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Abstract

The research findings of the AFOSR Grant AFOSR-86-0196, “Optical Symbolic Computing
Tasks” are summarized for the period 1 June 1987 - 31 May 1988. Specifically, we have con- !
centrated on the following topics: complexity studies for optical neural and digital systems and
learning algorithms for neural networks. Several conference and journal papers reporting the
research findings have been published. A list of publications and presentations is given at the
end of the report along with a set of reprints and preprints.
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s 1 Complexity of optical neural and digital systems

1.1 Connectivity and hierarchical neural networks

connected. As has been shown by Psaltis, even optical systems may not be able to provide
this much connectivity for nets with large numbers of neuron units (i.e., 2-D arrays of neuron
units). One technique for optically reducing the physical interconnection requirements is to take
advantage of any symmetry or regularity in an interconnection. Since neural nets are particu-
‘& larly useful for random problems, and this may imply random interconnections, at first thought

& In neural networks the connectivity can be very high and in many cases the nets are even fully

utilizing symmetry may not seem plausible. However, in many cases nets may have a hierarchical
structure, and this may often imply some repetition in the interconnections. For example, a
network that utilizes a number representation scheme with binary neurons may have the same
interconnections repeated for each group of neurons. Most number representation techniques
that have been described for neural networks do not have this repetition, but we have found
ia that variants of them do. We have designed such network structures that have repeated blocks,
J one for each represented number, and have incorporated proper update rules for the neurons to
} ensure convergence of the net. This work has focused on single layer feedback networks used
|g for combinatorial optimization. This yields a hierarchical network in the sense that each block

represents the lower level, and the interconnections from block to block represent the higher level.
It may also be extendable to hierarchies with more than two levels.

Our study of digital optical system complexity has been continuing; in year 2 of this grant it has
included a comparison of optical and electronic interconnection network complexity, and a study
of design and complexity tradeoffs for the implementation of a shared memory parallel computer.
The complexity of some common interconnection networks have been analyzed for optical and
electronic VLSI implementations in detail. The optical system used for analysis was the hybrid

i 1.2 Digital optical parallel system complexity

x 2-hologram interconnection system of Jenkins, et al. Area complexity was compared and found
to be
g VLSI OPTICS
. Banyan 0{n?) 0(nlog?n)
:‘i Shuffle/Exchange 0(n?/logn) 0(n%logn)
~ Hypercube 0(n?) 0(nlog?n)
- 2-D Cellular Hypercube > 0(n?) 0(n)
>
| ?”' It should be noted that the electronic results have received a great deal of work on using various

investigated by us and can likely be reduced further by using different layouts. The Banyan and
shuffle/exchange networks are isomorphic and for them, optics has lower complexity for large n.
An example of how the optical complexity can be lowered can be seen in the hypercube network.

) clever tricks and algorithms to reduce the result to near optimum. The optics case was only
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The 2-D cellular hypercube is identical to two overlapping hypercube networks, so it has twice as
many interconnections, yet its optical area complexity is much lower because it is space-invariant.

We have more recently applied our expertise and results in complexity analysis to the use
of optics in the implementation of a parallel digital shared memory computer. This machine
encompasses electronic processing elements, an optical reconfigurable interconnection network,
and optical, electronic, or hybrid memory modules, We have been studying optimal uses of
optics in the interconnections the associated control techniques, and machine performance vs.
all-electronic parallel machines (especially the IBM GF11 and RP3 shared memory machines).
We have also been and continue to study the possible use of superposition as part of the inter-
connections and memory access in this machine, which may permit parallel, simultaneous read

access to memory, as well as reduce the well-known contention problems in large interconnection
networks with distributed control.

2 Learning Algorithms

2.1 Potential Difference Learning

We have developed a new learning algorithm, potential difference learning. It is based on a
temporal difference of the neuron unit potential,

Aw;; x Apiz;

where Aw;; is the weight increment from neuron j to neuron i, Ap; is the temporal difference of
potential, and z; is the jth input to neuron i, for self-organization in neural networks. Depend-
ing on the time sequence of the input patterns during learning, it can learn based on the input
patterns themselves or based on the time difference of input patterns. It has no weight overflow
as with a strict Hebbian law. It can, with suitable presentation of the input patterns, also be
used to unlearn or erase stored states in an associative memory without access to the individual
weights and without reversing the sign of the learning gain constant.

We have simulated potential difference learning on two different networks: (1) an Amari net-
work, i.e. a single layer fully connected network with feedback, used as an associative memory,
and (2) a 3-layer network used as two associative memories with a hidden layer to relate pairs of
stored vectors. These are described in a paper attached to this report.

2.2 Stochastic Learning Networks for Computer Vision

We have developed stochastic learning networks for an important problem in Computer Vision,
viz, texture segmentation. Our approach is based on minimizing an energy function, derived

XA 2LLECTC]®

o

4

PYWIYVFS SE 5 e sty ]




-
"g

£l

X

k]

@ NS e
.

RS

fa

-

X2 L &

.’L’L‘.K

through the representation of textures as Markov Random Fields (MRF). We use the Gauss
Markov Random Field (GMRF) to represent the texture intensities and an Ising model to char-
acterize the label distribution. We first used an adaptive Cohen-Grossberg/Hopfield network to
minimize the resulting energy function. The solution obtained is a local optimum in general and
may not be satisfactory in many cases. Although stochastic algorithms like simulated anneal-
ing have a potential of finding a global optimum, they are computationally expensive. We have
developed an alternate approach based on the theory of learning automaton which introduces
stochastic learning into the iterations of the Hopfield network. This approach consists of a two
stage process with learning and relaxation alternating with each other and because of its stochas-
tic nature has the potential of escaping the local minima.

The learning part of the system consists of a team of automata A,, one automaton for
each pixel site. Each automaton A, at site s maintains a time varying probability vector
Pgs = [ps1..., Ps1]) Where p,i is the probability of assigning the texture class k to the pixel site s.
Initially all these probabilities are equal. At the beginning of each cycle the learning system will
choose a label configuration based on this probability distribution and present it to the Cohen-
Grossberg/Hopfield neural network described above as an initial state. The neural network will
then converge to a stable state. The probabilities for the labels in the stable configuration are
increased according to the following updating rule: Let k, be the label selected for the site
8 = (i,7) in the stable state in the n-th cycle. Let A(n) denote a reinforcement signal received by
the learning system in that cycle. Then,

Psy, (nt+1)= p,k‘(n) +aX(n)[1 - p’k.]

Ps,(n) = p,,(n)[l —aX(n)),Vj # ky
for all s = (4,5),1< 4,5 < M.

In the above equation ‘a’ determines the learning rate of the system. The reinforcement signal
determines whether the new state is good compared to the previous one in terms of the energy
function. Using the new probabilities, a new initial state is randomly generated for the relaxation
network and the process repeats. The above learning rule is called Linear Reward-Inaction
rule in the learning automata terminology. More details of this algorithm may be found in {1].
A preprint of this paper is attached.

We have tested this aigorithm in classifying some real textured images. The results are sum-
marized in [6]. The Hopfield network solution has a misclassification error of about 14% without
learning. The error decreased to 6.8% when stochastic learning was introduced. When simulated
annealing was tried the error rate is 6.3%, but the number of iterations were considerably more.
In general stochastic algorithms seem to perform better than any deterministic scheme.

Currently we are working on extending these methods to do hierarchical segmentation and the
preliminary results are quite promising. We are also investigating the possibility of extending this




approach to other vision problems such as computation of optical flow. Under partial support ;;’
from this grant and the USC URI Center for the Integration of Optical Computing, we have
developed an adaptive neural network based algorithm for a fundamental problem in image
processing, viz, the restoration of a blurred and noise corrupted image. One of the important :
stages of the algorithm is learning the blur parameteres form prototypes of original and degraded K
images. Details of this algorithm along with restoration results were presented in a paper which )
appeared in a special section on neural networks [1]. 0
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Model for an Incoherent Optical Neuron that Subtracts
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An Incoherent Optical Neuron (ION) is proposed that subtracts inhibitory inputs from ex-

citatory inputs optically by utilizing two separate device responses. Functionally it accommodates
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positive and negative weights, excitatory and inhibitory inputs, nonnegative neuron outputs, and can
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be used in a variety of neural network models. An extension is given to include bipolar neuron outputs
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In this letter we propose a general incoherent optical neuron (ION) model that can process ex-

citatory and inhibitory signals optically without electronic subtraction. Conceptually, the inhibitory
signal represents a negative signal with a positive synaptic weight or a positive signal with a negative
synaptic weight. The ION can be used in a network in which the neuron outputs are nonnegative
and the synaptic weights are bipolar, for example, by connecting the interconnections with negative
weights to the inhibitory neuron inputs and those with positive weights to the excitatory inputs. Our
intent is to show that it is in principle not necessary to go to opto-electronic devices solely because of
the requirement for subtraction capability.

Techniques that have been described to date are impractical in all-optical implementations of
most neural networks. They utilize an intensity and/or weight bias, in some cases coupled with
complemented weights or inputs. As noted in [1], these techniques suffer from bias buildup and/or
thresholds that must vary from neuron to nmeuron. A technique described in [2] eliminates most of
these drawbacks in the special case of fully connected networks.

The ION model uses separate device responses for inhibitory and excitatory inputs. This is modeled
after the biological neuron which processes the excitatory and inhibitory signals by different mecha-
nisms (e.g. chemical-selected receptors and ion-selected gate channels) [3]. The ION comprises two
elements: an inhibitory (I) element and a nonlinear output (N) element. The inhibitory element pro-
vides inversion of the sum of the inhibitory signals; the nonlinear element operates on the sum of the
excitatory signals, the inhibitory element output, and an optical bias to produce the output of the
neuron. The inhibitory element is linear; the nonlinear threshold of the neuron is provided entirely by
the nonlinear output element. Fig. 1(a) and 1(c) show the characteristic curve of the I and N elements

respectively. The structure of the ION model is illustrated in Fig. 1{d). The input/output relationship

of the I and N elements are
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B = fin =1 = Lina (1)

Ig:? = ¢(Ifrl|V) - Q) = ¢(iinh + Lz + Ibiaa - a) (2)

where I;jnp and l.z. represent the total inhibitory and excitatory inputs, I'™) i the total input to

n

o the N elements, J;,,, is the bias term for the N element, which can be varied to change the threshold,
and « is the offset of the characteristic curve of the N element. 3(-) denotes the nonlinear output

function of the neuron. If we choose ;,, to be a — 1, the output of the N element is

Iﬁ:? = 'w(Iezc - :'nh) (3)

-

which is the desired subtraction. In general, the I element will not be normalized (Fig 1(b)), in

which case the offset, a,, and slope of its response can be compensated by setting [y, = @ — a; and

E =2

T
N
e

attenuating the output of the I element by a factor b, /a;, respectively. The unnormalized I element
must have gain greater than or equal to 1. A nonzero neuron threshold, 8, can be implemented by

shifting the bias by the same amount, so Jyiqs = @ — a1 — 8 for the unnormalized I element.

o

The ION model can be implemented by using separate devices for the I and N elements as depicted

Y
‘

in Fig. 1 (heterogeneous case), or by using a single device with a nonmonotonic response (Fig. 2)

P

® to implement both elements (homogeneous case). Possible devices for ION implementation include

%
e

bistable optical arrays and spatial light modulators such as liquid crystal light valves. A single Hughes

> 3
p ]

o

liquid crystal light valve could implement both elements. The offset of the device response must

" satisfy a@ > na, + 4, where n = 1 for a heterogeneous implementation and n = 2 for a homogeneous

et

implementation.
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A device to realize the inhibitory (I) element will of course not have a perfectly linear response.
To assess the robustness of this model to nonlinear I elements, and compensation techniques for large
deviations from ideal response, we have performed simulations of a network similar to Grossberg’s
competitive network [4] for edge detection. The simulated network contains 30 conventional inner
product neurons connected in a ring structure with input and lateral on-center off-surround connec-
tions. We model the normalized I element response as ezp{—(z/a)?], where a and b are parameters
that determine the specific nonlinear response. This provides insight into the sensitivity of the ION
model to nonlinearities in the I element response, without being overly specific to one given device.
A suitable choice of @ and b does provide a close fit to the inversion region of the normalized exper-
imental characteristic of a liquid crystal light valve (LCLV). By adjusting the parameters a and b,
four different nonlinear inversion curves were simulated in this network. In the simulation a compen-
sating attenuator was used before the I element instead of after it. The N element response, which
provides a close approximation to the normalized increasing portion of the LCLV response (Fig. 2),
is modeled as 1 ~ ezp{—(z/0.43)*?]. Fig. 3 shows the computer simulated responses of this network.
Each resolvable row of the figure represents a 1-D simulation on a distinct 1-D input. Thirty different
binary inputs were each simulated at four different input signal levels. Fig. 3(b) gives the ideal output,
and (d) simulates a response that is close to the experimental response of our LCLV. Deviation from
linearity of the I element is measured by normalized mean square error (nmse), which is defined as
JTv(@) = #(3)]?d¢/ [ v(3)®di, where v(i) and #(i) are the output value of the linear and simulated non-
linear characteristic curves. The input level i ranged from 0 to 0.7. Our LCLV characteristic has an
nmse of 50%, which does not perform well. If proper input attenuation of the I element is included, the
network performs correctly. Four nonlinear curves are simulated, each with optimal input attenuation;

we find that deviations from linearity that give an nmse of approximately 15% (measured after input




—
\

2 rE O G O

TR O S =

e Rl

o T == BT &

=

’
'

==

attenuation) can be tolerated. For more extremely nonlinear devices, a bias point and limited region
of operation can be used.

The fan-in and fan-out of the ION, neglecting interconnection effects such as crosstalk, can be
calculated as follows. (Interconnection effects are important but are not peculiar to the [ON model.)
We assume binary neurons. As shown in Fig. 1(c), the output of the i-th neuron can be formulated
as I, + AIMV;, where V; € {0,1} is the output state of the neuron i and I, is the residual output
of element N. Let the fan-in and fan-out of each neuron be N;, and N, respectively. The summed
inputs to neuron j can be grouped into two terms, a noise term caused by residual outputs (I,) of the
optical neurons and the signal term. Consider the worst case, i.e. all weights are close to one and only
one input is active. If we assume each neuron must be able to discriminate a change in any one of its
input lines, then the signal term must at least be greater than the noise term. This is a reasonable
assumption for networks with small fan-in and fan-out. Thus the maximum fan-in is

N}
N{maz) = ﬂ— = extinction ratio of element N. (4)

I,
The fan-out is calculated from the I element, as shown in Fig. 1(b). The ratio of the maximum
input (a,) to the minimum input " /N, §$“” is the fan-in N, (ma ), where N(SZ:“ %) is the maximum
fan-out over all neurons, thus

N)
v(ma::) I.S N"(,:naz.-) A[( N(ma.t) (5)

out a1

where the approximation holds when the extinction ratio of the N element is large. For networks
with large fan-in, we assume instead that the neuron can discriminate a change in a constant fraction 8
of its input signals. In this case, there are no such limitations on ¥;, and N,,;. Instead, 1/4 is limited

by the extinction ratio of the N element, and the fan-out is still related to the fan-in of the network by

IR L S N R S A L A TR AR RS
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Eq. (5). For example, in many networks a 1/8 ranging from 10-100 may be sufficient for the optical
neuron while the maximum fan-in may be 10% — 10%. During implementation of the ION model, with
many optical devices /, can be varied with the intensity of the read beam, which effectively increases
the gain and permits a larger fan-out.

As an example, a conceptual diagram of an implementation of a single layer feedback net is shown
in Fig. 4. It utilizes a single 2-D SLM for both I and N elements. The output of the I element is
imaged onto the input of the N element, after passing through a ND filter as the (uniform) attenuation.
A uniform bias beam is also input to the N element. The N element output is fed back through an
interconnection hologram to the inputs of both I and N elements, representing inhibitory and excitatory
lateral connections, respectively.

In the remainder of this letter we will present a variant of the ION model that incorporates bipolar

neuron outputs in the case of fully connected networks. The operation of the network is given by

N
Vi= ¢[Zl Wi;V;] (6)
where V; € (-1, +1] is output of the j*» neuron, W;; € [—1,1] is the normalized weight from neuron
j to neuron i and N is the number of neurons. A special case of this is the bipolar binary neuron used
by Amari (1972) {5] (V; € {-1,+1}). In this case, the nonlinear output function ¥(z) is equal to 1 for

z > 0, otherwise it is -1.

By a complementary offset scheme, Eq. (6) can be rewritten as

S(1+ 7)) = ¥l

N N
(=W (1=V)) & (14 W) (14 )
1 2 J 2 * Z 2 2 ] ™

j= =1

where ¥(z) is the nonlinear output function of the neuron. All terms in parentheses are positive

and can be represented by intensities. The neuron input and output are in the form (1 + V;)/2, and

Py A A P ATy 2™ o e 0N v
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the I element is used to generate the (1 — V;)/2 term. A Hopfield net {6] is identical except the neuron

outputs V; € {0,1}; for this we can replace (1 + V;)/2 with ¥; and (1 - V;)/2 with V; in Eq. (7), where

V; is the complement of V;, and is generated by the I element.

Most of this work was presented at the 1987 Annual Meeting of Optical Society of America [7].
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Fig. 1 The ION: (a)-(c) its components, and (d) its structure.




Fig. 2 Characteristic of a Huges twisted-nematic liquid crystal light
valve, a possible device for the homogeneous ION model.
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(c) a=0.46,b=2.1,s1=1.0,mse=19%

(d) a=0.25,b=1.2,51=2.5,mse=4%

(e) a=0.33,b=1.5,s1=1.5,mse=14%

(f) a=0.16,b=0.9 ,s1=5.0,mse=7%
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Potential Difference Learning and Its Optical Architecture
C. H. Wang and B. K. Jenkins

Siginal and Image Processing Institute, Department of Electrical Engineering,
University of Southern California, Los Angeles, CA 90089-0272

ABSTRACT

A learning algorithm based on temporal difference of membrane potential of the neuron is proposed for
self-organizing neural networks. It is independent of the neuron nonlinearity, so it can be applied to analog or
binary neurons. Two simulations for learning of weights are presented; a single layer fully-connected network
and a 3-layer network with hidden units for a distributed semantic network. The results demonstrate that this
potential difference learning (PDL) can be used with neural architectures for various applications. Unlearning
based on PDL for the single layer network is also discussed. Finally, an optical implementation of PDL is
proposed.

1. INTRODUCTION

Most of the unsupervised learning algorithms are based on Hebb’s hypothesis [1), which depends on the
correlated activity of the pre- and postsynaptic nerve cells. For steady input patterns, Hebb’s rule will suffer
from weight overflow. Von der Malsburg (1973) [2] solved this by adding the constraint that the sum of the
weights of a neuron is constant. This concept led to competitive learning, developed by Grossberg (1976) [3],
and Rumelhart and Zipser (1985) (4]. They also assumed a winner-take-all algorithm (Fukushima 1975 [5]) to
enhance the synaptic weight modification between neurons. Biologically, the sum of the weights of a neuron
can likely be changed by the supply of some chemical substance. In this paper we propose a learning algorithm,
potential difference learning (PDL), based on temporal difference of the neuron membrane potential. Because
PDL is based on the membrane potential, it is independent of the nonlinear threshold function of the neuron. Its
temporal characteristic prevents weight overflow and permits unlearning without access to individual weights.

In an artificial neural system, unlearning can provide for real time reprogramming and modification of
the distributed storage for stable recollection, or equivalently, modification of the energy surface in an energy
minimization problem. Hopfield proposed unlearning to reduce the accessibility of spurious states {6]. Our
unlearning emphasizes reprogrammability and local modification of the energy surface for stable partial retrieval.
The unlearning in PDL is done by presenting a sequence of patterns and global gain control; reversing the sign
of the learning gain is not necessary. The distinction of learning and unlearning in PDL is in the data sequence
and value of the gain constant for different phases.

The main advantages of potential difference learning are spontaneous learning without weight overflow
for steady state input patterns and unlearning. Other features of PDL include contrast learning, temporally
correlated and uncorrelated learning, learning independently of neuron type and ease of physical implementation.

2. POTENTIAL DIFFERENCE LEARNING AND ITS PROPERTIES

Like most learning rules, potential difference learning requires only local information for synapse modifica-
tion. Given a neuron with n inputs, PDL is given by:

wk+1) = ®lwk)+ Kea~'(k) - ap(k) - z(k)] (1)
ap(k) = wl(k)z(k) - w (k- Dz(k - 1) (2)
k) = [wT(k)z(k) - 6(k)] (3)

» Presented at SPIE’s O-E Lase '88, Los Angeles, California, 10-15 January, 1988. ”Neural Network Models for
Optical Computing”®, SPIE vol. 882,
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Where w(k) and z(k) are the input weights and stimuli respectively; they are represented as n x 1 vectors. ;
p(k) and y(k) are the neuron potential and output value at time instant k. §(k) is the threshold of the neuron :
and K,a~!(k) denotes the learning gain constant with X, as the global gain constant and a~!(k) as the adaptive
gain constant. The weight w(k) is bounded by the function ®(-), which represents the physical limitation of
synapses. Distinct from other learning models, PDL is independent of the output nonlinear function ¥(-) of the
neuron.

PDL has the following properties:

e (1). Self-organization: similar to Hebb’s rule, PDL can modify the weights of synapses according to the
input patterns.

¢ (2). Contrast learning: Weight modification is initiated by potential dif ference, which is caused by
difference in input. Since most sensory preprocessing is differential in nature, PDL can provide a good
approach for feature extraction when it is combined with neural architectures.

e (3). Unlearning: This can be used to erase stored states, to alter the energy surface or reprogram a
network. PDL can provide unlearning capability by applying suitable pattern sequences to generate a
negative potential difference Ap. This is discussed below.

e (4). Temporally correlated or uncorrelated learning: By varying the training sequences, the neuron
can learn absolute patterns or temporal differences between training patterns. The temporal difference
property may be useful in sensory information processing.

e (5). Ease of implementation: The PDL uses only local information to update the weights and only one
differencer per neuron is needed to calculate the potential difference. The complexity is low when it is
compared with differential Hebbian learning (Kosko 1986) (8] or drive-reinforcement learning (Klopf 1986)

[9).

(6). Independence from neuron nonlinearity: The learning rule is evoked by the potential change only, so
various non-linear functions can be imposed on the neuron to make different types of neurons. Due to
this feature, weight modification can stiil occur when the output is saturated or clamped as long as the
weight is not saturated.

A variant of PDL is given by

w(k +1) = Blw(k) + Kaa™' (k) - Ay(k) - 2(k)] (4)
-t which replaces potential difference Ap(k) with output difference Ay(k). This can be used when the neuron
v, potential is not physically available. The tradeoff is that weight modification no longer occurs when the neuron
:: output is saturated. Equation (4) is similar in appearance to supervised learning (Widrow-Hoff rule), but here

L2

Ay(k) refers to the temporal difference of the neuron output, instead of the spatial output error.
Other learning algorithms have been proposed based on the following:
w(k +1) = 0fw(k) + Kaa™ (k) - Ay(k) - Az(k)] ()

with A representing different forms of temporal difference (7], [8], [9]. The use of Az(k) instead of z(k) and
more complex definitions of time average in these learning rules causes a higher implementation complexity.

T ==5

Due to the fact that the PDL rule is embedded in the neurons, we need some lateral interconnections between
the neurons of the same layer to enhance the competitive or cooperative modification of synapses. One example
is to use the winner-take-all algorithm [5]:

Y w;(k +1) = @u; (k) + Kaa™' (k) - 8p5(k) - 2;(k) - 6(y5(K))] (6)
: where the subscript j denotes neuron j, and §{y;(k)] =1 if j** neuron wins in his neighborhood, otherwise
it is zero.
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3. COMPUTER SIMULATIONS

First a single layer fully interconnected neural network, as described by Amari {10}, Hopfield [11] and others,
is simulated. Four input patterns [12], each 20 bits long, are present:d to the external input of the network. The
learning rule is our PDL with K;=0.01 and a~!(k)=1. The neurons are binary with bipolar coding (+1,-1).
The weights are initially set to zero. For each iteration, the four inputs were presented in sequence. Four
iterations were performed. The resulting weight matrix is shown in Fig. 1 (a). PDL produces a near symmetric
weight matrix, which is quite similar to the result obtained using the familiar sum of outer products, as shown
in Fig. 1 (b). If a partial input is applied to the trained network, we can get full retrieval after several iterations,
dependent on the hamming distance from the partial input.

(a) 1.0 positive weights 1.0  negative weights

PDL
4-th iteration

N=20, Ma4 (patterns)
11101 11016 01001
00100 00117 00011
10111 01107 11100
11010 100807 01110

(b) 8.0 positive weights 8.0 negative weights

sum ot
outer products

Fig. 1 Comparison Between Outer Prcduct T(i,j) Matrix and POL
( 20 neurons, 4 pattems)

The unlearning procedure of this network is divided into two stages. (1). Apply the data to be erased to
the network with low (zero) global gain constant. (2). Use the same gain constant as for learning. In each step,
present the input with one bit complemented; allow Ap to decrease to zero; restore that bit and complement
the next bit for the next step. After all bits have been complemented, one iteration is completed. Starting
with the trained weights of Fig. 1(a), two of the stored vectors ( pattern #3 and #4 ) were erased using this
unlearning procedure. We erase pattern #4 in five iterations, then erase pattern #3 in another five iterations.
After each iteration, we test the convergence of the erased pattern. The resulting network would not converage
to the erased states after just three iterations. For five iterations of unlearning, the weight matrix, Fig. 2(a), is
very close to the original weight matrix that stored only pattern #1 and #2 as shown in Fig. 2(b). To measure
the performance of unlearning, the resulting weight matrix is normalized by dividing it by a factor F, which is

_ Vi T ) M
Vi TR D)

where Ty (4, j) is the resulting weight matrix after unlearning and T;(i, j) is the ideal weight matrix. Then
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(a) 1.0 positive weights 1.0 negative weights

Uniearning by POL
Patterns #3,#4 have
been removed by
unlearning (5 iterations
each); pattarns #1,42
remain stored.

Data set: Na20, Med (pafterns)
1.10110 11101 11010 01001
2.01011 00100 900111 00011
3.11000 10111 01101 11100
4.01110 11010 10007 01110

(b) 1.6 positive weights 1.0 negative weights

original data (M=2)
only patterns #1& #2
are stored

0 (A
i

i
el
(el P

l/
i

il

Fig. 2 Unlearning of PDL from M=4 to M=2, N=20. Weight matrices
(a) after unilearning, (b) ideal result.

'deal stored patierns
R M=2 M=4 21,#2,#3,84
similarity ﬂ 5 M=3 #1,42,43
to ‘ 4 M=2 #1,#2

M=2

1 ideal

similarity
to
M=

Flg. 3 Unlearning of PDL from Mz4 to M=2 , N=20. Plot of similarity measu.es after each
iteration. (5 iterations total for each unlearned pattern; numbered in sequence for
unlearning of pattern #3). The ideal expected resuits for M=3 and M=2 are labelled.
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a similarity measure, which is defined as the ratio of the matrix 1-norm [13] of these two weight matrices,
@ is applied to evaluate the performance. Fig. 3 shows the similarity measure of the weight matrix after each
iteration when unlearning using PDL from initially M=4 stored vectors to M=2 stored vectors. |

' The second example is a 3-layer network with two fully interconnected visible layers and a hidden layer. The
.t purpose of this network is to do associative mapping between two visible layers by using one hidden layer. The
visible layers are fully connected and the interconnections between the visible layers and the hidden layer are
shown in Fig. 4. The visible layers use binary neurons to interface with the environment, while the hidden layer
uses analog neurons. One neuron is used to calculate the average output, u(k), of the hidden layer; then the
competitive network of Fig.5, which is used in the hidden layer, reinforces those neurons with stronger output.

X(1.]) J=1 to N1

Layer #1 Neuron pool

Layer #3 Hidden units

Layer £2 Neuron pool

X(2,)) I=1 to N2

Fig. 4 Interconnections between hidden layer and visible layers.
This interconnections are bidirectional with possibly
, g different weights in each direction. Each visible layer is

fully connected.
from

output of

Average neuron ouzﬁﬂ'ol tayer 2

of layer 33

from layer #1 N\

output of
layer #3

output

jth neuron of layer #3

iy Fig. 5§ competitive interconnections of the hidden layer.
‘ The operation of the hidden layer is
e
~ Y1
u(k) = }: —]V_ayj (k) (8)
y i=t
s 3 Ly A (2) (2 3 (3)
> WWk+1) = ¢ uwPsP®) + 3 wPvP®) + 9V %k) - w®)] = e -y ®) (9
i=1 =1
)

where ¥(z) is 1 for z > 1, and is 0 for z < 0, else it is z. Superscripts denote the layer number and
Ny, N2, N3 represent the number of neurons in layer 1, 2, and 3. w,(;) for | = 1,2 represents the weight from

the i'* neuron of layer I to the j** neuron of the hidden layer. Initially, the weights of the visible layers are set
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to zero and the weights between the visible layers and the hidden layer are set to small random values. The
visible layers are trained separately during the first phase, while the learning gain of the hidden layer is set
to zero. In the second phase, the learning gain of the hidden layer and the visible layers is nonzero; we apply
the corresponding patterns at these visible layers to train the hidden layer and the visible layers. After the
learning phases, applying a partial input at the visible layer #1 will retrieve the full information at the same
layer and associated data at the other visible layer. We have performed computer simulation of this network
with 20 neurons in layer #1, 16 neurons in layer #2, and 10 neurons in the hidden layer. Eight patterns were
stored, four into layer #1 and four into layer #2, and associations between pairs of these patterns were learned.
The network randomly selected a set of one or more "representation” neurons in the hidden layer to form an
association between each pair of patterns. Some of the sets of neurons for different pairs of patterns were
disjoint, and some were partially overlapping. Table 1 shows the hidden neurons selected by the network for
each associated pair of patterns. The last column in the table shows the pattern retrieved upon presentation
of each layer #1 pattern. Since each set of representation neurons usually consists of multiple neurons, some
fault tolerance is provided. However, when these sets overlap some interference can result during retrieval of
associated patterns. This imperfect mapping results from the "soft” competitive network that was used.

Table 1 Simuiation resuits of network of Fig. 4 and Fig. 5.

pattern stored resulting representation pattern stored pattern retrieved
in layer #1 neurons In hidden layer in layer #2 In layer #2
a, 1,4 2,1 .b_1
2, 2,9 b b
a, 2,3,5 b by
a, 1,4,6 b b,

4. OPTICAL ARCHITECTURE OF PDL

A conceptual diagram of an optical implementation of PDL is shown in Fig. 6; it is somewhat similar to
Fisher’s associative processor [14]. Two spatial light modulators ( SLMs ) are used, one for storage of the weight
matrix and one for generation of Aw(k). In addition, two 1-D storage devices and one 1-D threshold device are
used. H M3

S 1
(controlled by K)
"z
3

4
 § A
L
M1 8 SLm $1-3  shutter
> MS, M1-5 mirrors
BS1 BS1-2 beam splitters
A iteration input
] B microchannel SLM
External 2 [+ potential output
Input G M4 D 1-D threshoid array
Fs3 > E  output
F optical delay line or storage
? | A G beam combiner
) H potential output p(k) or _p(k-1)
| external data input
Rotation 90 deg. J  rotation optics
K synchronization controiler
', K L SLM
Ms N 1-D storage SLM for x(k)
J BS Synchronization
Controiler
E
Output

Fig. 8 Conceptual diagram of an optical implementation of potential diffarence learning.
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"A” is the input z(k) from the previous iteration, which is expanded vertically to illuminate the weight
storage "B”. The reflected output from the microchannel SLM "B” is collected horizontally. This represents a
vector, each component of which is }_ w;jz;. It is then combined with external input "I” to produce potential
output at position "C”. The output at "C” is split into three. The first one passes through 1-D threshold device
"D” to generate outputs of the neurons. The second output of "C” passes through delay element F and shutter
S3, yielding p(k — 1) at "G”. The third output path from "C” passes through shutter S2 to yield p(k) at "G”".
Only one of the shutter arrays S2 and S3 can be turned on at a time. "G” is a beam combiner and its output,
either p(k) or p(k — 1), reflects off mirrors M4, M3 and is expanded horizontally to illuminate the write side
of SLM "L”. A beam with intensity z(k) illuminates the read side of SLM "L” (which is read in reflection),
to form outerproduct p(k)zT (k) or p(k — 1)zT(k) for a 1-D array of neurons. At the first phase, p(k)zT (k) is
added to the storage SLM "B”. Then p(k — 1)zT (k) is applied to ”B”, which is operated in subtraction mode
during the second phase. These two steps calculate the potential difference and update the weights stored in
"B”.

During retrieval phase, partial input is applied to external input "I” and is then passed through threshold
device "D”, rotation optics "J”, mirror M5, M1 and beam splitter BS1 to position "A” to perform vector-matrix
computation of potential. Part of the iterated feedback signal z(k) reflects off BS1, M2 and is enabled by shutter
51 to store in 1-D storage SLM ”N”, which is used to form the outerproduct during the learning phase. Mirrors
M1 and M5 are used, as shown, to implement feedback within a single layer network. For a multilayer network
M1 and M5 can be removed (or replaced with beamsplitters) to send outputs to and receive signals from other
layers.

5. CONCLUSIONS

This PDL provides a number of interesting features along with a moderate implementation complexity. It is
a general technique that can be applied to different neuron types and different network models. Our simulations
indicate that it learns correctly in a variety of networks. We also described an unlearning technique for the
case of a fully connected network used as an associative memory, which does not require any sign reversal of
the learning gain or any global access to the weights. Applications of PDL include low level processing such as
extraction of features.
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Implementation Considerations of a Subtracting Incoherent
Optical Neuron

C. H. Wang and B. K. Jenkins

Signal and Image Processing Institute, Department of Electrical Engineering
University of Southern California, Los Angeles, CA 90089-0272

ABSTRACT

The incoherent optical neuron (ION) subtracts inhibitory inputs from excitatory inputs optically by
utilizing separate device responses. Those factors that affect the operation of the ION are discussed here, such
as nonlinearity of the inhibitory element, input noise, device noise, system noise and crosstalk. A computer
simulation of these effects is performed on a version of Grossberg's on-center off-surround competitive neural
network.

1 Introduction

The need to process positive and negative signals optically in optical neural network has been pursued in the
past few years. Existing techniques such as intensity bias [1] or weight bias method suffer from input dependent
bias or thresholds that must vary from neuron to neuron. A technique described by Te Kolste and Guest [2]
eliminites most of these drawbacks in the special case of fully connected networks.

The incoherent optical neuron (ION) [3, 4] model uses separate device responses for inhibitory and excitatory
inputs. This is modeled after the biological neuron that processes the excitatory and inhibitory signals by
different mechanisms (e.g. chemical-selected receptors and ion-selected gate channels) [5, 6, 7, 8]. By using this
architecture, we can realize general optical neuron units with thresholding.

The ION comprises two elements: an inhibitory (I) element and a nonlinear output (N) element. The
inhibitory element provides inversion of the sum of the inhibitory signals; the nonlinear element operates on the
excitatory signals, the inhibitory element output, and an optical bias to produce the output. The inhibitory
element is linear; the nonlinear threshold of the neuron is provided entirely by the output nonlinear device.
Fig. 1(a) and 1(c) shows the characteristic curve of the I and N elements respectively. The structure of the
ION model is illustrated in Fig. 1(d). The input/output relationships for the normalized I and N elements
respectively, are given by:

(a) Inhibitory (1) (b) unnormalized (c) nonlinear (N) element

element | element N
b
3 : g s
2 Input 'g' Input L . Input
1 2, )

(d) The ION structure
asttenuator

liny  lelement / N_element

B— 1"lnh I _T"i"_.
— —E;/ el

exc
'blu
Fig. 1 The ION: (a)-(c) its components, and (d) its structure.
+ Proc. IEEE International Conference on Neural Networks, San Diego, CA, July 1988wl T, 4ecl-die
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IsuNg) = '/’(jinh + Ieze + Ibias — 0) (2)

where [;,5 and I... represent the total inhibitory and excitatory inputs, Iy, is the bias term for the N

element, which can be varied to change the threshold, and o is the offset of the characteristic curve of the N

element. ¥(-) represents the output nonlinear function of the N element. If we choose Iy;s, to be @ — 1, the
output of the N element is

I(N) = ‘p(Iezc - Iinh) (3)

out

which is the desired subtraction. In general, the I element will not be normalized (Fig 1(b)), in which
case the offset and slope of its response can be adjusted using Jjia, and an attenuating element (ND filter),
respectively. The unno-malized I element must have gain greater than or equal to 1. A positive threshold (8)
can be implemented by lowering the bias term by the same amount 8. Similarly, a negative threshold is realized
by increasing the bias term by 4.

The ION model can be implemented using separate devices for the I and N elements (heterogeneous case),
or by using a single device with a nonmonotonic response to implement both elements (homogeneous case).
Possible devices include bistable optical arrays [9, 10, 11, 12] and SLMs such as liquid crystal light valves
(LCLV) [13]. A single Huges liquid crystal light valve can be used to implement both elements (Fig. 2).

Several factors that affect the realization of a neural network based on the ION concept, are examined here.
These include deviation from linearity within the inhibitory element, residual noise of the optical device, input
noise, drift of the operation point of the device, and system noise. A noise model for the ION is proposed and
a computer simulation of these effects on a version of Grossberg’s on-center off-surround type network [14] is

performed.

2 Factors that Affect the ION Operation

2.1 Nonlinearity in I Element
In order to perform subtraction correctly, we need a linear I element. Fig. 2 shows the typical input output
characteristic curve of the LCLV (15], which is nonlinear in the inversion region. In this region, the characteristic
curve can be modeled as

1D = 1= Lin = E+(Linn) (4)

where E.(I;n5) denotes the error term, which can be treated as an input dependent deterministic noise. If
the transfer curve is time varying, then it can be treated as temporally correlated random noise.

output

a, o input

Fig. 2 Characteristic of a Hughes twisted-nematic liquid crystal
light valve. The negative slope region can implement the
I element, and the positive slope region, with appropriate
input optical bias, can implement the N element.
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2.2 Noise

Here we use “noise” to mean “any undesired signals”, including perturbation of the operating point of the device,
non-uniformity of the device, variation in operating characteristics from device to device due to production
variation, environmental effects etc. Some of these effects are global (they affect all neuron units on a device
identically), others are localized (each neuron unit behaves differently; the noise on neighboring neuron units on
a device may be independent or correlated, depending on the source of the noise). Both temporal and spatial
characteristics of the noise need to be included. The effect of noise on an additive lateral inhibitory network
was discussed by Stirk, Rovnyak and Athale [16]. Here, we construct a noise model for the ION by considering
the origin and impact of the noise sources.

The possible noise sources in the ION model can be classified into four categories: input noise, device noise,
system noise and coupling noise. The input noise includes environmental background noise, residual output
of the optical devices etc. Essentially, they are not zero mean and vary slowly with time. The device noise
is mainly caused by uncertainty in the device's characteristics, for example drift of the operating point and
variation of gain, due to temperature or other effects. The system noise has global effect on all neuron units on
an optical device and includes fluctuations in the optical source. Finally, the coupling noise (crosstalk) is due
to poor isolation between the optical neuron units, crosstalk from the interconnection network, and imperfect
learning. As noted in [16], alignment inaccuracies and imperfect focussing and collimating optics also cause
localized crosstalk. Coupling noise is signal dependent.

2.3 Noise Model for the ION

Device Input Noise

Let the environmental background noise for the I and N elements be denoted by N,u) and N.(N) respectively.
The total residual output noise, caused by the optical devices to the input of an incoherent optical neuron, is
N, = Z;’;‘; Wi;1, [Nou:, which is weight-dependent and varies slowly with time due to learning. W;; is the
interconnection strength from neuron j to neuron i. I is the residual output of the optical device (Fig. 1(c)).
N;, and N,,; denote the fan-in and fan-out of the optical neuron unit respectively. Perturbation of the weights
can be treated as an input dependent noise source as N, = 3 AW;; - z;, where each AW;; is independent. For
the interconnection network, imperfect learning of the weights, nonuniformity of the weights, residual weights
after reprogramming and perturbation of the reference beam intensity will cause weight noise. Then the output
of the ION for the case of normalized characteristics is

Tour = ${[1 = (Jinn + ND + ND 4 NV 4 (Teee + NV + N £ N 4 (@ - 1) - 0} (5)

If the background noise is space invariant and the I and N element have the same device area, the terms Na“ )
and N fN) will cancel out. The residual noise terms N) and NSN ), and weight noise N.E,I ) and NV generally

do not cancel.
Device Noise

There are two possible noise sources in the I element, as illustrated in Fig. 3(a) and (b): shift (drift) and
gain variation in the device characteristics, which are denoted as N}’) and Ny) respectively. For the output N
element, the gain variation (Fig. 3(e)) only modifies the nonlinearity of the element N. If this gain variation is
a slowly varying eflect, it will have little effect on the dynamic behavior of the network; so for the N element
we only consider the drift effect. Let’s denote it by NgN). Two different drifts in the N element are possible,

horizontal drift (NS,I:’)) (Fig. 3(c)) and vertical drift (Ngiv)) (Fig 3(d)). The vertical drift of one neuron unit
becomes an additive noise at the input of the next neuron unit, and so will be approximated by including it
in the residual noise term above. The horizontal drift has the same effect as a perturbation in the bias term,
denoted by Vy,.

If the gain variation is small, the output of the I element can be expressed as (1+ N,) — (1+ Ny)lina, where
N, denotes the gain noise.

Wy
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Fig. 3 Modeling the device noiss of an incoherent optical neuron.

System Noise

of the | element. element. or variation on element. the N element.
a variation in the characteristic curve of the device and a perturbation in the bias term. In the case of an LCLV,
a perturbation in the reading beam intensity produces a gain variation in the I element and a combination of
gain variation and horizontal drift in the N element (or equivalently, essentially a re-scaling of its input axis).
Gain variation of the I element was discussed above. The difference is that the device gain variation is local, ie.
it varies from one neuron unit to another on a given device, while the variation in gain due to system noise is
global.
The device noise and system noise can be modeled as

Iout = \b{(l + N;’))[l + N.(,I) - Il'nh] + Iez‘c + N‘g:’) + (a - 1 + NbP) - a} (6)

It can also be caused by imperfect learning or reprogramming of the synaptic weights, where the perturbation
of different weights are correlated. In general, crosstalk is signal dependent and varies from one neuron unit to
another on a given device. It can be modeled as an input noise to the ] and N elements. It is excluded from
our current simulations because it is signal dependent.

Based on the above discussion, these noise terms can be grouped into additive (N ) and multiplicative (N7})
noise of the I element and additive noise (N};) of the output element N. The general noise model of the ION
can be written as

E gug ¢{(1+N,)[1— lnh+N+]+Iezc+NN-1} (7)

where N} is the sum of the drift noise (Nd )), background noise (N£ )), residual noise (N.V)), weight noise
, (N.S,I)) and crosstalk noise (Ngt)); N} is the gain noise of I element; and N is the sum of the background

(N,(N)) and residual input noise, horizontal shift noise (N shN)), weight noise and crosstalk noise of the N element,
and bias noise (Nyp).

& 3 Computer Simulation

3.1 Compensation for the Nonlinearity of the I Element

& To assess the effect of imperfect device responses for the I element, we have performed simulations on a variant of
Grossberg’s on-center off-surround competitive network (14] for edge detection (Fig. 4). The network contains
30 inner-product type neurons connected in a ring structure with input and lateral on-center off-surround
& connections. Fig. 5 shows several modeled nonlinear characteristic curves for the I element; these approximate
the normalized response of a Hughes liquid-crystal light valve. An attenuator (neutral density filter) can be
placed in front of the I element to reduce the overall gain (by effectively re-scaling the input axis) to bring it
closer to the ideal response. Fig. 6 shows computer simulations of the network responses based on nonlinear
. curve #2 for different input attenuations and input levels. As shown here, the attenuation has a tolerance
of approximately £20%. For extremely nonlinear responses we expect an input bias and a limited region of

Crosstalk
g Crosstalk can be caused by the physical construction of the interconnection network (e.g., coupling between
different holograms, diffraction in the detection (neuron unit inputs) plane, inaccurate alignment and focussing).
E
E
]
'




interconnection Weights X

Lateral Input

——p oxcitatory input
0 Inhibitory input

Fig. 4 On-center ofl-surround competitive neural
network.

Modeiled Curves tor the Nonlinearity in | Element

1.0
patameler:
0.3 1 01: 330.45685, b2t |
92: 340.25, Bat.2
0.8 03: 520.3333, #st.8
84: 330.1866, bel.b
. 3 .
R ! we ofe’
= O 2 curve #2 simuisies” 1
: 2 ideal 8 1eal LCLY gevice.
Iy W = 0.5}
3 4
) °
N 0.4 )
- Sﬁ 0.3}
\ 0.3 1
§ 0.1}
0.
2 . 0.1 02 0.3 0.4 0.5 0.6 07 08 0.9 1.0
R~ Input
. i Fig. 5 Four curves used for simulating the eflect of
D) nonlinearities in the I element.
&
¢ input ) . -
™} ., “, “,
‘:‘ § level \ l .‘"\ .,
B | - - -~ *
‘. 0.1 |' Sl 1
. . W N\ |- ."-..
F 1' | oo QI 1> > || 2
' v

P
v

/s

0.3

v —
~
=S
\/ "
N
=
e
N

K5

/
1
7

0.5

[,
NS -
v

Y
W
N

;T-"

0.7

S | | .
R NSNS R
b) c) (d) e) f)
Fig. 6 Network responses for different attenuation factors, Sy, at the

input to the nonlinear inhibitory element.

a) input patterns. b) Sy = 1.0 (no attenuation), ¢) Sy = 1.5,
d) S; =25, €} S; = 3.0, f) S; = 3.5. The ideal output is
essentially identical to (d).

2

"X ® KOO IR NN @
= A

b

it

4

AV S IT L
L

- -

i e s .

MO T X N St S P RSB N S S = B P o LA e



=55

operation to provide a sufficiently linear response. In our simulations we used an attenuator but no input bias

to the I element; the region of operation for these curves was seen to extend over most of the input range of the
device (3,4].

3.2 Noise Effect

We use the same network to test eflect of noise (of course the results are actually network dependent) to get
an idea of the noise imunity and robustness to physical imperfections of the ION model. In the computer
simulation, each of the three noise sources in Eq. (7) are assumed independently distributed Gaussian with zero
mean. We define the maximum perturbation, p, of the noise source as twice the standard deviation, expressed
as a percentage of the input signal level. A normalized mean square error (nmse) is used to measure the
acceptability of the result. Although it is not a perfect measure, a nmse less than 0.1-0.15 generally looks
acceptable for the network response for our input test pattern.

Fig. 7(a) shows the nmse vs. percentage of maximum noise perturbation for the input level of 0.7 and for
noise that is correlated over different time periods T. The noise sources for each neuron are assumed independent
and identically distributed (i¢d). Each noise source is temporally correlated with its previous values, as given
by N(t+1) = ?:1 h; - N(t + 1 ~i). The correlation coefficients k; decrease linearly with i (to hy = 0).
In Fig. 7(a), all three noise sources in our model are present and have the same variance. If the acceptance
nmse criterion is 0.15, a perturbation of £10% on each noise source yields an acceptable result in all cases. For
T = 50, the nmse increases as the input level and noise variance increase as shown in Fig. 7(b). The network
responses are shown in Fig. 8 for temporally correlated noise with perturbation of £10%.

(a) (b)
w ~
o~ -
0.4 - ]
Lo
[ ~
L
Q 0.3 E 1
E ) v 4
© 82
N 0.24 E 5
£ 5 ]
13 : -
(-] * T=50 o
£ 0.1 - Ta2s T
* Ta10
4 - Tat 0.4
0 10 20 30

max. noise perturbation (%)
Fig. 7 Normalized mean square error (nmse) measure of the network response for temporally corre-
lated noise. Three noise sources, N}", N7, and N;, are simulated.
a) Normalized mean square error of the net output vs. maximum noise perturbation p for
correlation periods (T) ranging from 1 to 50. The input level is 0.7.
b) Output nmse plot for different noise perturbation and input levels (T=50).

In some cases, the noise is spatially correlated. We simulated the network with spatially correlated noise.
The spatial correlation is assumed to have a Gaussian profile. Fig 9(a) and (b) are the responses for a spatial
correlation range of 5 and 13 respectively, while Fig 9(c) and (d) show the responses for spatially and temporally
correlated noise.

Drift of the device characteristic is a global effect. Fig 10 simulates slowly varying and quickly varying
drift on this network. Fig. 11 shows the eflect of local gain variation that is spatially correlated. A *25%
perturbation in drift is apparently acceptable, and a £15 — 20% perturbation in gain is acceptable.

4 Discussions and Conclusions

We have summarized sources of noise for the ION and proposed a noise model. From the result of the com-
puter simulation, it seems that the example network performs much better for quickly varying (ie. temporally
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uncorrelated) noise than for temporally correlated (more slowly varying) noise. Due to the static input pattern
and the competitive nature of the network, once the noise term has survived a number of iterations, then it will
continue to get stronger and will not die out. We speculate that if the input to the network is time varying,
then the slowly varying noise source is effectively an offset response of the network and might be adaptively
overcome by the network, while the quickly varying noise interacts with the input patterns and is more difficult
to compensate.

For noise that is correlated, we have found that the qualitative effect of each of the three noise sources
(additive inhibitory, multiplicative inhibitory, and additive excitatory) on the output of the net is essentially
the same. Since one of the noise terms, N,",;, is the same for a conventional neuron implementation as for the ION,
it appears that an ION implementation is not significantly different from a conventional neuron implementation
in terms of immunity to noise and device imperfections, for a given technology. We also see that the output
is affected primarily by the variance of the noise and by the degree of spatial and temporal correlation, but
apparently not by the source of the noise. We conjecture that this result is not peculiar to the JON model, but
is true of other neuron implementations as well.
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ABSTRACT

The property of superposition in optics is not present in electronics, and can be utilized in
the implementation of optical interconnections, shared memory, and gates.
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Superposition in Optical Computing

B. Kesth Jenkins
Signal and Image Processing Institute
University of Southern California, Los Angeles, California 90089-0272

and

C. Lee Giles
Air Force Office of Scientific Research/NE, Bolling AFB, D.C. 20332-6448

SUMMARY

Fundamental differences in the properties of electrons and photons provide for expected
differences in computational systems based on these elements. Some, such as the relative ease
with which optics can implement regular, massively parallel interconnections are well known. In
this paper we examine how the property of superposition of optical signals in a linear medium can
be exploited in building an optical or hybrid optical/electronic computer. This property enables
many optical signals to pass through the same point in space at the same time without causing
mutual interference or crosstalk. Since electrons do not have this property, this may shed more
light on the role that optics could play in computing. We will separately consider the use of this
property in interconnections, memory, and gates.

Interconnections. A technique for implementing hybrid space-variant/space-invariant
optical interconnections from one 2-D array to another (or within the same array) has been
described [1]. It utilizes two holograms in succession, where the first hologram serves as an array
of facets that each address facets in the second hologram. The superposition property allows

3 many optical beams to pass through a facet in the second hologram, permitting many input nodes
; to effectively share the same routing ”"wire” to output nodes. This decreases the complexity
(space-bandwidth product) of both holograms.

Using this as a model for interconnections in parallel computing, a comparison can be made

" between the complexity of these optical interconnections with those of electronic VLSI for various

interconnection networks (2]. It is found that in general the optical interconnections have an equal

or lower space complexity than electronic interconnections, with the difference becoming more

‘ pronounced as the connectivity increases. Also, a slight variation in a given network can further

g reduce the space complexity in the optics case. An example is a hypercube (O (n?) in VLSI,

A % (nlogn ) in optics) [2] vs. a 2-D cellular hypercube (twice as many connections, at least O (n?)

m VLSI, yet O (n) in optics).

Shared memory. The same superposition principle can be applied to memory cells, where

many optical beams can read the same memory location simultaneously. This concept is useful in
building a paralle] shared memory machine.

For this concept, we consider abstract models of parallel computation based on shared
memories [3]. The reason for this approach is to abstract out inherent limitations of electronic
technology (such as limited interconnection capability); in designing an architecture one would
adapt the abstract model to the limitations of optical systems. In Fig. 1 we see a typical shared
memory model where individual processing elements (PE’s) have variable simultaneous access to
an individual memory cell.

In general, these shared memory are not physically realizable because of actual fan-in limi-
tations. As an electronic example, the ultracomputer [4] is an architectural manifestation of a
shared memory model, and uses a hardwired Omega network between the PE’s and memories; it
simulates the shared memory model with a time penalty of O (log®n ).

or Optical systems could in principle be used to implement this parallel memory read capabil-
od ity. As a simple example, a single 1-bit memory cell can be represented by one pixel of a 1-D or
2-D array; the bit could be represented by the state (opaque or transparent) of the memory cell.
Many optical beams can simultaneously read the contents of this memory cell without contention,

E‘_ by the superposition property. A system based on this concept includes an array of memory cells,
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an interconnection network, and an array of PE’s. The interconnection network is needed
between the PE’s and the memory, and must allow any PE to communicate with any memory
cell, preferably in one step, and with no contention. A regular crossbar is not sufficient for this
because fan-in to a given memory cell must be allowed. Optical systems can potentially imple-
ment crossbars that also allow this fan-in (e.g., some of the systems described in [5]).

Gates. Since the superposition property of optics only applies in linear media, it cannot in
general be used for gates, which are (by definition) nonlinear. However, for important special
cases superposition can allow many optical gates to be replaced with one optical switch.

Consider an aperture whose state (opaque or transparent) is controlled by an optical beam,
with again many optical beams being able to read its state simultaneously. Here the aperture is
being used as a switch or relay, and the control beam opens or closes the switch. If  represents

the control beam and a; the signal beams, this in effect computes b -a; or b -a;, depending on
which state of b closes the switch, where - denotes the AND operation (Fig. 2).

Using this concept, a set of gates with a common input in an SIMD machine can be replaced
with one optical switch or ‘“‘superimposed gate”. It also obviates the need for broadcasting the
instructions to all PE’s; instead, a fan-in of all signals to a common control switch is performed.

PR )

These superimposed gates are not true 3-terminal devices, since the a; inputs are not regen-
erated. As a result, a design constraint must be adhered to: these s; signals should not go
through too many superimposed gates in succession without being regenerated by a conventional
gate. Note, however the following features. The total switching energy required for a given pro-
cessing operation is reduced, because N gates are replaced with one superimposed gate. This is
important because it is likely that the total switching energy will ultimately be the limiting factor
on the switching speed and number of gates in an optical computer. Also, it permits an increase
b in computing speed since some of the gates are effectively passive, and reduces requirements on
the device used to implement the optical gates.

In summary, architectures for optical computing must incorporate the capabilities of optics
as opposed to electronics. A familiar but important inherent difference lies in the superposition
property of optical beams, which can be expoited in opitcal interconnections, gates, and memory.
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A Novel Approach to Image Restoration ; g

Based on a Neural Network!
Y. T. Zhou, R. Chellappa and B. K. Jenkins

Signal and Image Processing Institute
Department of EE-Systems
University of Southern California

Abstract

A novel approach for restoration of gray level images degraded by a known shift invariant blur
function and additive noise is presented using a neural computational model. A neural network model
is employed to represent an image whose gray level function is the simple sum of the neuron state
variables. The restoration procedure consists of two stages: estimation of the parameters of the neural
netwotk model and reconstruction of images. During the first stage, image noise is suppressed and
the parameters are estimated. The restoration is then carried out iteratively in the second stage by
using a dynamic algorithm to minimize the energy function of an appropriate neural network. Owing
to the model’s fault—tolerant nature and computation capability, a high quality image is obtained using
this approach. A practical algorithm with reduced computational complexity is also presented. Several
computer simulation examples involving synthetic and real images are given to illustrate the usefulness
of our method.

e &

1 Introduction

Image restoration is an important problem in early vision processing to recover an ideal high quality
image from a degraded recording. Restoration techniques are applied to remove (1) system degradations
such as blur due to optical systemy aberrations, atmospheric turbulence, motion and diffraction; and (2)
statistical degradations due to noise. Over the last 20 years, various methods such as the inverse filter,
Wiener filter, Kalman filter, SVD pseudoinverse and many other model based approaches, have been
proposed for image restoration. One of the major drawbacks of most of the image restoration algorithms
is the computational complexity, so much so that many simplifing assumptions have been made to obtain
computationally feasible algorithms. An artificial neural network system that can perform extremely
rapid parallel computation seems to be very attractive for image processing applications; preliminary
investigations to various problems such as pattern recognition and iniage processing are very promising

(1]

In this paper, we use a neural network model containing redundant neurons to restore gray level

v IR

o images degraded by a known shift invariant blur function and noise. 1t is based on the mode! described
:;: in {2] [3] using a simple s number representation [4]. The image gray levels are represented by the

simple sum of the neuron state variables which take binary values of 1 or 0. The observed image is
2, degraded by a shift -invariant function and noise. The restoration procedure consists of two stages:

estimation of the parameters of the neural network model, and reconstruction of images. During the first
stage, the nnage noise is suppressed and the parameters are estimated. The restoration is then carried
out by using a dynamic iterative algorithm to minimize the energy function of the neural network. Owing

Ras

{ to the model’s fault -tolerant nature and computation capability, a high quality image is obtained using
our approach. We illustrate the usefulness of this approach by using both synthetic and real images
degraded by a known shift-invariant blur function with or without noise.

"’N TThis research work is partially supported by the AFOSR Contract No. I'-49620-87-C-0007.
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2 Image Representation Using a Neural Network

We use a neural network containing redundant neurons for representing the image gray levels. The model
consists of L? x M rnutually intercounected neurons, where L is the size of image and M is the maximum
value of the gray level function. Let V = {v;s,1 < i < L2, 1 < k < M} be a binary state set of the
neural network with v (1 for firing and O for resting) denoting the state of the (i, k)th neuron. Let
T; & j.1 denote the strength (possibly negative) of the interconnection between neuron (i, k) and neuron
(J,1). We require symmetry

Tikju=Tiix for 1<i,j<L? and L<lLk< M

We also insist that the neurons have self-feedback, i.e. T; i, # 0. In this model. each neuron (i, k)
randomly and asynchronously receives inputs Y T; x;1vj1 from all neurons and a bias input I, &

L} M
Uik = Z Z Tiejavig + Lk (n
;o1

Each u, ; is fed back to corresponding neurons after thresholding
vie = g(ui k) (2)

where g(r) is a nonlinear function whose form can be taken as

wa={} 420

In this model, the state of each neuron is updated by using the latest information about other neurons.

The image is described by a finite set of gray level functions {z(i,j),1 < i,j < L} with z(i, j)
(positive integer number) denoting the gray level of the cell (i, j). The image gray level function can be
represented by a simple sum of the neuron state variables as

M
(i, ) =) vma (4)
k=1

where m = ix L+j. Here the gray level functions have degenerate representations. Use of this redundant
number representation scheme yields advantages such as fault-tolerance and convergence to the solution
(4]
If we scan the 2-D image by rows and stack them as a long vector, then the degraded image vector
can be written as
Y=HX+N (5)
where H is the L2 x L? point spread function (or blur) matrix, and X, Y and N are the L? x 1 long
original, degraded and noise vectors, respectively. This is similar to the simultaneous equations solution
of [4], but differs in that (3) includes a noise term.
The shift-invariant blur function can be written as a convolution over a small window, for instance,
it takes the form . .
z if k=0,1=0
h(k, ) = . , 6
e0={ & L k£ 0.0 ©)
accordingly, the “blur matrix” H will be a block Toeplitz or block circulant matrix (if the image has
periodic boundaries).

3 Estimation of Model Parameters

The neural model parameters, the interconnection strengths and the bias inputs, can be determined in
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terms of the energy function of the neural network. As defined in [2], the energy function of the neural
network can be written as

1 L2 L M M L M
E=-32.. oY Tasaviavia+ z-: Z Lk vk (M
i=l j=1 k=1 I=1 i=l k=1

In order to use the spontaneous energy-minimization process of the neural network, we reformulate our
restoration problem as one of minimizing an energy function defined as

E= Il - HX)! (®)

where ||Z]| is the L2 norm of Z. By comparing the terms in the expansion of (8) with the corresponding
terms in (7), we can determine the interconnection strengths and the bias inputs as

L?
Tikii == hpihp )
p=1
and
L?
Li=3) yp hys. (10)
p=1

From (9), one can see that the interconnection strengths are determined by the shift-invariant blur
function. Hence, T; i 1 can be computed without error provided the blur function is known. However,
the bias inputs are functions of observation, the degraded image. If the image is degraded by shift-
invariant blur function only, then I; ; can be estimated perfectly. Otherwise, the degraded image needs
to be preprocessed to suppress the noise if the signal to noise ratio (SNR), defined by

o
SNR =10 log;p —3 (1)

n

” . . . . .
where 0? and o2 are variances of signal and noise, respectively, is low.

4 Restoration

Restoration is carried out by the neuron evaluation and image construction procedure. Once the pa-
rameters T x ;1 and I, x are obtained using (9) and (10), each neuron can randomly and asynchronously
evaluate jts state and readjust accordingly using (1) and (2). When one quasi-minimum energy point is
reached, the image can be constructed by (4).

However, this neural network has self-feedback, i.e. T; ;i x # 0, as a result of a transition the energy
function E does not decrease monotonically. This is explained as follows. Define the state change Av;
of neuron (i, k) and energy change AFE as

new

Avig = v1Y - v:’"f and AE = E™Y - E°

Consider the energy function

L> M

M
E= —% > . Z Tikg Vik Vi — 9 Z Lk v, (12)

=1 i=1 k=1
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L M
AE-—(Z2T..m,,w.b)Av.k--m.k(Av.m (13)

i=l I=1

which is not always negative. For instance, if

=0, u.= Z Z Tikgavia+ lig >0, |

j=1 I=1

and the threshold function is as in (3), then v?iY =1 and Ay, x > 0. Thus, the first term in (13) is

|

|

negative. But 1
L?

Ti,k;i,k = —Z h;':. <0. J
p=1

leading to
1
_5 n.k;i,k (A'Jl,k)2 > 0.

When the first term is less than the second term in (13), then AE > 0 (we have observed this in our
experiments).

Thus, depending on whether convergence to a local minimal or a global minimal is desired, we can
design a deterministic or stochastic decision rule. The deterministic rule is to take a new state vigY of
neuron (1 k) if the energy change AE due to state change Av;; is less than zero. If AE due to state
change is > 0, no state change is affected. We have also designed a stochastic rule similar to the one
used in simulated annealing techniques 5] [6]. The details of this stochastic scheme are given as follows:

Define a Boltzmann distribution by

Pnew =AE

=e T
ﬂ Pold

where pnew and p,ia are the probabilities of the new and old global state, respectively, AE is the energy
change and T is the parameter which acts like temperature. A new state vli"¥ is taken if

% Pacw 1, orif Prew <1 but Prew £
" Pold Pold Dold
where £ is a random number uniformly distributed in the interval [0,1].
! The restoration algorithm can then be summarized as
) AT

1. Set the initial state of the neurons.
:’: 2. Update the state of all neurons randomly and asynchronously according to the decision rule.

3. Check the energy function; if energy does not change anymore, go to next step; otherwise, go back

5 A Practical Algorithm

The algorithm described above is difficult to simulate on a conventional computer due to high compu-
. tational complexity even for images of reasonable size. For instance, if we have an L x L image with
M gray levels, then LM neurons and 1L*M? interconnections are required and L*M? additions and
‘ multiplications are needed at each |terauon Therefore, the space and time complexities are O(L*M?)
. and O(L*M?K), respectively, where K O(10)~-O(100) is the number of iterations. When L = 256 and

e 55 to step 2
E s 4. Construct an image using (4).
E
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M = 256, the space and time complexities will be O(10') and 0(10!3)-0(10%), respectively. However,
simplification is possible if the neurons are sequentially updated .

In order to simplify the algorithm, we begin by reconsidering (1) and (2) of the neural network. Noting
that the interconnection strengths given in (9) are independent of subscripts k and ! and the bias inputs
given in (10) are independent of subscript k, the M neurons used to represent the same image gray level
function have the same interconnection strengths and bias inputs. Hence, one set of interconnection
strengths and one bias input are sufficient for every gray level function, i.e. the dimensions of the
interconnection matrix T and bias input matrix I can be reduced by a factor of M2. From (1) all inputs
received by a neuron, say, the (i, k)th neuron can be written as

L M
Y T Q- v+ 4,
3 1

L’
= Z T.g.zi+ 1, (14)
J

Uik

where we have used (4) and z; is the gray level function of the jth image pixel. Equation (14) suggests
that we can usc a multivalue number to replace the simple sum number. Since the interconnection
strengths are determined by the blur function only as shown in (9), it is easy to see that if the blur
function is local, then most interconnection strengths are zeros so that the neurons are locally connected.
Therefore, most elements of the interconnection matrix T are zeros. If the blur function is shift invariant
taking the form in (6), then the interconnection matrix is block Toeplitz so that only a few elements need
to be stored. Based on the value of inputs u; &, the state of the (i, k)th neuron is updated by applying a
decision rule. The state change of the (i, k)th neuron in turn causes the gray level function z; to change

zld if Avipg=0
eV = 3,-°“+1 if Av."g =1 (15)
2241 if Avip= -1

where Av; i = v?§¥ — vf'f is the state change of the (i, £)th neuron. The supscripts “new” and “old”
are for after and before updatmg, respectively. We use z; to respresent the gray level value as well as
the output of M neurons representing z;. Assuming that the neurons of the network are sequentially
visited, it is straightforward to prove that the updating procedure can be reformulated as

L!
Uy x = Z T,z + 1, (16)
J
Avip =0 if uiy=0
Avip=gluig) = Auvipg=1  if uix>0 (17)
Avip=—1 if uix <0
new __ :?M + Avi,b 'f AFE <0
T 2o if AE>0
Note that the stochastic decision rule can also be used in (18). In order to limit the gray level function to

the range 0 to 255, after each updating step we have to check the value of the gray level function z7¢%.
Equations (16), (17) and (18) give a much simpler algorithm. This algorithm is summarized below:

z (18)

1. Take the degraded image as the initial value.

2. Sequentially visit all numbers (image pixels). For each number, use (16), (17) and (18) to update
it repeatedly until no further change, i.e. if Ay, , = 0 or energy change AE > 0, then move to
next one.

3. Check the energy function; if energy does not change anymore, a restored image is obtained;
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otherwise, go back to step 2 for another iteration.

The calculations of the inputs u; ; of the (i, k)th neuron and the energy change AE can be simplified
furthermore. When we update the same image gray level function repeatedly, the inputs received by the
current neuron (i, k) can be computed by making use of the previous result

Uik = Uig-1+ AV T; . (19)

where u; z—; is the inputs received by the (i, k — 1)th neuron. The energy change AE due to the state
change of the (i, k)th neuron can be calculated as

AE = —u;; Avig — % T (Avig)? (20)

If the blur function is shift invariant, all these simplifications reduce the space and time complexities
significantly from O(L*M?) and O(L*M?K) to O(L?) and O(AM L2K), respectively. Since every gray
level function needs only a few updating steps after the first iteration, the computation at each iteration is
O(L?). The resulting algorithm can be easily simulated on mini-computers for images, as large 512x 512.

6 Computer Simulations

The practical algorithm described in the previous section was applied to the synthetic and real images
on a Sun-3/160 Workstation. In all cases, only the deterministic decision rule was used. The results are
summarized in Figure 1 and 2.

Figure 1 shows the results for the synthetic image. The original image shown in Figure 1(a) is of
size 32 x 32 with 3 gray levels. The image was degraded by convolving with a 3 x 3 blur function as in
(6) using a circulant boundary condition; 22 dB white Gaussian noise was added after convolution. A
perfect image was obtained after 6 iterations without preprocessing. We set the state of all neurons to
equal 1, i.e. firing as initial condition.

Figure 2(a) shows the original girl image. The original image is of size 256 x 256 with 256 gray levels.
The variance of the original image is 2826.128. It was degraded by a 5 x 5 uniform blur function. A
small amount of quantization noise was introduced by quantizing the convolution results to 8 bits. The
noisy blurred image is shown in Figure 2(b). For comparison purpose, Figure 2(c) shows the output of
an inverse filter (7], completely overridden by the amplified noise and the ringing effects due ‘o the ill
conditioned of the blur matrix A. Since the blur matrix H corresponding to the 5 x 5 uniform blur
function is not singular, the pseudoinverse filter [7] and the inverse filter have the same output. The
restored image by using our approach is shown in Figure 2(d). In order to eliminate the ringing effect,
due to the boundary conditions, we took the 4 pixel wide boundaries from the original image and updated
the interior region (248 x 248) of the image only. The blurred imgage was used as an initial condition
for accelerating the convergence. The total number of iterations was 213 (when the energy function did
not change anymore). The square error (i.e. energy function) defined in (8) is 0.02543 and the square
error between the original and restored imges is 66.5027.

7 Conclusion

This paper has introduced a novel approach to restore gray level images degraded by a shift invariant
blur function and additive noise. The restoration procedure consists of two steps: parameter estimation
and image reconstruction. In order to reduce the computational complexity, a practical algorithm which
is equivalent to the original one is developed under the assumption that the neurons are sequentially
visited. The image is generated iteratively by updating the neurons representing the image gray levels




via a simple sum scheme. As no matrices are inverted, the serious problem of ringing due to the ill

conditioned blur matrix H and noise overriding caused by inverse filter or pseudoinverse inverse filter

can be avoided. For the case of 2-D uniform blur plus noise, the neural network based approach give i
high quality images whereas the inverse filter and pseudoinverse filter yield poor results. We see from the
experimental results that the error defined by (8) is small while the error between the original image and
the restored image is relatively large. This is because the neural network decreases energy according to
(8) only. Another reason is that when the blur matrix is singular or near singular, the mapping from X
to Y is not one to one, therefore, the error measure (8) is not reliable anymore. Thus, we have to point
out that our approach will not work very well when the bluuring matrix is singular. In our experiments,
when the window size of a uniform blur function is 3 x 3, the ringing effect was eliminated by leaving
the boundaries of the degraded image without processing. When the window size is 5 x §, the ringing
effect was significantly reduced by using the original image boundaries.
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J (a) Original image. (b) Degraded image. (c) Results after 6 iterations.
Figure 1: Restoration of noisy blurred synthetic image.
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Image Restoration Using a Neural Network
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B. KEITH JENKINS, MEMBER, IEEE

Abstract—A new approach for restoration of gray level images. de-
graded by a known shift-invariant blur function and additive noise is
presented using 2 neural computational network. A neural network
modet is empioyed to represent a possibly nonstationary image whose
gray level function is the simpie sum of the neuron state variabies. The
restoration procedure consists of two stages: estimation of the param-
eters of the neural network model and reconstruction of images. Dur-
ing the first stage, the parameters are estimated by comparing the en-
ergy function of the network to a constrained error function. The
noailinear restoracion method is then carried out iteratively in the sec-
ond stage by using a dynamic algorithm to minimize the energy func-
tion of the network. Owing to the model’s fauit-toierant nature and
computation capability, a high-quality image is obtained using this ap-
proach. A practical algorithm with reduced computational complexity
is aise prescated. Several computer simulation examples involving syn-
thetic and real images are given to illustrate the usefulness of our
method. The choice of the boundary values to reduce the ringing effect
is discussed, and comparisons to other restoration methods such as the
SVD pseudoinverse filter, minimum mean-square error (MMSE) filter,
and modified VIMSE filter using the Gaussian Markov random field
model are given. Finally, a procedure for learning the blur parameters
from prototypes of original and degraded images is outlined.

1. INTRODUCTION

ESTORATION of a high-quality image from a de-

graded recording is an important problem in early vi-
sion processing. Restoration techniques are applied to re-
move 1) system degradations such as blur due to optical
system aberrations, atmospheric turbulence, motion, and
diffraction; and 2) statistical degradations due to noise.
Over the last 20 years, various methods such as the in-
verse filter {1], Wiener filter [1], Kalman filter [2], SYD
pseudoinverse [1], [3], and many other model-based ap-
proaches have been proposed for image restorations. One
of the major drawbacks of most of the image restoration
algorithms is the computational complexity, so much so
that many simplifying assumptions such as wide sense
stationarity (WSS), availability of second-order image
statistics have been made to obtain computationally fea-
sible algorithms. The inverse filter method works only for
extremely high signal-to-noise ratio images. The Wiener
filter is usually implemented only after the wide sense sta-
tionary assumption has been made for images. Further-
more, knowledge of the power spectrum or correlation

Manuscript received February 22, 1988. This work was supported in
part by AFOSR Contract F-49620-87-C-0007 and AFOSR Grant 86-0196.

The authors are with the Signal and Image Processing Institute, De-
partment of Electrical Engineering—Systems, Umversity of Southern Cal-
ifornia. Los Angeles, CA 90089.

[EEE Log Number 8821366.

matrix of the undegraded image is required. Often times,
additional assumptions regarding boundary conditions are
made so that fast orthogonal transforms can be used. The
Kalman filter approach can be applied to nouastationary
image, but is computationally very intensive. Similar
statements can be made for the SVD pseudoinverse filter
method. Approaches based on noncausal models such as
the noncausal autoregressive or Gauss Markov random
field models (4], (5] also make assumptions such as WSS
and periodic boundary conditions. It is desirable to de-
velop a restoration algorithm that does not make WSS as-
sumptions and can be implemented in a reasonable time.
An artificial neural network system that can perform ex-
tremely rapid computations seems to be very attractive for
image restoration in particular and image processing and
pattern recognition [6] in general.

In this paper, we use a neural network modei containing
redundant neurons to restore gray level images degraded
by a known shift-invariant blur function and noise. It is
based on the method described in [7]-(9] using a simple
sum number representation {10]. The image gray levels
are represented by the simple sum of the neuron state vari-
ables which take binary values of 1 or 0. The observed
image is degraded by a shift-invariant function and noise.
The restoration procedure consists of two stages: estima-
tion of the parameters of the neural network model and
reconstruction of images. During the first stage, the pa-
rameters are estimated by comparing the energy function
of the neural network to the constrained error function.
The nonlinear restoration algorithm is then implemented
using a dynamic iterative algorithm to minimize the en-
ergy function of the neural network. Owing to the model’s
fault-tolerant nature and computation capability, a high-
quality image is obtained using this approach. In order to
reduce computational complexity, a practical algorithm,
which has equivalent results to the original one suggested
above, is developed under the assumption that the neurons
are sequentially visited. We illustrate the usefulness of
this approach by using both synthetic and real images de-
graded by a known shift-invariant biur function with or
without noise. We also discuss the problem of choosing
boundary values and introduce two methods to reduce the
ringing effect. Comparisons to other restoration methods
such as the SVD pseudoinverse filter, the minimum mean-
square error (MMSE) filter, and the modified MMSE fil-
ter using a Gaussian Markov random field model are given
using real images. The advantages of the method devel-
oped in this paper are: |) WSS assumption is not required

0096-3518/88/0700-1141501.00 © 1988 IEEE
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for the images, 2) it can be implemented rapidly, and 3)
it is fault tolerant.

In the above, the interconnection strengths (also called
weights) of the neural network for image restoration are
known from the parameters of the image degradation
model and the smoothing constraints. We also consider
learning of the parameters for the image degradation
model and formulate it as a problem of computing the
parameters from samples of the original and degraded im-
ages. This is implemented as a secondary neural network.
A different scheme is used to represent muitilevel activi-
ties for the parameters; some of its properties are comple-
mentary to those of the simple sum scheme. The leamning
procedure is accomplished by running a greedy algorithm.
Some results of learning the blur parameters are presented
using syntheric and real image examples.

The organization of this paper is as foilows. A network
model containing redundant neurons for image represen-
tation and the image degradation model is given in Sec-
tion [I. A technique for parameter estimation is presented
in Section III. Image generation using 2 dynamic algo-
rithm is described in Section IV. A practical algonthm
with reduced computational complexity is presented in
Section V. Computer simulation results using synthetic
and real degraded images are given in Section VI. Choice
of the boundary values is discussed in Section VII. Com-
parisons to other methods are given in Section VIII. A
procedure for leaming the blur parameters from proto-

types of original and degraded images is outlined in Sec- ~

tion IX, and conclusions and remarks are included in Sec-
" tion X.

II. A NeuraL NETWORK FOR IMAGE REPRESENTATION

We use a neural network containing redundant neurons
for representing the image gray levels. The model con-
sists of L? x M mutually interconnected neurons where L
is the size of image and M is the maximum value of the
gray level function. Let V = {v;, where | < i < L%, |
S k = M} be a binary state set of the neural network
with v; , (1 for firing and 0 for resting ) denoting the state
of the ({, k)th neuron. Let T; ., , denote the strength (pos-
sibly negative) of the interconnection between neuron (i,
k) and neuron ( j, | ). We require symmetry:

Towju=Tx forl i jsL® and

l<sLk<s M.

We also allow for neurons to have self-feedback, i.e.,
Tiwix * 0. In this model, each neuron (i, k) randomly
and asynchronously receives inputs LT, ,.; ,v;, from all
neurons and a bias input [; ;:
LM

Uiy = /Z 41\: Tikju + fis (1)
Each u,, is fed back to corresponding neurons after
thresholding:

(18]
—

Vizx = 8(uiy) (

VLN WL A IR O WO U WU WO T
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where g(x) is a nonlinear function whose form cu.

taken as
() =1
X} =
§ 0

In this model, the state of each neuron is updated by
the latest information about other neurons.

The image is described by a finite set of gray level
tons {x(i,j)where |l <i,j s L} withx(i,j) (po
integer number) denoting the gray level of the pix
/). The image gray level function can be represent
a simple sum of the neuron state variables as

ifx=0

ifx < 0.

M
X(i,j) = k;[ Unm. i

wherem = (i — 1) X L + /. Here the gray level fun.
have degenerate representations. Use of this redu
number representation scheme yields advantages su
fault tolerance and faster convergence to the solution

By using the lexicographic notation, the image ¢
dation model can be written as

Y=HX+ N

where A is the ‘‘blur matrix”’ corresponding to =
function, WV is the signal independent white noise, :
and Y are the original and degraded images, respect:
Furthermore, H and NV can be represented as

by kg - hu.2

o= hz:x hz:z hz._z.l

hy: hL3.2 e hLZ.Ll

and

p—

N,
N, 2
N = . = ..
L_IVL
rn(i, 1)

N = n(i: 2) -

Mi-yxL+1

MiwyxL+2

n(i, L) Mixt
respectively. Vectors X and Y have similar represc
tions. Equation (5) is similar to the simultaneous e
tions solution of {10], but differs in that it includes a r.
term.

The shift-invariant blur function can be written
convolution over a small window, for instance, it t

|
@
|
|

|
|

()
A
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the form

k| {5 ifk=0,1=0
(k. 1) = & iflk|, |1 =1, (k1) +(0,0):

(8)

accordingly, the ‘‘blur matrix’” A will be a block Toeplitz
or block circuiant matrix (if the image has periodic
boundaries). The block circulant matrix corresponding to
(8) can be written as

Ho H] 0 -+ 0 H|
H Hy H ---0 0
H=| 7 .. (9)

Hl 0 0 "'H] HO

where
[~ .
} % O %
g=| B o
| & 0 O % 1
— .
% 30 0 %
1 .00
H,="“J.“J.‘ . (10)
[ % 0 0 - % %]

and 0 is null matrix whose elements are all zeros.

III. ESTIMATION OF MODEL PARAMETERS

The neural mode! parameters, the interconnection
strengths, and bias inputs can be determined in terms of
the energy function of the neural network. As defined in
[7], the energy function of the neural network can be writ-
ten as

LM M 2]

= ‘ZZZZT,kl(U,kUII—ZZ],kU,k

im] jmal k=| (=] i=) k=1
(11)

In order to use the spontaneous energy-minimization pro-

cess of the neural network, we reformulate the restoration

problem as one of minimizing an error function with con-
straints defined as

5112 2

E =]y - HX|" + {x[DX]| (12)

where || Z1| is the L, norm of Z and X is a constant. Such

a constrained errcr function is widely used in the image

restoration problems [1) and is aiso similar to the regu-

SRRV L R S T TS IR AR A N U O N T U N N WY U UY Y U VTR TR T
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larization techniques used in early vision problems (11].
The first term in (12) is to seek an X such that HX ap-
proximates Y in a least squares sense. Meanwhile, the
second term is a smoothness constraint on the solution X.
The constant A determines their relative importance to
achieve both noise suppression and ringing reduction.

In general, if H is a low-pass distortion, then D is a
high-pass filter. A common choice of D is a second-order
differential operator which can be approximar... as a local
window operator in the 2-D discrete case. For instance,
if D is a Laplacian operator

2 2

a: d;" (13)

it can be approximated as a window operator
(14)

Then D will be a biock Toeplitz matrix similar to (9).
Expanding (12) and then replacing x; by (4), we have

E %§<y"~§hf’-"‘>z+' L-<Zd >z

p=l p=i i=]

Lo oM & u

%Z DI By ihy. j ViV

im| jml k=l =] pa|]
AN A B

+%)\Z IS Zd iy, jVi kUil

(m{ jal tnl{=a]p=]

[Z " B 2] 2
- ) 2
2 2 Z ke +4 2% (15)

By comparing the terms in (15) to the corresponding terms

in (11) and ignoring the constant term $L5-, y2, we can

determine the interconnection strengths and bias inputs as
L?

A FE_:l dn-idm

Tigju = —p>-:| hyihyj — (16)

and
0
2z Yh

pel p.i (17)

L =
where A; ; and d; ; are the elements of the matrices A and
D, respectively. Two interesting aspects of (16) and (17)
should be pointed out: 1) the interconnection strengths are
independent of subscripts k£ and / and the bias inputs are
independent of subscript k, and 2) the self-connection
T, cix IS NOt equal to zero which requires seif-feedback
for neurons.

From (16), one can see that the interconnection
strengths are determined by the shift-invariant blur func-
tion, differential operator, and constant \. Hence, T, .., ,
can be computed without error provided the blur function
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is known. However, the bias inputs are functions of the
observed degraded image. If the image is degraded by a
shift-invarian: blur function only, then /;, can be est-
mated perfectly Otherwise, /;, is affected by noise. The
reasomng behmd this statement is as follows. By replac-
ing y, by LF. | h,.x; + n,, we have

oo
Liy = = <Z hyix; + np>h'.,"

pal im
P o
= E‘ .§ h, Xk, p;l Ayh, . (18)

The second term in (18) represents the effects of noise. If
the signal-to-noise ratio (SNR), defined by

-

SNR = 10 log, %

n

(19)

where o and o> are variances of signal and noise, re-
spectively, is low, then we have to choose a large \ to
suppress effects due to noise. It seems that in the absence
of noise, the parameters can be estimated perfectly, en-
suring exact recovery of the image as error function £
tends to zero. However, the problem is not so simple be-
cause the restorarion performance depends on both the pa-
rameters and the blur function when a mean-square error
or least square error such as (12) is used. A discussion
about the effect of blur function is given in Section X.

IV. RESTORATION

Restoration is carried out by neuron evaluation and an
image construction procedure. Once the parameters
T, 4.1 and [; , are obtained using (16) and (17), each neu-
ron can randomly and asynchronously evaluate its state
and readjust accordingly using (1) and (2). When one
quasi-minimum energy point is reached, the image can be
construcred using (4).

However, this neural network has self-feedback, i.e.,
Tieir = 0. As a result, the energy function £ does not
always decrease monotonically with a transition. This is
explained below. Define the state change Av; , of neuron
(i, k) and energy change AE as

Avie = v™ - v and AE = E™ — £
Consider the energy function
LMo L2
E=-! Zl Z( kZ‘ 1Z¢ T juVicvi — Z{ ‘Z L Vg
i = I:l - = = =
(20)

Then the change A E due to a change Ay, is given by

Lo
AE = _<T‘ ) TtV I+Il.k>Avi.k

j=1 1=

-

= 4T ek (Avie)

L - PR
L2
LI »

Ta” e
f\ '-\'-!-
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which is not always negative. For instance, if

a oM
U,k—o u,k—ZZT‘—/IU}IT[lk>O
i=hi

and the threshold function is as in (3), then v?%" = |
Av;; > 0. Thus, the first term in (21) is negative. B

with A > 0, leading to

_%T;"k:i.k(ﬁ\vi.k)z > 0.

When the first term is less than the second term in
then AE > 0 (we have observed this in our experin
which means £ is not a Lyapunov function. C
quently, the convergence of the network is not guara
[12].

Thus, depending on whether convergence to a
minimum or a global minimum is desired, we can d
a deterministic or stochastic decision rule. The dete
istic rule is to take a new state v{5 of neuron (i, k)
energy change A E due to state change Av;, is less
zero. If AE due to state change is > 0, no state ¢
is affected. One can also design a stochastic rule s:
to the one used in sumulated annealing techniques
[14]. The details of this stochastic scheme are giv
follows.

Define a Boltzmann distribution by

Prew
Poud

where p,.,, and p,q are the probabilities of the ne:
old global state, respectively, AE is the energy ch
and T is the parameter which acts like temperature. -
state v]%" is taken if

= o~OE/T

Prew o yorif 2 < ) bur 2= 13
Poid Poid Poid

where £ is a random number uniformly distributed
interval [0, 1].

The restoration algorithm is summarized as belov

Algorithm 1:

1) Set the inital state of the neurons.

2) Update the state of all neurons randomly and
chronously according to the decision rule.

3) Check the energy function; if energy doe
change, go to step 4); otherwise, go back to step 2

4) Construct an image using (4).

V. A PracTicAL ALGORITHM

The algorithm described above is difficult to sim
on a conventional computer owing to high computac
complexity, even for images of reasonable size. Fo
stance, if we have an L x L image with M gray le
then LM neurons and § L*‘M? interconnections ar-
quired and L*M* additions and multiplications are nc

SPOCCL |
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at each iteradon. Therefore, the space and time complex-
ities are O(L*M?) and O(L*M2K), respectively, where
K, typically 10-100, is the aumber of iterations. Usually,
L and M are 256-1024 and 256, respectively. However,
simplification is possible if the neurons are sequentially
updated.

In order to simplify the aigorithm, we begin by recon-
sidering (1) and (2) of the neural network. As noted ear-
lier, the interconnection strengths given in (16) are inde-
pendent of subscripts £ and { and the bias inputs given in
(17) are independent of subscript &; the M neurons used
to represent the same image gray level function have the
same interconnection strengths and bias inputs. Hence,
one set of interconnection strengths and one bias input are
sufficient for every gray level function, i.e., the dimen-
sions of the interconnection matrix T and bias input ma-
trix [ can be reduced by a factor of M*. From (1), all
inputs received by a neuron, say the (¢, k)th neuron, can
be written as

L2 M
U = Z T, (; vi-l> + Ii.‘

[

)
L2
= ; Tij-xp + I (22)
where we have used (4) and x; is the gray level function
of the jth image pixel. The symbol **+’’ in the subscripts
means that the 7; ..; . and [; . are independent of k. Equa-
tion (22) suggests that we can use a muitivalue number to
replace the simple sum aumber. Since the interconnection
strengths are determined by the blur function, the differ-
ential operator, and the constant X as shown in (16), it is
easy to see that if the blur function is local, then most
interconnection strengths are zeros and the neurons are
locally connected. Therefore, most elements of the inter-
connection matrix 7T are zeros. If the blur function is shift
invariant taking the form in (8), then the interconnection
matrix is block Toeplitz so that only a few elements need
to be stored. Based on the value of inputs ; ;, the state of
the (i, k)th neuron is updated by applying a decision rule.
The state change of the (¢, k)th neuron in tumn causes the
gray level function x; to change:

x4 ifAay, ., =0
XM= ifAy =1 (23)
X?M -1 if AU,";\. = -]

where Av,, = o™ ~ »%% is the state change of the (i,
k)th neuron. The superscripts ‘‘new’’ and ‘“‘old’" are for
after and before updating, respectively. We use x, to rep-
resent the gray level value as well as the output of M neu-
rons representing x;. Assuming that the neurons of the
petwork are sequentially visited, it is straightforward to
show that the updating procedure can be reformulated as

L
U = Z T.I.':/,~Xj - I,'.. (24)
]
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Av =0  ifuy =0

Avy = g(Uix) = { Auip =1 ifu >0 (25)
Aviy = =1 fu, <0

o {x?“ Favg HAE<O o
' x4 if AE = 0.

Note that the stochastic decision rule can also be used in
(26). In order to limit the gray level function to the range
0~253 after each updating step, we have to check the value
of the gray level function x[*". Equations (24), (25), and
(26) give a much simpler aigorithm. This algorithm is
summarized below.

Algorithm 2:

1) Take the degraded image as the initial value.

2) Sequentiaily visit ali numbers (image pixeis). For
each number, use (24), (25), and (26) to update it repeat-
edly until there is no further change, i.e., if Av;, = Q or
energy change AL = 0; then move (o the next one.

3) Check the energy function; if energy does not
change anymore, a restored image is obtained; otherwise,
go back to step 2) for another iteration.

The calculations of the inputs 4; ; of the (i, k)th neuron
and the energy change A E can be simplified furthermore.
When we update the same image gray level function re-
peatedly, the input received by the current neuron (i, k)
can be computed by making use of the previous result

(27)
where u; ., is the inputs received by the (i, k — 1)th

neuron. The energy change A E due to the.state change of
the (i, k)th neuron can be calculated as

Uig = Uig-y + AUk Ti i

AE = —ui Av;x — %Ti.-;i.-(Avi.k)z- (28)

If the blur function is shift invariant, all these simpli-
fications reduce the space and tme complexities signifi-
candy from O(L*M*) and O(L*M’K) w0 O(L’) and
O(ML’K), respectively. Since every gray level function
needs only a few updating steps after the first iteration.
the computation at each iteration is O(L*). The resulting
algorithm can be easily simulated on minicomputers for
images as large as 512 x 512.

VI. COMPUTER SIMULATIONS

The practical algorithm described in the previous sec-
tion was applied to synthetic and real images on a Sun-3/
160 Workstation. In all cases, only the deterministic de-
cision rule was used. The results are summarized in Figs.
1 and 2.

Fig. 1 shows the results for a synthetic image. The orig-
inal image shown in Fig. 1(a) is of size 32 x 32 with
three gray levels. The image was degraded by convolving
with a 3 X 3 blur function as in (8) using circulant bound-
ary conditions: 22 dB white Gaussian noise was added
after convolution. A perfect image was obtained after six
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1) 1)) ic)
Fig. |. Restorauon of noisy blurred synthetic 1mage. 1a) Onginal image.
1b) Degraded image. {c) Result after six iterauons.

Fig. 2. Restoration of noisy blurred real image. (a) Original gir! image.
(b) Image degraded by 3 x 3 uniform blur and quantization noise. (c)
The restored image using inverse filter. (d) The restored image using our
approach.

iterations without preprocessing. We set the initial state
of all neurons to equal 1. i.e., firing. and chose A = 0
due to the well conditioning of the blur function.

Fig. 2(a) shows the original girl image. The original
image is of size 256 x 256 with 256 gray levels. The
variance of the onginal image is 2797.141. It was de-
graded by a 3 X 3 uniform blur function. A small amount
of quanuzation noise was introduced by quantizing the
convolunion results to § bits. The noisy blurred image is
shown in Fig. 2(b). For companson purpose. Fig. 2(c)
shows the output of an inverse hlter [15]. completely
ovemdden by the amplified noise and the ringing etfects
due to the ill-conditioned blur matnx A. Since the blur
matrix A cormresponding to the 3 X 3 uniform blur func-
tion is not singular. the pseudonverse filter [135] and the
inverse filter have the same output. The restored image by
using our approach is shown in Fig. 2(d). In order to avoid
the ringing erfects due to the boundary conditions. we took
4 pixel wide boundaries. i.e.. the first and last four rows
and columns, from the onginal image and updated the in-
terior region (248 x 248) of the image only. The noisy

WL RN AN R TOR IERTOR
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blurred image was used as an initial condition for acc
erating the convergence. The constant A was set 0 z
because of small noise and good boundary values. -
restored image in Fig. 2(d) was obtained after 213 it
tons. The square eror (i.c., energy function) definec
(12) is 0.02543 and the square error between the orig’
and the restored image is 66.5027.

VII. CHOOSING BOUNDARY VALUES

As mentioned in (16], choosing boundary values .
common problem for techniques ranging from deternr
istic inverse filter algorithms to stochastic Kalman filt
In these algorithms, boundary values determine the en
solution when the blur is uniform (17]. The same prob
occurs in the neural network approach. Since the 5
uniform blur function is ill conditioned, improper bot
ary values may cause ringing which may affect the
stored image completely. For example, appending zc
to the image as boundary values introduces a sharp ¢
at the image border and triggers ringing in the resic
image even if the image has zero mean. Another pre
dure is to assume a periodic boundary. When the left (
and right (bottom) borders of the image are differen
sharp edge is formed and ringing results even though
degraded image has been formed by blurring with p
odic boundary conditions. The drawbacks of these
assumptions for boundary values were reported in (.
(21, (18] for the 2-D Kalman filtering technique. We :
tested our algorithm using these two assumptions
boundary values; the results indicate the restored imc
were seriously affected by ringing.

In the last section, to avoid the ringing effect, we ¢
4 pixel wide borders from the original image as bounc
values for restoraton. Since the original image is
available in practice always, an alternative to elimii
the ringing effect caused by sharp faise edges is to use
biurred noisy boundaries from the degraded image. !
3(a) shows the restored image using the first and last :
rows and columns of the blurred noisy image in Fig. .
as boundary values. In the restored image, there still
ists some ringing due to the naturally occurring st
edges in the region near the borders in the onginal im:
but not due to boundary values. A typical cut of the
stored irage to illustrate ringing near the borders is sh
in Fig. 4. To remove the nnging near the borders cat
by naturally occurring sharp edges in the original im:
we suggest the following techniques.

First. divide the image into three regions: border. -
border, and interior region as shown in Fig. 5. For
x 5 uniform blur case, the border region will be ¢4 pi:
wide due to the boundary effect of the bias input /,
(17), and the subborder region will be 4 or § pixels w:
In fact, the width of the subborder region will be im
dependent. If the regions near the border are smooth. t.
the width of the subborder region will be small or ¢
zero. [f the border contains many sharp edges, the w:
will be large. For the real girl image, we chose the w-
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Fig. 3. Results using biurred noisy boundaries. (a) Blurred noisy bound-
aries. (b) Method 1. (c) Method 2.

250.

150.

100.

50.

Q9.0

190, 200. 210. 220. 230. 240. 250. 260.

Fig. 4. One typical cut of the restored image using the blurred noisy
boundanies. Soiid fine for originai image, dashed line for blurred noisy
image, and dashed and douted line for restored image.

770277

\\

é \\\\\Né barder region
%§ x 7 subborder region
N N °
é\\ \4 interior region

Fig. 5. Border, subborder, and intenior regions of the image.

of the subborder region to be 8 pixels. We suggest using
one of the following two methods.

Method I: In the case of smail noise, such as quanti-
zation error noise, the blurred image is usually smooth.
Therefore, we restricted the difference between the re-
stored and blurred image in the subborder region to a cer-
tain range to reduce the ringing effect. Mathematically.
this constraint can be writtea as

l# - »il =T fori e subborder region (29)

where T is a threshold and ¢; is the restored image gray
value. Fig. 3(b) shows the resuit of using this method with
T =10

Method 2: This method simply sets X\ in (12) to zero in
the interior region and nonzero in the subborder region,
respectively. Fig. 3(c) shows the result of using this
method with A = 0.09. In this case, D was a Laplacian
operator. ,

Owing to checking all restored image gray values in the
subborder region, Method 1 needs more computation than
Method 2. However, Method 2 is very sensitive to the
parameter A\, while Method 1 is not so sensitive to the
parameter A. Experimental results show that both Meth-
ods 1 and 2 reduce the ringing effect significantly by using
the suboptimal blurred boundary values.

VIO. CompaRisONS TO OTHER RESTORATION METHODS

Comparing the performance of different restoration
methods needs some quality measures which are difficult
to define owing to the lack of knowledge about the human
visual system. The word ‘‘optimal’’ used in the restora-
tion techiniques usuaily refers only to a mathematical con-
cept, and is not related to response of the human visual
system. For instance, when the blur function is ill con-
ditioned and the SNR is low, the MMSE method im-
proves the SNR, but the resulting image is not visually
good. We believe that human objective evaluation is the
best ultimate judgment. Meanwhile, the mean-square er-
ror or least square error can be used as a reference.

For comparison purposes, we give the outputs of the
inverse filter, SVD pseudoinverse filter, MMSE filter, and
modified MMSE filter using the Gaussian Markov random
field (GMRF) model [19], 5].

A. Inverse Filter and SVD Pseudoinverse Filter

An inverse filter can be used to restore an image de-
graded by a space-invariant blur function with high sig-
nal-to-noise ratio. When the blur function has some sin-
gular points, an SVD pseudoinverse filter is needed:
however, both filters are very sensitive to noise. This is
because the noise is amplified in the same way as the sig-
nal components to be restored. The inverse filter and SVD
pseudoinverse filter were applied to an image degraded by
the 5 X 5 uniform blur function and quantization noise
(about 40 dB SNR). The blurred and restored images are
shown in Fig. 2(b) and (c), respectively. As we men-
tioned before. the outputs of these filters are completely
overridden by the amplified noise and ringing effects.

A G T L R 1Y, P LT (L W T T S T R S T PP
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(©) (@

Fig. 6. Comparison (0 other restoration methods. (a) Image degraded by
5 x S uniform biur and 20 dB SNR additive white Gaussian noise. (b)
The restored image using the MMSE filter. (¢) The restored image using
the modified MMSE Hlter. (d) The restored image using our approach.

B. MMSE and Modified MMSE Filters

The MMSE filter is also known as the Wiener filter (in
the frequency domain). Under the assumption that the
original image obeys a GMRF model, the MMSE filter
(or Wiener filter) can be represented in terms of the GMRF
model parameters and the blur function. In our imple-
mentation of the MMSE filter, we used a known blur
function, unknown noise variance, and the GMRF model
parameters estimated from the biurred noisy image by a
maximum likelihood (ML) method [19]. The image shown
in Fig. 6(a) was degraded by 5 X 5 uniform blur function
and 20 dB SNR additive white Gaussian noise. The re-
stored image is shown in Fig. 6(b).

The modified MMSE filter in terms of the GMRF model
parameters is a linear weighted combination of a Wiener
filter with a smoothing operator (such as a median filter)
and a pseudoinverse filter to smooth the noise and pre-
serve the edge of the restored image simuitaneously. De-
tails of this filter can be found in [5). We applied the mod-
ified MMSE filter to the same image used in the MMSE
filter above with the same model parameters. The smooth-
ing operator is a 9 X 9 cross shape median filter. The
resulting image is shown in Fig. 6(c).

The result of our method is also shown in Fig. 6(d).
The D we used in (12) was a Laplacian operator as in
(13). We chose A = 0.0625 and used 4 pixel wide blurred
noisy boundaries for restoration. The total number of it-
erations was 20. The improvement of mean-square error
berween the restored image and the original image for each
method is shown in Table . In the table, the ‘*MMSE
(0)'" denotes that the parameters were estimated from the

TABLE |
MEAN-SQUARE ERROR [MPROVEMENT

Modified Ne

Method MMSE MMSE (o) MMSE Ne

Mean-square error 1,384 dB 2.139 dB 1.8393dB 1.6

original image. The restored image using ‘‘MMSE ¢
is very similar to Fig. 6(a). As we mentioned before
comparison of the outputs of the different restor:
methods is a difficult problem. The MMSE filter vis
gives the worst output which has the smallest mean-sc
error for the MMSE (o) case. The result of our mc
is smoother than that of the MMSE filter. Althoug!
output of the modified MMSE filter is smooth in fi:
gions. it contains some artifacts and snake effects ¢
edges due to using a large sized median filter.

[X. PARAMETER LEARNING FOR LINEAR IMAGE B:
MODEL

Apart from fine-grain parallelism, fast (and prefe:
automatic) adaptation of a problem-solving network
ferent instances of a problem is a primary motivatio
using a network solution. For pattern recognition an
sociative memory applications, this weight trainir
done by distributed aigorithms that optimize a dist
measure between sample patterns and network respo:
However, in feedback networks, general problems
involve learning higher order correlations (like the e:
sive OR) or combinatorial training sets (like the Trav-
Salesperson problem) are difficult to solve and may
exponential complexity. In particular, techniques for
ing a compact training set do not exist.

A. Learning Model

For model-based approaches to ‘‘neural’ proi
solving, the weights of the main network are comp
from the parameters of the model. The leamning pro.
can then be solved by a parallel, distributed algorithr
estimating the model parameters from samples of th
puts and desired outputs. This algorithm can be in
mented on a secondary network. An error function fo:
**learning’’ network must be constructed, which will
be problem-dependent.

For the linear shift-invariant blur model (5), the ¢
lem is that of estimating the parameters correspondii
the blur function in a X X K small window center:
each pixel. Rewrite (5) as

y(i, j) =2(i, YR +n(ij) &Lj=12 ---

where t denotes the transpose operator and z(i, j) a
are K* X | vectors corresponding 0 onginal image -
plesin a K x K window centered at (i, j ) and blur "
tion, respectively.
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For instance, for X = 3, we have

h | [ a(-1, -1)7]

hy h(~1,0)
hA=| h | =] a-1,1) (31)
L h | L A(L 1)
and

[2(ij), ] [xti-1j=17]

2(ivj), x(i = 1,7)
z(i,j)=| 2(ij), | =] =(i - 1,j+ 1)
R{CTINE | c(i + 1L+ 1) _|

(32)

We can use an error function for estimation of A, as in
the restoration process, because the roles of data {x(i,
J )} and parameter h are simply interchanged in the learn-
ing process. Therefore, an error function is defined as

E= % [yij) - He(i, )] (33)
(i.j)es
where S is a subset of {(i,j),i,j=1,2,---,L} and
y(i, j) and z(i, j) are training samples taken from the
degraded and original images, respectively. The network
energy functions is given by

[ O O ¢
E= - Z z Wuhkh, - kzi Gkhk

k=i (=]

(34)

where h, are the multilevel parameter activities and wy
and 8, are the symmetric weights and bias inputs, respec-
tively. From (33) and (34), we get the weights and bias
inputs in the familiar outer-product forms:

Wy = -(i.jZ)ESZ(i,j)k Z(ivj)/ (35)
B =2 2 z(i,j), (i, j). (36)
(i.j)eS

A greedy, distributed neural algorithm is used for the
energy minimization. This leads to a localized multilevel
number representation scheme for a general network.

B. Multilevel Greedy Distributed Algorithm

For a K? neuron second-order network, we choose T
discrete activities { f;, i =0, 1, -+, = 1} in any
arbitrary range of activities (e.g., [0, 1]) where we shall
assume without loss of generality that f; > f;_, for all i.
Then, between any two activities f, and f, for the kth neu-
ron, we can locally and asynchronously choose the one
which results in the lowest energy given the current state

of the other neurons because
Eh-fu - Ehl‘fu = [ek - rk - (fﬂ +fﬂ)wt.k]

. [fm -f;] (37)
where
KY
= Z wi h
iimsk

is the current weighted sum from the other neuron activ-
ities. Thus, we choose level movernaform > n if

S > 0 = (foo + fa)wes

Some properties of this algorithm follow.

1) Convergence is assured as long as the number of
levels is not decreasing with time (i.e., assured if coarse
to fine).

2) Self-feedback terms are included as level-dependent
bias input terms.

3) The method can be easily extended to higher order
networks (e.g., based on cubic energies). Appropriate
lower order level-dependent networks (like the extra bias
input term above) must then be implemented.

The multilevel lowest energy decision can be imple-
mented by using variations of feedforward min-finding
networks (such as those summarized in (20]). The space
and time complexity of these networks are, in general,
O(T') and O(log I'), respectively. However, in the quad-
ratic case, it is easy to verify from (38) that we need only
implement the decision between all neighboring levels in
the set { f;}; this requires exactly I" neurons with levei-
dependent inputs. The best activity in the set is then pro-
portional to the sum of the I' neuron outputs so that the
time complexity for the multilevel decision can be made
O(1). This means that this aigorithm is similar in imple-
mentation complexity (e.g., the number of problem-de-
pendent global interconnects required) to the simple sum
energy representation used in [10] and in this paper. Also,
in the simple sum case, visiting the neurons for each pixel
in sequence will result in conditional energy minimiza-
tion. Otherwise, from the implementation point of view,
the two methods have scme properties that are comple-
mentary. For example, we have the following.

1) The simple sum method requires asynchronism in
the update steps for each pixel, while the greedy method
does not.

2) The level-dependent terms anse as inpurs in the
greedy method as compared to weights in the simple sum
method.

(38)

C. Simulation Results

The greedy algorithm was used with the weights from
(35) and (36) to estimate the parameters from original and
blurred sample points. A 5 x 5 window was used with
two types of blurs: uniform and Gaussian. Both real and
synthetic images were used, with and without additive
Gaussian noise.
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TABLE Il
RESULTS FOR PARAMETER LEARNING. THE NuMBER " OF DISCRETE ACTIVITIES 1S 256 FOR ALL TESTS. A:
ARSITRARY CHOICE OF PIXELS FROM [MAGE. L: PIXELS CHOSEN FROM THRESHOLDED LAPLACIAN

Image Noise Blur Samples Methods Iterations MSE
Synthetic Gaussian 68 A 9 0.000023
Synthetic Uniform 100 A 114 0.000011
Real Uniform 50 A 94 0.00353
Real Uniform 100 L 85 0.00014
Reai 20dB Uniform 100 A 2 0.00232
Real 20dB Uniform 100 L 83 0.00054

The estimated parameters for all types of blur matrices
were numerically very close to the actual values when
synthetic paterns were used. The network took longest to
converge with a uniform blur function. The levels chosen
for the discrete activity set { f;} were 128-256 equally
spaced points in {0, 1] with 50-100 sample points from
the image. Results for various cases are summarized in
Table II.

When the sample pixels were randomly chosen, the er-
rors increased by two orders of magnitude for a rea] image
{Fig. 2(b)] as compared ta synthetic ones. This is due to
the smooth nature of real images. To solve this problem,
sample points were chosen so as to lie close to edges in
the image. This was done by thresholding the Laplacian
of the image. Using sample points above a certain thresh-
old for estimation improved the errors by an order of mag-
nitude. The results were not appreciably degraded with
20 dB noise in the samples.

X. ConcrLusion

This paper has introduced a new approach for the res-
toration of gray level images degraded by a shift-invariant
blur function and additive noise: The restoration proce-
dure coasists of two steps: parameter estimation and im-
age reconstruction. In order to reduce computational com-
plexity, a practical algorithm (Algorithm 2), which has
equivalent results to the original one (Algorithm 1), is de-
veloped under the assumption that the neurons are se-
quentially visited. The image is generated iteratively by
updating the neurons representing the image gray levels
via a simple sum scheme. As no matrices are inverted.
the serious problem of ringing due to the ill-conditoned
blur matrix A and noise overriding caused by inverse filter
or pseudoinverse inverse filter are avoided by using sub-
optimal boundary ccnditions. For the case of a 2-D uni-
form blur plus small noise, the neural network-based ap-
proach gives high-quality images compared to some of the
existing methods. We see from the experimental results
that the error defined by (12) is small, while the error be-
tween the original image and the restored image is rela-
tively large. This is because the neural network decreases
energy according to (12) only. Another reason is that when
the blur matrix is singular or ill conditioned, the mapping
from X to Y'is not one to one; therefore, the error measure
(12) is not reliable anymore. In our experiments, when
the window size of a uniform blur function is 3 x 3, the

rnging effect was eliminated by using blurred
boundary values without any smoothing constraint.
the window size is 5 X 3, the ringing effect was re:
with the heip of the smoothing constraint and subog
boundary conditions. We have also shown that a sr
secondary nerwork can effectively be used for estimr
the blur parameters; this provides a more efficient
ing technique than Boltzman machine learning on th
mary network.
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Abstract

In this paper we describe Neural Network based algorithms for segmentation of textured
gray level images. We formulate the problem as one of minimizing an energy function, derived
through the representation of textures as Markov Random Fields (MRF). We use the Gauss
Markov Random Field (GMRF) to represent the texture intensities and an Ising model to

Z2 s X

characterize the label distribution. The resulting non-convex energy function is minimized
using a Hopfield neural network. The solution obtained is a local optimum in general and may
not be satisfactory in many cases. Although stochastic algorithms like simulated annealing

~’

have a potential of finding a global optimum, they are computationally expensive. We suggest
an alternate approach based on the theory of learning automata which introduces stochastic

N
j ":“ learning into the iterations of the Hopfield network. A probabilty distribution over the possible

A label configurations is defined and the probabilities are updated depending on the final stable
NG states reached by the neural network. The performance of this rule in classifying some real
C:\\' textured images is given. The results are similar to those obtained using simulated annealing

but our algorithm needs fewer number of iterations.

W
X
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SUMMARY

Texture segmentation is an important problem in computer vision as most of the real scenes
consist of textures. Understanding such images is critical in many applications and fast algorithms
to segment and classify images will be very useful in this context. Speed is an important criterion
if these algorithms are to be implemented in real time for applications like robotic vision. The
inherent parallelism of neural networks provides an interesting architecture for such problems
and there have been some attempts in using neural networks for texture discrimination [5]. In
this paper we model this problem as one of minimizing an energy function which is derived
by modelling the texture as a Gauss Markov Random Field (GMRF) [2] and the texture label
distribution using an Ising model [7].

The image is represented by an M x M intensity array and the individual sites are indexed by
8 = (1,7). The intensity at site s = (4, j) is denoted by y,. We obtain an energy U;(s, k) relating
the intensity at site s with a texture calss k by constructing a square window W, centered at s and
computing the negative of the likelihood of the pixels within that window. It is assumed that the
region inside the window belongs to a single texture class k. The energy corresponding to the prior
distribution of the class labels Uy(s,!,) where !, denotes the label assigned to site s, is obtained
using an Ising model. We are intersted in maximizing the posterior distribution of the texture
classes given the intensity array. Finding an optimal solution requires an exhaustive search over
possible label configurations which is practically impossible. It is well known that stochastic
relaxation algorithms like simulated annealing [3] can find the global optimum if proper cooling
schedules are followed but these algorithms are computationally very expensive. Approximate
solutions can be obtained using deterministic relaxation techniques. In this paper we consider
two algorithms , one based on minimizing an energy function using a Hopfield network and the
other using stochastic learning and compare the results with that of simulated annealing.

Hopfield Network
A Neural Network for the classification of textures based on the above image model is described
in this section . The neurons in the network are assumed to be binary and are arranged in a 3-D
array . The elements are indexed by the subscripts (i,7,k) , (1 < 7,5 < M,1 < k < L) ,where
M x M is the image size and L is the number of texture classes . Thus we have L layers each
having M? neurons . The (i, j)-th neuron in layer k corresponds to tie pixel site (%, j) taking the
label k . A column of this network consists of the L neurons in the L layers for a site (i, j).

The connections are local and there are no inter-layer connections . Within any layer ,except
at the boundaries , each neuron is connected to its 8 nearest neighbours. Since any pixel can have

only one label , one neuron should be active in each column of the network . A simple winner-
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takes-all circuit can be used for each column to select only one of the L neurons to represent the
label for the corresponding site . Another alternative is to introduce a constraint in the energy
equation for the network as in Hopfield and Tank [4]. If the k-th neuron in a column is active it
means that the corresponding site has the label k.

The Energy function to be minimized can be written as

L M M
A S S WD - WV - 2335 T VeV ()
a—l i=1k=1 k=1i=1 j=1(i',;')eN;;

where N;; denotes the neighbourhood of site (%, j) , Vijk is the output of neuron at site (i, 5)
in the k-th layer , and A is a constant. The standard Hopfield energy equation is {4]

1 MM L M
FE = —EZZ Z Z Z E Tthi Jlle.Jk‘/‘lJlkl - —EZ EIIJk‘,l]k (2)

=1 j=1k=1¢=13/=1k'=1 t-.l i=1k=1
From (1) and (2) we can identify the parameters of the network as
B if (7,5 € Nij,Vk
Tijksirjrrr = { (#,5 ? (3)

0 otherwise

and the bias current
Lk = —A(U1((4,7), k) — w(L(k)))

The input-output relation can be stated as follows . Let u;;x be the potential of neuron
(i,,k).( Note :k is the layer number) , then

M M L
Uik = Z Z Z I}jk;,-,j,k,ng,,,, + Iijk (4)

/=1 j'=1 k=1
and

(5)

v 1 if ujx = maxi{uiji}
ik = .
0 otherwise
Convergence : In (3) we have no self feedback ,i.e. Tijxijx = 0,V4, 7,k and all the connections
have equal strengths . The updating scheme ensures that at each stage the energy decreases .
Since the energy is bounded, the convergence of the above system is assured but the stable state
will in general be a local optimum .
This neural model is one version of the Iterated Conditional Mode algorithm (ICM) of Be-

sag [1] , which maximizes the conditional proability of the labels given the intensity array and

the labels of the neighbouring pixels at each iteration. ICM is a local deterministic relaxation
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algorithm and very easy to implement. We observe that in general any algorithm based on MRF
models can be easily mapped on to Hopfield type Neural networks with local interconnections.

However this algorithm is very sensitive to the initial configuration and the solutions obtained are
not satisfactory in general. In the next section we consider an alternate scheme which combines
stochastic learning and deterministic relaxation and because of its stochastic decision making is
not sensitive to the initial states.

Stochastic learning in neural networks :

for texture discrimination. This is motivated from the theory of learning automata [6]. It consists
of a two stage process with learning and relaxation alternating with each other and because of
its stochastic nature has the potential of escaping the local minima.

The learning part of the system consists of a team of automata {A,} , one automaton for
each pixel site. Each automaton A, at site s maintains a time varying probability vector ps =
[Psys...,Ps;,] Where p,, is the probability of assigning the texture class k to the pixel site s.
Initially all these probabilities are equal. At the beginning of each cycle the learning system will
choose a label configuration based on this probability distribution and present it to the Hopfield

% neural network described above as an initial state. The neural network will then converge to a

stable state. The probabilities for the labels in the stable configuration are increased according

: ﬁ to the following updating rule : Let k, be the label selected for the site s = (%,7) in the stable
¥

§ We now describe an algorithm which introduces stochastic learning into the neural network model

state in the n-th cycle. Let A(n) denote a reinforcement signal received by the learning system
in that cycle.then,

Py, (n+1) = p‘k.(n) + aA(n)[1 - pak,]
Ps;(n) = ps;(n)[l —aA(n)], Vi #k, (6)

<3

for all s = (i,5),1< 4,5 < M.

N

In the above equation ’a’ determines the learning rate of the system. The reinforcement signal

& & determines whether the new state is good compared to the previous one in terms of the energy
e v function. Using the new probabilities, a new initial state is generated randomly for the relaxation
b network and the process repeats. The above learning rule is called Linear Reward-Inaction rule in
0l the learning automata terminology.
VIR Experimental results and conclusions :
We have tested the above algorithms in classifying some real textured images. The parameter
()
',: {3 values for the different texture classes were precomputed and stored in a library. These are used in
v . . . . .
X N calculating the different energy functions. The bias values w(.) are choosen by trial and error but
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they can also be estimated from the image data. We have experimented with different 3 ranging
from 0.3 to 2.0 and also with 3 depending on the order of the neighborhood. We have used
images consisting of two and six texture classes and the results for the six texture class problem
are shown in figure 1. The Hopfield network solution has a misclassification of about 14% when
started with a random configuration. We observed that random initial states give better results
compared to the ones starting from Maximum likelihood estimates [2]. The learning scheme has
an error of about 6.8% compared to 6.3% obtained using simulated annealing, but the number
of iterations were considerably more in the case of simulated annealing. In general stochastic
algorithms seem to perform better than any deterministic sheme.

Currently we are working on extending these methods to do hierarchical segmentation and
the initial results are quite promising.
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(C):Stochastic Learning (D):Simulated Annealing

Figure 1: Experimental results for a six class segmentation problem
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