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Let (4n, n=0,1,2,...) denote a stationary sequence and define

hn- max(Ci ..... n). Under suitable conditions it is possible to prove

results of the form

u(, ) r c P(n un) 4 e (o0,cW) (1)

where 0 ( 9 4 I. The parameter 9 was termed the extremal index by

Leadbetter (1983), though the concept had occured earlier in papers of

Newell (1964), Loynes (1965), O'Brien (1974a, 1974b) and Davis (1982).

For a general overview of extremes in stationary sequences, see

Leadbetter, Lindgren and Rootzgn (1983).

It is possible to define an exceedance point process Nn on (0,1),

such that Nn (s,t] is the number of exceedances of the level un among ({r:

ns , r 4 nt). Convergence of (Nn} as nm is studied by Hsing, H;Isler and

Leadbetter (1988). One of their main results is that, if a limiting

point process exists, then it must be compound Poisson. The atoms of this

limiting process correspond to clusters of exceedances. Somewhat parallel

results have also been obtained by Alpuim (1987). b

A natural interpretation of 9 is that 1/9 is the main cluster size in

the limiting point process. Hsing et al. were not, however, able to prove

this without making additional assumptions. The following example shows

that the result is false without such assumptions.
or

The example is a regenerative sequence of the form
J-1_i-I j

n - Cj for E Ni 4 n < Ni (j ;1) (2)
0 0 *1/

where :y Code,and/or L

(i) Cj, j)l are independent with a common distribution function F



3

satisfying P(1) - 0,

(ii) For J)i, given N1 ..... 4Nj_ 1 , €1 .... Cj with m 4 Cj < m+1, the

probability of the event Nj- i is %,. Here (qmi, m;1, i;1) is a sequence

of probabilities with qm1 .j 0, Ei qi - 1 for each m.

In words, the process remains in state Ci for a random number of time

epochs determined by the probability distribution qji(i2.) with m - rij,

and then moves to a new state which is independently chosen from F.

Let pm- P(m 4 Cj < M-1), Am - Ci iqci and suppose g - r pm ) < w.

Then A is the mean recurrence time of the process. The process may be

made stationary by a suitable choice of distribution of N1 . It may also

be regarded as a function of a Harris chain, and may therefore be treated

by extreme value arguments of O'Brien (1987) and Rootz6n (1987'.

Now let us specify (q i) to be

(m-1)/m, i=1,

I 1/m , i-m+1, (3)

0 , otherwise

Then g. 2 for all m, and so g - 2 also. Let (Un,nl) be a sequence of

thresholds such that n P uC 1 Un} + T, Or'm.

Proocaition I e -~

Proof. By Theorem 3.1 of Rootzen (1987), for 6 > 0 and a'- 6 + 1/n we

have

IPc n 4 X) - P(C1 4 x)n/A 1 26' + P(Iv~n - 1/21 ;0 5) (4)

where v is the number of regenerations up to time n. By choosing 8-n 4 0
n 8 6 , , ,
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appropriately and setting x - un , we deduce

-172
P(Mn  4 x) -

e

as required.

Proposition 2. The exceedance point process Nn converges to a simple

Poisson process of intensity j, as n 4w.

Pro. This follows from Theorem 4.2 of Hsing, Husler and Leadbetter

(1988). Positive recurrent Harris chains are strong mixing (cf. O'Brien

1987), and hence satisfy the mixing condition A(un) used by Hsing et al.

For a suitable sequence (rn) satisfying rn 4 w, rn/n 4 O, let

rn  r n

Tn(j) -P( E Xni j i Xni > 0), j-1,2.... (5)
i-i i1l

where Xn,i is 1 if Ci > un, 0 otherwise. Let (j) - lim rn(j) for j-1,2,.

nm

The theorem of Hsing, Huisler and Leadbetter asserts that the point process

Nn converges to a compound Poisson process with compounding distribution

Tr( • ).

However, under (3) it is easy to see that n(j) = 1 for j-l, 0 for

j>1. Hence the limiting process in this case is simple Poisson, with a

mean cluster size of 1. This completes our description of the example.

From a statistical point of view, the most natural way to estimate

the extremal index is via the point process of high-level exceedances.

Such a procedure was in fact proposed by Smith (1994). The example here

reveals a possible fallacy in this procedure, though it may not be

possible to do much about it in practice.



1. What is going wrong is the lack of tightness of the sequence

(qmi, i>) as a . In a similar way it is possible to construct an

example of the same phenomenon for any e1. Hsing et al. show that the

-1

extremal index is in general given by e lim (Ej ln(j)) , so what is at

issue is whether

£ J rn(j) + F- T(J) as n . (6)

This is false for the example considered here.

2. It is possible to exibit other kinds of extremal behaviour by

taking other sequences (q.i } . For instance, if m 4 w we very easily

obtain an example of a process with extremal index 0. Taking this one

step further, if q 4 0 as m-w for each i but the distribution (q., i:01

converges under some renormalisation to the distribution of a continuous

random variable as m (example: take q - 1/m for i-1,2....m), then the

point process Nn does not converge but a suitably renormalised sequence

converges to a compound Poisson point process with continuous compounding

distribution. Such behaviour is admitted in the general theory of Hsing,

Hlsler and Leadbetter, but they do not give any examples.
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