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CHAPTER 1

INTRODUCTION

Item Response Theory (IRT) enjoys several theoretical advantages

over earlier theories of psychological measurement. One such

characteristic, the property of "item parameter invariance," is the

central focus of this study. As Lord (1980, P.35) states "The

invariance of item parameters across groups is one of the most important

characteristics of item response theory."

The property of "invariance" refers to the parameters of the item

response function. The shape of the response function is usually

described by either the logistic or normal ogive models (see Table 1).

We can see from Table 1 that for any given item with parameters a, b,

and c, the relation between the ability parameter (0) and the

probability of a correct answer is fully specified. The probability of

a correct answer to a particular item, among examinees selected at

random with a given ability level Go, depends only on Go, not on the

number of people at Oo, or on the number of people at other ability

levels. Even if two groups differ in their distributions of ability,

their response functions will be the same. Examinees with go from one

group have the same probability of passing the item as do examinees with

Oo from the other group. Thus, the probability of a correct response

among individuals with ability 0 is independent of group membership, and

depends only on 0 and the item parameters (a, b, and c). The lower

asymptote, the point of inflection, and the slope all remain invariant

across groups.
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Table 1

Three parameter logistic:

P=C + I- C

Two parameter logistic:

Three parameter normal ogive:

77, e 1 -2 2 dt

where 0 *-1.7



The property of item parameter invariance has led to several

important applications of item response theory. One such application

has been in the area of item bias. An item is said to be biased when

examinees with the same level of the trait from different subpopulations

have different probabilities of answering the item correctly. The basic

paradigm used in this problem area involves two independent estimates of

item parameters, one from each of two groups. Because of the invariance

property, any differences in corresponding item parameters between the

two groups (beyond those expected by sampling error) would be an

indication of bias.

Item parameter invariance has also suggested a powerful technique

for the assessment of the quality of a translated item from one language

to a new language. The paradigm is identical to that described under

item bias, except here, if the response function is found to be group

dependent, the quality of the translation is suspected.

A third important application of item response theory, made possible

in part by item parameter invariance, is the development of large,

pre-calibrated item pools. One of the most appealing procedures for

developing these pools involves administering a number of overlapping

tests to separate groups of individuals (McKinley & Reckase, 1981).

These tests are overlapping in the sense that they have some items in

common. These common items provide the link necessary to place all

items on the same scale. The development of large pools of items is

especially important for tailored testing.

There is one problem, however, that hampers the application of IRT

as described above and which provides the impetus for this paper. The



parameters f t the logistic and normal ogive models are invariant only

up to a linear transformation of the scale of ability. This problem is

oaused by the indeterminacy of the origin and unit of measure of the

ability scale. As Lord explains:

If a parameter value is in principle indeterminate
even when we are given the entire population of
observable values, then the parameter is called
unidentifiable. Actually, all 9, ai and bi (but not
ci) are unidentifiable until we agree on some
arbitrary choice of origin and unit of measurement.
Once this choice is made, all 0 and item parameters
will ordinarily be identifiable in a suitable
infinite population of examinees and infinite pool
of test items. (Lord 1980, p.184-185)

Thus the origin and unit of measure of our ability scale is

arbitrary. This causes difficulty when we wish to compare two sets of

independently estimated parameters, as outlined in the examples above.

Because the decision is arbitrary for each group, there is no assurance

that the origin and unit were selected in such a way as to make the two

sets of parameters comparable. The purpose of this paper is to

investigate techniques that transform one test's metric to the metric of

another test and thus permit the direct comparison of all item response

functions between the two groups. In addition a new technique for

transforming parameters to a common metric is introduced.

Transforming to a Common Metric:

Symptoms and Formalization

In the remainder of this chapter we will work through a hypothetical
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example that will demonstrate some common symptoms of the equating

problem. In the final section of this chapter, the problem will be

formalized and the basic transformation equations presented.

Let us suppose in this example that we are dealing with a test of

verbal skills and that our two hypothetical populations are all 5th

grade and 6th grade students respectively. Let us further suppose that

we are interested in examining a vocabulary test for bias between our

5th and 6th grade populations. That is, we are interested in

identifying items that function differently for the two grade levels.

Our first step as indicated by Figure 1, would be to select two

samples of 5th and 6th grade students. Next, we administer the test to

each group to obtain our item responses. From these item responses we

obtain independent estimates of item and person parameters, as indicated

at the bottom of Figure 1. Let us suppose we used LOGIST (Wood,

Wingersky, & Lord, 1976) to obtain our parameter estimates.

The next step, before comparing any parameters directly, would be to

transform one set of parameters to the scale of the other set. That is

to transform the parameters to a common metric. For now, however, let

us observe the consequences of ignoring the equating phase altogether.

That is, let us observe symptoms of the equating problem when we attempt

to compare parameters directly after estimation.

Figure 2 displays the two hypothetical histograms for our 5th and

6th grade samples that we would expect to obtain from our LOGIST

estimated thetas. The ordinate represents the proportion of examinees

observed at each level of theta, on a basis of the LOGIST estimated

thetas. (In reality we would not expect our observed histograms to be
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Figure 1

Outline of Procedure of Hypothetical Example

5th 6th
GRADE GRADE

POPULATION POPULATION

I I
i i

SELECT SELECT
5th GRADE SAMPLE 6th GRADE SAMPLE

I I
i i

ADMINISTER TEST ADMINISTER TEST
TO TO

5th GRADE SAMPLE 6th GRADE SAMPLE

I I
I I

ESTIMATE ESTIMATE
PARAMETERS PARAMETERS

USING LOGIST USING LOGIST
5th GRADE SAMPLE 6th GRADE SAMPLE

I I
I I

ESTIMATED ESTIMATED
ITEM AND PERSON ITEM AND PERSON

PARAMETERS PARAMETERS
5th GRADE SAMPLE 6th GRADE SAMPLE
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Figure 2

Histograms for 5th and 6th Grade
Ability Estimates rrom LOGIST

(Example)

.4-

0 Theta



as smooth as those in Figure 2) Notice that the two histograms for our

two sets of independently estimated ability parameters overlap to a high

degree. In fact, just by observing these two distributions, one might

be easily convinced that their mean and standard deviations are

identical. But this observation does not support what we know about the

verbal ability of 5th versus 6th grade students. We would expect, with

a great deal of certainty, that the mean of our estimated thetas for the

6th grade sample would be significantly higher than the mean of our 5th

grade sample. But when we observe our independent estimates of the

ability parameters for our two groups, their mean and standard deviation

appear identical.

This latter occurrence is no accident. Remember, that because the

origin and unit of measure are arbitrary in item response theory, our

estimation procedure is free to select any values. LOGIST selects the

origin and unit of the measurement scale such that they correspond to

the mean and standard deviation (respectively) of the estimated person

parameters. Thus, for each group of independent parameter estimates,

the origin of our scale was set to the mean of our estimated thetas, and

the unit was set equal to the standard deviation. It is not surprising

that the first two moments of our estimated 5th and 6th grade

distributions look identical. The scale of ability was selected using

these moments as criteria. When these criteria are used to select the

origin and unit, no matter to what extent the mean and standard

deviation differ between two groups, they will always appear identical.

Now, let us observe the symptoms of the equating problem when we

attempt to compare estimated item parameters, without first transforming
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to a common metric.

Suppose for the first item of our vocabulary test we obtained the

two items with parameter estimates given in Table 2. ICC s for these

two curves are given in Figure 3. The two overlapping ability

distributions are represented by the u-shaped curves along the base

line. By examination of either Table 2 or Figure 3, we might conclude

(if we were unaware of an equating problem), that the first item is

biased against the 5th grade sample. That is, for most levels of

ability, the probability of obtaining a correct response is larger for

6th graders than for the 5th graders. But, when we examine the item

parameter estimates for the rest of the items in the test, we notice a

similar pattern. The bi's for the 5th grade sample appear oonsistantly

higher than the 6th grade estimates, while the ai's are slightly smaller

for the 5th grade group. Could every item on the test be biased? Not

likely. These problems are all symptoms of side-stepping the equating

stage before attempting to compare the two independent sets of

parameters.

Let us now consider how to resolve the discrepancy between the two

independent estimates of these item parameters through equating to a

common metric. Remember that, in accordance with item response theory,

the origin and unit of measure for each of our scales is arbitrary.

Thus we can apply a linear transformation to either or both of our

scales (base lines) and not violate any assumptions of IRT. A

convenient terminology has been developed (Linn, Levine, Hastings &

Wardrop, 1981) that helps clarify the basic issues in developing a

common metric. This terminology involves the arbitrary designation of
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Table 2

Estimated Item Parameters for Hypothetical Example

FIFTH GRADE SIXTH GRADE
ITEM ITEM

PARAMETERS PARAMETERS

ai .95 al. 1.00

bi .79 bi 0.00

ci .20 ci .20



Figure 3

Item Parameter (first item) and Ability Distribution Estimates
from WOGIST (before equating)

00

Theta

1

Ability Distributions
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one of our two groups as the "base group" and the other as the

"comparison group." The scale and parameters of our base group are held

fixed, while the parameters of our comparison group are transformed to

the scale of the base group. Thus, after trs&Lformation of the

comparison group parameters, the scale of our base group will be the

scale on which all our estimated parameters will be measured.

For now, let us hold the scale of our 6th grade group fixed (thus

designating it as the base group) and apply a linear transformation only

to the scale of our 5th grade sample (which now becomes our comparison

group). Our new scale will be defined as:

09 a A x 0 + B [1.1]

where A and B are the components of the linear transformation that

transform points on the old comparison group scale (0) to points on the

new equated base group scale (09).

Returning to the example in Figure 3, we can see that if we move the

scale for our comparison group (5th graders) to the left, and then

contract it slightly, the two item characteristic curves will line up

exactly, as displayed in Figure 4. Notice that as we moved

(transformed) the scale for the 5th grade ICC, the ability distribution

for that group moved along with it. Thus after the transformation we

observe an item characteristic curve that is identical for both groups.

We also observe two distinct ability distributions, with our 5th grade

sample sooring, on the average, lower than our 6th grade ample, as we

would have expected on a basis of prior knowledge.

If this same exact transformation of scale were applied to all the

other items of our comparison group, we would observe similar results.
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Figure 4

Item Parameter (first item) and Ability Distribution Estimates
from LOGIST (after equating)

5th and 6th Grade ICC

CDJ

.4.

5th Grade 6th Grade

E

Ability Distributions
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That is, our ICC's should match up, just as they did in the above

example.

As implied by equation [1.1] we can quantify the transformation

required to convert the scale of our comparison group parameters (0) to

the metric (00) of our arbitrarily designated base group. In the

example above, we found the transformation for our 5th grade sample that

placed it on the same metric as our 6th grade sample. Finding the

"correct" transformation involves finding the correct values of A and B

in equation [1.1]. These particular values will depend on several

factors. First, the values of A and B will depend on the rule that our

estimation procedure uses for assigning values to the origin and unit of

the scale for each set of parameter estimates. If this rule is

consistant across data sets, then indirectly this transformation will

also depend on the differences in the distributions of ability of the

two groups from which our independent estimates were calculated.

Once we have found the correct values for A and B, we can apply the

same scale transformation to every item in the test for the group

requiring the transformation (comparison group). The point to be

stressed here, is that the scale transformation is identical for every

item of the test. That is, the values of A and B are not item specific.

Rather, they (and the transformation they represent) are constant across

items. Because the values of A and B are constant across items, they

are often refered to as "equating constants".

After the values of our equating constants (A and B) have been

identified, the values of all the item parameters for the comparison

group may be transformed to the new scale using the following equations:
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ai* a ai / A [1.2a]

bi* a A x bi + B [1.2bJ

cif = ci [1.2c]

Oaf A x Ga + B [1.2d]

These equations represent the new values of the parameters for the

comparison group that place them on a common metric with the base group.

It is important to remember that under this paradigm, we are

transforming the parameters for only one of our two groups (the

comparison group). The parameters for the base group remain completely

unaffected by these transformations. That is, their values go unaltered

throughout the entire equating process. The asterisk in equations

[1.2a-d] represent the values of the comparison group parameters

transformed to the base group scale. The subscript i refers to item i;

the A and B are the equating constants introduced in equation [1.1]; and

the parameters without the asterisk are the comparison group parameters

before transforming to the base group metric.

At this point, a few comments about equations [1.2a-d] would be in

order. Let us begin with the transformation of ci. Why does this

parameter remain unaffected by a linear transformation of the theta

scale? If we refer back to Table 1, we see that for both the three

parameter logistic and the normal ogive models, the ci represents the

probability of making a correct response to item i by a randomly sampled

individual with a theta of minus infinity. It is readily apparent that

any linear transformation of the theta scale is not going to alter the

position of minus infinity, and therefore will not effect the value of

ci. Next, if our scale transformation is given by [1.1) then our Ca and
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bi must follow this same transformation because they are both based on

this same metric. Finally, we must remember that any transformation of

our parameters must not change the probability of a correct response to

an item given a particular level of ability. That is, a change of the

numerical scale value attached to a particular level of ability does not

alter the conditional probability of passing the item. In typical

models of the type with which we are concerned here, this probability is

a function of ai(Qa-bi). The item discrimination transformation is

given by: aif = ai / A. The reason for this form is that for any

admissible values of A, B, ai, bi, i,

aig(Oa'-big) - ai(Ga-bi).

Because our probability values are functions of these quantities, they

too remain unaltered.

In surmary, the entire problem of converting item parameters to a

common metric hinges on identifying the correct linear transformation of

our comparison group scale. If the parameter estimates were error free,

as in the example given in this chapter, the problem would have a simple

solution: for any item find the linear transformation of the scale for

one group that causes the ICC for that item to match the ICC for the

same item in the other group. Once this transformation has been

identified, all parameters could be transformed according to equations

[1.2a-dl.

Unfortunately the above procedure is not generally applicable. This

is because our parameter estimates are not error free. Some of the

difference between corresponding item parameters estimated from

-- - --.-- --- - -= m + mmmmmmmmmmmmm mm m m
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independent samples may be explained in terms of differences in metric,

while another portion of this difference may be due to error in

parameter estimation. For any given problem, the exact contribution

from each source is difficult to determine. Several approaches,

however, have been suggested to identify the appropriate linear

transformation when error of estimation is present. These techniques

are described in the following Chapter.

0
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CHAPTER 2

TECHNIQUES FOR TRANSFORMING PARAMETERS TO A COMMON METRIC

IN ITEM RESPONSE THEORY

Having identified the basic problem in the previous chapter, this

chapter will examine seven approaches that have been proposed to find

the appropriate scale transformation that places two or more

independently estimated sets of parameters on a common metric. A

theoretical presentation, along with a disscussion of criticisms of each

technique is given. These techniques can be roughly classified into

three categories. The first category involves three approaches that

rely on information supplied by the estimated b-parameters from each

group. These approaches all find the transformation that equates the

first two moments of the distribution of estimated bi's between groups.

They differ in the way poorly estimated difficulty parameters are

treated.

The second class of techniques incorporates test and item

characteristic curves to estimate the equating constants necessary for

transforming to a common metric. Stocking and Lord (1982) suggest a

method that examines a weighted test characteristic curve, while the two

methods suggested by Haebara (1980), and Segall & Levine (1983) examine

weighted sums of squared differences between corresponding ICC's.

Finally, the last technique, suggested by Segall examines vectors of

estimated item parameter differences for corresponding items from the
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two groups. This technique finds the values of the equating constants

that maximizes a criterion related to the likelihood of observing these

vectors of item parameter differences.

Equating Metrics using the First Two Moments

of the Distributions of Estimated Item Difficulties

If the difficulty parameters for our two groups of independent

parameter estimates were measured without error, the task of finding a

common metric would be greatly simplified. Remember that from eq.

(1.2b] we have:

bi* = A x bi + B. [1.2b]

If we examined the bi values for any two it ns ksay items 1 and 2), we

would have a system of two linear equations with only two unknowns (A

and B):

bl* = A x bl + B

b2* = A x b2 + B

Solving these equations for our equating constants A and B would be a

simple task. Unfortunately our bi's are not measured without error, so

this approach would very likely produce poor estimates of our A and B.

Instead, let us examine an approach that incorporates information

supplied by all the estimated bi's from both groups. The basic

motivation for this approach stems from the premise that if both our

comparison and base groups are on equivalent scales, then the mean and

standard deviation (SD) of the estimated bi's should also be equivalent
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across groups. Intuitively this approach has some appeal, for both, the

mean and SD aggregate over individual bi's, allowing for errors of

measurement contained in these estimates to cancel out (or so it is

hoped). On the other hand, if our two sets of parameter estimates are

not on equivalent metrics, we would not expect to observe equivalent

means and SD's of the estimated bi's for the two groups. In this case,

however, there exists a linear transformation of the theta scale for one

group, that will equate the mean and SD of our estimated bi's for the

two groups. Once we find this linear transformation, we can then apply

the components (A and B) of this transformation to all the parameters of

the comparison group (as indicated by eq. [1.2a-dJ).

We may now formalize the problem under this approach as one of

finding the linear transformation of the theta scale for the comparison

group by equating the first two moments of the difficulty parameters

across groups. We may further elaborate our goal as one of finding the

values of A and B such that:

b(comp) x b(base) [2.1a]

and

heSDOcomp) = SD(base) [2.lb]

where

n
b*(comp) z _[Abi(comp) + B) [2.1o]

n

and
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SD'(oomp) _[~i~op + B - b'C(oomp)J C2.1dJ

n

and where bRbase) zmean of base group b-parameters, and

SD(base) = the standard deviation of the base group b-parameters.

We may simplify (2.loJ to obtain:

bf(comp) = A x b(oomp) + B [2.3)

and by substituting (2.3) into (2.ld), we can simplify and obtain:

SDO(coep) = A x SD(oomp) [2.1]

Now from eq [2.1b] and eq C2.1) we have:

A x SD(comp) = SD(base) [2.5]

Solving eq (2.5] for A, we obtain:

A = SD(base) / SD(comp) (2.63

And now, from eq (2.laJ and eq (2.3] we obtain:

b6(base) = A x bRcomp) + B [2.7)

Solving this equation for B:

B = Rbase) - A x b;(cosp) C2.83

and substituting eq (2.63 for A:

B = ikbase) - (SD(base)/SD(comp)J x bRcomp) [2.9]

Thus equations (2.6] and C2.9J specify the expressions for our

equating constants. When these constants are applied to the scale of
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our comparison group, the first two moments of the distributions of

estimated item difficulties are equal to those of the base group. Once

we obtain the values of our equating constants (A and B) from eq [2.6]

and (2.9] respectively, we can transform all the parameters of the

comparison group to the metric of the base group by use of equations

[1. 2a-dJ.

There is, however, a serious shortcoming with the procedure as

outlined above. The shortcoming centers around our error of estimate

for the b-parameters used to find our A and B. As pointed out

previously, by basing our A and B on the mean and SD of our estimated

item difficulties, we hope that errors of measurement contained in the

difficulty parameter estimates cancel out. However, this may not

happen. Poorly estimated difficulties may have a large influence on the

sample moments, producing equating constants that are poor indicators of

the transformation necessary to equate the two groups of parameters.

Several "fix-ups" have been proposed to deal with the problem of the

effect of poorly estimated difficulties on the sample moments. Two of

these "fix-ups" are described in the following sections.

Difficulty Parameter Equating with Restricted Range

of Discrimination and Difficulty Parameter Values

One way to reduce the effect of poorly estimated bi's on the

computation of sample moments is to exclude items with extreme

difficulty values (eg. Ibil > 3). The error of estimate of the bi's
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for these items is high relative to items with moderate difficulty

values. Also, items with low discrimination values (ai's) should be

excluded from the computation of the sample moments (eg. lail < .15).

These items also have large sampling variances for the bi's. The goal

is to obtain a smaller set of better estimated bi 's for each group from

which to compute our sample moments, as outlined in the previous

section.

As might be anticipated, one of the major drawbacks of this approach

is that it is hueristic in nature, offering no firm statement as to

which items to exclude. Rather, we have only a few rules of thumb to

follow. In an attempt to remedy this oondition, and to control for the

effects of the pooly estimated bi's on the sample moments in a more

systematic manner, Linn, Levine, Hastings and Wordrop (1980) suggest the

procedure outlined in the following section.

Difficulty Parameter Equating using Weighted Moments

Linn, Levine, Hastings and Wardrop (1980) controlled the effects of

poorly estimated bi's by the use of weights that are inversely

proportional to the estimated variance of the estimated item

difficulties. (See equations 2.11a-b.) The weights are applied to the

b-parameters for each group, producing weighted means and standard

deviations from which our A and B are derived as outlined in the

previous section. Thus, items with large standard errors of their bi,

would receive less weight in the computation of the means and SD's
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relative to items with small standard errors of their bi.

The weighted indices are computed as follows:

STEP 1: First item covariance matrices are computed by inverting the

3x3 information matrix for each item, for each group. Formulas for the

elements of the information matrix are given in Lord (1980, p.191), for

the three parameter logistic model. Thus, for each item, two covariance

matrices are computed, one from parameter estimates of the base group,

and the other from the comparison group parameter estimates.

STEP 2: Next, the diagonal element for the variance of the

difficulty parameter is extracted from each pair of covariance matrices

for corresponding items; one variance term coming from the base group

covariance matrix, and the other term from the comparison group

oovariance matrix. The larger of the two variance estimates is used in

computing the weight for that item. If we let Vi(base) and Vi(comp) be

the estimated sampling variances of bi(base) and bi(comp) respectively,

the weight for item i is:

Wi = 1 / Vi(base) if Vi(base) > Vi(comp) [2.10]

/ Vi(comp) if Vi(comp) > Vi(base)

The effect of selecting the larger of the two variances was to give the

greatest weight to those items that possessed relatively small estimated

sampling variances in both groups. If the difficulty parameter was

poorly estimated in either sample (base or comparison), then it would

receive a small weight relative to a bi that was well estimated in both

samples.

Notice, however that there may be problems with comparing the two

estimates of the sampling variances Vi(base) and Vi(comp) at this point.
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The value of the Vi's is dependent (in part) on the unit of the scale on

which the bi's are measured. That is, we would expect that the choice

of unit for either our base or comparison groups would effect the

respective values of these estimated variances. (The exact nature of

this relationship is given by eq [2.31b]) Since the two scales for our

base and comparison groups are not on equivalent metrics at this point,

comparisons of these sampling variances across groups may not be

appropriate.

STEP 3: The next step involves using these weights to compute the

weighted means and SD of the bi's for the base and comparison groups.

The weighted means of the bi's are computed for each group as:

n
bw(base) =[Wi x bi(base)] / k [2.11a]

i

n
bw(comp) =[Wi x bi(comp)] / k [2.11b]

The weighted SD for each group is computed as:

n ]2
SDw(base) -- _ibi(base) - (base) (2.12a]

k

SDw(comp) rWibi(oomp) - comp) [2.12b]

n
k =z Wi

i _

STEP 4: Once the weighted means and SD's have been computed for the

comparison and base groups using the above formulas, they can be
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incorporated into formulas [2.6] and [2.9] just as their unweighted

counterparts to find the values of our equating constants A and B.

The procedure described above attempts to control the influence of

the sampling error of the bi's. It is interesting to note that although

the error of estimate for the difficulty parameter for a particular item

may be relatively high, we may still know a great deal about the shape

of the item characteristic curve. Because the shape of the ICC is

determined by the values of all three item parameters, a procedure that

relies on the shape of the ICC's may be more informative then these

procedures that examine only the bi's. In the next section, we turn to

a class of techniques that use all three item parameters (ai, bi, and

ci) in an attempt to find the linear transformation necessary to develop

a common metric.

Sums of Squared Differences Between

Estimated True Scores

Stocking and Lord (1982) suggest a technique that uses true scores

to find the comparison group scale transformation. Each member of an

arbitrarily selected group possesses an estimated true score. That is,
A

an examinee, a, with ability Qa, has an estimated true score t defined

by:

A n
ta = ;[Pi(Qa;ai-hat,bi-hat,ci-hat) ] [2.13]
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If two different calibrations of the same test resulted in parameter

estimates that were based on comparable metrics, then we would expect

the difference in true scores for examinee a, from these two

calibrations to be small. If on the other hand, the parameter estimates

for the two calibrations were not based on equivalent metrics, then we

would expect to see a larger discrepancy in the two true score

estimates, for examinee a, based on the two sets of item parameter

estimates. These observations suggest the following approach.

Utilizing our familiar terminology, we may represent the true score

estimate for a member of our base group as:

A n
4(base) = Y[Pi(Oa(base);ai-hat(base),bi-hat(base),

i

ei-hat(base)] [2.14Ia]

Notice that this estimate incorporates parameter estimates (ai-hat,

bi-hat, ci-hat) obtained from our base group calibration. We may

specify an alternative true score estimate for members of our base group

as:

A n
fa*(base) z [Pi(Qa(base);ai-hat'(oomp),bi-hate(oomp),

oi-hat(comp)] [2.14b]

where this estimate is computed from comparison group parameter

estimates, that are transformed to the base group scale. (These

transformations are given in eq [1.2a-b].) Thus, we would like to find

the values of A and B that would minimize the difference [a(base) -

fav(base)]. Stocking and Lord propose the following function to be
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minimized:

N -A A 2
F = (1/N) x 4[{a(base) - ea(base)] (2.15]

a

We wish to find values of A and B such that the average squared

difference between the two true score estimates for members of our base

group is a minimum. Ideally, to find the value of A and B that minimize

[2.15] we would take the partial derivatives with respect to A and B,

set these expressions equal to zero, and then solve for A and B. This

approach, however is not possible in this instance because there is no

closed form solution for A and B once the partials are set equal to

zero. Thus, to find the values of our equating constants, an iterative

numerical procedure must be used.

There are several observations that may help clarify this procedure.

First, we should note that we are only dealing with true score estimates

from members of our base group. True score estimates from members of

the comparison group do not enter into the computations. Of course, the

decision of which group is base versus comparison is arbitrary.

Accordingly, the decision as to which group of true scores will be

examined by this procedure is also arbitrary. The point to be stressed,

however, is that only the true score estimates from one of the two

groups are used.

A second observation worth noting is that in eq [2.14a-b] we acted

as if we were using the true theta values rather than their estimated

values. In practice, the true thetas are never known and the estimated

ability parameters are used in their place.
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A final observation might serve to clarify the role of our A and B

in the minimization of F (eq [2.15]). Our A and B equating constants

influence the values of ai-hat*(oomp) and bi-hat(coomp) in expression

[2.14b]. Their exact influence is specified by eq [1.2a-b].

Another way to conceptualize the function to be minimized by the

current procedure is by: the squared difference between the test

characteristic function for the base group, and the "transformed" test

characteristic function for the comparison group, where this squared

difference is weighted by the number of base group examinees occurring

at each value of 0. This conceptual approach is easily reconciled with

the concept of squared differences between true scores by remembering

that both true score, and a point along the test characteristic curve

(TCC), may be expressed as4

A n
ta = True-Score(Oa) = n x TCC(Qa) a YPi(Ga) [2.16]

T

(Where n represents the number of items in the test.) We can think of

each Oa along the test characteristic curve as being weighted by the

number of base group examinees with ability "Ga".

This latter conceptualization of the current approach helps bridge

the gap between this technique and the next two methods described in the

following section. In an attempt to find the proper scale

transformation for the comparison group, the two techniques described in

the following section examine the squared differences between

corresponding item characteristic curves, rather than the squared

91
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differences of the test characteristic curve. An additional

distinguishing feature of the current method and the two that follow, is

in the manner by which estimated Ga 'a are used to weight these "squared

differences." Whereas Stocking and Lord use estimated O's from only the

base group, both of the following techniques use information supplied by

both groups, base and comparison, in deriving weights for developing the

linear transformation necessary to form a common metric.

Squared Difference Between Corresponding

Item Characteristic Curves

Haebara's Method:

As in each of the previous techniques, our task is to find the

linear transformation of the comparison group scale that places the

estimated parameters of this group and those of our base group on a

common metric. Haebara (1980) suggests a method that finds this

transformation by examining the sum (across items) of the weighted sum

of squared differences between corresponding ICC's.

If our item parameters were measured without error, then using any

item i, we could find the values of A and B, such that for every value

of 9:

Pi(O(comp) ;ai(comp) ,bi(comp) ,ci(cmp)) -

Pi(O(oomp) x A + B;ai(base);bi(base),ci(base)) [2.17)

Notice that [2.17] implies perfect equating. Since our item parameters

mm m mmmmf lu m ~ r mulduui'm | |2
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are not measured without error, we would not expect this relationship to

hold exactly. Instead, we would like to find the values of A and B such

that the equality in [2.17] holds as closely as possible across items in

our test. This objective motivates the following specification for the

criterion function. Let:

ERia(comp) = Pi(Qa(comp) ;ai(comp) ,bi(ooup) ,oi(comp))

- Pi(Oa(comp) x A + B;ai(base),bi(base),ci(base)) C2.18]

Then one candidate for our criterion function would be:

n No 2
Q(comp) z I 7[ERia(comp)] [2.19]

ia

That is, for each examinee in our comparison group, on each item, we

examine the squared difference between two probabilities. One

probability is obtained from the estimated item parameters for our

comparison group (by way of the logistic or normal ogive models). The

other probability is obtained from transforming Ga to the base group

metric and employing our estimated base group parameters for that item.

Finally, we sum the squared differences of corresponding probabilites

across people in our comparison group, and then across items.

For practical reasons (dealing with computation time and computer

storage), Haebara uses an approximation to the quantity in [2.19] that

incorporates a relative frequency distribution of Q(comp) rather than

using each individual value. This relative frequency distribution

h(oomp) of 0(comp) is constructed by dividing the range of G(comp) into
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k mall intervals with the midpoints Gj(comp) (where j=1,29...k)* Then

minimizing Q(comp) is approximately equal to minimizing Qh(comp), that

is define as:

n k 2
Qh(oomp) = I ;[ERij~comp)J x hj(comp) [2.20a)

Notice however that this quantity is based on equating errors from

members of our comparison group only. Haebara defines an analogous

quaitity that expresses the contribution of our base group examinees to

the equating criterion. This quantity is defined as:

n k 2
Qh(base) ; I[~ERij~base)J x hj(base) [2.20bJ

T'J
where h(base) is the relative frequency distribution of our base group

examinees and:

ERij(base) =Pi(Qj(base);ai(base),bi(base),ei(base))

-Pi([Oj(base)-BJ/A;ai(comp),bi(comp),ci(oomp)) (2.21]

Notice that if we allow the quantity:

Ot(base) = O(ccmp) x A + B [2.22a]

to represent the transformation of our comparison group ability

parameter to the base group metric, then solving [2.22a] for Q(comp), we

obtain:

00(comp) = [O(base) - B) / A [2.22b]

which represents the transformation of our base group ability parameters

to the comparison group metric, as implied by (2.21). Then Hasbara

suggests:

Q0 = Qh~comp) +O Qh(base) (2.23)
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as the final form of the criterion function. Our task has now been

reduced to one of finding the values of our equating constants A and B

that minimize Q%. As in the case of the technique suggested by Stocking

and Lord (1982) there is no closed form solution for A and B. Thus, to

find the value of A and B that minimize [2.23] we must employ an

iterative numerical procedure.

One criticism with Haebara's technique deals with how the squared

differences between corresponding ICC3s are weighted. To understand

fully the rationale behind this criticism, a slight diversion might be

helpful.

Figure 5 displays an arbitrary item characteristic curve (solid

line) and a hypothetical distribution of examinees (represented by the

u-shaped curve along the base line). If we used a sample from this

distribution of examinees to estimate the shape of the ICC in Figure 5,

we could very likely end up with an estimated curve represented by

either of the dashed lines in Figure 5. Notice that where we have the

greatest number of examinees, the agreement between the true ICC (solid

line) and our estimates is very close. Where we have very few, or no

examiaees, the discrepancy between our estimated and true ICC may be

very large. In general, we can place a great deal of confidence in the

shape of a particular segment of an ICC, if in the region of that

segment we have a substantial number of examinees. Conversely, if along

a particular segment of an ICC we have very few examinees, we should

place very little confidence in its estimated shape.

We may generalize this argument to our present situation, where we

have two estimates for every ICC, each estimated from a potentially
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Figure 5

Relation of True ICC and Hypothetical Estimates of the ICC
with Distribution of Ability

C-/

Theta

4-1%

4A Ability Distribution
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different distribution of ability. A hypothetical example is given in

Figure 6. In this illustration we have two distributions of ability as

indicated by the two u-shaped curves along the base line. From each

sample obtained from these hypothetical distributions, we derive an

estimate for our true ICC. (The true ICC is indicated by the solid

line, and each of the estimates, from each sample, by the dashed lines.)

Notice, as we might expect, that the base group estimate is very close

to the true ICC along the range where there are a large number of base

group examinees. Similarly, the estimated comparison group ICC is very

close to the true ICC along the range where there are a large number of

comparison group examinees. Also, as we might have anticipated, the

discrepancy between the true and estimated ICC can be very large in

areas where there are very few or no examinees, from the corresponding

group, from which to derive the estimate.

The weighting scheme suggested by Haebara (1980) weights those

segments of the estimated ICC differences in accordance with the

relative frequency of examinees falling in the region. Returning to

Figure 6, the weight function for the base group h(base) would weight

the squared differences between one curve that was estimated very well

along this range (the base group estimate) and one curve that was

estimated very poorly along this range (the comparison group estimate).

An analogous point can be made concerning the weight function for the

comparison group, h(oomp). The point to be stressed here is that a

substantial portion of the weighted squared differences between -

corresponding ICC's may be due to error of estimation when a weighting

scheme such as the one suggested by Haebara is employed.
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Figure 6

Relation of True ICC and Two Independent Estimates of the ICC
With Two Different Distributions of Ability

. Base Group

." Estimate

Comparison Group --
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Theta

Base Group Comparison Group
Ability Distribution Ability Distribution
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Segall and Levine (1983) suggest a weighting scheme that attempts to

eliminate the above criticism. Their approach is outlined in the

following section.

Segall and Levine Method:

The quantity to be minimized by the technique suggested by Segall

and Levine (1983) is Of, define as:

nk 2
Of a _ [CERij] x fj" [2.24]

where:

ERij Pi(Oj(oomp);ai(oomp) ,bi(comp),ci(coomp))

- Pi(Qj(cop) x A + B;ai(base),bi(base),ci(base)) [2.25]

fj* represents a new weight function which is obtained in the following

manner. First the relative frequency distribution of O(comp) is

constructed by dividing the range of Q(oomp) into k small intervals with

the midpoints Oj(comp). Next these relative frequencies are transformed

to relative proportions to produce fj(oomp). Then, fj(oomp) is

transformed to the scale of our base group (using our equating constants

A and B) and fj(base) is computed using these transformed out-points on

our distribution of base group examinees. Our complete weight function

is then computed as:

fi' = [fj(oomp) x A + B] x [fj(base)] [2.26]

Returning to Figure 6, notice that our new weight function will be

largest over the range where the overlap of the two estimated

distributions of ability is the greatest. The weight function will be

-n
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smallest, or zero, where we have little or no overlap of our two

estimated distributions of ability. This weighting scheme places the

heaviest emphasis on that portion of the squared difference between

corresponding ICC's that are relatively well estimated in both groups.

Tha portion of the squared difference between corresponding ICC's that

is computed from an ICC segment which is poorly estimated for either

group, receives a small or zero weight.

As in the case of the two previous methods there is no closed form

expression for the minimization of Qf in eq [2.21, so an iterative

numerical procedure must be used.

The method described in the following section utilizes a somewhat

different approach to control the influence of parameter sampling error

on the estimation of our equating constants. This technique, suggested

by Segall(1982), employes estimated covariance matrices for our item

parameters in the framework of a maximum likelihood estimation

procedure.

Estimation of Equating Constants

Using Vectors of Item Parameter Differences

In this section a method is introduced by adopting maximum

likelihood estimation concepts to the problem of estimating the equating

constants. A heuristic discussion will be used to review the reasoning

that led to the method. Of course, the heuristic argument is not
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essential. First consider one item and the two vectors of item

parameter estimates

[ai (basel
ai(base) bi (base)I

Lai(base)jLcl basei

ai (coMp"

Oi(comp) Ibi(comp)

Lei(comp)J

Since these vectors are maximum likelihood estimates from large samples,

they will be approximately multivariate normal. Since they are

estimated from different samples they will be independent, and any

linear combination of them will be multivariate normal.

Let Ao and Bo denote the "true" equating constants, i.e. the unique

pair of constants that transforms the ability scale of the comparison

group to the ability scale of the base group after the two scales have

been specified. For each A and B the vector

[i(basel [ai(ccup) / A 1
'vi z vi[ADJ bi(base)l - jbi~comp) x A + Bj [2.27]

Li (baseJ Li(comp)

must be multivariate normal because it is a linear combination of

multivariate normal vectors.

The covarianoe matrix of vi can be easily determined from the

covariance matrices of ai(base) and ai(comp). Maximum likelihood



140

estimation theory can be used to estimate the covariance matrices of

each of the component vectors. For each possible value of the equating

constants vi will be multivariate normal with an approximated covariance

matrix C(A,B). (In fact, C(A,B) is independent of B, but that fact is

not needed here.)

If only the expectation of the random vector vi were known, its

multivariate normal density could be specified. If A and B are equal to

Ao and Bo respectively, and the maximum likelihood estimates are based

on large enough samples to be considered unbiased, the expectation

E[ ai(base)] will equal the linearly transformed E[ ai(comp)], and vi

will have expectation equal to zero.

To snarze, for each A and B the hypothesis A=Ao and B=Bo implies

that vi is multivariate normal with zero expectation and specified

covariance matrix. The hypothesis implies a specific formula for the

multivariate density of vi. If the estimates for different items were

independent, then the joint distribution of all the vi would also be

multivariate normal with density

L[vl(A,B),v2(A,B),...,vn(A,B)IA=Ao and B=BoJ

n
I I L[vi(A,B)IA=Ao and B:BoJ [2.28]
i

Unfortunately the estimates for different items are not completely

independent when item and person parameters are estimated

simultaneously. Minor dependencies are expected and observed when the

same group of subjects are used in the estimation of each item. The

method introduced in this section ignores these interdependencies and
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treats formula [2.28) as the joint conditional density of the vi. An

estimate of Ao and Bo is obtained by maximizing this joint density.

This admittedly heuristic argument led to the formulation of a new

technique which in fact performs quite will. The vectors of item

parameters for corresponding items are treated as if they were

independent multivariate normal vectors with covariance matrices

specified by inverting estimated information matrices. A and B are

estimated by maximizing the joint density under the hypothesis that A=Ao

and B=Bo. It will be seen that inspite of the correlations between the

parameters of different items, that the method performs quite well.

Some details on the implementation of the method follow.

For the present let us develop our criterion on a basis of one item

only. The generalization to an n-item test is straight forward and will

be discussed later in this section. For the moment, our task is to make

explicit a probability function for the vi where the estimated vectors

i(base)' ai(comp) / A

bi(base) and bi(comp) x A+B

Ii (base). 1ci(coup) B]

are independently sampled from a multivariate normal population with

known covariance matrix. That is, we seek a formula for

Prob(vi(AB)IAzAo,BaDo) [2.29a]

where Ao and Bo are the true equating constants. The mare compact and

suggestive notation

L(vilA=Ao,B=o) [2.29b]

will be used to denote this multivarlate probability density. Because
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the item parameters are maximum likelihood estimates of essentially the

same parameters in each group, we can regard the vi as normally

distributed with expectation equal to zero. That is, because the

expectation of each vector of item parameters is their true value, and

because their true values are the same for corresponding items i, then

the expectation of their difference is a zero vector.

Next, we would like to examine the sampling variance of our

estimated item parameters. For the moment, let us concern ourselves

with a single vector of parameter estimates. Maximum likelihood theory

specifies that the variance - covariance for these estimates may be

obtained from the inverse of the information matrix (I). When the

ability parameters are known, formulas for the elements of the

information matrix are given in Lord (1980, p.191). Thus the sampling

variance-covariance (Ci), for item i, of our item parameter estimates

may be obtained from:

- Iaa Iab iad' -1
-1 I

C = I j Iba Ibb Ibc [2.30)

-Ica Icb Icc

We will have two covariance matrices for each item. One covariance

matrix from our base group parameter estimates and the other from our

comparison group parameter estimates. We my represent these as:

FCaa(base) Cab(base) Cac(base)

C(base)z I (base)=lCba(base) Cbb(base) Cbo(base) [2.31a]

LCca(base) Cb(base) Coo(base
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2
[Caa~omp)/A Cab(comp) Cao(comp)/A

C(comp)f: I (comp): Cba(comp) Cbb(comp)xA Cbc(comp)xA [2.31b]

LCca(romp)/A Cob(comp)xA Ccc(ocomp) j

Notice that certain values of the elements of the oovariance matrix for

the comparison group, in eq [2.31b], depend on the value of our equating

constant A. This is because we are transforming the metric of the

comparison group to that of the base group, and we would expect this

transformation to have some effect on our variance - oovariance elements

which were computed in our original comparison group metric.

Next, because our two estimates of parameters for an item are

independent (each coming from a different group), the sampling variance

of our vectors of parameter differences (vi) is equal to:

Cdi z Ci(base) + Cit(comp) .2.321

Finally to specify the criterion based on eq [2.29) we can examine the

surface of a tr-variate normal density function, with H[0, Cdi]:

fi(vilA,B) = (2xpie)*"(-3/2) iCdilI"(-1/2) exp(-cs/2) [2.33)

where:

-1

ca z xi' Cdi xi [2.3]
and:

xi : vi -E(v) = vi - 0 ( v [2.35)

Thus [2.33] gives us a criterion related to the likelihood of obtaining

a single vector of parameter differences for given values of A and B.
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To obtain the analogous quantity that incorporates information supplied

by all the items in our test, we formulate the following objective

function,

n
L(vl,v2,v3,.....vnIA=Ao & B=Bo) a TT f(viIA,B) [2.36)

i

To find the values of A and B that maximize [2.36) an iterative

numerical procedure is employed.

The next two chapters present a oomprehensive comparison of the

techniques outlined in this chapter. The relative abilities of these

techniques to estimate accurately the linear transformation necessary to

develop a common metric are assessed. This assessment involves, both

simulated and real data, covering a variety of conditions.
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CHAPTER 3

ASSESSMENT OF EQUATING TECHNIQUES

USING SIMULATED DATA

This chapter presents a study whose objective is to assess the

ability of each technique described in the previous chapter to

accomplish its intended goal: to transform two sets of parameters to a

common metric. To accomplish this assessment, two different approaches

were taken.

The approach described in this chapter involves the use of simulated

responses based on a simulated test and several different distributions

of examinees. The use of simulated data provides greater control and

knowledge concerning the true relation between the two sets of

independently estimated parameters. Because the true relation between

the two sets of parameters is known with simulated data, firm statements

can be made concerning the ability of each technique to recover this

relation. The main problem, however, with simulated data, is that it is

based on a model whose assumptions are almost certainly violated to

varying degrees by real people answering real items.

As an answer to this criticism, Chapter 4 presents an approach that

examines the relative ability of the equating techniques to recover the

proper transformation using "real" data. "Real" is used here in the

sense that the data are actual responses to items on an actual test.

The obvious drawback of this approach is that the true relation between

the two sets of estimated parameters is not known. This presents a

special problem for evaluating the accuracy of the estimated equating
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constants. This problem, along with one solution, is presented in

Chapter 4.

Experimental Design using Simulated Data

Unfortunately, there are an infinite number of simulated tests and

simulated distributions of examinees that could be selected for

inclusion in this study. Because it Is feasible to examine only a few

different simulated tests and distributions of examinees, we should

select these carefully. First, it would be desirable to structure the

test as closely as possible to the type of test that we would find in

practice. Similarly, the distributions of ability should also be

modeled after the types of distributions commonly observed. Modeling

our simulated test parameters and item responses as closely as possible

to actual tests makes generalization to "real" data easier. The design

presented below attempts to specify values of these parameters that are

similar to those found in many applied testing situations.

The Test

Table 3 lists the item parameters for a 60 item test used to

generate the dichotomous item responses. The a-parameters of this test

were specified by sampling numbers from a uniform distribution in the
S

interval [.3, 1.4). The b values were sampled from a uniform

distribution in the interval [-3., 3.], and the c-parameters were drawn

from a uniform distribution in the interval [.11, .33). These

parameters identify the items included in tests of three different
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Table 3

Item Parameters for Simulated Test
Used to Create Simulated Response Vectors

ITEM a b c

1 .7948 -2.8090 .2373
2 .3031 2.6931 .2594
3 1.0263 -.8141 .1978
4 .8035 -2.4044 .1300
5 .5906 -1.3875 .2613
6 .8063 1.8960 .1477
7 1.2265 -.6636 .2661
8 .3778 1.6944 .2494
9 1.2698 1.8150 .2885
10 .8935 .9261 .1688
11 .7382 .8374 .3083
12 1.3302 -1.8851 .2026
13 1.2925 2.9963 .1886
14 1.3972 1.4620 .2623
15 1.0194 1.2102 .1791
16 1.3878 .3561 .1377
17 1.0037 2.2912 .1355
18 .7901 .1613 .1786
19 .7742 -1.3758 .3221
20 1.0598 1.4167 .2454
21 .9478 2.8291 .3085
22 .9324 -1.5024 .1467
23 1.2279 2.8816 .3175
24 1.2978 -1.3201 .2998
25 .9555 .8139 .2150
26 1.0750 -.7296 .2105
27 .9491 1.6064 .3189
28 .6723 -1.0248 .3271
29 .4617 2.0528 .2669
30 .5510 1.7964 .3047
31 1.1574 .8547 .2619
32 .9271 .2455 .3261
33 .5457 -1.4978 .2188
34 1.3730 2.3566 .2960
35 .9273 .9723 .2323

I 

0
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(Table 3 continued)

ITEM a b a

36 1.3273 2.6651 .2454
37 .5960 2.5812 .2540
38 1.3299 2.8950 .1447
39 1.2710 1.4454 .2847
40 .8222 -.6592 .2898
41 .6442 -2.9478 .2106
42 .4047 -2.5030 .2071
43 .5023 -1.5370 .2074
44 .7106 -1.7613 .2441
45 .7164 2.4118 .2937
46 .9033 -1.2684 .2822
47 .9312 -.1995 .2227
48 1.0233 1.3889 .2237
49 1.1059 2.8210 .2981
50 .6400 .8782 .1829
51 .8730 -.5741 .3145
52 .4710 -.7691 .2760
53 1.2326 -2.0874 .2392
54 1.3953 -1.5240 .1539
55 .7350 .5290 .1776
56 1.2183 -.6919 .2190
57 .4101 -.1285 .1582
58 1.2872 1.0834 .1707
59 1.2091 -1.5559 .3179
60 1.2616 -1.9413 .1828
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lengths. In one set of conditions, Conditions 1 through 5 (see Table

4), parameters for all 60 items were used to generate dichotomous

responses for a test of length 60. For Condition 6, the first 30 items

parameters listed in Table 3 were used to generate responses for a test

of length 30. And finally, in Condition 7, the first 15 items listed in

Table 3 were used to generate responses for a test of length 15.

Ability Distributions

Several pairs of base group - comparison group ability distributions

were examined. These pairs constitute the basic conditions of the

simulation portion of this study.

In each condition, the mean and SD of the distribution of ability

for the base group remained unchanged. These distributions were normal,

with mean equal to zero, and standard deviation equal to one. In each

condition, base group ability parameters were sampled from a normal

[0,1] distribution. Because these sampled values were to be treated as

true parameters, they were transformed to have zero mean and unit

variance. (This transformation is similar to a z-score transformation.)

Several different comparison group ability distributions were

specified, one for each condition listed in Table 4. Each of these

distributions were generated by sampling values from a normal

distribution. For the Conditions 1 through 7, the comparison and base

group distributions differed by varying amounts. Table 4 lists the

means and standard deviations for the ability distributions used in each

condition. Notice that the mean and standard deviation are constant

across conditions for the base group (with mean equal to zero and SD
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Table 4I

Summary of Simulated Conditions

Number of Number of Bass Group Comp Group Scale Transformation
Subjects Items

Condition Mean SD Mean SD A B

1 1000 60 0.0 1.0 -0.5 .80 .80 -0.5

2 500 60 0.0 1.0 -0.5 .80 .80 -0.5

3 250 60 0.0 1.0 -0.5 .8o .80 -0.5

4i 500 60 0.0 1.0 0.0 .80 .80 0.0

5 500 60 0.0 1.0 -1.0 .80 .80 -1.0

6 1000 30 0.0 1.0 -0.5 .8o .80 -0.5

7 1000 15 0.0 1.0 -0.5 .80 .80 -0.5
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equal to one). On the other hand, the mean and standard deviation for

the comparison group did not necessarily remain constant from one

condition to the next.

Samples of several different sizes were generated: 250, 500, and

1000 simulated examinees. In each condition the number of comparison

group examinees equaled the number of base group examinees.

Generation of Item Responses

Data, or item responses for these simulated examinees were generated

in accordance with Birnbaum's (1968) three parameter logistic model (see

Table 1). Note that once the item parameters are specified (Table 3)

the probability of a correct response to an item is solely a function of

examinee ability. As examinee ability increases, so does the

probability of a correct response. The probability of a correct

response can be used to generate an observable dichotomous right-wrong

response by comparing it to a uniformly distributed ramdom number

between 0 and 1. A response was coded as correct when its associated

probability was greater than the random number, and incorrect when it

was less.

Using this procedure 14 data sets of dichotomous responses were

generated, two data sets per condition (Table 4). Each data set

contained the equivalent of N examinees answering an n item test. The

item parameters from Table 3 along with person parameters sampled from a

normal distribution were used in the above procedure to generate the

data sets.
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Estimation of Item and Person Parameters

The LOGIST computer program (Wood, Wingersky & Lord, 1976) was used

to estimate all person and item parameters for each data set described

above. Briefly:

Given the responses of a group of examinees to a set
of items, the computer program, LOGIST, has been
developed to estimate the item characteristic curve
parameters for each item and the ability of each
examinee in terms of Birnbaum's three parameter
logistic model. The parameters are estimated by a
method analogous to the maximum likelihood method
described by Lord (1968) with the likelihood
function modified to handle omits. (Wood, & Lord,
1976, p.1)

Of special interest, for our purpose is the method LOGIST uses to

specify the origin and unit of the measurement scale. Remember that

these are arbitrary, and both person and item parameters are

unidentifiable until these have been specified. LOGIST selects the unit

and origin in such a manner that the final theta estimates (9-hat) have

a mean of zero and a standard deviation of one, for all estimated thetas

inside the range -THLIM to +THLIM. THLIM is either specified by the

user or the default of 3.0 is used.

The method LOGIST uses to select the unit and origin was an

important consideration in the selection of criteria used to judge the

relative ability of the equating techniques to transform all parameters

to a common metric. In a following section, several such criteria are

discussed.

Estimation of Equating Constants

Each of the seven approaches described in Chapter 2 was used to

_ 0
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estimate the A and B equating constants for each condition listed in

Table 4. For each of the seven conditions in Table 4 there was an

associated pair of base group - comparison group estimated parameter

sets from LOOIST. These base and comparison group parameters were input

into each of the seven equating techniques. Notice that within each

condition, each equating technique used as data the same estimated base

and comparison group parameters. To obtain the estimated equating

constants, computer programs were written for each of the seven

techniques. These programs are listed in the APPENDIX.

Criteria for Recovery of the Equating Constants

The least complicated criterion for determining how closely each

technique recovered the true transformation is to compare the estimated

equating constants with the true values of these constants. The true

value of these constants, for each condition, are listed in the last two

columns of Table 4. Notice that the true values of the equating

constants listed in the last two columns of table 4 are identical to the

mean and SD of the comparison group distributions, listed in the

previous two columns of Table 4. This relation was anticipated on the

basis of the method used by LOGIST to specify the unit and origin of the

theta metric. Remember that to generate a normal distribution with man

equal to B and a SD equal to A, one can take the values from a normal

[0,1] distribution and apply the following linear transformation:

QJ Qj x A + B E3.1]
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Ve have the identical situation with our LOGIST estimated person

parameters. Remember that LOGIST fixes the mean of the estimated thetas

to zero and their standard deviation to one. Thus the parameters for

the base group will automatically be set to their original metric. The

estimated thetas for the comparison group, however, will also have a

mean of zero and a standard deviation of one. Then, it follows that the

A and B components of the linear transformation used to set the

estimated comparison group parameters to their original metric will

correspond exactly to the true SD and mean, respectively, of the

comparison group distribution for that condition. These values are

listed in Table 4.

To judge the accuracy of each of the seven approaches, a comparison

of the estimated equating constants with the true values can be made.

The technique whose estimates come the closest to the true A and B can

be ranked highest; the technique whose estimates come next closest, can

be ranked second, etc.

One drawback with this approach is exemplified by the situation in

which the estimated A constant of one equating technique is closest to

the true A, while the estimated B constant of another equating technique

is closest to the true B. Thus, in addition to examining the size of

the difference between our true and estimated constants for each

technique, it would be desirable to have an additional criterion that

incorporated the effect of errors in both, the A and the B constants

simultaneously.

One such criterion might involve the root mean squared error (RMSE)

difference between the true thetas and the estimated comparison group
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thetas, after equating. That is, from each of the seven equating

techniques, under each condition, we obtain values of our A and B

equating constants. From eq [1.2d], we can use these values to

transform the estimated thetas of our comparison group. Accordingly one

criterion would be:

RMSEtc [Oac(comp) - (AtcX Oaclcomp) + Bt 2[32

where the subscript t represents equating technique; o represents

Condition; and N equals the number of subjects in the comparison group.

The transformed thetas in the above RHSE belong to the comparison group

only. If the estimated equating constants are close to their true

values, we would expect the RKSE to be relatively small. On the other

hand, we would expect a relatively large value of the R1SE for poorly

estimated equating constants.

Notice that the size of the BME described by eq (3.2) is influenced

by two factors. First, the size of each PflSE is influenced by error in

the estimation of the comparison group thetas. For poorly estimated

thetas we would expect a relatively large B14SE. For good estimates of

these thetas we would expect to see a small 43SE. Second, the RMSE in

eq 13.2J is also influenced by the error in the estimated equating

constants. This is the portion of the R4SE that is of primary interest

for our purposes. One possible improvement over the criterion given by

(3.2) would be an index that was influenced only by the errors in the

estimated equating constants. That is, it would be desirable to have an
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index that was influenced only by errors due to equating and not by

errors of estimate in the comparison group thetas. This desire

motivates the following specification for a criterion that can be used

to judge the accuracy of the equating constant estimates in each

condition:

RMSEtc { Atc [(Bac-c / Ac] + Btcl - ea 13.3]

Notice that the transformation in the inner brackets represents one that

will give the true comparison group thetas a mean of zero and SD of one

(just as they would have if LOGIST had estimated these parameters

without error). This quantity is then transformed to the base group

metric using the estimated constants. Finally the squared difference

between the transformed theta and its true value is obtained and smmed

across examinees, to obtain the final RMSE. Notice that this index uses

only true theta values, and thus avoids the problem associated with

sensitivity to errors in person parameter estimation. The index given

in eq (3.3) was computed for each technique in each of the seven

conditons. Values of this index are listed in Tables 6 through 12.

Results

Tables 6 through 12 summarize the results of the simulated portion

of this study. Each table lists the results of one condition given in

Table 4. For each technique the estimated equating constants are given,

along with the RMSE given by eq (3.3].

Table 13 list the average of the RMSE values across all seven
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conditions for each technique. These averages were computed by taking

the RMSE values listed in Tables 6 through 12, and averaging the RMSE

values across the seven conditions, for each technique.
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Table 5

Key for Tables 6 through 13

TECHNIQUE Description

ALL b's b-parameter equating (using all bi 's)

SELECTED b's b-parameter equating (using well estimated bi's)

WEIGHTED b's b-parameter equating (using weighted bi 's)

TRUE SCORE True score equating (Stocking & Lord)

ICC (H) ICC equating (Haebara)

ICC (S/L) ICC equating (Segall & Levine)

MLE MLE equating based on vectors of item parameter
differences
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Table 6

(Condition 1)

A .80 B = -.50

NUMBER OF SUBJECTS

BASE GROUP: 1000 COMPARISON GROUP: 1000

NUMBER OF ITEMS: 60

TECHNIQUE A B RtSE-COMP

ALL b's .3679 -.5940 .4419832

SELECTED b's .7456 -.6102 .1228830

WEIGHTED b's .7797 -.5707 .0735640

TRUE SCORE .7491 -.5191 .0543682

ICC (H) .7695 -.5238 .0387308

ICC (S/L) .7557 -.5257 .0512494

MLE .7758 -.5025 .0242760
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Table 7

(Condition 2)

Au .80 B = -. 50

NUMBER OF SUBJECTS

BASE GROUP: 500 COMPARISON GROUP: 500

NUMBER OF ITEMS: 60

TECHNIQUE A B RMSE-COMP

ALL b's .1984 -.1578 .6916400

SELECTED b's .8415 -.4719 .0500991

WEIGHTED b's .7937 -.41246 .0756928

TRUE SCORE .7249 -.I4560 .0869498

ICC (H) .7700 -.4637 .0470628

ICC (S/L) .7236 -.4733 .0808992

MLE .7708 -.4533 .0550536
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Table 8

(Condition 3)

A: .80 B: -50

NUMBER OF SUBJECTS

BASE GROUP: 250 COMPARISON GROUP: 250

NUMBER OF ITEMS: 60

TECHNIQUE A B RMSE-COMP

ALL b's .964I0 -1.5273 1.04102315

SELECTED b's .8006 -.41035 .09641754

WEIGHTED b's .9011 -.41419 .11641287

TRUE SCORE .7738 -.4799 .0329480

ICC (H) .8038 -.4359 .0642359

ICC (S/L) .7254 -.41655 o08204152

MLE .7816 -.1416 .0873095
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Table 9

(Condition 4)

A= .80 B c 0.00

NUMBER OF SUBJECTS

BASE GROUP: 500 COMPARISON GROUP: 500

NUMBER OF ITEMS: 60

TECHNIQUE A B RMSE-COMP

ALL b's 2.2061 -.5012 1.4914301

SELECTED b's .8067 -.0186 .0197350

WEIGHTED b's .8509 -.0159 .0532301

TRUE SCORE .7797 .0095 .0224022

ICC (H) .8101 .0234 .0254557

ICC (S/L) .7777 .0092 .0241489

MLE .8196 .0526 .0561538
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Table 10

(Condition 5)

Az .80 B =-1.00

NUMBER OF SUBJECTS 4

BASE GROUP: 500 COMPARISON GROUP: 500

NUMBER OF ITEMS: 60

TECHNIQUE A B RMSE-COMP

ALL b's .3859 -2.5905 1.64133882

SELECTED b'3 .8670 -. 82341 .1888696

WEIGHTED b's .8725 -.8123 .20121141

TRUE SCORE .76415 -.8925 .1132213

ICC (H) .81041 -.8636 .1367862

ICC (S/L) .7612 -.8802 .12593415

MLE .8050 -.84175 .15255741
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Table 11

(Condition 6)

A: .80 B: -.50

NUMBER OF SUBJECTS

BASE GROUP: 1000 COMPARISON GROUP: 1000

NUMBER OF ITEM4S: 30

TECHNIQUE A B RMSE-COMP

ALL b's .2734 -.0522 .6910274

SELECTED b's .7294 -.41557 .0832805

WEIGHTED b's .8112 -.41340 .0669083

TRUE SCORE .6850 -.145149 .12342148

ICC (H) .7520 -.44166 .07181140

ICC (S/L) .7390 -.41478 .0802616

MLE .71470 -.14416 .07879114
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Table 12

(Condition 7)

A x .80 B = -. 50

NUMBER OF SUBJECTS

BASE GROUP: 997 COMPARISON GROUP: 1000

NUMBER OF ITEMS: 15

TECHNIQUE A B RMSE-COMP

ALL b's .5796 -.6473 .2650133

SELECTED b's 1.0096 -.4619 .2129480

WEIGHTED b's .8863 -.2355 .2781787

TRUE SCORE .8776 -.5151 .0790203

ICC (H) .9005 -.3897 .1491785

ICC (S/L) .8600 -.3953 .1206400

MLE .9383 -.3644 .1936142
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Table 13

Root Mean Squared Errors
Averaged Over all Seven Conditions

For Each Equating Technique

TECHNIQUE MEAN-RMSE

ALL b's .8950

SELECTED b's .1106

WEIGHTED b's .1236

TRUE SCORE .0732

ICC (H) .0762

ICC (S/L) .0807

MLE .0925
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CHAPTER 4

ASSESSMENT OF EQUATING TECHNIQUES

USING REAL DATA

This section examines the relative ability of the equating

techniques to estimate the transformation using "real" data. Real in

this context means the data are responses to items made by real people

on an actual test, as opposed to simulated data described in Chapter 3.

The major emphasis of this portion of the study is to examine the

effect that naturally occurring violations to the assumptions of IRT

have on the equating procedures. We suspect that such assumptions as

local indepencence, fit of the three parameter logistic model, and

unidimensionality are violated to some degree by real people answering

real items. By examining the performance of the equating techniques

using real data, we may gain some insight into the effect these

naturally occurring violations have on the performance of the equating

techniques.

Study I

Data

Data for these analyses were obtained from the Anchor Test Study

(Bianchini & Loret, 1974) equating study files. Item response data from

the Word Knowledge (50 items) and the Reading Comprehension sections (45
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items) of form F of the Metropolitan Achievement Tests (Durost, Bixler,

Wrightstone, Prescott, & Balow, 1970) were obtained. The Reading

Comprehension and Word Knowledge sections were combined and treated as a

single 95 item test in the analyses described below. The subjects

consisted of 2000 5th and 6th grade, white and black examinees.

Assignment of Subjects into Base and Comparison Groups

The 2000 subjects were randomly assigned to the base and comparison

groups. This assignment resulted in 1000 examinees in each group.

Note that this random assignment of subjects results in expected

values of the equating constants of A=1 and B=0. This is because random

assignment of subjects results in expected distributions of ability that

are equivalent across groups. If the distributions are equivalent, then

their first two moments are also identical. Remember that LOGIST sets

the unit of the scale equal to the SD of the estimated thetas and the

origin of the scale equal to the mean of the estimated thetas. If the

expected values of the mean and SD are equivalent for the base and

comparison groups then the linear transformation that places the

comparison group scale on the metric of the base group is simply:

9'= Ax 9+ B

where A=1 and B:O.

Estimation of Item and Person Parameters

The LOGIST computer program (Wood, Wingersky & Lord, 1976) was used

to estimate all person and item parameters for each group independently.
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Results

Each of the seven approaches described in Chapter 2 were used to

estimate the A and B equating constants. The base and comparison group

parameter estimates from LOGIST were used as input for each of the seven

techniques. Table 14 lists the estimated equating constants from each

of the seven techniques.

Notice that all the techniques did extremely well at estimating the

scale transformation. The first observation to be made is one

concerning the effect of naturally occuring violations of the IRT model.

With these data, none of the techniques appeared to be adversly effected

by violations to the model. This is evidenced by the close agreement of

all the estimated equating constants to their expected values.

The observation that all the techniques did well is not surprising.

In this condition, there were a relatively large number of subjects in

each group, each subject answering a relatively long (95 item) test.

Perhaps most importantly for the three b-parameter equating techniques

was the heterogeneity of the samples used to estimate these item

parameters. As a result of selecting two samples with wide range of

abilities (and in part due to the test's suitability to these samples),

all the b-parameters had small sampling errors. Thus the transformation

based on these 95 well estimated b-values was very close to the expected

transformation.

Because all the techniques did so well in estimating the

transformation, it may be interesting to assess the performance of these

techniques under less ideal condtions than the one discussed above. The

study outlined in the following section examines the performance of the
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Table 14

MAT

A z 1.00 B= 0. 00

NUMBER OF SUBJECTS

BASE GROUP: 1000 COMPARISON GROUP: 1000

NUMBER OF ITEMS: 95

TECHNIQUE A B

ALL b's 1.0042 .0011

SELECTED b's 1.0042 .0011

WEIGHTED V's 1.0079 -.0160

TRUE SCORE 1.0154 -.0154

ICC (H) 1.0151 -.0136

ICC (S/L) 1.0148 -.0131

MLE 1.0157 -.0144

See key on p.62 for identification of techniques.
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equating teohniques when smaller samples and fewer items are used.

Study II

Data

Data for these analyses were again obtained from the Anchor Test

Study (Bianohini, et al.) equating study files. In this study, only

item response data from the Reading Comprehension section (15 items) of

form F of the Metropoliton Achievement Tests (Durost, et al.) were

used. A new sample of 1000 5th and 6th grade, white and black examinees

was used. Note that the examinees used in these analyses were exclusive

of those used in Study I.

Assignment of Subjects into Base and Comparison Groups

The 1000 subjects were randomly assigned to the base and comparison

groups. This assignment resulted in 500 examinees in each group.

Notice that this random assignment of subjects again resulted in

expected values of the equating constants of A=1 and B=O.

Estimation of Item and Person Parameter

The LOGIST computer program (Wood, et al.) was used to estimate all

item and person parameters for each group independently.

Results

Each of the seven approaches described in Chapter 2 were used to
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estimate the A and B equating constants. The base and comparison group

parameter estimates from LOGIST were used as input for each of the seven

equating techniques. Table 15 lists the estimated equating constants

from each of the seven techniques.

Notice, from Table 15, that although the estimated transformations

are not as close to the expected values as were those from Study I, the

estimates from the present study all appear in fairly close agreement.

Again, the relatively good performance of the three b-parameter

techniques is most likely a result () the heterogeneous samples used to

estimate these values.

The implications of the finding of these results along with those of

the simulation portion of this study are discussed in detail in the

following Chapter.
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Table 15

HAT

A 1.00 B:a 0. 00

NUMBER OF SUBJECTS

BASE GROUP: 500 COMPARISON GROUP: 500

NUMBER OF ITEMS: 45

TECHNIQUE A B

ALL b'3 .9227 -. 0058

SELECTED b's .9227 -. 0058

WEIGHTED b's .9186 .0029

TRUE SCORE .8902 .01410

ICC (H) .9077 .0265

ICC (S/L) .9071 .0265

MLE .9071 .0297

See key on p.62 for identification of techniques.
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CHAPTER 5

DISCUSSION AND IMPLICATIONS

FOR THE SELECTION OF A TECHNIQUE TO

TRANSFORM PARAMETERS TO A COMMON METRIC

IN ITEM RESPONSE THEORY

The results of Chapters 3 and 4 suggest that a relatively cautious

approach should be taken by researchers when chosing a technique for

placing two sets of independently estimated parameters on a common

metric. The findings of the simulation section of this study (Chapter

3) did not indicate that one technique possesses a uniform advantage

over other techniques across the various conditions examined. The

results suggest that the choice of equating technique by the researcher

may be influenced by such factors as sample size, test length, and

differences between the two distributions of ability. The findings of

the analyses involving real data (Chapter 4) suggest that under some

circumstances, the transformation of scale estimated by even the

simplest techniques may be satisfactory.

Before any specific recommendations regarding the appropriate choice

of equating technique are made, the results of Chapters 3 and 4 will be

reviewed and discussed in detail. The recommendations made later in

this chapter will be based on these observations and insights.



75

Discussion of Simulation Results

Comment on Experimental Design

One major limitation of the design of the simulation study involves

the effects of sampling error of the equating constants on the RMSE

criterion. If the analyses for a particular condition were replicated,

it is possible that a different rank ordering of the techniques would be

observed.

Each estimated transformation involves the estimation of two

parameters, the A and the B equating constants. For a given technique,

under a specified condition, each of these parameters possesses a

specific standard error of estimate. The smaller the standard error of

estimate, the closer we would expect the estimated transformation to be

to the true transformation over numerous replications of the experiment

(assuming all the techniques are unbiased). If the standard error of

estimate for a technique were relatively large, we would expect to

observe a wide range of estimated scale transformations over numerous

replications, some close to the true transformation and others very far

from the true transformation. Notice for techniques with relatively

large standard errors of estimate, it is difficult to predict how close

the estimated transformation will be to the true transformation on any

one replication of the experiment. Predictions are usually made in

terms of expected differences over many replications of the experiment.

Techniques which possess smaller standard errors of estimate are desired

over techniques which possess larger standard errors of measurement.

Over many replications of the experiment the technique with the smaller

0
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sampling variance would produce estimates that are closer to the true

values than those produced by the technique with the larger sampling

variance.

The current simulation design can be thought of as an experiment

which assesses the performance of a technique using a single observation

in each of seven conditions. We would like to identify the techniques

with the smallest sampling errors. For a given observation, we would

expect the estimates from a technique with a small sampling variance to

be close to the true values (but we may occasionally observe values that

are far from the true values). Notice also that it is possible for a

technique with a large error of estimate to produce values close to the

true values. Thus by observing a single observation it is difficult to

make accurate inferences about the standard errors of estimate for the

equating techniques.

One solution to the above problem would be to perform numerious

replications of the experiment under each of the seven conditions. The

empirical distributions of the parameter estimates could then be used to

make inferences about their true sampling distributions. If a large

number of replications were performed, reliable and consistent

differences in the standard errors of estimate may be detected.

Unfortunately the cost of replicating all the analyses in each condition

is prohibitive with the resources currently available.

To gain some insight into making inferences about the performance of

the techniques using a single observation, the analyses for Condition 2

were replicated an additional four times for a total of five

replications. Each replication involved the sampling of new samples of

F.
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ability parameters, the generation of dichotomous responses, estimation

of item and person parameters, and finally the estimation of the

equating constants. The analyses are sumarized in Tables 16 and 17.

Table 16 displays the RHSE values and their rank orders for each

technique for each of the five replications. The RMSE values are in

parentheses, with the rank order of the RMSE across techniques for a

given replication displayed directly to the right. Table 17 displays

the mean, median, and range of RESE values for each of the seven

techniques for the same replications.

Notice (from Table 16), as anticipated the rank ordering of

techniques does not remain constant across replications of the

experiment. As discussed earlier this result is most likely due to

sampling error of the equating constants. Table 17 gives some insight

into the effect of sampling error on the RHSE criterion for each

technique. Notice that the range of RMSE values for the three b

parameter techniques is relatively large compared to the remaining

techniques.

The results of Tables 16 and 17 indicate that small differences in

RMSE values between two techniques should not be interpreted as evidence

for differential performance. It is likely that small differences may

be due to sampling error. Only large discrepancies in RMSE values

should be treated as significant differences in performance.

The reader is cautioned against directly applying the results

displayed in Tables 16 and 17 to the interpretation of results in the

remaining six conditions. First, these results are based on a small

number of replications and are also subject to the effects of sampling

0
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Table 16

RMSE Values and Rank Ordersfor Condition 2for Five Replications of the Analysis

IJ
Replication

TECHNIQUE 1 2 3 4 5

ALL b's (.692)7 (.390)7 (.715)7 (.713)7 (.864)7

SELECTED b's (.050)2 (.163)6 (.125)5 (.167)5 (.070)4

WEIGHTED b's (.076)4 (.096)4 (.198)6 (.223)6 (.118)6

TRUE SCORE (.087)6 (.075)1 (.065)1 (.082)3 (.054)2

ICC (H) (.047)1 (.093)3 (.123)4 (.079)2 (.069)3

ICC (S/L) (.081)5 (.090)2 (.089)2 (.076)1 (.034)1

MLE (.055)3 (.109)5 (.115)3 (.108)4 (.076)5

q
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Table 17

Summary of Five Replications
of Condition 2

Technique Mean Median min .--- Max Range

ALL b's .6748 .7133 .3904--.8643 .4738

SELECTED b's .1151 .1255 .0501--.1673 .1172

WEIGHTED b's .1421 .1178 .0757--.2229 .1472

TRUE SCORE .0723 .0746 -0536--.0869 .0334

ICC (H) .0821 .0789 .0471--.1228 .0757

ICC (S/L) .0738 .0809 .0336--.0899 .0563

MLE .0925 .1077 .0551--.1147 .0597
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error. Second, the sampling error of a given technique might be

expected to vary from condition to condition. Standard errors of

estimate in general would be expected to increase as sample sizes and

test length decrease, and as overlap of the two ability distributions

decreases. The main point to be stressed is that differences in RMSE

values should not be translated into literal differences in performance,

but rather should be interpreted in the context of sampling error of the

equating constants.

Summary of Simulation Results

Table 18 summarizes the results of the simulation study presented in

Chapter 3 (Tables 6 through 12). In parentheses are the RMSE values for

each technique, for each condition, copied from the last column of

Tables 6 through 12. To the left of each RMSE value is the rank order

(from smallest to largest) of the seven RMSE values for a given equating

technique, rank ordered across conditions. Directly to the right of

each RMSE value is the rank order (also from smallest to largest) of the

RMSE values for a given condition, rank ordered across techniques.

Below, the rank ordering of RMSE values for a given equating

technique are examined. Each technique is examined in turn. Some

theoretical predictions and considerations from Chapter 2 are integrated

with the empirical findings of Table 18.

Table 19 lists three sets of comparisons that are of special

interest: Test Length (Conditions 1,6,7), Sample Size (Conditions

1,2,3), and Ability Distribution Overlap (Conditions 4,2,5). As can be
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Table 18

Boot Mean Squared Error Values

and Rank Orders for

Simulation Conditions

Condition

TECHNIQUE 1 2 3 4~ 5 6 7

ALL b's 2( .44)7 4( .69)7 5(1.014)7 6(1.49)7 7(1.614)7 3( .69)7 1( .27)6

SELECTED b's 5(.123)6 2(.050)2 4(.096)5 1(.020)1 6(.189)5 3(.083)5 7(.213)5

WEIGHTED b's 3(.0714)5 4C.076)14 5(.116)6 1(.053)5 6(.201)6 2(.067)1 7(.278)7

TRUE SCORE 3C.0514)4 5(.087)6 2(.033)1 1(.022)2 6C.113)1 7(.123)6 4(.079)1

ICC (H) 2(.039)2 3(.0147)1 4(.0614)2 1(.025)4 6(.137)3 5(.072)2 7(.1'49)3

ICC (S/L) 2(.051)3 4(.081)5 5(.082)3 1(.024)3 7(.126)2 3(.080)14 6(.121)2

MLE 1(.02J4)1 2(.055)3 5(.087)'4 3(.056)6 6(.153)14 4(.079)3 7(.1914)~4

Summary of Conditions

N 1000 500 250 500 500 1000 1000

n 60 60 60 60 60 30 15

Coup Mean -. 5 -. 5 -. 5 0 -1 -. 5 -. 5
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Table 19

Comparisons

Effect Conditions

Test Length 1(60 Items) 6(30 Items) 7(15 Items)

Sample Size 1(1000 Subs) 2(500 Subs) 3(250 Subs)

Distribution 4(x=0) 2(xa-0.5) 5(x=-1.0)

Smal- (Expected m4SE)------.- Large
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seen from Table 4, within each set of comparisons listed in Table 19,

only one of the three factors (Sample size, Test Length or Distribution

Overlap) varies, while the values of the other two factors remain

constant. By examination of these sets of conditions, some insight into

the effect of each of these factors on each technique may be obtained.

Notice however that sampling error of the equating constants may in

large part influence the observed ordering of the RMSE values for each

of these contrasts. If for a particular technique the expected ordering

of RMSE values is not observed, we should not conclude that the factor

of interest has no effect, but rather should interpret the ordering of

RMSE values in the context of sampling error.

1. b-parameter Equating (using all the bi's). This technique finds the

transformation of the comparison group scale that equates the first two

moments of the two distributions of estimated b-parameters.

The sample size comparison (Conditions 1, 2 and 3) shows the

expected ordering. This rank ordering of RMSE values suggests that as

sample size decreases (from 1000 to 500 to 250) our RMSE values increase

(from .44 to .69 to 1.04). This finding may have been anticipated on

theoretical grounds, for as sample size decreases the standard error of

our b-parameters increases. This increase in the standard error of the

b values from conditions 1, 2 to 3 appears likely to have produced the

observed ordering of RMSE values for those conditions. The other two

comparisons of interest, Test Length (Conditions 1, 6 and 7) and overlap

of ability distributions (Conditions 4, 2 and 5) did not display the

expected rank orderings.
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Perhaps the most important observation to be made concerning the

RHSE values for the first technique is to note their large values

relative to the other values in the table. None of the transformations

estimated by the simple b-parameter technique appears close to the true

transformation. Thus, for a test with item parameters similar to those

specified in Table 3 and under conditions similar to those examined, the

simple b-parameter technique which incorporates all the values to

estimate the transformation appears unsatisfactory.

2. b-parameter Equating (using well estimated bi's). The objective of

this technique was to obtain a smaller set of better estimated bi's from

which to compute the transformation of scale. This was accomplished by

excluding items with extreme estimated difficulty values or small

estimated discrimination values.

Table 18 reveals a substantial reduction across each of the seven

conditions, of the RHSE values for the present technique. That is, by

removing the items with large standard errors from the items used to

estimate the sample moments, a substantial improvement of the estimated

transformtion is observed.

Of the three comparisons that examine the effects of Test Length,

Sample Size, and Ability Distribution Overlap, only the latter (Ability

Distribution Overlap) displays the anticipated rank order of RHSE

values. Notice however that the test length comparison is partially -

confounded by the exclusion of some items in each condition (due to

large standard errors). Table 20 lists the actual number of items

selected under each condition used to compute the transformation of
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Table 20

Number of Items Selected by
Technique 2 for

Estimation of Sample Moments

Condition Number Selected Total no. of Items

1 412 60

2 143 60

3 42 60

14 45 60

5 40 60

6 17 30

7 10 15
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scale. These are the number items determined to possess relatively

small standard errors by examination of the estimated a and b

parameters. Rather than basing our transformation on the full 60, 30

and 15 items for Conditions 1, 6 and 7; the transformation is actually

based on 42, 17 and 10 items respectively.

Although this b-parameter technique did very well in Conditions 2

and ., it is important to note that even after eliminating items with

large standard errors, that there is no guarantee that the

transformation based on the remaining items is adequate under any of the

conditions examined.

3. b-parameter Equating (using weighted bi's). This technique controls

for the effects of poorly estimated bi's by the use of weights that are

inversely proportional to the estimated standard errors of the estimated

item difficulties.

With respect to the first technique, there is a substantial

reduction across most conditions, of the PMSE values. However, it is

surprising to see that this technique did not display a large

improvement over the second technique for most of the Conditions in

Table 18. Additional evidence for this lack of large improvement is

displayed in Table 16. Notice that for the replications of Condition 2,

this technique displayed larger RMSE values than the restricted b

technique in four of the five replications.

One hypothesis consistent with the above results deals with the

estimator of the standard error of the b parameters (see Chapter 2 for a

review). The formulas used for estimating the standard error are
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asymptotic in nature, and converge to the true values as N (sample size)

tends towards infinity. For relatively small samples (say 500 or less)

the estimated standard error may be a poor approximation to the true

standard error. By examining Table 18, we can observe that the two

conditions in which the present technique possesses smaller RMSE values

than the second technique (Conditions 1 and 6) are conditions which

possess samples of 1000. Although this reversal of ordering for these

two conditions may be atributed to sampling error, the results are

consistent with the hypothesis that sample sizes of 500 or less are too

small to produce accurate estimates of the standard errors of the

difficulty parameters.

Both the Sample Size and Ability Distribution Overlap comparisons

displayed the expected ordering of RMSE values. The Test Length

comparison did not display the anticipated ordering.

4. True Score Equating (Stocking & Lord). This technique finds the

linear transformation necessary to develop a common metric by using

estimated true scores.

For five of the seven conditions, the RMSE values for the True score

technique are smaller than the corresponding RMSE values of the three b

parameter techniques. Thus, over most of the conditions examined, the

scale transformation estimated by the True score technique appeared

closer to the true transformation than those estimated by any of the

three b-parameter techniques. Additional evidence for the superior

performance of the True score technique is displayed in Table 16. The

True score technique displayed smaller RMSE values than all three

Sa
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b-parameter techniques in four of the five replications of Condition 2.

Of the three comparisons that examine the effects of Test Length,

Sample Size, and Ability Distribution Overlap, only the latter (Ability

Distribution Overlap) displayed the anticipated rank ordering of PHSE

values.

5. ICC equating (Haebara) and

6. ICC equating (Segall & Levine)

Both these techniques estimate the scale transformation by examining the

sum (across items) of the weighted sum of squared differences between

corresponding ICC's. These two techniques differ with respect to the

way that the squared differences for each ICC are weighted. The

weighting scheme suggested by Haebara (1980) weights those segments of

the estimated ICC differences in accordance with the relative frequency

of examinees falling in the region. The weighting scheme suggested by

Segall & Levine (1983), however, is formed from the product of the two

empirical pdf s from each group. This weight function is largest over

the range where the overlap of the two estimated distributions of

ability is the greatest, and zero where there is no overlap. The goal

here, remember was to place the heaviest emphasis on that portion of the

squared difference between corresponding ICC s that is relatively well

estimated in both groups.

Both sum of squares techniques out performed the three b-parameter

techniques in almost all the conditions examined (see Table 18). The

two sums of squares techniques produced RMSE values that were smaller

than those produced ty the True score method in 3 out of the seven

S



conditions examined. From Table 18 we can observe that Haebara's method

produced relatively smaller RO4SE values than the Segall & Levine method

in all but two of the seven conditions examined. From Table 16 however

a different ordering of RMSE values is displayed for the two techniques.

The Segall & Levine method displays smaller RMSE values than Haebara's

method in four of the five replications of Condition 2. This reversal

of RMSE ordering for these two techniques is most likely due to sampling

error. Although there may be real differences in performance between

the two methods, these differences, if they exist, appear too small to

be detected by the present design.

A closer examination of some intermediate results suggest one

alteration to the Segall & Levine method that may improve its

performance. The weight function suggested by Segall & Levine is formed

by taking the square root of the product of the two empirical pdf's

(after transforming the comparison group distribution to the base group

metric). This weighting scheme resulted in a weight function that

contains a relatively large number of zero elements. As a result the

weighted sums of squared difference between corresponding ICC s was

formed from a relatively small number of points because of the large

number of zero elements contained in the weight function. The sum of

squared differences estimated from a small number of points probably

resulted in a less accurate estimate of the sums of squares criterion

than if the squared differences had been evaluated at a larger number of

points. One improvement to this method would involve recomputing the

weight function in such a manner that it examined only the range of

distribution overlap, thus avoiding the problem associated with zero
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elements.

In Chapter 2 it was predicted that when the two distributions of

ability were roughly equal, the performance of the two sum of squares

techniques should produce similar results. This prediction is confirmed

by examining the RMSE values of Condition 4 for the two techniques.

7. Equating Based on Vectors of Item Parameter Differences. This

technique finds the scale transformation that maximizes an approximation

to the the likelihood of observing the vectors of item parameter

differences. In its present form, this technique relies on several

approximate properties of maximum likelihood estimators: (1) maximum

likelihood estimators are approximately normally distributed with mean

equal to the true parameter value; and (2) the asymptotic variance

covariance matrix for these estimates may be obtained from the inverse

of an approximated information matrix. The variance covariance

estimates are used to define the objective function that is used to

estimate the equating constants.

Over most of the conditions and replications (Tables 16 and 18)

examined the RMSE values for the MLE technique appear larger than the

corresponding values for the True score and sums of squares techniques....

One possibility is that this observed ordering is due to sampling error,

as discussed earlier. These results are also consistent with the

hypothesis that the observed performance may be explained by the heavy

reliance of this technique on the asymptotic propertioes of maximum

likelihood estimators. Some support for this explaination is achieved

by examination of Condition 1, (where there are 1000 examinees and 60
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items). In this condition, with a relatively large number of subjects,

the HLE procedure displayed smaller RMSE values than in other conditions

with smaller samples and shorter tests. It also performed relatively

well compared to the other methods (although this result may not be

reliable). It may be that sample sizes of 500 and test lengths of 30

are insufficient tn yeild good estimates of covariances matrices and

normally distributed estimates. Further analyses however would be

needed to confirm this hypothesis.

Of the three comparisons that examine the effects of Test Length,

Sample Size, and Ability Distribution Overlap, only the latter (Ability

Distribution Overlap) failed to display the anticipated rank ordering of

RMSE values.

Discussion of Real Data Results

As discussed in Chapter 4, Study I appears to indicate that none of

the techniques were adversely effected by violations to the IRT model.

This is evidenced by the close agreement of all the estimated equating

constants to their expected values. Similar results were obtained from

Study II. Although the estimated transformations were not as close to

the expected values as were those from Study I, the estimated equating

constants from Study II all appear in fairly close agreement.

One of the most surprising and important findings of Chapter 4 was

the excellent performance of the simple b parameter equating technique.

Notice that these results contradict the findings of the simulation
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results (Chapter 3), which showed this technique produced poor estimates

under all the conditions examined. It nay be possible, however, to

reconcile these findings by considering differences in the heterogeniety

of the samples used to estimate the item parameters, as well as the

relative difficulty of the items with respect to these samples.

Remember that b parameter values and the ability parameters "0" are

measured on the same scale. If the b value for a particular item

possesses a value close to many of the true ability parameters, the

estimate of that b value will possess a small standard error. If on the

other hand, the b value for a particular item possesses an extreme

value, far from most ability parameters, the estimate of that b value

will possess a relatively large standard error.

One hypothesis for the discrepant findings between the simulation

and real data studies is that there exists a different relation between

the difficulty parameters and ability distributions of the two analyses.

It may be that the test used to generate the simulated item responses

contained many more items with extreme b values than did the real test

examined in Chapter 4. These extreme b values, for the simulation

analyses, resulted in poor estimates of the scale transformation. This

hypothesis is examined in further detail in the following section.

The appropriateness of the simple b parameter technique is an

especially important issue. It is probably the most used technique for

transforming parameters to a common metric and thus deserves special

attention. One the the most widely used estimation programs LOGIST

(Wood, et al.) allows the metric of the theta scale to be specified by

standardizing on the estimated b values. That is, there is an option

E
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which sets the unit and origin of the theta scale to values that result

in the estimated item difficulties possessing a mean of zero and a

standard deviation of one. Notice that if two sets of parameters are

estimated independently, this option would automatically equate the

first two moments of the distribution of estimated item difficulties.

This procedure is identical to the simple b parameter technique

discussed in this paper. Notice that a simple rule that examined the

estimated parameter values from LOGIST to judge the appropriateness of

the simple b parameter technique would be extremely useful. One such

technique is developed in the following section. As a basis this rule

uses the results of the simulation and real data analyses of Chapters 3

and 4.

Recommendations for the Selection of

Appropriate Techniques for Transforming

Parameters to a Common Metric

The first issue to be addressed in this section is the specification

of a simple rule for governing the use of the simple b parameter

technique. The discrepant findings of Chapters 3 and 4 will be reviewed

in detail and used as a basis for developing this criterion.

The second goal of this section is the specification of general

guidelines concerning the use of all the equating techniques with

respect to certain test and sample characteristics. These guidelines

will also incorporate the results of Chapters 3 and 4, and are discussed

IA

pv
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in the latter portion of this section.

Guidelines for Use of the Simple b-Parameter Technique

The results of Chapter 3 indicate that the simple b parameter

technique p rformed poorly under all seven conditions examined. The

results of Chapter 4, the real data analyses, indicated satisfactory

performance by the equating procedure. The most likely explaination for

the difference in performance can be traced to the differences in the

distributions of the difficulty parameters, relative to the ability -

distributions. That is, for the simulation (Chapter 3) conditions, the

b values were specified in a manner that resulted in a large number of

extreme values (relative to the distribution of ability examined).

These extreme values, of course, possess large sampling errors, which in

turn result in a poor estimated scale transformation. The NAT, on the

other hand, appears to have the heaviest concentration of b values in

the region with the heaviest concentration of thetas. This b parameter

- ability distribution relationship produces well estimated difficulty

values, which in turn result in a well estimated scale transformation.

To add credibility to the above explaination, Figures 7 through 12

display the relation between the distribution of difficulty parameters

and the distribution of ability, for the HAT and simulation studies. In

each figure, the S-shaped curve (extending from the lower left hand

corner to the upper right hand corner) represents the cumulative

distribution function of the ability parameters. Each b value is

represented by a pair of horizontal and vertical lines, superimposed on

the same figure. Thus each b parameter for an item is represented by
6

o | ||
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one vertical and one horizontal line. The vertical line, terminating on

the theta axis, represents the value of the parameter. The horizontal

line for the same item, terminating on the odf axis, indicates the

proportion of thetas falling at or below the corresponding b value.

Figures 7 and 8 display the relation between the estimated b values

and ability parameters for the HAT (Chapter 4, Study I). From either of

the base or comparison group ealibrations, we observe a heavy

concentration of b values in the range -1.7 to +1.7 (vertical lines).

From examination of the horizontal lines for those same items, we

observe very few items that fall in the extreme tails of the cdf. Thus,

almost all the b values fall in a range surrounded by a substantial

number of thetas.

Figures 9 and 10 display the relation between the estimated b values

and ability parameters for the shorter 45 item version of the MAT

(Chapter 4, Study II). Again from either the base or comparison group

calibrations, we observe a heavy concentration of b values in the range

-1.7 to +1.7. As before, we observe practically no items falling in the

extreme tails of the odf. Thus, here also the b values fall in a range

at or near a substantial number of examinees.

Figures 11 and 12 however, suggest an entirely different relation.

These figures display the relation between the true b parameter values

used to generate the simulated responses (Chapter 3) and the true

ability parameters for 1000 subjects (for Condition 1). Remember that

these b values were sampled from a uniform distribution in the range -3

to +3. The uniformity of these values is evidenced by the roughly even

scatter of the vertical lines. From examination of the horizontal

ii
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Figure 7

Relation of Distribution of Estimated Difficulty Parameters
with Cuulative Distribution ot Estimated Person Parameters
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Figure 8

Relation of Distribution of Esatimated Difficulty Parameters
with Cumulative Distribution of Estimated Person Parameters

MAT COMP GROUP 95 ITEMS

141

.6
C
D
F

.4

0.

-3. -. 1.3.
-2. 0. 2

THETA



98

Figure 9

Relation of Distribution of Estimated Diftoulty Parameters
with Cumulative Distribution of Estimated Person Parameters
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Figure 10

Relation of Distribution at Estimated Difficulty Parameters
with Cumulative Distribution ot Estimated Person Parameters
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Figure 11

Relation of Distribution of True Difficulty Parameters used
in the Simulation Analyses with the

Cumulative Distribution of True Person Parameters (from Condition 1)
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Figure 12

Relation of Distribution of True Difficulty Parameters used
in the Simulation Analyses with the

Cuulative Distribution of True Person Parameters (from Condition 1)
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lines, for these same items, we observe a very sparse concentration of

values near the center of the edf, and very heavy concentrations near

the extremes of the odf.

Figures 11 and 12 display very dramatically the differences in the

distribution of difficulty values between the real and simulation

portions of this study. In the simulation portion of the study, there

were many b values concentrated at the extreme tails of the odf. These

b values fall in a range surrounded by few or no examinees, thus

possessing large sampling errors. These large sampling errors resulted

in poor estimated transformations from the simple b parameter equating

technique.

It is interesting to note that had the b values for the simulation

parameters been sampled from a normal, rather than uniform distribution,

results similar to those found in Figures 7 through 10 for the HAT,

would probably have been observed.

Table 21 summarizes some key information found in Figures 7 through

12. For each of these figures, the number of b values falling in the

extremes of the cdf were tabulated. Here, an extreme b value is one in

which fewer than 5% of the ability parameters possess more extreme

values. Thus, any b values falling in the cdf regions 0 to .05, and .95

to 1., were considered extreme as listed in Table 21. These are the b

values likely to possess the largest standard errors.

As can be observed from Table 21, the percent of simulation b values

falling in the extreme cdf range (40% and 58%) is much higher than any

of the MAT calibrations (ranging from 1% to 4%). This explains very

satisfactorily the differences in performance of the simple b parameter
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Table 21

Frequency and Percent of b Values
with Extreme Associated cdf Values

Frequency Percent

Test Test Length Sample Size Base Comp Base Comp

MAT 95 1000 1 1 1% 1%

MAT 45 500 1 2 2% 4%

Simulation 60 1000 24 35 40% 58%
Condition 1
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equating technique in the simulation and real data analyses. In the

simulation analyses, a large proportion of the b values possessed largeU
standard errors, while in the real data analyses only 1 to 4 percent at

most, possessed relatively large standard errors.

Notice that Table 21 suggests a relatively useful criterion. When

4% or less of the b values fall in the extreme odf range (as defined

above) for each group, and none of these b values possess a

corresponding cdf value of 0 or 1, the simple b parameter technique

appears to produce satisfactory results. Thus a criterion of 4 to 5

percent (with none of the items having cdf values of 0 or 1), may be

very useful in determining the adequacy of the simple b parameter

equating technique. Notice however, that a cut of 4% may represent a

relatively conservative estimate of the percent of items allowed to

possess large values relative to the distribution of ability. Further

study may show that slightly larger percentages are admissible.

Notice, also that one nice feature of the above guideline, is that

it is metric free, and can be used on any set of parameter estimates, no

matter how the unit and origin were specified. Thus, it would be

possible, for example, to estimate simultaneously the item parameters

and standardize on the estimated b parameters for the two groups

independently. Then, the above procedure could be used on each set of

estimated parameters to check the adequacy of this standardization,

after the standardization had already been performed.

Recommendations for Appropriate Use of the Seven Equating Techniques

As mentioned at the beginning of this chapter, a relatively cautious
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approach should be taken by the researcher when chosing a technique for

placing two sets of independently estimated parameters on a common

metric. Under the best of circumstances all the techniques appear to

perform well and transforming the parameters can be performed using one

of the simple b parameter techniques. Under the worst of circumstances,

the more complicated sums of squares and HLE techniques offer a clear

advantage over the simple b parameter techniques, and their use is

encouraged.

The first step, should be one of determining how well the simple b

parameter technique is suited to the test and ability distribution at

hand. The analysis presented in the previous section may provide very

useful insights into the suitability of the simple b parameter

technique. Remember, for each group separately, the estimated ability

parameters are sorted, and the proportion of thetas at or below each b

value is computed. If there is a large number of the b values with

extreme proportions, for either group, the researcher should consider

using one of the other techniques. If there are a small number of b

values in each group with extreme values, all the techniques would be

expected to perform relatively well. Thus, in the latter instance,

choice of equating method is not critical.

When a relatively large number of b values with extreme proportions

have been encountered, choice of equating technique may be further

influenced by such factors as sample size and test length. Again for

relatively large samples (1000 or more in each group) and relatively

long tests (60 or more items) the True Score, Sums of Squares, and MLE

procedures would be expected to produce satisfactory results.

L!
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For shorter tests and smaller samples, the True Score or either of

the ICC techniques would be likely to produce the most favorable

results. Because of the heavy reliance of the HLE technique on certain

asymptotic properties, its use is not recommended with small samples and

short tests.

Recommendations for Further Study

The results and insights gained from the current research raise a

number of issues deserving further investigation. Several of these

areas are described below.

Asymptotic Sampling Variance of Item Parameters

The results of portions of the simulation analyses raise several

questions concerning the relation amoung the asymptotic properties of

maximum likelihood estimates of item parameters, the estimators of the

standard error of these parameters, and sample size. The results

concerning the performance of the weighted b parameter technique appear

consistent with the hypothesis that samples of 1000 may be needed before

the estimates of the standard error of the b parameters are close

approximations to the true values. The results concerning the

performance of the MLE equating technique also appear consistent with

the hypothesis that samples of 1000 may be needed before the asymptotic

properties of the item parameters, and there variance oovariance

estimates are realized. Further investigation into the relation between
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sample size and the assumed asymptotic properties of the item parameters

for the logistic model would be relevant to many other areas of IRT as

well as the current research.

Guidelines for Simple b-Parameter Technique

Remember from the previous section that 4% was suggested as the

maximum proportion of items in a test possessing extreme odf values for

the acceptable use of the simple b parameter technique. Remember that

this criterion was selected on a basis of the results from the actual

MAT analyses, where the b parameter technique performed relatively well.

As indicated earlier, a criterion of 4% of the test items may represent

a relatively concervative criterion. A systematic study into the

effects of varying the number of items in a test with extreme b values

may indicate whether in fact a criterion of 4% is too oonoervative.

Improvements to Equating Techniques

Results from the analyses produced several insights for further

modifications to several of the techniques.

True Score Equating Technique (Stooking & Lord). The criterion

minimized by this technique only involves minimizing the sums of squared

differences between true scores for one of the two groups of examinees.

An increase in power may perhaps be achieved by adding another term to

the loss function which reflects the analogous term for members of the

other group of examinees, thus incorporating transformed and

untransformed true score estimates from both samples.

Sums of Squares Equating Technique (Segall & Levine). The weight
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function used in calculating the criterion contains zero's over a

substantial range of theta,, producing a weighted sums of squares

estimate for each item that was formed on the basis of a very small

number of points. One improvement to this technique would involve a

modification to the weighting scheme that evaluated the ICC using a

larger number of points in the same range of ability distribution

overlap. This would produce a more accurate estimate of the weighted

sums of squares criterion, which in turn may improve the performance of

the technique.

0



109

APPENDIX

Fortran Computer Programs Used to Estimate

Scale Transformation for All Seven Equating Techniques

EQUATE - Subroutine

This routine estimates the linear transformation necessary
to place two independently estimated sets of parameters on a
common netric. Seven approache., are available. These are
discribed in Chapter 2. This routine makes several calls to
to IMSL (Version 9) subroutines. All other subroutines are
listed below. Program was written for use on CDC system using
Fortran Extended Version 4.

EQUATE(PARB,PARC, IROWNITEMSTHETAB,THETAC,NSUBSB,
NSUBSC,NPAR,IOPTAB,IOUTTIMEIERROR)

PARB: Matrix of NITEMS rows by 3 columns containing the
estimated item parameters for the base group. Row 1
contains the item parameters for item 1, Row 2 contains
the item parameters of item 2, etc. Column 1 contains the
a-parameters, column 2 contains the b-parameters and
column 3 contains the c-parameters. If using the 2
parameter model all values in column 3 should be set to zero.

PARC: Matrix of NITE4S rows by 3 columns containing the

estimated item parameters for the comparison group. Format
is same as PARB.

IROW: Row dimension of PARB and PARC exactly as specified
in the calling program.

NITEMS: Number of items in PARB and PARC.

THETAB: Vector of length NSUBSB containing ability
parameter estimates for base group examinees. A value
of 999 is treated as Missing.

THETAC: Vector of length NSUBSC containing ability
parameter estimates for comparison group examinees. A
value of 999 is treated as missing.

NSUBSB Number of subjects in base group (including 999's).
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NSUBSC Number of subjects in comparison group (including 999"s).

NPAR: Number of item parameters in model. If using the
2 parameter model, NPAR=2, otherwise, NPAR=3. 4

IOFT- Vector of length seven. To obtain equating
constant estimates for technique k, set IOPT(k)-1, where:

IOPT(1) = b-parameter equating (using all b's)
IOPT(2) = b-parameter equating (using well

estimated b's)
IOPT(3) = b-parameter equating (using weighted b's)
IOPTC4) = True score equating (Stocking & Lord)
IOPT(5) = ICC equating (Haebara)
IOPT(6) = ICC equating (Segall & Levine)
IOPT(7) = KLE equating based on parameter differences

A: Vector of length seven containing the A constant
estimates for techniques specified in IOPT. The
estimate for technique k are in Ak).

B: Vector of length seven containing the B constant
estimates for techniques specified in IOPT. The
estimate for technique k are in B(k).

1OUT: Tape number specified in program statement to which
error messages will be written.

TIME: Vector of length seven containing the number of
CPU seconds used to estimated the equating constants. The
amount of time used by technique k is in TIME(k).

IERROR: Vector of length seven containing error message
codes. A value of zero for the kth element signifies that
satisfactory estimates were obtained by technique k.

Subroutine Listings:

SUBROUTINE EQUATE( PARB, PARC, IROWNITEMS,THETBTHETC,
0 NB,NCNPAR,IOPT,A,B,IOUT,TIMEERROR)

C S
REAL PARB(IROW,3),PARC(IROW,3),THETB(NB),
0 THETC(NC),A(7),B(7),THETAB(2000),THETAC(2000),
* TIME(7)
INTEGER IOPT(7) ,ERROR(7)

C
C INITIALIZE CONSTANTS TO ZERO

_ 6



DO 11 L z 1,7
A (L) z 0.
B(L) = 0.

11 CONTINUE
C
C CHECK FOR M4ISSING THETAS, IN BASE GROUP

K z 1
DO 17 J z 1,NB

IF(THETB(J) .EQ. 999.) GOTO 17
THETAB(K z THETB(J
K z K+ 1

17 CONTINUE
NSUBSB x K - 1

C
C CHECK FOR MISSING THETAS IN COMP GROUP

K: 1 I
DO 19 J a19NC

IF (THETC(J) .EQ. 999.) GOTO 19
THETAC(K) z THETC(J)
K zK +1

19 CONTINUE
NSUBSC z K- I

C
C SELECT SPECIFIED EQUATING TECHNIQUES:

Ti z SECOND(CP)
IF (IOPT(1) .EQ. 1)
0 CALL BEQUAT(PARBPARCIROWNITEKSABIOUTIER)
ERROR(1 a IER
T2 a SECOND(CP)
TIME(1 a T2 - Ti
Ti = T2

C
IF (IOPT(2) .EQ. 1)
4 CALL BEQUAR(PARBPAJRCIROWNITEHSABIOUTIER)
ERROR(2) a IER
T2 a SECOND(CP)
TIME(2) a T2 - Ti
TI a T2

C
IF (IOPT(3) -EQ. 1)
* CALL BEQUAC(PARB ,PARC, IROW ,NITEMS ,THETABTHETAC ,NSrJBSB,
* NSUBSCNPARABIOUTIER)
ERROR(3) a IER
T2 a SECOND(CP)
TIME(3) z T2 - Ti
Ti z T2

IF (IOPT(ii) SEQ. 1)
9 CALL TESLRD(PARBPARCIROWNITD(STHETABNSUBSBABIOUTIER)
ETIROR('4 z IER
T2 a SECOND(CP)
TIME(4 z T2 - Ti
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Ti z T2
C

IF (IOPT(5) .EQ. 1)
CALL HAEBAR(PARBPARCIBtOWNITEi4S,THETABTHETAC,NSUBSB,
*NSUBSCABIOUT9IER)
ERROR(5) = IB
T2 a SECOND(CP)
TIME(5) s T2 - Ti
Ti z T2

IF (IOPT(6) .EQ. 1)
*CALL SLSUMS(PARBPARC ,IROW,NITEI4STHETAB,THETACNSUBSB,
*NSUBSC,ABtIOUTqIER)
ERROR(6) = IE
T2 z SECOND(CP)
TIME(6) =T2 - Ti
Ti = T2

IF (IOPT(7) .EQ. 1)
*CALL EQUMLEC PARBPARC ,IROWNITEKSTHETABTHETAC,
*NSUBSBNSUBSCNPARA,BIOUTIER)
ERROR(7 = IE
T2 = SECOND(CP)
TIME(7 z T2 - Ti

C
RETURN
END

C
C **""""iUNRESTRICTED DIFFICULTY EQUATING * *II*UhI
C

SUBROUTINE BEQUATPRBPARCIROWNITEISABIOUT,IER)

REAL PARBCIROW,3),PkRC(IRow,3),A(7),BC7)
C
C INITIALIZE VALUES

BTOT = 0.
CTOT = 0.
BTOT2 = 0.
CTOT2 = 0.
IKE z 0

C
C COM4PUTE MEANS AND SDS

DO 30 I z 19MITEMS
BTOT = BTOT + PARBCI,2)
BTOT2 z BTOT2 + PARB(I,2)*02.
CTOT =CTOT + PARC(I,2)
CTOT2 = CTOT2 + PARC(I,2)002.

30 CONTINUE
C

SDB =(SQRT(FLOAT(NITEKS)'BTOT2 -BTOT02. ) )FLOAT(NITEMS)
SDC =(SQRT(FLOAT(NITEMS)*CTOT2 -CTOTO"2. ))/FLOAT(NITEMS)
BMEAN = STOT / FLOAT(NITEMS)
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OIEAN zCTOT / FLOAT(NTTES)
C
C COMPUTE EQUATING CONSTANTS:

AM z SDB/SDC
B(1) z EMEAN - AM1 0 CMEAN

C
RETURN
END

C
C **** h~hRESTRICTED DIFFICULTY EQUATING *Ii*******

C
SUBROUTINE BEQUAR(PARBPAfCIROWITESABIOUTIER)

REAL PARB(IROWt3),PARC(IROW,3),A(7),B(7)
C
C INITIALIZE VALUES

BTOT =0.
CTOT s0.
BTOT2 =0.
CTOT2 = 0.
XNITEM = NITEMS
IER z 0

C
C COMPUTE MEANS AND SDS

DO 30 I = 19NITEMS
IF (PARBI,1) .LT. 0.15 .OR. ABS(PARB(I,2)) .GT- 3.0

* .OR. PARC(I,1) .LT. 0.15 .OR. ABS(PARC(I,2)) .GT. 3.0)
f XMITEM z JKITEM - I

IF (PARB(I,1) .LT. 0.15 .OR. ABS(PARBCI,2)) .GT. 3.0
0 .OR. PARCCI,1) .LT. 0.15 .OR. ABS(PARC(I,2)) .GT. 3.0)
# GOTO 30

BTOT z BTOT + PARB(I,2)
BTOT2 xBTOT2 + PARB(I,2)002.
CTOT = CTOT +e PARC(I92)
CTOT2 xCTOT2 + PARC(192)962.

30 CONTINUE
C

SDB = (SQRT(XNITEMOBTOT2 - BTOT*02.))/XNITEM
SDC = (SQRT(XNITEMOCTOT2 - CTOT*02.))/XNITEM
OMEAN mBTOT / NITEN
CMEAN = CTOT /XNITEM

C
C COMPUTE EQUATING CONSTANTS:

AM2 z SDB/SDC
0(2) = BMEAN - AM2 0 Q4EAN

C
RETURN
END

C
C 000000060004 WEIGHTED DIFFICULTY EQUATING * I .~

SUBROUTINE BEQUAC(PARB, PARCIROWNITEMSTHETABTHETAC, .
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0NSUBSBNSUBSCNPARABIOUTIER)
C

REAL PARBCIROW,3),PARC(IROW,3),THETAB(NSUBSB),

C INITIALIZE ERROR VAR

C
C COMPUTE COVARIANCES FOR EACH ITEM FROM EACH GROUP

DO 101 1 z lNITEMS,
C
C COMPUTE COV FOR BASE GROUP

APAR = PARBI,l)
BPAR = PARB(Iq,)
CPAR = PARB(I,3)

* CALL COV3PL(THETAB,NSUBSB,APAR ,BPARCPAR,NPAR,3,COVB,
0IOUTIER)

C
C COMPUTE COV MATRIX FOR COMP GROUP

APAR = PARCCI,1)
EPAR = PARCCI,2)
CPAR = PARCCI,3)
CALL COV3PL(THETAC,NSUBSC,APAR ,BPAR,CPAR ,NPAR ,3,COVC,
0 IOUTIER)

* C
C EXTRACT LARGER OF THE TWO VARIANCE ESTIMATES

W(I) = l./COVBC2,2)
IF (COVC(2,2) .GT. COVJB(2,2)) W(I) I ./COVC(2,2)

101 CONTINUE
C
C COMPUTE WEIGHTED MEANS

CONST z0.
BMEAN =0.
CMEAN = 0.
SDB = 0.
SDC = 0.
DO 121 I = 1,NITEMS

BMEAN = BMEAN + PARBI,2) 0 W(I)
CMEAN = CHEAN + PARC(I,2) 0 W(I)
CONST = CONST + W(I)

121 CONTINUE
BMEAN = BMEAN /CONST
CMEAN =CHEAN /CONST

C
C COMPUTE WEIGHTED SD

DO 178 I1 1,NITEMS_
SDB =SDB + C(PARB(I,2)-BMEAN)**2.) 0 W(I)
SDC =SDC + ((PARC(I,2)-CMEAN)002.) 0 W(I)

178 CONTINUE
8DB = SQRT(SDB/CONST)
SDC c SQRTCSDC/CONST)

C
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C COMPUTE EQUATING CONSTANTS
AM3 = DB / SDC
B(3) = BEAN - A(3) * CMEAN

C
RETURN
END

C
C STOCKING AND LORD
C

SUBROUTINE TESLRD(PARBPARC ,IROW,NITEMSTHETABNSUBSB,AB,
* IOUTOIER)

C
EXTERNAL FUNLRD
REAL PARBCIROW,3) ,PARC(IROW,3),THETAB(NSUBSB),
* A(7),B(7),X(2),W(21),SPARC(20093),PAR(1) ,F(2),
0 STHETA(2000) ,ETAB( 2000)
INTEGER SNITEM ,SNSUBS

C
COMMON SPARC, STRETA ,SN ITEM, SNSUBS, ETAB

C
C INITIALIZE ERROR VAR

IER = 0
C
C TRANSFER STUFF INTO COMMON ARRAYS

DO 105 1 = 1,NITEMS
DO 101 J = 1,3

SPARC(IqJ) =PARC(IJ)
101 CONTINUE
105 CONTINUE

C
DO 109 J =1,NSUBSB

STHETA(J = THETABWJ
109 CONTINUE

SNITEM = NITEMS
SNSUBS = NSUBSB

C
C INITIALIZE VALUES OF EQUATING CONSTANTS

IF (A(2) .EQ. 0.0 AND. B(2 .EQ. 0.0)
CALL BEQUARCPARBPARC,IROh,NITEKSA,B,IOUTIER)

XC1) = A(2)
X(2) = B(2)
CALL UGETIO(3,OIOUT)

C
C COMPUTE ETA FROM BASE GROUP CALIBRATION

Do 18 1 1,NSUBSB
THET =THETABWJ
ETAB(J = 0.
DO 29 1 = 1,NITEKS

APAR = PARB(Ir1)
BPAR = PARB(I,2)
CPAR = PARB(I,3)
PROB = P3PL(APAR,BPAROCPAR,THET)
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ETAB(J = ETABCJ +. PROB
29 CONTINUE
18 CONTINUE

C
HC PERFORM MINIMIZATION

NSIG =3
MAXFN 200
N =2
CALL ZSPOW (FUNLRDNSIG,NMAXFNPARXFNORMWIER)
AM'I = X(1U BMiI = X(2)

C
RETURN
END

C

SUBROUTINE FUNLRD(X,FNPAR)

REAL X(2),SPARCC200,3),STHETA(2000),ETABC2000),
*F(2)PAR(1
INTEGER SNSUB,SNITEM

* ~COMM4ON SPARC, STHETAqSNITEM, SNSUBS ,ETAB

C INITIALIZE VALUES
A = X(1
B = X(2)
DIRA = 0.
DIRE = 0.
D = 1.702

C
C FOR EACH SUBJECT

DO 500 J = 1,SNSUBS
THET = STHETA(J

C
C COMPUTE DERIVATIVES OF ETA (FOR COMPARISON GROUP CALIBRATION)

ETAC =0.
DETAA 0.
DETAB =0.
DO 39 I1 1,SHITEM

APAR =SPARC(I,1)0
BPAR =SPARC(I,2)
CPAR =SPARC(I,3)

C
C PARTIAL DERIVATIVE OF P WITH RESPECT TO A

DPROBA=(EXP( ((BPAR*A-THET+B)'APAR'D)/A)*(THET-B)'(CPAR-1. *
+ APAROD)/C(EXP(C(BPAR'A-THETe.B)*APARD)/A)e1)002'A"2) _

C
C PARTIAL DERIVATIVE OF P WITH RESPECT TO B

DPROBB=(EXPC((BPARSA-THET+B)IAPAR'D)/A)'(CPAR-1.)SAPARSD)/((EXP
+ (((BPAR'A-THET+B)'APAR*D)/A)+1.)0'*A)

C
DETAA = DETAA + DPROBA
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DETAB DETAB + DPROBB

APAR aSPARC(I,1) / A
EPAR xA 0 SPARC(I,2) + B
CPAR zSPARC(I,3)
PROB = P3PL(APARBPARCPABTHET)
ETAC =ETAC +PROB

39 CONTINUE
C

DIRA z DIRA + (ETAE(J)-ETAC) 9 DETAA
DIRE DIRE + (ETAB(J)-ETAC) 0 DETAB

500 CONTINUE
C

F(l) = (-2. / FLOAT(SNSUBS)) 0 DIRA
F(2) = (-2. / PLOATCSNSUBS)) * DIRE

C
RETURN
END

C
C HAEBARA SUMS OF SQUARES
C

SUBROUTINE HAEBAR (PARE, PARC ,IROWNITEMSTHETABTHETAC ,NSUBSB,
9NSUBSCAqBIOUTIER)

C
EXTERNAL HFUNCT
REAL PARB(IROW,3),PARC(IROW,3) ,THETAE(NSUBSB),
6 THETAC(NSUBSC),CUTP(21),MIDP(20),HBASE(20),HCOMP(20),
f SPARB(200,3),SPARC(20093),X(2),ff(3),Q(2),V(6),A(T),B(7)
INTEGER SNITEM

C
COMMON HEASEHCOMPNINTSPARESPARC SNITEMMIDP

C
C INITIALIZE VARIABLES

NCUT = 21
HINT z NCUT - 1
XLOWC =-3.
XHIC = 3.
SNITEM = NITEMS
IER a0

C
C INITIALIZE CUT POINTS

CALL ESPNT (CUTPqNCUTpXLOWCqXHIC)
C
C INITIALIZE MIDPOINTS

HDELT =(CUTP(2) - CUTP(l)) / 2.
XLOWM = XLOWC + WDELT
XHIM c XHIC - HDELT
CALL ESPNT(MIDP ,NINTtXLOWMoXHIM)

C
C COMPUTE PROPORTIONS FOR EASE GROUP DISTRIBUTION

CALL PEDIS(CUTPNCUTNINTTHETABNSUBSEHEASE)
C
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C COMPUTE PROPORTIONS FOR COMPARISON GROUP DISTRIBUTION
CALL PEDIS(CUTPNCUTNINTTHETACNSUSCHCOMP)

C
C TRANSFER ITEM PARAMETERS INTO COMON ARRAYS

DO 29 I = 1,NITEMS
DO 27 J = 1,3

SPARB(IJ) = PARB(IJ)
SPARC(IJ) = PARC(IJ)

27 CONTINUE
29 CONTINUE

C INITIALIZE STARTING VALUES OF EUATING CONSTANTS
IF (A(2) .EQ. 0.0 .AND. B(2) oEQ. 0.0)

* CALL BEQUAR(PARBPARC,IROWNITEMS,ABIOUTIER)
X(1) A(2)
X(2) = B(2)

C PERFORM MINIMIZATION
CALL UGETIO(3,O,IOUT)
N-2

NSIG - 3
MAXFN= 500
IIOPT 2

C
CALL ZXMIN(HFUNCT,NNSIGMAXFN,IIOPT,X,H,G,FWIER)
A(5) = X(1)
B(5) = X(2)

RETURN
END

C
SUBROUTINE HFUNCT(NqXF)

C
INTEGER SNITEM
REAL HBASE(20),HCOMP(20),SPARB(200,3),SPRC(200,3),MIDP(

20),
0 X(2)

C
COMMON HBASEsHCOMPNINTSPARBSPARCSNITEMMIDP

C
C INITIALIZE PARAMETERS

A X(1)
B X(2)
SSC = 0.
SSB = 0.

C

C ACCUMULATE SUMS OF SQUARES
DO 18 I = 1,SNITEM

ABASE = SPARB(I,l)
BBASE = SPARB(I,2)
CBASE = SPARB(I,3)
ACOM = SPARC(I,1)
BCOM = SPARC(I,2)



119

CCOM = SPARC(I,3)
C

DO 14 J z ININT
C
C FOR COMPARISON GROUP

TC = MIDP(J)
TB = A 0 MIDP(J) . B
SS z (P3PL(ACO4BCOMCCOMqTC) -

P3PL(ABASEBBASEgCBASETB)) *' 2.
SSC = SSC + (SS • HCOMP(J))

C
C FOR BASE GROUP

TC = (MIDP(J) - B) / A
TB = MIDP(J)
SS = (P3PL(ABASEBBASECBASETB) -

I P3PL(ACOM,BCOMCCOMTC)) "0 2.
SSB = SSB + (SS 0 HBASE(J))

14 CONTINUE
18 CONTINUE

C
F = SSC + SSB

C
RETURN
END

C
SUBROUTINE PEDIS(CUTPNCUTNINTTHETANSUBSH)

C
REAL CUTP(NCUT) ,H(NINT),THETA(NSUBS)

C

C INITIALIZE TO ZERO
DO 10 L = 19NINT

H(L) c 0.
10 CONTINUE

C
C UPDATE FREQUENCIES

DO 400 J = 1,NSUBS
DO 200 K z 1,NINT

KP1 z K + 1
IF (THETA(J) .LE. CUTP(KP1) .AND. THETA(J) .GT. CUTP(K))

H(K) a H(K) + 1.
200 CONTINUE
400 CONTINUE

C
C TRANSFORM RELATIVE FREQUENCIES TO RELATIVE PROPORTIONS

DO 500 L z 1,NINT
H(L) = H(L) / FLOAT(NSUBS)

500 CONTINUE
C

RETURN
END

C
C * I I m WEIGHTED SUMS OF SQUARES *IIIm I'me"'
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C
SUBROUTINE SLSUMS (PARBPARCIROWNITEMSTHETABTHETACNSUBSB,
9 NSUBSCqABIOUT9IER)

(TERNAL SLFUN

1 (2) ,W(21) A( 7) ,B(7) ,F(2) ,SPARC(200, 3) ,PAR( 1)
6CUTPB(21 ) HBASE(20) ,VEIOHT(20)

C
INTEGER SNITEM

COMMON MIDPCqSNITE4,SPARBqSPARC ,WEIGHT

XHI
S NITIALIEMVRABE
CRIT = 201

INT = 0CU

XOXLOWC . ET
XHIM = 3.C- DL
CALLM SNTMDCNNLWSHM

C
C CONPTAEPRPRIN FO COMPARISON GROUP DISTRIBUTIO

CALL ES(CUTPC ,NCUTNINT ,THTCNUSHOP
C
C INTRAFE ITEMPARAMETEROU IN OIONTSRAY

SDL a(UPAC(,) - PARPC(I,)/2

29 L CONTIE INtLOMXHM
C
C INIPTAE STOPRTIONG VALUE OFMPEQUATIGU CONSTRIT O

*CALL EI(UARPRBPACIRONTEAMSBSOrJTIE)

C
C FORANSEC STEAG EESINOCMONARY

88 2SA 7 JSAG = 1

SPARBIsJ)a PAR(ItJ
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AL = X(1)
BL = 1(2)

C
C COMPUTE BASE GROUP CUT-POINTS

DO 17 J a 1,NCUT
CUTPB(J) a (CUTPC(J) 9 X(1)) + X(2)

17 CONTINUE
C

C COMPUTE PROPORTIONS FOR BASE GROUP DISTRIBUTION
CALL PEDIS( CUTPBNCUT ,NINT ,THETABNSUBSBHBASE)

C
C COMPUTE WEIGHT FUNCTION

DO 52 J = 1,NINT
WEIGHT(J) z SQRT(HBASE(J) * HCOMP(J))

52 CONTINUE
C
C PERFORM MINIMIZATION

CALL UGETIO(3,0,IOUT)
C CALL UERSET(0,LEVOLD)

N-2

NSIG 3
MAXFN 200
CALL ZSPOW(SLFUNNSIGN,MAXFNPAR,XFNORMWIER)

C
C CHECK FOR CONVERGENCE

Dl = ABS(AL-X(1))
D2 = ABS(BL-X(2))
IF (ISTAGE oGE. 10) GOTO 603
IF (Dl .GT. CRIT .OR. D2 .GT. CRIT) GOTO 88

C
C FINISH
603 CONTINUE

A(6) = X(1)
B(6) = X(2)

C
RETURN
END

C
SUBROUTINE SLFUN(XFNPAR)

C

REAL SPARB(200,3),PAR(1),F(2),
* MIDPC(20),X(2),
* WEIGHT(20),SPARC(200,3)

C
INTEGER SNITEM

COMMON MIDPC, SNITEM, SPARB, SPARC ,WEIGHT
C
C INITIALIZE VALUES

A = X(1)
B = X(2)

C
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C COMPUTE PARTIAL DERIVATIVES
FM1 = PDA(SPARBSPARCSNITEM!IDPCWEIGHTAB)
F(2) = PDB(SPARBSPARCSNITDII4IDPCWEIGHTAB)

C
RETURN

EN

REAL FUNCTION PDA(PARBPARCNITEISMIDTWEIGHTAB)
C

REAL PARB(200p3)tPARC(20093)gMIDT(20),WEIGHT(20)
C PARTIAL DERIVATIVE WITH RESPECT TO A
C
C INITIALIZE VALUES

PDA = 0.0
D 1.702

C
DO 300 I 19NITEMS

ABI =PARB(I,1)

BBI =PARB(I,2)
CBI =PARB(I,3)
ACI =PARC(1,1)
BCI PARC(I,2)
CCI PARC(I,3)
DO 250 J a1920

TJ = ?4IDT(J)
TTJ zTJ 0 A + B
WJ = WEIGHT(J)
IF (WJ .EQ. 0.0) GOTO 250

C
C PARTIAL DERIVATIVE OF PB WITH RESPECT TO A

ANS=(-EXP(BIABID4TJOABI'D'A4ABI'DOB) (CDI- 1. )TJ'ABI'D)
+ /(EXP(BBI'ADI*D).EX(P(TJOABI'D'A.ABI'D'B) )"2

C
C COMPUTE PROBS

PB = P3PL(ABI,BBItCBI#TTJ)
PC =P3PL(ACIgDCI,CCITJ)

C
C COMPUTE DIRIVITIVE OF TERM

TERM =2. 0 WJ 0 ANS 0 (PB -PC)

C
PDA =PDA + TERM

250 CONTINUE
300 CONTINUE
C

RETURN
END

C
REAL FUNCTION PDB(PARB,PARC,NITE4S,M~IDT,WEIG-HT,A,,B)

C
REAL PARB(200,3),PARC(200,3),NIDT(20),WEIGHT(20)

C
C INITIALIZE VALUES
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PDB c0. 0
D =1. 702

C
DO 300 I c1,NITEKS

£31 z PARB(I,1)
BBI = PARB(I92)
CBI z PARB(IP3)
ACI a PARC(I,1)
BCI c PARC(I92)
CCI z PARC(It3)
DO 250 J z1,20

TJ c MIDT(J)
TTJ = TJ 0 A +. B
V.7 c WEIGHT(J)
IF (V7 .EQ. 0.0) GOTO 250

C
C PARTIAL DERIVATIVE OF PB WITH RESPECT TO B

ANS:(-EXP(BBI'ABIOD+TJ'ABIID'A.ABI*D'B)' CCBI-1 .)*ABID)/(EXP
+(BBI'ABI'D)iEXP(TJ1ABI'D'A+ABI'D*B) )"2

C
C COMPUTE PROBS

PB = P3PL(ABIoBBIoCBITTJ)
PC = P3PL(ACIoBCItCCITJ)

C
C COMPUTE DIRIVITIVE OF TERM

TERM a2. 0 V.7 0 ANS * (PB -PC)

C
PDB PDB + TERM

250 CONTINUE
300 CONTINUE

C
RETURN
END

C
C *IiiiiigiiiiIMLE EQUATING
C

SUBROUTINE EQUMLE(PARBPARC ,IROWRITE4STHETABTHETAC,
0 NSUBSBNSUBSCNPAR,ABIOUTIER)

C
REAL PARB(IROW,3),PA2RC(IROW,3),THETAB(NSUBSB),THETAC(NSUBSC),

* COVB(33,20),COV(33),COV2(3,3),COVC(3,3,200),
* ()
6 H(3),G(2),W(6),A(7)B(7)SPARB(200,3)SPARC(200,3)

INTEGER SNITEM, SNPAR
C

EXTERNAL KLEFUN
COMMON COVBCOVC ,SNITENSPARBSPARCSNPAR

C
C INITIALIZE ERROR VAR

IER a 0
C
C INITIALIZE STARTING VALUES OF EQUATING CONSTANTS
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IF (A(2) .EQ. 0.0 .AND. 3(2) .EQ. 0.0)
CALL BEQUAR(PARBPARCIROWNITESABIOJTIER)

X(1) z AM2
* X(2) = B(2)

CALL UOETIO(39O,5)
C
C TRANSFER STUFF TO COMMON ARRAYS

DO 4141 I = 19NITEMS
DO 411 J = 193

SPARB(IIJ) z PARB(IpJ)
SPARC(IqJ) = PARC(IqJ)

411 CONTINUE
1441 CONTINUE

SHITEMI NITEMS
SNPAR =NPARU C

C COMPUTE COVARIANCE MATRICES
DO 99 ITM = 1,NITEHS

AB = PARB(ITM91)
BB = PARB(ITM92)
CB = PARB(ITM93)
AC = PARC(ITM91)
BC = PARC(ITM92)
CC = PARC(ITMP3)
CALL COV3PL(THETABNSUBSBABBBCB,NPAR,3,COVlIOUTIER)
CALL COV3PL(THETACNSUBSCACBCCCNPAR,3,COV2,IOUTIER)
DO 71 I = 19NPAR

DO 69 J = lqPAR
COVB(I,JtITM) = COV1(IJ)
COVC(IJITM) z COV2(IJ)

69 CONTINUE
71 CONTINUE
99 CONTINUE

C
C PERFORM MINIMIZATION

NSIG = 3
N =2
MAXFN = 500
lOFT z 2
CALL ZMIN(MLEFUNtNNSIGKAXFNIOPTXHoFWIER)

C
AM ) X(1)
B(7) = X(2)

C
RETURN
END

C
SUBROUTINE MLEFUN(N ,X F)
REAL COVB(3,3,200),COvC(3,3,200),SPkRB(20093),
* SPARC(200,3),COV(393),WK(3),SCOV(3,3),
0 V(3),X(2)
INTEGER SNITE4,SNPAR
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COMM9ON COVBCOVCSNITEMSPAR,SPARtCSNPAR
C
C INITIALIZE VALUES

A X(l)
B zX(2)
F s1.

U z 0
C

DO 500 ITH 19SKITEM
C
C TRANSFORM COVARIANCE MATRIX FOR COMPARISON GROUP

DO 9 I = 1,SNPAR
DO 7 J z 19SNPAR

COV(IJ) = COVC(IJtITm)
7 CONTINUE
9 CONTINUE
COV(191) = COVC1,1) /(002.)
COV(2,2) = COV(2,2) *(A"02.)
IF (SNPAR .EQ. 2) GOTO 39
COVC1,3) = COV(1,3) / A
COVC391) = COV(1,3)
COV(2,3) =COV(2,3) ' A
COV(3,2) = COV(293)

39 CONTINUE
C
C COMPUTE SUM OF COVARIANCE MATRICES

Do 415 I = 1,sNPAR
DO 43 J a 19SHPAR

SCOV(IqJ) = COV(IJ) + COVB(IJITM)
413 CONTINUE
415 CONTINUE

C
C TRANSFORM ITEM PARAMETERS FOR COMPARISON GROUP

APAR = SPARC(ITM,1) / A
BPAR = (SPARC(ITMP2) 0 A) + B

C
C COMPUTE VECTOR OF PARAMETER DIFFERENCES

V(1) = SPARBCITM91) - APAR
V(2) =SPARB(ITM92) - SPAR
V(3) = SPARS(ITM93) - SPARC(ITM93)

C
C COMPUTE MULTIVARIATE DENSITY VALUE (PROS)

CALL NORDEN(SCOVqVSNPARqPROBtCS)
C
C INCREMENT CURRENT FUNCTION VALUE

F =F 0 PROB
C
C CHECK AND CORRECT FOR UNDERFLOW

70 IF(ASS(F) .GT. 1.) GOTO 100
U = KK + 1
F F 0 10211.
GOTO 70
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100 CONTINUE
C

500 CONTINUE
C
C COMPUTE LO OF FUNCTION VALUE AND MULTIPLY BY -1

F -ALOO(F) + 10. 0FLOAT(KK) * ALO(2.)
C

RETURN

SUBROUTINE NORDEN (COVCENqP ,DEN ,CS)
INTEGER P
REAL COV(3,3),CEN(3),WK(3),INVCOV(3,3),B(3),TEMP(3,3),
TEIP2(3)

C
C INVERT COVARIANCE MATRIX 4

DO 11 1 = 1,P
DO 10 J = 1,P

Tfl4P(IJ) = COV(I,J)
10 CONTINUE
11 CONTINUE

CALL LINVlFCTEMPP,3,INVCOV,0,WKIER)
C
C COMPUTE CHI-SQUARE

DO 79 I = 19P
TEMP2CI) =0

TE4P2(I) =TEMP2(I) + CEN(J) INVCOV(JI)
77 CONTINUE
79 CONTINUE

CS =0.
Do 418 K = 19P

CS = CS + TEMP2(K) 0 CEN(K)
148 CONTINUE

C
C COMPUTE DETERMINANT OF COVARIANCE MATRIX

Dl =5.
CALL LINV3F(COVB,14,p,3,D1,D2,WKIER)
DET = Dl ' (2.*OD2)

C
C COMPUTE P-VARIATE NORMAL DENSITY

PIE = 3.1415927
DEN = ((2.*PIE)60C-P/2.)) 0 (DETO(-.5)) 0 EXP(-CS/2.)

C
RETURN
END

C UTILITY SUBROUTINES *********~**

P3PL - Function
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This routine computes probabilities according to the
3-parameter logistic model for given values of a,b,c
and theta.

REAL FUNCTION P3PL(A,B,C,THETA)

A: a-parameter

B: b-parameter

C: c-parameter

THETA: Person parameter

Function listing:

REAL FUNCTION P3PL(A,B,CTHETA)
XNUM = 1. - C
DENOM = 1. + EXP(-1.702 6 A 0 (THETA - B))
P3PL z C + (XNUM/DENOM)
RETURN
END

ESPNT - SUBROUTINE

THIS SUBROUTINE CREATES A VECTOR OF EQUALY SPACED POINTS

ESPNT (X ,NPONTS,XMIN ,XMAX)

X: OUTPUT VECTOR OF LENGTH NPONTS WHICH CONTAINS THE EQUALY
SPACED POINTS.

NPONTS: NUMBER OF POINTS WHICH X WILL CONTAIN.
NPONTS SHOULD BE GREATER THAN OR EQUAL TO 2.

XMIN: MTNIMUM VALUE OF X VECTOR. WILL BE PLACED
IN FIRST ELD4ENT OF VECTOR X.

XMAX: MAXIMUM VALUE OF X VECTOR. WILL BE PLACED
IN LAST ELEMENT OF VECTOR X.
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Subroutine listing:

SUBROUTINE ESPNT(X,NPONTS,XMINXMAX)
REAL X(NPONTS)

C
C

X(1) = XMIN
XPONTS = NPONTS
XNINT = XPONTS - 1.
XINCRE = (XMAX-XMIN)/XNINT
DO 10 1 = 2,NPONTS

X(I) = X(I-1) + XINCRE
10 CONTINUE

RETURN
END

COV3PL - SUBROUTINE

THIS ROUTINE COMPUTES THE ITEM COVARIANCE MATRIX FOR THE TWO
OR THREE PARAMETER LOGISTIC MODELS. FORMULAS ARE TAKEN FROM
LORD (1980) P.191.

COV3PL (THETASNSUBS,ABC,NPARIRCOVIOUTIER)

THETAS: VECTOR OF LENGTH NSUBS CONTAINING THE THETA PARAMETERS
FOR THOSE ANSWERING THE ITEM. IF A SUBJECT DID NOT
ANSWER THE ITEM, THE THETA FOR THAT PERSON SHOULD BE SET
TO 999.

NSUBS: LENGTH OF VECTOR THETAS, INCLUDING 999-S. NUMBER OF

SUBJECTS.

A: A-PARAMETER FOR THE THREE PARAMETER LOGISTIC MODEL.

B: B-PARAMETER FOR THE THREE PARAMETER LOGISTIC MODEL.

C2 C-PARAMETER FOR THE THREE PARAMETER LOGISTIC MODEL. IF
THE TWO PARAMETER MODEL IS DESIRED, C SHOULD BE SET EQUAL
TOO.

NPAR: NUMBER OF ESTIMATED PARAMETERS IN MODEL. NPAR=2 FOR THE
TWO PARAMETER MODEL, OR WHEN C IS KNOWN, NPAR=3 FOR THE
THREE PARAMETER MODEL.

IR: ROW DIMENSION OF MATRIX COV EXACTLY AS SPECIFIED IN THE
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CALLING PROGRAM.

COV:. OUTPUT, NPAR BY UPAR MATRIX CONTAINING THE COVARIANCE

MATRIX.

IOUT: TAPE NUMBER OF OUTPUT FILE.

IER: IF IER > 0, AN ERROR OCCURED IN AN IMSL SUBROUTINE AND

RESULTS IN COV AIRE NOT THE ACTUAL ESTIMATES.

Subroutine listing:

SUBROUTINE COV3PL(THETASNSUBSABCNPARIRCOVIOUTIER)
REAL THETASCNSUBS)OCOV(IR,3),
0 INF(3,3),WK(3),TCOV(3,3)
CALL UGETIO(3,OIOUT)

C
C INITIALIZE VALUES TO ZERO

DO 30 J = 1,NPAR
DO 25 I 1,NPAR

INF(IJ) a0.0
25 CONTINUE
30 CONTINUE

C
C COMPUTE ADDITIVE TERMS IN COVARIANCE MATRIX

DO 100 J = 1,NSUBS
THET = THETASWJ
IF (THET .EQ. 999.0) GOTO 100
PROB P3PL(AqBqCTHET)
QDP =(1.-PROB)/PROB

C
INF(1,1) = INF(191) + (((THET-B)002.) 0 ((PROB-C)4"2.) I

0 QDP)
INF(292) = INFC292) + (((PROB-C)"02.) # QDP)
INF(2t1) =INF(2,1) + ((THET-B) 0 ((PROB-C)0*2.) 0 QDP)

C
IF (NPAR .EQ. 2) GOTO 100

PINFC3,1) c INF(3,1) + ((THET-B) 0 (PROB-C) *QDP)
INF(312) z INF(3,2) + ((PROB-C) 0 QDP)
INFC3,3) = INF(3,3) + QDP

100 CONTINUE
C
C MULTIPLY TERMS BY RESPECTIVE CONSTANTS

* D = 1.702
CTERM z .= 1-)#.
INF(191) = (D*"2.) ' CTERM * INF(1,1)
INF(291) = 0D002.) 0 A 0 CTERM ' INF(2,1) 0 (-1.)
INFC1,2) = INF(2,1)
INF(292) = CDO02.) ' (002.) * CTERM 0 INF(2,2)

* C
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IF (NPAR .EQ. 2) GOTO 200
INF(3,1) = D 6 CTERM 0 INF(3,1)
INF(193) = INF(3,1)
INF(3,2) =(-1.) 0D *A f CTERM 6INF(3,2)IINF(2,3) = INF(3,2)
INF(3,3) = CTERM 0 INF(3,3)

200 CONTINUE
C
C FIND INVERSE OF INFORMATION MATRIX

* CALL LINVlF(INFNPAR,3,TCOV,0,VKIER)

C COPY RESULTS TO MATRIX: COY
DO 305 J = 19NPAR

DO 300 1I 1,NPAR
COV(IJ) TCOV(I,J)

300 CONTINUE
305 CONTINUE

C EUR

END
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