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PREFACE

This work deals with the problem of direction finding using the

matrix-pencil approach. Consider a linear array of m sensors and assume

there are d narrovband sources. the signal received at the ith sensor is

modeled as

d
yi(t, ) - Z ak(ek)sk(t) + ni(t) ; i-1,2,...,m.

k=l

Having collected the data at the m sensors, the problem is to estimate

the directions of arrival of these sources. The matrix-pencil approach

is a non-search procedure, thus very easy to use.

In this study, a generalization of the method to a linear array

of m identical sensors vith some arbitrary beam pattern was performed.

It is also shown that the method still works when using different

windows. The only restriction is that at least d elements of the window

be non-zero to ensure the validity of the algorithm. A perturbation

analysis due to unequal sensor spacing was also performed. The concept

of the chordal metric was introduced. It is shown that the bound derived

on the chordal metric is eqivalent to the chordal metric itself. The

problem of estimating both the angular frequencies and the angles of ar-

rival of the sources was then posed. It is proven that the method still

works; i.e, the angular frequencies and the locations of the sources

lii -@

9



were estimated using two matix pencils. The rank reducing values of

these matrices is shown to contain both the angles of arrival and the

angular frequencies of the sources. A computer simulation was performed

each time to ensure the effectiveness of the method.
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CHAPTER 1

INTRODUCTION

1.1 GOAL OF THE RESEARCH

High resolution direction of arrival (DOA) estimation is very impor-

tant in many sensor systems such as radar,sonar,etc... Over the years

several methods have been proposed to solve this kind of problem. Our

work is closely related to the work done by H. OUIBRAHIM [11. This ap-

proach called the MATRIX PENCIL APPROACH addresses the problem of using

a passive array of sensors to find the direction of sources assumed to

be in the far field . The array is called passive because the sources

generate the signals received at the sensors. The received signal at the

ith sensor is modeled as

d

yi(t,e) = E sk(t)ai(Ok) + ni(t) ;i=,2,. . .m (1-1)
k-l

where we assume the existence of d sources and an array of m sensors,

ai(ek) is the relative response of the ith sensor to the kth

4ource,

sk(t) is the complex envelope of the kth signal,

ni(t) is the additive noise, considered as the sum of the external

and internal noise.

S
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Throughout this work we deal with narrovband signals.A problem is

referred to as narrowband if the bandwidth of the impinging signals from

the sources is much less than the reciprocal of the propagation time of

the vavefronts across the array. Hence, given m measurements collected

at the sensors we would like to estimate the angles of arrival of the

sources.

1.2 ITERATURE SURVKY

The problem of estimating the location of sources is of great im-

portance and has been approached in many ways [1-31. Recently several

authors have suggested a subspace signal approach [4-8]. This approach

is based on an eigenvalue-eigenvector decomposition of the spatial cor-

relation matrix.This makes use of the fact that there is a relationship

between the eigenvectors of the spatial correlation matrix and the

source angles of arrival. Moreover, C.R. RAO [91 shoved that one need

only know the first few eigenvectors of the correlation matrix. We now

present the background of the eigenstructure approach.

Assume there are d sources emitting signals sk(t) ;k.1,2,... ,d,

which are impinging on a linear array composed of m sensors.It is as-

sumed that d < m.

The received signal vector X can be written as

X A S + N (1-2)

2



where

xT Xl,X2, . ,x- (mxl) received vector signals,

ST - (91 ,s2 , d ,Sd)- (dxl) impinging signals,

NT - (nl,n 2, . ,nm)- (mxl) vector noise,

A - (!i !2 . . . !d )_ (mxd) direction matrix,

_ (mxl) ith direction column vector of A.

ni is the additive noise assumed to have zero mean and an unknown

variance a2

In all the subspace approaches that have been proposed the noises

ni are assumed to be independent from sensor to sensor and their cor-

relation matrix is the diagonal matrix v2I where I is the identity

matrix. Let the subscript H denote the Hermitian Transpose. The spatial

covariance matrix is

R - ElX XH) - E[(AS+N)(AS+N)Hj

- E[AS SHAH] + E! !Hj (1-3)0

- AE(SSHIAH . 02,

Let S-E[S §H). Then R can be written as

R - ASA + 2I (1-4)

3
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where

R is an (mxm) matrix.

Let (X1  X2 ~ X3 , .. , Xm  be the set of eigenvalues of R.

Let (V1,Y2PV 3, . . . ,{ ) be the set of the corresponding eigenvectors.

If S is non singular and with the assumption that m > d,we can show that

1) the minimum eigenvalue of R is o2 with multiplicity (m-d),i.e,

......-d+--- -Xm'Xmin- 02

2)the eigenvectors associated with the minimum eigenvalue, Vd+l,

Yd+2, Yd+3, . . . ,Vm, are orthogonal to the space spanned by the

columns of A. This can be written as

(Vdl,d+2,Hd+3, . . . ,Vm) I (,a 2 ,a3 , ! d ,d} (1-5)

where

-L , denotes orthogonality,

ai - ith column of A.

This algorithm can be summarized as follows:

1) determine the number of sources d from the multiplicity of >min-

2) the orthogonality relation (1-5) between the direction vectors

of the impinging sources and the elgenvectors corresponding to Xmin

yields the directions of arrival of the sources. We just have to

"search" fnr those directions vectors that are orthogonal to the eigen-

vectors corresponding to \min. For this reason these methods are called

search procedures. They assume the eigenvalues and the eigenvectors to

0



be perfectly known. Hovever,in practice this is not always true. We then

need to perform some kind of optimal estimation. Such a procedure vas

developed by LIGGET,LAWLEY and BARTLETT [10-12]. In such procedures some

hypothesis testing is introduced. One difficulty is the subjective

Judgement required to set the thresholds. An approach, which is consid-

ered as one of the best, is the Aikake Information Criterion (AIC),since

it does not require any objective judgement on the thresholds. Another

approach is the Minimum Description Length (MDL) apFroach. But one of

the most promising techniques is Multiple Signal Classification (MUSIC)

proposed by SCHMIDT [5]. This algorithm provides asymptotically unbiased

estimates of

1) number of signals,

2) directions of arrival,

3) strengths and crosscorrelation among the directional waveforms,

4) polarizations

5) strength of noise/interference.

More recently, other methods are being developed. Some of them are non-

search procedures. These approaches have very importants advantages over

search procedures. A. PAULRAJ,R. ROY and T. KAILATH [8), in their ap-

proach known as ESPRIT, have shown that their algorithm

1) does not require knowledge of the array geometry and element

characteristics (directional pattern,gain/phase),

5



2) is computationally much less complex because it does not use the

search procedure,

3) does not require a calibration of the array,therefore eliminat-

ing the need for the associated storage of the array manifold which can

be very large for multidimensional problems,

4) simultaneously estimates the number of sources and DOA's

1.3 07ELIM OF TH WORK

H. OUIBRAHIM [1] proposed a generalization of the ESPRIT method.

This method consists of applying an operator to the received signals in

order to form a matrix pencil M-XN. The rank reducing values of X are

shown to contain the information needed to estimate the DOA's.

The pencil theorem, presented in chapter 2, establishes the rela-

tionship betveen the rank reducing values of X and the functional form

f(i) generated by the operator applied to the measurements.

In chapter 3 a generalization of the method to arbitrary but

identical beam patterns is presented. Both the cases of deterministic

signals and zero-mean random signals are considered.

Previously, only rectangular vindows have been applied. In chapter

4 it is shown that the method still works using different windows. As in

chapter 3, the cases of deterministic signals and zero-mean random sig-

nals are considered. A comparison of the different windows is obtained

by means of a computer simulation.

6
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In chapter 5 a perturbation analysis for the case of deterministic

signals is performed. The concept of CHORDAL METRIC introduced by

STEWART [131 is used. The chordal metric is a very good measure of the

perturbation betveen the perturbed eigenvalue and the true one. A bound

is derived which is shown to be effictive by means of a computer simula-

tion.

Chapter 6 is devoted to a new technique for the simultaneous

estimation of the angular frequencies and the angle of arrival of d

sources assumed to be in the far field. The technique makes use of the

decomposition of two (2) matrix pencils.

Finally, a summary and some suggestions for future work are given

in chapter 7.

0
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CHAPr R 2

RBVIBV OF MATRIX PENCIL

Our problem is the estimation of the angles of arrival of d sources

given measurements collected at the m sensors. The expression for the

received signal presented in equation (1-1) of chapter 1 shows that

the measurements are linear combination of d exponentials whose ex-

ponents J~k ; k.1,2,...,d, contain the information needed to determine

the locations of the sources. Specifically,

Ok - w/c D sin(ek) ;knl,2, ....,d. (2-1)

The pencil theorem establishes the relationship between the rank

reducing values of X and the functional form f(*i) generated by the

measurements.

2.1 PICIL THEOREM

Denote by C the field of all complex numbers.Consider two matrices

M and N of size (kxp).The set

{ K-AN ; e C ) is said to be a pencil.

The matrices M and N are required to have the following decompositions

NUEDF

where

8
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E is a (kxd) matrix and k _ d

F is a (dxp) matrix and p _ d

D is a (dxd) diagonal matrix.

Theorem

If M and N are two matrices which have the decompositions cited

above and if E,F and are all of rank d, then the rank of the matrix

pencil H-XN is decreased by 1 whenever

Xi - (dii)-' ; i-1,2,...,d. (2-2)

Proof

Since M-EF and N=EDF,

H-XN EF-XEDF

= E(I-)D)F.

Thus

rank (M-XN) a rank(E(I-XD)F)

- min(rank(E),rank(F),rank(I-XD)).

However, by assumption

rank(E)=rank(F)=d

and

rank(I-XD) is of rank d as long as

1-Xidii.O.

If 1-Xidii=O which implies that Xi=(dii )-  ,rank(I-XD).d-1.

9



Therefore, the rank(I-)D) is reduced by 1 vhenever

Xi-(dii) -1  ; i.1,2 ..... ,d.

In our work, the matrix D has all its entries of the form

iJ.

Thus, the rank reducing values of Xi are

Xi - (eJii)-i - e-Ji ;i.1,2, .... ,d.

2.2 EVALUATION OF TOE RAN REDUCING VALUES

We have assumed previously the existence of d sources and a linear

array composed of m sensors with the condition that d < m/2. We then

formed two matrices M and N of size (m-d)xd. We see that two cases may

occur. If m-2d, M and N are two square matrices. The set of the

generalized eigenvalues of the pencil M-XN is defined to be the set of

all elements Xi such that

det(M-XiN).O.

When the generalized eigenvalues are distinct,the rank of M-XN is

reduced by 1 whenever X equals one of these values. In the case where

d < m/2, M and N are non square matrices.Det(M-XiN) no longer exists

since the pencil is not square. For this reason we have to"make" the

pencil matrix a square one. This can be done by premultiplying the

pencil M-AN by either H or NH.

10
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Ve obtain

M1(K-)M) *KHNM)J4HN

or

NH(NM)N) N-MH4N.

MHR(M-)JI) and NE(M-)N) are both square matrices (dxd). Notice that

MH(N),N)m(EF)l(EF-.)EDF) UEHEF-XVlEHEDF

.FHEHE(I-4D)F

and

NH(M-).N).(EDF )H(EF-).EDF ) FHDHEHEF->FHDHESEDF

.FHDHE(I....XD)F.

Both equations have the decompositions required by the pencil theorem

since

PHEHE and F are of rank d

and

FHDHEHE and F are of rank d.

Because (I-XD) arises in all of these equations, ye can say that the

generalized elgenvalues of MR(M-)tN) and NH(M-),N) are identical to

those obtained for the case vhere M and N vere square matrices.



C HPT R 3

GINERALIZATION TO ARBITRARY BUT IDENTICAL BEAN PATTERN

The moving window developed by H. Ouibrahim [11 was shown to be

a non search procedure. It was applied for azimuth only DOA (direction

of arrival) estimation of far field point sources. A generalization of

this approch to arbitrary but identical beam pattern is presented here.

3.1 DETERMINISTIC CASE

Assume we have a linear array composed of m identical sensors

with uniform spacing D. Asiume there are d m/2 narrovband sources lo-

cated at azimuthal angles ek,kwl,2,...,d, which are impinging on the ar-

ray as planar wavefronts and emitting signals whose complex envelopes

are denoted by sk(t) , kl,2 ,3, ...,d. The received signal at the ith

sensor is modeled as

d
yi(te)-E sk(t)ai(9k)+nt(t) ;i-1,2, ....M, (3-1)

where

ai(ek) is the relative response of the ith sensor to the kth

source,

ni(t) is the additive noise assumed to be zero-mean Gaussian.

ai(Ok) can be written as

12



ai(ek)-a(Gk ) ejl(1-1)(o)/) D sin(O i~,, .. ,m, (3-2)

where

o :center frequency of each of the spatial sources,

c :speed of propagation of the plane waves,

a(e) : beam pattern of each sensor.

If we let #k - w D sin(ek)/c, Yi(t,_8) can be rewritten as

d

yi(t,)i -E k(t)a(ek)eJ(i-l)+k . ni(t) ,i ml,2,...,m. (3-3)k-l

Taking the expected value of equation (3-3), we get

dxi(t,_e)-E[yi(t,_e)] - E: sk(t)a(Ok)eJ(i-1)#k ;i=1,2,...,-. (3-4)

k-l

Define the rectangular window

R (). I ; i ng

0 ;elsewhere

Given the number of sources d and the m averaged data points , xi(t,e)

we create (d+l) vectors Xn ; n-l,2,... ,d+l ,where the ith component

of Xn is

13
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xn+i.(t,D)Rm-d(i) ; nn1,2 ,...,d.l

and 1 i S m-d.

Specifically, if the argument (t,9) is omitted for simplicity,

jlT _ (xl,x 2 ...... xm-d)

!2T _ (x2 ,x3 , .... ,Xm-d+l)

IdT _ (XdXd+l ..... xm_1)

Xd+IT - fXd+1,Xd+2 , ... ,Xm).

The matrix pencil M-)N is then formed where

t t .... 1 ...
I I I I I I

M , X? ..... Id ; N- X2 3 d+l

I i I I I I eS
44. 4.. .4 4.

Letting aka(ek) and omitting the argument t in sk(t), X, can be writ-

ten as

14r '



xi als + as 2 ... . . . . .+adsd

X2ajsjei + a2s2e-'+2 . + aseid

Xm-d alslej(m-d1l)~+ . .adsdei l~

al 1  a2  ... ad al1 s

ale* a2eJ#2 * deJd a2  s2
* . 0

;J(m-d-1)+leJ(m-d-l)#2 . * . j(m-d-l)#d 0 ad Sd

In general, is given by

Xn alslei(n1l)+1 . . . . . . adsde (nl)#d
Xnlalslein*1 ..... .. .. ... adsdein*

Xm-d+n-.1 J Lalsle(d+n-2)+i + * +adsdei dn)

15



alein.1  a2 ein+2 . . . ajeJ~d s

~1(-dn2)1 a2eiOIm-d+n-2 )#2 ... adeJ(d+n-2)d sd

can also be written as:

16
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Let

eJ 01 eJ 2 . . . eJ #d

A-

al
a2

0

0

ei *

00

ST -(s 1,S2 9 .. ,vsd

Then can be rewritten as

18



_ A #(n-) BS (3-5)

and the matrices M and N become

ii i I
M ABS AB"S ABt2S..... AB#(d-l)S

I I I

N. AB#S ABJ 2 S AB3S .. .. .. AB~dS

I I
4 . 4, ,

Factoring out AB in M and AB# in N , we get

I I I I
M. AB S S #. .4,.

19
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i i I
N -AB# S *S #2S . .(d-1)s

S I I
Let F be the matrix

F. s *ls #2s ..... (d-l)S

I i I. i
and E the matrix

EaAB.

We see that M and N have the decompositions

M-E F

N - E # F.

The matrix pencil then becomes

M-XN - EF-XE#F

M E(I-X#)F (3-6)

vhich satisfies the requirements of the pencil theorem. Since E.AB,

rank(E).min(rank(A),rank(B)). But A is of rank d as long as the direc-

2
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tions of arrival of the signals are distinct and X < d/2. B is of rank d

as long as aina(ei) ,i.l,2,...,d, are different from zero. F is of rank

d even in presence of coherent sources.

Hence, the values of X for vhich the rank of M-XN decreases by 1 are

given by

Xk - e-Jk ;k=1,2,...,d.

The angles of arrival are given by

ek - sin-l(jcln(Xk)/wd) ; k=1,2,...,d.

3.2 ZEO-KAN RANDOM CASE.

As before the signal received at the ith sensor is modeled as

follovs;

d
yi(t,O)-E sk(t)ai(9k)+ni(t) ;i-1,2,....s.

;.1

Analogous to the previous section, ve form (d+1) vectors Y ;n.l,2,...,m

vhere

Y1T - (y1(t,e),y 2 (t,e) ...... ,Ymd(t,e))

12T _ (y2 (t,e),y 3(t,). ..... ,ym-d+l(t,e))

yT1_

_d+l {yd+l(t,2),Yd+2(t,O) ...... Ym(t, )}"

21



Define the inner product

mh,k - < Yh,lk > -j Ik h

We then form the matrices M1 and N1 as follows

ml,1 ml,2 .... ml, d
m2,1 m2,2 .... m2,d

M1 -

md,1 md,2 .... md,d

m2,1 m2,2 .. .. m2, d

m3,1 m3,2 .... m3, d

N1 -

md+l,1 md+l,2 .... md+ld

The vector Yn can be decomposed as

Yn asle J ( n - l ) i . . . . . + adsdeJ ( n - l ) od  nn
Yn+l alslejn1 +. .. ...... + adsde Jnd nn+l

In'

Ym-d+n-1 alslej(m-d+n-2)# 1 + ..... +adsdej(m-d+n-2 )#d nn+m-d-1

Let Nn denote the noise vector. Yn can be written as

22
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Let S be the vector

ST - (sls 2 .... ,sd

Then Yn can be revritten as

~n.- A #(n-1) BS + Nn (3-8)

vhere

eI2 . . . 1i~ei #. eJ +2 ... eJ~d

A-
ej(m-d-l)# 1 eJ(m-d-1)42 . . . eJ(m-d-1)+ d

al
a2

0

B•

ad

0

ej.#1

00

eJ #d

24
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We knov that

mh,k - <-,> < AB#(h-1)S ! , A*(k-l)S , >

=E( I k•Yh= E((AB(k-1)S Nk)H(AB#(h-l)S+h)]. (3-9)

Assuming the signals and noise to be statistically independent, ve can

write

Mh,k - E[SH#(k-l)BHAHAB#(h-l)Sj + E[NHkNh]. (3-10)

Suppose the noise components are statistically independent Gaussian ran-

dom variables vith zero-mean and variance *2 . Then

E'NHNO- 0 ;ksh (3-11)
f (m-d)a2 ;k.h

and mh,k is

E[sH#H(k-l)BHAHAB*(h-l)S ; koh
mh'k E[SH#H(k-l)BHAAB#(h-l)S + (m-d)o2  k.h.

0
A more convenient expression for mh,k is now derived. Note that/

1 e-Jl e-. . J(m-d-1)41 1 1

1 e-J2 . : -J(m - d -1) _
2  eJ1 eJi2 . eJd

AHA ...

je-J~d . . . e-J(m-d-l)#d e~j(m-d-l)+l ej(m-d-l)+2 . . .eJ(m-d-l)*d

25
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Let F pq E ei(i-1)(#p-q). Then
i-1

(tu-d) F21  . .... Fdl
F12  (m-d). .. .... Fd2

AHA.

Fid Fjd ....... (m-d)

Next we compute

* J(k-1)41  (m-d) F21 . . . . . . . Fdl
e-Jk-l+2F 12  (m-d). .. ..... Fd2

0*

#H(k-l)AHA

0
e-Jk-)+ Fd F2d ........(-d)

26



Fldj~k~d F~di~k) .. . (m-d)e-J(kIl)*d

Multiplying #8(k.-l)AHA by #(h-1) we get

F 2e- (kAl)+eJ(h4 )t1 (m-d)e(hk)+2 ... F~-~-)2Jhl

.f(k-l)AHA#(h-l).

Since

a1
a2

Ba 
0

0
adj

27



al s1  alsl
a2  s2 a2s2

.0
B S m a

0.
ad sd adsd

and

S B

a*

a2

(51* -S2 * . .sd* I -[al*sl* a2*s2* . . .ad 5d *

ad

Thus, #(k-l)AHA,(h-l)BS is equal to

28



ala~m-~eJh-k#l+ a252F21e-J(k)1 ej(h1)+2 .+ .......

. . . adsdFdleij(kl)1 ej(h'l)+d

alsly 2 -i(kl)2 ejhl)*i + a2s2 (m-d)ei(h-k)#2 .............. . ... .. .. ....

........ adsdFd2eJ(k-l)+2 ej(h-l)+d

als~le- (-l)d j~-l+,+ a2s2F2 deij(k-l)#d ej(h-1)2 *. .. .. .. .. .

.... + adsd(m-d)ej(h-k)#d

29



and SI[HH0(1l)AHA#(k1l)BS becomes

44 ~s(~).~k)1.a 2s2F21eiJ(k1)4l ei(hl)2 .. .. .. .

. . . . .. adsdpdleij(k 1)+1 ei(h1l)+d I

a *s*( alsIF 12 eij(k-l)+2 ei(h-l)i + a2s2(a-d)e(hk)2 .1

* .. .+ adsd~d2e-J(k 1)#2 ei(h1l)#d I

d d[ alslFl2ej(k-l)#d ei(h-
1 )+i + a2s2F2deiJ(k 1l)#d ei(hl)

. .. .. .. + adsd(,-d)ei(h-k)#d ].

Noting that ej(h-k)# can be written as

ej~-k)ia eJ(k-l)+i ei(h-l)+i for all i-1,2,. . d

and

Fjj (m-d) for all 1-1,2,..., d,

30



we obtain

d d
SIIII#~k-)AH#(hl)B E E Fpqsqspaqape-i(k-l)+q *i(h-l)+p.

q=1 pal

If we let

p - E(sqsp,

apq a aqsp'

then

d d Jkl+ ehl+p
E(SH#H(k-I)BHAHAB#(h-l)SJ= E E S qapqFpqikiq ih).

qui pal

hkbecomeCs

hkn{E[SH#(k.l)BHAAB(h.l)sJ ; hik (-3
mk- E[SH#H(k-l)BHAHAB#(h-l)Sj # (m-d)02  ;hu.k (-3

E E SpqaqFpqgO-i(k-l)#q eJ(hil)#p ;huik

~ (3-14)

Let I be the identity matrix and Il the matrix defined as follows
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0100 . .. . 0
0 001 0. ... 0

0i 0 . .0

0 0 00. . . .10

Finally we, define the matrices M and N as follows

M - M, - (m-d)a2 I
N a N1 - (m-d)o2 Il. (3-15)

The matrix pencil is

Define the matrices U, V and as follows

eii+ ei 2 . . . ei~d

ej(d-l)+l e3(d-1) 2  ; e(d 1l)+d

Sjja11F11  S1 2a1 2F12  . . . . ladd
S2 ja2jF2 1  S2 2a2 2F22  . . . . daFd

SdladlFdl Sd2ad2Fd2 . . . . SddaddFdd
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eJ

0

It can be shown that M and N have the following decompositions

N .UV UH

N - U V UH. (3-16)

Hence, as required by the pencil theorem, the matrix decomposition of

the pencil M-t is given by

M-X- (uvuH)-X(uv#HUH)

- UV(I-X9)U H . (3-17)

The matrices UV and UH are of rank d as long as the directions of ar-

rival of the signals are distinct. Therefore the values of X for which

the rank of the pencil M-XN . UV(I-X4H)UH is decreased by 1 are given by

Xi - eJ+i ;i.1,2,...,d. (3-18)

The angles of arrival are given by

ei - sin-l(-ln(i)/wD) ;i=1,2,. ,d. (3-19)
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CHAPTER 4

VINDOWS

In chapter 3 the rectangular window was the logical and obvious

choice. It was used to form the sequence xn+i1(t,e)Rm-d(i). In this

chapter we show that any shaped window will work; i.e, the angles of ar-

rival are obtained from the matrix decomposition of a matrix pencil. A

computer simulation and a comparative performance of the different

windows used are also presented.

4.1 DETERMINISTIC CASE :

Consider a linear array composed of m identical sensors with

uniform spacing D. Assume there are d m/2 sources emitting signals

whose complex envelopes are denoted by sk(t) ; k-l,2,. . .,d.

As before the received signal at the ith sensor is modeled as

d
yi(t,e) - £ sk(t) ai(ek) + ni(t) ; i_1,2,...,m (4-1)

k=1

where ]

ai(O k ) is the relative response of the ith sensor to the kth

source,

ni(t) is the additive noise assumed to be zero-mean Gaussian. ®]!

ai(e) can be written as

34



where

For simplicity, the arguments (t,e) in yj(t,8) and t in both sk(t) and

nj(t) are dropped.

Taking the expected value of (1) we get

d
x- E[yjJ - E sjk a(ek)e(il)k ;i-l,2,...,m. (4-2)

kai

Consider the sequence xn+i.lW,..d(i) ;n.112,....d+1 and 1-1,2 ... md

where Wm..d(i) is the value of the window of width (m-d) evaluated at the

point (i). We then form (d+1) vectors Xn where

XnWm..d( 1)
Xn+lW,..d(2)

LXn+,-dlWd(m-d)

If, for simplicity, we let ci =Um-d(i), _X can be written as

35



Cl Xn
C2  Xn+l

0
Xnm

0
CmdXn+m-d..1

However, it is shown in chapter 3 that

Xn
Xn+ 1

* -A#(n-)BS (4-3)

Xn~m.d-

where

ei 1 ei'2 .. . ei #d

36



0

0
eJ +d

al
a2  0

B-

ad

and

17 (sl s2 .. . ...

Let C be the matrix given by

Cl
c 2

* 0
CM

0
Cm-d

Then Xn can be written as

X CA,(n-l)BS. (4-4)
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This expression holds for various choices of the ci corresponding to

different windows.

The matrices MI and N which are formed by

M= X1 ... d ;N- 23 X.

become

N CAS.BS CB2 ..... C~~-)

If~~ vefco u CAB ro and9 CAB# from.......e

I I I 38



t t t t
I I I I

N -CAB SS 2S ...... # (d-1)S

I I II
4' 4 4 4

I I I I

N-CAB9 St 2S_ ... . ~-)

I I I I
4, 4 4 4

Let F be the matrix

t t t

F- s #s #2s .... . . (-)s

I I I I
4,4 4. J 4

Since M and N have the decompositions

HUCADF
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N - C A B * F, (4-5)

the matrix pencil becomes

M-XN - CABF-XCAB#F

- CAB(I-X#)F. (4-6)

Let E denote the matrix CAB. Then

M-XN - E(I-X#)F (4-7)

which satisfies the requirements of the pencil theorem. Note that

rank(E)=min(rank(A),rank(B),rank(C)).

We have seen that A is of rank d as long as the directions of arrival

are distinct and the separation D is less than X/2. B is of rank D as

seen earlier. When choosing the elements of the matrix C, it is neces-

sary that at least d of the diagonal elements be non zero. This will

ensure that rank(C) d. Therefore the rank of the pencil M-XN is

decreased by 1 whenever

Xi e 0 ;i-1,2,... ,d. (4-8)

4.2 ZERO-MEAN RANDOM CASE :

Again the signal received at the ith sensor is modeled as

d
yl(t,G) - E Sk(t) ai(ek) + ni(t) ; i-1,2,...,m. (4-9)

k-l

yi(t,8) = xi(t,O) + ni(t) ;i=1,2,...,m. (4-10)
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Consider the sequence

Yn+i-l(t,2)Wm-d(i)  ;nw1,2, ..., d+l

and 1 i m-d.

For simplicity, the arguments (t,O) and t are dropped. (d+1) vectors Yn

are then formed vhere

Yn1 m-d(1)
Yn+1Wm-d(2)

Yn+m-dlWm-d(m
-d)

As before, let cj-Wmd(J). Then

c1  Xn c1  nn
c2 Xn+1 c2  nn+1

0 • 0

0 • 0
Cm-d Xn+m-d-l Cm-d nn+m-d-1

Let C be the matrix

41
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ci
C2
00

Cm-d

Noting that

Xn

Xn+1

=AO(n-I)Bs,

Xn+m-d-1

Yn can be written as

n= CABt(n-l)S + CN (4-11)

where

N T = (nn nn+1 ....... nn+m-d1 ).

This expression holds for various choices of ci corresponding to dif-

ferent windows.

Define the inner product

mh,k <YXh,!k> = E1[YkH'h]"

Define the matrices M1 and N1 as follows

42
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m ltI m 1 P2 . . . . -d

m2,1 m2,2 .... m2, d

mdl md,2 ..... md,d

R121 M2 2  . . . . . m2,d

m391 m392 .. ..... m3,d

md+i md.1'2 ....... md+i,d

Since ' y CABO(n-l)S + C.n, it follows that

mh, k - EIkH.Yhj

- E[(SH#H(k-l)BHAHCH + Nk HcH)(cABo(h-l)S + Ch)].

Assuming that the signals and noise are statistically independent,

mh,k . E(SHIH(k-I)BHAHCHCAB,(h-)S I +E[kHCHCNjh)].

Let the noise components be statistically independent Gaussian random

variables with zero-mean and variance a2. Then

0 ;h~k

2( E 'ci12 ) ;h-k. (4-12)
i.1
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Assuming all ci's to be real, lcjl2_cj2. Therefore ,CHC is the matrix

12
c22

CHC_

0

ci 2 2e1 1

00

00

0md ej~m-d-l)#i ej(m-dl1)2 . .Jmdl#

cl 2  C12  1
C22j1c 2 

2eJ+2 c2 2ei~d

Cm-d 2 J"m-d1)1 c-d 2eJ(mdl)+2 ... c m-.d 2e(mdl)#d -

If we define Fpq 0 E cj2 eJi- 1)(Op - #q) ,then AHCHCA becomes
i-1
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U-4

F11  F2 1 . . . . d
F12  F22 . . . . Fd2

AHCHCA.

Fld F2d . . Fdd

Folloving the same procedure as in section 3.2, it can be shown that 0

d d
E[IH#H(kl)BHAHCHCAB#(h-l)SfI E E S pqap F pq e-i(k-l)#q ei(h1l)+p

q-1 pul

where

SpqoiE(5qspI

apq~a ap

Fpq EmCd2 ei(i-1)(#p +q)

Therefore,

fE[IH#H(k1l)BHAHCHCAB#(h1l)SJ ; hok

"Ii, ko 
-

I SH#B(k1)BHAHClCAB#(h-l)SI 0 2( E Ic,12 ) ;h~k
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(d d
Z Z SpqapqFpqe-J(kl)q ei(h1l)#p ;hsk

q1 pal 4 *p+ - (4-13)

E E SpqapqppeiJ(k 1)#q eJhl# a2( E ic,!2  ;hmk.
kq.1 p1l 1.1

Let I be the identity matrix and Il the matrix defined as

01 0 0.

Also, define the matrices M and N as follows

m-d
H-H1 - ( E ci2) 02 1

i-1

N=Nl - ( E c12) 02 1,
i-1

The matrix pencil becomes

m-d m-d
M-XN -(141 E ci2) *2 I]-X(Nl E (£c 1

2) a2 I,].
i-i i=1
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If we define the matrices U, V and # by

e 1 1. 12. . . J+

SllallFll S12al2F12  . .. . ladd
S21a2 lF21  S22a22F22  .... S~da~dF~d

SdladFdl Sd2ad2Fd2 .... SddaddFdd

00

00

47



it can be shown that M and N have the following decompositions

M U VU H

N U V uH.

The matrices UV and UH are of rank d as required by the pencil theorem.

Therefore the rank of the pencil M-XN - UV(I-X#H)UH is decreased when-

ever

Xi - eJ~i ;i.l,2,...,d.

The angles of arrival are given by

e i - sin-l(-jcln(Xi)/wD) ;i=1,2,... ,d. (4-14)

Hence, theoretically any shajed window would give the same directions of

arrival of the sources.

4.3 COMPU SIMULATION

In this section the comparative performance of the rectangular,

Hamming, Hanning and Blackman windows is evaluated by means of a com-

puter simulation.

The different windows are defined as follows:

Rectangular

f1 ; 0 <n <NRN(n) 01. 0; elsewhere
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Banning

{ 5(l-cos(2nn/N)) ;0 Sn < N
0 ;elsewhere

Hamming

R'n'f 54-.46cos(2nn/N) ;0 < n < N
0 ;elsewhere

Blackman

{ 42-.5cos(2nn/N)+.O8cos(4mn/N) ;0 < ni < N
Rn)0 

,elsewhere.

The scenario used for this simulation consisted of two coherent sources

(d-2) which are incident on a linear array consisting of eight sensors

(m.8). The sources are assumed to be located at el=18* and ()2-220

The received signal at the ith sensor was modeled as

d

where
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k = D/c sin(ek).

In this simulation the sensors were chosen to be omnidirectional. Con-

sequently,

a(e k ) - 1

Also the noise was simulated to be white Gaussian with zero-mean and

unit variance. The sensors were positioned at half wavelength apart such

that wD/c = t . Finally, the complex envelopes were selected to be s, -

s 2 -s where s is a constant. The signal to noise ratio is defined as

PS 21s12

SNR . . . . 21s 12.
n  02

The cases considered in this simulation are shown in table (4-1)

Table (4-1)

SNR I Isl

30 dB 1 22.36

10 dB I 2.24

In this simulation, equation (4-15) which gives the angles of arrival,

was not used because it assumes that magnitude of X is unity. Because

this was not the case in actual practice due to numerical inaccuracies,

the method did not perform well. To overcome this situation the follow-

ing approach was used.

50
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Let X u a .jb vhere a and b are two real numbers. Using an exponential

notation X can be written as

X - (a2+b2)I'exp(jtaxr1(b/a))-

From equation (4-14) Xrnexp(j#). Thus, ignoring the magnitude of X

*-tan
1l(b/a)

and the angles of arrival are given by

e - sin-1 ((ctan1l(b/a))/iD).

The results of the simulation are shown in tables (4-2) and (4-3).

Table (4-2)

Rectangular .2 Hanning e2 Hamming e2 BlackmanKN 91 9 1  e D2  92
30 dB I17.982 j21.995 17.882 21.948 j17.887 21.999 18.217 22.418

10 dB I18.050 22.142 I17.295 I23.672 I18.294 I23.324 I14.529 21.065

Mean of el and 92

(500 snapshots/run 10 runs)
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Table (4-3)

I Rectangular a2 Hennb0i2ng ga2 Blackman

30 dB 0.018 0.072 0.126 0.078 0.177 0.090 0.138 0.317

10 dB I 4.385 I 4.960 11.418 I 14.654 1 7.843 I 9.552 I 20.639 I 4.595

Variance of 01 and 92

( 500 snapshots/run 10 runs)

Theoretically, the results should be independent of the choice of the

windov. In practice, however, different windows result in different

entries in the matrices M and N. As we can see, the rectangular window

performed best both at low and high signal to noise ratio. The Hanning

and the Hamming windovs also gave acceptable results. The Blackman

window gave the most biased estimates with the largest variances.
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CHAPTER 5

PERTURBATION ANALYSIS

In this chapter we want to investigate the behavior of the

moving vindov in the presence of perturbations due to sensor spacing. We

restrict ourselves to first order perturbations. STEWART has shown [131

that a good measure of this perturbation is the chordal metric vhich is

introduced next.

5.1 CHORDAL ITRIC

Let C denote the field of all complex numbers. Consider tvo

matrices M and N and let X be an eigenvalue of

M x = XN x. (5-1) 0

x is called right the eigenvector of equation (5-1). Also let y be a

left eigenvector of the matrix pencil. y satisfies

M -m XZ 5 N. (5-2)

For convenience, x and y are usually normalized. Thus, we set

I1111 - l and Ilzll - 1.

We also introduce the Euclidean matrix norm defined as

IIMII - sup IIMXll.

We are interested in the generalized etgenvalue problem

0
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M x- X N x. (5-3)

where

M=M+ 6M-M+E
(5-4)

N-N+ 6N-N+F

Let X - zHMx (5-5)

and

= ZHNx (5-6)

From equation (5-1) it follows

X - (5-7)

Stewart [13] showed that small perturbations in E and F result in

- xa+ZHEx+O( £2) a' +O(2)

O+yHFx+O(e
2) a ' .+O(C2) (5-8)

where
o(C2)

lim - -O.
C£00 C

Define the chordal metric as

X), ) - .(5-9)
I lX1 2 "  1+ 1312'
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Geometrically X(X,X) is half the length of the chord connecting X and X

when they have been projected in the usual way onto a Rieman sphere of

unit radius. The maximum value of the chordal metric is unity.

With this definition it was shown [131 that

X(X,X) / ly + O( "2) (5-10)
vhere

c .- IIE1l12 + I IFI12. (5-11)

S- m2 + 02 .  (5-12)

and

m and 0 have been defined earlier.

5.2 APPLICATION TO THE NOVING WINDOW

Again assume a linear array composed of m identical sensors -

spaced at D+6Di where 6D1-O. Assume there are d narrovband sources. The

received signal at the ith sensor is modeled as

- d
Yi(t,()a I sk(t)ai(ek) + ni(t) ;i=1,2, ...,m (5-13)

k-1
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where the " denotes the response of the perturbed array,

ad n(t) is the additive noise assumed to be zero-mean gaussian,

ai(6jk) is the perturbed relative response of the ith sensor to the

kth source.

Taking the expected value of equation (5-13) ve have

- d -

xi(t,e)u E sk(t)ai(Ok) ;i-1,2,...,m. (5-14)
k-1

N~ote that

ai(S) - a(S)exp(i(il)D(w/~c) sin(e)4J((w/c) Wisin(e))

= a(8)ei(i-l)D(w/c) sin(e) ej(cw/c)Mjsin(e).

To a first order approximation

ei(c#/~c)AWisin(G) ,1+j (wc)aDisin(e) - 1.J (2n6Di/&)sin(e)

vhere 6 is the va -elength of thu signal vavefrort.

Thus ai(O) can be written as

ai(e) = a(S)ei(i1l)D(W'C) sin(e).j(2nA~,,/6) ej(i-I)D((i/c) sin(e)sin(e)a(e). (5-15)

Equation (5-14) becomes

- d

k=1

For simplicity, denote ak.a(ek). Then
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- d

dd
xi(t,e). I aksk(t)(ej (i-l)D(w/c) sin(ek)

kkl
d (5-17)

+J(2x6Di/6) k aksk(t)(eJ (i-l)D(A/c sin(ek)sin(9k).

Notice that the first part of equation (5-17) is just the non-perturbed

quantity xi which appeared in chapters 3 and 4. Dropping the argument

(t,2) in equation (5-17) , it can be written as

Xi - xi + xi w xi + ei. (5-18)

(d+l) vectors are then formed where n is given by

&T Xn Xnl ...... Xn+m-d1 }.

can be written as

Xnl enl

x + . _+En (5-19)

Xn+m-d-1 en+m-d-1
L_ j

where EnT = en en+1. ...... en+m-d_1 ). In chapter 3 and 4 it is

shown that n can be expressed as

,X.n-B#(n-l)S (5-20)
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where B is nov the identity matrix and A, # and S are

1 1. . . 1 -
eJ J. eJ*2 . . . eJ~d

eJ(m-d-l)*lej(m-d-l)+2 . .. ej(m-d-l)+d

eJ +1
eJ#2

0

0
eJ +d

s s2 ..... sd }.

The matrices M and N and then formed in the usual way. Specifically,

t~ t t -t t t

I I I I I I

M= [1 2 ...... .. d ;N X2 X3  .X...d+I

I I I I I I
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Knowing that Xjt Ei + Ei, M can be written as

t tt t
I I I I I I

M X 12 ... ... Ed l 2 . ". d

I I I I I I.

Since

M M + = M + E (5-21)

Where M is the unperturbed matrix, it follows that MHE.

Similarly, it can be shown that N can be written as

N N +6N N + F (5-22)

where M=F and N and F are given by

t t t
I I I

I I I
F- E2 E3 ...... .d+1

II I
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To apply equations (5-10) through (5-12), one has to get the Euclidean

norms of E and F.

The Euclidean matrix norm is defined as

hJEll - sup hlExII.
I W! I-'

However

Ilxl.(xH(x) - (xHEHEx)%. (5-23)

For simplicity, let DwEBE. Notice that maximizing IlExhl is the same as
maximizing the quadratic form xBDx. The maximization of xBDx involves

obtaining the sigenvector of

Dx -)X

which corresponds to the largest eigenvalue of D. Then

max(xHDx).,\E axxHx. (5-24)

Since xliXm. 0

max(xHDX)mXEE ax

and

1 hE! I w(X~.ax)" (5-25)

where XEa is the largest eigenvalue of EHE. Similarly,

I IF!hu(X~max)'b (5-26)

where XFma is the largest eigenvalue of FHF.

It follows that
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I mY 112 + I7IF71 1
2 ' - X max + XF max (5-27)

We knov that D-EHE is a symmetric matrix. Let djj be the jjth element on

the diagonal of D vhere djj is real. Define the TRACE of D as the sum of

all the elements on the digonal of D vhich also equals the sum of all

eigenvalues of D. Hence XEmax trace(D).sum(dii). To obtain the trace,

the diagonal elements of D-EHE must be computed. Recall that E is the

matrix

el - e2  .... •d
e2  e3  . ... ed+ 1

Em

em-d em-d+l . . . em 1

Therefore,

el e2* md
e2 * e3 * erad+1

EH.

;d* ;d+l* .... em*

D is then the matrix
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el e2 .~ . .e e* e . -d2**
e2 e3  .. . .ed+1 e2 e3 ... e-~

D .

J *

Since ye are interested in the trace of D, only its diagonal elements

are enumerated below, where use is made of the fact that 61.0.

m-d
Z Jej12
1-2

m-d+1
E j12

D 1-i2

rn-1
; IejI 2

i-m-d
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Thus,

trace(EHE) -e 2 12 + e312 ...... Iem- 12

+1e2 12 + I@3 12 ...... Im-d 12 + Iet-d+1 12

+I@3 12 ...... Iem-d 12 + Jem-d+1 12 +Ie,..d+2 12

+ (5-28)

+ee.I2 + I+1 2 ....I... Im

For i~i,an element ej of E can be written as

2d
ei j - ~ E sk ak~ eJi 1 )+k sin(Ok). (5-29)

6 k-1

Note that 2

+d

ledl - -'il I E sk akei(i 1)#k sin(8ik) I
,k-1

P ~ ~2n da Jil* iek I
- Itait Z I Sk kj iiitk j(k
6 k.1

2d

-< - wi JI~ I Iaksk I

0
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2n d
I Daxl Z Jak sk 1- (5-30)

6 k-1
Hence,

2n d
trace(EUE)6 S[(m-d-l)+(m-d)(d-l)]% - Imaxi E aksk I

k-i

2n d
trace(EHE)* l[d(m-d)-1J] - ImaxI E Iaft -k 1- (5-31)

6 k-.

Using exactly the same procedure, it can be shown that

2n d
trace(FHF)W [d(m-d)]% - ImaxI E lak sk I. (5-32)

6 k-1i

Since

E max Strace(EHE)

and XFmax Strace(FHF)'

U J I IEt12 + I IF112 - max + max'

2nr d
- Imaxl I 2d(m-d)-I ( E Jaksk .

8 k-l

Finally, with reference to equations (5-10) through (5-12), the bound on

the chordal metric becomes
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2n d
- IADmaxl 2d(m-d)-l) ( k E akskI )

- k-i

I (zHMx)2 + (ZHNx)
2 "

where H and x are, respectively, the right and left eigenvectors cor-

responding to X.

A second approach for obtaining a bound on the chordal metric

makes use of the Frobenius norm which is defined for an (mxn) matrix A

by

m n
lJAlif E{ Z E Iaij12 ) . (5-34)

i-1 J-1

It can be shown [141 that the Euclidean norm is always less than or

equal to the Frobenius norm. Specifically,

lAIlIf I IAII

Recall that E is the matrix defined as

el e2  . . . . ed
e2  e3  .. ed+ 1

E

em-d em-d+l . emI
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vhere el is equal to zero.

Also, from equation (5-30),

21 d
leil 6- {DmaxI E lak sk I-

k=i

It follovs that

d
IElif < ( (2n/6)2 I 6D.. 12 ((m-d)d-1)( E lak ski) 2 } . (5-35)

k-1

Similarly, ve have

d
I IFIIf < ( (2m/) 2 I aDmax 12 ((m-d)d)( E lak Skl) 2 }4 (5-36)

kal

Therefore,

e -1 II,.I12 + llFl12' _ ,I llz lf2+llFllf 2 '

2n d0
< - DmaxI I 2d(m-d)-l) ( J Iaksk)

8 k-i

The bound on the chordal metric then becomes
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21 d
- I)uaxi 1 2d(m-d)-l) ( E JakSkj )

- 6 k-l

(ZHMx)2 + (zBNx)2

Notice that this bound is exactly the same as the one obtained while

using the Euclidean norm.

5.3 COMIUTR SIMULATION

To evaluate the usefilness of the derived bound for the chordal

metric a computer simulation was performed. The model used consisted of

two deterministic sources (d-2) with constant and equal complex en-

velopes incident on a linear array consisting of eight sensors (m.8).

The sources are assumed to be located at 1-180 and 92.220. For

simplicity, the case of omnidirectional sensors was assumed. In the

simulation the case of perfect sensor spacing was first considered. 500

snapsF~ts were used to obtain the matrices H and N. The process was

repeated 10 times and the results averaged to obtain nominal values for

Xi, x4 and yi ;i1,2. A pertubation AD -.001D was then introduced and

the pricedure used in the unperturbed case was repeated. The unperturbed

signal received at the ith sensor was modeled as

d
yi(t,e) Z sk(t)eJ(i - 1)w/c Dsin(Gk) + ni(t) ;i=I,2,...,m

k-l
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vhereas the model for the perturbed signal was

- dyi(t,e)= Z sk(t)eJ((i-1)D+MDt
) / c sin(Ok) + nt(t) ;il,2,...,m.

k-i

nj(t) was simulated as vhite Gaussian noise vith zero-mean and variance

a2 .1. D was assumed to be equal to 8/2 (half the vavelength).

Because sl-s2-s , the signal to noise ratio is is defined to be

SNR.2 Is 2.

The cases considered are listed in table (5-1)

Table 5-1

SNR I Isl I

130 dB I22.36 I

110 dB 12.24 I

The computed results are shown in table (5-2)

__ 0!

0
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Table 5-2

SNR Bound Exact BoundX Exact

30 dB 1 0.1127 I0.0318 0.1245 0.0651

10 dB 1 0.1873 I0.1053 I0.0633 I0.0148

Observe that the bounds for the chordal metric are of the same order of

magnitude as the chordal metric itself.
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CHAPTER 6

SIMULTANEOUS ESTIMATION OF DIRECTIONS OF ARRIVAL

AND ANGULAR FREQUENCIES

In the previous chapters the sources vere assumed to be emitting

at a common angular frequency o vith complex envelopes denoted by sk(t)

;k.1,2,. . .,d. In this section ve show that the matrix pencil method

still vorks for the case vhere the signals have different center fre-

quencies. The angles of arrival and the angular freqencies are

estimated simultaneously.

6.1 DETERMINISTIC CASE

Consider a linear array of m identical sensors uniformly spaced

at a distance D. Assume there are d m/2 narrovband sources located at

azimuthal angles Sk ;k.l,2,. .. ,d, vhich are impinging on the array as

planar vavefronts and emitting signals vhose complex envelopes are

denoted by sk(t) ;k-1,2,. . .,d. The first sensor is folloved by an

equally spaced tapped delay line consisting of m taps vith successive

delays of T seconds (see fig 6-1).

With reference to the first sensor, the signal received at the ith

sensor is modeled as

d
Yi(t,e) - Z a(ek)sk(t) eJ(i-1)D(wk/c)sin( k) ni(t) ;i1,2,. .,m. (6-1)

k-1
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y1(t,2) 7 3 2(t,-O) 7 y3(t,e) 7 Y1  mt, 9)

T

Yi( t-T,e)

T

yi( t-2T,O)

FT

yi( t-3T,2)

LT

Fig. 6-1 Array Configuration
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The signal received at the (h+l)th delay line tap is

d

yl(t-hT,I) - E a(ek)sk(t)eihTk + nl(t-hT) ;hO,1,. .,m-i. (6-2)
k=i

Assume the noise to be a zero-mean stationary Gaussian process. Then

taking the expected values of equation (6-I), ye get

dxi(t,9)_Ejyi(t,9)j- E a(Ok)Sk(t) ej(i-I)D(wk/c)sin(ek);i.1,2,. •.,m. (6-3)

k=1

Similarly, the expected valU equation (6-2) is

d

Zh(t-hT,e)-E[yl(t-hT,9)I= E a(ek)sk(t)ejhTwk ;h.O,1,. • .,m-1. (6-4)
k=1

Let #k=(wo.D/)sin(ek); k=1,2,. . .,d. Equation (6-3) becomes

d
xi(t,e). Z a(ek)sk(t) eJ(i-i)+k ;1-1,2,. . .,m. (6-5)

k-1

For simplicity, the arguments (t,G) in xi(t,e), (t-hT,e) in Zh(t-hT,e)

and (t) in sk(t) are dropped. Denote akua(Ok). Equations (6-5) and (6-4)

become

d
xi= E aksk eJ(i-l)+k ;i11,2,...,m, (6-6)

k-i

72



and

d
zhkE akskeiJhTwik ;hrn0,1,. .. ,m.-1. (6-7)

We then form (d+1) vectors & and (d+l) vectors Zn, where

and

ir T . (Z r-.l Zr .... Zr~m-d-.2) r-1,2,. . .d+1.

Xcan be expressed as

Xn alsleJ (n-1)4 + . . . . . adsde(nl)#d
Xn+1 alslein~i ..... .. .. ... adsdein~d

- .

Xm-d+nl1 alsle(-dn 2)41 +. . + adsdei(m-d+n-2)+d

a~ei (m-d+n-2)# -20 (m-d+n-2)47 . adei (m-d+n-2)* d d

Xcan also be written as:
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1. .,4

.. . .

0

V- C,4

Um M . .. *. Go

C4 (

0+

VV

• 0,,-,
.l".0

I 1-4

1 IV .. . .

.. ,

47



Let

1 1. . 1

eJ i1 eJ* 2 • eJ d

A-

ej(m-d-1)41 ej(m-d-1)* 2 . . . eJ( -d-l)d S

al
a2

0

B=
0

ad J

eJ +2
00

ei2

0
e) Od

ST 1Ss 2 1 .... ,s d

Then X can be rewritten as
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n- A #(n-1) BS. (6-8)

Following the same procedure, it can be shown that _Zn can be written as

& . Aly(n-1) BS (6-9)

where B and S have been defined previously and A1 and Y are the matrices

1 1. . •1
eJTwl eJ To2 . . . eJTC~d

A1
ej(m-d-1)Twl ej(m-d-l)Tw 2..,. ej(m-d-l)Tw!

ei Tw
ejTo)2

0

' S

0 0 ejTo :d

Four (4) matrices M, N, P and Q are then formed, where

*t 1? .. .0 r 1 . . .I -

( I I I I I

M- x. .. d ; - X2 E3 d+1
I I I I I I

4, 4, -1. lot7
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* t ... - -1 f.......t
I I I I I I

P 1 2 ..... id ; 1 2 Z3 Zd+1

I I I I I I ._
4, 4, 4. 4, 4,

Using the explicit expression for Xn' H and N become

Ii i I
M= ABS AB#S AB# 2 S ..... AB(d-1)S

IJ I

I II I
N. AB#S AB#2S AB' 3S . .. ... AB~dS

I II I
Factoring out AB in H and AB# in N ,we get

[II II
M - AB S #S #2S . f(d-l)s

77

S



Let F be the matrix

FM S #1S #2S . . . . . #

and E the matrix

E-AB.

H and N have the decompositions

M E F

N =E * F. (6-10)

The matrix pencil M->JI can then be written as

M-XH - EF-XE#F

-E(I-X#)F (6-11)

which satisfies the requirements of the pencil theorem. Hence, the

values of X for which the rank of M-XN decreases by 1 are given by
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Xk a e-Jk ;k.1,2,...,d. (6-12)

The same procedure is nov applied for the decomposition of the matrices

P and 0. It follows

1"~ t

I II I
P AIBS A1 BTS A B2S ..... . A1BI d-l)S

Factoring out AB in P and A1B, in we get

I tI I I

P -A1B S YS v S ...... A BlS

I I I7

4, 4,, , 4,
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Q -AlBY S YS ',2S .

i i , 4,

Define the matrix G as

G, s yS ',2 .s . . _(d-l)s

i I,] I
Let E1 be the matrix A1B. P and 0 have the following expressions,

P - ElG

0 - E1 Y G. (6-13)

The matrix pencil P-60 becomes

P-60- E1G-&E1'G

. El(I-6Y)G, (6-14)

which satisfies the requirements of the pencil theorem. Hence, the rank

reducing numbers of the pencil P-60 are given by

6k e-JTwk ;k-1,2,...,d. (6-15)
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Note that equation (6-15) gives us an estimate of wk. This estimate is

used in equation (6-12) to get an estimate of Ok. Therefore, this meth-

od, simultaneously estimates the angular frequencies and the angles of

arrival of the sources; i.e

- Jln(&i)/T

9- sin-l((Jln(Xi))/((. D)); i1,2,. • .,d. (6-16)

6-2 ZERO-AEAN RANDOM CASE

In this section ve assume that the complex envelopes of the

emitted signals are stationary random processes vith zero-mean. It is

shovn that the matrix pencil method still vorks;i.e, the angular fre-

quencies and the angles of arrival of the sources are estimated s I!lta-

neously using matrix decompositions of tvo (2) matrix pencils. Again,

let the received signal at the ith sensor be

d
Yi(t,_) - E a(ek)sk(t) eJ(i-l)D(wk/c)sin(ek) + ni(t) ;i11,2,. .. ,m. (6-17)

k.l

The signal received at the (h+l)th delay line tap is

d
yl(t-hT,e) E I a(ek)sk(t)eJhTwk . nl(t-hT) ;h.0,1,. .,m-1. (6-18)

kal
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Let k-(wkD/c)sin(ek); k-1,2,. .. ,d. Equation (6-17) becomes

d
yj(t,O)- E a(ek)sk(t) eJ(i-l)#k +ni(t); i-1,2,...,m. (6-19)

kni

For simplicity, the arguments (t,e) in xi(te), (t-hT,e) in zh(t-hT,e)

and (t) in sk(t) and in ni(t) are dropped. Uenote ak=a(ek). Equations

(6-19) and (6-18) become

d
Yi E aksk eJ(i- 1 )#k + ni ; i=1,2,...,m,. (6-20)

k=i

and

d
zh - Z akskeJhT(k + nh ;h-0,1,. . .,m-1. (6-21)

k=1

Analogous to the previous section (d+1) vectors Yn and (d+1) vectors Zn

are formed, vhere

YnT _ {Yn Yn+l . . .. Yn+m-d-1}; n-1,2,...,d+l,

and

Z nT - (Zn-1 zn .... Zn+m-d-2}; n-1,2,. .,d+l.

Define the inner products mh,k and vi, n to be

mh,k-< Yh,k >,

and
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Vi,n-< Zi,Zn >.

Four matrices H1 , N1 , P1 and Q1 are then formed as follovs

mi,1 ml,2 . . . . ml, d
m2,1 m2,2 .... m2, d

md,l md,2 md,d

m2,1 m2,2 .... m2, d
m3,1 m3,2 * m3, d

N1  . .

md+l,l md+1,2 .... md+ld

v 1 , 1 v 1,2 ... . Vl,d
v2 ,1 v2,2 .... v2,d

Pim

Vd,1 Vd,2 .... vd,d
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and

v2,1 v2,2 .... w2, d
v3 ,1 v3,2 .... v3,d

01- . .

vd+l,1 wd+1,2 .... "d+l,d

Following the same procedure as in chapters 3 and 4, it can be shown

that Yn and Zr can be expressed as

ynAB#(n-l)S + Nn

and

r=AlByr-1)S + Nr"

A, Al, B, t, Y, and S have been defined earlier, Nn and Nr are given by

NnT _ nnn+1  . . nn+m-d-1 },

and

NrT - { nr nr+1 .... nr+m-d .

For simplicity, denote *kTwk; k-1,2,. .,d. The matrix Y then becomes

eJ *1
eJ*2

0

eJ d
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We know that

hk-<yh,Ik> < AB#(h-l)S+ ,h AB(k-l)S+ >

-E[ Yk.h a E((AB#(k-I)S.Nk)H(AB#(h-I)S+N)Ih (6-22)

Assuming the signals and noise to be statistically independent, we can

write

mh,k =E[SH#H(k-l)BHAHAB,#(h-l)SI + E[OhklJ (6-23)

Suppose the noise components are statistically independent Gaussian ran-

dom variables with zero-mean and variance a2. Then

El~f~hl- 0 ;koh (-4
1(m-d)a2 ;kmh (-4

and "'h,k Is

(hk R[SH#H(k-l)BHAHA;9(hl)S(6-25)
Et fSH#H(k-1)BNAHAB#(h-1)Sj + (m-d)a2 ; k-h. (-5

We obtain

d d
SHBH#BH(k-1)AaA.(h-l)BS Z Z Fpqs~spa~a e(kl)q ei(h-l)+p

q.1 pal

where
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Fpq E eJ*(i-1)(Op + q)
i-1

Hence,

EII#Hk-)BAHB#h-)S d d
E E SpqapqFpqeJ(k 1 )+q ei(h-l)#p

q.1 pai

where

Spq'mE * 
q p

(EISHH(k-l)BHAHAB#(h-1)SJ ;hok
mh, k E[SHH(k-I)BHAHAB#(h-l)s] + (md)a2 ;hk (6-26)

d d
E E SpqapqFpq e(k 1)oq ej(h1l)#p ;hok

01 (6-27)t~~i~ pqpppe(kl)+q ei(h1l)+p (md)a2  hk

Let I be the identity matrix and I, the matrix defined by
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0100 .... 0
0010 .... 0
0001 .... 0

urn ... .

0000.. .. 1

0000. .... 0

Finally, we define the matrices H and N as follows

M- M, - (m-d)o2 I
N - N1 - (m-d)o Il. (6-28)

The matrix pencil is
M-AN - (M-(m-d)u2I)-X(N1 -(m-d)u2 I1).

Define the matrices U, V and 9 as follows

1 1
J 1 eJU 2 . . eJ O

ej(d-l)1 ej(d-l)+2 . . . ej(d-l)+d

SljajlFjj S12a12F1 2  . ... SldaldFd
S2 1a21 F2 1  S2 2a2 2F2 2  . ... S2da2dF2d|

SdladlFdl Sd2ad2Fd2 . . . . SddaddFdd
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eJl eJ +
0

0
eJ +d

It can be shown that M and N have the following decompositions

M W U V UN=UV.UH.(-)
N- U V #H A (6-29)

Hence, as required by the pencil theorem, the matrix decomposition of

the pencil M-XN is given by

M-XN = (UVuH)_X(UV#HUH)

. UV(I-_X#)UH. (6-30)

Therefore, the values of X for which the rank of the pencil M-XN - UV(I-

X#H)UH is decreased by 1 are given by

Xi - eJii ;i=1,2,...,d. (6-31)

As it was stated earlier, assuming the noise components to be stationary

and statically independent, it can be shown that wi, n has a similar

form; i.e,
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Vi~nm E[SHB(fll)BHAlHA1Byf(i-l)SI ;ion (6-32)
E[SH,#(n-l)BHAlHA1 BY(i-l)SJ + (m-d)*2  ;imn

d d p

1 d (6-33)

where

SpquE ( q~ -

apq uaqap

m-d
Ppq - Z ei(i-1 )(*p - Vq)

i.1

Let then P and 0 be the matrices

P - P1 - (m-d)o2 I

0 - 01- (m-d)a2 1,. (6-34)

The matrix pencil P-SN becomes

-P-60 - (Pl-(m-d)a2I)-6(Q1-(m-d)o2I,).

It can be shown that P and Q can be decomposed as

P - U'IV IU'IH

Q - U'v'iVHI (6-35)
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vhere 7 vas defined previously and U' and V' are the matrices

1 1. 1
eJ *1 ej*2 ... eJ *d

IU M

ej(d-1) q_ ej(d-1)* 2 . . . eJ(d-1)* d

S11a11F'11  S12a12F',12  . ... SldaldF'ld
S21a21F 21 S22a22F 22 .... S2da2dF 2d

SdladlF dl Sd2ad2F'd2 .... SddaddF dd

The matrix pencil P-60 then becomes

p_0=(U'V' U'H)-6(U' V H)

MU' V' (I-6Vt)U'H, (6-36)

which satisfies the requirements of the pencil theorem provided all wk

are distincts. Hence, the rank reducing numbers of the pencil P-60 are

given by .

61 - eJi - ejTwi ; i1,2,. . ,d. (6-37)

Equation (6-37) together vith equation (6-31) allows us to estimate 3i-

multaneously the angular frequencies and the angles of arrival of the

sources; i.e,

900
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wi " -Jln(&i)/T

ei . sin-l((-Jln(Xj))/((Ai D)); i.1,2,. • .,d. (6-38)

6.3 COMPUTER SIMUIATION

The model used in the simulation consisted of two coherent

sources (d.2) incident on a linear array of eight uniformly spaced

sensors (m-8). For convenience, the sensors are assumed to be omnidirec-

tional. The noise was simulated as white Gaussian with zero-mean and

variance a2 - 1. The complex envelopes of the signals emitted by the

sources are assumed to be constant and equal; i.e,

s1(t) - s2 (t) - s.

The sources were assumed to be located at e1-180 and e2.220 with center

frequencies given by wl-0.2x2n rd/s and w2-O.25x2n rd/s respectively. D

and T were assumed to be equal to 6 108 meters and 1 second respective-

ly.

With the above definition, the signal to noise ratio is given by

sNe.- 21s12
02

The cases considered in this simulation are shown in table (6-1)
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Table (6-1)

SN I Isi

30 dB I 22.36

10 dB I 2.24

Equation (6-16) was not used because it assumes that both magnitudes of

X and 6 are unity. Because this was not the case in actual practice due

to numerical inaccuracies, the method did not perform vell. One way to

solve the problem is to use the technique as in chapter 4.

Let X - a +jb and 6 - c +jd where a, b, c and d are real numbers. Using

polar form, we have

X - (a2 b2)}exp(jtan-l(b/a))

and

6 . (c2+d2)'exp(jtan-1 (d/c))

From equations (6-12) and (6-15), X-exp(-J#) and 6-exp(-j*). Thus, ig-

noring the magnitudes of X and 6

* - -tan-l(b/a)

and

* - -tan-l(d/c).

The results of the simulation are shown in tables (6-2) and (6-3).
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Table (6-2)

SNR 010 0I 1  0
30 dB I 0.2001x2n I 0.2495x6n I 18.0012 I 22.0233

10 dB I 0.1925x2n 0.2448x6n 18.5130 22.7785

Mean of ej and wj

( 500 snapshots/run , 10 runs)

Table (6-3)

StIR 02 Iei ()
30 dB I 0.3687 10-4 0.0546 10-4 0.0111 0.0045

10 dB 0.0033 j 0.0004 1.0504 0.4662

Variance of ej and wt

( 500 snapshots/run , 10 runs)

Observe that the bias in the estimates is very small at both high and

lov signal to noise ratio. The technique can thus, be classified as

giving very good results.

0
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CHAPTER 7

proach proposed by H. OUIBRAHIN [1). The flexibility, the effictiveness

and the ease of use of the method are once again shown. A generalization

of the method to arbitrary but identical beam patterns was derived in

chapter 3. This was done to prove that the choice of omnidirectional

sensors is not the only choice possible. In chapter 4 ye used different

windows to generate the sequences needed in the formulation of the

matrix pencil. It was shown that the rectangular window performed best

compared to the Hanning, Hamming and Blackman windows. Errors arise when

the assumption of uniformly spaced elements is not adhered to in prac-

tice. For this reason, a perturbation analysis due to sensor spacing was

performed in chapter 5. We made use of the chordal metric introduced by

Stewart [13). The chordal metric provides a good measure between the

0

perturbed and the unperturbed eigenvalues. It was shown in a computer
simulation that a useful bound was found for the chordal metric. In

chapter 6 a new technique was introduced to simultaneously estimate the

0

angular frequencies of the signals emitted by the sources and the direc-
tions of arrival of these sources.
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