-D# | ara (a-yed B8y o L
....... + addedze'j(k‘l)” ej(h-l)’d
o
8131F12e'j(k’1)¢d eJ(h-1)4; azstZde'j(k"l)’d J(h-1)ég . ...
......... + adsd(m-d)ej(h"k”d d
.
L |
X
29
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and §Hnnln(1‘1)AﬂA0(k'1)B§ becomes

8;8;[ alsl(u-d)ej(h'k)¢1 + azstZIG'j(k'1)¢1 eJCh-1)éo . |
..... + adsdele‘j(k‘1)¢1 eJ(h-1) ¢4 ]

aisi[ alslplze‘j(k'1)¢2 eJ(h-1)¢y azsz(m-d)ej(h‘k)¢2 e e e e e
+ adsdeze‘j(k‘l)*Z ej(h‘1)¢d']

+
3383[ allelze'j(k'1)¢d eJ(h-1)4y azstZde_j(k'1)¢d eJ(h-1)¢; , |

....... + agsq(m-d)ed(h-k)¢q |,

Noting that eJ(h-K)®3 can be written as
J(h-k)ey . o-J(k-1)44 J(h-1)&; ¢or a11 ia1,2,. . . ,d

and

Fii = (lll-d) fOl’ 311 i’l,z,.-o,d'
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o
ve obtain i
d d
sBpHgH(k-1)pBre(h-1)gs . £ © P  sispaga e'j(k‘1)¢q ej(h‘l)‘p.
2 2 Pa~q7pTq"p
q=1 p=1
If ve let

Spq = z[s;sp ]

*
then

d
(sHe(k-1)pHaHapa(h-1)s)n £ 550850

F Q’j(k‘l)’q ej(h‘l)Op.
q=l p=1 P

mh’kbecomes

e{sHel(k-1)gH AR e(h-1)g) shak
ﬂh'k-{ (3”13)

E(sHe(k-1)pBpHARe(R-1)s] &+ (m-d)o?  ;hek

(d d
L I Spqapqfpq
q-l p-l
= (3—14)
d d
. I TS e'j(k'1)¢q ej(h‘l)’p + (m-d)a2 shsk.
\ q=1 ps=l

g'j(k‘1)¢q ej(h‘l)‘p shek

pq®pafpq

Let I be the identity matrix and I; the matrix defined as follows
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Y

(0 100. 0
0010. 0
0001. 0

Il- . .
6000....1
0000. 0
L

Finally we, define the matrices M and N as follows

MM - (n-d)o? I
N =Ny - (n—d)az I,.
The matrix pencil is
M-AN = (M1-(m-d)c?I)-A(N;-(m-d)o?I;).

Define the matrices U, V and & as follows :

1 1
eJh el
Ua=]. )

&3 (d-1)4 oj(d-1)¢9
S11211F11  S12812F12
521a21F21 S22a22F22

Vs

Sd1341Fd1  Sd2a42Fq2

32

(3-15)

. .1
. el¥g

. ed(d-1)4y

« S14314F14

+ + Spq324F24

1

+ SddaqdFaq

e




.ej*d

It can be shown that M and N have the following decompositions :

]

Ma-yvuyll
N=Uv eyl (3-16)
Hence, as required by the pencil theorem, the matrix decomposition of
the pencil M-MN is given by
M-N = (UVUE)-x(uveHyl)

= UV(I-A¢)ul, (3-17)
®
The matrices UV and UH are of rank d as long as the directions of ar- 1
rival of the signals are distinct. Therefore the values of A\ for which
the rank of the pencil M-)N = UV(I—MB)UH is decreased by 1 are given by
)
M o= ¥ jia1,2,...,d. (3-18)
The angles of arrival are given by
L
0; = sin~l(-jln(A{)/aD) ;i=1,2,. . . ,d. (3-19)
L
3
33
®
j




"f

®

CHAPTER 4
VINDOVS

In chapter 3 the rectangular window was the logical and obvious
choice. It was used to form the sequence x,,i.1(t,€)Ry_4(i). In this
chapter wve showv that any shaped window will work; i.e, the angles of ar-
rival are obtained from the matrix decomposition of a matrix pencil. A
computer simulation and a comparative performance of the different
wvindowvs used are also presented.

4.1 DETERMINISTIC CASBE :

Consider a linear array composed of m identical sensors with
uniform spacing D. Assume there are d < m/2 sources emitting signals
vhose complex envelopes are denoted by sp(t) ; ke1,2,. . . ,d.

As before the received signal at the itM sensor is modeled as

d
y1(t,8) -kzlsk(:) ai(8) + ny(t) ; i=1,2,...,m (4-1)

vhere
a;(6y) is the relative response of the ith sensor to the kth
source,
nj(t) is the additive noise assumed to be zero-mean Gaussian.

aj(©) can be written as

34
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ai(g).a(e)?1(1-1)¢
vhere
¢=(wD/c) sin(0).
For simplicity, the arguments (t,9) in y;(t,8) and t in both sy(t) and
ﬁi(t) are dropped.
Taking the expected value of (1) we get

d
x; = BElyy] -kzlsk a(ged (- ;i21,2,...,m. (4-2)

Consider the sequence Xp,i_1¥p_q(i) in=1,2,...,d+1 and i=1,2,....,m-d,
vhere Wy_q(i) is the value of the window of width (m-d) evaluated at the

point (i). Ve then form (d+1) vectors X, where

[
Xn¥p_q(1)
Xn+1¥m-4(2)

LN

*n+m-d-1¥n-d(m-d)

If, for simplicity, ve let cj =Wy_4(i), X, can be written as

35
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€1
€2

Cm-d

However, it is shown in chapter 3 that

wvhere

[

Xn

Xn+l

' - a#(n-1)gg

Xn+m-d-1
1 1
el ei®

A= . .
eI (m-d-1)4; oj(m-d-1)#y |

|

36
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Xn+m-d-1

Xn+l

(4-3)

1
el ¥

ej(m=-d-1)¢4

@

e

. @
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;?
eJ®
el®
. 0
' '
0 .
¥
a3
a2
L] 0
B =
0
a4
and
_S_T ={sys9..... s4}-
Let C be the matrix given by
.
c1
<2
L] o
C=
0
Cm-d

Then X, can be vritten as

X, =CA#(n-1)Bs.
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b . :
3

This expression holds for various choices of the cj corresponding to

different windows.

The matrices M and N vhich are formed by

B . SR S *
| I | I
M=% X..... 3| 3 N= X X3 %441
|| I | I
4 ‘ B ¢
become
* ? 0 * 1
I | | |
M= | CABS CAB#S CAB#S . . . . . . cape(d-1)s
I I I I
¥ $ 4 +
ot * + +
| | | |
N = | CAB#S CAB#2S CaB#s . . . . . . CAB#s
l I l |
‘ . ‘ v ]
If ve factor out CAB from M and CAB® from N, we get B ‘.Tu
°
]
1
38
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M =CAB

N =CAB¢

17

Let F be the matrix

- —_—

4 + 4

* *

| |

#s ... ... #(d-1)s

I l

+ 3

+ * 1
| |

#s ... ... #(d-D)s

| I

‘ : ]

Since M and N have the decompositions

M=CABF

39
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N=CAB@®F, (4-5)
the matrix pencil becomes

M-AN = CABF-)CAB$F

= CAB(I-)@®)F. (4-6)

Let E denote the matrix CAB. Then

M-)DN = E(I-A9)F (4-7)
vhich satisfies the requirements of the pencil theorem. Note that
rank(E)=min{rank(A),rank(B),rank(C)}.
Ve have seen that A is of rank d as long as the directions of arrival
are distinct and the separation D is less than M2. B is of rank D as
seen earlier. When choosing the elements of the matrix C, it is neces-
sary that at least d of the diagonal elements be non zero. This will
ensure that rank(C) > d. Therefore the rank of the pencil M-MN is
decreased by 1 whenever

Nz o= eIt ial,2,. .. 4. (4-8)

4.2 ZERO-MEAN RANDOM CASE :

Again the signal received at the ith sensor is modeled as

d

7i(,9) =k2 sp(t) aj(G) + nj(t) ; i=1,2,...,m. (4-9)
=1

yi(t,8) = %4(t,0) + ny(t) ;i=1,2,...,m. (4-10)
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Consider the sequence
an.i-l(tvg)wm_d(i) ;031,2,-..,d+1

and 1< i < m-d.

For simplicity, the arguments (t,9) and t are dropped. (d+1) vectors Y,

Y )

are then formed where

,’:;4

Yn¥m-d(1)
Yn+1Vm-d(2)

= .

.

As before, let cj-Vm_d(j). Then

|-ym—m—d—l"m—d(“"d)

r ‘1 1 r r
S| Xn | np
€2 Xn+l <2 Dhet
0 . . 0 .
Y +
J .
0 ) 0
m-d J Xn+m-d-1 m-d Mnem-d-1

Let C be the matrix

41
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c1
<2
L) 0
C=
O .
Cm-d
i ]
Noting that
u h
Xn
Xn+l
. = A#(n-1)gs,
Xn+m-d-1
Y, can be written as
Y, = caBe(n-1)s 4 cng (4-11)
where
EnT =f{npnpey - o 0. Npym-d-1 }-

This expression holds for various choices of cj corresponding to dif-
ferent windows.
Define the inner product

B,k = <YhYi> = E[XMr,].

Define the matrices M; and Nj as follows
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""

M1srl W1r2 > ¢ > - . 014
Mm291 MW292 = o » = m2+d
M] = .
md,l md,z ..... md,d
mz,l m2,2 ..... m2’d

m3.1 my,2 e e 0. Ma,4

Miy101 MgalrZ + » » » P4.1s4

L

Since Y, = CaB#(7-1)s . cN_, it follows that
oy, = B[N0 Yp)
= B[(sHe(k-1)gHpHcE | w HeH)y(caa(h-D)s . cny) .
Assuming that the signals and noise are statistically independent,
mp j = E(sH#H(k-1)gHrHchcape(h-1)s | s Acleny)).

Let the noise components be statistically independent Gaussian random

variables with zero-mean and variance o2. Then |
0 shxk

E(N Acien,)) -

m-d
o2( L [ef|2)  sh=k. (4-12)
i=1
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Assuming all cy’s to be real, Icilz-ciz. Therefore , CHC is the matrix

[ 2
clc 2
2
. 0
clca
0 2
m-d
=t
It follows that
2 11 1 L ) ]
¢ . . . e
lczz el®y 5L .. . el
. 0 . . .
cHca-
0 : ) )
Cm-dz J eJ(m-d-1)¢; J(m-d-1)¢y = . Sj(m-d-1)dy J
r 1
2 2 2
C Cc c1
c%zej¢1 c%zej’z czzej’d

cpgled (B-d-1#1 ¢ 263 (m-d-1)4y | | | o ZeI(m-d-1)44

m-d
= L c;2 eJ(1-1)(9p - ¢9) | then aHCHCA becomes
i=l

If ve define qu
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Fy3 F21 . « « & Fq1
F12 Fzz e o o 8 Fdz

abcHca .

L Fld de ¢ o e . Fdd

Following the same procedure as in section 3.2, it can be shown that

d d
g[sBeB(k-1)pRAHCHCABH(N-1)S]. £ T SjqapgFpqe~d (K114 ed(h-1ép
2 2 Papa’pq
q=1 p=1
where
Spq-Elsqsp!
*
m-d 5 A
qu 2 £ cy ej(i" )(’p' ¢q) .
i=1
Therefore,
£[sHe#H(k-1)pBABCECAB#(R-1)5) shak
"k m-d
(sBeH(k-1)gHaHcHCABS(-1)s) & o2( £ [c5[2 )  sh=k
i=1
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( d d
I s
q=1 p=l

pqaqupqe‘j(k‘1)¢q ej(h‘l)’p

d d
£ s

apqF
q=1 p=1l PA™Pq" pq

m-d
e‘j(k‘1)¢q ej(h‘1)¢p + ng b lci!z )

Let I be the identity matrix and I; the matrix defined as

{o 100..... 0
0010..... 0
0001..... 0

Il = . .
0000..... 1
0000. .... 0

Also, define the matrices M and N as follows :

m-d
M=M; - ( L ¢c42) 0?1

n-d
NaN; - (izlciz) 21y .

The matrix pencil becomes

m-d m-d
M-AN  =[M] - (izlciz) o I]-A[N; - ('EICiZ) o2 I1].
= 1=

46
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or

If ve define the matrices U, V and ¢ by

-

1 1,
edn ei®2

S11211F11 S12212F12
Sp1a21F21  S32a22F22

L S41341Fd1  Sd22d2F42

et
ei®
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J(d-1)4 o3(d-1)ey |

. o1
. eJ¥g

.ej ¢4

. eJ(d-1)44

T
. S14214F14
- Sa482dF24

- Sd4daddFad
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it can be shown that M and N have the following decompositions

M=UvUH

N=UvV # gl
The matrices UV and UE are of rank d as required by the pencil theorem.
Therefore the rank of the pencil M-AN = UV(I--)\QH)UH is decreased when-
ever

A o= eI is1,2,...,d.
The angles of arrival are given by
0y = sin~l(-jeln(N\y)/aD) ;isl,2,. . . ,d. (4-14)

Hence, theoretically any shaped window would give the same directions of

arrival of the sources.

4.3 COMPUTER SIMULATION

In this section the comparative performance of the rectangular,
Hamming, Hanning and Blackman windows is evaluated by means of a com-
puter simulation.

The different windows are defined as follows:

Rectangular
1;0<n <N
Rn(n) =
0 ; elsewhere

48




Hanning
.5(l-cos(2m/N)) ; 0 < n KN
Ry(n) =
0 ; elsewhere
Hamming
+54-.46cos(2m/N) ; 0 < n &N
Ry(n) =
0 ; elsewhere
Blackman
.42-.5cos(2nmn/N)+.08cos(4mn/N) ; 0 < n <N
RN(n) =
0 s elsewhere.

The scenario used for this simulation consisted of two coherent sources
(d=2) which are incident on a linear array consisting of eight sensors
(m=8). The sources are assumed to be located at 61=18° and 6,=22° .
The received signal at the 1th sensor was modeled as
d
y1(t,0) -iflsk(t) a(6 e~ wni(t) ; 1a1,2,...,m,

vhere
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-

¢ = wh/c sin(@).
In this simulation the sensors were chosen to be omnidirectional. Con-
sequently,
a(g) = 1
Also the noise was simulated to be white Gaussian with zero-mean and
unit variance. The sensors were positioned at half wavelength apart such
that «wD/c = n . Finally, the complex envelopes were selected to be Sy =

sy =s vhere s is a constant. The signal to noise ratio is defined as

P 2|s|?
SNR-—SS— -lelz.
P, o°

The cases considered in this simulation are shown in table (4-1)

Table (4-1)
SNR | |s|
30 dB | 22.36
10dB | 2.24

In this simulation, equation (4-15) which gives the angles of arrival,
vas not used because it assumes that magnitude of X\ is unity. Because
this vas not the case in actual practice due to numerical inaccuracies,
the method did not perform well. To overcome this situation the follow-

ing approach was used.
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Let A\ = a +jb vhere a and b are two real numbers. Using an exponential
notation A can be written as
A = {aZ+b2)hexp(jtan-1(b/a)}.
From equation (4-14) l=exp{j¢)}. Thus, ignoring the magnitude of X
¢ = tan-l(bsa)
and the angles of arrival are given by

@ = sin~1 ((ctan-l(bra))/uwD}.

The results of the simulation are shown in tables (4-2) and (4-3).

Table (4-2)

Rectangular Hanning Hamming Blackman

SNR ! 62 16 8 18 %2 1 &

i

30 dB | 17.982 | 21.995 | 17.882 | 21.948 | 17.887 | 21.999 | 18.217 | 22.418

10 dB | 18.050 | 22.142 | 17.295 | 23.672 | 18.294 | 23.324 | 14.529 | 21.065

Mean of 6; and 6,

( 500 snapshots/run 10 runs)
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i Table (4-3)
Rectangular Hanning Hamming Blackman
SNR 2! % 16 ! 6 19 2
ill 3048 | 0.028 | 0.072 | 0.126 | 0.078 | 0.177 | 0.090 | 0.138 | 0.317

10 dB | 4.385 | 4.960 | 11.418 | 14.654 | 7.843 | 9.552 | 20.639 | 4.595

] Variance of 67 and 6,

( 500 snapshots/run 10 runs)

Theoretically, the results should be independent of the choice of the
windov. In practice, however, different windows result in different
entries in the matrices M and N. As we can see, the rectangular window
performed best both at low and high signal to noise ratio. The Hanning
and the Hamming windows also gave acceptable results. The Blackman

vindov gave the most biased estimates with the largest variances.
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CBAPTER 5

PERTURBATION ANALYSIS

In this chapter ve want to investigate the behavior of the
moving vindov in the presence of perturbations due to sensor spacing. Ve
restrict ourselves to first order perturbations. STEWART has shown [13]
that a good measure of this perturbation is the chordal metric which is
introduced next.

5.1 CHORDAL METRIC

.

Let C denote the field of all complex numbers. Consider two
matrices M and N and let X\ be an eigenvalue of
Mxa=XNx. (5-1)

x is called right the eigenvector of equation (5-1). Also let y be a
left eigenvector of the matrix pencil. y satisfies

yE M= xyH N (5-2)
For convenience, x and y are usually hormalized. Thus, ve set

llx{] =1 and [[g|]| = 1.

Ve also introduce the Euclidean matrix norm defined as

[IM|] = sup ||ux]|].
[[x]}=2

Ve are interested in the generalized eigenvalue problem
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Mx=ANKX. (5-3)

vhere

M=M+ Ma=aMq+ B

(5-4)

N=N+ ONa=N+F
Let = zﬂug (5-5)
and

8 = yiNx (5-6)

From equation (5-1) it follows

X = GIB- (5-7)

Stewart [13] showed that small perturbations in E and F result in

- a+x535+0(82) ' +0(€2)
A= - (5-8)
g+yBFx+0(e2) B’ +0(e2)

vhere

0(e?)
lim
€0 €

= 0.

Define_the chordal metric as

- R
X(A ) = : (5-9)

J 1+|X|2' J_i+IX|ij
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Geometrically X(A\,\) is half the length of the chord connecting A and A
vhen they have been projected in the usual way onto a Rieman sphere of
unit radius. The maximum value of the chordal metric is unity.

Vith this definition it was shown [13] that

XOMWA) € ey + 0(e2) (5-10)
vhere
e =l ||E]|Z + |IR]2 (5-11)
. - o + B2 (5-12)
and

a and B have been defined earlier.

5.2 APPLICATION TO THE MOVING WINDOV

Again assume a linear array composed of m identical sensors
spaced at D+4D; where 4D=0. Assume there are d narrowband sources. The

received signal at the itD sensor is modeled as

- d -
yi(t,0)= L sp(t)ag(8) + ng(t) ;i=1,2,...,m (5-13)
k=l
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vhere the """ denotes the response of the perturbed array,

.l nj(t) is the additive noise assumed to be zero-mean gaussian,
and

aj(6y) is the perturbed relative response of the ith sensor to the
kth source.

Taking the expected value of equation (5-13) we have

- d -
x3(t,8)= L sp(t)a (@) ;i=1,2,...,m. (5-14)
k=1
Note that

31(9) - a(e)exp{j(i-l)D(Wc) s:_i.n(e)+j(os/c)ADisin(e)}

= a(@)el(1-1)D(w/c) sin(8) j(w/c)aDisin(e),

To a first order approximation

eJ(we)aDysin(®) o 1,j(w/c)aDisin(8) = 1+3(2nAD;/8)sin(8)

L )
vhere § is the wavelength of the signal wavefrort. ]
Thus a4(®) can be wvritten as
3(8) = a(8)ed(1-1)D(w/c) sin(@),5(2nap,/5) eI (1-1)D(we) sin(O)gin(g)a(d). (5-15)
Equation (5-14) becomes _J%
- d
x1(t,8)= L (a(fy)sp(t)(ed(i-1)D(w/c) sin(@y)

k=1
+3(2naD;/8) eI(1-1)D(w/e) sin(®)gin(o,)a(ey)).  (5-16) .
For simplicity, denote ay=a(6 ). Then
. e
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d
X1(t,8)= I apsp(t)(ed(i-1)D(w/c) sin(6y)
k=1

d (5-17)
+3(2n8D4/8) I apsp(t)(ed(i-1)Dw/c sin(G)gin(qy).
k=l

Notice that the first part of equation (5-17) is just the non-perturbed
quantity x; which appeared in chapters 3 and 4. Dropping the argument

(t,8) in equation (5-17) , it can be written as

-

X{= X§ + OX§ = Xj + ej. (5-18)

-~

(d+1) vectors X, are then formed where X, is given by
gnT ={ X Xpep ¢ ¢ ¢ o Xnem-d-1 }-

X, can be vritten as

Xn en

Xn+l €n+l
X, = + = X, + E (5-19)

Xn+m-d-1 ©n+m-d-1
vhere gnT'- {enener « ¢ ¢+ & €n+m-d-1 }+ In chapter 3 and 4 it is
showvn that X, can be expressed as

Xy=aB#(P-1)g (5-20)
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‘ 1 1 .1
‘ eJh eJ® . eJ¥
A=l . . .
‘ ed(m-d-1)#103(m-d-1)8y . . . oI(m-d-1)44
el®1 )
eIt
¢ = .
0 .
el¥y
|
§T ={sy1s0..... sq }

vhere B is nov the identity matrix and A, ¢ and S are :

The matrices M and N and then formed in the usual way. Specifically,

[ 1 1+
I
M= 31 !2 .....
||
L ¢ $

;N =
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Knowing that Xj= X; + Ej, M can be written as

[ ¢+ T 1t [ 1 + t+
| I | I
M= X7 X ... .}Ed + Eq §2 ..... Ed
[ I [ l
L 4 ¥ + L 4 $ 4
Since
M= H +M = H + E (5-21)

Vhere M is the unperturbed matrix, it follows that OM=E.

Similarly, it can be shown that N can be written as

N=N+ON =N+ F (5-22)

vhere ON=F and N and F are jiven by

ot +
| |
N=- | X X3 ..... X441
|| I
L4 3 :
+ 1 0
I | W
F=1E E3 ..... Eq41
| |
$ 4 d J
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To apply equations (5-10) through (5-12), one has to get the Buclidean

norms of E and F.
The Euclidean matrix norm is defined as

[IE]] = sup ||EX]].

Hxfl=1

Hovever
|[Ex]|={(Ex)H(Bx))*% - (xBEHEX)®. (5-23)
For simplicity, let D=EBE. Notice that maximizing ||Ex|| is the same as
maximizing the quadratic form §5D§. The maximization of KHDE involves
obtaining the eigenvector of
Dx = x

vhich corresponds to the largest eigenvalue of D. Then

max(xHDx) =), xHx. (5-24)
Since §H§-1.
max(xBDx)=MEpoy
and
|1E] |=(ABpax)® (5-25)

vhere xﬁm&x is the largest eigenvalue of EBE. Similarly,
P |= (A pay)® (5-26)
vhere meax is the largest eigenvalue of FHF.

It follows that
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i M

e =1 ||B]|2 + lE||2 = Mpax + Wpax - (5-27)

Ve knov that D=EHE is a symmetric matrix. Let djj be the 1ith element on
the diagonal of D vhere djj is real. Define the TRACE of D as the sum of
all the elements on the digonal of D which also equals the sum of all
eigenvalues of D. Hence *Fmax < trace(D)=sum(d;;). To obtain the trace,

the diagonal elements of D=EHE must be computed. Recall that E is the

matrix
r .
e1 - e2 [P ed
ez e3 o e o ed+1
E = .
en-d ©m-d+1 ¢+ - - - ep-1
Therefore,
* *
el* ez* . . em_d .1
€2 €3 d em-d+1
El. . . °
L] - ) 1
*
€4 4.1 em—l*
L o
D is then the matrix ®
1
®
|
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r - -
* *
el e2 e o o o ed el* 22: ¢« o o o em_d
82 e3 ¢« o o o ed+1 ez 23 ¢ e e em-d+1
D = . . . . . .
. . . . * . * . *
em_d em_d+1 e e o o em_l ed ed+1 . ‘o * o em_l .

Since ve are interested in the trace of D, only its diagonal elements

are enumerated below, where use is made of the fact that e;=0.

m-~d 2
ey
i=2
m-d+1 2
ey
D = {=2

T egf?
i=m-d
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Thus,

trace(EBE) =|ep|2 + |e3]|2 +....t leg_ql?

+

slegl? + le3l2 +ouiit leg_gl? + lep.gs1l?
+|e3|2 AARERE S |em-d|2 + |em—d+1|2 +|em-d+2|2
. (5-28)

+

+lea|? + lege1|? +.novleg_1|?.

For i#l,an element e; of E can be vritten as

2n d
aD; I sy a e3(i-1)%k sin(ey). (5-29)
k=1

ei-j

Note that

2n d
leg| = — |aDg| | £ s aed (-1 % sin(e) |
§

2n d ’
< —— |aDy] £ | s ag eI(i-1 % sin(g) |
8

n d
< 'y |apy| L [agsy |
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| Onaxl T ok s |
< — |ap £ Jag sk |- (5-30)
g | omexl Tk
Hence,
2n d
trace(EHE)® <[ (m-d-1)+(m-d)(d-1)]® —— |8Dgayx| £ |oysy |
5 kel

2n d
trace(EBR)%: ¢[d(m-d)-1]* - | Dpay | zl lag s | (5-31)

Using exactly the same procedure, it can be shown that

2n d
trace(FEP)% ¢[d(m-d)1% — |aDpay| T |ay sy |- (5-32)
5

Since
AEpax Strace(EBE)

and X?max 5trace(FBF),

€ 'J I'EIIZ + I'F||2 - J AEmax + MFrax

2n d
¢ — |0Dpax| ¥ 2d(m-d)-1 ( L Jaysy| ).
§ k=1

Finally, with reference to equations (5-10) through (5-12), the bound on

the chordal metric becomes
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| Day] ! oy |
— |aD 2d(m-d)-1) ( I |as )
5 max kel kSk

XN < (5-33)

— d

I (yBx)? + (B2

vhere xﬁ and x are, respectively, the right and left eigenvectors cor-

responding to A.

A second approach for obtaining a bound on the chordal metric
makes use of the Frobenius norm vhich.is defined for an (mxn) matrix A
by

m n
||A||f =( L L |a1j|2 ]I’2 . (5-34)
i=1 j=l

It can be shown [14] that the Euclidean norm is alvays less than or

equal to the Frobenius norm. Specifically,

Hafle 2 |1all

Recall that E is the matrix defined as

e1 ez o e e ed 1
ez e3 P ed+1
E = . .
L em-d ©m-d+1 - * * ° ©em-1
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vhere e; is equal to zero.

Also, from equation (5-30),

2n d
leil £ —— IADmaxl L Iak Sk I.
§ k=1

It follows that

d
[Elle € ( (2n/8)2 | 8Dy |2 ((m-d)d-l)(ktllak s 21" (5-35)
|
Similarly, we have
d %
[Pllg ¢ ¢ (282 | Dy, |2 (m-dd)( L lag s 1)%) (5-36) .
Therefore,
L
e =y [IE[I2 « [IF]|2 <4 [[El|g2|IF]|¢?
|
2n v d ®
< — |8Dpaxl i 2d(m-d)-1) ( £ lagsi | ).
3 k=1
The bound on the chordal metric then becomes
[ )
°
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2n — d
-;- | 8Dpax | J—Eh(m-d)-1) (kz1 lagsk | )

X2 < . (5-37)

J (XHH§)2 + (zﬂnzs)zj

Notice that this bound is exactly the same as the one obtained while

using the Euclidean norm.

5.3 COMPUTER SIMULATION

To evaluate the usefulness of the derived bound for the chordal
metric a computer simulation was performed. The model used consisted of
tvo deterministic sources (d=2) with constant and equal complex en-
velopes incident on a linear array consisting of eight sensors (m=8).
The scurces are assumed to be located at 61=18° and ©,=22°. For
simplicity, the case of omnidirectional sensors was assumed. In the
simulation the case of perfect sensor spacing was first considered. 500
snapshits were used to obtain the matrices M and N. The process was
repeated 10 times and the results averaged to obtain nominal values for
Ajy X; and yj ;i=1,2. A pertubation AD =.001D was then introduced and
the procedure used in the unperturbed case wvas repeated. The unperturbed
signal received at the ith sensor was modeled as

d
y1(t,8)= L sp(t)ed(1-1)w/c Dsin(®) | n (1) ;is1,2,...,m
k=1l ’
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vhereas the model for the perturbed signal was

S d
- yi(t,8)= L sp(t)ed ((3-1)D+8Dy)w/c sin(&) 4 n (t) ;is1,2,...,m.
k=1

nj(t) vas simulated as vhite Gaussian noise vith zero-mean and variance

h o2=1. D vas assumed to be equal to &/2 (half the wavelength).
Because sy=S)=s , the signal to noise ratio is is defined to be
SNRa2 |s |2.
P The cases considered are listed in table (5-1)
Table 5-1
N | s\e | s] |
| 30 dB | 22.36 |
| 10dB | 2.24 |
] o)
The computed results are shown in table (5-2)
_—
®
4
‘4
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Table 5-2
X(A1sA1) X(A2,29)
SNR Bound | Exact | Bound | Exact

30 dB | 0.1127 | 0.0318 | 0.1245 | 0.0651

10 dB | 0.1873 | 0.1053 | 0.0633 | 0.0148

Observe that the bounds for the chordal metric are of the same order of

magnitude as the chordal metric itself.

®
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CHAPTER 6
SIMULTANEOUS ESTIMATION OF DIRECTIONS OF ARRIVAL
AND ANGULAR FREQUENCIES

In the previous chapters the sources vere assumed to be emitting
at a common angular frequency w with complex envelopes denoted by sy (t)
1k=1,2,. . .,d. In this section we shov that the matrix pencil method
still works for the case where the signals have different center fre-
quencies. The angles of arrival and the angular freqencies are
estimated simultaneously.

6.1 DETERMINISTIC CASE

Consider a linear array of m identical sensors uniformly spaced
at a distance D. Assume there are d < m/2 narrovband sources located at
azimuthal angles 6, ;k=1,2,. . .,d, vhich are impinging on the array as
planar wavefronts and emitting signals whose complex envelopes are
denoted by sp(t) sk=1,2,. . .,d. The first sensor is followed by an
equally spaced tapped delay line consisting of m taps with successive
delays of T seconds (see fig 6-1).

Vith reference to the first sensor, the signal received at the ith

sensor is modeled as

d

y1(t,0) = L a(g)sp(t) eI (1-1)D(wy/c)sin(&) . ni(t) ;is1,2,. . .,m.
k=1
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The signal received at the (h+1)th delay line tap is

d
¥1(t-hT,0) = L a(&)sp(t)edhT® o ny(t-nT) ;ha0,1,. . .,m-1. (6-2)
kel

Assume the noise to be a zero-mean stationary Gaussian process. Then

taking the expected values of equation (6-1), ve get

d
x1(t,9)=E{y;(t,0)]= L a(&)sp(t) eI(1-1)0(w/c)sin(&e); 41,2, . .,m. (6-3)
k=l

Similarly, the expected valie equation (6-2) is

d
2p(t-hT,8)=E[y1(t-hT,8)]= L a(&)sp(t)edhT®% ;h.0,1,. . .,m-1. (6-4)
ksl

Let ¢ =(wD/c)sin(®); ks1,2,. . .,d. Equation (6-3) becomes

' ®
) 1
xi(t,8)= L a(g)sp(t) 3~ 4212, . 4. (6-5)
k=1
For simplicity, the arguments (t,8) in x;(t,8), (t-hT,@) in z,(t-hT,8) —&
and (t) in sp(t) are dropped. Denote ay=a(®,). Equations (6-5) and (6-4)
become
..
xi= L apsy 3= 421,2,0 . .)m, (6-6)

k=1




Mt a4

&

and

d
zp= L apspedtT%  ;he0,1,. . .,m-1. (6-7)
k=1

Ve then form (d+1) vectors X, and (d+l) vectors Z,, where

T

gn = {xn Xn*l ¢ o o e Xn+m_d_1}; n-l,z,. . o’d+1,

and
Err = (zt_l zt e & o o zr+m_d-2}; r'l,z,o . o,d+1'

X, can be expressed as

v | [agsedDe . L agsged Dy
Xnsel asjed™® + . L L L L, + agsqedn¥d

!’x

asyed(meden-2)ey . [, ggyed (m-den-2)4g

Xm-d+n-1

L ] s J

r j(n-1)$ j(n-1)¢9 J(n-1)¢ 1 1
ajelin- ajel(n- . . . agedin-1l)94 s
aiej“’l agej“¢2 .. age3¢d s;

ajed (-d4n-2)81 5 oJ(M-den-2)dy | | | 5 o) (m-den-2)dy sq
I

X, can also be written as:

L@
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Let
.
. 1 1, S |
ejﬁ eJ¢2 . e e ej¢d
A = . . . ?
F oJ(m-d-1)41 oj(m-d-1)¢y  J(m-d-1)4g
L
" ay
@ ag 1 °
. 0 .
B - ,
0 .
| 2
®
ed® ‘1 }
ed®2
0
.l
- ,
0 .
L eJ"d
.
§‘1‘ = {81182s---+15¢ }- .
Then X, can be revritten as
®
:
.1
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X, = A #n-1) ps, (6-8)
Folloving the same procedure, it can be shown that Z, can be written as
2y = A ¥("-1) Bs (6-9)

vhere B and S have been defined previously and A; and Y are the matrices
1 1 A |
eiTw edTwy |, ITuyg

eJ (m~d-1)Twy oj(m-d-1)Twy, . . oj(m-d-1)Tuy

[Tt 0 [T T e H
[ I I I
M= |X X..... X9 | 3 N= | X X3 X441

| l | I ‘
vl ' ool I o
°
1
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Using the explicit expression for gn, M and N become

o * 1
. |
M= | ABS AB#S AB#%S . . . . . aB¥(d-l)g ,
[
4 4 4 4 J
[+ 1 *+ * ]

N= | AB#S AB#2S AB#S . . . . . ABMg

t 1 r 1
R |
M=AB| S @ #s..... o(d-1)g
[ ¢ {4 4 ¢
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R * ]
N Na=AB¢ | S o #s.. . #ld-)g
L 4 + 4 4

Let F be the matrix

o 1 0 ]
. b |
F= | s #ls #s. .. #(d-1)s
et l i i )

and E the matrix
Ea=AB.

M and N have the decompositions

M=EF
| N=E®F. (6-10)
1@
i The matrix pencil M-MN can then be written as

M-AN = EF-)E9F

= E(I-A®)F (6-11)

». L )
] vhich satisfies the requirements of the pencil theorem. Hence, the 1

values of A for which the rank of M-)MN decreases by 1 are given by
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®

o

A = e 3% jkel,2,...,d. (6-12)
The same procedure is nov applied for the decomposition of the matrices

P and Q. It follows

[ + + T 4 7
. |
P - | MBS ABYS agBY2S . . . . . a;B¥(d-D)s ,
. |
- ¢ : ‘o ]
ot 0 ) t ]
o |
Q= | A{BYS ABY2S ABY3S . . . . . A{BYds
o |
|3 y i i

Factoring out AjB in P and AqBY in Q, ve get

P =AyB s . .... wd-Dsg

™
128
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| i i i i
Q=ABY | s ¥5 ¥ .. y(d-1)g
L 4 $ +

Define the matrix G as

I I i i
G« | s ¥s ¥s..... yld-Dg
L ¢ $ + 4

Let E; be the matrix AqB. P and Q have the following expressions,
P=E G
Q=E YG. (6-13)
The matrix pencil P-&Q becomes
P-8Q= E;G-S8Eq YG
= By (I-8Y)G, (6-14)
vhich satisfies the requirements of the pencil theorem. Hence, the rank
reducing numbers of the percil P-8Q are given by

& = e 3T ;ka1,2,...,d. (6-15)
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Note that equation (6-15) gives us an estimate of w. This estimate is
used in equation (6-12) to get an estimate of 6. Therefore, this meth-
od, simultaneously estimates the angular frequencies and the angles of

arrival of the sources; i.e

w = J1n(8;)/T
8; = sin~1((jln(7\{))/(wy D)}; i=1,2,. . .,d.  (6-16)

6-2 ZERO-#MBAN RANDOM CASB

In this section ve assume that the complex envelopes of the
emitted signals are stationary random processes with zero-mean. It is
showvn that the matrix pencil method still works;i.e, the angular fre-
quencies and the angles of arrival of the sources are estimated siaulta-
neously using matrix decompositions of two (2) matrix pencils. Again,
let the received signal at the 1th  sensor be

d .
¥1(t,8) = L a(g)sy(t) ed(1-1ID(w/c)sin(&) , n (r) ;ia1,2,. . .,m. (6-17)
kel

The signal received at the (hq-l)th delay line tap is

d
y1(t-hT,8) = L a(§)s(t)ednT% 4 n;(t-nT) ;ha0,1,. . .,m-1. (6-18)
kel
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Let & =(ayD/c)sin(6y); ka1,2,. . .,d. Equation (6-17) becomes

d .
yi(t,8)= T a(Q)sp(t) ed(1-1)% iny(e); 11,2,. . .,m. (6-19)
k=l

For simplicity, the arguments (t,9) in xi(t,0), (t-hT,8) in zp(t-hT,H)
and (t) in sp(t) and in ny(t) are dropped. Uenote ay=a(6,). Equations
(6-19) and (6-18) become

d
yi= T agsp ej(i'1)¢k +ng ; i=1,2,. . .,m,. (6-20)

and

d
zp= L aksketh“k + np, ;h=0,1,. . .,m-1. (6-21)
k=1

Analogous to the previous section (d+1) vectors Y, and (d+1) vectors 2,

are formed, where

_Y_nT = [yn Yn+l » ¢ -« o yn+m-d-1}; n=1,2,. . .,d+1,

and

ZnT ={zp_1 24 . - . . Zhem-d-2}3 N=1,2,. . .,d+1.

Define the inner products my  and Vi n to be

M, k=< Yho Y 2,

and
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i ¥i,n=< 24,2 >

Four matrices M;, N;, P; and Q; are then formed as follows

-
_ ml,l llll’z ¢ o o ml,d
Inz’l m 2 . . lnz d
Hl = . .
h ®d,1 ®4,2 * - md,d |
i® m2,1 M2,2 m2,d
m3,1 ®3,2 - - m3,d
Nl = . . .
Lmd+1,1 Bgs1,2 ¢ <+ + Mg.1d '
r -
"1,1 Vl’z . . . wl,d
V2,1 ¥2,2 c - Y24
Pl = . .
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a4

and

Yd+1,1 ¥d+1,2 ¢ - - - ¥441,d J

Following the same procedure as in chapters 3 and 4, it can be shown
that Y, and Z, can be expressed as
Yy=aB#(n-D)s o Ny
and
Zp=aBY(T-Ds o N,
A, A1, B, &, Y, and S have been defined earlier, N, and N, are given by

§nT = {npMpey -+« 2 Mpupg-1 )y

and
§rT ={npgnp,g ..« o npp g1}

For simplicity, denote We=Twyg; k=1,2,. . .,d. The matrix ¥ then becomes

r ed¥y 1
W2

"ed%q
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Ve know that
By, = <TnoB> = < ABHR-Dsany , apa(k-Ds.yy, >
B[ Y B.1,] = E((aB#(k-D)syy ) Beae(h-Dsnyy).  (6-22)

Assuming the signals and noise to be statistically independent, we can

N

write J
my, ) =E(SH#E(k-1)gHaBARe(h-1)s] . p(NE Ny ). (6-23) o
Suppose the noise components are statistically independent Gaussian ran-
dom variables with zero-mean and variance o¢2. Then
g { 0 sk#h
E[Ny"Np]= ) (6-24)
(m-d)o? jksh
and mp j is
g[sHaH(k-1)gHpH,pe(h-1)g) ; k#h
mh, k= (6-25)
g(sHe(k-1)gBsHagg(h-1)5] + (m-d)o? ; keh.
®
Ve obtain
| 4 d —
shpHeH(k-1)2Bg(h-1)ps . £ [ P sisparaje-3(k-1)4g oI(h-1)¢,
2 = 20 Il I g o
q=1 p=1
vhere ®
'4
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a-d
= £ ej(i-l)(¢p - ¢q) .
i=l

Fpq

Hence,

d
E(sHA(k-1)pialage(h-1)s). £ £ spa50Fpg
q=1 p=l

e-3(k-1)4q o3 (h-1)4,

vhere
Spq=Elsgsp)

*
apq-aqap .

g(sHeH(k-1)gHpHppe(h-1)g) shak
mh,k-{ (6-26)

g(sH(k-1)pBplARe(h-1)5] , (m-d)e?  ;hak

({ d d
z L S,qansF
q=1 p=l Pq®pq” p

- (6-27)
d d

I s

\q=1 p=1

qe‘j(k‘l)Qq ej(h’1)¢p shzk

padpqFpqe 1% I (-1)dp o (md)e?  ;hek.

Let I be the identity matrix and I; the matrix defined by
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r
0100 . 0
0010 . 0
0001 . 0
TP D
0000 . 1
0000 . 0
L.

Finally, ve define the matrices M and N as follows

M =M - (m-d)o? I
N = N - (m-d)o? I;. (6-28)
The matrix pencil is
M-DN = (Mp-(m-d)e?I)-A(N;-(m-d)e?I;).

Define the matrices U, V an‘d ® as follows :

1 1 R |
e-”l el#2 .. . el¥d
U= |. . . ,
eJ(d-1)8y o3(d-1)¢y . . 23(d-1)4
L J
S11311F11 S12212F12 - .+ - . S14214F14
S21a321F21 S32a22F22 - . . . Sz4324F2d
V = .
)
Sd18d1Fd1  Sd28d2Fd2 -+ - - - Sdd3ddFdd
L J
.1
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ei®
ei®2

.ej¢d

It can be shown that M and N have the following decompositions

Ma=UvVUlE

N=Uv # ul (6-29)
Hence, as required by the pencil theorem, the matrix decomposition of
the pencil M-MN is given by

M- = (Uvul)-xcuvetul)
= Uv(I-adi)ull, (6-30)

Therefore, the values of A\ for which the rank of the pencil M-)N = UV(I-

MH)UH is decreased by 1 are given by

A o= eI ;ia1,2,...,d. (6-31)
As it vas stated earlier, assuming the noise components to be stationary
and statically independent, it can be shown that Vi n has a similar

form; i.e,
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B[ sBv(n-1)gly, By, py(1-1)s) ji#n
v
bn { p(sHv(n-1 gy, By py(i-Us) + (m-d)e?  ;i=n

(d d
' a=j(n-1)v i-1
I I SpqapgF ped ("1)¥q ed(i-Dyy
q=1 p=1
=

d d

L I quapq

L e-J(n-1)¥g oJ(i-)¥p , (m-d)o?
q=1 p=1

Fopq

vhere
Span[s;sp]
»*
3pq=aq3p
m-d
F' = x ej(i'l)("'p = Wq) R

Pa i=1

Let then P and Q be the matrices
P=P - (n-d)o? I
Q= Q; - (m-d)e? I;. (6-34)
The matrix pencil P-&N becomes
- P-8Q = (Py-(m-d)o2I)-5§(Qq-(m-d)a?I,).
It can be shown that P and Q can be decomposed as
Pa=u'vyH
Q = u'v vy'E (6-35)
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(6-33)
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vhere Y vas defined previously and U’ and V' are the matrices

1 1 R |
ej"l eJWZ « o e ej*d
U . . )
ed(d-1) oJ(d-Dwy | | | oJ(d-Dwg |
L g
S11211F, 11 S12a12F 12 - - - - S14814F,1d

$21a21F 21

Sq1841F 41

§22222F 22

Sq2242F 42

The matrix pencil P-8Q then becomes

P-8Q =(U'V'U'By_scu’'v' viy'H)

e e e deaZdF 2d

« e e sddaddp'dd

=U'v’ (1-s¥)y’H, (6-36)
vhich satisfies the requirements of the pencil theorem provided all w,
are distincts. Hence, the rank reducing numbers of the pencil P-4&Q are
given by

8 = eIV « o3Toy ; ja1,2,. . . d. (6-37)
Equation (6-37) together with equation (6-31) allows us to estimate 3i-
multaneously the angular frequencies and the angles of arrival of the

sources; i.e,
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@ = -31n(8;)/T
8 = sin-1{(-j1n(A\{))/(wy D)}; i=1,2,. . .,d.  (6-38)

6.3 COMPUTER SIMULATION

The model used in the simulation consisted of two coherent
sources (d=2) incident on a linear array of eight uniformly spaced
sensors (m=8). For convenience, the sensors are assumed to be omnidirec-
tional. The noise was simulated as white Gaussian with zero-mean and
variance o2 = 1. The complex envelopes of the signals emitted by the
sources are assumed to be constant and equal; i.e,

s1(t) = s9(t) = s.
The sources vere assumed to be located at 6;=18° and 69=22° with center
frequencies given by wy=0.2x2Rr rd/s and wy=0.25x2n rd/s respectively. D
and T vere assumed to be equal to 6 108 meters and 1 second respective-
ly.
Vith the above definition, the signal to noise ratio is given by

2|2
SNR =« —— = 2|s]2
2

The cases considered in this simulation are shown in table (6-1)
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Table (6-1)
SNR | |s]
30 dB | 22.36
10 dB | 2.24

Equation (6-16) was not used because it assumes that both magnitudes of
XA and 8§ are unity. Because this was not the case in actual practice due
to numerical inaccuracies, the method did not perform well. One way to
solve the problem is to use the technique as in chapter 4.
Let A\ = a +jb and 8§ = ¢ +jd where a, b, ¢ and d are real numbers. Using
polar form, we have

A = {aZ+b2)hexp(jtan-1(b/a)}
and

§ = (c2+d?)hexp(jtan-1(d/c))
From equations (6-12) and (6-15), l=exp{-j¢} and S=exp{-j¥}. Thus, ig-
noring the magnitudes of X\ and §

¢ = -tan~1(b/a)

and

V= -tan‘l(d/c).

The results of the simulation are shown in tables (6-2) and (6-3).
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Table (6-2)
SNR | w w | 6 )
- 30 dB | 0.2001x2r | 0.2495x6R | 18.0012 | 22.0233 ]

10 dB | 0.1925x2n | 0.2448x6n | 18.5130 | 22.7785

F Mean of ©; and oy
( 500 snapshots/run , 10 runs)

'v.

Table (6-3)

SNR | o w | 6 )
30 dB | 0.3687 104 | 0.0546 10-% | 0.0111 | 0.0045

10dB | 0.0033 | 0.0006 | 1.0504 | 0.4662

Variance of ©; and wy

( 500 snapshots/run , 10 runs)

Observe that the bias in the estimates is very small at both high and
lov signal to noise ratio. The technique can thus, be classified as

giving very good results.
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CHAPTER 7
CONCLUSION

In this study the objective was to extend the matrix pencil ap-
Proach proposed by H. OUIBRAHIM [1]. The flexibility, the effictiveness
and the ease of use of the method are once again shown. A generalization
of the method to arbitrary but identical beam patterns was derived in
chapter 3. This vas done to prove that the choice of omnidirectional
sensors is not the only choice possible. In chapter 4 we used different
vindows to generate the sequences needed in the formulation of the
matrix pencil. It was shown that the rectangular window performed best
compared to the Hanning, Hamming and Blackman windows. Errors arise vhen
the assumption of uniformly spaced elements is not adhered to in prac-
tice. For this reason, a perturbation analysis due to sensor spacing wvas
performed in chapter 5. Ve made use of the chordal metriec introduced by
Stevart [13]. The chordal metric provides a good measure between the
perturbed and the unperturbed eigenvalues. It was shown in a computer
simulation that a useful bound was found for the chordal metric. In
chapter 6 a nev technique was introduced to simultaneously estimate the
angular frequencies of the signals emitted by the sources and the direc-

tions 6f arrival of these sources.
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