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Abstract

The research findings of the AFOSR Grant AFOSR-86-0196, "Optical Symbolic Computing
Tasks" are summarized for the period 1 June 1987 - 31 May 1988. Specifically, we have con-
centrated on the following topics: complexity studies for optical neural and digital systems and
learning algorithms for neural networks. Several conference and journal papers reporting the
research findings have been published. A list of publications and presentations is given at the
end of the report along with a set of reprints and preprints.

3



1 Complexity of optical neural and digital systems

1.1 Connectivity and hierarchical neural networks

In neural networks the connectivity can be very high and in many cases the nets are even fully
connected. As has been shown by Psaltis, even optical systems may not be able to provide
this much connectivity for nets with large numbers of neuron units (i.e., 2-D arrays of neuron
units). One technique for optically reducing the physical interconnection requirements is to take
advantage of any symmetry or regularity in an interconnection. Since neural nets are particu-
larly useful for random problems, and this may imply random interconnections, at first thought
utilizing symmetry may not seem plausible. However, in many cases nets may have a hierarchical
structure, and this may often imply some repetition in the interconnections. For example, a
network that utilizes a number representation scheme with binary neurons may have the same
interconnections repeated for each group of neurons. Most number representation techniques
that have been described for neural networks do not have this repetition, but we have found 6
that variants of them do. We have designed such network structures that have repeated blocks,
one for each represented number, and have incorporated proper update rules for the neurons to
ensure convergence of the net. This work has focused on single layer feedback networks used

for combinatorial optimization. This yields a hierarchical network in the sense that each block
represents the lower level, and the interconnections from block to block represent the higher level.
It may also be extendable to hierarchies with more than two levels.

1.2 Digital optical parallel system complexity

Our study of digital optical system complexity has been continuing; in year 2 of this grant it has
included a comparison of optical and electronic interconnection network complexity, and a study
of design and complexity tradeoffs for the implementation of a shared memory parallel computer.
The complexity of some common interconnection networks have been analyzed for optical and
electronic VLSI implementations in detail. The optical system used for analysis was the hybrid
2-hologram interconnection system of Jenkins, et al. Area complexity was compared and found
to be

VLSI OPTICS

Banyan 0(n 2 ) 0(nlog2n)
Shuffle/Exchange 0(n /logn) O(n logn)
Hypercube 0(n 2) O(nlog2n)
2-D Cellular Hypercube > 0(n 2 ) 0(n)

It should be noted that the electronic results have received a great deal of work on using various
clever tricks and algorithms to reduce the result to near optimum. The optics case was only
investigated by us and can likely be reduced further by using different layouts. The Banyan and
shuffle/exchange networks are isomorphic and for them, optics has lower complexity for large n.
An example of how the optical complexity can be lowered can be seen in the hypercube network.

4
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The 2-D cellular hypercube is identical to two overlapping hypercube networks, so it has twice as
many interconnections, yet its optical area comvlexity is much lower because it is space-invariant.

We have more recently applied our expertise and results in complexity analysis to the use
of optics in the implementation of a parallel digital shared memory computer. This machine
encompasses electronic processing elements, an optical reconfigurable interconnection network,
and optical, electronic, or hybrid memory modules. We have been studying optimal uses of
optics in the interconnections the associated control techniques, and machine performance vs.
all-electronic parallel machines (especially the IBM GF11 and RP3 shared memory machines).
We have also been and continue to study the possible use of superposition as part of the inter-
connections and memory access in this machine, which may permit parallel, simultaneous read
access to memory, as well as reduce the well-known contention problems in large interconnection
networks with distributed control.

2 Learning Algorithms

2.1 Potential Difference Learning

We have developed a new learning algorithm, potential difference learning. It is based on a
temporal difference of the neuron unit potential,

CrlAwij 0C /Apixj

where Awij is the weight increment from neuron j to neuron i, Api is the temporal difference of
potential, and xj is the jth input to neuron i, for self-organization in neural networks. Depend-
ing on the time sequence of the input patterns during learning, it can learn based on the input
patterns themselves or based on the time difference of input patterns. It has no weight overflow
as with a strict Hebbian law. It can, with suitable presentation of the input patterns, also be
used to unlearn or erase stored states in an associative memory without access to the individual
weights and without reversing the sign of the learning gain constant.

" We have simulated potential difference learning on two different networks: (1) an Amari net-
work, i.e. a single layer fully connected network with feedback, used as an associative memory,

and (2) a 3-layer network used as two associative memories with a hidden layer to relate pairs of

-J stored vectors. These are described in a paper attached to this report.

2.2 Stochastic Learning Networks for Computer Vision

We have developed stochastic learning networks for an important problem in Computer Vision,

viz, texture segmentation. Our approach is based on minimizing an energy function, derived

.5



I through the representation of textures as Markov Random Fields (MRF). We use the Gauss
Markov Random Field (GMRF) to represent the texture intensities and an Ising model to char-
acterize the label distribution. We first used an adaptive Cohen-Grossberg/Hopfield network to
minimize the resulting energy function. The solution obtained is a local optimum in general and
may not be satisfactory in many cases. Although stochastic algorithms like simulated anneal-
ing have a potentiaJ of finding a global optimum, they are computationally expensive. We have
developed an alternate approach based on the theory of learning automaton which introduces
stochastic learning into the iterations of the Hopfield network. This approach consists of a two
stage process with learning and relaxation alternating with each other and because of its stochas-
tic nature has the potential of escaping the local minima.

The learning part of the system consists of a team of automata A,, one automaton for
each pixel site. Each automaton A, at site s maintains a time varying probability vector
PS = [P.l...,PsL] where Pk is the probability of assigning the texture class k to the pixel site s.
Initially all these probabilities are equal. At the beginning of each cycle the learning system will
choose a label configuration based on this probability distribution and present it to the Cohen-
Grossberg/Hopfield neural network described above as an initial state. The neural network will
then converge to a stable state. The probabilities for the labels in the stable configuration are
increased according to the following updating rule: Let k, be the label selected for the site
s = (ij) in the stable state in the n-th cycle. Let A(n) denote a reinforcement signal received by
the learning system in that cycle. Then,

ps,. (n + 1) = p. (n) + aA(n)[1 - P,,..]

p8 2(n) = p.,(n)[l - aA(n)],Vj A k,

for all s = (ij),l < ij < M.

* In the above equation 'a' determines the learning rate of the system. The reinforcement signal
determines whether the new state is good compared to the previous one in terms of the energy
function. Using the new probabilities, a new initial state is randomly generated for the relaxation
network and the process repeats. The above learning rule is called Linear Reward-Inaction
rule in the learning automata terminology. More details of this algorithm may be found in [1].
A preprint of this paper is attached.

We have tested this algorithm in classifying some real textured images. The results are sum-
marized in [6]. The Hopfield network solution has a misclassification error of about 14% without
learning. The error decreased to 6.8% when stochastic learning was introduced. When simulated
annealing was tried the error rate is 6.3%, but the number of iterations were considerably more.

~In general stochastic algorithms seem to perform better than any deterministic scheme.

Currently we are working on extending these methods to do hierarchical segmentation and the
preliminary results are quite promising. We are also investigating the possibility of extending this

6



approach to other vision problems such as computation of optical flow. Under partial support
from this grant and the USC URI Center for the Integration of Optical Computing, we have
developed an adaptive neural network based algorithm for a fundamental problem in image
processing, viz, the restoration of a blurred and noise corrupted image. One of the important
stages of the algorithm is learning the blur parameteres form prototypes of original and degraded

images. Details of this algorithm along with restoration results were presented in a paper which
appeared in a special section on neural networks [1].

1*1

70
QLq Z 4pk

o0



3 List of Publications

1. Y.T. Zhou, R. Chellappa and B.K. Jenkins, "A Novel Approach to Image Restoration Based3on a Neural Network," Proc. IEEE First International Conference on Neural Networks,
San Diego, vol. IV, pp. 269-276 June 1987.

2. C.H. Wang and B.K. Jenkins "Potential Difference Learning and Its Optical Design," ac-
cepted for Proc. Soc. Photo-Opt. Instr. Eng., vol. 882, January 1988.

3. Y.T. Zhou, R. Chellappa, A. Vaid, and B.K. Jenkins, "Image Restoration Using a Neural
Network," IEEE Trans. Acoust. Speech and Signal Processing, vol. ASSP-36, pp. 1141-
1151, July 1988.

4. C.H. Wang and B.K. Jenkins, "The Implementation Consideration of a Subtracting In-
coherent Optical Neuron," The IEEE International Conference on Neural Networks, San
Diego, July 1988.

5. B.K. Jenkins and C.L. Giles, "Superposition in Optical Computing," accepted for Proc.
ICO Topical Meeting on Optical Computing, Toulon, France, to appear, August 1988.

6. B.S. Manjunath and R. Chellappa, "Stochastic Learning Networks for Texture Segmenta-
tion", (Accepted for Publication at the Twenty Second Annual Asilomar Conference on
Signals, Systems and Computers), Pacific Grove, CA, Oct. 1988.

7. B.K. Jenkins and C.H. Wang, "Model for an Incoherent Optical Neuron that Subtracts,"
Optics Letters, submitted January 1988, to appear October 1988.

8



3 4 Oral Presentations

1. B.K. Jenkins, "Optical Computing: Status and Prospects," briefing given to Dr. Bernard
Paiewonsky, Deputy for Advanced Technology, Air Force, The Pentagon, Washington, D.C.,
September 1987.

2. B.K. Jenkins and C.H. Wang, "Model for An Incoherent Optical Neuron that Subtracts,"
annual meeting of the Optical Society of America, paper PD4, Rochester, New York, Oc-
tober 1987.

3. B.K. Jenkins and C. Lee Giles, "Massively Parallel Optical Computing," IEEE Communi-
cations Theory Workshop, Sedonna, Arizona, April 18-21, 1988.

4. B.K. Jenkins, "Optical Computing: Status and Prospects," IEEE Orange County Chapter
meeting, Santa Ana, California, May 1988.

I

9

0%



W1 ~ XACKKARAJLI XjT WR x R FIP- TV P,,vw-w~K,.~~ WVr IWW '.KyK s sv.J wwUU-~w ]

Model for an Incoherent Optical Neuron that Subtracts

B. K. Jenkins and C. H. Wang

Signal and Image Processing Institute, Department of Electrical Engineering

University of Southern California, Los Angeles, CA 90089-0272

Abstract

An Incoherent Optical Neuron (ION) is proposed that subtracts inhibitory inputs from ex-

citatory inputs optically by utilizing two separate device responses. Functionally it accommodates

positive and negative weights, excitatory and inhibitory inputs, nonnegative neuron outputs, and can

be used in a variety of neural network models. An extension is given to include bipolar neuron outputs

in the case of fully connected networks.

..

l * submitted to Optics Letters, Dec. 1987.
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In this letter we propose a general incoherent optical neuron (ION) model that can process ex-

citatory and inhibitory signals optically without electronic subtraction. Conceptually, the inhibitory

signal represents a negative signal with a positive synaptic weight or a positive signal with a negative

synaptic weight. The ION can be used in a network in which the neuron outputs are nonnegative

and the synaptic weights are bipolar, for example, by connecting the interconnections with negative

weights to the inhibitory neuron inputs and those with positive weights to the excitatory inputs. Our

intent is to show that it is in principle not necessary to go to opto-electronic devices solely because of

the requirement for subtraction capability.

Techniques that have been described to date are impractical in all-optical implementations of

most neural networks. They utilize an intensity and/or weight bias, in some cases coupled with

complemented weights or inputs. As noted in [1], these techniques suffer from bias buildup and/or

thresholds that must vary from neuron to neuron. A technique described in [21 eliminates most of

these drawbacks in the special case of fully connected networks.

The ION model uses separate device responses for inhibitory and excitatory inputs. This is modeled

after the biological neuron which processes the excitatory and inhibitory signals by different mecha-

nisms (e.g. chemical-selected receptors and ion-selected gate channels) [3]. The ION comprises two

elements: an inhibitory (I) element and a nonlinear output (N) element. The inhibitory element pro-

vides inversion of the sum of the inhibitory signals; the nonlinear element operates on the sum of the

excitatory signals, the inhibitory element output, and an optical bias to produce the output of the

neuron. The inhibitory element is linear; the nonlinear threshold of the neuron is provided entirely by

the nonlinear output element. Fig. 1(a) and 1(c) show the characteristic curve of the I and N elements

respectively. The structure of the ION model is illustrated in Fig. 1(d). The input/output relationship

of the I and N elements are

2
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4't4h=1I- '1 (1!
t = '#.* -) = ,(I,., + I,= + aio - a) (2)

where Ii and I,., represent the total inhibitory and excitatory inputs, i,, is the total input to

the N elements, Ib,.,, is the bias term for the N element, which can be varied to change the threshold,

and a is the offset of the characteristic curve of the N element. V;(.) denotes the nonlinear output

function of the neuron. If we choose I'bua to be a - 1, the output of the N element is

4U', = oa=- Iih) (3)

which is the desired subtraction. In general, the I element will not be normalized (Fig 1(b)), in

which case the offset, a,, and slope of its response can be compensated by setting 'bi., = a - a, and

U attenuating the output of the I element by a factor bl/al, respectively. The unnormalized I element

must have gain greater than or equal to 1. A nonzero neuron threshold, 0, can be implemented by

shifting the bias by the same amount, so 'bi.s = a - a, - 0 for the unnormalized I element.

The ION model can be implemented by using separate devices for the I and N elements as depicted

in Fig. 1 (heterogeneous case), or by using a single device with a nonmonotonic response (Fig. 2)

to implement both elements (homogeneous case). Possible devices for ION implementation include

bistable optical arrays and spatial light modulators such as liquid crystal light valves. A single Hughes

liquid crystal light valve could implement both elements. The offset of the device response must

satisfy a > nal + 0, where n = 1 for a heterogeneous implementation and n = 2 for a homogeneous

implementation.

3



A device to realize the inhibitory (I) element will of course not have a perfectly linear response.

To assess the robustness of this model to nonlinear I elements, and compensation techniques for large

deviations from ideal response, we have performed simulations of a network similar to Grossberg's

competitive network [4] for edge detection. The simulated network contains 30 conventional inner 1
product neurons connected in a ring structure with input and lateral on-center off-surround connec-

tions. We model the normalized I element response as exp(-(z/a)b], where a and b are parameters

that determine the specific nonlinear response. This provides insight into the sensitivity of the ION

model to nonlinearities in the I element response, without being overly specific to one given device.

A suitable choice of a and b does provide a close fit to the inversion region of the normalized exper-

iental characteristic of a liquid crystal light valve (LCLV). By adjusting the parameters a and b,

four different nonlinear inversion curves were simulated in this network. In the simulation a compen-

sating attenuator was used before the I element instead of after it. The N element response, which

provides a close approximation to the normalized increasing portion of the LCLV response (Fig. 2),

is modeled as 1 - expj-(x/0.43)1"2]. Fig. 3 shows the computer simulated responses of this network.

Each resolvable row of the figure represents a 1-D simulation on a distinct l-D input. Thirty different

binary inputs were each simulated at four different input signal levels. Fig. 3(b) gives the ideal output,

and (d) simulates a response that is close to the experimental response of our LCLV. Deviation from

linearity of the I element is measured by normalized mean square error (nmse), which is defined as

f[v(i) - D(i)]2 di/ f V(i) 2 di, where u(i) and 6(i) are the output value of the linear and simulated non-

linear characteristic curves. The input level i ranged from 0 to 0.7. Our LCLV characteristic has an

nmse of 50%, which does not perform well. If proper input attenuation of the I element is included, the

network performs correctly. Four nonlinear curves are simulated, each with optimal input attenuation;

we find that deviations from linearity that give an nmse of approximately 15% (measured after input

4
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attenuation) can be tolerated. For more extremely nonlinear devices, a bias point and limited region

of operation can be used.

The fan-in and fan-out of the ION, neglecting interconnection effects such as crosstalk, can be

calculated as follows. (Interconnection effects are important but are not peculiar to the ION model.)

We assume binary neurons. As shown in Fig. 1(c), the output of the i-th neuron can be formulated

as I, + AIYNV, where Vi E {0, 1} is the output state of the neuron i and I, is the residual output

of element N. Let the fan-in and fan-out of each neuron be Nin and NV,.t respectively. The summed

inputs to neuron j can be grouped into two terms, a noise term caused by residual outputs (I,) of the

optical neurons and the signal term. Consider the worst case, i.e. all weights are close to one and only

one input is active. If we assume each neuron must be able to discriminate a change in any one of its

input lines, then the signal term must at least be greater than the noise term. This is a reasonable

assumption for networks with small fan-in and fan-out. Thus the maximum fan-in is

N ) = extinction ratio of element N. (4)

The fan-out is calculated from the I element, as shown in Fig. 1(b). The ratio of the maximum

input (a,) to the minimum input IiN)/N x) is the fan-in ) where N is the maximum

fan-out over all neurons, thus

N (mx N(max) IN a)
ot a, i a, in

where the approximation holds when the extinction ratio of the N element is large. For networks

with large fan-in, we assume instead that the neuron can discriminate a change in a constant fraction3

o input signals. In this case, there are no such limitations on Vin and iNV0 . Instead, 1/0 is limited

by the extinction ratio of the N element, and the fan-out is still related to the fan-in of the network by

5
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I
S Eq. (5). For example, in many networks a 1/,0 ranging from 10-100 may be sufficient for the optical

neuron while the maximum fan-in may be 10 - 10. During implementation of the ION model, with

many optical devices /' can be varied with the intensity of the read beam, which effectively increases

the gain and permits a larger fan-out.

As an example, a conceptual diagram of an implementation of a single layer feedback net is shown

in Fig. 4. It utilizes a single 2-D SLM for both I and N elements. The output of the I element is

imaged onto the input of the N element, after passing through a ND filter as the (uniform) attenuation.

A uniform bias beam is also input to the N element. The N element output is fed back through an

interconnection hologram to the inputs of both I and N elements, representing inhibitory and excitatory

lateral connections, respectively.

In the remainder of this letter we will present a variant of the ION model that incorporates bipolar

neuron outputs in the case of fully connected networks. The operation of the network is given by

V2 = ?P[E WijV,] (6)

where v E (-1, +1] is output of the jth neuron, Wii E [-1,11 is the normalized weight from neuron

j to neuron i and N is the number of neurons. A special case of this is the bipolar binary neuron used

by Amari (1972) [5] (Vi E {-1,+1}). In this case, the nonlinear output function ik(z) is equal to 1 for

x > 0, otherwise it is -1.

By a complementary offset scheme, Eq. (6) can be rewritten as

where t(x) is the nonlinear output function of the neuron. All terms in parentheses are positive

and can be represented by intensities. The neuron input and output are in the form (1 + Vi)/2, and

6

L



the I element is used to generate the (1 - V,)/2 term. A Hopfield net [6] is identical except the neuron

outputs Vi E {0, 1}; for this we can replace (1 + Vi)/2 with Vi and (1 - Vi)/2 with I in Eq. (7), where

* V, is the complement of Vi, and is generated by the I element.

Most of this work was presented at the 1987 Annual Meeting of Optical Society of America [7].

.'7
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Potential Difference Learning and Its Optical Architecture

C. H. Wang and B. K. Jenkins

Siginal and Image Processing Institute, Department of Electrical Engineering,
University of Southern California, Los Angeles, CA 90089-0272

ABSTRACT

A learning algorithm based on temporal difference of membrane potential of the neuron is proposed for
self-organizing neural networks. It is independent of the neuron nonlinearity, so it can be applied to analog or
binary neurons. Two simulations for learning of weights are presented; a single layer fully-connected network
and a 3-layer network with hidden units for a distributed semantic network. The results demonstrate that this
potential difference learning (PDL) can be used with neural architectures for various applications. Unlearning
based on PDL for the single layer network is also discussed. Finally, an optical implementation of PDL is
proposed.

1. INTRODUCTION

Most of the unsupervised learning algorithms are based on Hebb's hypothesis [1], which depends on the
correlated activity of the pre- and postsynaptic nerve cells. For steady input patterns, Hebb's rule will suffer
from weight overflow. Von der Malsburg (1973) [21 solved this by adding the constraint that the sum of the
weights of a neuron is constant. This concept led to competitive learning, developed by Grossberg (1976) [31,
and Rumelhart and Zipser (1985) [4]. They also assumed a winner-take-all algorithm (Fukushima 1975 [5)) to
enhance the synaptic weight modification between neurons. Biologically, the sum of the weights of a neuron
can likely be changed by the supply of some chemical substance. In this paper we propose a learning algorithm,
potential difference learning (PDL), based on temporal difference of the neuron membrane potential. Because
PDL is based on the membrane potential, it is independent of the nonlinear threshold function of the neuron. Its
temporal characteristic prevents weight overflow and permits unlearning without access to individual weights.

In an artificial neural system, unlearning can provide for real time reprogramming and modification of
the distributed storage for stable recollection, or equivalently, modification of the energy surface in an energy
minimization problem. Hopfield proposed unlearning to reduce the accessibility of spurious states [6]. Our
unlearning emphasizes reprograrnmability and local modification of the energy surface for stable partial retrieval.
The unlearning in PDL is done by presenting a sequence of patterns and global gain control; reversing the sign
of the learning gain is not necessary. The distinction of learning and unlearning in PDL is in the data sequence
and value of the gain constant for different phases.

The main advantages of potential difference learning are spontaneous learning without weight overflow
for steady state input patterns and unlearning. Other features of PDL include contrast learning, temporally
correlated and uncorrelated learning, learning independently of neuron type and ease of physical implementation.

2. POTENTIAL DIFFERENCE LEARNING AND ITS PROPERTIES

Like most learning rules, potential difference learning requires only local information for synapse modifica-
tion. Given a neuron with n inputs, PDL is given by:

X(k + 1) = [_(k) + K 8 a-(k).Ap(k). (k)] (1)

Ap(k) = wT(k)_(k) - wT(k - 1)1(k - 1) (2)

y(k) = 1Y vrT(k)&() - 0(k)] (3)

Presented at SPIE's O-E Lase '88, Los Angeles, California, 10-15 January, 1988. "Neural Network Models for
Optical Computing", SPIE vol. 882.
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Where M(k) and l(k) are the input weights and stimuli respectively; they are represented as a x 1 vectors.
p(k) and y(k) are the neuron potential and output value at time instant k. 0(k) is the threshold of the neuron
and Kocr-l(k) denotes the learning gain constant with K,. as the global gain constant and c-(k) as the adaptive
gain constant. The weight w(k) is bounded by the function D(.), which represents the physical limitation of
synapses. Distinct from other learning models, PDL is independent of the output nonlinear function *(-) of the
neuron.

PDL has the following properties:

* (1). Self-organization: similar to Hebb's rule, PDL can modify the weights of synapses according to the
input patterns.

* (2). Contrast learning: Weight modification is initiated by potential difference, which is caused by
difference in input. Since most sensory preprocessing is differential in nature, PDL can provide a good
approach for feature extraction when it is combined with neural architectures.

e (3). Unlearning: This can be used to erase stored states, to alter the energy surface or reprogram a
network. PDL can provide unlearning capability by applying suitable pattern sequences to generate a
negative potential difference Ap. This is discussed below.

* (4). Temporally correlated or uncorrelated learning: By varying the training sequences, the neuron
can learn absolute patterns or temporal differences between training patterns. The temporal difference
property may be useful in sensory information processing.

* (5). Ease of implementation: The PDL uses only local information to update the weights and only one
differencer per neuron is needed to calculate the potential difference. The complexity is low when it is
compared with differential Hebbian learning (Kosko 1986) [8] or drive-reinforcement learning (Klopf 1986)
[91.

* (6). Independence from neuron nonlinearity: The learning rule is evoked by the potential change only, so
various non-linear functions can be imposed on the neuron to make different types of neurons. Due to
this feature, weight modification can still occur when the output is saturated or clamped as long as the
weight is not saturated.

A variant of PDL is given by

w(k + 1) = <{w(k) + Ka-(k) • Ay(k). z(k)] (4)

which replaces potential difference Ap(k) with output difference Ay(k). This can be used when the neuron
potential is not physically available. The tradeoff is that weight modification no longer occurs when the neuron
output is saturated. Equation (4) is similar in appearance to supervised learning (Widrow-Hoff rule), but here
Ay/(k) refers to the temporal difference of the neuron output, instead of the spatial output error.

Other learning algorithms have been proposed based on the following:

-w(k + 1) = l[w(k) + K~a-'(k) • Ay(k) - -A_(k)] (5)

with A representing different forms of temporal difference [7], [81, [9]. The use of Az(k) instead of 1(k) and
more complex definitions of time average in these learning rules causes a higher implementation complexity.

Due to the fact that the PDL rule is embedded in the neurons, we need some lateral interconnections between
the neurons of the same layer to enhance the competitive or cooperative modification of synapses. One example

is to use the winner-take-all algorithm [5]:FN". _w(k + 1) = Orwj(k) + K0 &'(k) -Apj(k) -Aj(k) -6(yj(k))] (6)where the subscript j denotes neuron j, and 6(y,(k)] =1 if j" neuron wins in his neighborhood, otherwise

it is zero.



3. COMPUTER SIMULATIONS

First a single layer fully interconnected neural network, as described by Amari [10], Hopfield [11] and others,
is simulated. Four input patterns [12], each 20 bits long, are present.d to the external input of the network. The
learning rule is our PDL with K.=0.01 and c-'(k)=1. The neurons are binary with bipolar coding (+1,-I).
The weights are initially set to zero. For each iteration, the four inputs were presented in sequence. Four
iterations were performed. The resulting weight matrix is shown in Fig. I (a). PDL produces a near symmetric
weight matrix, which is quite similar to the result obtained using the familiar sum of outer products, as shown
in Fig. 1 (b). If a partial input is applied to the trained network, we can get full retrieval after several iterations,
dependent on the hamming distance from the partial input.

(a) 1.0 positive weights 1.0 negative weights

PDL
4-th iteration

Data set: NH20, Mn4 (patlerns)
.10110 11101 11010 01001

2.01011 00100 00111 00011
3 .11000 10111 01101 11100

4.01110 11010 10001 01110

(b) 8.0 positive weights 8.0 negative weightss

outer products

Fig. 1 Comparison Between Outer Product T(ij) Matrix and POL
~( 20 neurons, 4 patterns)

The unlearning procedure of this network is divided into two stages. (1). Apply the data to be erased to
the network with low (zero) global gain constant. (2). Use the same gain constant as for learning. In each step,

present the input with one bit complemented; allow Ap to decrease to zero; restore that bit and complement
the next bit for the next step. After all bits have been complemented, one iteration is completed. Starting
with the trained weights of Fig. 1(a), two of the stored vectors ( pattern #3 and #4 ) were erased using this
unlearning procedure. We erase pattern #4 in five iterations, then erase pattern #3 in another five iterations.
After each iteration, we test the convergence of the erased pattern. The resulting network would not converage
to the erased states after just three iterations. For five iterations of unlearning, the weight matrix, Fig. 2(a), is
very close to the original weight matrix that stored only pattern #1 and #2 as shown in Fig. 2(b). To measure
the performance of unlearning, the resulting weight matrix is normalized by dividing it by a factor F, which is

04 F V1- ' T,,(i IjA (7) .
where jlin The(i.)

~where Tu(i,j) is the resulting weight matrix after unlearning and Ti(i,j) is the ideal weight matrix. Then
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only patterns #1& #2
aestored

Fig. 2 Unlearning of PDL from M=4 to M=2, N=20. Weight matrices
(a) after unlearning, (b) Ideal result.
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a similarity measure, which is defined as the ratio of the matrix 1-norm [13] of these two weight matrices,

is applied to evaluate the performance. Fig. 3 shows the similarity measure of the weight matrix after each

iteration when unlearning using PDL from initially M=4 stored vectors to M=2 stored vectors.

The second example is a 3-layer network with two fully interconnected visible layers and a hidden layer. The

purpose of this network is to do associative mapping between two visible layers by using one hidden layer. The

visible layers are fully connected and the interconnections between the visible layers and the hidden layer are

shown in Fig. 4. The visible layers use binary neurons to interface with the environment, while the hidden layer

uses analog neurons. One neuron is used to calculate the average output, u(k), of the hidden layer; then the

competitive network of Fig.5, which is used in the hidden layer, reinforces those neurons with stronger output.

X(1,I) j=I to N1

Layer 1 Neuron pool

Layer 53 Hidden units

Layer 52 Neuron pool

iX(2,l) 1=1toN

Fig. 4 Interconnections between hidden layer and visible layers.
This Interconnections are bidirectional with possibly
different weights in each direction. Each visible layer Is
fully connected. from

from outpt O

Average neuron output of l

from of layer 53 layer 51
output of
layer #3

ith neuron of layer 53

Fig. 5 competitive Interconnections of the hidden layer.

The operation of the hidden layer is

u(k) = ) ()

NI N 2

3)k+ 1) = O(E wQY 
1 )(k) + E w ?Y 2 )(k) + (/y3~) -uk-'[u(k)-i

3)(k] 9
i=1 i=1

where tk(x) is 1 for z > 1, and is 0 for x < 0, else it is z. Superscripts denote the layer number and

N 1, N2 , N3 represent the number of neurons in layer 1, 2, and 3. wv(0 for I = 1, 2 represents the weight from

the iVh neuron of layer I to the jth neuron of the hidden layer. Initially, the weights of the visible layers are set

II



to zero and the weights between the visible layers and the hidden layer are set to small random values. The
visible layers are trained separately during the first phase, while the learning gain of the hidden layer is set
to zero. In the second phase, the learning gain of the hidden layer and the visible layers is nonzero; we apply
the corresponding patterns at these visible layers to train the hidden layer and the visible layers. After the
learning phases, applying a partial input at the visible layer #1 will retrieve the full information at the same
layer and associated data at the other visible layer. We have performed computer simulation of this network
with 20 neurons in layer #1, 16 neurons in layer #2, and 10 neurons in the hidden layer. Eight patterns were
stored, four into layer #1 and four into layer #2, and associations between pairs of these patterns were learned.
The network randomly selected a set of one or more "representation" neurons in the hidden layer to form an
association between each pair of patterns. Some of the sets of neurons for different pairs of patterns were
disjoint, and some were partially overlapping. Table i shows the hidden neurons selected by the network for
each associated pair of patterns. The last column in the table shows the pattern retrieved upon presentation
of each layer #1 pattern. Since each set of representation neurons usually consists of multiple neurons, some
fault tolerance is provided. However, when these sets overlap some interference can result during retrieval of
associated patterns. This imperfect mapping results from the "soft" competitive network that was used.

Table 1 Simulation results of network of Fig. 4 and Fig. 5.

pattern stored resulting representation pattern stored pattern retrieved
in layer #1 neurons In hidden layer In layer #2 In layer #2

1,4

a 2  2,9 b.2k2

A3 2,3,5 b3b
a 1,4,6

4. OPTICAL ARCHITECTURE OF PDL

A conceptual diagram of an optical implementation of PDL is shown in Fig. 6; it is somewhat similar to
Fisher's associative processor [14]. Two spatial light modulators ( SLYs) are used, one for storage of the weight
matrix and one for generation of AM(k). In addition, two 1-D storage devices and one 1-D threshold device are
used. S1 H 3~(contrlled by K)

M 1S LM S 1- 3 shutter

go M IUMi-S mirrors
ast *S 1.2 beam splitters

A Iteration Input
B microchannel SLM

External 2 C potential output
Input M4 D 1-0 threshold array

E output
F optical delay line or storage
0 beam combiner
H potential output p(k) or p(k-1)
I external data inutzt

Rotation 90 dog- J rotation optlis
K synchronization controller
L SLU

S 8N 1-0 storage SLM for xk)
* as: Synhoizto

Controller

Output

Fig. 6 Conceptual diagram of an optical Implementation of potential difference learning.



"A" is the input a(k) from the previous iteration, which is expanded vertically to illuminate the weight
storage "B". The reflected output from the microchannel SLM "B" is collected horizontally. This represents a
vector, each component of which is Z wqxi. It is then combined with external input "I" to produce potential
output at position "C". The output at 'C" is split into three. The first one passes through 1-D threshold device
"D" to generate outputs of the neurons. The second output of "C" passes through delay element F and shutter
S3, yielding p(k - 1) at "G". The third output path from "C" passes through shutter 52 to yield p(k) at "G".
Only one of the shutter arrays S2 and S3 can be turned on at a time. "G" is a beam combiner and its output,
either E(k) or p(k - 1), reflects off mirrors M4, M3 and is expanded horizontally to illuminate the write side
of SLM "L". A beam with intensity (k) illuminates the read side of SLM "L" (which is read in reflection),
to form outerproduct p(k)m_(k) or p(k - l)a.(k) for a 1-D array of neurons. At the first phase, p(k)zT(k) is
added to the storage SLM "B". Then p(k - l)zT(k) is applied to "B", which is operated in subtraction mode
during the second phase. These two steps calculate the potential difference and update the weights stored in
"B".

During retrieval phase, partial input is applied to external input "I" and is then passed through threshold
device "D", rotation optics "J", mirror M5, MI and beam splitter BS1 to position "A" to perform vector-matrL
computation of potential. Part of the iterated feedback signal a(k) reflects off BS 1, M2 and is enabled by shutter
Si to store in i-D storage SLM "N", which is used to form the outerproduct during the learning phase. Mirrors
M1 and M5 are used, as shown, to implement feedback within a single layer network. For a multilayer network
M1 and M5 can be removed (or replaced with beamsplitters) to send outputs to and receive signals from other
layers.

5. CONCLUSIONS

This PDL provides a number of interesting features along with a moderate implementation complexity. It is
a general technique that can be applied to different neuron types and different network models. Our simulations
indicate that it learns correctly in a variety of networks. We also described an unlearning technique for the
case of a fully connected network used as an associative memory, which does not require any sign reversal of
the learning gain or any global access to the weights. Applications of PDL include low level processing such as
extraction of features.
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Implementation Considerations of a Subtracting Incoherent
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I ABSTRACT

The incoherent optical neuron (ION) subtracts inhibitory inputs from excitatory inputs optically by
utilizing separate device responses. Those factors that affect the operation of the ION are discussed here, such
as nonlinearity of the inhibitory element, input noise, device noise, system noise and crosstalk. A computer
simulation of these effects is performed on a version of Grossberg's on-center off-surround competitive neural
network.

1 Introduction

The need to process positive and negative signals optically in optical neural network has been pursued in the
past few years. Existing techniques such as intensity bias [1] or weight bias method suffer from input dependent
bias or thresholds that must vary from neuron to neuron. A technique described by Te Kolste and Guest [2]
elirninites most of these drawbacks in the special case of fully connected networks.

The incoherent optical neuron (ION) [3, 4] model uses separate device responses for inhibitory and excitatory
inputs. This is modeled after the biological neuron that processes the excitatory and inhibitory signals by
different mechanisms (e.g. chemical-selected receptors and ion-selected gate channels) [5, 6, 7, 8]. By using this
architecture, we can realize general optical neuron units with thresholding.

The ION comprises two elements: an inhibitory (I) element and a nonlinear output (N) element. The
inhibitory element provides inversion of the sum of the inhibitory signals; the nonlinear element operates on the
excitatory signals, the inhibitory element output, and an optical bias to produce the output. The inhibitory
element is linear; the nonlinear threshold of the neuron is provided entirely by the output nonlinear device.
Fig. 1(a) and 1(c) shows the characteristic curve of the I and N elements respectively. The structure of the
ION model is illustrated in Fig. 1(d). The input/output relationships for the normalized I and N elements
respectively, are given by:

(a) Inhibitory (I) (b) unnormalized (c) nonlinear (N) element
element I element

b A - --- - - -tu t r

attenuator

-5X Isinh

. i a Inout
axa

Fig. 1 The ION: (a)-(c) Its components, and (d) Its structure.
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= iwh 1- 'M (1)

122 _(1inh + I..t + Ibiai - (2)

where fins and I.=. represent the total inhibitory and excitatory inputs, Ibia, is the bias term for the N
element, which can be varied to change the threshold, and o is the offset of the characteristic curve of the N
element. 0(.) represents the output nonlinear function of the N element. If we choose 'bia, to be a - 1, the
output of the N element is

12B) = '0(i. - 'MA) (3)

which is the desired subtraction. In general, the I element will not be normalized (Fig 1(b)), in which
case the offset and slope of its response can be adjusted using 'bia, and an attenuating element (ND filter),
respectively. The unno-malized I element must have gain greater than or equal to 1. A positive threshold (0)
can be implemented by lowering the bias term by the same amount 0. Similarly, a negative threshold is realized
by increasing the bias term by 0.

The ION model can be implemented using separate devices for the I and N elements (heterogeneous case),
or by using a single device with a nonmonotonic response to implement both elements (homogeneous case).
Possible devices include bistable optical arrays [9, 10, 11, 12] and SLMs such as liquid crystal light valves
(LCLV) (131. A single Huges liquid crystal light valve can be used to implement both elements (Fig. 2).

Several factors that affect the realization of a neural network based on the ION concept, are examined here.
These include deviation from linearity within the inhibitory element, residual noise of the optical device, input
noise, drift of the operation point of the device, and system noise. A noise model for the ION is proposed and
a computer simulation of these effects on a version of Grossberg's on-center off-surround type network [14) is
performed.

2 Factors that Affect the ION Operation

2.1 Nonlinearity in I Element

In order to perform subtraction correctly, we need a linear I element. Fig. 2 shows the typical input output
characteristic curve of the LCLV (15], which is nonlinear in the inversion region. In this region, the characteristic
curve can be modeled as

gl)~U" 1 -lh E(l~ (4)
where E,.(Iih) denotes the error term, which can be treated as an input dependent deterministic noise. If

the transfer curve is time varying, then it can be treated as temporally correlated random noise.

bS

Oi

r

a1  a Input

Fig. 2 Characteristic of a Hughes twisted-nematic liquid crystal
light valve. The negative slope region can implement the
I element, and the positive slope region, with appropriate
input optical bias, can implement the N element.
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2.2 Noise

Here we use "noise" to mean "any undesired signals", including perturbation of the operating point of the device,
non-uniformity of the device, variation in operating characteristics from device to device due to production
variation, environmental effects etc. Some of these effects are global (they affect all neuron units on a device
identically), others are localized (each neuron unit behaves differently; the noise on neighboring neuron units on
a device may be independent or correlated, depending on the source of the noise). Both temporal and spatial
characteristics of the noise need to be included. The effect of noise on an additive lateral inhibitory network
was discussed by Stirk, Rovnyak and Athale [16]. Here, we construct a noise model for the ION by considering
the origin and impact of the noise sources.

The possible noise sources in the ION model can be classified into four categories: input noise, device noise,
system noise and coupling noise. The input noise includes environmental background noise, residual output
of the optical devices etc. Essentially, they are not zero mean and vary slowly with time. The device noise
is mainly caused by uncertainty in the device's characteristics, for example drift of the operating point and
variation of gain, due to temperature or other effects. The system noise has global effect on all neuron units on
an optical device and includes fluctuations in the optical source. Finally, the coupling noise (crosstalk) is due
to poor isolation between the optical neuron units, crosstalk from the interconnection network, and imperfect
learning. As noted in [16], alignment inaccuracies and imperfect focussing and collimating optics also cause
localized crosstalk. Coupling noise is signal dependent.

2.3 Noise Model for the ION

Device Input Noise

Let the environmental background noise for the I and N elements be denoted by N(1) and N "') respectively.
The total residual output noise, caused by the optical devices to the input of an incoherent optical neuron, is
N, = . WjI,/No., which is weight-dependent and varies slowly with time due to learning. Wij is the
interconnection strength from neuron j to neuron i. I,. is the residual output of the optical device (Fig. 1(c)).
Nin and Not denote the fan-in and fan-out of the optical neuron unit respectively. Perturbation of the weights
can be treated as an input dependent noise source as IV. = EAWq .z,, where each A T4' is independent. For
the interconnection network, imperfect learning of the weights, nonuniformity of the weights, residual weights
after reprogramming and perturbation of the reference beam intensity will cause weight noise. Then the output
of the ION for the case of normalized characteristics is

SI0, o - {[1 - (1,nh + N(') + NM') + N())] + [I.,, + N(N) + N (N) + N (N)] + (, - 1) - C) (5)

If the background noise is space invariant and the I and N element have the same device area, the terms AbM

and N N) will cancel out. The residual noise terms N (l) and NW(N), and weight noise N (1) and NDN) generally
do not cancel.

Device Noise

There are two possible noise sources in the I element, as illustrated in Fig. 3(a) and (b): shift (drift) and
gain variation in the device characteristics, which are denoted as N ( ) and N(1) respectively. For the output N
element, the gain variation (Fig. 3(e)) only modifies the nonlinearity of the element N. If this gain variation is
a slowly varying effect, it will have little effect on the dynamic behavior of the network; so for the N element
we only consider the drift effect. Let's denote it by N ( ). Two different drifts in the N element are possible,

" horizontal drift (N(")) (Fig. 3(c)) and vertical drift (N()) (Fig 3(d)). The vertical drift of one neuron unit
IV becomes an additive noise at the input of the next neuron unit, and so will be approximated by including it

in the residual noise term above. The horizontal drift has the same effect as a perturbation in the bias term,
denoted by iVbp.

If the gain variation is small, the output of the I element can be expressed as (1 + N) -(1 + No)l h, where" ' ," N., denotes the gain noise.
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Fig. 3 Modeling the device noise of an Incoherent optical neuron.

System Noise

System noise has a global effect on the ION. If it is caused by an uncertainty in the optical source, it causes
a variation in the characteristic curve of the device and a perturbation in the bias term. In the case of an LCLV,
a perturbation in the reading beam intensity produces a gain variation in the I element and a combination of
gain variation and horizontal drift in the N element (or equivalently, essentially a re-scaling of its input axis).
Gain variation of the I element was discussed above. The difference is that the device gain variation is local, ie.
it varies from one neuron unit to another on a given device, while the variation in gain due to system noise is~global.

The device noise and system noise can be modeled as

1., (1+ N))1 +N() ii]' + .,+ ') ( -1 +Nb,) } (6)

Crosstalk

Crosstalk can be caused by the physical construction of the interconnection network (e.g., coupling between
different holograms, diffraction in the detection (neuron unit inputs) plane, inaccurate alignment and focussing).
It can also be caused by imperfect learning or reprogramming of the synaptic weights, where the perturbation
of different weights are correlated. In general, crosstalk is signal dependent and varies from one neuron unit to
another on a given device. It can be modeled as an input noise to the I and N elements. It is excluded from
our current simulations because it is signal dependent.

Based on the above discussion, these noise terms can be grouped into additive (N,+ ) and multiplicative (N;)
noise of the I element and additive noise (N+ ) of the output element N. The general noise model of the ION
can be written as

Io.t Of{(1 + N;)[1 - Iih + N + 1 + I.N+e + N+ - 1) (7)

where N + is the sum of the drift noise (N(1)), background noise (N(')), residual noise (N,(')), weight noise
(N.( ) and crosstalk noise (N(')); N; is the gain noise of I element; and N + is the sum of the background
(N(lv)) and residual input noise, horizontal shift noise (N(N)), weight noise and crosstalk noise of the N element,
and bias noise (Nb).e

3 Computer SimulationI 3.1 Compensation for the Nonlinearity of the I Element

To assess the effect of imperfect device responses for the I element, we have performed simulations on a variant of
Grossberg's on-center off-surround competitive network (14] for edge detection (Fig. 4). The network contains
30 inner-product type neurons connected in a ring structure with input and lateral on-center off-surround
connections. Fig. 5 shows several modeled nonlinear characteristic curves for the I element; these approximate
the normalized response of a Hughes liquid-crystal light valve. An attenuator (neutral density filter) can be
placed in front of the I element to reduce the overall gain (by effectively re-scaling the input axis) to bring it
closer to the ideal response. Fig. 6 shows computer simulations of the network responses based on nonlinear

• curve #2 for different input attenuations and input levels. As shown here, the attenuation has a tolerance
of approximately ±20%. For extremely nonlinear responses we expect an input bias and a limited region of
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operation to provide a sufficiently linear response. In our simulations we used an attenuator but no input bias
Lto the I element; the region of operation for these curves was seen to extend over most of the input range of the

device (3,41.

3.2 Noise Effect
We use the same network to test effect of noise (of course the results are actually network dependent) to get
an idea of the noise imunity and robustness to physical imperfections of the ION model. In the computer
simulation, each of the three noise sources in Eq. (7) are assumed independently distributed Gaussian with zero
mean. We define the maximum perturbation, p, of the noise source as twice the standard deviation, expressed
as a percentage of the input signal level. A normalized mean square error (nmie) is used to measure the
acceptability of the result. Although it is not a perfect measure, a nmse less than 0.1-0.15 generally looks
acceptable for the network response for our input test pattern.

Fig. 7(a) shows the nmse vs. percentage of maximum noise perturbation for the input level of 0.7 and for
noise that is correlated over different time periods T. The noise sources for each neuron are assumed independent
and identically distributed (lid). Each noise source is temporally correlated with its previous values, as given
by N(t + 1) = EI h, . N(t + 1 - i). The correlation coefficients hi decrease linearly with i (to hT = 0).
In Fig. 7(a), all three noise sources in our model are present and have the same variance. If the acceptance
nmse criterion is 0.15, a perturbation of ±10% on each noise source yields an acceptable result in all cases. For
T = 50, the nmse increases as the input level and noise variance increase as shown in Fig. 7(b). The network
responses are shown in Fig. 8 for temporally correlated noise with perturbation of ±10%.

(a) (b)
C4

0.3-

0.2-

E °"
V0.1 , T- 25

/ ~ ~ ~ ~ I- T., 0" ""T10II..

le0. 
l0.

0 10 2'0 30 leel Vn l tofl 010)'
max. noise perturbation (%) gettur

Fig. 7 Normalized mean square error (nmse) measure of the network response for temporally corre-

lated noise. Three noise sources, N+ , N , and N+ , are simulated.

a) Normalized mean square error of the net output vs. maximum noise perturbation p for

correlation periods (T) ranging from 1 to 50. The input level is 0.7.

b) Output nmse plot for different noise perturbation and input levels (T=50).

In some cases, the noise is spatially correlated. We simulated the network with spatially correlated noise.
The spatial correlation is assumed to have a Gaussian profile. Fig 9(a) and (b) are the responses for a spatial
correlation range of 5 and 13 respectively, while Fig 9(c) and (d) show the responses for spatially and temporally
correlated noise.

Drift of the device characteristic is a global effect. Fig 10 simulates slowly varying and quickly varying
drift on this network. Fig. 11 shows the effect of local gain variation that is spatially correlated. A ±25%
perturbation in drift is apparently acceptable, and a ±15 - 20% perturbation in gain is acceptable.

4 Discussions and Conclusions
Ve have summarized sources of noise for the ION and proposed a noise model. From the result of the com-

puter simulation, it seems that the example network performs much better for quickly varying (ie. temporally
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uncorrelated) noise than for temporally correlated (more slowly varying) noise. Due to the static input pattern
and the competitive nature of the network, once the noise term has survived a number of iterations, then it will
continue to get stronger and will not die out. We speculate that if the input to the network is time varying,
then the slowly varying noise source is effectively an offset response of the network and might be adaptively
overcome by the network, while the quickly varying noise interacts with the input patterns and is more difficult
to compensate.

For noise that is correlated, we have found that the qualitative effect of each of the three noise sources
(additive inhibitory, multiplicative inhibitory, and additive excitatory) on the output of the net is essentially
the same. Since one of the noise terms, NN , is the same for a conventional neuron implementation as for the ION,
it appears that an ION implementation is not significantly different from a conventional neuron implementation
in terms of immunity to noise and device imperfections, for a given technology. Ve also see that the output
is affected primarily by the variance of the noise and by the degree of spatial and temporal correlation, but
apparently not by the source of the noise. We conjecture that this result is not peculiar to the ION model, but
is true of other neuron implementations as well.
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ABSTRACT
The property of superposition in optics is not present in electronics, and can be utilized in

the implementation of optical interconnections, shared memory, and gates.
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SUMMARY

Fundamental differences in the properties of electrons and photons provide for expected
differences in computational systems based on these elements. Some, such as the relative ease
with which optics can implement regular, massively parallel interconnections are well known. In
this paper we examine how the property of superposition of optical signals in a linear medium can
be exploited in building an optical or hybrid optical/electronic computer. This property enables
many optical signals to pass through the same point in space at the same time without causing
mutual interference or crosstalk. Since electrons do not have this property, this may shed more
light on the role that optics could play in computing. We will separately consider the use of this
property in interconnections, memory, and gates.

Interconnections. A technique for implementing hybrid space-variant/space-invariant
optical interconnections from one 2-D array to another (or within the same array) has been
described [1]. It utilizes two holograms in succession, where the first hologram serves as an array
of facets that each address facets in the second hologram. The superposition property allows
many optical beams to pass through a facet in the second hologram, permitting many input nodes
to effectively share the same routing "wire" to output nodes. This decreases the complexity
(space-bandwidth product) of both holograms.

Using this as a model for interconnections in parallel computing, a comparison can be made
between the complexity of these optical interconnections with those of electronic VLSI for various
interconnection networks [2]. It is found that in general the optical interconnections have an equal
or lower space complexity than electronic interconnections, with the difference becoming more
pronounced as the connectivity increases. Also, a slight variation in a given network can further
reduce the space complexity in the optics case. An example is a hypercube (0 (n2 ) in VLSI,
o (n logs ) in optics) [2] vs. a 2-D cellular hypercube (twice as many connections, at least 0 (n2)
im VLSI, yet 0 (n ) in optics).

.U Shared memory. The same superposition principle can be applied to memory cells, where
L -many optical beams can read the same memory location simultaneously. This concept is useful in

building a parallel shared memory machine.

K? For this concept, we consider abstract models of parallel computation based on shared
memories [3]. The reason for this approach is to abstract out inherent limitations of electronic

* technology (such as limited interconnection capability); in designing an architecture one would
adapt the abstract model to the limitations of optical systems. In Fig. 1 we see a typical shared
memory model where individual processing elements (PE's) have variable simultaneous access to
an individual memory cell.
. eoIn general, these sha s aemordware not physically realizable because of actual fan-in limi-
tations. As an electronic example, the ultracomputer [4] is an architectural manifestation of a

Ig ahshared memory model, and uses a hardwired Omega network between the PE's and memories; it

simulates the shared memory model with a time penalty of 0 (log 2n).

Optical systems could in principle be used to implement this parallel memory read capabil-
ity. As a simple example, a single 1-bit memory cell can be represented by one pixel of a 1-D or
2-D array; the bit could be represented by the state (opaque or transparent) of the memory cell.
Many optical beams can simultaneously read the contents of this memory cell without contention,

m_- by the superposition property. A system based on this concept includes an array of memory cells,

rnI
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an interconnection network, and an array of PE's. The interconnection network is needed
between the PE's and the memory, and must allow any PE to communicate with any memory
cell, preferably in one step, and with no contention. A regular crossbar is not sufficient for this
because fan-in to a given memory cell must be allowed. Optical systems can potentially imple-
ment crossbars that also allow this fan-in (e.g., some of the systems described in [5]).

Gates. Since the superposition property of optics only applies in linear media, it cannot in
general be used for gates, which are (by definition) nonlinear. However, for important special
cases superposition can allow many optical gates to be replaced with one optical switch.

Consider an aperture whose state (opaque or transparent) is controlled by an optical beam,
with again many optical beams being able to read its state simultaneously. Here the aperture is
being used as a switch or relay, and the control beam opens or closes the switch. If b represents
the control beam and a, the signal beams, this in effect computes b .a or b-a , depending on
which state of b closes the switch, where • denotes the AND operation (Fig. 2).

Using this concept, a set of gates with a common input in an SIDM machine can be replaced
with one optical switch or "superimposed gate". It also obviates the need for broadcasting the
instructions to all PE's; instead, a fan-in of all signals to a common control switch is performed.

These superimposed gates are not true 3-terminal devices, since the a, inputs are not regen-
erated. As a result, a design constraint must be adhered to: these a, signals should not go
through too many superimposed gates in succession without being regenerated by a conventional
gate. Note, however the following features. The total switching energy required for a given pro-
cessing operation is reduced, because N gates are replaced with one superimposed gate. This is
important because it is likely that the total switching energy will ultimately be the limiting factor
on the switching speed and number of gates in an optical computer. Also, it permits an increase
in computing speed since some of the gates are effectively passive, and reduces requirements on
the device used to implement the optical gates.

In summary, architectures for optical computing must incorporate the capabilities of optics
as opposed to electronics. A familiar but important inherent difference lies in the superposition
property of optical beams, which can be expoited in opitcal interconnections, gates, and memory.
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Abstract

A novel approach for restoration of gray level images degraded by a known shift invariant blur
function and additive noise is presented using a neural computational model. A neural network model
is employed to represent an image whose gray level function is the simple sum of the neuron state
variables. The restoration procedure consists of two stages: estimation of the parameters of the neural
network model and reconstruction of images. During the first stage, image noise is suppressed and
the parameters are estimated. The restoration is then carried out iteratively in the second stage by
using a dynamic algorithm to minimize the energy function of an appropriate neural network. Owing
to the model's fault-tolerant nature and computation capability, a high quality image is obtained using
this approach. A practical algorithm with reduced computational complexity is also presented. Several
computer simulation examples involving synthetic and real images are given to illustrate the usefulness
of our method.

1 Introduction

Image restoration is an important problem in early vision processing to recover an ideal high quality
image from a degraded recording. Restoration techniques are applied to remove (1) system degradations
such as blur due to optical system aberrations, atmospheric turbulence, motion and diffraction; and (2)
statistical degradations due to noise. Over the last 20 years, various methods such as the inverse filter,
Wiener filter, Kalman filter, SVD pseudoinverse and many other model based approaches, have been
proposed for image restoration. One of the major drawbacks of most of the image restoration algorithms
is the computational complexity, so much so that many simplifing assumptions have been made to obtain
computationally feasible algorithms. An artificial neural network system that can perform extremely
rapid parallel computation seems to be very attractive for image processing applications; preliminary
investigations to various problems such as pattern recognition and image processing are very promising

[I].
In this paper, we use a neural network lnodel containing redundant neurons to restore gray level

images degraded by a known shift invariant blur function and noise. It is based on the model described
in [2] [3] using a simple sum number rvpresentatio [.l]. The image gray levels are represented by the
simpjle sum of thr neuron state variables which take binary values of I or 0. The observed image is
degraded by a shift invariant function and noise. The restoration procedure consists of two stages:
estimation of the paraiunet.rs of the neural network mnd,'l, and reconstruction of images. During the first
stage, the iumage noise is suppressed and the parameters are estlimated. The restoration is then carried
out by using a dynamic iterative algorithn to minimize the energy function of the neural network. Owing
to the model's fault -tolerant nature and computation capability, a high quality image is obtained using
our approach. We illustrate the usefulness of this approach by using hoth synthetic and real images
degraded by a known shift- invariant blur function with or without noise.

'This research work is partially supported by the AFOSR Contract No. F-49620-87-C-007.
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2 Image Representation Using a Neural Network

We use a neural network containing redundant neurons for representing the image gray levels. The model
consists of L2 x %f mutually interconnected neurons, where L is the size of image and AI is the maximum

value of the gray level function. Let V = {vINA, < i < L2 , 1 < k < M) be a binary state set of the
neural network with vi',k (1 for firing and 0 for resting) denoting the state of the (i, k-)th neuron. Let
Ti kjl denote the strength (possibly negative) of the interconnection between neuron (i, k) and neuron
(j, 1). We require symmetry

Ti,.k;,ij = Tji;ik for 1 i,j < L2 and 1< 1,k < A

We also insist that the neurons have self-feedback, i.e. Ti.k.,,k A 0. In this model. each neuron (i, k)
randomly and asynchronously receives inputs ET,kjIjtj,: from all neurons and a bias input [,,k

Uik = 1 j Tvi 1 + k(I)

) I

Each ui, is fed back to corresponding neurons after thresholding

'= g(Uk) (2)

where g(x) is a nonlinear function whose form can be taken as

I if X > 0 (3)
0 if X<0.

In this model, the state of each neuron is updated by using the latest information about other neurons.
The image is described by a finite set of gray level functions {x(i,j), I < i,j < L} with z(i,j)

(positive integer number) denoting the gray level of the cell (i, j). The image gray level function can be
represented by a simple sum of the neuron state variables as

M

Z(iO) = E mk(4)

k=1

where m = i x L+j. Here the gray level functions have degenerate representations. Use of this redundant
number representation scheme yields advantages such as fault-tolerance and convergence to the solution
[41.

If we scan the 2-D image by rows and stack them as a long vector, then the degraded image vector
can be written as

Y=HX+N (5)
where H is the L2 x VL point spread function (or blur) matrix, and X, Y and N are the L2 x I long
original, degraded and noise vectors, respectively. This is similar to the simultaneous equations solution
of [4], but differs in that (5) includes a noise term.

The shift-invariant blur function can be written as a convolution over a small window, for instance,
it takes the form

h(k" 1) if k-O, 1=0
f ' ) if IkI, 11 _ 1, (k, 1) 4 (0,0) (6)

accordingly, the "blur matrix" H will be a block Toeplitz or block circulant matrix (if the image has
periodic boundaries).

3 Estimation of Model Parameters

The neural model parameters, the interconnection strengths and the bias inputs, can be determined in

IV-270



terms of the energy function of the neural network. As defined in [2], the energy function of the neural

network can be written as
IL2 L2 M M L2 M

i=- j=l k=- 1=1 i=1 k=1

In order to use the spontaneous energy-minimization process of the neural network, we reformulate our
restoration problem as one of minimizing an energy function defined as

E= -11- - (8)
2

where 11_1 is the L2 norm of Z. By comparing the terms in the expansion of (8) with the corresponding
terms in (7), we can determine the interconnection strengths and the bias inputs as

L
2

Tikji = - E hp,i hp,j (9)
p=1

and L2

= y (10)

From (9), one can see that the interconnection strengths are determined by the shift-invariant blur
function. Hence, T,kj,i can be computed without error provided the blur function is known. However,
the bias inputs are functions of observation, the degraded image. If the image is degraded by shift-
invariant blur function only, then i,k can be estimated perfectly. Otherwise, the degraded image needs
to be preprocessed to suppress the noise if the signal to noise ratio (SNR), defined by

SNR = 10 log,, 0i (11)

where 0,2 and o are variances of signal and noise, respectively, is low.

4 Restoration

Restoration is carried out by the neuron evaluation and image construction procedure. Once the pa-
rameters Ti,kjtj and li,k are obtained using (9) and (10), each neuron can randomly and asynchronously
evaluate its state and readjust accordingly using (1) and (2). When one quasi-minimum energy point is
reached, the image can be constructed by (4).

However, this neural network has self-feedback, i.e. T.L;i,k 0 0, as a result of a transition the energy
function E does not decrease monotonically. This is explained as follows. Define the state change Avi,k
of neuron (i, k) and energy change AE as

Av, = -' - v. d  and AE = E ""' - EoldAu~ :1i,k i,k

Consider the energy function

I L 2 Al M L2 ?.

E = -~ E s& ~ Vik Vj 1 - E 1 hi~ Vi,k, (12)
i=1 j=1 k=1 1=1 i=1 k=1

Then the change AE due to a change Av,,k is given by
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0M )2

AE -(E 1 T,.,. Vj., + ,.k ) Av,. , -- T ,k (Av,.k)2  (13)
j=1 1=12

which is not always negative. For instance, if

L2 M

0,i . = "3. Toj, vB + 1. > 0,
j=l I=1

and the threshold function is as in (3), then v"'w 1 and .Ak > 0. Thus, the first term in (13) is
negative. But

T,.k i.k = - h, < 0.~p=1

leading 
to

- T, ki,, (.. v,k) 2 > 0.

When the first term is less than the second term in (13), then AE > 0 (we have observed this in our
experiments).

Thus, depending on whether convergence to a local minimal or a global minimal is desired, we can
design a deterministic or stochastic decision rule. The deterministic rule is to take a new state vrw of
neuron (i,k) if the energy change AE due to state change Avi,k is less than zero. If AE due to state
change is > 0, no state change is affected. We have also designed a stochastic rule similar to the one
used in simulated annealing techniques [5] [6]. The details of this stochastic scheme are given as follows:

Define a Boltzmann distribution by
Pnew -A

where P..., and P.rd are the probabilities of the new and old global state, respectively, AE is the energychange and T is the parameter which acts like temperature. A new state 0" is taken if

Pe . > 1, or if Pnew < I but pnew >
Pold Pold - Pold

where t is a random number uniformly distributed in the interval [0,1].
The restoration algorithm can then be summarized as

1. Set the initial state of the neurons.

2. Update the state of all neurons randomly and asynchronously according to the decision rule.

3. Check the energy function; if energy does not change anymore, go to next step; otherwise, go back
6 to step 2.

4. Construct an image using (4).

8 5 A Practical Algorithm

The algorithm described above is difficult to simulate on a conventional computer due to high compu-Stational complexity even for images of reasonable size. For instance, if we have an L x L image with
M gray levels, then L2M neurons and 1 L4 M2 interconnections are required and L4 M ' additions and
multiplications are needed at each iteration. Therefore, the space and time complexities are O(L 4 M2 )

-and O(L4M2K), respectively, where K O(10)-O(100) is the number of iterations. When L = 256 and
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M = 256, the space and time complexities will be O(10'") and O(101s)-O(1015), respectively. However,
simplification is possible if the neurons are sequentially updated

In order to simplify the algorithm, we begin by reconsidering (1) and (2) of the neural network. Noting
that the interconnection strengths given in (9) are independent of subscripts k and I and the bias inputs
given in (10) are independent of subscript k, the M neurons used to represent the same image gray level
function have the same interconnection strengths and bias inputs. lence, one set of interconnection
strengths and one bias input are sufficient for every gray level function, i.e. the dimensions of the
interconnection matrix T and bias input matrix I can be reduced by a factor of M 2 . From (1) all inputs
received by a neuron, say, the (i, k)th neuron can be written as

L2 M

Uk= + ii'.

L2

E Tuj.j . (14)

j

where we have used (4) and zj is the gray level function of the jth image pixel. Equation (14) suggests
that we can u.s a multivalue number to replace the simple sum number. Since the interconnection
strengths are determined by the blur function only as shown in (9), it is easy to see that if the blur
function is local, then most interconnection strengths are zeros so that the neurons are locally connected.
Therefore, most elements of the interconnection matrix T are zeros. If the blur function is shift invariant
taking the form in (6), then the interconnection matrix is block Toeplitz so that only a few elements need
to be stored. Based on the value of inputs ui,k, the state of the (i, k)th neuron is updated by applying a
decision rule. The state change of the (i, k)th neuron in turn causes the gray level function zi to change

J.' = IXI if &Vik = 0.
Sz 1 if ANA,= 1  (15)

-" - I if Av,&k= -I

where Av, = 'k - vl , is the state change of the (i, k)th neuron. The supscripts "new" and "old"
are for after and before updating, respectively. We use zi to respresent the gray level value as well as
the output of M neurons representing zi. Assuming that the neurons of the network are sequentially
visited, it is straightforward to prove that the updating procedure can be reformulated as

Ui,k = T,.,. zj + Ii- (16)

Avik =0 if u,,k=O
ANk = g(usk) = Av1,k = I if ui,, > 0 (17)

Av,, = -I if ui,. < 0

X1 Idx + if AE >0 (18)

Note that the stochastic decision rule can also be used in (18). In order to limit the gray level function to
the range 0 to 255, after each updating step we have to check the value of the gray level function Z! ' .

Equations (16), (17) and (18) give a mucn simpler algorithm. This algorithm is summarized below:

1. Take the degraded image as the initial value.

2. Sequentially visit all numbers (image pixels). For each number, use (16), (17) and (18) to update
it repeatedly until no further change, i.e. if AV,,k = 0 or energy change AE > 0, then move to
next one.

3. Check the energy function; if energy does not change anymore, a restored image is obtained;
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otherwise, go back to step 2 for another iteration.

The calculations of the inputs uik of the (i, k)th neuron and the energy change AE can be simplified
furthermore. When we update the same image gray level function repeatedly, the inputs received by the
current neuron (i, k) can be computed by making use of the previous result

ui'k = Uik-i + Avi, T (19)

where u,k- I is the inputs received by the (i, k - 1)th neuron. The energy change AE due to the state
change of the (i, k)th neuron can be calculated as

1

AE = -uk Avi, - 1 Ti ,. (Avk) 2  (20)

If the blur function is shift invariant, all these simplifications reduce the space and time complexities
significantly from O(L 4 M2) and O(L4M2K) to O(L 2 ) and O(AIL 2 K), respectively. Since every gray
level function needs only a few updating steps after the first iteration, the computation at each iteration is
O(L 2 ). The resulting algorithm can be easily simulated on mini-computers for images, as large 512 x 512.

6 Computer Simulations

The practical algorithm described in the previous section was applied to the synthetic and real images
on a Sun-3/160 Workstation. In all cases, only the deterministic decision rule was used. The results are
summarized in Figure I and 2.

Figure I shows the results for the synthetic image. The original image shown in Figure 1(a) is of
size 32 x 32 with 3 gray levels. The image was degraded by convolving with a 3 x 3 blur function as in
(6) using a circulant boundary condition; 22 dB white Gaussian noise was added after convolution. A
perfect irrage was obtained after 6 iterations without preprocessing. We set the state of all neurons to
equal 1, i.e. firing as initial condition.

Figure 2(a) shows the original girl image. The original image is of size 256 x 256 with 256 gray levels.
The variance of the original image is 2826.128. It was degraded by a 5 x 5 uniform blur function. A
small amount of quantization noise was introduced by quantizing the convolution results to 8 bits. The
noisy blurred image is shown in Figure 2(b). For comparison purpose, Figure 2(c) shows the output of
an inverse filter [7], completely overridden by the amplified noise and the ringing effects due to the ill
conditioned of the blur matrix H. Since the blur matrix H corresponding to the 5 x 5 uniform blur
function is not singular, the pseudoinverse filter [7] and the inverse filter have the same output. The
restored image by using our approach is shown in Figure 2(d). In order to eliminate the ringing effect,
due to the boundary conditions, we took the 4 pixel wide boundaries from the original image and updated
the interior region (248 x 248) of the image only. The blurred imgage was used as an initial condition
for accelerating the convergence. The total number of iterations was 213 (when the energy function did
not change anymore). The square error (i.e. energy function) defined in (8) is 0.02543 and the square
error between the original and restored imges is 66.5027.

7 Conclusion

This paper has introduced a novel approach to restore gray level images degraded by a shift invariant
blur function and additive noise. The restoration procedure consists of two steps: parameter estimation
and image reconstruction. In order to reduce the computational complexity, a practical algorithm which
is equivalent to the original one is developed under the assumption that the neurons are sequentially
visited. The image is generated iteratively by updating the neurons representing the image gray levels
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via a simple sum scheme. As no matrices are inverted, the serious problem of ringing due to the ill
conditioned blur matrix H and noise overriding caused by inverse filter or pseudoinverse inverse filter
can be avoided. For the case of 2-D uniform blur plus noise, the neural network based approach give
high quality images whereas the inverse filter and pseudoinverse filter yield poor results. We see from the
experimental results that the error defined by (8) is small while the error between the original image and
the restored image is relatively large. This is because the neural network decreases energy according to
(8) only. Another reason is that when the blur matrix is singular or near singular, the mapping from X_

to Y is not one to one, therefore, the error measure (8) is not reliable anymore. Thus, we have to point
out that our approach will not work very well when the bluuring matrix is singular. In our experiments,
when the window size of a uniform blur function is 3 x 3, the ringing effect was eliminated by leaving
the boundaries of the degraded image without processing. When the window size is 5 x 5, the ringing
effect was significantly reduced by using the original image boundaries.
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(a) Original image. (b) Degraded image. (c) Results after 6 iterations.

Figure 1: Restoration of noisy blurred synthetic image.
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(a) Original girl image. (b) Image degraded by 5 x 5
uniform blur and quantization
noise

IN

(c) Rsetored image using (d) Restored image using our
inverse filter. approach.

Figure 2: Restoration of noisy blurred real image and comparison.
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Image Restoration Using a Neural Network
YI-TONG ZHOU, S-T-UDENT- MEMBE.R, iEr , RAMA CHELLAPPA. SENIOR MEMBER, IEEE, ASEEM VAID, AND

B. KEITH JENKINS, MEMBER, IEEE

Abstract-A new approach for restoration of gray level images, de- matrix of the undegraded image is required. Often times,
graded by a known shift-invariant blur function and additive noise is additional assumptions regarding boundary conditions are
presented using a neural computational network. A neural network made so that fast orthogonal transforms can be used. The
model is employed to represent a possibly nonstationary image whose Kalman filter approach can be applied to nonstaczona!
gray level function is the simple sum of the neuron state variables. The ry
restoration procedure consists of two stages: estimation of the param- image, but is computationally very intensive. Similar

eters of the neural network model and reconstruction of images. Dur- statements can be made for the SVD pseudoinverse filter
ing the first stage, the parameters are estimated by comparing the en- method. Approaches based on noncausal models such as
ergy function of the network to a constrained error function. The the noncausal autoregressive or Gauss Markov random
nonlinear restoration method is then carried out iteratively in the s field models [4], [5] also make assumptions such as WSS
ond stage by using a dynamic algorithm to minimize the energy func-
tion of the network. Owing to the model's fault-tolerant nature and and periodic boundary conditions. It is desirable to de-
computation capability, a high-quality image is obtained using this ap- velop a restoration algorithm that does not make WSS as-
proach. A practical algorithm with reduced computational complexity sumptions and can be implemented in a reasonable time.
is also preseated. Several computer simulation examples involving syn- An artificial neural network system that can perform ex-
thetic and real images are given to illustrate the usefulness of our
method. The choice of the boundary values to reduce the ringing effect tremely rapid computations seems to be very attractive for
is discussed, and comparisons to other restoration methods such as the image restoration in particular and image processing and
SVD pseudoinverse filter, minimum mean-square error (MMSE) filter, pattern recognition [6] in general.
and modified MMSE filter using the Gaussian Markov random field In this paper, we use a neural network model containing
model are given. Finally, a procedure for learning the blur parameters redundant neurons to restore gray level images degraded
from prototypes of original and degraded images is outlined. by a known shift-invariant blur function and noise. It is

based on the method described in [7]-[9] using a simple

I. INTRODUCTION sum number representation [10]. The image gray levels
are represented by the simple sum of the neuron state vari-

* ESTORATION of a high-quality image from a de- ables which take binary values of 1 or 0. The observed
LXgraded recording is an important problem in early vi- image is degraded by a shift-invariant function and noise.
sion processing. Restoration techniques are applied to re- The restoration procedure consists of two stages: estima-
move 1) system degradations such as blur due to optical tion of the parameters of the neural network model and
system aberrations, atmospheric turbulence, motion, and reconstruction of images. During the first stage, the pa-
diffraction; and 2) statistical degradations due to noise. rameters are estimated by comparing the energy function
Over the last 20 years, various methods such as the in- of the neural network to the constrained error function.
verse filter [1], Wiener filter [1], Kalman filter [2], SVD The nonlinear restoration algorithm is then implemented
pseudoinverse [1], [3], and many other model-based ap- using a dynamic iterative algorithm to minimize the en-
proaches have been proposed for image restorations. One ergy function of the neural network. Owing to the model's
of the major drawbacks of most of the image restoration fault-tolerant nature and computation capability, a high-
algorithms is the computational complexity, so much so quality image is obtained using this approach. In order to
that many simplifying assumptions such as wide sense reduce computational complexity, a practical algorithm,
stationarity (WSS), availability of second-order image which has equivalent results to the original one suggested
statistics have been made to obtain computationally fea- above, is developed under the assumption that the neurons
sible algorithms. The inverse filter method works only for are sequentially visited. We illustrate the usefulness of
extremely high signal-to-noise ratio images. The Wiener this approach by using both synthetic and real images de-
filter is usually implemented only after the wide sense sta- graded by a known shift-invariant blur function with or
tionary assumption has been made for images. Further- without noise. We also discuss the problem of choosing

more, knowledge of the power spectrum or correlation boundary values and introduce two methods to reduce the
ringing effect. Comparisons to other restoration methods

Manuscript received February 22. 1988. This work was supported in such as the SVD pseudoinverse filter, the minimum mean-
par by AFOSR Contract F-.t9620-87-C-0007 and AFOSR Grant 86-0196. square error (MMSE) filter, and the modified MMSE fil-
parThe authors are with the Signal and Image Processing Institute, De- ter using a Gaussian Markov random field model are given

pertment of Electrical Engineering-Systefis. University of Southern Cal-
iforiia. Los Angeles, CA 90089. using real images. The advantages of the method devel-

EE Log Number 8821366. oped in this paper are: 1) WSS assumption is not required

0096-3518/88/0700-1141S01.00 ©' 1988 IEEE
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for the images, 2) it can be implemented rapidly, and 3) where g(x) is a nonlinear function whose form cu. "
it is fault tolerant. taken as

In the above, the interconnection strengths (also called I _ X
weights) of the neural network for image restoration are W, if 0
known from the parameters of the image degradation 0 if x < 0.
model and the smoothing constraints. We also consider In this model, the state of each neuron is updated by
learning of the parameters for the image degradation the latest information about other neurons.
model and formulate it as a problem of computing the
parameters from samples of the original and degraded i- T
ages. This is implemented as a secondary neural network. dons {x(i,j)where 1 < i,j < L} withx(i,j) (po
A different scheme is used to represent multilevel activi- integer number) denoting the gray level of the pix

ties for the parameters; some of its properties are comple- j) Thime m gray level function can be represen

mentary to those of the simple sum scheme. The learning a simple sum of the neuron state variables as

procedure is accomplished by running a greedy algorithm. 'W

Some results of learning the blur parameters are presented x(i, j) = k Z,, v,.
using synthetic and real image examples.

The organization of this paper is as follows. A network where m = (i - 1) x L + j. Here the gray level fun,
model containing redundant neurons for image represen- have degenerate representations. Use of this redu
tation and the image degradation model is given in Sec- number representation scheme yields advantages sL
tion II. A technique for parameter estimation is presented fault tolerance and faster convergence to the solution
in Section III. Image generation using a dynamic algo- By using the lexicographic notation, the image c
rithm is described in Section IV. A practical algorithm dation model can be written as
with reduced computational complexity is presented in Y = HX + N
Section V. Computer simulation results using synthetic
and real degraded images are given in Section VI. Choice where H is the "blur matrix" corresponding to Z
of the boundary values is discussed in Section VII. Coin- function, N is the signal independent white noise,
parisons to other methods are given in Section VIII. A and Y are the original and degraded images, respect:
procedure for learning the blur parameters from proto- Furthermore, H and N can be represented as
types of original and degraded images is outlined in Sec-
tion DC, and conclusions and remarks are included in Sec- h1,, h1.2  h,.L2

H h2. I22 h2
II. A NEURAL NETWORK FOR IMAGE REPRESENTATION

We use a neural network containing redundant neurons h'
for representing the image gray levels. The model con- 2L I

sists of L2 x M mutually interconnected neurons where L and
is the size of image and M is the maximum value of the
gray level function. Let V = { vi., where 1 _< i < L2, 1
:5 k 5 Ml } be a binary state set of the neural network F N, I
of the (i, k)th neuron. Let Ti.I.jo denote the strength (pos- N = . 1.
sibly negative) of the interconnection between neuron (i,
k) and neuron (j, I). We require symmetry: L .I LJ

..k:j.1 = T.l:i.k for I :s ij _5 L 2  and

1 s- 1, k :s M. Fn (, i -l 1) XLi

We also allow for neurons to have self-feedback, i.e., jn(i, 2) = ni-1)xL 2
T.,k:_.k * 0. In this model, each neuron (i, k) randomly j
and asynchronously receives inputs 1. T.kti.t, from allneurons and a bias input [ : n: i L _ Lnix

L
2 M respectively. Vectors X and Y have similar repres_

= j T.k:j.I.I + (1) tions. Equation (5) is similar to the simultaneous e

Each u .j is fed back to corresponding neurons after ions solution of [10], but differs in that it includes a r.
Eahrs ed b o interm.
thresholding: The shift-invariant blur function can be written

ui = s(u.k) (2) convolution over a small window, for instance, it i

I
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the form larizadon techniques used in early vision problems (I I].
The first term in (12) is to seek an t such that Ht ap-

C if k = 0, 1 = 0 proximates Y in a least squares sense. Meanwhile, the
h1, (k, 1 second term is a smoothness constraint on the soluton ?f.

1 if IkI, II f., (k, ) (0,0); The constant X determines their relative importance to
achieve both noise suppression and ringing reduction.

(8) In general, if H is a low-pass distortion, then D is a

accordingly, the "blur matrix" H will be a block Toeplitz high-pass filter. A common choice of D is a second-order

or block circulant matrix (if the image has periodic differential operator which can be ap roxiriar, as a local

boundaries). The block circulant matrix corresponding to window operator in the 2-D discrete case. For instance,

(8) can be written as if D is a Laplacian operator

Ho H, 0 0 a a (13)
H, H0 H, ... 0 0

H =H. (9) it can be approximated as a window operator

H, 0 1 ... H, Ho 1 4 1]

where 4 20 4 (14)
1 4 1

I •Then D will be a block Toeplitz matrix similar to (9).

.. 0 0 Expanding (12) and then replacing xi by (4), we have

2 V £ 2 L! L2  2Eo ", -" "." v" .+

Li 0 0... (1 1Ph. 1 1
L

! 
L! X W V.

Z Z j Z Z ht.,h,.jikVj.1

i- j- k-I-I -I
L! L2 . M L

Z

H , = . . . . (10) + x . j. d.. , , .i,.d,. j.. k,,.

L
Z 

M LZ L
Z

o o ..- x j + , (15)
i-I k-I p-I pl

and 0 is null matrix whose elements are all zeros. By comparing the terms in (15) to the corresponding terms

Mn. ESTIMATION OF MODEL PARMTaS in (11) and ignoring the constant term l. Eo I y2, we can
Tpidetermine the interconnection strengths and bias inputs asThe neural model parameters, the interconnection L'L

strengths, and bias inputs can be determined in terms of
the energy function of the neural network. As defined in pi.kj.1 hpI p" X p .J

[7], the energy function of the neural network can be writ-
U ten as and

L2 L12 M M V . L

E - Z lT..kvj.,Vi.kVj., i.ki = (17)
i-I j-l -It~ -I i.1 k-I pI(1

(11) where hij and dj.j are the elements of the matrices H and

r In order to use the spontaneous energy-minimization pro- D, respectively. Two interesting aspects of (16) and (17)

cess of the neural network, we reformulate the restoration should be pointed out: 1) the interconnection strengths are
problem as one of minimizing an error function with con- independent of subscripts k and I and the bias inputs are
strmaints defined as independent of subscript k, and 2) the self-connection

Ti.k.,k is not equal to zero which requires self-feedback
E -- Y1 - H X11' + I X III (12) for neurons.

From (16), one can see that the interconnection
where 11 Z 11 is the L,2 norm of Z and X is a constant. Such strengths are determined by the shift-invariant blur func-
a constrained error function is widely used in the image tion, differential operator, and constant X. Hence, Tk..
restoration problems [1] and is also similar to the regu- can be computed without error provided the blur function

I4 ,. , , ,I ,..;< . . -
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is known. However, the bias inputs are functions of the which is not always negative. For instance, if
observed degr.ded image. If the image is degraded by a L2 M

shift-invarian: blur function only, then I.k can be esti- ol = 0 Z Ti:j.f + I.k > 0
mated perfectly Otherwise, li,k is affected by noise. The i., = -0, I + Ii >=

reasoning behind this statement is as follows. By replac- aseing v b r = thv i i + nv, we aveand the threshold function is as in (3), then i..t = I
ing•yby 1  h,,,x, + n;, we have Av.,u > 0. Thus, the first term in (21) is negative. E

L L' 2-Lp-I.kpir + n.h,,Ti.l.i.k h - 1 - X E ~ < 0

hp, =.,rihp + Z h (18) with X > 0, leading to

The second term in (18) represents the effects of noise. If - T ..k(1Vi.)" > 0.

the signal-to-noise ratio (SNR), defined by When the first term is less than the second term in
I then AE > 0 (we have observed this in our experin

SNR = 10 logo a (19) which means E is not a Lyapunov function. C
quently, the convergence of the network is not guara

where a. and a. are variances of signal and noise, re- [12].
spectively, is low, then we have to choose a large X to Thus, depending on whether convergence to a
suppress effects due to noise. It seems that in the absence minimum or a global minimum is desired, we can d
of noise, the parameters can be estimated perfectly, en- a deterministic or stochastic decision rule. The dete
suring exact recovery of the image as error function E istic rule is to take a new state v . of neuron (i, k)
tends to zero. However, the problem is not so simple be- energy change AE due to state change Av-.k is less
cause the restoration performance depends on both the pa- zero. If AE due to state change is > 0, no state c,
rameters and the blur function when a mean-square error is affected. One can also design a stochastic rule si
or least square error such as (12) is used. A discussion to the one used in stimulated annealing techniques
about the effect of blur function is given in Section X. [141. The details of this stochastic scheme are giv

follows.

IV. RESTORATION Define a Boltzmann distribution by

Restoration is carried out by neuron evaluation and an P e-AE/
image construction procedure. Once the parameters Paid
T
7 
k-.j, and [i.k are obtained using (16) and (17), each neu- where Pnew and Paid are the probabilities of the ne,

ron can randomly and asynchronously evaluate its state old global state, respectively, AE is the energy ch
and readjust accordingly using (1) and (2). When one and T is the parameter which acts like temperature.
quasi-minimum energy point is reached, the image can be state t4. is taken if
constructed using (4).

However, this neural network has self-feedback, i.e., P-> or if , 1 but > ,
Ti.k .k - 0. As a result, the energy function E does not P >d PId PI d

always decrease monotonically with a transition. This is where is a random number uniformly distributed
explained below. Define the state change A vi.k: of neuron interval [0, 1].
(i, k) and energy change AE as The restoration algorithm is summarized as belo'

= e ,_ id Ew, ad Algorithm 1:
AV.k = V'k - V,.k and AE = -EE1) Set the initial state of the neurons.

Consider the energy function 2) Update the state of all neurons randomly and
chronously according to the decision rule.

L: LZ M .W LZ M 3) Check the energy function; if energy doe
E=-ZEZ T .k:j. vi. kv u1I -. It. kVi.,, change, go to step 4); otherwise, go back to step 2

, = ) Construct an image using (4).
(20)

V. A PRACTICAL ALGORITHM

Then the change AE due to a change ,Avi.k is given by The algorithm described above is difficult to sim
LZ W on a conventional computer owing to high computat

AE complexity, even for images of reasonable size. Fo
iE = ''/'t- stance, if we have an L x L image with 4 gray le

then L2M neurons and ' L. M interconnections ar.
(21) quired and L4M 2 additions and multiplications are nc

a a - - a.%
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at each iteration. Therefore, the space and time complex- u = 0
ities are O(eLM 2) and 0(LM

2 K), respectively, where

K, typically 10-100, is the number of iterations. Usually, av. = g(ui.,) - Avi ..t I if u,.k > 0 (25)
L and M are 256-1024 and 256, respectively. However. I if uj., < 0
simplification is possible if the neurons are sequentially

updated. x,-.d + Avi., if AE < 0
In order to simplify the algorithm, we begin by recon- xi>d

sidering (1) and (2) of the neural network. As noted ear- ( if aE > 0.

lier, the interconnection strengths given in (16) am inde- Note that the stochastic decision rule can also be used in
pendent of subscripts k and / and the bias inputs given in (26). In order to limit the gray level function to the range
(17) are independent of subscript k; the M neurons used 0-255 after each updating step, we have to check the value
to represent the same image gray level function have the of the gray level function x7 . Equations (24), (25), and
same interconnection strengths and bias inputs. Hence, (26) give a much simpler algorithm. This algorithm is

one set of interconnection strengths and one bias input are summarized below.
sufficient for every gray level function, i.e., the dimen- Algorithm 2:
sions of the interconnection matrix T and bias input ma- 1) Take the degraded image as the initial value.
trix I can be reduced by a factor of M. From (1), all 2) Sequentially visit all numbers (image pixels). For
inputs received by a neuron, say the (i, k)th neuron, can each number, use (24), (25), and (26) to update it repeat-
be written as edly until there is no further change, i.e., if avik = 0 or

L! /M energy change AE a: 0; then move to the next one.
U.k = Ti.. V. + Ii.. 3) Check the energy function; if energy does not

change anymore, a restored image is obtained; otherwise,
(.7 go back to step 2) for another iteration.

T...:j..xj + i. (22) The calculations of the inputs uik of the (i, k)th neuron

and the energy change AE can be simplified furthermore.
where we have used (4) and xj is the gray level function When we update the same image gray level function re-
of the jth image pixel. The symbol "'" in the subscripts peatedly, the input received by the current neuron (i, k)
means that the T.. j.. and 1j.. are independent of k. Equa- can be computed by making use of the previous result
tion (22) suggests that we can use a multivalue number to
replace the simple sum number. Since the interconnection ui.k_ + Avi.i..:i.. (27)
strengths are determined by the blur function, the differ- where uj., I is the inputs received by the (i, k -1 )th
ental operator, and the constant X as shown in (16), it is neuron. The energy change AE due to the.state change of
easy to see that if the blur function is local, then most the (i, k)th neuron can be calculated as
interconnection strengths are zeros and the neurons are
locally connected. Therefore, most elements of the inter- AE = -ui.kAvi.k - + 7... .(Avi.) (28)
connection matrix Tare zeros. If the blur function is shift
invariant taking the form in (8), then the interconnection If the blur function is shift invariant, all these simpli-

matrix is block Toeplitz so that only a few elements need fications reduce the space and time complexities signifi-

to be stored. Based on the value of inputs ui.k, the state of cantly from O(L4 M-) and O(LM 2K) to O(L 2 ) and

the (i, k)th neuron is updated by applying a decision rule. O(ML2 K), respectively. Since every gray level function

The state change of the (i, k)th neuron in turn causes the needs only a few updating steps after the first iteration.

gray level function x, to change: the computation at each iteration is O(L 2 ). The resulting
algorithm can be easily simulated on minicomputers for

x°  if Avi. 0 images as large as 512 x 512.

.,e 01i if AVik = 1 (23)

. xd - I ifv. = I VI. COMPUTER SIMULATIONSx?)d  I if _Avi, =-1
The practical algorithm described in the previous sec-

where AXV .k - ,.' is the state change of the (i, lion was applied to synthetic and real images on a Sun-3/
k)th neuron. The superscripts "new" and "old" are for 160 Workstation. In all cases, only the deterministic de-
after and before updating, respectively. We use x, to rep- cision rule was used. The results are summarized in Figs.
resent the gray level value as well as the output of M neu- 1 and 2.
rons representing x,. Assuming that the neurons of the Fig. 1 shows the results for a synthetic image. The orig-
network are sequentially visited, it is straightforward to inal image shown in Fig. l(a) is of size 32 x 32 with

show that the updating procedure can be reformulated as three gray levels. The image was degraded by convolving
with a 3 x 3 blur function as in (8) using circulant bound-

u,.~ --- T, .:..xi q- I,. (24) ary conditions: 22 dB white Gaussian noise was added
• "after convolution. A perfect image was obtained after six

|
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-Z;. Iblurred image was used as an init~ial condition for acL
erating the convergence. The constant X was set to z

t ,..,because of small noise and good boundary values.

restored image in Fig. 2(d) was obtained after 213 itt" dons. The square error (i.e., energy function) denCL
(12) is 0.02543 and the square error between the orig,

ia) (b) (C) and the restored image is 66.5027.
Fig. I. Restoration of noisy blurred synthetic image. (a) Onginal image.

ib) Degraded image. (c) Result after six iterations. V C BOUNDARY VALUES

As mentioned in (16], choosing boundary values
common problem for techniques ranging from deterrr
istic inverse filter algorithms to stochastic Kalman filt
In these algorithms, boundary values determine the en
solution when the blur is uniform [171. The same prob
occurs in the neural network approach. Since the 5
uniform blur function is ill conditioned, improper bou
ary values may cause ringing which may affect the
stored image completely. For example, appending zi
to the image as boundary values introduces a sharp e

I(a) ib) at the image border and triggers ringing in the restc
image even if the image has zero mean. Another pr(
dure is to assume a periodic boundary. When the left (z
and right (bottom) borders of the image are differen
sharp edge is formed and ringing results even though
degraded image has been formed by blurring with p-
odic boundary conditions. The drawbacks of these
assumptions for boundary values were reported in [

(21, (181 for the 2-D Kalman filtering technique. We
tested our algorithm using these two assumptions
boundary values; the results indicate the restored imc

(c) (d) were seriously affected by ringing.
Fig. 2. Restoration of noisy blurred real image. (a) Original girl image. In the last section, to avoid the ringing effect, we t

(b) Image degraded by 5 x 5 uniform blur and quantizaion noise. (c) 4 pixel wide borders from the original image as bounc
The restored image using inverse filter. (d) The restored image using our values for restoration. Since the original image is
approach. available in practice always, an alternative to elimii

the ringing effect caused by sharp false edges is to use
iterations without preprocessing. We set the initial state blurred noisy boundaries from the degraded image.
of all neurons to equal I. i.e., firing, and chose X = 0 3(a) shows the restored image using the first and last :
due to the well conditioning of the blur function. rows and columns of the blurred noisy image in Fig.

Fig. 2(a) shows the original girl image. The original as boundary values. In the restored image, there still
image is of size 256 x 256 with 256 gray levels. The ists some ringing due to the naturally occurring sl"
variance of the original image is 2797. 141. It was de- edges in the region near the borders in the original im
graded by a 5 x 5 uniform blur function. A small amount but not due to boundary values. A typical cut of the
of quantization noise was introduced by quantizing the stored irrage to illustrate ringing near the borders is sh(
convolution results to 8 bits. The noisy blurred image is in Fig. 4. To remove the ringing near the borders cat
shown in Fi2. 2(b). For comparison purpose. Fig. 2(c) by naturally occurring sharp edges in the original im
shows the output of an inverse filter [15]. completely we suggest the following techniques.
overridden by the amplified noise and the ringing effects First. divide the image into three regions: border.
due to the ill-conditioned blur matnx H. Since the blur border, and interior region as shown in Fig. 5. For d
matrix H corresponding to the 5 x 5 uniform blur func- x 5 uniform blur case, the border region will be 4 pi'
tion is not singular, the pseudoinverse filter (15] and the wide due to the boundary effect of the bias input I,
inverse filter have the same output. The restored image by (17), and the subborder region will be 4 or 8 pixels W,
using our approach is shown in Fig. 2(d). In order to avoid In fact, the width of the subborder region will be im
the ringing effects due to the boundary conditions, we took dependent. If the regions near the border are smooth. t
4 pixel wide boundaries, i.e.. the first and last four rows the width of the subborder region will be small or e /

and columns, from the original image and updated the in- zero. If the border contains many sharp edges, the w!
terior region 248 x 2-18) of the image only. The noisy will be large. For the real girl image, we chose the w,

oilS

9 . . _-
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of the subborder region to be 8 pixels. We suggest using
one of the following. two methods.

Method 1: In the case of small noise, such as quanti-
zation error noise, the blurred image is usually smooth.
Therefore, we restricted the difference between the re-
stored and blurred image in the subborder region to a cer-
tain range to reduce the ringing effect. Mathematically,
this constraint can be written as

(a) ) - y : - T for i e subborder region. (29)

where T is a threshold and .1 is the restored image gray
value. Fig. 3(b) shows the result of using this method with
T = 10.

Method 2: This method simply sets X in (12) to zero in
the interior region and nonzero in the subborder region,
respectively. Fig. 3(c) shows the result of using this
method with X = 0.09. In this case, D was a Laplacian
operator.

Owing to checking all restored image g-ay values in the
subborder region, Method I needs more computation than
Method 2. However, Method 2 is very sensitive to the

(c) parameter X, while Method I is not so sensitive to the
Fig. 3. Results using blurred noisy boundaries. (a) Blurred noisy bound- parameter X. Experimental results show that both Meth-

anies. (b) Method 1. (c) Method 2. ods 1 and 2 reduce the ringing effect significantly by using

the suboptimal blurred boundary values.

250. VIII. COMPARISONS TO OTHER REsTORATiON METHODS

Comparing the performance of different restoration
200..,methods needs some quality measures which are difficult

200.,. -to define owing to the lack of knowledge about the human
, ,visual system. The word "optimal" used in the restora-

, / tion techniques usually refers only to a mathematical con-
150. - cept, and is not related to response of the human visual

system. For instance, when the blur function is ill con-
,'- -' ditioned and the SNR is low, the MMSE method im-

100.- - proves the SNR, but the resulting image is not visually
good. We believe that human objective evaluation is the

AN best ultimate judgment. Meanwhile, the mean-square er-

5 - ror or least square error can be used as a reference.
For comparison purposes, we give the outputs of the

inverse filter, SVD pseudoinverse filter, MMSE filter, and
0._ _ _ _ _ _ _ _ modified MMSE filter using the Gaussian Markov random

190. 200. 210. 220. 230. 240. 250. 260. field (GMRF) model (19], [5].
Fig. 4. One typical cut of the restored image using the blurred noisy A. Inverse Filter and SVD Pseudoinverse Filter

boundaries. Solid line for original image, dashed line for blurred noisy
image, and dashed and dotted line for restored image. An inverse filter can be used to restore an image de-

graded by a space-invariant blur function with high sig-
nal-to-noise ratio. When the blur function has some sin-
gular points, an SVD pseudoinverse filter is needed:~however, both filters are very sensitive to noise. This is

because the noise is amplified in the same way as the sig-
border region nal components to be restored. The inverse filter and SVD
subbordr region pseudoinverse filter were applied to an image degraded by

the 5 x 5 uniform blur function and quantization noise
to , (about 40 dB SNR). The blurred and restored images are

shown in Fig. 2(b) and (c), respectively. As we men-
tioned before. the outputs of these filters are completely

Fig. 5. Border. subborder, and interor regions of the image. overridden by the amplified noise and ringing effects.
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'rABLE I

MWEAN-SQUARis ExtROR jMnqPOVEMENT

Modified 4,

Method MMSE MMSE (0) MMSE Ne

Mean-square error 1.384 dB 2. 139 dB 1.893 dB 1.6

original image. The restored image using "MMSE
(a) (b) is very similar to Fig. 6(a). As we mentioned before

comparison of the outputs of the different restor
methods is a difficult problem. The MMSE filter vis
gives the worst output which has the smallest mean-sc
error for the MMSE (o) case. The result of our mc
is smoother than that of the MMSE filter. Althoug'
output of the modified MMSE filter is smooth in fl.
gions. it contains some artifacts and snake effects z
edges due to using a large sized median filter.

I IX. PARAMETER LEARNING FOR LINEAR LMAGE B
MODEL

(c) (d)

Fig. 6. Comparison to other restoration methods. (a) Image degraded by Apart from fine-grain parallelism, fast (and prefe:
5 x 5 uniform blur and 20 dB SNR additive white Gaussian noise. (b) automatic) adaptation of a problem-solving network t

The restored image using the MMSE filter. (c) The restored image using a
the modified MMSE filter. (d) The restored image using our approach. ferent instances of a problem is a primary motivatio

using a network solution. For pattern recognition an
sociative memory applications, this weight trainir

B. MMSE and Modified MMSE Filters done by distributed algorithms that optimize a dist
The MMSE filter is also known as the Wiener filter (in measure between sample patterns and network respoi

the frequency domain). Under the assumption that the However, in feedback networks, general problems
original image obeys a GMRF model, the MMSE filter involve learning higher order correlations (like the e:
(or Wiener filter) can be represented in terms of the GMRF sive OR) or combinatorial training sets (like the Tray.
model parameters and the blur function. In our imple- Salesperson problem) are difficult to solve and may
mentation of the MMSE filter, we used a known blur exponential complexity. In particular, techniques for
function, unknown noise variance, and the GMRF model ing a compact training set do not exist.
parameters estimated from the blurred noisy image by a
maximum likelihood (ML) method (19]. The image shown A. Learning Model
in Fig. 6(a) was degraded by 5 X 5 uniform blur function For model-based approaches to "neural" proi
and 20 dB SNR additive white Gaussian noise. The re- solving, the weights of the main network are comp
stored image is shown in Fig. 6(b). from the parameters of the model. The learning pro.

The modified MMSE filter in terms of the GMRF model fo h aaeeso h oe.Telann r
The odiied MSEfiltr i tems o th GMIF mdel can then be solved by a parallel, distributed algorithr

parameters is a linear weighted combination of a Wiener estimating the model parameters from samples of th
filter with a smoothing operator (such as a median filter) puts and desired outputs. This algorithm can be in
and a pseudoinverse filter to smooth the noise and pre- mented on a secondary network. An error function fo
serve the edge of the restored image simultaneously. De- -learning" network must be constructed, which will
tails of this filter can be found in (5]. We applied the mod- be problem-dependent.
ified MMSE filter to the same image used in the MMSE For the linear shift-invariant blur model (5), the

filter above with the same model parameters. The smooth- lem is that of estimating the parameters correspondii
ing operator is a 9 x 9 cross shape median filter. The the blur function in a K X K small window cente
resulting image is shown in Fig. 6(c). each pixel. Rewrite (5) as

The result of our method is also shown in Fig. 6(d).
The D we used in (12) was a Laplacian operator as in y(i,j) = z(i,j)'h + n(i,j) i,] = 1, 2,
(13). We chose X = 0.0625 and used 4 pixel wide blurred
noisy boundaries for restoration. The total number of it-
erations was 20. The improvement of mean-square error where r denotes the transpose operator and z(i, j) a!
between the restored image and the original image for each are K2 x I vectors corresponding to original image,
method is shown in Table 1. In the table, the "IMMSE pies in a K X K window centered at (i, j) and blur f.
(o)" denotes that the parameters were estimated from the tion, respectively.

method Yo it "M i
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For instance, for K = 3, we have of the other neurons because

-h, - -h(-l, -1) E,. - = [f. - (Ef t f.)wk.*

hI h( -1, 0) • Mf -. (37)

h= h3  = h(-1, 1) (31) where
KI

: r k : wi~khf
_j h(l, 1) -,

is the current weighted sum from the other neuron activ-
ities. Thus, we choose level m over a for m > n if

z(i,j)- -x(i - 1,j - 1) - > t - (f, + fM )wi. (38)

z(i,j), x(i - l,) Some properties of this algorithm follow.X(i - lj ) 1) Convergence is assured as long as the number of
Z(ij) A ,X( - ,+ levels is not decreasing with time (i.e., assured if coarse

to fine).
2) Self-feedback terms are included as level-dependent

z(i,j)9 _ x(i + l,j + 1)_ bias input terms.
(32) 3) The method can be easily extended to higher order

networks (e.g., based on cubic energies). Appropriate
We can use an error function for estimation of h, as in lower order level-dependent networks (like the extra bias

the restoration process, because the roles of data { x ( i, input term above) must then be implemented.
j ) } and parameter h are simply interchanged in the learn- The multilevel lowest energy decision can be imple-
ing process. Therefore, an error function is defined as menrted by using variations of feedforward min-finding

E"= Z [y(i,j) - hZ(i,j)]2  (33) networks (such as those summarized in (20]). The space
i.j)Es Zand time complexity of these networks are, in general,

o(1) and 0 (log F), respectively. However, in the quad-
where S is a subset of { (i, j ), i, j = 1, 2, L ,L} and ratic case, it is easy to verify from (38) that we need only
y (i, j ) and z (i, j ) are training samples taken from the implement the decision between all neighboring levels in
degraded and original images, respectively. The network the set { fi }; this requires exactly r neurons with level-energy functions is given by dependent inputs. The best activity in the set is then pro-

K
2 

V K7 portional to the sum of the r neuron outputs so that the
E = - Z I wuhkh, - k ZIh (34) time complexity for the multilevel decision can be made

k-I t- ~~ ~I 0 (1). This means that this algorithm is similar in imple-
where hk are the multilevel parameter activities and Wki mentation complexity (e.g., the number of problem-de-

and O are the symmetric weights and bias inputs, respec- pendent global interconnects required) to the simple sum
tively. From (33) and (34), we get the weights and bias energy representation used in [10] and in this paper. Also,

inputs in the familiar outer-product forms: in the simple sum case, visiting the neurons for each pixel
in sequence will result in conditional energy minimiza-

~ = - Z z(i, J) z(i, ) (35) tion. Otherwise, from the implementation point of view,
(i. )Es the two methods have some properties that are comple-

k 2 Z, z(i,j)k y(i'i). (36) mentary. For example, we have the following.
-(i.j)es 1) The simple sum method requires asynchronism in

the update steps for each pixel, while the greedy method
A greedy, distributed neural algorithm is used for the does not.

energy minimization. This leads to a localized multilevel 2) The level-dependent terms arise as inputs in the
number representation scheme for a general network. greedy method as compared to weights in the simple sum

method.
B. Multilevel Greedy Distributed Algorithm

For a K2 neuron second-order network, we choose P C. Simulation Results

discrete activities { f, i = 0, 1, , - 1 } in any The greedy algorithm was used with the weights from
arbitrary range of activities (e.g., [0, 1)) where we shall (35) and (36) to estimate the parameters from original and
assume without loss of generality thatfj > f_ -I for all i. blurred sample points. A 5 x 5 window was used with
Then, between any two activitiesf, andf. for the kth neu- two types of blurs: uniform and Gaussian. Both real and
ron, we can locally and asynchronously choose the one synthetic images were used. with and without additive
which results in the lowest energy given the current state Gaussian noise.
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TABLE U
RmULTS Pot PAumIA LaAamNG. THE Numua r OP DiscET AC'rrtm is 256 FOR ALL TESTs. A:

ARiraiAiy CHtOICE OF PIXELS PROM IMAGE. L: PIXELS CHOSEN PROm THRt soLoE LAPLACIAN

Image Noise Blur Samples Methods Iterations MS E

Synthetic Gaussian 68 A 49 0.000023Synthetic Uniform 100 A 114 0.000011
Real Uniform 50 A 94 0.00353
Real Uniform 100 L 85 0.00014
Real 20 dB Uniform 100 A 72 0.00232
Real 2-0 dB Uniform t00 L 3 0.00054

The estimated parameters for all types of blur matrices ringing effect was eliminated by using blurred
were numerically very close to the actual values when boundary values without any smoothing constraint.
synthetic patterns were used. The network took longest to the window size is 5 x 5, the ringing effect was re,
converge with a uniform blur function. The levels chosen with the help of the smoothing constraint and subor
for the discrete activity set { fj } were 128-256 equally boundary conditions. We have also shown that a sr
spaced points in [ 0, 1] with 50- 100 sample points from secondary network can effectively be used for estirr
the image. Results for various cases aresummarized in the blur parameters; this provides a more efficient
Table II. ing technique than Boltzman machine learning ont

When the sample pixels were randomly chosen, the er- mary network.
rors increased by two orders of magnitude for a real image
(Fig. 2(b)] as compared to synthetic ones. This is due to REFERENCESthe smooth nature of real images. To solve this problem, (11 H. C. Andrews and 8. R. Hunt. Digital Image Restoration.

sample points were chosen so as to lie close to edges in wood Cliffs, NJ: Prentice-Hall. 1977.
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Abstract

In this paper we describe Neural Network based algorithms for segmentation of textured
gray level images. We formulate the problem as one of minimizing an energy function, derived
through the representation of textures as Markov Random Fields (MRF). We use the Gauss

Markov Random Field (GMRF) to represent the texture intensities and an Ising model to
characterize the label distribution. The resulting non-convex energy function is minimized

using a Hopfield neural network. The solution obtained is a local optimum in general and may
not be satisfactory in many cases. Although stochastic algorithms like simulated annealing

have a potential of finding a global optimum, they are computationally expensive. We suggest

an alternate approach based on the theory of learning automata which introduces stochastic
learning into the iterations of the Hopfield network. A probabilty distribution over the possible
label configurations is defined and the probabilities are updated depending on the final stable
states reached by the neural network. The performance of this rule in classifying some real
textured images is given. The results are similar to those obtained using simulated annealing

but our algorithm needs fewer number of iterations.

j ' "Partially supported by the AFSOR grant no. 86-0196.
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SUMMARY

Texture segmentation is an important problem in computer vision as most of the real scenes
consist of textures. Understanding such images is critical in many applications and fast algorithms
to segment and classify images will be very useful in this context. Speed is an important criterion
if these algorithms are to be implemented in real time for applications like robotic vision. The

inherent parallelism of neural networks provides an interesting architecture for such problems
and there have been some attempts in using neural networks for texture discrimination [5]. In
this paper we model this problem as one of minimizing an energy function which is derived
by modelling the texture as a Gauss Markov Random Field (GMRF) [2] and the texture label

distribution using an Ising model [7].
The image is represented by an M x M intensity array and the individual sites are indexed by

s = (i,j). The intensity at site s = (i,j) is denoted by y, We obtain an energy U,(s, k) relating
the intensity at site s with a texture calss k by constructing a square window W, centered at a and

computing the negative of the likelihood of the pixels within that window. It is assumed that the

region inside the window belongs to a single texture class k. The energy corresponding to the prior

distribution of the class labels U2(s, 1,) where 1, denotes the label assigned to site a, is obtained
using an Ising model. We are intersted in maximizing the posterior distribution of the texture

classes given the intensity array. Finding an optimal solution requires an exhaustive search over
possible label configurations which is practically impossible. It is well known that stochastic
relaxation algorithms like simulated annealing [3] can find the global optimum if proper cooling
schedules are followed but these algorithms are computationally very expensive. Approximate

solutions can be obtained using deterministic relaxation techniques. In this paper we consider
two algorithms , one based on minimizing an energy function using a Hopfield network and the

other using stochastic learning and compare the results with that of simulated annealing.

Hopfield Network

A Neural Network for the classification of textures based on the above image model is described
in this section . The neurons in the network are assumed to be binary and are arranged in a 3-D

array . The elements are indexed by the subscripts (i,j,k) , (1 < i,j < M, 1 < k < L) ,where
M x M is the image size and L is the number of texture classes . Thus we have L layers each

having M' neurons. The (i,j)-th neuron in layer k corresponds to tile pixel site (i,j) taking the
label k . A column of this network consists of the L neurons in the L layers for a site (ij).

The connections are local and there are no inter-layer connections . Within any layer ,except
at the boundaries , each neuron is connected to its 8 nearest neighbours. Since any pixel can have
only one label , one neuron should be active in each column of the network . A simple winner-

2

I



takes-all circuit can be used for each column to select only one of the L neurons to represent the

label for the corresponding site. Another alternative is to introduce a constraint in the energy

equation for the network as in Hopfield and Tank [4]. If the k-th neuron in a column is active itIi
means that the corresponding site has the label k.

The Energy function to be minimized can be written as

A M M L L M M
E= E ,((ij),k)- w(L(k)))Vk- E VjkVik (1)

i=1 j=1 k=1 k1 i==1 (i',j')EN,

where Nij denotes the neighbourhood of site (i,j), Vjk is the output of neuron at site (ij)

in the k-th layer , and A is a constant. The standard Hopfield energy equation is [4]

1 MM L M M L 1 MM L

E = -jEEEE E Tijk;ij'k~'VtikVij'kI - 2 E Iijk~ijk (2)
i=1- j=1 k=1-- i1----lj1=1 k1=1 i=1 "=_- =

From (1) and (2) we can identify the parameters of the network as

, = i if (i',j') E Nij,Vk
TjAk;jjk' 0 otherwise (3)

and the bias current

I'ik = -A(Ui((i,j), k) - w(L(k)))

IThe input-output relation can be stated as follows . Let uijk be the potential of neuron

(ij,k).( Note :k is the layer number) , then

M M L

Uijk = E 1: Tijk;i'J'k'Vij'k' + I jk (4)

and 
i -= 1 j -= 1 k=1

Vnd 1 if u1 jk = maxj{uifi} (5)i 0 otherwise()

Convergence : In (3) we have no self feedback ,i.e. Tijk;ijk = O, Vi,j, k and all the connections

have equal strengths . The updating scheme ensures that at each stage the energy decreases

Since the energy is bounded, the convergence of the above system is assured but the stable state

will in general be a local optimum .

This neural model is one version of the Iterated Conditional Mode algorithm (ICM) of Be-

sag [1] , which maximizec the conditional proability of the labels given the intensity array and

the labels of the neighbouring pixels at each iteration. ICM is a local deterministic relaxation
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algorithm and very easy to implement. We observe that in general any algorithm based on MRF

models can be easily mapped on to Hopfield type Neural networks with local interconnections.

However this algorithm is very sensitive to the initial configuration and the solutions obtained are

not satisfactory in general. In the next section we consider an alternate scheme which combines

stochastic learning and deterministic relaxation and because of its stochastic decision making is

not sensitive to the initial states.

Stochastic learning in neural networks:

We now describe an algorithm which introduces stochastic learning into the neural network model

for texture discrimination. This is motivated from the theory of learning automata [6]. It consists

of a two stage process with learning and relaxation alternating with each other and because of

its stochastic nature has the potential of escaping the local minima.

The learning part of the system consists of a team of automata {A.} , one automaton for

each pixel site. Each automaton A, at site s maintains a time varying probability vector p. =

[PSI,... ,PL] where P,, is the probability of assigning the texture class k to the pixel site a.

Initially all these probabilities are equal. At the beginning of each cycle the learning system will

choose a label configuration based on this probability distribution and present it to the Hopfield

neural network described above as an initial state. The neural network will then converge to a

stable state. The probabilities for the labels in the stable configuration are increased according

to the following updating rule : Let k, be the label selected for the site s = (ij) in the stable

I state in the n-th cycle. Let A(n) denote a reinforcement signal received by the learning system

in that cycle.then,

Pa.(n + 1) = 'k()+An[ ~.

p.,(n) = p,,(n)[1- aA(n)], Vj 5k (6)

for all a = (ij), 1 < ij < M.

In the above equation 'a' determines the learning rate of the system. The reinforcement signal

determines whether the new state is good compared to the previous one in terms of the energy

function. Using the new probabilities, a new initial state is generated randomly for the relaxation

network and the process repeats. The above learning rule is called Linear Reward-Inaction rule in

the learning automata terminology.

Experimental results and conclusions

We have tested the above algorithms in classifying some real textured images. The parameter

values for the different texture classes were precomputed and stored in a library. These are used in

calculating the different energy functions. The bias values w(.) are choosen by trial and error but

4



they can also be estimated from the image data. We have experimented with different 13ranging
from 0.3 to 2.0 and also with 0 depending on the order of the neighborhood. We have used

images consisting of two and six texture classes and the results for the six texture class problem

are shown in figure 1. The Hopfield network solution has a misclassification of about 14% when

started with a random configuration. We observed that random initial states give better results

compared to the ones starting from Maximum likelihood estimates [2]. The learning scheme has

an error of about 6.8% compared to 6.3% obtained using simulated annealing, but the number

of iterations were considerably more in the case of simulated annealing. In general stochastic

algorithms seem to perform better than any deterministic sheme.

Currently we are working on extending these methods to do hierarchical segmentation and

the initial results are quite promising.

References :

1. Besag ,J ," On the Statistical Analysis of Dirty Pictures" , Journal of Royal Statistical

Society B,vol. 48 No. 6,pp 259-302, 1986.

2. Chellappa,R. and Chatterjee, S., " Classification of Textures Using Gauss Markov Random

Fields", IEEE Trans. Acous., Speech, Signal Process., vol. ASSP-33,no. 4, pp. 959-963,

August 1985.

3. Geman,S and Geman,D. ," Stochastic Relaxation , Gibbs Distributions, and Bayesian

Restoration of Images ", IEEE Transactions on Pattern Analysis and Machine Intelligence,

vol.6 ,pp. 721-741, November 1984.

4. Hopfield,J.J., and Tank,D.W.," Neural Computation of Decisions in optimization Prob-

lems",Biological Cybernetics,vol. 52,pp. 114-122, 1985.

5. Mesrobian,E and Skrzypek,J. ," Discrimination of Natural Textures: A Neural Network

Architecture ",in Int. Conf. on neural networks , vol.4, pp. 247-258, San Diego ,July 1987.

6. Narendra,K.S. and Thathachar,M.L.A.," Learning automata - A survey," IEEE Trans.,

Syst.,Man, Cybern., vol. SMC-4,pp. 323 -334, 1974.

7. T.Simchony and R.Chellappa, " Stochastic and Deterministic Algorithms for Texture Seg-

mentation" Proc. of International Conf. Accous., Speech and Signal Process ,pp 1120-1128

, NewYork, April 1988.

50



(A): Original Image (B):Hopfield Network

A(G):Stochastic Learning (D):Simulated Annealing

* Figure 1: Experimental results for a six class segmentation problem


