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~ optical binary number multiplication preprocessing to optical matrix algebra as well as to
optical residue arithmetic are presented. S

After a short introduction, a brief overview of the research papers contained in this
special is presented.

There are manv pattern recognition problems where the pattern's structural information is
important. In these problems, a svntactic method of pattern recognition is of value. 1In this
paper, both parallel syntactic pattern recognition algorithm and optical architecture imple-
mentation approaches are described. In particular, the applications of syntactic pattern
recognition algorithm to shape classification are illustrated. A number of parallel optical
svntactic pattern coding metheds, a structural matched filter and associative memorv filter,
and an optical svmbolic substitution syntactic parser are discussed.

The long-standing problem of the superresolving reconstruction (restoration) of an object
of known finite spatial extent from a noisy linearly degraded image is considered. The reso-
lution of two-point sources (objects) spaced less than one Ravleigh distance apart is an ill-
posed problem. To determine a superresolving inverse of an ill-conditioned linear degradation
operator with a known set of input/output training signals, a linear associative memory (LAM)
technique is employed. By limiting the set of reconstructable signals, an exceptionally
robust inverse filter has been obtained. This filter is based on a new constrained LAM matrix
operator technique. Superresolving rescoration of 1-D and 2-D two-point sources as well as
some tvpical edge-type signals in the presence of ceonsiderable measurcment ncise is demon-
strated.

Texture is one of the important image characteristics and is used to identify objects or
regions of interest. The problem of texture classification has been widely studied. Texture
classification techniques are either statistical or structural. Some statistical texture
classification approaches use Fourier power-spectrum features, while others are based on first-
and second-order statistics of grav level differences. Periodic textures that consist of
mostlv straight lines are of particular interest. In this paper, a new structural approach
based on the Hough method of line detection is introduced. This classification is based on
the relative orientation and location of the lines within the texture. With proper normaliza-
tion, the classification is independent of geometrical transformation such as rotation, trans-
lation and/or scaling. Experimental results will also be presented.

The use of the optical phase-conjugation (OPC) process for optical residue computation is
prcposed. By using an OPC-based parallel switching array, various optical position-coded
residue-mapping units for carry-free addition, subtraction, and multiplication operations are
described. Experimental results obtained with a picosecond mode-locked Nd3*:YAG laser are
presented to support the proposal.

Pyramidal processing is a form of multiresolution image processing in which the image is
decomposed into a sequence of images at different resolutions. Pyramidal processing aims to
extract and interpret significant features of an image at different resolutions. Digital
pvramidal image processing, because of the large number of convolution-type operations, is
time consuming. On the other hand, optical pyramidal processors, described here, are prefer-
able in real-time image-understanding applications because of their ease in performing con-
volution operations. Preliminary experimental results for optical Gaussian and Laplacian
pyramidal image processing are presented.

A parallel optical binary multiplication scheme is proposed in which parallel convolu-
tion preprocessing is performed using a parallel-input optical outer-product processor together
with a one dimensional either space or time integrator. Using a theta-modulation based opti-
cal A/D converter and a carry look-ahead adder array, the resulting mixed-binary partial pro-
duct can be reduced to the final binary multiplication result.

Median filters (MF) are used both to filter 'salt and pepper' noise from signals and
images and in other signal processing applications. In this paper, an extension of the MF,
the vector median filter (VMF), is introduced. As opposed to the MF, the VMF outputs for each
window location a number of data elements. By adjusting the VMF parameters, the MF is

obtained as a VMF special case. Just like the MF, the VMF filters impulses while simultan-
eously preserving step changes in a signal. The VMF's principal advantage is that it reduces
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Conditional symbolic modified signed-digit arithmetic using
optical content-addressable memory logic elements

Yao Li and George Eichmann

Anew conditional symbolic substitution rule for moditied signed-digit arithmetic computation is introduced
Using this substitution rule, the numbers to be added or subtracted are tirst replaced by a par of new
equivalent strings, which in a second step are then subject to another substitution to generate both the
addition or subtraction result and its complement.  For an optical implementation. a holographte content
addressable memory is used. Correspondingly. the input encoding, the logic reduction, and the optical

procesaing tediniyues are described.

. Introduction

Two of the fundamental arithmetic operations in
digital computing are addition and multiplication. A
binary electronic digital computer addition algorithm
is based on a carry propagation that severely limits its
computing speed. The conventional binary multipli-
cation, because it uses a number of shift and add cpera-
tions, further reduces its speed. To increase its speed,
nonbinary number representations and their corre-
sponding addition and multiplication algorithhms have
been investigated. Multiple-valued fixed radix num-
ber representation, with their higher logic or number
density. can lead to a processing speed increase by
propagating more information through each intercon-
nection.” * Using a residue number system* both car-
rv-free addition and multiplication operations can be
performed. The residue method decomposes an arith-
metic operation into a number of independent subo-
perations to be performed by different prime modulo-
based logic elements. Using a combination of residue
number systems and optical parallel processing tech-
niques. optical residue processors and the correspond-
ing optical encoding techniques have been proposed
and implemented.” © Although it is a parallel process-
ing scheme, when large numbers need to be processed,
large prime modulo logic elements, elements that are
difficult to implement, must be used. Furthermore,
since the different modulo subprocessors create a non-
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symmetric system architecture requiring many delay
elements, these architectures can also lead to a speed
reduction. Thus, to gain the advantage of parallel
processing while reducing the implementation com-
plexity, other number representations and algorithms
have been sought.

It has been indicated that the modified signed-digit
(MSD) number representation is a candidate for fast
parallel digital optical arithmetic processing opera-
tions.® '* The MSD, originally proposed by Avizienis®
and introduced to optics community by Drake, Bocker,
and co-workers,!" uses a redundant binary representa-
tion that, after several parallel transfer and weight
operations, leads to carry-free addition and subtrac-
tion. To synthesize optically both the transfer and
weight logic functions, Drake et al. proposed a loca-
tion-addressable memory (LAM) logic. Bocker et
al.'' generalized this method by using several symbolic
substitution rules, With either method, addition
(subtraction) can be performed in three (four) logic
steps. Recently, Mirsalehi and Gaylord (MG)!* pro-
posed for the MSD addition a direct truth-table look-
up content-addressable memory (CAM). Since this is
a one-step method, it does increase addition speed.
However, since for each output bit fifty-six Fourier
holograms necd to be stored, implementation difficul-
ties, such as the practical holographic crystal multi-
plexibility and readout efficiency, may be encoun-
tered. In this paper, first, a new set of conditional
symbolic substitution rules that uses instead of bit-
wise substitution a pair of reference bits for condition-
al bit-wise symbolic substitutions is suggested. With
this method, both addition and subtraction operations
can be implemented in two logic steps. For the optical
synthesis of the required MSD logic elements, a holo-
graphic CAM technique is employed. With our meth-
od, for each logic output bit only a storage of up to
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twelve reference holograms is required. Compared to
the MG approach, while the processing speed de-
creases by a half, the burden on the high density holo-
graphic storage is relaxed.

The paper is organized as follows: after this Intro-
duction, in Sec.II, the MSD number representation is
briefly discussed, and the new two-step addition and
subtraction conditional svmbolic substitution rules
are given. In Sec.Il, using a holographic CAM meth-
od. an optical implementation of the two-step symbol-
ic substitution rules is presented. The corresponding
truth-table logic minimization and signal encoding
and recording are also described. Finally, in Sec.IV a
summary of the paper is given.

li. Conditional Symboliic Modified Signed-Digit
Arithmetic Operations

The MSD is a redundant radix-two number
representation. Using a MSD. a number A can be
represented as a string of symbols:

A=Nyo b
where the digits are a ¢ [~1. 0. +1]. In this paper.
only MsD integer arithmetic operations are discussed.
With its balanced weighting factors, the MSD can
represent both positive and negative numbers. For
example, the decimal numbers A = 11;,and B = ~11,,
in the MSD system are

A= oy clal
B= 11111y 2b)

where 1 denotes a negative one. A negative number
can be obtained from its positive counterpart by taking
a bit-wise logic complement. For this reason, the
MSD-based subtraction operation can be performed
using a complement and add operation.

First, details of MSD addition operation are dis-
cussed. For a MSD bit-wise addition, the six possible
bit pairs to be added (see also Table I) are (1,1), (1,1),
(0.0), (1,1}, (0,1) and (0,1). The first two cases gener-
ate a nonzero carry to its next higher level bit position,
while the third and fourth bit pairs will, on the other
hand, produce a zero carry to its left neighbor. The
fourth case is particularly interesting, since it can be
used to stop carry propagation. The last two bit pairs
can give redundant results where either no carry or a
different signed carry is generated, i.e., either

O+ 1 =1+0=0lyqoand D+ 1T =1 +0 =00y ()

or

Tabte Il.  First MSD Addition Conditional
Symbolic Substitution Rule Truth Table for
Rearranging Data: T,(W, ), the Coiresponding
Transter (Weight) Operator

X)=1Y, - T
X YIN(Y, X Y
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Using either Eq. (3a) or (3b) together with the other
four mentioned cases, two symbolic bit-wise substitu-
tion rules can be formed. By repeatedly using these
two rules, in three substitution steps!'"-!! both the re-
sult of MSD addition and its complement can be ob-
tained. Specifically, the first two substitution opera-
tions rearrange the two add bit strings so as to
eliminate at the same bit position the (1,1) and (1,1)
pairs. These two steps guarantee that the last addi-
tion step is carry-free. It has been indicated that the
same state (i.e., no identical nonzero bits at the same
position) can be reached via a single-step substitu-
tion,* where instead of using two different rules for
rearranging data, a compound rule is used.

In our conditional symbolic bit-pair substitution
method. in addition to the bit pairs to be substituted.
the next lower level bit pair is used as the reference
bits. Lorrespondmgly. to prevent the generation of
conflict bit pairs [i.e., (1,1) or (1,1)] in the rearranged
results, all the 3! = 81 possible bit combinations need
to be considered. The conditional bit-wise substitu-
tion results for the bits (x.v ', where the eighty-one
possible combinations are reduced to thirty-six out-
comes, are summarized * « i'able II. This reduction is
based on the fact that, ior addition, its summand and
addend can be interchanged. Each possible outcome
is further subdivided into two parts, a transfer T and
a weight W, function. Using this single-step condi-
tional substitution rule, there will be no conflict bit
pairs generiied at the same bit position. To obtain
the final addition and its complement results, the rear-
ranged numbers are then added using a second substi-
tution rule (see Table IIT). Note that Table III also
coutains two truth tables, one for the addition A and
another for its complement C operators, and as the
result of the first step substitution, there are no input
bit pairs (1,1) and (1,1).

As a numerical example (identical to the one used in
Ref. 11), the addition of 1433,y + 758, = 2191, using

15 June 1987 / Vol. 26, No. 12 / APPLIED OPTICS 2329



Tabie tll.  Second MSD Addition Bit-wise
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our new svmbolic substitution rules is performed. In
the MSD representation, this addition is

[RURRILIRUTIR:
I1r1ongtolto.

1)
+

After the conditional substitution, the addition of Eq.
{4) becomes

trionioenuiily

+ SOT00TO0T 1101,

where two padding zeros denoted ¢ are introduced.
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Using the second substitution rule, the final result is

Leonltonotool ]l tor the additton result, hay

Hootinoionlt Yor the complement of additon [N

Equation 6 is the MSD representations for the positive
and negative number £2191,,.

The conventional MSD subtraction operation uses a
complement followed by an addition substitution
rules. This method uses four logic steps!! that con-
sume hoth processing time and logic elements. Since
with the MSD arithmetic, a single-step full-adder does
not exist, this four-step method is inefficient. To
increase the MSD subtraction speed, next, a new two-
step conditional symbolic substitution method is sug-
gested. Using a combination of MSD logic comple-
ment and the above-mentioned addition number
rearrangement rule, the first three of the four conven-
tional processing steps can be combined. In TablelV,
where the operators T. and W_ denote the transfer
and weight functions, respectively, a conditional bit-
wise subtraction substitution rulc is summarized. Be-
cause with subtraction operation, the minuend and
subtrahend cannot be interchanged, a 9 X 9 truth table
is used. After this substitution rule and using the
previously defined A and C operators (see Table III),
the rearranged numbers are added to generate the final
result and its complement. Taking the previously
used numbers as a subtraction example, we have

10110101011
11iioollolto.

After the T_and W_operations, the new bit strings are

D110 11001
eNlonfool1tol,

)

+

where again two padded zeros are used. Using the A
and C operators, the two results are added to produce

BOTTTTTTONETT  for the subtraction result, ar

VOT1T1T101111  for the complement of subtraction.  19b)

Therefore, instead of the four-step substitution. the
new method generates the carry-free parallel subtrac-
tion in two successive substitution steps.

In Fig. 1. using this two-step substitution algorithm
for X £ Y, aMSD addition/subtraction flow diagram is
shown. In the first substitution step, either T, W, or
T_,W . operations are performed, while in the second
step the logic functions A and C are used. In the
second step, the two A logic gates indicated by dashed
line boxes can be omitted. Thus, to perform a two N-
bit word parallel addition/subtraction, NT NW (N —
1)A, as well as (N + 1)C logic gates are required. Since
it is a very regular structure, it can easily be extended
to perform both addition and subtraction for any size
numbers. Using additional shift operators, MSD mul-
tiplication can also be performed. With the shift oper-
ators, first, the partial products are formed. The par-
allel adders, forming a tree structure, are then used to
add the intermediate results to yield the final prod-
uct.*1"




Fig. 1. Four digit MSD addition subtraction) network., XY,
input strings: TEW transter (weight) operators for addition or
subtraction: WOy operators to obtain the tinal addition «subtrac-
tons result R and its complement ¢ The operators indicated
within the dashed boxes mayv he deleted.

M. Content-Addressable Memory MSD Logic Processing

For the MSD operation, Drake et al. emploved a
LAM method.!" To implement each of the four LAM
logic functions, twenty-seven optical elements, includ-
ing arrays of holograms, etalons, as well as prisms, are
needed. It has been indicated that a CAM is more
efficient than its LAM counterpart.!> 1> Witha CAM.,
the truth-table outputs are first classified as to their
logic levels. For each output level. corresponding to
different input combinations, either a sum of product
or a product of sum expression is obtained. With the
aid of a Karnaugh map. a reduced logic expression (a
reference pattern) is generated. These patterns are
then stored in an optical memory. By classifying and
addressing its content rather than its truth-table loca-
tion, the number of memory elements can be reduced.
Using a CAM, direct binary truth-table look-up paral-
lel addition and multiplication techniques have been
proposed.’ ' However, for long bit strings, alarge truth
table (even after minimization) must be constructed.
To alleviate this problem, a residue arithmetic-based
CAM has also been utilized.'*'' With a residue-based
CAM, for example, for the addition of two 16-bit num-
bers. the truth table is dramatically reduced, i.e.. from
the order of billion to only a few hundred elements.!”
However, for either method, the storage complexity is
not proportional to the size of the bit string. On the
other hand, for MSD arithmetic, the storage complex-
ity is linearly proportional to the bit string size. It has
been shown that using a direct CAM for each MSD
addition output bit, the storage of up to fifty-six holo-
grams is required. In this section, to implement opti-
cally the above-mentioned conditional symbolic MSD
logic operators, a new C/AM method is described. Us-
ing two stages of these operators, either MSD addition
or subtraction operation can be implemented. With
this approach, by reducing the bit-wise memory stor-
age density, practical construction becomes possible.

The first CAM construction step is the minimization
of the truth table grouped logic expressions. To ex-
press our truth-table results, the sum of product form

Table V. Reduced Logic Minterm Expressions for the Implementation of
the MSD Addition and Subtraction Operations. The X Denotes a Do Not
Care as Specified in Table VIl. The Four Variable Minterm is Grouped as
I

MSC reduced ST o fedaed
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Table VI. Comparison Among the One-. Two- and Three-Step N-bit CAM
MSD Addition Schemes. In Terms of Processing Speed, the One-Step
Method is the Fastest, While in Terms of the Product of the Speed and

Total Number of References, the Two-Step Method is the Optimum.

e Ne. of refs.

| methods No.of CAMS  for egch CAM

ermohzed]
total No. of refs. speec

Ll?s?ép N+ < 56 56N- 74
|2-step AN <12 22N-4 27
[3-step  SN-3 <4 BN-10 3T

is chosen.  Among the three (1,0.1) possible groups,
only two groups are of interest.”” For the 1 and 1
output groups, using Karnaugh logic minimization
maps together with Tables II-IV, in Table V, the re-
duced logic expressions are shown. Here, for the do
not care bits, the notation is either an x for the com-
pletely do not care of (1,0,1) or a x;,%. 1, or x;  for the
partial do not care for the pairs (0,1)(0,1), and (1,1),
respectively. In each four variable minterms, the two
first (second) column bits denote the variables X..Y,
(X,..Y._;), respectivelv. In the case of Table IV.
instead of addressing eighty-one LAM outputs. only
six CAM patterns are needed. It can be shown that
with the Takagi et al. MSD addition truth table."
instead of our eighteen, with a less compact represen-
tation. more logic minterms are generated. Also, with
this approach, a regular grouping. i.e.. three (six) re-
duced minterm expressions for the T(W) function, for
either MSD addition or subtraction, can be obtained.
Compared with the MG single-step CAM method and
as a result of using the two steps, the addition speed
decreases. However, in each step. the storage com-
plexity is drastically reduced. For example. for the
addition of two 16-bit numbers, while the MG method
requires a storage of 822 minterms, with the new two-
step method, only 340 minterms are needed. Thus the
new method has the potential to process long bit
strings. In Table VI, a comparison between this and
some of the other methods are presented. It is noted.
while in terms of processing speed, the single-step
method is the fastest. However, in terms of the prod-
uct of the speed and number of reduced minterms, the
two-step method is the optimum. Another advantage

15 June 1987 / Vol 26, No. 12 / APPLIED OPTICS 2331
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of the two-step method is that, since the complement
of addition {(subtraction) can easily be generated, it can
be used for error detection.

After this truth-table reduction, an optical memory
is constructed. Here an existing optical holographic
technique proposed by Mirsalehi and Gaylord!™ is
used. In Fig. 2, a CAM-based MSD holographic logic
recording and reconstruction system is shown. Each
digit is spatially encoded with two vertical pixels. The
transparent top (bottom) pixel indicates a logic level 1
{1), while both opaque pixels indicate a logic level zero.
For our conditional substitution rule, four (XY -
X _.Y _)) parallel input bits are used. The other in-
puts are the general reference R, and the reference
transfer Ry and weight Ry logic bits, respectively.
The optical memory consists of a thick Fourier holo-
gram that is able to store a large number of angularly
multiplexed spatial Fourier transform patterns. For
each required minterm, three recording steps are used.
For example, in Fig. 3. the recording of the pattern
(111x) for the T operator is indicated. During the
first exposure, with the reference bit R ;, the comple-
ment pattern (111X} is recorded. In the second step.
with a 7 phase shifted R :. the input (111X) is record-
ed. Inthe last step. with the zero phase R the general
reference R, pattern is recorded. If with the first two
recordings the bit-wise exposure E is identical, the last
step exposure should be mE, where m is the number of
second-step nonzero signal digits. These three steps
complete the recording process.

For logic operation, the R pixel is off, while the
signal and R. pixels are on. For a prerecorded input,
the light diffracted by the second and third step re-
corded patterns cancel (due to their identical magni-
tude and opposite phase) forming a dark pattern in the
detected area. With a different input, the detected
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Table Vil.  Various MSD Do Not Care Types and Their Corresponding
Spatial Encoding: m, n, and € Denot~ the Number of Nonzero, the
Number of Do Not Care Bits, and the Single General Reference Bit

Exposure, Respectively.

dont care| patterns 10 be recorded Ry DIt
type |O-phase  7m-phase | exposure
X | | ] mt
X | | I mE
Xoi 5 I - mE
le . D | (m+n) E
for T ENMMM

“alllL - e

Fig, 1. Schematic setup tor implementing the MSD T and B logic
operations usinyg a holographic CAM-bhased svatem.

residue light is considered as an input mismatch. To
record a group of patterns, an angular multiplexing
method that employs a group of reference pixels, e.g.,
the dotted squaresin Fig. 2, isneeded. It canbeshown
that the do not care digit can he assigned to the pat-
terns as shown in Table VII, whert in the last column n
denotes the number of do not care bits. To perform
MSD logic operations. both the spatially encoded bit
strings and reference bit arravs are used. In Fig. 4. a
holographic CAM logic device for implementing the
MSD addition (subtraction) operators T..-, and
W.. .. is shown. For each of the three (six) required
patterns (see Table V) for T,(W,), using this and a
spatially encoded reference pixel pattern Rj(Ru ), an
angularly multiplexed hologram is formed. Also. for
the recording and later reading, an arrayv of general
reference R,,,, pixels is used. At the output side, two
detector arravs, D ;and Dy, with each divided into two
parts for detecting a 1 and 1, are used. The absence of
light in one part of a detector indicates a nonzero, while
the presence of light on both detectors assigns a zero to
the output. These output signals can be used to gener-
ate inputs for a next stage logic function.

IV.  Summary

Tosummarize, an alternative method to perform the
MSD arithmetic is proposed. First, to rearrange the




number strings to be added or subtracted, MSD addi-
tion and subtraction conditional symbolic substitution
rules are used. The rearranged numbers are then
added. using another bit-wise substitution rule. to pro-
duce both the final result and its complement. For an
optical implementation, a CAM processing technique
is used. First, to obtain a reduced logic (in a sum of
minterm form) or equivalently a reduced reference
pattern, logic minimization is performed. To record
these reduced reference patterns, an angularly multi-
plexed thick Fourier hologram recordine setup is de-
scribed. The stored holograms optically implement
the required logic substitution elements.

Constructive comments by the referees are deeply
appreciated. This work was supported in part by a
grant from the U.S. Air Force Office of Scientific Re-
search.
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Digital optical isochronous array processing

George Eichmann, Yao Li, Ping Pei Ho, and R. R. Alfano

Anoptical isochronous array processing method is proposed.  An optical isochronous array processor (OIAP)
is a local regularly interconnected processing network that employs an array of identical optical processing
elements. Inan OlAP.incoming isochronous data are parallel processed in a fashion much like a propagating
electromagnetic wavefront. For the various applications. the OIAP processing elements and their intercon-
nections can be different. In this paper, various all-optical OIAP elements are considered. Applications
ranging from optical binary number multiplication preprocessing to optical matrix algebra as well as to optical

residue arithmetic are presented.

. introduction

The three major advantages! of optics for the mod-
ern day signal processing and computation applica-
tions are (1) its ability to process large bandwidth
signals at ultrahigh speed; (2) its unguided (free-space)
wave propagation property; and (3) its lack of interac-
tion between intersecting beams propagating in a lin-
ear medium. A combination of these three salient
properties can lead to ultrafast parallel optical signal
processing and computing. Using linear optics, a good
optical analog parallel processing example is an optical
spatial Fourier transform. Other optical analog signal
processing methods, such as convolution and correla-
tion, are also available. For numerical computation,
however, optical analog processing methods cannot
offer in general high numerical precision.”? To im-
prove the precision, digital calculations need to be
used. Thus a parallel ultrafast digital optical comput-
er has long elicited the research interest of optical
scientists and engineers.

Among the three parallel computer structures, i.e.,
vector processor, multiprocessor system, and array
processor {AP), the first two are general purpose, while
the last belongs to the special purpose computer cate-
gory. With an AP, data are parallel processed either
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synchronously with a global system clock or asynchro-
nously in a data-driven fashion.®> Because these APs
offer solutions to a large variety of signal processing
problems, there is a considerable interest in the study
of their architectures and programming languages.
To implement optically an AP, some of its unique
features, such as the parallel input-output channels
and the spatially local gate interconnections, need to
be considered.

In this paper, methods to implement various optical
AP (OAP) architectures are proposed. Since these
OAPs can process incoming data in an isochronous
fashion, that is, whenever the inputs arrive at the same
time outputs are generated, the term, optical isochro-
nous array processor (OIAP),is used. Since the IAPis
also a locally regularly interconnected network, it is a
subset of the systolic AP (SAP). The difference be-
tween the two is that in a SAP, the elemental processor
is an arithmetic processor (i.e., adder and multiplier),
while in an IAP, lower level processors such as a logic
gate can beused. With the current optical technology,
an OIAP is easier to implement. In the following, for
the various OIAP operations, as fundamental process-
ing units regularly interconnected ultrafast nonlinear
optical logic elements are proposed. Since some of the
processing units can have a femtosecond response, it is
possible that these pipelined OIAPs will process data
in the picoseconds. The paper is organized as follows:
in Sec. II a number of all-optical elemental processing
units are briefly discussed. In Sec. III, the use of AND
element-based OIAP for optical binary multiplication
is described. In Sec. IV, various OIAP-based binary
element matrix algebra processors are presented. In
Sec. V, fundamental residue mapping units are de-
scribed, while in Sec. VI, based on these mapping units,
an OIAP matrix-matrix residue multiplier is pro-
posed. Finally, Sec. VIl summarizes the results of this
paper.




I. Ultrafast OIAP All-Optical Elementat Processing Units

An isochronous wavefront AP is an array of locally
interconnected identical processing units. For differ-
ent data processing applications, the processing unit
can be different. In this section, some possible ele-
mental OIAP processing units are described. For the
use of an OIAP for arithmetic processing, such as a
binary scalar, vector as well as matrix multiplications,
an algorithm, the so-called digital multiplication via
analog convolution (DMAC) scheme may be utilized.
In this approach, analog optics 1s commonly used to
obtain as the first step a mixed-binary output format
convolution result. In principle, for the multiplica-
tion of two large numbers, compared to traditional
shift/add multipliers, the DMAC processor is faster.
However, its actual performance is limited by electron-
ic A-D postprocessing.* With a current version of
DMAC binary convolver, the two fundamental pro-
cessing units are an AND gate and a summer. The
summation operation can easily be implemented via a
lens. To perform the AND operation, most approaches
adopt a hybrid, either an acoustooptic {AO) or an
electrooptic (EO), methodology. To increase the pro-
cessing speed, an all-optical convolution method must
be used. In this section, for the OIAP convolution
preprocessing step, several ultrafast all-optical ele-
mental processing approaches are proposed.

Currently, there are a number of techniques avail-
able to perform an all-optical AND logic operation.
However, among these only those AND elements that
have a spatially symmetricai input and output channel
format are suitable for an AP. This format will not
introduce additional time delay. a delayv that tends to
slow down the computational speed. As possible sym-
metric input and output channel optical AND elements,
four different ultrafast gates are next briefly consid-
ered. Asimple AND device is a three-input-beam opti-
cal nonlinear etalon™* [see Fig. 1(a)]. The two sym-
metrical beams A and B are the logic inputs. while the
third (middle) input beam R serves as a bias or optical
reference. Initially, using the R beam. the etalon is
tuned to a low power transmission state. Next, the A
and B beam intensities are adjusted so that when all
the three beams are on, the total optical power reaches
a switching threshold. Above the threshold. the eta-
lon is in a high transmission state switching the signal
R from the input to the output. The angle 6 is adjusted
s0 that no bistable switching phenomena occur to A
and B. This is an important condition since the two
off-axis outputs must serve as the inputs to all subse-
quent OIAP stages. Using a similar geometry, a three
(two for logic and one for optical bias) input optical
Kerr gate” [see Fig. 1(b)| can also act as a symmetric
channel optical logic AND element. There are two
differences between the Kerr and etalon AND gate.
With Kerr AND gate, the logic input and output have
different polarization states, and because this device is
not bistable, a clear switching threshold does not exist.

A third candidate is an optical phase-conjugate AND
gate” [see Fig. 1(c)]. The beams A and B act as the two
logic inputs, while the beam R is a bias (reference)
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Fig. 1. Four all-optical aND candidates as elemental precessing
elements for OTAP. A, B.and R. two logic and a bias input heams: P,
linear polarizer.

source. Due to the nonlinear phase conjugation via
degenerate four wave-mixing effect with respect to the
reference beam the logic AND cutput beam travels in a
counterpropagating direction. There are other possi-
ble all-optical six-port logic AND gate structures, i.e.,
structures with two logic and one power supply inputs.
However, from an OAP implementation point of view,
these elements are not ideal, because with an array a
large number of optical bias (reference) channels must
be established. For this reason, it is better to use a
gate that uses only two symmetric inputs without the
need of a bias beam. An optical second harmonic
generation (SHG) or parametric wave generation via
nonlinear optical three-wave mixing®!" AND device
does not require a bias beam. A SHG gate has also the
potential for a femtosecond response. In Fig. 1(d), a
SHG-based AND gate is shown. Two symmetrical
identical frequency and polarization logic input
beams, denoted 4 and B with an angular separation 6,
are directed into the SHG crystal. When the angle is
adjusted so that the so-called 90° phase-matching con-
dition® is satisfied, in the bisecting input angular direc-
tion, a second harmonic (SH) output signal is generat-
ed. One advantage of tiis structure is that, since only
a small part of the input energy is converted to a SH
output, most of the fundamental input power passes
through the gate allowing the outputs to be used as
inputs to feed subsequent AND gates. A second advan-
tage is that a number of such AND gates can optically be
interconnected on a single SHG crystal. Thus, except
for the change in the output frequency, a SHG-based
AND gate is a good candidate for an elemental device.
Next, an AND gate-based OIAP operation is dis-
cussed. In Fig. 2, a schematic OIAP network where
the intersections indicate the AND element placements
is shown. The outputs from these elements are
marked by dashed lines. To guarantee the isochro-
nous arrival of the two optical signals at each intersec-
tion, using either a holographic grating or a composite
prism,'! both input wavefronts are tilted at an angle 8
(see Fig. 2). The output of each logic AND gate is
directed to subsequent logic or memory device for
further processing. Using an array of such all-optical

15 July 1987 / Vol. 26, No. 14 / APPLIED OPTICS 2727




Fig. 2. Schematic of a rectangular OIAP. a, and 6 are parallel
isochronous incoming data. # is an oblique wavefront angle for syn-
chronizing the input data.  Anintersection indicates the presence of
an identical elemental processing unit generating a dashed line

output.

AND gates, an OIAP network can be constructed. For
multistage operation, since it is necessary to convert
the SH signal back to its fundamental frequency, para-
metric frequency down (PFD) conversion is needed
{see Fig. 3). Using a parametric wave-mixing process
with a strong fundamental frequency third harmonic
(TH) beam, the SH signal can be converted to the
fundamental and amplified. With a KDP crystal, the
process has been experimentally demonstrated.!* In
the next sections, the utilization of an AND gate-based
OIAP to the implementation of various optical digital
arithmetic operations is discussed.

M. Digital Multiplication Using an OIAP

In this section, the computation of both fixed and
floating point binary number scalar multiplications,
using various OIAP preprocessing networks, is de-
scribed. In either case. the OIAP is to be used as a
convolution preprocessor. Since the convolution re-
sults are represented in the mixed-binary format, to
complete the operation it must be followed by either an
electronic oroptical A-D converter' " and a shift,/add
(S/A) array. In terms of numerical complexity, the
implementation of a highly accurate electronic A-D
converter is as difficult as the multiplier itself.* Thus
a useful DMAC processor must emplov both a highly
accurate ultrafast optical convolver and a A-D post-
processor. In the following, the ultrafast optical im-
plementation of the first part of a DMAC processor is
proposed. For our discussion, irrespective of the prac-
tical input crossing angle inside the crystal, the sche-
matics are drawn with all the input channel beams to
intersect perpendicularly.

The magnitude of the product of two N-bit binary
numbers,

l
{

can be expressed in two steps as*
AN
Ph=an = N2 (1al

L=

where
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Outputs zenerated at each AND gate beam intersection are used to
form the mixed-binary multiplication result.

= Ay ab_,

M<E<N=-1y 1
is the i/th digit weight of resulting product in a mixed-
binary format.> Equation (1b) can also be interpreted
as a ith digit result from the two number sequence
convolution. To obtain this multiplication, using the
DMAC algorithm the binary convolution indicated in
Eq. (1b) needs to be first performed. This convolution
in a real-time scheme uses sequential electronic signals
to Arive two cascaded acoustooptic (AO) Bragg
celle.!* 1" Using integrating lenses, the deflected wa-
vefronts are collected at their corresponding detectors.
Because of the serial input. the convolution of two N-
bit words requires 2N — 1 computation cycles. The
cvcle time is mainly determined by the speed of the
acoustic wave. To increase the convolution speed,
mext. an OIAP parallel digital convolution scheme is
proposed.

For implementing a two 4-bit binary number paral-
lel multiplication. consider a 4 X 4 optical AND gate
array [see Fig. 4(a)]. At each beam intersection, an
optical logic AND element is placed. The input bit
spacings D4 and Dy are identical. The seven parallel
channel AND gate outputs, indicated by dashed linos,
represent the seven output digits. For example, to
multiply two unsigned decimal numbers P=A X B =
13 X 10, first, each decimal number is converted into its
corresponding binary format. In this case, they are A
= 1101 and B = 1010. These bits are then spatially
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optically encoded as light pulses to be launched into
the convolution network. The number of cumulative
AND output pulses in seven output channels vields the
mixed-binary number convolution result 1112010,
This mixed-binary number corresponds to the decimal
number 130.

To include sign information, a two’s complement
binary (TCB) representation'™!* can be used. In a
TCB representation, an additional 0 (1) sign bit in
front of the most significant bit (MSB) represents plus
{minus) sign information. For a positive number, it
simply places a zero in front of the MSB in its unsigned
binary form. Toobtain a negative number, its positive
counterpart is first complemented, and then to it a one
is added. For example, the signed decimal numbers A
=11 and B = —14 have as their TCB representations
the numbers A = 01011 and B = 10010. It has been
shown!* that to multiply two 5-bit TCB numbers, both
nine input and output channels are required. For this
reason, four zeros (one) are inserted between the sign
and MSB of A(B). As an example, to multiply these
TCB numbers, in Fig. 4(b), a SHG-based TCB multi-
plierisshown. The network takes inputs A and B and
generates in parallel the mixed binary output P =
332220110. To convert this number back to its TCB
format, the least significant (LSB) bit is first divided
by two, and the quotient is added to the next bit and so
on. The result is P = 101100110 representing the
decimal number —154. Since this TCB multiplication
network uses the lower triangular half of the previous
unsigned binary multiplication network, two SHG-
based implementations can be used. Either only part
of the unsigned number multiplication network output
(corresponding to lower triangular array) channels is
used or the upper triangular half crystal is replaced by
an index-matching liquid.

The previously described multiplication methods
use. both for the input and output, a fixed point binary
representation. Recently. based on the DMAC algo-
rithm, an optical floating point binary multiplication
scheme, also known as a flixed point number multipli-
cation,'® has been suggested. Based on the SHG AND
gate array, next, the operation of a flixed point un-
signed binary multiplier is described. Assume, as an
example, the numbers to be multiplied are A = 7/2 and
B = 5/32. The corresponding floating point binary
representationsare A = (0.111)2**and B = (0.101) 27~
For the use of 3-bit mantissas and the two exponents,
+2and —2, with the {lixed point binary representation,
each number is represented by seven binary digits, i.e.,
A4 = 11.10000 and B = 00.00101. These digits repre-
sent the parallel inputs to the previously described
SHG-based unsigned binary convolver network. At
the convolver output, the train of pulses P =
0000112110000 is generated. After setting the deci-
mal point!® that can be performed electronically the
final result is P = 0.011211, representing the correct
fraction 35/64. Since, with the flixed point multiplica-
tion technique, the OIAP is used for handling mantis-
sas, the method can directly be extended to perform a
signed floating-point TCB multiplication.

SHG
crystal

b, b, b,

Fig. 5 OIAP 3D vector inner product processor. Three AND gate
outputs are aligned in a single vutput channel

IV. Algebraic Processing Using SHG-Based OIAP
Networks

The normal method to multinly two binary numbers
requires three operations: alogic AND, a shift, and an
arithmetic sum operations. With the DMAC scheme,
the multiple shift and sum operations are bypassed by
using a mixed-binary representation. The mixed-bi-
nary representation allows the successive addition of
several numbers before a final A-D conversion. More
complicated algebraic operations such as matrix alge-
bra can also be decomposed into several multiplica-
tions and additions that can then be performed in
parallel. For performing digital optical matrix alge-
bra, several DMAC-based architectures have been
proposed.'” =" In this section, using an OIAP, various
optical binary algebraic operations, such as vector-
vector, matrix-vector, as well as matrix-matrix multi-
plications, are described.

Given two N-dimensional (N-D) column vectors

a, b,
a b,

A= B= (2
ay by

the inner or scalar (dot) product of the two vectors is
defined as

=ab,+ab.+ avbhy Gl

0y

Assuming all a,(b,), where,j € (1,2, .. N)areeithera
zeroor one, Eq. (3) can be implemented with NV number
of AND gates and a summer. As an example, in Fig. 5
the inner product of two 3-D vectors is considered.
Two 3-bit parallel inputs are directed toa SHG crystal.
The three intersection AND gates are aligned so that
their outputs can be routed into a single channel. Us-
ing a time-integrating output detector, the detected
inner product result is in a mixed binary form. This
result can then be converted using an A-D device to its
binary form.
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The vector outer product of two N-D binaryv vectors.
A and B, is defined as the matrix

il = AB" =

Syt Uy O
where ¢, = a,b,. To perform this vector outer product
n.uuip}.cat.on, N? AND gates are needed. InFig. 6. a
schematic network illustrating the multiplication of
two 3 X 3 vectors is shown. To expand the input light
dots into either horizontal or vertical light bars to cross
and overlap at the SHG plate, two additional cyvlindri-
cal lenses are employed. The SH signals emanating
from the nine intersections are considered as the outer
product outputs.

The matrix-vector product of a N X N binary matrix
[A] and a .N-D column vector B is defined as

ra“ a, .- a. b,

Ay @ dey b.
D=
| 2vy Gy CASN oy
d.
a, b +a b+ +a by d.
a b+ b+ +a.\by
= T T - ) = (7'
| avb ta b+ taghy .
dy

Note that a matrix-vector product can be decomposed
into several parallel vector inner product operations.
In Fig. 7, by combining with an additional input cylin-
drical lens, three Fig. 5 tvpe networks, a SHG-based 3-
D vecter optical matrix-vector multiplier is shown.
Compared to the previously described algebraic op-
erations, an optical matrix-matrix multiplication is
more complicated. Asanexample, consider the multi-
plication of two 2 X 2 binary matrices [A] and [B]

ay a, [{h b
lf:l:[an a][h h]

apb +a b, apb tagh, v R

- [(1_..'/‘»}: + n”h_,A ash, + rl;:b:_] = [4’:1 ;'_;_} ’ o

There are two methods to evaluate this matrix-matrix
product. Using a vector outer product decomposition,
the matrices are first decomposed into vectors and
then are sequentially entered into a physical vector
outer product multiplier. With a properly decom-
posed synchronized temporal sequence, the previously
described outer product processor (see Fig. 6) can be
used for the matrix-matrix product generation. Us-
ing a vector inner product decomposition in combina-
tion with an AND gate-based OIAP provides a faster
optical matrix-matrix multiplier. In Fig. 8, a vector
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tor [A] and (B] are different <o that four output channels (after a lens
space integration) are obtained.

inner product-based QIAP matrix-matrix multiplier
is shown. Unlike the previous examples, both a 3-D
network and unequal input channel spacings are used.
In this network instead of entering the data sequen-
tially as in the case of a vector outer product multipli-
er,” a fully parallel input format is used. Because of
the parallel format, it possesses an inherently faster
multiplication speed. To collect the channelized mul-
tiplication results at the output an additional cylindri-
cal lens is used.

V. Fundamental Residue Mapping Units using OIAP

The major attraction of the residue number system
is its carry-free arithmetic operation capability.?!:*
In this system, to perform numerical calculation, a set
of relative prime integer bases is used. Each base
forms a group of independent parallel processing units.
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Fig. 9. (a) Mod5 residue addition (subtraction) truth table. (b)
SHG -based mod5 residue optical adder implementation. At the
mterfaces, total internal reflections are used.

To obtain the result in a specific modulo, in each
independent residue channel, various mapping func-
tions are performed. By suitably combining the par-
tial results generated from each processing unit the
final result is formed. Thus aspecific modulo process-
ing unit is the kev element to implement a residue-
based numerical processor. Using electrooptic wave-
guide switches, different modulo residue mapping
units have been proposed.?® Next, several SHG-based
all-optical residue mapping units are described and
then used to implement a residue-based matrix multi-
plication.

In a mod/ residue number system the addition is a
circulant operation with the number of integral shifts
determined by the value of addend. Similarly, sub-
traction is also a circulant operation where the subtra-
hend is added but in an opposite direction. To illus-
trate this principle. consider a mod5 addition/
subtraction truth table {see Fig. 9(a)]. To implement
this table, a 2-D optical mapping network must be
constructed. In Fig. 9(b), using a SHG crystal, such a
OIAP network isshown. For both the summand (min-
uend) and addend (subtrahend), pulse-position coded
inputs are used. The mapping operation is controlled
by the summand (minuend) signals. Thus generated
signals share five output channels. The crystal is cut
and oriented so that desired total internal reflections
can be achieved. Here at any given time only one of
the five addend (subtrahend) channels contains a sig-
nal. In other words, for a pair of input pulses, a SH
output can only be generated at a single intersection.
Again, using an oblique input isochronous wavefront,
the inputs are autosynchronized, and thus no addition-
al delay elements or clocks are needed.

In addition to residue addition/subtraction, using an
OIAP, modN residue multiplication can also be per-
formed. A mod5 multiplication truth table, for exam-
ple,is shown in Fig. 10(a). Since the multiplication by
a zero results in a zero, only operations that map the
other numbers, i.e., 1, 2, 3, and 4, are necessary. For
this reason, to implement a mod5 multiplication truth
table, use of a mod4 adder has been suggested.?? In
general, multiplication in modp, where p is a prime,
can be decomposed into addition in mod (p — 1) with
suitable prepermutation and postpermutation net-
works. In Fig. 10(b), using a SHG-based OIAP net-
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Fig. 10, (a) Mod5 residue multiplication truth table. (b SHG-

based mod5 optical multiplication implementation. Twoe SHG

cryvstals, one for a mod4 addition and another to handle the zero. are

shown.  Also. a prepermutation and a postpermutation devices are
also used.

work, an SHG-based residue mod5 multiplication unit
is shown. In addition to three input (output) permu-
tation elements, two separate SHG units, one for im-
plementing mod4 add and another for dealing with
zeros, are employed. Although a multiplier uses more
elements than a corresponding add unit, compared to
other methods?3 this is a faster and more compact unit.

VI. Residue-Based OIAP for Matrix Multiplication

In many real-time scientific and engineering prob-
lems, it is necessary to solve a large number of algebraic
and differential equations. For the solution of these
equations, a large amount of matrix manipulations are
needed. Withadigital optical computer, it is essential
to be able to perform fast matrix multiplication. In
previous sections, using the DMAC algorithm, an AND
element-based binary matrix multiplication prepro-
cessor was described. In this section, using residue
arithmetic, an alternative integer matrix—matrix mul-
tiplication approach is proposed. Using a residue
number system. integer matrix multiplication can be
decomposed into a set of parallel relative prime modu-
lo-based residue matrix multiplications. Thus solving
a set of linear equations using residue matrix algebra
can increase computational speed. Details on the so-
lution of integer-valued linear equations using residue
matrix algebra are available.>+%>

The multiplication of two identical prime modulo-
based matrices is similar to the decimal case. In the
residue case, both multiplication and addition are
evaluated in the specific modulo residue system. A
conventional matrix-matrix multiplier that performs
the multiplication of two N X N matrices ([C] =
[A][B]) contains a 2-D square array of N? identical
processing elements, each performing an arithmetic/
logic operation that adds to its past contents the multi-
plication results of two present inputs. For the multi-
plication of two modp N X N matrices, each of the N*
cells, for example, C,,, where i,j € (1.2,. .., N), executes
recursively fork = 1,2,.. , N,

[C¥) = [C**=1' + g,,b, | modp. 7

where a;x(by;) are the ikth (kjth) element of the matrix
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[AJ([B]). As an example, consider the multiplication
of two 4 X 4 mod5 matrices [A] and [B], where

20 A
[
02 4
2.1 0

[A] = (B =

NS e e

Each of the sixteen processing units performs identical
arithmetic operations, i.e., mod5-based multiplica-
tions and additions. It can be shown that the corre-
sponding matrix multiplication result is

3
4
v
0

[C] = (AlB] = mod5. Q)

A
i o W
[N &)

o

To implement this 4 X 4 residue matrix multiplication
using an OIAP the array shown in Fig. 11(a) may be
used. Inputarrays A and B enter from the left and the
top part of the processor. To guarantee the isochro-
nous data arrival, a number of zero’s are used. In Fig.
11(b), an individual processing element, a mod5 multi-
plier/accumulator, is depicted. White and black ar-
rows represent the input and SH beams. The residue
multiplier performs on the two present inputs a mod5
multiplication. Its result is first converted from a SH
to a fundamental frequency and then added using a
mod5 adder to the adder's previous content. The
optical delay line is adjusted so that the residue adder
previous content arrives isochronously with the
present multiplier output. After four recursions, at
each element C;; the desired output is generated. Us-
ing such residue OIAPs as building blocks, an all-
optical matrix residue processor may be constructed,

VIl. Summary and Conclusion

In this paper, various all-optical array processing
methods have been intreduced. For OIAP implemen-
tations, several nonlinear optical devices, such as a
ncnlinear etalon, Kerr gate, optical phase conjugator,
and SHG device, were described. Among various pro-
posed all-optical AND elements, the SHG AND gate is a
preferred candidate. A SHG AND gate can have a
femtosecond response. Except for a frequency
change, a SHG-based OIAP can be monolithically im-
plemented and thus possesses the potential for optical
circuit integration. For multiple-stage SHG-based
OIAP operation, using PFD techniques, the doubled
frequency can be converted back to its fundamental
frequency. The spatially encoded 2-D parallel data
are processed in a locally interconnected lattice-type
OIAP network. For digital optical arithmetic com-
puting, a binary AND gate-based OIAP is discussed. In
principle, for different applications, other elemental
logic and arithmetic operators can also be used. In
Table I, the use of different AND element OIAP arrays,
where the dot and circle represent 2- and 3-D arrays,
respectively, is summarized. Parallel data are as-
sumed to enter from both the left and bottom of the
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Fig. 11, 1a) A 4 X 4 residue matrix-matrix multiplier with sixteen

identical anthmetic processing cells C,,. (b)Y A SHG-based (. cell

that emplovs a mod4 multiplier and a mod4 adder. Black and white

arrows represent the SH and fundamental frequency beams. In

addition to the adder and multiplier. a PFD conversion device is
needed.

Table |. Summary of the Various Proposed Arithmetic OlAPs

e [ XXX} .
esece e ecee .
seee eve [ XX X .
(XXX soee [ XXX .
nsigned bnary 2's complement residue  logk vector.vector
mudtiplicoton muthplcotion nner - product
o [ X-X-X-] °
o] 0000 o
=] 0000 o
o ocooo0 [}
vecfor-vecior matrx-matnx matrix-vector
outer-product product product

Note: Eachdot indicates an elemental processor. The black and
white dots are the 2- and 3-I) arravs for the different computations.
Parallel data enter the processor from both the left and bottom of the
diagram.
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network. Using these structures with either a DMAC

or aresidue algorithm. various optical multipliers were
described.

This work was supported in part by a grant from the

U.S. Air Force Office of Scientific Research 84-0144.
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Optical artificial intelligence and symbolic computing:

an introduction

George Eichmann, H. John Caulfield, and Ivan Kadar

After ashort introduction, a brief overview of the research papers contained in this special issue is presented.

The notion of what is considered intelligence and
inter alia artificial intelligence (AI) is a metaphysical
issue. As a metaphysical hypothesis it borders on
biological, philosophical, sociological, cognitive, and
psychological questions about the nature of our uni-
verse. As scientists, however, we can define the field
operationally as a discipline devoted to the machine
solution of a particular set of problems. Some of the
commonly mentioned problems that fall in the domain
of Al are game playing, mathematical theorem prov-
ing, the problems of both speech and vision perception,
natural language understanding, and expert problem-
solving systems. The underlying theme for the solu-
tion to some of these problems involves such concepts
as knowledge, reasoning, learning, adapting, organiz-
ing, planning, predicting, and understanding—pre-
cepts that humans should follow without fail.

To represent these concepts in a machine under-
standable form, suitable models of these processes
must be found. In as much as the processes them-
selves are still under study, the models that represent
these concepts are still in a development stage. Pres-
ently, there are three major thrusts in Al model build-
ing. In the first school of thought, the Al model is
constructed from a set of rather primitive but funda-
mental operators with built-in rules, the collection of
which constitutes a language, that will allow these
systems to acquire knowledge through some form of
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learning mechanism. These r 1les allow the language
system te reason, learn, adapt, and in general evolve
into a more complex system. Examples of some of
these language systems are SETL (a set theoretic lan-
guage), aspects of predicate calculus, and RAFAL (a
generalization of LISP). The difficulty with these sys-
tems is that to acquire new concepts they require an
inordinate amount of machine computation. Another
school of thought revolves around the idea of an expert
system. An expert problem-solving system does not
start from basics but rather codifies the results of an
evolutionary process as rules derived from the knowl-
edge of experts. By consulting the knowledge of the
experts, the machine is able to mimic a form of intelli-
gence. Finally, since biological systems are living ex-
amples of intelligent systems, the mathematical mod-
els of biological systems when appropriately coded can,
therefore, be considered for Al modeling.

Traditionally, optics deals with the generation,
propagation, and detection of light waves. New devel-
opments in laser sources and better optical detection
devices, however, opened new nontraditional areas of
applications of optical devices and techniques. Large
aperture optics, with its promise of large-scale parallel-
ism, and the development of picosecond and femtose-
cond optical switching devices have thrust optics into
the area of both optical arithmetic and logic comput-
ing. Most optical encoding methodology transforms
the arithmetic or logic variables into spatial patterns.
The 2-D spatial pattern manipulation is where optics
has a distinct advantage over the traditional 1-D elec-
tronic processors. A large part of Al computing deals
with symbol manipulation. For a 1-D electronic com-
puter implementation of the Al symbol manipulation,
the symbols must be converted into strings of digits.
However, humans do symbol manipulation using visu-
alimages. Thusitis expected that an optical machine
vision system can play a large role in modeling Al
systems.

The papers in this issue are organized in the follow-
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ing sequence. The first set of papers deals with funda-
mental issues of modeling Al systems. In the next set
of papers, neurological models and applications of neu-
ral models to various optical, i.e., visual, application
tasks are analyzed. Next, some optical implementa-
tion examples of particular expert systems are provid-
ed. Finally, possible electrooptical implementations
of biologically motivated artificial neural networks are
described.

In the first paper in this special issue, ‘‘Massive
Parallelisim in Artificial Intelligence,” by L. Shastri,
the need for massive parallelism for Al computation is
documented. In particular, details of a connectionist
model of an Al computing network are described.
This network model in turn is applied to problems in
vision and natural language processing.

In “Relational Matching,” by L. G. Shapiro and R.
M. Haralick, another vision-oriented Al problem is
discussed. Here the problem is given a machine de-
scribed image representing a picture of a scene. The
question is how do we determine the objects and their
spatial relationship. The solution, cailed relational
matching, is a high-level or scene interpretation pro-
cess. Several sequential and some possible parallel
algorithms are described.

In “Optical Implementations of Mathematical Re-
solution,” by R. A. Schmidt and W. T. Cathey, an
optical implementation of an important problem in Al
is described. Mathematical resolution is a technique
where facts are expressed in a clause form. Using
quantified propositional calculus, the operations of
resolvent formation, unification, and search are per-
formed. A parallel formulation of this method and
some optical implementations are described.

The next paper, *‘Parallel Optical Syntactic Pattern
Recognizers,” by G. Eichmann and S. Basu, discusses a
pattern recognizer where the pattern’s structural in-
formation is taken into account. Inthistechnique, the
pattern is represented by the syntax of a grammar. A
parallel syntactic pattern recognition algorithm and
some optical implementation approaches are present-
ed.

In “Masking Fields: A Massively Parallel Neural
Architecture for Learning, Recognizing and Predicting
Multiple Grouping of Patterned Data,” by M. A. Co-
hen and S. Grossberg, a new neural model of associa-
tive pattern classification is detailed. The neural
model, called the masking field, is applicable to visual
object recognition, speech recognition, and cognitive
information processing. The masking field recog-
nizes, predicts, scales, adapts, and learns within con-
text information on a multiple grouping of input pat-
terns.

In “Nearest Matched Filter Classification of Spatio-
temporal Patterns,” by R. Hecht-Nielsen, a particular
subset of the masking field approach is discussed.
Here a bank of neural filters, each of which contains a
large number of pattern classifiers, is employed.
These nearest-neighbor matched filter classifiers have
near-Bayesian performance and will have applications
in speech, sonar, radar, and advanced communication
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environments,

In “A Holographic Associative Memory with Non-
linearities in the Correlation Domain,” by Y. Owechko,
G. J. Dunning, E. Marom, and B. H. Soffer, optical
implementation of a continuous associative neural
network is described. Here a shift-invariant all-opti-
cal holographic associative memory is implemented
using phase conjugate mirrors and Fourier transform
holograms. By using nonlinearities in the correlation
domain, crosstalk and correlation noise are reduced.

In “Superresolving Signal and Image Resloration
using a Linear Associative Memory,” by G. Eichmann
and M. Stojancic, the long-standing problem of the
superresolving reconstruction (restoration) of an ob-
ject of known finite spatial extent with the low space-
spatial bandwidth product is considered. By proper
training of a constrained linear associative memory
filter, superresolving signal and image restoration is
shown to Le achieved.

In “Associative Network Applications to Low-Level
Machine Vision,” by J. M. Oyster, F. Vicuna, and W.
Broadwell, applications of a neural network model to
low-level machine vision tasks are detailed.

In “Real-Time Optical Expert Systems,” by A. D.
McAulay, the advantages of optics for the construction
of a real-time expert system are enumerated. In par-
ticular, an optical expert control expert may use an
optical spatial light modulator as a crossbar switch for
interconnecting logic units and may make deductions
from incoming data at high speed. As an example, a
medical expert system is described.

Using a different approach, in “Model-Based
Knowledge-Based Optical Processors” by D Tasasent
and S. A. Liebowitz, a model-based optical expert sys-
tem is described. Here the ability toon-line generate a
2-D image projection or range image for any object/
viewer orientation is addressed. The generation of the
knowledge base and the applications of this knowledge
base in associative processors and symbolic correlators
are described.

The paper, “Optical Expert Systems,” by H. H. Szu
and H. John Caulfield, deals with constructing a page-
oriented holographic data base together with spatial
light modulators to form an optical expert system.

Finally, in, “Photoneural Devices and Architectur-
es,” by R. V. Jones, optoelectronic arrays of monolithi-
cally integrated autonomous photoneural processors
are described. Neural architectures consisting of a
layered hierarchy of 2-D integrated arrays of optoelec-
tronic cells form the various perceptual neural process-
ing networks.

The field of artificial intelligence and symbolic com-
puting, as opposed to optics, is new. Many changes are
taking place in both of these fields. It is the hope of
the special issue editors that the papers presented
capture the flavor of this new synergism of the two
great dynamic disciplines. Itis clear that alot remains
to be learned and developed. It is our hope that this
issue will point to new directions for the cross-disci-
plinary field of optical artificial intelligence and sym-
bolic computing.
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Parallel optical syntactic pattern recognizers

George Eichmann and Sanghamitra Basu

There are many pattern recognition problems where the pattern’s structural information is important. In
these problems, a svntactic method of pattern recognition is of value. In this paper. both parallel svntactic
pattern recognition algorithm and optical architecture implementation approaches are described. In partic-
ular, the applications of syntactic pattern recognition algorithm to shape classification are illustrated. A
number of parallel optical syntactic pattern coding methods, a structural matched filter and associative
memory filter. and an optical symbolic substitution syntactic parser are discussed.

. Introduction

There are many ways to describe a pattern. In a
typical approach, each input pattern is converted into
a binary representation using a photosensitive matrix
device. The sensed data, derived from a measurement
grid, are sometimes arranged in the form of a pattern
vector X = (x,.x. ... x,)7, where T is the transpose.
In general. the component x,, is either a binary number
or asampled value of a continuous function. It isfrom
this pattern vector that one starts the analysis and
gathers information about the pattern.

It has been observed that in some cases a patternisa
collection of many repetitive subpatterns appearing in
a certain order. The simplest subpattern is called a
pattern primitive. The special order of primitive se-
quence is completely defined by the syntax of a gram-
mar. Some patterns can be represented by a string of
primitives. Every string is a sequence of primitives.
The collection of strings, called a language, can be
generated by a grammar. String representations are
adequate for describing patterns whose structure is
based on a relatively simple connection of primitives.
For many applications, more powerful approaches are
realized through the use of higher-dimensional repre-
sentations'* such as trees, webs, and graphs. Howev-
er. thisdiscussion is restricted to string representation.

The many different mathematical techniques used
to solve the pattern recognition problem may be
grouped into two general categories: the decision-
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theoretic and the syntactic approaches. The decision-
theoretic approach® uses statistical decision and esti-
mation techniques to describe patterns. However,
this technique makes very little use of the structure of
the patterns. In some pattern recognition problems,
the structural information that describes each pattern
is important, and successful classification can only be
achieved by using this information. Examples for
problems where the syntactic method is a suitable
approach are fingerprint identification, character rec-
ognition, chromosome identification, image segmenta-
tion, and object recognition.?* *

In a syntactic pattern recognition system (SPRS)?2
any input pattern first enters the preprocessing stage
where it is encoded, smoothed, and enhanced, followed
by a pattern representation stage where it is converted
into astring of primitives. Inthe third and final stage,
the input string is syntax analyzed by a parser. Itisat
this step where the input pattern is either rejected or
accepted. In general, because of the time the parser
takes to analyze a string, the SPRS is a very slow
process. We describe parallel context-free language
(CFL) recognition algorithms which are suitable for
parallel optical implementation.

The specific tasks involved in the syntactic analyzer
are CFL recognition and error-correcting CFL recogni-
tion. The recognizer designed for a particular gram-
mar recognizes only those classes of pattern that corre-
spond to this grammar. For example, corresponding
to m classes of patterns wy,ws, ... 0., m grammars
G1,G3, ... .G can be constructed so that the strings
generated by the grammar G, represent the pattern in
class w,. For an unknown pattern described by the
string x, the problem of recognition is essentially re-
duced to the answer to the question

x < LG fori=1,.... .m?

The process resulting in an answer to such a question
with respect to a given grammar is called syntax analy-
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sis or parsing.” In addition to answering such a ques-
tion, the process can also provide the generation of the
derivation tree of x, the structural information of the
corresponding pattern,

We may describe an unknown pattern by its rela-
tional tree.” The relational tree for each reference
pattern can be coded by a suitable method into a string
and then stored in a memory. The relational tree for
the unknown pattern can also be coded into a string
using the same method. This string can then be
matched against the reference strings.

A second approach, known as the Earley algorithm,
is the most commonly used SPRS recognizer.t Al-
though the Earley algorithm is suitable for a general
CFL, it is slow with time complexity O(n?%), where n is
the length of the string. Graham et al.? derived from
the Earley algorithm a new on-line CFL recognition
algorithm that allows O(n*/logn) operations on bit vec-
tors of length n or O(n*/logn) operations on a RAM.
About the same time Weicker!” came up with a similar
result. The Earley algorithm can be applied to error-
correcting CFL recognition.- Because of the repeated
error checking and correcting, the error-correcting
parser also has been very slow.

Optical pattern recognition (OPR) is generally dat-
ed from the publication of the VanderLugt complex
matched filter.!! These filters can be implemented
with either a coherent or an incoherent optical system.
These filters work directly on the physical image. It
was found, however, that these filters are rather sensi-
tive to topological as well as other changes in the physi-
cal image. In particular, rotation,!” scaling,'? inter-
class and intraclass pattern variations, etc. may cause
misclassification. To extend the operating range of
the matched filter, several optical decision-theoretical
methods were described.!'*1® Both an OPR over-
view!" and surveys!*!? are available. In this paper,
new optical SPRSs are introduced. These recognizers
use the structural information about a pattern. Using
the pattern’s structural information reduces the possi-
bility of misclassification, even in the presence of im-
age noise or occlusion, leading to a more robust optical
filter characteristic.

The paper is organized as follows:

Background information on a SPRS is given in Sec.
II. In Sec. Ill, a new parallel symbolic context-free
language SPR algorithm is presented and, using Ro-
man letters as an example, illustrated. In Sec. IV, a
number of optical svntactic pattern recognition imple-
mentation architectures are described. Finally, Sec. V
is a summary.

Il. Background

In this section, after a brief review of some basic CFL
definitions, the serial Earley parsing algorithm is pre-
sented. Some examples of its application to noise-free
syntactic pattern recognition are also given. In a sec-
ond approach, the pattern is encoded as a relational
tree. A graph encoding approach is also presented.

Definition 1. A context-free language is a four-
tuple G = (V,V1,P,S), where V is a finite set called the
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vocabulary, V' is the set of terminal symbols, and V'\
=V = Vi isthe set of nonterminals. V*(V'}) is the set
of all finite length strings over V(Vy). P is a finite
subset of V\ X V™* called the rules of G: elements of P
are usually written in the form A -~ «, where A ¢ Vy
and a € V*. S ¢ Vyis called the start symbol. The
empty string is denoted by A. The relation — on V* X
V*isdefined by a = Bfora,3€ V*iftherearea’,a”, vy
€ V¥*,andA € Vysothata = a’Aa”,8=a'ya”,and A
— v € P. =*is a reflexive closure of =. The lan-
guage generated by G is LIG) = x ¢ V iS=xt.

Convention. Throughout the rest of this paper Ro-
man capitals from the front of the alphabet
(A,B,C,...) denote elements of Vy. Roman small
letters (a,b,c,. . .)denote elements of V. Small Greek
letters (a,83,v,. . .) are elements of V*. Rules in P are
designated in the form A — a. Itisalso assumed there
is an integer n = 0, and a sequence of a;a»a;...a,,
wherel i <n,a ¢ Vg

Definition 2. A CFL recognizer is an algorithm
which decides whether a string a,a», ... ,a,isin L(G).

Definition 3. Let - be asymbol not found in V. For
an; rule A — af in P, we call A — « - 3 a dotted rule.
The dot is used as a marker to indicate that the « part
of the rule has been found consistent with the input; 8
remains to be considered.

Definition 4. Let @ be a set of dotted rules and
RCV:

WeR=14 ~0l3-5IA <0 U3y @ 3% and U= R
e R=11 ~al’d-ylA va-Udy = . 35,

and there is some (" € R so that U" = U]
Definition 5. Let @ and R be sets of dotted rules:

Q-R=1A »al'3-4]4 »a-U'8ye Q3= and U -+ 4-c RI.
QEOR=14 ~old-4lA —=a - U3y = Q. 3%\

and there is some {7’ — §-in R so that {7 = U}

Definition 6. Let RCV:

PREDICT (R} =1C +38lC +45in Py =,
and B = C, for some B in R and some n}.
Definition 7. Let R be a set of dotted rules:
PREDICT t8) = PREDICT 4BIA »o-BJdisin Rh.

In terms of the dotted rule & and - operators, Gra-
ham et al.” rewrote the Earley algorithm. We denote
it as the GHR algorithm. The GHR constructs a rec-
ognition matrix T = {t(i,/)}. All elements of T are sets
of dotted rules. If Sa - € t(o,n), we can say that the
input string has been correctly recognized.

GHR algorithm
tH0.0) = PREDICT (]S));

forj:=1tondo
begin [build columns j. given columns 0,. .. j — 1].
[scanner:]

forO0<i<j—-1do
’IJ: = t:J~I‘|av|:

[completer:]

18-
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e
(Q) L axb

PASE > osb

Fig. 1. Svntactic pattern example using the Roman letters Aand F
a input: 1a) the letters: (b) the chain code primitives: (€) the
interconnection vperaturs.

Jards = — tdountoddo
hegin . =t ts
fore =k = ldown toOdo
L =!~l'{v_k'l(~~-;
begint, @ =ty \':\Ik‘,-:

fort: =k = 1dounto0do
o=t Ut ot
vnd:

[Predictor:]

¢ = PREDICT ( v _r,\);
end: o

Theorem 1.° After executing GHR algorithm A — «
-3¢t iff S a,,... ,aAy forsomey e V*and a =
[: AP TR - 12

For example, Fig. 1(a) depicts the character A, while
Fig. 1(b) describes the pattern primitives. If we follow
the primitive interconnection operators! shown in Fig.
1(c). the context-free grammar G (Table I) can gener-
ate the characters A and F. The characters A and F
can be described as the strings

b+ tth+corsar+conandd+raxd+an,

respectivelyv. The upper triangular recognition matrix
T using the GHR algorithm for this example is shown
in Table II.

A second approach represents the known and un-
known patterns in the form of a string. The string in
this case is not just concatenation of symbols, but it
represents relations, important relations, between
subpatterns coded and stored in the string. For our
particular example, we consider two binary relations
(Fig. 2). The structure of character A [see Fig. 1(a)] in
character components is as follows:

(1) Contour tracing—to determine the boundary of
each character component.

(2) Search—to find some segment to be used as a
start point. (It is unimportant which particular seg-
ment of a component is found.)

(3) Crawl—to crawl along a segment in a given di-
rection, halting when an intersection or tip of a seg-

Table . Context-Free Grammar for the Roman Letters A and F

Let G=dUN AP S),
where Vy = (S8 and
V= abedo r -t <and

Py S +a B) S -+
(1) S +b (7Y N - =
S ec 8) 8 X
48 -d (9) 8 -*

(51 8+ (S8'S)

Tabie i. Nonzero Elements of the Symbolic Recognition Matrix T
Computed Using the GHR Algorithm

lap=t = tia= g = s = g =

tan =ty = tiuga = {S = -a]
=[S = -b}
s -
=[5 -
= {58 = aSs'S|
o=t =t = e =[S -4
5]
IS -]
(5 -]
o=t =t =t = [8 S
tuo = - = teq0 =t =[S = (SNS)]

tia=tg: =[S = b

Tog =t = tan = tage = |8 -+ (SS9
iy =trp =tz =[S+ +]

tes = tiags = [S = ¢]

i = tege = tags = toge =[S (S8'S4]
thi0 = Lot = tys = togs =[S < (SS'S)H]
tog = (8 =]

e = [S <af

Binary Relations
"left off"  "above”

Tree Representation

}{
(Q) “c ‘e/ﬁgff
5 AN
egmentation above N
A —
Cg C3
(b (C)

Fig. 2. Graph of the Roman letter A: (a) the binary relation
operators: th) the segmentation scheme; (¢) relational tree represen-
tation of the letter A.

ment (of a component) is encountered. The octal code
is used to represent the direction of a segment.

(4) Build—to construct a graph to represent the
component in terms of segments.

A numeric code is generated for each component in a
character. The code is generated from its graph
representation. The generating algorithm is guided
by the following set of rules:

(1) Start at the node in the upper left-hand corner
of the graph. Exit by the branch with the lowest-

15 May 1987 / Vol. 26, No. 10 / APPLIED OPTICS 1861

——— -y



r

valued label. Mark the exiting branch to indicate it
has been taken and write down the branch label.

(2) On entering a node, check to see if it is being
visited for the first time. If it is being visited for the
first time, mark this node.

(3) On leaving a node, choose an unmarked branch
with the lowest-valued label among available un-
marked branches. The code consists of the branch
labels in the graph written down in the order in which
they are encountered.

Once the subpatterns are analyzed and recognized,
the character made of these subpatterns and relations
between them can be identified. Each character is
represented by asequence of n + 1 codes, where nis the
number of components in the character, i.e.,

ColCnC O,
where C, is the code generated from the relational tree
representation of the character. It is generated by
traveling around the tree in a counterclockwise direc-
tion starting from the root node of the tree and picking
up nodes and leaves (terminals) the first time as they
are encountered.

The subpattern analysis and recognition procedures
are illustrated using the example of the character A
(Fig.3). TheC,forcharacter AisC,=101200. There
are four components of character A shown in the tree
representation [Fig. 2(c)]. The steps to represent a
component by a code are illustrated specifically for the
components C. [Fig. 3(b) and (¢)]. The code represen-
tations for other components are as follows:

C, =730, =26 and C, = 15
The code representation of character A is
C,C 0 CLC = 11012000 (T3 (T315) (263 (150,

In a similar manner, the code representation of char-
acter F can also be obtained. Recognition of a charac-
ter is based on the matching between the sequence of n
+ 1 codes representing the unknown character and the
codes specifying different known patterns. For this
specific example, let us suppose that an unknown pat-
ternis to be identified. The unknown pattern can also
be represented by a sequence of n + 1 codes using the
method described above. This new sequence is
matched against the reference codes representing A
and F. If a match is not found. we conclude that the
unknown pattern is neither the character A nor the
character F.

. Parallei CFL Recognition

The GHR is a sequential algorithm. Its order of
computation demands that no elements of column j +
1 be processed until ¢, is processed and hence until all
elements of column j are processed. This restriction
precludes a parallel implementation of a GHR algo-
rithm. However, by replacingt,, with a constant set of
dotted rules C = PREDICT(Vy), one may remove the
predictor operation and still preserve the correctness
of the recognition algorithm. After replacing ¢;, with
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{Q) .
_ 0. rminals
N e 1. left of node
6& & 2
7 1 0 2. "cbovernode
P Co=1012000

1
\)
Fig. 3. Encoding of the graph of Fig. 2: ta) a componentof A:thia
uraph representation of (a) using the octal chain code: (¢ the code

representation of the graph of Fig. 2(c).

C, there is no need to calculate the diagonal elements of
recognition matrix T. Based on this unrestricted com-
putation, the following parallel version of Earley’s al-
gorithm is proposed.™

Parallel Earlex alsorithm
fori=1tundon parallel
tu—10=C-lak

ti =1 =Cwoel -1k
forj=2ton do
fori=0ton = jdoin parallel
hegin

thui+ p=tha+i—1a, i
jork =)= 1to !l don parallel
tud+ pr=a+ pUtaa v kyotd + ka4

tue+ p=C e tua+y)

«nd.

A computation diagram comparing the two serial-
vs-parallel parse algorithms is shown in Fig. 4.

The proposed parallel version of Earley algorithm is
used to recognize the character A [Fig. 1(a), assumed to
be an unknown character]. First, the unknown char-
acter of Fig. 1(a) is represented as a string. We have
used the primitives of Fig. 1{b) and the primitive inter-
connection operators of Fig. 1(c) to represent the un-
known character as astring. The grammar G generat-
ing characters A and F is given in Table I. Qur aim is
to decide if this unknown string belongs to the lan-
guage generated by the grammar G. The upper trian-
gular matrix T generated by the parallel algorithm is
givenin Table IIl. The element ¢, ;- contains a dotted
rule of the form [S — (S5'S)-]. The presence of such a
dotted rule indicates that the input string is in L(G).
Therefore, the unknown character of Fig. 1(a) is ciassi-
fied to a set which consists of characters A and F.

IV. Optical Syitactic Pattern Recognizer

In this section, a number of parallel optical SPR are
described. These systems are based on the proper
optical encoding of the pattern’s structural informa-
tion. Three optical SPRSs, the structural-informa-
tion encoded matched filter, an associative memory
SPR, and optical symbolic processing SPR architec-
tures, are briefly described.

An SPRS always contains a preprocessing stage
where the physical input pattern is smoothed, en-
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the two parsing algorithms.  The order of the computation is indi-
cated above the boxes: ta) the GHR parse algorithm; (b the parallel

parse algorithm.

hanced, and encoded. In an optical SPRS, the encod-
ing stage uses both data compressive and optical en-
coding methodologies. If the pattern encoding stage
uses its structural information, for example, with the
graph-theoretic encoding approach illustrated in Fig.
2. this new pattern may be considered as a transformed
version of the original physical pattern. This trans-
formed with its structural information encoded image
may be stored in a structural-information encoded
matched filter. To recognize this pattern, the incom-
ing image when it is properly encoded must be correlat-
ed with the stored reference patterns in either a Fouri-
er spatial frequency or a correlation (template)
matching plane. Once a strong correlation is
achieved, the proper physical image may be recon-
structed.

An alternative approach is to use an optical associa-
tive memory filter (AMF) formalism?'-** to build an
optical SPRS. The idea behind the AMF is that,
instead of using a SPR computing algorithm, the al-
lowable set of input—output pattern sets is memorized.
The optical AMF can consist of either a linear, a correl-
ative or its equivalent the holographic, or a nonlinear, a
threshold, or its equivalent a neural, type of network
element. Using a proper and desired training set, it

Table lIl. Nonzero Elements of the Symbolic Recognition Matrix T
Computed Using the Parailel Parsing Algorithm

Lol =ty = {40 ® 1 = [N = CSS'SY
o=t -=t =t = [\ - 1.\‘-.,\“.\‘11
o=t =[S -b)

taa =g =ty = Loy =[S~ (S88)]

bin = top =ty = Is - +.]
tag = tigs =[S —~ ¢

tag =ty = tyn = Lo =[S '(\\Q)]
Lagn = topa = tage = togs = [§ = (S8'S))
1uvn=[5 ==
fgn = N ’”l

can be trained to recognize appropriate inputs. For a
given input, the output can be precomputed using any
available SPR algorithm. The AMF output can be
either a tag, a number in a catalog of acceptable pat-
terns, or the physical pattern itself. While the physi-
cal image AMF itself, without any structural informa-
tion encoding, can be quite resistant> to noise and
some topological changes, the addition of structural
information redundancies should further enhance this
trend.

Finally, a third approach, the use of an optical SPR
symbolic computing approach, is described. Recent-
ly, a number of methodologies have been suggested for
the realization of an optical inference engine.?®* In
another approach, an optical symbolic substitution
method was designed as a means for eliminating bot-
tlenecks in conventional electronic systems.?!32 With
the optical symbolic substitution approach, the addi-
tion of binary and trinary™® digits can be affected. In
our approach, rather than encoding the finite num-
bers, the grammar symbols and their symbolic rela-
tions are optically encoded. In Fig. 5, as an example,
the optical symbolic substitution approach for the Ro-
man letters of Fig. 1is indicated. In Fig. 5(a), a possi-
ble optical symbolic encoding scheme for the symbols
in the grammar L(G) is indicated. The binary masks
can either be long 1-D slices or 2-D areas. In Fig. 5(b),
the symbolic substitution relations corresponding to
the grammar of Table I is indicated. These symbolic
substitutions comprise the elements of a parse table.
As an example, in Fig. 5(¢), a fragment of the symbolic
substitutions relations of Table II is shown. By per-
forming sequentially according to a prescribed parse
algorithm, the necessary symbolic substitutions and
together with an optical matched filter which serves to
detect the successful completion of the parse, an opti-
cal symbolic SPR can be constructed. While optical
syntactic matched filters or associative memory filters
are conceptually straightforward, in practice, for real-
istic patterns, they can be quite large. The method of
symbolic substitution has the advantage that, even for
large complex patterns, the number of grammar sym-
bols and the inference relations defining the grammar
can be kept relatively small.¥ Using a rapid optical
symbolic substitution device, a compact optical SPRS
can be constructed.
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Fig. 5. Optical symbolic substitution encoding tor the Roman let-

ters Aand F: 1a) optical encoding of the symbaols in Lt(); th optical

svmbolic substitution encoding of the grammar LiG): (¢} optical
substitution scheme for a fragment of the parse Table 1.

V. Summary

In this paper, the use of parallel optical syntactic
pattern recognizers was discussed. These recognizers
utilize the pattern’s structural information. Because
of this additional information, robust pattern recogni-
tion is possible. After describing some of the present-
ly available SPR approaches, a new parallel parsing
algorithm was presented and illustrated. This algo-
rithm requires fewer parsing steps for recognition. A
number of optical approaches for SPRS were de-
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scribed. Anoptical structural matched filter and opti-
cal associative memory filter approaches were de-
scribed. The use of the method of symbolic
substitution to generate optical symbolic narse tables
has also been indicated. Such symbolic substitutions
find use in other artificial intelligence modeling appli-
cations.

This work is supported in part by a grant from the
Air Force Office of Scientific Research.
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Superresolving signal and image restoration using

a linear associative memory

George Eichmann and M. Stojancic

The long standing problem ot the superreselving reconstruction trestoration) of an object of known finite
spatial extent tfron o nosy hinearhy degraded imace s considered. The resolution of two-point sources
tohtectsd spaced less than one Ravleish distance apart isan il posed problem. To determine a superresolving
inserse of an il conditioned hnear desradation operator with a known set o input output training signals, a

Linear assoctative memory (AN technique s emploved. By limiting the set of reconstructable signals. an

‘ N

eveeptinally rohage

N T A N B

Lecnobtained. This filter ix based ona new constramed LAM matrix

operator techmque.  Superresolving restoration of 11 and 2.1 two-point sources as well a~ some tyvpical

edye-tvpe signals in the presence of considerable measurement noise is demonstrated.

. Introduction

An important problem in signal and image process-
ing is the recovery or restoration of a signal or image
that has been distorted by a linear degradation opera-
tor. This problem is common to different application
areas such as diffraction optics. radio astronomy. and
clectron microscopy. It can be stated, in general, as
the problem of reconstruction of a Fourier transform
pair |f.F} from partial data on either/or both domains
(spatial and/or spatial frequency).! The extrapola-
tion of bandlimited signals has been addressed by sev-
eral authors.”~ A number of iterative extrapolation
algorithms, for example, Gerschberg-Saxton.” Papou-
lis, and Youla.! and also direct algorithms, such as
Cadzow™ and Sabrv and Steenart,® have been pro-
posed. An extended analysis and generalization of
constrained iterative algorithms are given in Ref. 7.
When the measurement noise is negligible and the
degradation process is well-hehaved,*" direct spatial
frequency domain inversion of the degradation process
is possible. In the presence of noise, a method such as
Wiener filtering’" is more appropriate. However. in
many image restoration problems, the measurement
error is greatly amplified so that the error dominates
the estimate. Image restoration methods which im-

The anthors are with Citv University of New York. City College.
Department of Electrical Engimeering, New York, New York 10031,
Receved 7 October 19%6
TN YN T 10191 ] OSK02.00:0,
1987 Optreal Society of America.

pose either smoothness or positivity constraints, regu-
larization techniques, or techniques that employ some
solution criteria have also been widely analyzed.!! *

The effect of the finite aperture of a system is char-
acterized by an ideal low-pass filter (ILPF) with its
cutoff frequency w,. If a signal f(x) has been passed
through an ILPF, the corresponding output signal will
not contain high-frequency components bevond w =
w,. Ingeneral, the original signal f(x) cannot be recon-
structed from the given ILPF output. However, if the
input is space-limited, i.e., f{x) = 0 outside an interval
L =1!.—[..it can be recovered from its integral equa-
tion form-"'

sinfu (o= 0

»_wn:’ fien ) de. D
VAR St '

The propert.  of the eigenvalues and eigenfunctions
of the integral Eq. (1) have been thoroughly studied.”
The eigenfunctions ¢,{x) are the prolate spheroidal
wave functions with the space-bandwidth product
(SBP) as their parameter and with associated eigenval-
ues \,,. where 1 > X\;>...>X\,>...> 0, which forn >
SBP decrease rapidly to zero. The input can be ex-
panded as

o= N Azla g oo, 2
where
”
a, = 2Oy, iy (3

From Eq. (2) it is clear that since A ' tends to infinity
for large n, slight measurement errors in the output can
lead to large changes in the restored object function.
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Both in optics and spectroscopy, due to the finite
aperture of physical imaging svstems, there is a dif-
fraction etfect-induced resolution limit. In principle.
because f(x) has finite support, its spectrum is an
entire function and can be analytically continued be-
vond its cutoff frequency. Continuation of the spectra
in the spatial frequency domain provides an increase of
resolution in the spatial domain. A frequently used
resolution criterion is the so-called Rayleigh distance .
For a given ILPF, with a two-sided spatial bandwidth
W, this is the distance between two ideal impulses S so
that the maximum of the impulse response {IR) of the
first impulse overlaps the first zero of the IR of the
second impulse. This condition translates as the val-
ue of unity for the SBP. If SBP is below unity, the so-
called uncertainty principle,”’ well known in signal
processing, holds. An increase of resolution beyond
the Rayvleigh limit is called superresolving. Few signal
and image restoration algorithms exhibit superresolv-
ing properties substantially below the Ravleigh limit.
While most linear nonconstrained deterministic tech-
niques achieve in the absence of noise a resolution of
the order of half of a Rayleigh length,” in general,
statistical methods are not superresolving. On the
other hand, to provide numerical stability, most non-
linear direct and/or iterative methods use various
forms of regularization, a process that limits their su-
perresolving properties.

Direct discrete solution of the integral Eq. (4) can
be obtained emploving some numerical quadrature
rule.” Assuming that the number of samples of a
measured (degraded) sampled object vector g is equal
to the number of samples of the sampled object vector
f. we have

g = Hf. [EY

where H is an N*N degradation matrix operator ob-
tained from the quadrature rule. The solution of f in
Eq. (4) requires a matrix inversion. Asin the continu-
ous case, Eq. (1), because the higher-order eigenvalues
of H tend rapidly to zero, H is a nearly singular matrix.
Thus the inverse of H does not exist, or, if it exists,
during the inversion process the higher-spatial-fre-
quency components of the signal are greatly amplified
causing numerical instability. Ifthe degraded image g
is noisy, even if H™! (where the superscript stands for
the inverse) can be properly approximated, the result
of restoration may differ radically from the true solu-
tion.

To determine an approximate superresolving in-
verse H™', in this work, a set |(fs,gi)l, R = 1,2,...,N of
known input/output training signals and a linear asso-
ciative memory (LAM) technique is employed. The
ILAM relates the two given vectors f and g by the
matrix equation®’

f = Mg, 5)
where M is an unknown matrix. In this terminology,
the vectors (f,g) are identified as the data and key
vectors, respectively. The LAM matrix M represents
a content addressable memory (CAM) that allows by
specifying the proper key the data recall. If the key
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and data are identical. the recall is termed autoassocia-
tive. Otherwise it is a heteroassociative recall.-* To
identify, or restore superresolving linearly degraded
signals or images. in the presence of appreciable noise.
a heteroassociative recall operation is proposed. In
this model of associative memory, the kth item to be
stored consists of two parts, the key vector g, and the
data vector f,. The key and data vectors are encoded
as column vectorsin the key X and the data Y matrices.
respectively. The number of elements in the kev g
and data f vectors need not be the same. The recali
LAM matrixis M = YX*, where + denotes the Moore-
Penrose generalized inverse.”* The recall operation is
performed by multiplying an input key vector g’
{which can be a noisy or corrupted vector) bv M to
vield the desired data vector f. This result is the
minimum norm least-squares approximation to data
vector f, paired to the key vector g, that is closest in the
sense of least squares to the input vector g’. In the
case of heteroassociative recall it has been found~" that
for certain structures of the key or input matrix X,
while the conditions for noiseless recall may be satis-
fied, the LAM can be sensitive to input noise. As the
determinant of (XTX) approaches zero, in spite of the
linear independence of the columns of X, the elements
of the LAM matrix M may become unacceptably large.
A very similar problem arises in the application of
LAM tosuperresolving signal restoration, when, due to
small SBP, the key matrix X contains a large number
of similar columns. To achieve superresolution. in
this paper, a constrained optimization of the dynamic
range of the LAM matrix M elements with respect to
the particular data-key set is proposed. The LAM
matrix M is determined by a new constrained recursive
training algorithm with a set of known input/output
sampled vector pairs {(f;,g:)}, B = 1,2,3,....N. The
training set represents a known data-key set. Using
this modified LAM matrix M, it will be shown that it is
possible to attain superresolution far below the Ray-
leigh limit even in the presence of large measurement
noise.

This paper is organized as follows: In Sec. I, after
presenting the recursive matrix training algorithm. the
application of a constrained LAM matrix to superre-
solving restoration is described. InSec. 111, the super-
resolving results of a two-point noisy object function
are presented. Both 1-D signal and 2-D image super-
resolving restoration for a different level of noise and
space-bandwidth products are demonstrated. Also.
the results of superresolving restoration of particular
test images, such as a triangle, trapezoid, and Gaussian
pulse of different width and slope edges. are consid-
ered. Superresolving restoration in the presence of
considerable additive noise and different space-band-
width products is demonstrated. Finally, in Sec. IV.
summary and conclusions are presented.

Il.  Superresolving Signal and Image Restoration (SIR)
Using the LAM Technique

In this section, the constrained iterative training
process for determination of the LAM matrix M and its



application to superresolving signal and image restora-
tion is described.

In the linearly degraded image restoration problem,
Eq. t4) relates the object f to the degraded image g by a
linear degradation operator H. However, in the pres-
ence of noise Eq. (4) is amended:

g = Hf +n. t5)

where n is assumed to be an uncorrelated additive
noise vector with zero-mean and identical variance
elements. It can be shown=! that a minimum least-
squares norm estimate of f is

f=H'g. ]

where H* is the Moore-Penrose generalized (pseudo)
inverse.”* Based on the given observation (measure-
ment) vector g, this estimate for the vector f coincides
with the best linear unbiased estimate (BLUE).-* The
pseudo inverse H* can in general be determined by a
singular value decomposition {(SVD).”* The SVD
method clearly indicates that the eigenvalues H for a
discrete ILPF as a function of the space-bandwidth
product change abruptly from approximately unity to
nearly zero. This fact introduces numerical ingtabil-
ity in the determination of the inverse of H. To deal
with this problem, a number of direct or iterative regu-
larized algorithms exist.!>-!? Ingeneral, these regular-
ization algorithms tend to attenuate those signal com-
ponents that correspond to the high-order eigenvalues
of H at the expense of superresolution, where precisely
these high-order eigenvalues are needed.””

To introduce the constrained LAM, consider the
given set of the estimates of the object vectors |fi} and
related linearly degraded vectors {gil. k = 1.2,....N.
Each pair of vectors (f:.gx) can be related by the matrix
M. We form the key X and data Y matrices with the
column vectors g, and {5, respectively, as

N=1g,g. . .&l
y=if.f.. 1)

(R}

From Eq. (7). a matrix equation is obtained:
Y = H'N. 9

If we identify H* = M and form the Y matrix from the
set of ariginal object vectors, Eq. (9) is

Y o= MX, (1

where the least-squares sense optimum solution for M
Is again
M=VX" (1

There are a number of methods to evaluate the pseu-
doinverse X* matrix.”*26:2* % However, for most of
them. because of ill-conditioning of the X matrix for
small SBP, some additional corrections are required.
Here to evaluate the M matrix a new constrained re-
cursive gradient projection algorithm that is based on a
theorem of Greville>* on pseudo inverses of partitioned
matrices (see Kohonen*?) is used. This new algorithm
is a trade-off between numerical complexity and com-

putational speed. It also provides a mechanism for
adding constraints to the M matrix. A brief outline of
the unconstrained recursive algorithm is as follows.
Let M, = Y, X! be the r vector pair LAM matrix.
The Y. matrix can be partitioned as [Y,-,f,]. Apply-
ing Greville’s theorem,™ the X/ can be determined as

X —gel)
X! = o . o2
c!

where / is the N* N identity matrix, T stands for trans-
pose, and

- xh{x:—;)g, L
. - . if the numerator is =1 113a}
=X, X', -
c’ = i hd
(XN g :
. otherwise. (13bs
T+ X' -

where !+ represents a quadratic vector norm. Multi-
plying the partitioned matrix Y, by X} [see Eq. (12)]
yields

M, =YL N 4+, - Y, X g e (14)

or equivalently

M, =M_ +(f,-M_gl (15}

r=1 r

In the case where g, is linearly independent of the
previous columns of X, Eq. (13a) for ¢ applies; other-
wise Eq. (13b) for ¢] implies M, = M,_.23 Therefore,
the recursive algorithm for M, given M._, is

Mo 4 f = Mg f’ for g =0,

g -
M, = (16)

M__, otherwise.

where g, is the orthogonal projection of the vector g, to
the vector subspace spanned by the column vectors of
the key matrix X, i.e., (g.8>....,&-1). The orthogo-
nal projection vector g can be obtained either from a
Gram-Schmidt orthogonalization (GSO) or a modified
GSO (MGSO) procedure.”t The GSO algorithm for
the orthogonal projection vectors is

e
N g
= &

g€ =8 — 1
where the bracket (...) denotes the vector inner prod-
uct. Similar mechanism is also available for the
MGSO procedure. In Eq. (17), the sum over is taken
for the nonzero lig, |l only.

To start the iteration in Eq. (16), the initial LAM
matrix M, can be chosen to be either a zero or an
identity matrix. However, it is well known®* that for
the case of a zero mean stochastic input/output vector
pairs (f,g) the linear regression solution for Mis M =
YXT(XX"-!. This solution also coincides™ with the
BLUE solution M = R,,R_!, where R,, and R,, are the
sample cross-correlation and autocorrelation matrices,
respectively. These matrices are calculated from the
column vectors of the Y and X matrices as
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hY
Ko<= M N gl s
=

hY
R, =11 M N ggl (19)
-

To improve the convergence speed and also reduce the
unnecessary processing of noisy superresolving im-
ages, the covariance matrix obtained from the deter-
mimstic set of degraded training vectors g}
A
C,o=uMNggl 20

=1

can, therefore, also serve as an initial LAM matrix
estimate M,.

For convergence, it is desirable that X be a well-
conditioned matrix. However, when the SBP is small
(especially when SBP < 1), because the key matrix X is
composed of the similar column vectors g, (degraded
images of the original ohject f,), it is ill-conditioned.
The SVD of X clearly shows that the high-order singu-
lar values 8, as a function of SBP drop abruptly to
almost zero. Thus the recursive algorithm of Eq. (16)
for small SBP shows numerical instability by produc-
ing a solution of M with a very large quadratic matrix
norm |M|. Furthermore, because of the large number
of nearlv zero vectors in the orthogonalized set {g:l,
calculated by either a GSO or MGSO [see Eq. (17)], the
number of algorithmic recursion steps is small. This
fact suggests that a new set of projection directions
{p1,P-.. . ..p~). which may not correspond to the or-
thogonal directions {g,.....€\} but could provide a
large number of iteration steps, should be followed. It
is well known™* that the condition number ¢(M), de-
fined as

alMi= 7 . 21

where 6,(M) and 8\(M) are the largest and smallest
singular values of M, respectively, reflects the sensitiv-
itv of a linear system to perturbation (noise). Thus, to
reduce the numerical instability associated with the
large number of similar key matrix X columns and to
decrease the sensitivity of the solution to noise, a new
constrained LAM algorithm is introduced. With this
algorithm, in several iteration steps, a new set of pro-
jection directions {p,is chosen so as to minimize the M
matrix condition number c(M).

The new set of pseudo-orthogonal vectors {p4f is
obtained as follows: a threshold parameter P is intro-
duced, while the values of the vector elements of every
term in the sum of Eq. (17) are implicitly constrained.
Using the P parameter, the norm |g.| in Eq. (17) is
tested before it is added to the previous set of terms.
The following decision rule is used: the g,/ is com-
pared to P; if | g, is <P, the related term in the sum of
Eq. (17) is discarded. Otherwise a division by g/l is
performed, and it is accepted. Thus, for a given value
of P, a new set of pseudo-orthogonal {p.} is formed. To
determine the set {p.} that minimizes the condition
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number ¢(M), one starts with a small initial threshold
parameter P,. For increasing values of P, new LLAM
matrices are generated, and their quadratic matrix
norms are calculated. It has been found, however,
that this procedure does not considerably affect the
smallest singular value 6(M) so that, instead of mini-
mizing the condition number ¢(M), the quadratic ma-
trix norm of M, i.e., ;(M), is minimized. Thus the
LAM matrix M that yields the smallest quadratic ma-
trix norm is used for signal reconstruction (associative
recall).

While M is usually trained with known and desired
signals, however, it can also be trained to reject known,
sometimes only statistically, undesirable signals. For
example, if we wish to reject pure noise signals. the
training procedure is modified so as to include also a
set of known noise {g,} and desired zero vectors.
{These are vectors with zero as their elements.) The
new training set becomes }(f;..f,.g:.g.), k=1,.. . M;n
=M+1....,N,where the pairs (f;,g,) are ILPF inputs
and outputs, and (f..g,) are zero and noise vectors,
respectively. In this way, the M matrix can be trained
to reject noise by producing a null output response. If
we wish to reject either impulse noise, sinusoidal inter-
ferences, or some other signal sets superimposed on the
set of desired and known signals, we use a similar
procedure.

It should be stressed that the LAM method present-
ed here does not pretend to be a general image restora-
tion method applicable to an arbitrary signal or image.
The fact that the training set consists of a limited
number of a priori known patterns suggests that it is
applicable to a limited number of reconstructable sig-
nalsorimages. Inthe 2-D applications, for example, it
is necessary to define a finite set of reference image
pairs (f.g) that spans the space of all desirable images.
To ensure that an arbitrary measured input signal, a
signal that does not belong to the training set, is reject-
ed bv the LAM filter, the following procedure can be
used. Anauxiliary LAM matrix M, an inverse of M, is
formed with the input and output training sets ex-
changed (i.e., the Y matrix is formed from the vectors
ig.|. while the X matrix is formed from the vectors {fi!).
Next, the two svstems M and M, are cascaded so that
the output of the second system js a degraded version
of the original object signal. To decide whether the
given input belongs to the training set, the Euclidean
distance D between the noisy measured input g, and
the output g, signals

122y

N
NN g, —g 0t
-

where N is the number of samples, is calculated. This
distance is then compared to a noise standard devi-
ation J; if D < A the input measured sampled vector is
accepted as part of the training set; otherwise the input
measured sampled vector is rejected. Multiplying the
measured signal g, with M, a restored version of an
accepted input measured sampled vector can be gener-
ated.
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l. Experimental Results

In this section, computer simulation results for the
problem of resolving two impulses as well as to recon-
struct superresolving signal waveforms from a mea-
sured noisy output of ILPF are presented. The mea-
sured, with different values for their SBP, sampled
vectors have various levels of uniform additive noise.

First, the results for the superresolution of two-
point objects simulated by two ideal impulses are pre-
sented. To obtain the training set, a set of two-point
object sampled vectors {fi, & = 1,2,...,100, so that
every sequence contains two ideal impulses, is formed.
The impulses are arranged so that the kth sampled
vector is f, = (1,0,...,0,1,0,...,00)7. Note as a refer-
ence that the first impulse is always at the first slot,
while the second impulse shifts. The impulse strength
is arbitrarily set to be unity. The data matrix Y, with
its column sampled vectors fi, is

Y=(ff. . 0. 123)

To obtain the set of the training vectors {g.}, every two-
point object sampled vector f is passed through an
ILPF. From the ILPF responses, a set of 100 training
vectors {g.}is formed. For convenience, the number of
vectorsinthe training set {g;}is taken to be equal to the
number of elements of the training vectors. Using this
set, the columns g, form the key matrix X:

N=[g&. &l 124)

The order of the columns of the matrix X corresponds
to the order of the columns of the matrix Y. The input
and output vectors are related by Eq. (10). As de-
scribed in Sec. II {see Eq. (16)], next the constrained
LAM matrix M; is formed. The initial matrix M, is
the noise-free covariance matrix [see Eq. (20)].

As an example, in Fig. 1(a), the first twenty singular
values of the matrix M, after the first iteration step
with P = 0.2, are presented. The rest of the singular
values are nearly zero. It is clear that the condition
number ¢(M) is a large number. Figure 1(b) presents
the first twenty singular values of the constrained ma-
trix M. We note that the constraining procedure does
not considerably affect the smallest singular value
4v(M) (which is of the order of 0.003 for this particular
case). Comparing Fig. 1(a) with Fig. 1(b), since ¢(M)
has decreased, the dynamic range of the constrained
LLAM matrix M elements must also decrease. Figure 2
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Fig. 2. Quadratic matrix norm of a superresolving matrix M as a

function of the threshold parameter P.
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Fig. 3. Resolution of a degraded noisy two-point object witha SNR

of 19 dB and SBP of 1 obtained with constrained M with singular

values as in Fig. 1(tbi. This constrained matrix M is used in the next
examples for two-puoint object superresolution.

.0

presents the plot of M as a function of the threshold
parameter P. It is clear that, for this particular key
matrix structure, the quadratic matrix norm |M/| [and
consequently the condition number ¢(M)] shows a
minimum for P of ~2. The search for the optimum
threshold parameter P has been initiated at P, = 0.2
with the increments AP = 0.2. To ensure that a mini-
mum has been found, because the quadratic norm of M
is mostly a monotonically decreasing function of P (see
Fig. 2), it was sufficient to proceed with only two itera-
tion steps past the minimum. Figure 3 presents the
result of a signal restoration using the constrained
LAM matrix M whose singular \ alues are shown in Fig.
1(b).

In Figs. 4(a) and (b), the results of superresolving
two impulses from noisy measured sampled vectors,
with SBP of 0.15 and two different levels of additive
noise, SNRs of 19 and 13 dB, respectively, are present-
ed. While there is some discrepancy in the strength of
the impulses, they clearly illustrate the noise resistant
behavior of the LAM inverse filter. In Fig. 4(c), the
result of superresolving restoration of two impulses
with a SBP of 0.3 and SNR of 7 dB is presented. This
result demonstrates the exceptional robustness of the
LAM inverse filter.

Two-dimensional images can be reduced to a long 1-
D signal by concatenating the rows of a 2-D image.™!
As an example, a 16*16 two-point object image is
formed. The two ideal impulses are distributed so
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that the first impulse is kept fixed, while the second
assumes all possible 256 positions. These 256 differ-
ent images represent the training set of the two-point
2-D object function fi}. To obtain a set of degraded
images {g:}, the i terms are passed through a 2-D
ILPF. In Fig. 5, some samples of the training degrad-
ed images {g:! are presented. To form the 2-D con-
strained LAM matrix, the previous 1-D analysis is
followed. In Fig. 6, the result of superresolving resto-
ration of a noisy degraded image with a SNR of —6 dB
and SBP of 0.5 is presented. As can be observed, the
result of superresolving the resolution of a 2-D image.
evenin the presence of high-level additive noise, is very
good.

To restore more realistic superresolving images,
first, a large image is decimated, say as 50 X 50 pixels.
In this case a LAM training set vector consists of 2500
elements. The resulting LAM matrix would have at
most 6.25M entries. The training set [reference pairs
(f,g)] in this case may contain any number of vector
pairs between 1 and 2500. In fact, in Ref. 23, a larger
image set has been used.

In addition to restoring impuises, the constrained
LLAM matrix technique can be used to reconstruct
superresolving signal waveforms. In the next exam-
ples, a set of three different types of sampled wave-
form, a triangle with different slope edges, a trapezoid,
and a Gaussian pulse of different width (see Fig. 7), is
used. The input training set {(f,),(f.),(f,),(f,)} now
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Fig. 5. Sample of the noise-free degraded training patterns used in
constructing the 2-D constrained M matrix.

Fig. 8. Result of the restoration of a 2-D two-point object with an
SNR of -6 dB and SBP of 0.5.

consists of triangles Y, = {f,}, trapezoids Y. = {f.},
Gaussian pulses Y; = {f.}, with different slope edges
and different width, and a set of zero vectors Y, = {f,.},
with thirty-two sampled vectors in each subset. Cor-
responding to the set of zero vectors {f,}, the |g.,| is a set
of pure noisc vectors. Noise sampled vectors }g.} and
their counterparts, the zero vectors {f,}, are introduced
into the training set to provide the noise rejection
property for the LAM matrix by forcing production of
a null as its output response to noise. Each data
sampled vector consists of 128 elements. This set is
used to form the data matrix Y:

Y= Y.V VLY (25)
The set of output training vectors {(g,).(g.).(g.).(~)}

(X, = g}, X2 = (g4 Xa = ig,], X4 = {g.]) is obtained
from the response of ILPF to the input training set
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HENAE)(E) (see Fig. 7). The output training vectors
form the key matrix X,

X = [N.N.NL.X ) (26)

The input and output training sampled vectors are
related by the matrix Eq. (10). which in this case is a
128*128 square matrix.

The restoration of the original sampled waveform is
nerformed multiplying a noisy degraded sampled
waveform, as in Figs. 8(a), (¢), and (e), by Mj.x. The
results of restoration are presented in Figs 8(b), (d),
and (f). In the presented examples, the restoration
has been performed in the presence of the same level of
additive noise and different SBP for every particular
type of waveform. In Fig. 8(b) the result of superre-
solving restoration of a degraded noisy triangle with
SBP of 0.03 and SNR of ~3 dB is presented. Figure
8(b) shows that for heavy degradation (SBP of 0.03)
and SNR of —3 dB the result of restoration is very
good. In Fig. 8(d) the result of restoration of a noisy
degraded trapezoid for SBP of 0.15 and a SNR of 9dB
is presented. It can be observed that the edges and
corners of the trapezoid are well reconstructed. Final-
ly, in Fig. 8(f) the results of superresolving restoration
of a Gaussian pulse for a SBP of 0.08 and SNR of 2dB
are presented.

IV. Summary and Conclusion

A new approach to superresolving signal and image
restoration has been proposed. At the expense of
limiting the set of reconstructable signals, an excep-
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time

tionally robust inverse filter has been obtained. The
filter is based on the principle of the content address-
able memory (CAM). A practical realization of the
CAM was performed by employing a linear associative
memory technique. To determine the LAM matrix
operator, a constrained training algorithm has been
introduced. The inverse filter was tested on different
sets of 1-D and 2-D degraded signals with differ :nt
levels of degradation and in the presence of very signif-
icant noise. The 1- and 2-D noisy degraded two-point
sources have been resolved for SBP far below unity. It
has been shown that the proposed inverse filter re-
stores equally well both impulsive and edge-type im-
ages. The presented method limits the set of applica-
ble signals toa known trainingset. However, the set of
desirable signals can be extended by introducing sever-
al LAM paralle] inverse filters trained to a particular
set of signals. A mechanism to reject statistically un-
desirable signals, as well as the signals that are not in
the training set, has been introduced. Once calculat-
ed, for a given set of training signals, the entries of the
LAM matrix M could be stored in either a set of high-
density read-only memory chips or an optical holo-
graphic memory for further use. With a fast optical
and/or electronics vector processor (it is necessary to
perform only one matrix-vector multiplication), the
LAM inverse filter is easily hardware realizable. This
suggests its use in a real-time environment.
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Texture is one of the important image charactenstics and is used to identify objects or
regions of interest. The problem of texture classificaton has been widely studied. Texture
classification techniques are either statistieal or structural. Some statistical texture classifica-
tion approaches use Founer power-spectrum features, while others are based on first- and
second-order statistics of gray level differences. Periodic textures that consist of mostly straight
hines are of parucular interest. In this paper, a new structural approach based on the Hough
inethod of line detection 1s introduced. This ciassification is based on the relatve onentanon
and location of the lines withun the texture. With proper normalization. the classification is
independent of geometncal transformations such as rotation. translation, and/or scaling
Experimental results will also be presented. ¢ 19kk Acadermic Press. Inc

I INTRODUCTION

Texture is one of the most basic properties of a visible surface. The visible image
texture may be due to changes on the surface of an object, may be segments of lines
as on a brick wall, or simplv could be due to a collection of objects as in an aerial
photo. Texture features are useful for both image analysis and classification, as well
as in scene segmentation and identification. such as in an image understanding
svstem applied to robot vision. industrial inspection, and photo analysis [1, 2].

In this paper, a new structural line detection approach is presented. The rationale
for this approach is that regular textures consist of an arrangement primarily of line
structures appearing periodically in the texture. Furthermore, 1t has been postulated
that a human eye classifies structures based on line detection: i.e.. the human eye is
primarily a line detector [3. 4]. In our approach. line detection is accomplished using
the Hough technique [24]. The Hough transform (HT) maps line segments into a
point in the transform domain. In the HT domain, the line length can also be
obtained. The method consists of calculating the texture HT and extracting features
used for classification. Texture features that can be obtained from the Hough
domain are principal directions of lines in the texture. periodicity and line sep-
aration in each direction. ete. With proper normalization, classification is not
alfected by geometrical transformations such as rotation, translation. or scaling.

The paper is organized as follows: In Section I the background on the previous
work will be presented and then, in Section I, the Hough transform (HT) will be
introduced. Some useful HT properties will be discussed, and. in addition. an
efficient HT computation algorithm will be given. In Section IV, the topologically
invariant texture classification problems will be discussed and the classification
algorithm will be presented. In Section V, experimental results and examples will
follow. with some concluding remarks.
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1. BACKGROUND

Texture may be considered either as a pattern of different spatial intensity
arrangements, or as a basic periodicallv or quasi-periodically repeated local pattern.
This definition is applicable to line patterns, such as ruled-line arrays and tiling
patterns. Texture also relates to the spatial size of the tonal primitives of an image.
A larger size tonal primitive shows a coarse texture. while a smaller size tonal
primitive indicates a fine texture. The texture autocorrelation function. basically its
spatial frequency content, determines the size of tonal primitives. An alternative
approach is to view texture not in terms of spatial frequency content but in its
edgeness per unit area [5]. Coarse textures have a small number while fine textures
have a targe number of edgeness per unit area. Rosenfeld and Thurston [6] used the
average value of the texture gradient as a local image property. Sutton and Hall {7)
extended this idea by considering the gradient to be a function of the distance
between the pixels. This last gradient method is directly related to the texture
autocorrelation function.

The problem of texture classification has been studied for many years and a
number of approaches have been developed. Analysis and classification are based
on texture features which are derived using either statistical or structural methods,
or both in a combined manner. Statistical approaches view texture regions as a
sample of a two-dimensional stochastic process. This process is describable by its
statistical parameters. This model-based formulation is well suited for natural
textures consisting of segments of muitigray level images such as grass. sand. and
wool. Structural approaches are based on the view that textures are made up of
primitives which appear in nearly regular repetitive spatial arrangements. To struc-
turally specify a texture, the primitives and the placement rules [8] must be
described.

Some of the statistical approaches include autocorrelation functions (5]. textural
edgeness [6]. spatial gray level co-occurrence probabilities [9]. and gray level run
lengths [10]. The Fourier power spectrum of a texture gives essentially its statistical
information [11). although it has been used to determine some structural descrip-
tions, such as its periodicity and its directionality (12].

Structural approaches are based on the view that within the texture there is a
regular repetition cell. To describe texture, one needs to prescribe the resolution cell
and the various placement rules with which the texture is formed. This approach is
especially suited for regular, periodic textures. Zucker [9. 13] suggested that natural
textures be viewed as a distortion of an ideal regular structure. Carlucct [14)
described a texture model using line segments and /or polvgons as primitives in
which the placement rules are given syntactically in a graph-like language. Lu and
Fu |15} presented a tree grammar syntactic approach for texture. The basic
difference. in various structural approaches. is the choice of primitives. These can be
cither pixels [15]. gray level peaks {16]. line segments [14]. or tiles [17]. Statistical
methods. with their primitives such as edgenes. per unit area or run lengths. can be
combined with structural approach. In other structural approaches. the primitives
used are the average edge separation in different orientations (18] and the repetition
of edges in different orientations, by the calculation of edge repetition arrays [19].

A survey of texture anatysis methods can be found in [&, 20, 21). Several examples
of natural textures can be found in Brodatz’s photographic album of naturai
textures [22].
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111 THE HOUGH TRANSFORM

The Hough transform [23) (HT) is a method for detecting curves that can be
described by a number of parameters. such as lines [24]. circles [25]. and parabolas
[26. 27]. The HT is used to compute the Jocus, in parameter space. of the set of
curves passing through a point in the image plane. In the special case where line
detection 1s desired. since two parameters are sufficient to specify a straight line. the
parameter space is two-dimensional. Hough [23] chose to use the slope and
the intercept as the two parameters. Because these parameters are unbounded. the
application of the technique is complicated. Through the so-called normal parame-
trizatton. a bounded parameter set is obtained. As illustrated in Fig. 1. a straight
line ¢ 1) is specified by the angle formed by the x-axis and the normal to L. and its
distance p measured from the origin to the point where the normal and L intercept.
The equation of the line L 1s

p=xcosd + vsind. (1)

Restricting @ to the interval {0. 7} leads 10 unique normal parameters [ p. 8). i.e.,
every line in the {x. v} plane corresponds to a unique point in the | p. 8] plane.
From Eq. (1), we note that a point in the [x, y] plane corresponds to a sinusoidal
curve in the [ p. 8] plane. Suppose now that we have a set of points [x,, )] lying on
a straight line. For every one of these points there corresponds a sinusoidal curve in
the { p. 8] plane. specified by

p=xcosf + 1 sind.

We can show that all these curves corresponding to points of a straight line have a
commeon point of intersection. sav (p,.6,) in the transform plane. This point
defines the line that passes through all these points. In summary. we have the
following HT properties:

PROPERTY 1. A point in the image plane corresponds to a sinusoidal curve in the
[ p. 8] transform plane.

PROPERTY 2. A point in the [ p. §] transform plane corresponds to a straight line
in the image plane.

PrOPERTY 3. Points on the same curve in the [ p. 8] transform plane correspond
to lines through the same point in the image plane.

Fio 1 The normal parameters of a straight hne
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PROPERTY 4. Points on the same line in the image plane correspond to curves
through the same point in the [ p. 8] transform plane.

We next apply these results to line detection. First, both p and 8 are quantized 10
N, and N, levels. respectively. with levels that depend on the desired resolution. The
required computation increases linearly with N, or with an increasing number of
image points. but it does not depend on N,. A larger N, increases the storage
requirements, but not the amount of computation. For Ny levels in § and N, levels
in p. there will be N, X N, quadruled grid points in the [ p. 8] plane. In the case of
binary images, we assume that a zero corresponds to dark background while unity
corresponds to bright points in the image. The quantized [ p, 8] region is treated as a
two-dimensional (2D) array of accumulators, initially set to zero. The transform
procedure is to scan all nonzero pixels in the image. At every nonzero pixel. at
position (x,. ,), for every quantization value of 8, we compute p and for everv pair
[ p. 8] we increment the corresponding accumulator. Thus. a given cell in the 2D
accumulator array eventually records the total number of curves passing through it.
When all image pixels are scanned, the value in each [ p,, 8,] cell yields the number
of pixels (within quantization error) which lie on the line [ p,, 8,]. Therefore, large
peaks in the accumulator correspond to long lines in the image. If there are n
nonzero pixels in the image, then for each pixel N, calculations are required and
overall n X N, calculations are needed to complete the transformation. Clearly
when n 1s large. compared to an exhaustive search that requires considering the
lines between all {(n(n — 1)) pairs of image pixels, this procedure is more efficient.

There are limitations to this approach. First. the final results are sensitive to both
Ng and N,. While a finer quantization increases resolution, it also exposes the
problem of clustering entries corresponding to nearly colinear points. Furthermore,
as was mentioned earlier, a finer quantization in N, will also increase the compula-
tion time. Second, this technique finds colinear points without regard to their
contiguity. Thus, a peak value in the HT domain may represent either a continuous
or a number of smaller discontinuous segments on the same line. Furthermore, an
image line segment can be distorted by unrelated image pixels. Finally. in an image
containing many lines of different onentations, there will be “crosstalk™ among
these lines in the HT plane. Consider. for example. the case of an image where there
are twenty lines parallel to the v axis. Then. depending on the line-to-line sep-
aration in the [ p. 8] domain, there will be twenty peak values in the 8 = 0° axis for
different p values. However, in searching for lines parallel to the x axis. we will
always find twenty colinear points. Thus, in the [ p. #] domain, we will find smaller
puaks in the direction of 8 = 90°, and for all values of p. This problem is even mare
exaggerated in the case of a natural scene where the lines are not just one but manv
pixels wide.

In the previous discussion, we have considered binary. ie.. only two, gray level
images. A natural scene is usually digitized to more than two gray levels and
modification is necessary in order to adopt the Hough technique. There are two
possible ways to accomplish it. The first method is to threshold the image so that
only two gray levels will exist. However, information is lost during thresholding. In
the case of a regular texture, after thresholding, while some detail is lost, the basic
texture structure is still present. The second method is to relate the HT to the Radon
transform (RT) [28, 29]. The RT is a well-known integral transform from the theorv
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of computed tomography. The forward RT is defined as
x .
F(p,0)=ff f(x.v)8(p — xcos8 — ysin8)dydx, (2)

where f(x. v} s the input. F(p.8) is the transform and 8(-) is the unit Dirac
impulse function. F( p, 8) 1s equivalent 10 the integration of f(x, y) along a straight
line whose normal parameters are [ p. #]. Recently, it has been pointed out that, for
binary images, the forward RT is equivalent to the HT [30]. We extend this concept
by applving the RT to the nonbinary image and by approximating the integral of
the image along a line. The simplest approximation is to add along a given line all
the pixel intensities. Thus, when we calculate the transform by updating the 2D
register and when we get to the point to update a cell, we do not just increment by
one, but we add to it the intensity of the pixel under consideration. In this sense.
brighter lines correspond to brighter peaks in the RT domain.

More advanced HT implementations are found in [31]. Optical implementation of
the HT, both coherent and incoherent versions, is also possible {32, 33). Recently, an
optical HT that works at real-time video rates has been reported {34].

IV. TEXTURE CLASSIFICATION

Structural approaches to texture classification are based on regularity. A resolu-
tion cell is periodically repeated within the texture in accordance with some
placement rules. This approach is very well suited for regular, periodic structures. A
different point of view of periodic structures is to consider them as a regular
arrangement of lines, or line segments, of different orientations. Consider. for
example. an image of a brick wall. Such a structure can be viewed as a repetition of
horizontal lines. with line segments regularly arranged in the vertical direction.
However, if a rotated view of the same image is considered again, then honzontal
and vertical lines might no longer exist. In this case, we can still view this structure
as a regular repetition of solid lines of some orientation, with line segments
perpendicular to the solid lines. This last view is independent of rotation, a very
desirable property of a classifier.

In some structural approaches, the primitives used for classification are the
average separation of edges at some certain orientations and the arrangement of
edges. again in certain orientations [18. 19]. However, the number of orientations to
be considered is limited by the required computation, and the classification is
rotation sensitive. A model based, rotation invariant texture classification method 1s
described in [35].

The classification method proposed in this paper does not consider line (or edge)
orientation, but instead the angle at which they intersect. This angular feature does
not depend on image rotation. A second classification primitive is the normalized
separation of lines for the same orientation. This feature is independent of scale,
since the normalized separation does not change with scale. Furthermore, this
feature is also independent of linear image translation. A third classification
primitive is the number of principal line orientations within a texture. In a regular
texture, the lines or edges will not appear along random directions, but will be
crranged regularly at some orientations. For example, in a brick well image, the
iines appear along two principal directions spaced 90° apart.
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These primitives are especially suited to describe regular textures that consist
mainly of straight line elements. Lines, or more generally curves, are an important
characteristic of textures. The HT is a very efficient technique to find desirable
texture . rimitives. since all the information can be extracted from the [p. )]
domuain. since the classification algorithm needs te be invariant under geometrical
transformation, such as rotation, translation. or scaling. therefore how the HT of an
image is affected by these transformations needs to be examined. In this regard the
following HT properties are of interest.

Assuming that an infinite periodic line structure exists, then the following HT
properties hold:

Proper1Y 1. I two lines intersect at angle ¢. where 0° < ¢ < 90°. then the
corresponding points in the [ p. #) domain will be also located ¢° apart.

ProperTY 2. Linear translation of the image has the effect of shifting the HT in
the p direction. The shift of the transform is not uniform, i.e., some peaks at some
angles may shift less, or even not shift at all. This is evident from the fact that the
normal parameters of lines parallel to the direction of the transiation will not
change. whereas the parameters of the lines perpendicular to the direction of the
translation will be most affected.

PrROPERTY 3. Linear translation does not affect the spacing between peaks at a
given angle. This is so because, after the translation. while the location of lines with
respect to the origin may change, the relative line-to-line spacing does not change.

PROPERTY 4. Image rotation. by some angle ¢, is equivalent to a circular shift of
the HT by the same angle ¢. This property is due to the fact that lines that are
located at angle 4,. after rotation will be located at angle 6, + ¢. The shift is
circular because all points crossing the 180° axis will again appear at the 0° axis.
i.e.. the HT is “wrapped™ around a cylinder, so that the # = 0° axis is identical 1o
6 = 180° axis.

PROPERTY 5. Scaling the texture in all directions (zooming) is equivalent to
scaling the HT in the p-direction. This 1s so because. after the scaling. for all lines
the p-parameters will scale. but not the §-parameters.

These HT properties show the effects of geometnical transformations on the HT
and also indicate that with proper normalization it is possible to compensate for all
geometncal image transformations.

Zucker [13] suggested that natural textures can be considered as distortions of
ideal structures. What would appear to be ideal are structures formed of thin
straight lines, periodically arranged in different directions. It was pointed out earlier
that there is some “crosstalk”™ between lines at different directions. This is more
pronounced in textures where there are wide lines present. In this case. the HT
peaks vorresponding to these lines will not be single points but rather regional
peaxs. Also, all these curves will have the effect of raising the values of other
accumulators in the 2D register. and therefore the HT will have the appearance of
wide peaks in a noisy background. However, in the ideal case. where the image lines
are one pixel wide, then the curves corresponding to line pixels will pass through
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one pont i the HT domam. In this case. the HT wall huve the appearance of large
sharp peaks in some low-level noisy background. It is apparent that line detection
now is far more accurate. From this discussion, it follows that classification
accuracy can be increased by preprocessing the natural texture so that it will be as
close as possible 1o an ideal one. or in other words. by extracting the “skeleton™ of
the texture. This can be accomplished by thinning the lines or by first applving an
edge detector and then applving a gap filling operator to form solid hines. Diflerent
techniques are available for this purpose [21. 36].

In the following discussion. it will be assumed that the texture is a regular.
periodic structure formed by thin straight lines. This image can be the result of
preprocessing. or simply it s an ideal test pattern. The next classification step is to
calculate the HT to a desired resolution. Texture HT primitves will then be
extracted. The HT texture primitves are: (4) the number of line orientations, (b) the
relative orientation angles, and (¢) the line spacing for each orientation. Several
normalization procedures will be emploved so that: (a) classification will not depend
on geometrical transformations and (b) the dimensionahty of the feature space i<
reduced. Furthermore, to reduce the space to 3D, some staustical parameters will
also be used.

The classification algorithm ts composed of the following steps: First calculate the
texture HT with the desired resolution. As mentioned earlier. finer quantization of
the p-axis does not increase the computation. but only the storage requirements.
Therefore the important decision is to select the quantization levels of the §-axis.
1.¢.. the directions at which we will search for hines. Next. locate and isolate peak
values i the HT. Ditferent approaches can be used at this step. One approach s to
simply threshold the HT with a proper threshold parameter so that only the peak
values remain. However. simple thresholding exposes the problem that peaks below
the threshold will not be “seen.”™ whereas in some regions of the transform the
background noise may be larger than the peaks in a different region. Therefore the
proper threshold value s very critical, and must be very carefully selected. A better
approach is to use 4 median filter (MF) [37]. The MF will eliminate local peaks in
the HT. Hence. subtracting the output of an MF from the original transform will
reveal the local peaks. The window of the MF should be kept suffictently small so
that the peaks could be eliminated without much affecting the background. Some
post thresholding will eliminate any residual noise. Since the HT peaks are usually
regional, 1t is very possible that neighboring angles will also have peak value. For
example. 1f 4 texture has lines oriented at 8 = 30° tt1s possible that peak values will
he also found at. sav. 8 = 287 and 8 = 32°. Since these angles actually correspond
to the same lines. these peak vialues should be merged with the central peaks. Then,
for every value where peaks are present. record that value and the distance between
consecutive peaks, The result of this step is a table listing those angles where peaks
were found and the distance from peak to peak. This is the information about line
orientation and separation of hnes at each direction. However. this information
depends on geometnical transformations and it must be normalized. Therefore,
normalize all the recorded distances in the table to the maximum or the minimum
one. Usvally the maximum is the better choice, since 1t 1y less sensitive to distance
errors, This normalization will take into account texture scaling. Next. at every
angle caleulate the average of the normalized distances. The average normalized
separation at every orientation was found 1o be a good measure of the arrangement
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of the lines at that orientation. After this step all the information is in a table of two
rows and as many columns as there are orientations in the texture. The first row is
the value of angles where peaks were found. and the second row is the average
normalized separation at those angles. Now, circularly shift the columns of this
table so that the maximum value of the second row occurs at the first column. This
way we select the orientation with the largest average separation as the reference
orientation. Then, subtract the first entry of the first row from all the entries at the
first row. Subtraction is modulo-180°. This will set the reference orientation at
8 = 0° and take rotation into account. Next, divide all entries of the first row by
180°. This will normalize the angles to 180°. Also, divide all entries in the second
row by the first entry of the same row. This will set the maximum average
separation to unity. After the previous steps, all texture information is condensed
into a normalized table of two rows and as many columns as there are texture
orientations. Note that the first column of the normalized tabie contains no
information since it has the values of zero and one. We can consider the two rows of
the table as two feature vectors, one revealing information about line directionality
and one about line separation. For multidirectiona! tevtures, the dimension of these
feature vectors will be large. We can reduce the dunension of the feature space by
replacing the two vectors by their corresponding variance. This step reduces the
accuracy of classification. Hence, calculate the variance of each row of the table at
the previous step and form a feature vector x = [x,, x,, x,], where

X, = number of orientations in the texture.

variance of the normalized separations.

i

variance of the normahzed orientations.

~
1}

This last feature vector will be used for classification.

The classification process consists of finding the feature vector of the texture to be
classified using the previous algorithm. Then a similarity measure, or any clustering
algorithm, can be used to classify the unknown vector to one of the known classes
established during the learning process. Note the importance of tae x, element of
the feature vector. Textures with different numbers of orientations cannot be
classified incorrectly in the same class,

V. EXPERIMENTAL RESULTS

In this section we present and discuss computer simulation results. The first step
in these experiments was the computation of the Hough transform of an input
texture, The HT p-axis is quantized uniformly to 361 levels while the f-axis is
quantized uniformly to 90 levels. Since the 2D register has 32.490 accumulators. it
would be impractical to print the value of each accumulator. and instead. visual
display on the screen of a monitor was chosen. For this purpose, the entire HT is
inserted in an NTSC frame with the proper display format. The values of every row
of the 2D register become pixel values of one horizontal scan line. Interlaced
scanning is employed. Since the HT will not fill up the entire frame. the boundaries
of the transform and the p-axis are drawn. Furthermore. divisions on the f-axis are
displayed as bright ticks. The texture to be transformed is entered into the computer
through a video camera and digitized in the form of a 512 x 512 array quantized to
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F16. 2. (a) X-Y Plane with refcrence axes: (b) HT Plane with reference axes.
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F1G. 3. (a) Texture of French canvas; (b) HT of a block of Fig. 3a: (¢) HT of a block of Fig. 3a with

preprocessing for line thinning: (d) HT of a rotated and scaled block of Fig. 3a with preprocessing for
line thinning,.
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& bits per pixel. The NTSC svne information is also included in the arrav. The
computer used for these experiments was a DEC VAX 11/750 system.

Figure 2 shows the reference axes used in generating the HT. Figure 2a represents
the texture in the x-v plane. The texture is assumed to be a rectangle of dimensions
2Xm x 2¥Ym, with the origin located at its center. By locating the origin at the
center of the texture. a better utilization of the p-8 plane is possible. Figure 2b
represents the p-8 (HT) plane as it will appear in the following illustrations.

Figure 3a shows the texture image of French canvas (Brodatz's plate No. 20).
Notice the line structure of this texture. Figure 3b is the HT of a scaled block of this
texture. It is evident that a smaller block of the texture contains the same structural
information as a larger one.

In Fig. 3b the leftmost part of the transform corresponds to 8 = 0° and the
rightmost to # = 178°. The p = 0 axis is indicated by the horizontal solid line
around the center of the transform. The bright spots around 8 = 0° and 8§ = 90°
correspond to peak values in the transform. Note that the spacing of the peaks
follows the arrangement of the loines in the texture. Note also the background
noise, especially at the center of the transform, because of “*crosstalk™ between lines.

As was mentioned earlier, preprocessing the texture by thinning the lines (skele-
toning), will increase the classification accuracy. Figure 3c is the HT of the same
texture block used for Fig. 3b, but having undergone a process of line thinning.
Comparing Fig. 3b with 3c. we see that the peak values corresponding to texture
lines are located at the same position, but in Fig. 3c they are much sharper. and the
background noise (crosstalk) is significantly lower. It is obvious that even though
both Figs. 3b and ¢ reveal the same information about the structure of the texture,
this information can be more easily and accurately extracted from Fig. 3c. Finally.
Fig. 3d is another block of the same texture under a different scale, which has been
preprocessed for line thinning. and rotated by 45°. Here we note that the sharp
peaks are now located around 6 = 45° and 8 = 135°, where the spacing of the
peaks again follow the spacing of the lines in the texture.
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FIG. 4. (a) Texture of Herringbone weave: (b) HT of a preprocessed block of Fig. 4a.
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Figure 4a 1s another texture of Herringbone weave (Brodatz's plate No. 17). where
Fig. 4b is the HT of a preprocessed block of this texture. Notice again that the
locations of the peaks correspond to the locations of the lines in the texture. We also
note that since the lines around # = 45° and § = 135° are actually noncontiguous
line segments which are equivalent to a shorter line, that those peaks appear to be
smaller compared to the peaks at 8 = 0° which correspond 10 a long line.

It is interesting to examine what would be the effect of noise on the HT. Figure Sa
1s an idealized test pattern and Fig. 5b is the HT of Fig. Sa. Figure Sc shows the
texture of Fig. Sa with computer generated psuedo-random uniform *salt and
pepper” noise added. We can predict that the additional noise pixels will add more
sinusoidal curves in the transform domain, and the result will be that more
background noise will be present in the transform. Figure 5d shows the HT of the
noisy texture of Fig. Sa. Comparing Fig. 5d with Fig. 5b. i.e., the HT of the texture

FiG. 5. (a) Test texture pattern: (b) HT of Fig. Sa: (¢) Fig. Sa with umiform *salt and pepper™ noise
added: (d) HT of Fig. Sc.
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F16 6. (a) Fig. 5a under scaling and translation: (b) HT of Fig. 6a.

without noise. we notice that indeed the noisy transform has larger background
noise. However, the peak values can still be extracted from the noisy background.
The conclusion is that the HT technique is immune to noise, since even for notsy
textures we can still isolate the HT peak values.

As an additional illustration. Fig. 6a shows the pattern of Fig. 5a under severe
scaling (and translation). From Fig. 6a it is evident that there is still enough
information present for correct classification. Figure 6b is the HT of Fig. 6a. We
observe that basically only two lines were detected in each orientation. The feature

vectors of the textures of Figs. 5a and 6a were calculated using the proposed
classification algorithm and were found to be:

for Fig. Sa.  x = [2.0.014.0.290]
for Fig. 6a.  x = [2.0.019.0.283].

We observe that the two vicws of the same texture vield very similar feature vectors.

0.3
0.24

0.14 .

03 0.4 X3

FIG. 7. Scattering diagram of three 2-dircctional test patterns.
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For classification. the feature vector of each texture is computed following the
steps of the classification algorithm. The peak values in the transform were isolated
using both simple thresholding and median filtering. Both approaches performed
well, but the median filter was slightly superior. The important result to examine is
whether different views of the same texture yield the same feature vector. and if
different textures yield different feature vectors. Since the first ¢lement of the feature
vector is the number of orientations in the texture. then textures with different
numbers of orientations will certainly vield dissimilar feature vectors.

Experiments performed showed that different views of the same texture alwavs
yield almost the same feature vector. The critical part was what would happen with

TABLE 1

Classification Algorithm Applied on Two Views
of the Same Texture Patiern

¢ 52° 90° 128° g 72° 110° 148°
d 11w d 49 o0 33
7 0 69 51 66 54
0o 0 7 51 0 S3
0 0 53
0 [V

Normalize distances

52¢ 90° 12R° 72° 110° 148°
079 1 079 074 1 0¥
078 0 077 077 1 082
0 0 0% 077 0 080
0 0 080
0 0 086

Average distances
§2° 90° 128° 72° 110° 148°
079 1 078 0% 1 082
Shift circularly
90° 128°  52° 110° 148° 72°
1 079 078 1 08 076
Normalize angles
0° 38° 142° 0° aR® j42¢

1 079 078 1 082 076

Normalhize angles to 180°

0 021 079 O 021 079
I 079 0.7% 1 082 076
Calculate variances Form feature vector
x = {3.012.041} x = {3.012,041}
_44—-
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different textures with the same number of orientations. Experiments showed that
there was sufficient dissimilarity in the feature vectors for correct classification.
Figure 7 is a scattering diagram of three textures, all with two orientations. Two of
them have lines intersecting at 90° and the third one has lines intersecting at 79°.
We notice that the first two cluster around the same vulue of x, (angle variance). at
ditferent values of 1, (distance vanance). From the scatiering diagram we can see
that the clusters are well separated in the feature space.

Table 1 depicts the application of the classification algorithm to two different
views of the same texture. The first entry in the table is the result of searching for
peaks in the transform and recording the angle at which they occur and the distance
between them. We notice that the second view was rotated by 20° with respect to
the first. and also that the second was taken at a smaller scale. since more peaks
were found in each angle. The next two steps are to normalize all the distances by
dividing by the maximum one and to average the normalized distances in each
angle. Next we circularly shift so that the maximum average (one in this case) will
be at the ieftmost position. Then we subtract (modulo-180°) the first angle from all
the others and normalize all angles to 180°. After these steps we note that the
entries in the table are almost identical. Then we form the feature vectors by
calculating the variance (here the standard deviation was used) of the normalized
distances and angles. Note that the first element of the feature vector is x; = 3 since
three directions were detected in the texture.

SUMMARY AND CONCLUSION

In this paper a new structural approach for texture classification has been
introduced. The texture primitives used for classification are the location and the
relative orientation of lines in the texture. The Hough transform is used for line
detection. This technique 1s computationally very efficient and can be applied for
shapes other than lines, such as circles, parabolas. ellipses etc. If some preprocessing
is applied on the texture so that wide lines become thin. then the method can be
applied with excellent classification results. The feature extraction algorithm pro-
posed is independent of geometrical transformations such as translation, rotation,
and scaling. Several experimental results on idealized and natural textures were
presented. Also. experiments performed on noisy textures showed that correct
classtfication is possible even in noisy environments.

In conclusion. the Hough transform technique s a verv interesting and efficient
method for texture classification based on line detection. which can be generalized
to include other geometrical curves as well.
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Demonstration of a picosecond optical-phase-conjugation-based
residue-arithmetic computation
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The use of the optical phase-conjugation tOPC) process for optical residue computation is proposed. By using an
OPC-based parallel switching array, various optical position-coded residue-mapping units for carry-free addition,
subtraction, and multiplication operations are described. Experimental results obtained with a picosecond mode-
locked Nd**:YAG laser are presented to support the proposal.

A residue number system has been suggested, because
of its accurate parallel-processing capability. for car-
ry-free arithmetic, such as addition, subtraction, and
multiplication, operations.! An electro-optical (E-O)
liquid-crystal spatial light modulator has been used to
obtain the required residue-processing cyclic re-
sponse.? E-O position-encoded residue mapping
units have been described that use either an optical
waveguide coupler array or a laser-diode grid.*-% Oth-
er alternatives. such as the holographic optical truth-
table look-up, optical symbolic substitution, and opti-
cal second-harmonic-generation residue-processing
techniques, have been described.”!® In addition, var-
ious optical decimal-to-residue and residue-to-deci-
mal conversion schemes are available.!'1? Optical
phase conjugation (OPC) by degenerate four-wave
mixing is a technique that reverses an input beam’s
phase and propagation directions. OPC has found
many applications in optical signal and image process-
ing.!3 By using an ultrafast optical x nonlinear mate-
rial. picosecond OPC switching has been demonstrat-
ed.’¥ Recently various OPC-based digital optical
computing elements have been proposed and demon-
strated that use its speed and parallel-processing ad-
vantages.!>!? In this Letter an OPC device together
with a spatial-position encoding scheme is described
for an optical residue processor (ORP). A prototype
residue-addition mapping element that consists of an
OPC cell and a combination of mirror, a beam splitter,
and a cylindrical lens is described. The use of this add
element for optical residue subtraction and multipli-
cation by rearranging the input and output channels is
also described. Some preliminary experimental re-
sults are presented to demonstrate an ORP that uses a
picosecond mode-locked Nd**:YAG laser as the
source.

The core of an ORP is a set of prime modulo residue-
mapping elements.! For an ORP the two position-
coded integers are directed to and switched in parallel
by these mapping elements. The ORP’s dyvnamic
range is the product of all the prime moduli units
emploved. As an example. truth tables for a mod 4
residue addition {subtraction) and a mod 5 residue
multiplication are presented in Fig. 1. For addition

0146-9592/88/020178-03%2.00/0

(subtraction) [see Figs. 1{a) and 1(b)], left (right) cy-
clic rotation is needed. It has been noted* that, by
rearranging the input and output channels, one can
use a residue-add unit to perform residue subtraction
and multiplication operations. Thus, for any prime
modulo residue arithmetic, a residue adder is the fun-
damental element. To implement a residue-add
truth table, an optical switching array may be em-
ployed. The residue integers are encoded as spatial
positions. For example, for the mod 4 addition, the
four addend (summand) numbers 0, 1, 2, and 3 are
encoded into four insecting horizontal (vertical) chan-
nels. For each of the 16 possible addition pairs, only
one intersection will be addressed. To generate the
add output, the 16 addressable outputs need to be
grouped into 4 sum channels. Because of the cyclic
shift property of residue addition [see Fig. 1(a)], ex-
cept for the four output channel 3 light spots that
appear along the off-main diagonal axis, the other
spats, i.e., for output channels 0, 1, and 2, appear on
both sides of the off-main diagonal axis and are sepa-
rated by a fixed spatial constant along this off-main
diagonal direction. Thus, for the output grouping,
conventional shift-invariant optical elements can be
used.

In Fig. 2, a schematic of an OPC mod 4 residue adder
is shown. In the top part of the figure, an OPC cell
with three input beams, two counterpropagating and
one off axis, is depicted. The three input beams inter-
act within the OPC material and generate an output

Fig. 1. Truth tables for mod 4 residue addition (a) and
subtraction (b) and for mod 5 residue multiplication (c).
After certain input and/or output permutation. both (b) and
{c) can be expressed in terms of (a).
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Fig. 2. A schematic of an OPC-based spatial position-cod-
ed mod 4 optical-residue addition unit. E,s, Eg. and E¢,
three input beams: BS’s, beam splitters: M, mirror; CL.
cvlindrical lens; NLM. nonlinear material. A. B. C. D, E.
and O are beam profiles at various locations.

that counterpropagates with respect to the off-axis
input beam. For our purpose, the two counterpropa-
gating beams carry the two position-coded (see beam
profiles A and B of Fig. 2) mod 4 inputs. The third
input beam serves as an optical power supply (see
beam profile C). The OPC output, which may contain
as many as 16 light spots (see beam profile D), is
directed by a beam splitter to a postprocessing {output
grouping) unit. To group the outputs, a beam com-
biner that consists of a mirror-beam-splitter pair ori-
ented at a 45° direction is inserted into the beam.
This beam combiner is tuned to provide a gap that
allows the four diagonal-output channel 3 spots to
pass while all the other spots are properly grouped
along the diagonal direction (see beam profiles D and
E in Fig. 2). To generate the final addition mapping
output, a cvlindrical lens that spatially integrates the
results along the off-main-diagonal direction (see
tLeam profile O} is employed.

The device described above can also be used for
residue-subtraction mapping. Let the additive in-
verse A of a residue number A be defined as* |4 + Aly
= 0 (mod N). To subtract a residue number A. the
addition of the inverse A is performed. Thus, for
example in the mod 4 case, to convert addition to
subtraction the switching from the addend channel |
(3) to the subtrahend channel 3 (1) needs to be per-
formed. For mod N multiplication, where N is prime,
a mod N — 1 add unit can be employed. When a
homomorphic approach is used,* in addition to the
input {a loglike) conversion the output channels also
need be permuted (an inverse loglike conversion).
For example, for a mod 5 multiplication, an exchange
between channels 2 and 3 for both the input and the
output needs to be incorporated before a mod 4 addi-
tion element can be used.

A 32-psec pulse from a Quantel mode-locked
Nd**:YAG laser is used to demonstrate the basic prin-
ciples of an ORP. The experiment was divided into
two parts: (1) to implement the OPC switching array
and (2) to construct & mirror-beam-splitter coupler
for residue-addition output grouping. First. the laser
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output heam was magnified toa 1.5 ¢cm X 1.5 ¢m area
from which only the central portion (about 1 cm~) was
selected fur the experiments. The OPC nonlinear ma-
terial was a commercially available 5.08 cm X 5.08 cm,
2-mm-thick 3-68 Corning glass filter. We understand
that this filter consists of microcrystal structures of
CdS,Se,_, ternary compound semiconductors embed-
ded in an amorphous glass matrix.®® In addition to
being fast (50 psec) (Ref. 21) and of relatively high
optical noniinearity [x'* = 107%-10~"" MKS units].
the medium is isotropic. For the input position en-
coding, although one can use diode lasers and cylindri-
cal lenses to incorporate a real-time point-to-bar
shape-modulation scheme, in our preliminary experi-
ment absorption masks were employed. Each mask
slot was 1 ¢m long and 1.5 mm wide. To prevent
spatial channel cross talk, for each mask and between
every two consecutive light channels an identical-sized
guard band was used. In Fig. 3, the experimental
result of a 4 X 4 OPC switching array is shown. Two
input groups (four channels each) of crossed light bars
were used; the 16 light dots generated had approxi-
mately equal intensity. For a mod 4 residue adder,
these outputs are then guided to a mirror-beam-split-
ter beam combiner. In our experiment, the beam
combiner was mounted on an adjustable translation
stage. The equal-splitting-ratio antireflectively coat-
ed beam splitter was 1 mm thick. The combiner was
first adjusted to create a 2-mm-wide gap to allow for
the passage of the four main diagonal light spots. It
was then aligned to be parallel to a 45° direction and
adjusted so that for the 16 input spots the output light
pattern appeared to be similar to beam pattern E of
Fig. 2. Finally, for one-dimensional spatial integra-
tion, a cylindrical lens was employed. With this align-
ment, a system verification was performed (see Fig. 4).
First, for each of the four possible mod 4 addition
outputs, four properly positioned light dots were ob-
tained (see the top row of Fig. 4). The light patterns
generated by using the beam combiner are shown in
the middle row of Fig. 4. Note that, except for output
channel 3, each of the output channels has been rear-
ranged so that it can be located along a vertical line.
Finally, in the bottom row of Fig. 4, the recorded mod 4
addition patterns made using a cvlindrical lens are
shown. Based on this implementation concept, other

¥

Fig. 3. Experimental result of OPC input intensity modu-
lation. The intensity modulation (AND operation) of two
input bar arrays results in a 16-light-dot output pattern that
is used to generate the content of a mod 4 residue-addition
truth table.
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Fig.4. Experimental results of the OPC mod 4 adder. The
light patterns in the first row (corresponding to beam profile
D of Fig. 2) show the four truth-table output locations for the
addition results 0, 1, 2 and 3, respectively. The patterns in
the second row (corresponding to Fig. 2 beam profile E)
represent the corresponding beam combiner’s outputs. The
last row’s patterns, which correspond to output O of Fig. 2,
show the spatially integrated results.

prime modulo add units can also be realized. By using
a set of parallel different modulo OPC add units to-
gether with some input and output conversion and
permutation devices, an OPC-based ORP can be con-
structed. To reduce space-bandwidth-product prob-
lems caused by a large set of parallel mapping units,
the binary coded residue (BCR) technique may be
helpful. It can be shown that the dynamic range of a
set of sixteen 5-bit BCR processing elements can be as
high as 103. With the material and laser source em-
ployed it is difficult to achieve a high repetition rate.
However, by using other high x® nonlinear materials
with absorption peaks not in the operational range,
the heating problem can be circumvented, leading to
OPC-based high-repetition-rate residue processing.

The major advantages of this OPC-based ORP
method are the following:

(1) It uses the degenerate wave mixing effect so
that the input and output of the processor are identi-
cal-frequency optical rather than E-O hybrid signals.

(2) The use of OPC allows for an ultrafast process-
ing speed. Although in our proof-of-principle experi-
ments a 50-psec material was used, much faster OPC’
materials, such as nonlinear polymers, are available.
Thus, compared with other existing residue-mapping
schemes, this OPC-based method offers a speed ad-
vantage.

(3) The overall system uses simple optical ele-
ments, such as mirrors and beam splitters, allowing it
to be miniaturized to an integrated-optics scale. With
some input and output optical waveguides, the addi-
tion-mapping element can also be converted to per-
form subtraction and multiplication mapping. Thus

an OPC-based compact, ultrafast ORP can be con-
structed.

In summary, an OPC-based spatial-position-en-
coded ORP technique has been proposed and demon-
strated. To implement a particular modulo residue-
addition mapping element, an OPC setup is employed.
To group the truth-table contents, a compact mirror-
beam-splitter beam combiner was used. Experimen-
tal verification of a mod 4 residue-addition unit using
a picosecond mode-locked Nd3+:YAG laser as the
source and a semiconductor-doped glass nonlinear
material was described. Extension of the technique
to residue subtraction and multiplication mapping
was also discussed.

This research was supported in part by grants 84-
0144 and 85-0212 from the U.S. Air Force Office of
Scientific Research. The authors are also with the
Institute for Ultrafast Spectroscopy and Lasers, The
City College of the City University of New York.
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Pyramidal processing is a form of multiresolution image processing in which the image is decomposed into a
sequence of images at different resolutions. Pyramidal processing aims to extract and interpret significant features
of an image at different resolutions. Digital pyramidal image processing, because of the large number of convolu-
tion-type operations, is time consuming. On the other hand, optical pyramidal processors, described here, are
preferable in real-time image-understanding applications because of their ease in performing convolution opera-
tions. Preliminary experimental results for optical Gaussian and Laplacian pyramidal image processing are

presented.

Pyramidal image processing is a form of image multi-
resolution representation useful in texture analysis,
biological-sample classification, motion- and stereo-
image analysis, feature and shape description, image
bandwidth compression, modeling of three-dimen-
sional structures, and automatic target recognition.!
The process of constructing a pyramidal algorithm
follows the precepts of a divide-and-conquer principle.
The input image is decomposed into a series of images
at different resolution levels with the aim that at each
level, by using sharply tuned detectors, one can identi-
fy significant features of an image. These feature
detectors, at low-resolution levels, can be a line, a blob,
a point, or edge detectors, while at higher-resolution
levels of the pyramid they are region-level detectors.
In general, the height of the pyramid is proportional to
the logarithm of the image diameter. For the various
applications, a large number of pyramidal algorithms
are available.?

To form a pyramid, various processing techniques
have been proposed. A general way to form an image
pyramid is through image filtering. In this technique
the higher-level, i.e.,, the lower-resolution, image is
formed by spatial filtering followed by a decimation.
The filter can be either a low-pass spatial filter, gener-
ating a Gaussian pyramid, or a bandpass spatial filter,
generating a Laplacian pyramid. The difference be-
tween two successive Gaussian pyramidal images
(GPI's) is a Laplacian pyramidal image (LPI). In
addition to this straightforward linear filtering, to ex-
tract suitable features at each level of the GPI or LPI
other linear as well as nonlinear transformations can
be performed. To perform these computations for
real-time image sequences, special-purpose digital im-
age processors have been suggested and constructed.
These processors must work, say, for real-time televi-
sion-quality images, at a giga-floating-point opera-
tions per seconds data rate. The computational bot-
tleneck for these processors is the large number of
convolution-. vpe operations that they must perform.
This Letter reports a new pyramidal processing archi-
tecture that potentially utilizes, at each pyramidal lev-
el, real-time parallel optical spatial light modulators

0146-9592/88/060431-03$2.00/0

and coherent Fourier optical processors. These opti-
cal processors, followed by dedicated microprocessors,
are to perform the real-time feature extraction and
image processing. The recent availability of commer-
cial-quality spatial light modulators and parallel sig-
nal-processing chips promises that such a system will
be both compact and inexpensive.

A GPlis a sequence of low-pass-filtered copies g1, 22,
... &n of a primary image go, where the subscript refers
to the level of the pyramid. These copies are obtained
by convolving go with suitable low-pass filters. For a
GPI, the spatial low-pass filter cutoff frequency f. is a
factor of 2 smaller than its immediate predecessor.
Because of this fiitering, the higher-level GPIs contain
less image detail. A LPI is a set of bandpass-filtered
images I, Iy, . . . I, of the image go. The spatial-filter
bandwidth of the LP1 is an octave less than the imme-
diate past level. Since the spatial bandwidths of the
GPI's decrease by an octave, the LPI’s will also have
an octave spatial bandwidth decrease.

In Fig. 1 a parallel optical pyramidal image-process-
ing system is shown. First, by using either beam
splitters or a composite grating, an input image is

detector/processor
array
| F 0/
dupicated | 1 Fe o -
ot — | e u
mages

Fig. 1. Coherent optical parallel pyramidal image-process-
ing system. N identical Fourier-transform subsystems are
used in parallel. For inputs, N identical image copies are
used. In the first Fourier-lens back focal plane of each
subsystem, a spatial low-pass or bandpass filter F, with 1 <i
< Nisplaced. Thegenerated GPI's (LPI's) are collected by
a digital image-postprocessor array.
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Fig. 2. First four binary GPI levels. (a) First-level image
£1. (b) second-level image g, (¢) third-level image g;, (d)
fourth-level image g,.
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duplicated to form N parallel identical copies to be
incident into N parallel optical Fourier® processing
subsystems. At each subsystem’s first Fourier-lens
back focal plane, a different cutoff frequency fc,
where 1 <i < N, low-pass (bandpass) spatial filter is
placed. The filtered image than passes through the
second Fourier lens to generate a particular GPI
{LP1). For a GPI low-pass filter, say F,, the spatial
cutoff frequency f, is

feo = D,/2),

where A is the wavelength of light and f and D, are the
Fourier-lens focal length and the filter (pinhole) diam-
eter, respectively. By applying the correct bandpass,
i.e., a ring, filter in the back focal plane L, the LPI’s
can be generated. These GPI's (LPI's) can be detect-
ed. thresholded, and further processed with a digital
image-processor array.

It is also possible to generate a LPI by subtracting
two consecutive GPI's. To achieve this task, with
each subsystem a sinusoidal grating is attached to the
input image so that at the filter plane two first-order
diffracted-input Fourier spectra are obtained. Two
GPl low-pass filters, D, (D, -}, attached with a sinusoi-
dal (cosinusoidal) grating,* will be centered on the two
spectrum locations. With this method, in the subsys-
tem output plane the two GPI's are subtracted to form
a LPI. To obtain an optical LPI, other standard co-
herent image subtraction methods* can also be used.

In our experiments a 632.8-nm He-Ne laser was
used. Two pairs of identical 780-mm focal-length
Fourier lenses were used. For the filter, commercial
spatial filters were used. The spatial pinhole diame-
ters ranged from 1 to 8 mm, corresponding to f¢'s from
0.98 to 7.89 line pairs/mm. For D < 1 mm, the diffrac-
tion effect is noticeable. By using a set of different-
sized pinholes, various GPI's were recorded into the
memory of a digital image-processing system. In Fig.

DJD,_, =2, (1)

2(a) the g, is shown, while in Figs. 2(b)-2(d) the opti-
cally generated different-level GPI's are shown.
These images are 200 X 200 pixels wide. The corre-
sponding four f¢'s were 7.89, 3.94, 1.97, and 0.98 line
pairs/mm, respectively. While the gy is a binary im-
age, because of the spatial filtering the higher GPI's
required additional bit planes. The higher the pyra-
mid level, the greater is its dynamic range. After
appropriate electronic thresholding, a binary GPI was
obtained. For the binary GPI's, the threshold was set
Lo 200 intensily units at the first three levels and to 240
intensity units at the fourth level. The thresholding
attenuates the optical noise.

Bandpass replicas of the gg, the LPI’s, were digitally
generated by subtracting, pixel by pixel, the stored
optical GPI's (Fig. 3). The size of the LPI is identical
to that of its Gaussian counterpart. These LPI's may
be used for further processing. Toenhance the details
of the LPI’s, a zero-crossing method can be used.> By
convolving the LPI's with a 3 X 3 gradient mask pair
F, and F, (Table 1), the zero-crossing copies are ob-
tained. By shifting these masks over the LPI’s, a

IV W 3

O

Fig. 3. First three binary LPI levels of Fig. 2. (a) First-
level image ;. (b) second-level image [,, (¢) third-level image
1;\A

Table I. Gradient Masks F, and F, and Laplacian
Mask E
F,
1/4 0 -1/4
1/2 0 -1/2
1/4 0 -1/2
F,
1/4 1/2 1/4
0 Q 0
-1/4 —-1/2 -1/4
E
0 -1 0
-1 4 -1
0 -1 0
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Fig. 4. First three levels of the zero-crossing LPI's. (a)
First-level, (b) second level. (¢} third level.

Fig. 5. Edge-enhanced copies of the binary GPI's of Fig. 2.
ia) First level, (b) second level. (¢) third level, (d) fourth
level.

convolution of the LPI's with the F, and F, masks is
accomplished. Figure 4 shows the LPI zero-crossing
pyramid in the x direction. White (black) pixels rep-
resent positions of the image gradient that are positive
to the right (left), while all other points are represent-

June 1988 Vol 13, No 6 7 OPTICS LETTERS 433

ed by their gray values. An alternative wav to obtain
the zero-crossing LPI's is through optical processing.
By superimposing the Fourier transforms of F, and F,
filters with the Gaussian low-pass filters. the GP1I
zero-crossing pyramid can be obtained directly. This
composite optical filter can be a computer-generated
hologram.

It is often necessary to extract edges from an image.
Edge extraction and enhancement is widely used in
image analyvsis and classification. Multiresolution
edge enhancement can be pertormed by convolving a
Laplacian mask E (Table 1) with either the GPI's or
the LPI's.! Figure 5 shows an edge-enhanced GPI of
Fig. 2(a). Each of the images in Fig. 5 represents
multiresolution edges of gq at different spatial hand-
widths, starting with the highest |7.89 line pairs/mm
for Fig. 5(a)] and ending with the smallest [0.98 line
pairs/mm for Fig. 5(d)]. Similarly to the zero-crossing
pyramid, edge enhancement can also be performed
optically. By inserting edge-enhanced computer-gen-
erated holographic filters, representing the Fourier
transform of the Laplacian mask E, in the focal plane
L\, multiresolution-image edge enhancement can be
achieved.

To summarize, a number of optical systems for im-
age pyramid generation are described. By performing
the convolution operation by using an optical Fourier
system, the optical pyramidal system has the advan-
tage that it may attain high processing speed. By
inserting a computer-generated hologram mask in the
spatial-frequency plane, other pyramid processing.
such as a zero-crossing LIP, may also be obtained. By
using a combination of optical and digital systems. we
can make full use of their respective processing capa-
bilities.
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A paralle! optical binary multiplication scheme is proposed in which parailel convolution preprocessing is performed using a
parallel- .nput optical outer-product processor together with a one dimensional either space or time integrator. Using a theta-
modulation based optical A/D converter and a carry look-ahead adder array, the resulting mixed-binary partial product can be

reduced to the final binary multiplication result.

1. Introduction

One of the fundamental operations in a computer
is digital muitiplication. The conventional approach
in digital multiplication uses a shift and add scheme.
To perform the digital multiplication of two N-bit
numbers, after forming partial products, N—1 par-
allel adders are used. The additions can be per-
formed in [log,N] stages, where [x] denotes the
smallest integer that is larger than x. For example, to
multiply two 64-bit numbers, 63 adders in 6 parallel
stages are required. It is very important to find new
algorithms to perform faster multiplications. With
the digital multiplication via analog convolution
(DMAC) [1-4] algorithm, after performing a dig-
ital convolution on the two numbers and converting,
using an A/D element, the mixod-binary partial
product to its binary form, only [log,(N+1)]-"
parallel adders in [log,(log.(N+1))] stages are
needed. For example, in the N=64 case, after A/D
conversion, only 6 adders in 3 stages are sufficient.
For the multiplication of large binary numbers, in
principle, the DMAC algorithm offers a faster pro-
cessing speed. Since optics offers ultrafast processing
speed and parallelism, optical DMAC processors
have been proposed [1-4]. With a conventional
optical serial DMAC processor, to perform an opti-
cal digital convolution, two acousto-optic (AO)
deflectors, actuated by electronic pulse trains rep-
resenting the binary serial inputs, are used. Because

of the serial input format, the convolution of two N-
bit numbers requires 2N temporal cycles, cycles that
are limited by the acoustic wave propagation speed
and the AO material response time. For example, the
convolution of two 16-bit numbers [4], with the cur-
rently available AQ cells takes approximately 64 ns.
After the convolution, to convert the mixed-binary
result to binary number strings, parallel A/D con-
verters are needed. An electro-optic (EO) interfer-
ometric A/D converter [5,6] can perform
conversions in the order of nanoseconds. However,
for each single N-bit EO converter, N waveguide
interferometers are needed. Furthermore, because the
periodic interferometric output is analog, to generate
a digital number, an additional electronic compar-
ator array must be used. Because for an N-bit serial-
input digital multiplication, the DMAC algorithm
requires an array of 2V —3 A/D converters resulting
in a large numbers of active EO waveguide elements.

In this communication, a new optical parallel
DMAC (P-DMAC) processor is proposed. It con-
sists of a parallel ultrafast data convolver, a fast theta-
modulation EO A/D converter and an array of fast
carry look-ahead adders. To increase the speed of the
digital convolution preprocessing, instead of a serial,
a parallel-input scheme is proposed. For the optical
A/D conversion, a new theta-modulation (T-M)-
based [7.8] EO device is described. This N-bit con-
verter, that also can have a nano- or even sub-nano-
second response, requires only one active nonlinear

0 030-4018/87/$03.50 © Elsevier Science Publishers B.V. 99
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element. Therefore, it is more compact and less
power-hungry. To add the A/D converter results,
parallel carry look-ahead adder arrays are used. Using
the proposed P-DMAC processor with the present
technology, the overall multiplication speed is lim-
ited by the speed of [log,(log,(N+1))] carry look-
ahead add stages. Using the existing optical ultrafast
carry generation method [9] together with optical
picosecond switching technology, optical fast adders
may be constructed. Thus, this system can lead to
faster optical binary multiplication operation.

2. A parallel optical digital convolution scheme

To perform fast convolution, rapid logic AND gates
together with fast scan and sum operators are needed.
It will be shown, that the first two operations can be
performed via a parallel input vector outer-product
processor [ 10]. The third, the summation, operation
can be implemented via either a space or a time inte-
grating architecture. Next, several vector outer-prod-
uct-based parallel-input optical convolution devices
are described.

First, a geometric optical shadow-casting-based
[ 11,12} parallel-input optical convolution scheme is
described. To optically represent the two multipli-
cants, two superposed, spatially encoded (with logic
one (zero) as a transparent (opaque) pixel, respec-
tively) masks are utilized. As an example, consider
the multiplication of the two decimal numbers 4=11
and B=15. Their binary equivalents are 4= 1011 and
B=1111. In fig. 1 (a and b), the two spatially
encoded masks, representing the numbers 4 and B,
are shown. Here, between every two consecutive bits,
an opaque pixel guard bit is used. To generate the
two input vector binary outer-product, these two
masks are cross-overlapped. The 2-D pixel array sha-
dowgram formed behind the overlapped masks (see
fig. 1(c)) represents the two input vector outer-
product. To obtain the convolution, using a cylin-
drical lens aligned with the shadowgram’s diagonal
direction, the pixel light intensities are summed. The
presence of the guard bit between every two consec-
utive data bits prevents cross-talk between the adja-
cent data channels. In fig. 1(d), the light intensity
pattern slightly off the lens back focal plane is shown.
The number of bars in each of the seven channels
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(o)

-0 Summation

C= 1123221 C:=1123221

(d) (e

Fig. 1. Experimental result of a parallel-input optical convolu-
tion, (a) and (b) are two masks representing the two binary
numbers (4= 15 and B=11) to be multiplied. An opaque pixel,
sandwiched between every two consecutive bits, is the guard pixel,
(¢) is the outer-product shadowgram formed by cross-overlap-
ping the two masks, (d) is the result of 1-D channel-wise sum-
mation of light intensities in a plane slightly shifted from the lens
focal plane, and (e) is the same result obtained right on the lens
back focal plane. Both represent a2 mixed-binary multiplication
result C=165.

signifies the mixed-binary product C=1232211. In
a practical implementation, a 1-D diode detector
array is placed in the lens back focal plane. In that
case, instead of counting the number of bars, the focal
plane intensity levels represent the mixed-binary
number (see fig. 1(e)). It is interesting to note, that
for a coherent illumination, this detected signal is the
dc component of the two 1-D data cross-ambiguity
function [13]. The side lobe of the cross-ambiguity
function may be used for error detection.

While with the serial-input convolution scheme the
bit-string scanning speed depends upon the speed of
the acoustic wave, with the parallel-input convolu-
tion both parallel AND and self-scanning operation
are performed instantaneously. Also, unlike the serial-
input, where to separate the two consecutive num-
bers a number of idle time slots are used, with the
parallel-input convolution method the data can be
processed without the need for idle time. It can also
be shown that, using orthogonal polarization encod-
ing [14,16]. the two parallel digital convolution
channels can simultaneously be processed. Here, the
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Fig. 2. Three ultrafast parallel-input optical digital convolvers. A
2-D array of (a) etalon and (h) SHG AND gates. together with
two cylindrical input lenses, is used to obtain the vector outer-
product of two inputs. Using a 45° oriented output cylindrical
lens. the convolution result is obtained. {(c¢) An alternative SHG
parallel-input optical convolution approach where no additional
lenses are required.

previously mentioned guard pixels are used as a sec-
ond, orthogonal polarization encoded, channel. At
the output, using a polarizing beamsplitter, the two
parallel channels can be separated. To implement this
scheme, either a liquid-crystal EO or a magneto-optic
(MO) 2-D spatial light modulator (SLM) is needed.
Currently, the processing speed of these devices is
limited. To increase the processing speed, next, some
possible ultrafast, parallel-input optical digital con-
vclution schemes are proposed.

As noted earlier, to generate a parallel-input vec-
tor outer-product, each optical input digit needs to
be expanded into a light bar so as to overlap the sec-
ond optical input (see fig. 1(a)-(b)). The thus gen-
erated patterns can then be directed to a 2-D array
of ultrafast optical AND gates. For example, in fig.
2(a) and (b), two parallel-input vector outer-prod-
uct-based optical digital convolvers are illustrated.
Here, either a 2-D nonlinear etalon [17] (as per fig.
2(a)) or a non-collinear second harmonic generator
(SHG) AND gate array [18] (as per fig. 2(b)) is
illustrated. With an etalon, the switching threshold
must be set so that only when both inputs are present
an output is generated. While with the SHG, using
the nonlinear three wave-mixing effect, the two off-
axis inputs yield an on-axis frequency-doubled AND
output. In either case, to convert the digital vector
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outer-product into a convolution, a 45° oriented 1-
D space-integrating cylindrical lens is used. It is also
possible to consider a time-integrating architecture.
In fig. 2(c), as an example, a parallel time-integrat-
ing convolver is sketched. Here. to form a 2-D vector
outer-product, the two parallel 3-bit inputs are
injected into a thick SHG crystal. As the frequency-
doubled outputs emerge, they are automatically
aligned into five parallel channels. Using five time-
integrating detectors, the optical digital convolution
result is generated. Using any of these schemes, pico-
second, parallel-input optical convolution opera-
tions can be realized [18].

3. A theta-modulation-based A/D converter

The key idea for an A/D conversion is the gen-
eration of a parallel set of different period periodic
functions [5,6]. To achieve this goal, the EO inter-
ferometric approach uses a parallel set of active EO
modulators. However, to A/D convert a large num-
ber, a large number of EO modulators and electronic
comparators are required. It will be shown, that using
a new T-M A/D converter, instead of using a large
number of EO interferometric modulators and com-
parators, only one active and N parallel passive ele-
ments are sufficient.

The active element is a voltage controlled beam
deflector that deflects a 1-D input beam to different
spatial locations. There are a number of devices
available to perform this function. For example, a
variable grating mode SLM (VGSLM) [19] can
generate, using different applied voltages, various
spatial frequency grating that diffract the incident
beam to different 1-D locations. The EQ beam
deflector [20] uses a voltage tunable index-gradient
1o deflect the incident light. A streak-camera [21],
commonly used for ultrafast laser pulse measure-
ment, can also be modified to be a fast beam deflec-
tor. Recently, other fast, efficient and high resolution
beam deflection devices, such as the EO internal
reflection deflector [22], the waveguide modulator
deflector [23], etc., have also been reported. Some
of these devices, because of their small capacitances
(order of pF), can operate at a high (nano- or even
sub-nanosecond) speed with a low (order of volts)
driving voltage [23]. With these devices, the input
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Fig. 3. Four (M,-M,) binary masks to be used for a 4-bit optical
T-M A/D conversion.

voltages, corresponding to detected intensity levels,
are optically mapped to different spatial locations.
To convert the spatially mapped 1-D light distri-
butions to their binary representations, a parallel set
of spatially encoded masks, representing a set of dif-
ferent period periodic clipping operations, is used.
For example, in fig. 3, for a four bit A/D conversion,
four masks are shown, To illuminate the four parallel
A/D conversion masks, the deflected optical beams
must be focused (expanded) in the vertical (hori-
zontal) dimension (see fig 4.) For a different hori-
zontal-level bar, the light distribution at the mask
output side represents its binary number code. Using
a second cylindrical lens, the different level binary
codes can be shifted to a common horizontal level
where a 1-D detector array can be placed. One
advantage of this new A/D conversion approach is

M, - M, masks
deflector CL_, Cle / Cls detector array

view )' )

Fig. 4. Schematic diagram of a optical T-M A/D converter, (a)
and (b) are top and side view of the device. The beam passing
through a voliage controlled beam deflector is expanded in hori-
zonta! direction to form a deflected light beam bar to be incident
on the binary masks. Using a second cylindrical lens, the con-
verted results are shifted to a common level. At this level, a 1-D
detector array is placed.
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Fig. 5. A P-DMAC multiplication example is which multiplica-
tion of two 7-bit numbers is illustrated. Instead of the usual six
adders in three parallel stages: this scheme uses three adders in
two parallel stages.

that only a single active nonlinear element is required.
Thus, in compairison with EQ interferometric
approach, the power consumption is drastically
reduced. Also, electronic comparators are not
required. Another advantage is, that by simply
changing masks other binary output codes, such as
Grey codes, can be obtained. Thus, this approach
yields a more flexiblc A/D conversion scheme. With
SLM generated masks, a programmable multipur-
pose optical A/D converter can be implemented.

4. The generation of the digital multiplication

Now that the mixed-binary number is converted
to a set of binary bit strings, these results must be
directed to a fast carry look-ahead adder array.
Recently, a new optical carry look-ahead addition
algorithm was proposed [9] where using optical
multiple reflections, the carries are generated opti-
cally with a light propagation speed. With this algo-
rithm, a complete N-bit carry look-ahead addition
necds only four operational cycles. Thus, using a set
of cascadable ultrafast parallel optical logic switches
[24]. the implementation of a sub-nanosecond opti-
cal carry look-ahead adder can be expected.

As a numencal example, in fig. 5. the multiph-
cation of two 7-bit numbers, 4=1011011 and
B=1111111, is ilustrated. The convolution of the two
bit strings vields the mixed-binary partial result
C=1123345443221. Since the maximum weight is
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from input memory
VN
e NN SHG crystal

Fig. 6. A proposed real-time parallel-input 4-bit optical digital
multiplication system. To generate a mixed-binary convolution
result, two spatially coded 4-bit parallel inputs are directed to a
SHG crystal. Using a set of beam deflectors and fast time-inte-
grating detectors, the detected voltages are mapped to various |-
D spatial locations. Using A/D conversion masks, their corre-
sponding binary codes are obtained. To form the final multipli-
cation result, the generated binary signals are directed into a fast
carry lood-ahead adder array.

less then or equal to a seven, an array of 3-bit optical
A/D converters are required. In the middle part of
fig. 5, the converted results are shown. When this
result is properly grouped, only two parallel addition
stages are required. With these stages, the final mul-
tiplication result C=1011010010010 will be
generated.

In fig. 6, a proposed real-time 4-bit optical digital
multiplier is shown. Here, a SHG-based 4-bit par-
allel-input optical convolver is used to perform an
ultrafast, optical digital convolution. At each con-
volution output channel, the mixed-binary result is
separately detected. The detected voltage signals are
then used to modulate a beam deflector array. To
convert the deflected beams to their binary repre-
sentations, an array of A/D conversion masks are
used. Finally, to generate the digital multiplication
result, the partial results are directed to a fast carry
look-ahead adder array.

As mentioned earlier, for the multiplication of two
N-bit binary numbers, [log,(N+1)] — 1 additions in
[log.(log,(N+1))] stages are needed. With the
DMAC scheme, the overall multiplication time is
Te+Tap+ [log:(log;(N+1))] T, where the sub-
scripts C, A/D and A denote the convolver, the A/D
converter, and the adder, respectively. Compared to
the conventional multiplication scheme, the time
needed jor the last, the addition, part is drastically

reduced. Compared to the senal-input DMAC
scheme, this P-DMAC saves the convolution pre-
processing time. Using the proposed parallel vector
outer-product-based optical convolver, an EO-based
waveguide T-M A/D converter and a fast optical
carry look-ahead adder array, the digital multipli-
cation of two 32-bit numbers in the order of nano-
seconds should be possible.

S. Summary

In this communication, a parallel-input optical
digital multiplication scheme has been described. For
the parallel-input digital multiplication preprocess-
ing, various optical vector outer-product processors
are utilized. With either a nonlinear etalon- or SHG-
based approach, the ultrafast parallel-input digital
convolution can also be contemplated. To convert
the convolution result from a mixed-binary to a
binary form, a new optical T-M A/D converter
together with a fast carry-look-ahead adder array is
described. The optical T-M A/D converter uses only
one active, a fast voltage controlled beam deflector,
element and N passive spatially encoded binary
masks. The A/D converted results are then added,
using a fast carry look-ahead adder array, to generate
the final multiplication result. The major advantages
of this optical parallel digital multiplication scheme
are (1) in comparison with its serial-input counter-
part, the speed of the parallel-input convolver
increases. (ii) the use of new T-M A/D converter
reduces the number of active nonlinear elements
leading to a more compact, less power hungry and a
more economical A/D conversion, (ii1) as com-
pared to a direct multiplication. using this approach,
both the number of adders and their required cas-
cading stages are rcduced leading to an overall faster
digital multiplication operation. The problem that
still exists with this scheme is that since the DMAC
processor uses analog signals, very high accuracy
optical systems for generating both outer-product and
A/D conversion are needed. Recently, it has been
indicated that the dynamic range and accuracy play
a crucial role in determining the analog processor
performance [25]. An optical analog processor is
vulnerable to noisy inputs. Using high quality opti-
cal elements, uniform input beam illumination
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together with high dynamic range optical detectors,
processing accuracy can be enhanced.
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Abstract. Median filters (MF) are used both to filter ‘salt and pepper' noise from signals and images and in other signal
processing applications. In this paper, an extension of the MF, the vector median filter (VMF), is introduced. As opposed
to the MF, the VMF outputs for cach window location a number of data elements. By adjusting the VMF parameters, the
MF is obtained as a VMF special case. Just like the MF, the VMF filters impulses while simultaneously preserving step
changes in a signal. The VMF's principal advantage is that it reduces the total stored data signai computation time while it
produces visual outputs comparable to that of an MF. Deterministic and statistical properties of the VMF are examined.
Computer-generated experimental results are also presented.

Zusammenfassung. Medianfilter werden dazu gebraucht, ‘Salz und Pfefler’-Rauschen von Bild- sowie anderen Signalen zu
entfernen. Im vorlicgenden Beitrag wird eine Erweiterung des Medianfilters untersucht, das sogenannte Vektor-Medianfilter
(VMF). Im Gegensatz zum gewohnlichen Medianfilter werden beim VMF fiir jede Position des Fensters mehrere Datenelemente
ausgegeben. Bei geeigneter Wah!l der Parameter 1aBt sich das gewohnliche Medianfilter als Sonderfall des VMF beschreiben.
Ebenso wie das gewShnliche Medianfilter unterdriickt das VMF einzelne Impulse, nicht jedoch sprungformige Anderungen
eines Signals. Der grund-satzliche Vorteil des VMF besteht in der Reduktion der Gesamtrechenzeit; das Ausgangssignal ist
mit dem cines gewdchnlichen Medianfilters vergleichbar. Uberpriift werden deterministische und statistische Eigenschaften
des VMF. Dariiber hinaus werden einige Simulationsergebnisse beschrieben.

Résumé. Les filtres médians (MF) sont utilisés aussi bien pour filtrer dans les signaux et les images du bruit de type *poivre
et sel’ que pour d'autres applications en traitement du signal. Dans cet article nous proposons une extension du MF, le filtre
médian vectoriel (VMF). Par opposition au MF, le VMF donne en sortie, & chaque position de la fenétre, plusieurs valeurs
de données. Par ajustement des paramétres du VMF, le MF peut étre obtenu comme cas particulier. De 1a méme fagon que
le MF, le VMF filtre les impulsions tout en préservant les marches d'escalier dans le signal. L'avantage principal du VMF
est de réduire le temps de calcul total, tout en donnant des résultats visuellement comparables a ceux du MF. Nous examinons
ici les propriétés déterministes et statistiques du VMF. Des résultats expérimentaux sur simulation sont également présentés.

Keywords. Median filter, vector median filter, root signal, trend test, monotonic region, impulse, step edge. roof-type edge.

1. Introduction

Nonlinear filters, because of their several advan-
tages over linear filters, are used increasingly in
digital signal and image processing applications.
In the class of nonlinear filters, rank filters are of
particular interest. A one-dimensional rank filter

* The grant supports of the City University of New York
Faculty Research Award program and the U.S. Air Force Office
of Scientific Research are gratefully acknowledged.

slides a window along a data array. Ateach window
position, the window elements are sorted accord-
ing to their numerical value into a list. The rank
filter output is that element that falls at a predeter-
mined position within the list. If the filter selects
an element at either end of the list, then it corre-
sponds to either a MIN or a MAX rank filter [9].
Another popular rank filter, the median filter (MF)
[7) assumes an odd number of data window ele-
ments and selects the 50th percentile element in

0165-1684/87/33.50 © 1987, Elsevier Science Publishers B. V. (North-Holland}
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the data window. Median filters preserve an edge
in a signal while they filter out impulses whose
duration s less than }( N — 1), where N isthe length
of the window. This type of filtering is not possible
with a linear filter such as a low-pass filter which
filters both signal and noise components. As a
result, MFs are useful in impulse noise elimination
applications.

Rabiner, Sambur and Schmidt [14] have applied
median filtering to speech processing. Velleman
{17] has investigated the sinusoidal response of
MFs. Median filtering techniques can be extended
to multi-dimensional signals. Here, the window
has both a size and shape. With the window cen-
tered at a particular pixel in the multi-dimensional
image, the elements within the window are sorted
and the median value is used to replace the center
element. Huang [6] has developed a fast two-
dimensional MF that is based on a histogram
calculation. Pratt {13], and also Narenda [10] who
also examined the real-time implementations of
this scheme, have used successive one-dimensional
MFs, filtering first the horizontal and then the
vertical lines, to smooth a two-dimensional image.
Tukey [16], who is credited to be the first to suggest
median filtering as a signal processing scheme, also
suggested the following smoothing procedure: do
repeated median filtering on a signal until the
original signal becomes a root signal. A root signal
remains invariant under median filtering.

Along with the median filter, a number of
median-type filters have been suggested [2, 8, 11].
The aim of these filters is either to reduce the
computational complexity without too much per-
formance degradation, or to be more effective on
certain types of noise. A survey of the MF proper-
ties is available (7]. Recently, using VLSI tech-
nology, small window size MFs were fabricated
on a single chip {12, 15].

In this paper, a new median-type filter, a vector
median filter (VMF) is introduced. The advantage
of the VMF is that, with visual performance com-
parable to that of the MF, it results in reduced
processing time. Because it is a multi-parameter
filter, with the MF as its special case, it offers a
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wider choice of filtering possibilities. After
introducing this new filter, its deterministic and
statistical properties are examined and compared
to MF properties. Results of computer simulations
will also be presented.

2. Background

The median filter [7] is defined as follows: let x
be an input sequence and y be the output sequence.
Then, the output MF,, ., at position i is

yi= Medn[xi—-rn e Xicgy Xig Xiv gy anny xl‘vn]-

where 2n+1 is the filter window size. In this
definition, the filter output y; depends on both the
past and on the future input sequence values. In
order to be able to take into account end effects,
n elements are appended to both ends of the
original data sequence. The values of the appended
elements are the same as the first element value to
the left and last element value to the right of the
original data sequence, respectively. Under these
conditions, the first and last elements of the
original data sequence will not change under
median filtering.

For a window size of N =2n+1 we define the
following regions: a constant neighborhood is a
region of at least n+1 consecutive points having
the same value. Monotonic regions are regions
where the signal is either increasing or decreasing.
An impulse, also called a spike, is at least one but
no more than n nonzero consecutive points of the
same value, superimposed on a constant neighbor-
hood. If an impulse is contained within a window,
since it is narrower than n, the median value of
the window cannot be an impulse element, and
therefore the impulse will be eliminated from the
output. If a pulse is wider than n+1 points, then
this pulse will be preserved. Since a step can be
considered as a wide pulse, it will also be preser-
ved. Frequently, in more general signals and
especially images, ‘roof-type’ edges are present.
These type of edges are not preserved by MFs. For
example an MF would symmetrically clip the
peaks of a symmetric triangular wave.
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In a similar fashion, the sinusoidal characteris-
tics of the output of an MF due to a sinusoidal
input are not always preserved. It has been shown
[7, 17] that the small window size MF sinusoidal
response has rather large sidelobes. To reduce
these undesirable sidelobes, the use of a cascade
of even window size MFs has been suggested. The
output of an even window size MF is the average
of the two center elements in the window [7].
However, this filter no longer preserves step inputs.
Another way to decrease sidelobes is to take the
average of two different window size MFs {7]. For
example, the filter }(MF;+MF,) has shallower
nulls than those of either MF; or MF;.

3. Vector median filters

An MF uses an odd window size and thus a
center element can always be defined. For an even
window size MF, however, not one but two center
elements can co-exist. For an even number of win-
dow elements, then, there is a problem in defining
the output element. It has been suggested [7] to
use as the MF output the average of the two center
elements. An alternative is to define a vector rank
filter (VRF) as the filter that simultaneously out-
puts a number of elements, i.e. an output data

vector. As in the case of a scalar rank filter (with

single element output data), we can define the MIN
and the MAX vector rank filters [9] as those filters
where the output vector is at either end of the
sorted data window. For the vector median filter
{(VMF), the output values are at the center of the
sorted data window.

Formally, the VMFy, » is defined as follows:
let a data window of size N slide along a data
array. At any position, the N window elements
are sorted according to their numerical value. At
this position, the VMF .,y output is a set of M
elements, where M is less than N, situated at the
center of the window, t.e. an equal number of
sorted elements exist on either side of the output
window between the output window ends and the
data window ends. For such an output to exist,
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both N and M must be restricted to be either both
odd or even numbers of elements. The data window
then moves M units over and the procedure is
repeated.

We note that for an MF the median in the data
window does not depend on the sort order, i.e. the
same value is obtained if we sort in either an
increasing or a decreasing order. However, this is
not true for the VMF. It is easy to see that if we
always sort, say, in an increasing order, a
monotonically increasing signal is not affected by
the filter, but a decreasing signal is distorted.
Therefore, the sorting direction cannot be left
arbitrary. To preserve both the increasing and the
decreasing signals, the sort direction is determined
by examining the signal trend in the data window.
The rule we adopt is as follows: for each data
element we assign a tag +1, —1, or 0, depending
on whether the difference between neighboring
sample amplitudes is positive, negative, or zero,
respectively. Now, for the elements within the win-
dow, we compute the majority of the assigned tags.
This can be accomplished by simply adding the
element tags. If this result is positive (for a mostly
increasing signal), then we sort the elements in an
increasing order. Conversely, if the result is nega-
tive (for a mostly decreasing signal), then we sort
the elements in a decreasing order. Finally, if the
sum is zero (for either a constant or an oscillatory
signal), the sort direction can be left arbitrary.

Since the VMF has two design parmeters N and
M, as compared to the MF which has only one
design parameter N, as well as a trend test, the
VMF has a wider choice of filtering possibilities.
For example, we could adaptively adjust M based
on the results of the trend test. For a slowly varying
signal, we can increase M to improve speed. For a
constant signal for optimum speed, we can let N
equal M and skip the sort. Also, fast MF sorting
algorithms could be adopted for the VMF as well.

Based on its definition, the following determinis-
tic VMF properties can be derived:

Property 1. Any monotonically increasing or
decreasing signal will be preserved.
Vol 13, No. 3, October 1987
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This can be seen from the fact that the elements
falling within the data window are already sorted
in the correct order and thus will not be disturbed.
Since a step (or edge) signal is monotonically
increasing or decreasing in a region around the
edge, it will be preserved by a VMF.

Property 2. Any impulse narrower than (N — M)
samples will be eliminated.

This is so because if an impuise falls in the
window, after the sort it will be ‘pushed’ to one
end of that window. If the impulse is narrower
than (N — M) samples, then it will fill up the
window at a point where none of its elements will
fall in the output vector. Since none of the impulse
elements falls in the output vector, the impulse
will be eliminated. By the same reasoning, any
pulse wider than (N + M) will pass unaffected.
Therefore, the VMF has the same two fundamental
properties of the MF, namely, it preserves edges
while it filters out sufficiently narrow spikes. As
was mentioned earlier the MF will not preserve
‘roof-type’ edges such a peaks of triangulars. This
is also true for the VMF. Additionally, depending
on the starting point, the distortion introduced by
a VMF could be asymmetrical even for a sym-
metrical ‘roof-type’ edge. However, for many
classes of signals this could be a tolerable dis-
tortion.

It is known that if a signal is repeatedly MF-ed
it will eventually convert the signal into a root
signal [5}. An upper bound for the number of filter
passes required to reach a root signal is given as
{(L-2), where L is the length of the signal.
However, this is not a very tight bound. It has been
observed that for the same signal, the minimum
number of passes required to reach a root signal
decreases with increasing filter window size. Even
though it has not yet been proved, it has been
experimentally verified that the VMF has the same
property, namely if a signal is repeatedly VMF-ed,
it will eventually convert into a VMF root signal.

We also note that the VMF moves M-times faster
along the data array than its corresponding MF
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counterpart. However, the VMF is slightly more
complex to implement. Despite this additional
computational complexity, the VMF results,
especially for long data arrays, in a significantly
shorter processing time. As with the MF, to account
for end effects, 3(N — M) elements are appended
to the beginning of the data array, each with a
value equal to that of the first element. The number
of elements appended at the end of the signal
depends on L, where L is the length of the data
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Fig. 1. (a) Output of a VMF,,, without a trend test. (b) Output
of a VMF,,; with a trend test.
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Fig. 3. (a) Gain with an MF,. (b) Gain of an MF.. (¢) Gain of a VMF,,, (d) Gain of a VMF,;.

Fig. 2(d) displays the result of filtering by a
VMF,,.,. Here, all of the spikes were removed.
The same result is obtained when a VMF .., is
used. It is worth noting that in all cases the signal
edges were preserved.

Next, the sinusoidal response of a VMF is
investigated. The sinusoidal response of the MF
has been investigated by Velleman [17]. Here, the
parameter of interest is the gain, which is the ratio
of the fundamental harmonic power output 1o the
fundamental harmonic power input. Fig. 3(a)

Signal Processing

shows the gain, on a logarithmic scale, of an MF,.
The sinusoidal input is sampled at a rate of 128
samples per second. Fig. 3(a) shows that the MF,
has a null of about —40 dB at a frequency of about
43 He. Fig. 3(b) shows the gain of an MF;. Here
we note that there are three nulls. As a comparison,
Figs. 3(¢c) and 3(d) show the sinusoidal response
of a VMF,,, and a VMF,, ;. Comparing Fig. 3(a)
with Fig. 3{(d), we note that, as the window size
increases, the VMF has a smoother response, con-
cluding that for larger windows the YMF has, in

-64—
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general, a smoother sinuosidal response than the
corresponding MF.

4. Vector median filters: Statistical properties

Most of the work done on the statistical proper-
ties of the MF involves independent identically
distributed (iid) input data. Some work was also
done for non-iid data [1]. Here, we will assume
that the input data is iid with probability distribu-
tion and density functions F,(x) and f(x), respec-
tively. Let v, be the ith element of the VMF output
at some position, where 1 <i< M. Using a well-
known order statistics result [3], the probability
density of y, will be given by:

N!
150 = G LT
1= F(y)1° (3, (1

where

P=UN-M)+i-1
and

Q=UN-M)+M-i

In the special case where M =i=1, equation
(1) reduces to the output probability distribution
of an MF with an output that is also iid. However,
for the VMF, even though the output elements are
independent, they are not identically distributed.
Furthermore, the density function of each output
element is one of the M functions that appears
periodically with period M in the output array.
Also, the mean and the variance of each output
element are not the same and, thus, we must define
the M-dimensional mean and variance vectors of
means and variances, respectively.

As an example of such calculation, it is assumed
that the input has an exponential or Laplacian
probability density function (EPD). The EPD rep-
resents the noise due to laser intensity speckle. The
performance of an MF on a laser speckle was
examined by Frieden [4]). We will calculate the

output statistics of a VMF due to EPD inputs and
compare these resuits with those obtained with the
MF. The details can be found in Appendix A. As
is shown there, the performance of the VMF on
the laser speckle is slightly superior of that of the
ME.

5. Computer experimental results

Using 512x 512 8 bits per pixel digital images
as input signals, the visual performance of the
VMF as compared to that of the MF is tested. The
purpose of these experiments is to demonstrate
some of the visual properties of the VMF using
realistic images. Fig. 4(a) shows an image with
computer-generated additive uniform pseudo-
random ‘salt and pepper’ noise (see Fig. 4(b)).
The noise consists of uniformly distributed ten
black or white spots per horizontal line. This noisy
image is then processed with different median-type
filters and their performance is evaluated both
visually and by their computer run-time. A VAX
11/750 computer is used.

As was mentioned earlier 1-D filters, like the
MF, were used to filter 2-D signals by first filtering
the rows of the signal, and later the columns of
the result. Since the VMF is basically a 1-D filter,
a similar scheme can be used for filtering images.
However, since the purpose of the experiments is
to compare the performance of the VMF to that
of the MF, for simplicity only the horizontal lines
of the image were filtered. This is equivalent to
filtering the sampled video signal.

Fig. 4(c)-(e) display the VMF of dimensions
3x1, 4x2, and $x3, outputs respectively. Each
filter is able to remove one-sample wide impulses.
Note that the VMF,,, is a MF. While visually all
three images seem identical, their computer run-
times, shown in each figure, are quite different.
For example, as compared to the MF,, the VMF«,,
requires much less processing time. Fig. 4(f), (g)
shows the output of a VMF;,, (MF;) and VMF,,,
respectively. Because now two-samples wide
impulses are removed, virtually all the impulsive

Vol 13, No. 3, October 1987
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Fig. 4. (a) Source image. (b) Source image with noise added. (¢) Noisy image filtered with an MF,. Elapsed computer time = 81 s.

td) Noisy image filtered with a VMF, . Flapsed computer time = 64 s. (¢} Noisy image filtered with a VMF, ;. Elapsed computer

tme = 57 5. (f) Noisy image filtered with an MF,. Elapsed computer time = 104s. (g) Noisy image filtered with a VMF,, . Elapsed *
computer time = 78 s.

noise is removed. Again, inspecting Fig. 4(f), (g),
we note no significant visual differences, except
that the VMF., is computationally faster than the
MF.. Fig. 5 summarizes the speed improvement
of the VMF in comparison to the speed of its

Signal Procesang

counterpart MF. Fig. 6 presents a more detailed
image example. Here, some image degradation can
be observed. For example, by comparing Fig. 6(c)
with Fig. 6(e), more degradation occurs as addi-
tional elements are included in the VMF. By also
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filtering the vertical lines, some of this degradation
\ can be corrected. However, the difference is not
very noticeable.

Similar experiments were performed on color
images. Here, for each color image the same type
of noise as for the black and white images was
added to the three RGB color components. This
noise has the appearance of different color spots
in the composite NTSC image. Rather than median
filtering the composite NTSC signal, a better result
is obtained when the VMF-ing is performed on
the RGB color components. The color VMF per-
formance was similar to the black and white VMF
image processing performance. Compared to the
ME, again the VMF has the faster processing time.

6. Summary

In summary, in this paper a new median-type
filter, the vector median filter, with MF as its
special case, has heen described. The principal
advantage of the VMFE over the MF is that it is

-67-

Fig. & Speed comparison of MF and VMF.

computationally faster while maintaining compar-
able visual performance. The speed improvement
is due to faster window movement along the data
array. If the signal contains extended constant
regions, a further speed improvement is possible,
because in this case we can eliminate the sort
procedure. The sinusoidal response of a VMF filter
examined and found to have a smoother response
than its MF counterpart. The statistical perform-
ance of the VMF was described and, using an
example, the SNR performance of the VMF and
MF were compared. Experimental results on actual
images were presented. With visual performance
comparable to the MF, the computational speed
improvement of the VMF was demonstrated. Some
image degradation was observed when the output
vector was increased. This is expected and is due
to the deposition of some samples in the filtered
signal. However, there are classes of signals like
images or speech signals where some distortion is
tolerable, but there would be always a trade-off
between speed and degradation.

Even though there are some difficulties, it is
posstble to define a 2-D VME. For example, tor a
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Fig. 6. (a) Original image. (b} Noisy image. (¢) Output of an MF,. (d) Output of a VMF,... (¢} Output of a VMF, .. (fi Output
of an MF;. (g) Output of a VMF,,.

square filter window N x N, we can define a 2-D
output vector M x M as a square subwindow cen-
tered within the filter window. The gradient of
the signal in the filter window can be used as the
trend test. However, the elements of the output
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subwindow must be carefully selected for
minimum sample deposition. In this sense, the
output 2-D signal will not be generated pixel
by pixel as in the case of the 2-D MF, but in
M x M blocks.
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Fig. 5. Speed comparison of MF and VMF.

filtering the vertical lines, some of this degradation
can be corrected. However, the difference is not
very noticeable. .

Similar experiments were performed on color
images. Here, for each color image the same type
of noise as for the black and white images was
added to the three RGB color components. This
noise has the appearance of different color spots
in the composite NTSC image. Rather than median
filtering the composite NTSC signal, a better result
is obtained when the VMF-ing is performed on
the RGB color components. The color VMF per-
formance was similar to the black and white VMF
image processing performance. Compared to the
MF. again the VMF has the faster processing time.

6. Summary

In summary, in this paper a new median-type
filter, the vector median filter, with MF as its
special case, has been described. The principal
advantage of the VMF over the MF is that it is

computationally faster while maintaining compar-
able visual performance. The speed improvement
is due to faster window movement along the data
array. If the signal contains extended constant
regions, a further speed improvement is possible,
because in this case we can eliminate the sort
procedure. The sinusoidal response of a VMF filter
examined and found to have a smoother response
than its MF counterpart. The statistical perform-
ance of the VMF was described and, using an
example, the SNR performance of the VMF and
MF were compared. Experimental results on actual
images were presented. With visual performance
comparabie to the MF, the computational speed
improvement of the VMF was demonstrated. Some
image degradation was observed when the output
vector was increased. This is expected and is due
to the deposition of some samples in the filtered
signal. However, there are classes of signals like
images or speech signals where some distortion is
tolerable, but there would be always a trade-off
between speed and degradation.

Even though there are some difficulties, it is
possible 1o define a 2-D VMF. For example, for a
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Fig 6. (a) Original image. (b} Noisy image. (¢) Output of an MF,. (d) Output of a VMF,, .. (¢) Output of a VMF,_,. (f) Output
of an MF,. (g) Output of a YMF,..,.

square filter window N x N, we can define a 2-D
output vector M x M as a square subwindow cen-
tered within the filter window. The gradient of
the signal in the filter window can be used as the
trend test. However, the elements of the output
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subwindow must be carefully selected for
minimum sample deposition. In this sense, .he
output 2-D signal will not be generated pixel
by pixel as in the case of the 2-D MF, but in
M x M blocks.
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Appendix A

The EPD is given as
fux)=Ae ", 0sx<x (A.1)

with
1 .
A=—- and x'=
p

where p is a distribution parameter. The mean
value of an EPD is

£=E{x]=p",

while its variance is

x=o,=p*
If we define the signal-to-noise ratio (SNR) of a
random variable x as

SNR, = E[x)/ o, (A.2)

then for the EPD the SNR is unity. We now
assume that the random variables of (A.l1) are
passed once through a VMF ., Substituting
(A1) into (1) yields

i=1,2,.... M

For the case when M =i=1, equation (A.3)
reduces to the MF output distribution.
The mean value of v, is given as

\

E =E[v]= J ooty dy,. (A.4)

x

Substituting (A.3) into (A.4) we find, either by
direct integration or by using integration tables,
that

(AS)

T. Kasparis, G. Eichmann -
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where, again,
P=YN-M)+i-1,
When M =i=1 (i.e. the MF), then
YA
E=E1=p* T (53)
where n =} N~-1). (A.6)

This matches the result of Frieden {4]. We can
rewrite (A.5) as

S
E =p° A} ( >‘
,7 kTU fV—k

where m=i-4M~+1,. (A7)

Comparing (A.6) and (A.7) we can see that,
depending on the values of M and i, the summation
in (A.7) can be extended to a greater, equal, or
fewer number of terms compared to the sum in
(A.6). Thus, the mean values of the elements in
the output data vector can be greater, equal, or
less than the mean value of the true median.
Equality occurs when the median is included in
the output vector.

Since the elements in the output vector do not
have the same mean, we define a vector mean, i.e.
a vector of means. Furthermore, we define a vector
magnitude mean E as the magnitude of the vector
mean, i.e.

B

Mo
E= [ v E;] (A.8)
The mean value E, can be approximated, using
the Euler-Maclaurin summation formula,

E =E[v)

~ :{]n[ AN+
=7 N+M-2i+2
1 N-M+2i
+—[— L ]} (A.9)
ALINTM i+ (N+ )

Asymptotically, when N -x, then E,=p In2,
that is, all output elements have approximately the
same mean as the mean of the MF (see (A.6)).
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A similar calculation for the variance §, yields

al 1
S=ol=p'y ——
0'_" p kgo(N"k)z
i=1,2,..., M (A.10)

Since the summation in (A.10) has the same form
as in (A.S), similar comments to those made for
the mean apply. Thus, we can define a vector
variance and a magnitude variance S given by

M
S=5Y S (A.11)
=1

Equation (A.10) can be approximated by

:
S.=o?

~,{ N-M+2i+2
TP UNFM 2N+

1 2 1
- - — 1. A.12

2AN+1)? (N+M—2i)} (A12)
Asymptotically when N » o0, S, = p*/ N for all ele-
ments, which is also the variance of the true
median.

T Kasparis, G. Eichmann / Vector median filters

From (A.5)and (A.10), the SNR of the VMF p . o
can be calculated. As a figure of merit, Fig. A.1
compares the magnitude SNR of the VMF with
that of the MF. As can be seen from Fig. A.1, by
using the VMF, a slightly larger SNR can be
achieved. Asymptotically, for larger window sizes,
when N - 00, the SNR is

s~1§5=(p2|n 2)/ N. (A.13)

The SNR of (A.13) represents both a large window
MF, and also a large data window and small output
window size VMF. In this sense, asymptotically
the MF and the VMF are statistically similar in
performance.
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Several alternative real-time optical Hough transform (HT) schemes that do not use moving optical elements are presented.
The rotation, called for by the HT kernel. are performed by various continuous computer-generated holographic (CGH) optical
elements. As opposed to a discrete CGH approaches, these implementatjons do not require high SBP optical elements and may
lead to optical cascading lending themselves to additional Radon transform (RT) optical processing.

The detection of straight lines is an important
image processing task that appears in many appli-
cations, such as target tracking, 3D object modeling,
contour-following and region-growing image seg-
mentation algorithms, etc. An important line detec-
tor is the Hough transform (HT) [1]. It has been
pointed out by Deans [2] that the HT of binary
images is equivalent to its forward radon transform
(RT) [3], a transform that is well-known from the
theory of computed tomography. The HT takes a
binary image and multiplies it with an impulsive 2D
kernel that contains both translation- and rotation-
dependent parameters. For a line in the so-called
normal form, the translation parameter p represents
the shortest distance between the line to be detected
and the origin while the rotation parameter 8 rep-
resents the angle formed by the line and the positive
cartesian x-axis (see fig. ). For a line in the so-called
intercept form, the two straight line parameters are
the slope m and its y intercept b. In either case, the
HT plane is a new cartesian place with the two
parameters as their cartesian grid coordinates. A
point in the HT plane represents a straight line from
the image with its intensity as the length of the line.
Collinear line segments map into the same HT plane
point. Because the HT kernel is space-variant, both
digital and optical HT evaluation approaches are
cumbersome. The purpose of the latter section is to
detail some new real-time optical HT architectures
suitable for real, 2D binary images.

In a coherent optical HT implementation, Eich-

Q

LN
0

Fig. 1. The normal representation of a straight line.

mann and Dong [4] suggested that both the linear
and rotation operations, called for by the HT kernel,
be performed using mechanical motion. Using a
standard Fourier optical system and rotating of the
object plane and simultaneously linearly translating
the image plane, succesive constant angle lines in the
HT plane can be traced out. Realizing that the
impulsive kernel can also represent a rotating incoh-
erent line source, Steiex and Shori [§] used a rotat-
ing Dove prism and a linear detector array to generate
at video rates the HT plane. Using a RT image pro-
cessing approach, an idea that was introduced in
optics by Barrett [6] and discussed by Gindi and
Gmitro (7]. edge-enhanced HT images were gen-
erated. While this scheme lends itself to video pro-
cessing rates, it does use a mechanical rotating
element. Recently, Ambs et al. [8] introduced an
optical HT implementation approach that does not
require a moving optical element. Instead, it has a
stationary array of a mosaic of computer-generated

230 0 030-4018/87/$03.50 © Elsevier Science Publishers B.V.
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holograms (CGH) that form, in each small neigh-
borhood, the HT space-variant kernel. For this sys-
tem to work, it is necessary that the image does not
vary in each of the neighborhoods. For an image of
space-bandwidth product (SBP) N3, in general, a
matrix of CGH of SBP N* is required. For realistic
images, the optical SBP can be on the order of 10"
to 10'2. To write such a holographic filter, in general,
an expensive E-beam generated CGH is needed. In
addition, the optical elements following this high SBP
hologram must also be of a high SBP quality. The
purpose of this next section is to suggest some alter-
native CGH optical HT schemes that potentially do
not require a very high SBP and also may optically
cascade lending themselves available for additional
optical RT processing.

To reduce the computational burden on the dis-
crete CGH filter, the geometric operations are par-
tioned into a series of simpler coordinate distortions.
In the optical map transformations, introduced by
Bryngdahl [9], the method of stationary phase is used
to alter the geometrical coordinates of the object
function. The success of this method depends on the
applicability of a suitable analytic phase function for
the proper coordinate distortion. As opposed to the
high SBP discrete CGH, and when this method is
applicable, simpler continuous CGH can be utilized
[10]. When the phase function is either 1D or sep-
arable 2D, the phase function can readily be deter-
mined. In some special cases, a non-separable 2D
phase function can also be established.

The coordinate distortion (phase) function D(x,
¥), in a mathematical notation, is

x x

Flu.vy= j fﬂx, y) exp[iD(x, )]
xexp[ -iX(xu+yv))dxdy, (1)

where X =2n/Afand fis the focal length of a Fourier
transform lens, 4 is the wavelength of the coherent
source, and (u, v) are the distorted coordinates, in
a stationary phase sense, defined as

u=(1/X)3D/dx, v=(1/X)3Mdy. (2)

It can be shown that the mapping, from z=x+iy to
w=flz) = u+iv, must represent an analytic function.
A number of such distortion functions are available
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Fig. 2. (a) An existing optical HT processing scheme that requires
the rotation and translation in input and output planes, respec-
tively. (b) A spatially parallel! HT system that does not require
any mechanical motions.

[11]). For example, the mapping transformation
w=_Zexp(ia) rotates an image by a fixed angle a. The
1D coordinate distortion function D(x)=xInx—x
represents a logarithmic distortion of the object
coordinate [12]. Finally, the complex 2D coordi-
nate distortion function D(z) =zIn z—2z represents
a cartesian to log-radial coordinated transformation
[10].

In the coherent optical HT implementation of
ref.[4], the rotation and the translation motions sep-
arate in the object and image plane (see fig. 2a). Since
a coherent optical Fourier transform system is trans-
lation-invariant, only the rotation operation must be
represented by a CGH. In fig. 2b, one such parallel
optical HT is depicted. By replacing the object with
a number of copies equal to the number of desired
rotation-angles and using a continuous CGH to rotate
each replica by the given rotation angle, the large SBP
discrete CGH optical HT system can be decomposed
into a parallel set of small SBP optical HT system
(see fig. 2b). Each sub-system generates a constant
angle line from the HT plane. By combining the indi-
vidual slices, the full optical HT plane may be dis-
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played. An alternative 1D distortion scheme depends
on the slope-intercept representatior of the HT ker-
nel. In this representation, the HT is

x

F(m, b)= J Jf(x,y)é(y-mx—b)dxdy. (3)

- -

We note that in this representation the kernel is in
the product form in the x- and the difference form
in the y-direction. To convert it into a convolutional
form, in both directions, a logarithmic coordinate
distortion in the two variables m and x is performed.
Letting x,=Inx and m,;=Inm to be the new van-
ables, a coordinate distortion described in ref. {12],
eq. (3) can be rewritten as

F(m. b)y={"(x;, y)+d(yv-exp(x,)), (4)

where « denotes a 2D convolution operation, This
logarithmic coordinate distortion allows the conver-
sion of the shift-invariant system. In the new coor-
dinate system, the standard Fourier transform filter
system may be used. In the Fourier transform filter
plane, a continuous CGH of the Fourier transform
of the distorted kernel d(y —exp(x,) is placed. The
outputs of the system are the log of the slope and the
intercept parameters. Because of the finite aperture
of the optical system, however, not all the possible
slope and intercept parameters may be displayed. To
solve this problem, a second Fourier transform that
displays the log-slope and intercept parameters rel-
ative to the x direction, i.e. using the kernel x=ny+c.
With the two parallel Fourier transform systems,
most straightline parameter values may be covered.
A final alternative, coordinate distortion scheme
used a 2D cartesian to radial coordinate conversion
to generate the optical HT plane. From ref. (4], an
alternative representation of the HT plane is

F(p.0)= J'F,(wcosB,wsinGexp(iwp)dw, (5)

where F, is the 2D spatial Fourier transform of the
object distribution function. To evaluate this 1D
Fourier transform, a cartesian to radial coordinate
transformation needs to be performed. It has been
indicated that with a stationary phase CGH, a carte-
sian to log radial transformation, i.e.
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Fig. 3. An allernative rotation-and-translation-free optical HT
Processor.

w=log[(x*+y?)"?], andf=tan"'(y/x), (6)

can be implemented. By placing in the Fourier trans-
form plane a continous CGH consisting of a com-
plex rotation Fourier transform filter in a stationary
phase sense, in the image plane the distorted spatial
Fourier transform is generated (see fig. 3). Thus,
using another continuous phase CGH that trans-
forms log w into w and a lens that provides a second
1D Fourier transform in the w and an imaging in the
@ direction, the combined system will display the
optical HT plane.

To summarize, a number of alternative mechan-
ical rotation- and translation-free optical HT imple-
mentations have been proposed. Using stationary-
phase computer-generated holograms, various coor-
dinate transformations, called for optical HT imple-
mentations, are presented. With these methods, high
space-bandwidth product input binary images can
be processed.

This work was supported in part by a grant from
the U.S. Air Force Office of Scientific research.
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For the selutions of many scientific and engineering prob-
lems, parallel processing has been shown to be a tast way to
process information.  To distribute and to interconnect
massive amounts of data between stages of parallel process-
ing elements, tast and efficient interconnection networks are
needed. [t has been indicated that, for some applications,
shuffle-exchange networks! * are verv effective in handling
such data interconnections. Shuffle-exchange networks are
implemented using repeated stages of the so-called perfect
shuffle (PS) together with arravs of exchange boxes that can
independently either exchange or bypass the adjacent lines.
Different combinations of PS and exchange box arravs have
found applications' * in evaluating polynomials, in sorting
data, in transposing matrices, as well as in computing the fast
Fourier transform.

(iven the inherent parallelism of optics. interest has been
focused on developing parallel optical computing architec-
tures. and in particular. on the implementation of optical
shuffle-exchange networks. Goodman et al* and Marhic¢®
proposed the use of optical fibers or wavegnides for an OPS,
However, for large data arravs. large bundles of fibers are

1 April 1987 / Vol 26.No 7 / APPLIED OPTICS 1167




L 4

needed. To take full advantage of the {ree-space propaga-
tion property of optical waves, Marhic.” Lohmann et al*”
and Brenner and Huang™ suggested the use of unguided
implementation anproaches  An unguided OPS consists of
either a hologram or a suitable lens and prism combination,
While the holographic OPS requires monochromatic light
inputs, the lens/prism-based counterpart can also be used
with white light illumination. In this Letter, additional and
more compact unguided OPS geometries are suggested.
New transmissive and reflective OPSs are described. Final-
Iv.animplementation of an optical generalized PS (OGPS) is
also discussed.
The PS P«(1) is defined as-

Pot) = (21 4 [2/NDmodN  0SiSN -1 (1

where N = 2. and j are integers and [2//N] represents the
largest integer that is <2//N. When binary symbols are used
as input line addresses, after a PS permutation, the binary
addresses of the output lines represent a right shift opera-
tion. Using this PS cvelic shift permutation property to-
vether with arrays of exchange boxes, any address configura-
tion can be permuted into any other configuration of the
order of (HogN)- steps.?

In the stretch-mask-add approach,” the unguided OPS
consists of four prism wedges and two positive spherical
lenses with focal lengths f; and /.. respectively. Correspond-
ingly. the total length of the svstem is 2fy + 2f.. To maintain
the same output channel spacing as that of the input. the
length f: must be twice the length of f, leading to a total
optical system length of 6f,.

A more compact OPS, using a new unguided OPS imple-
mentation, is suggested here. A PS requires that half of the
inputs diverge by a facter of 2 while they interlace with those
trom the second half inputs. To obtain this divergence. a
negative cvlindrical lens may be emploved. In Fig. ltal. a
negative cvlindrical lens-based OPY is shown. Here, side by
side, two identical aperture 1DV and tueal length (/) negative
lenses are used. For simplicity, the sketch shows plano-
concave negative lenses, where the unused portions of the
lenses are not shown. Collimated input beams illuminate
the plane of the lenses, where the input mask is located. The
output beams. at the back focal plane of the lenses, represent
the shuffled result. For an N-bit input. using geometric
optics. the bit or channel period (d) and spot size ta) are
determined by

d= b . )
N-1

EVTe RN ¥ N o
(
N INANEN]
EPRs A LT N “SUVN V)
|
(AR AN A
FE IR I SN

1
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i

Fig 1. Schematic diagrams of an OPS where D is the svstem

aperture. a is the input channel <ize, and d is the channel spacing.

tat A lens-based system: L, and L. are two identical focal length ()

negative evlindrical lenses. () An alternative lens-based svstem

where g single negative cyvlindrical lens together with two identical
prism wedges are used.
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Because the output spot size is magnified by a factor of 2. the
input spot size [Eq. (34 is constrained to one-half of the
input bit period d. For example. if the input bit spot size a
and their spacing d is 0.1 and 0.25 mm, respectively. a 50- X
50-mm” aperture OPS can optimally handle as many as
40.000 light channels. Compared to the stretch-mask-add
approach, this svstem is more compact since it has only two
optical elements while its length is reduced by a factor of 6.
With this methaod, the size of the output bit is identical to the
stretch-mask-add approach spot size. However, because
this OPS generates a divergent output, in a shuffle-exchange
network the exchange boxes must be able to recollimate the
optical beam. When a two-port optical waveguide switch is
used as the exchange box, by proper front and back lens
adjustments the beams can be demagnified to their original
sizes. This compact OPS can also be implemented with
large aperture reflective optical elements, i.e.. two identical.
side by side, radius R convex cylindrical reflective surfaces.
If necessary, the output spots can be separated out by a beam
splitter. In either case. the divergence operations are per-
fermed by two identical components (lens or mirror).

It is also possible to generate the required operations with
only a single negative cvlindrical optical element (lens or a
mirror). InFig. 1(b) the use of a single cvlindrical lens-based
OPS is illustrated. First. using a single negative lens, the
two divergence operations are performed. Second. using
two prism wedges, each half of the diverging results is
stretched and interlaced together to generate the final OPS
output.

Next, an optical implementation of a generalized PS
(GPSY is described. The interest in GPS stems from the
fact that in many applications. instead of using N = 2 inputs.
the use of other composite integer (M) inputs is required. A
GPS [G. (D] characterized by the two integers k and n (k =

Y if Oigr-
;1 k=M ¥ ne <Zro
y i
G‘k,n(’ ‘1**'\ k:ﬂ('—x\"\, freie = e

\

\

hivve =0 =N vk e -

Th-1k
n RN

“|in-nne
¥

(b

Fig. 2. Generalized PS permutation interconnection. (a) A more

detailed input and output relation. (b) A graphic example showing

the input and output relation.  Note that both the input and cutput
are each divided into k and n groups.




2. n = 2) suen that the total number of inputs M (M = kn) is
defined as®

G, = ki + [0nfol = M. 4

In Fig. 2ta), some details of the GPS permutation formula are
given, while in Fig. 2(b) a corresponding permutation exam-
ple is illustrated. Here. both the input and output ports are
divided into k and n groups, respectively. In each of the k
input groups, for example, in the jth group, there are n input
lines that are to be distributed to a fixed place (the jth line as
in the example) in each of the n output groups. Note that a
PS Py (i) isaspecial case of GPS.1.e., G.y 2(i). Since foreach
of the £ input groups an identical magnification divergence
operation is performed, for an OGPS implementation. k
pieces of either transmissive or reflective optical elements,
cut from either identical focal length negative cvlindrical
lenses or identical radius cvlindrical reflective surfaces, can
be utilized. In Fig. 3, using transmissive optical elements (a
negative cvlindrical lenslet arrav), three OGPS cases. GG (1),
G40, and G (). are illustrated. In general, for each of &
identical size elements the aperture 4 is
2D

.4—‘”_;"' (3)
Because the OGPS output is collected at a distance (k — 1)f
measured from the input plane, compared to input. the out-
put diverges by a factor of & — 1. Thus, the input bit or
channel size must be chosen as

D

< . )
TR k- TM =1 ®

While this method can be used for arbitrary k and n. because
of the beam divergence it is only practical for relatively small
k.

New unguided OPS geometries have been proposed. Us-
ing either 4 pair of negative cvlindrical lenses or convex
retlective surfaces, either transmissive or reflective OPSs can
be implemented. Compared to the stretch-mask-add ap-
proach, this method uses fewer optical elements and a more
compact geometry. The method can also be generalized to
implement an OGPS.

This work was supported in part by grants 84-0144 and 85-
0212 from the U.S. Air Force Office of Scientific Research.
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Nonlinear optical phase conjugation (OPC) offers solu-
tions to many problems in real-time optical signal and image
processing. In an analog mode, using OPC optical signals
{images) can be processed in parallel.! Also. using OPC,
digital lugic implementation has been suggested.” The opti-
cal logic variables are represented by either the beam on/off
or its orthogonal polarization states. Using these represen-
tations. a number of binary optical logic elements such as
AND. EOR. NOT, have been described. In this Letter, a new
method to perform parallel digital optical logic that com-
hines OPC with parallel logic generation techniques is pro-
posed. This technique is suitable to implement optically all
sixteen binary logic operations.

To perform parallel optical logic, Bartelt ~t al.* proposed
coherent theta modulation, while Ichioka and Tanida* (I-T)
and Yatagai® suggested incoherent geometric optical shadow-
casting {0OSC) methods. [n the following. the use of both
OSC schemes is discussed. In both the I-T and Yatagat
approaches the logic encoding is identical, with the differ-
ence being in how the different logic operations are per-
formed. While I-T uses different LED source patterns,
Yatagai uses a switchable operation mask to obtain different
logic vperations. In both methods. the optical heams must
pass three consecutive, either a source and two input or two
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input and a output mask, planes. This triple-multiplication
implies an optical triple-product operation. To perform an
optical triple-product operation. one may use acoustooptic
Bragg cells,® nonlinear third harmonic generation,” as well as
the nonlinear OPC.2 Here, we only discuss an OPC parallel
optical logic processing method.

An OPC technique based on the use of Yatagai’s scheme is
described first. InFig. 1, a typical OPC experimental setun
isshown. Three input beams generated from the same las-r,
labeled E4, Eg, and E, are collimated into a cubic [x'¥]
nonlinear material (NLM). The beams F4and E; re mutu-
ally phase-conjugated. The third beam E serves as the
probe. The nonlinear interaction of the three beams in the
NIL.M generates a polarization source that radiates a fourth
beam:

Eo x \'E,-Ey-Ei. (1)

where the * stands for complex conjugation. In analogy to
Yatagai's parallel logic geometry, the two encoded logic in-
put masks T4 and T (the encoding and operation schemes
for both Yatagai's and 1-T's methods are summarized in
Table 1) are inserted into the path of beams E4 and Ep.
respectively, while the operation mask T is placed on the E
beam. The phase-conjugate signal E;), separated out by a
beam splitter, is the logic output. This output beam pos-
sesses the same properties as Yatagai's arrangement. Since
this OPC geometry is no longer collinear, both input and
output beams can be separated either spatially or direction-
ally. This separation allows for the optical interconnection
of various stages of parallel logic processors. These proces-
sors are needed to perform multiple-instruction multiple-
data (MIMD) parallel processing. Also, to generate a
phase-conjugate signal. as long as E 3 and E beams counter-
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Table | Optical Encoding {Black/White Code} Techniques for Either the Yatagal- or I-T-Type Optical Patallet Loglc Processing

coded inputs

A B
EO [.O funchion{ 0 a8 AB A AB

logic % O 0, O3 G O G O0; G O G O, O, Oy O4 Oy

B A@BA+B A+B A®B B A+B A A+B AB |

o SN T o Jua *[ Blo"latl® [*J8 J2.1""]"2]a"]et

EI E.o mask

I-T
5| ':]I INDUtLED|® ® ®® 6@ 0@ 60 €0 @0 60 06 O® O® 0@ 0O 00 0O 0O
ee o

pattern

O O® OO0 #0 90 O® OO @0 @0 O® OO @0 0 OO OO

Both methods use identical input logic variable encoding (see left side). To implement different logic operations, coded operation masks
tfor Yatagai's methodi and coded input LED patterns (for the [-1 method) are shown on the right.

Tﬂl Fo i NLM Te
o S B
EC)-(TC/ BS
S
Ta Ts Te

Fig. 1. OPC implementation of a Yatagai-tvpe parallel logic pro

cessor. NLML cubie nonlinear material. BS, beam splitter: £y Eg

and £ . collimated input beams: £, the phase-conjugate vutput

heam. 'y and Th two coded input masks:and 7. the logic operation
mask

propagate (phase-conjugated), the third E. beam can be
incident from any angle. Thus, using different operation
masks with various angular probe beams together with an
angular mulitiplexer that selects at a given time a different
probe beam. both <pace- and angle-variant optical parallel
processing of large amounts of data are possible. Further-
more. ~ince the OPC is a coherent optical technique. the
combination of the OPC parallel digital logic method and
other standard coherent optical analog processing tech-
nigues can make it a more flexible arrangement.

Next. using the NLM cell as a real-time triple-product
cperator, an - T-tvpe parallel OPC logic generation is dis-
cussed. As mentioned earlier. to obtain the various optical
binary logic operations, the 1T T method use an arrav of
switchable LED source patterns. From a geometric point of
view, the mnterlaced output pattern due to the different
LD~ can beinterpreted as an optical shadowgram.  Howey-
er. this operation is also equivalent to a 2-I) optical multipli-
cation followed by a incoherent correlation. Itis well known
that 2-D coberent optical correlation can be performed using
a Fourter transtorm lens. Based on this concept, in Fig. 2 an
coherent real-time OPC correlator for implementing 1-T-
1pe parallel logic operations is shown. This coherent OPC
correlator was first proposed and demonstrated by White
and Yariv: as a means to perform various coherent analog
dnage convolutien and correlation operations. In addition
toa NEM celll three equal focal length Fourier transform
fenees are also emploved. For the 2 D optical signals. By
Fioand E.ithe front focal planes of three lenses, the phase-
cotnigated cutout s

T Ts To Te

Fig 2. OPC implementation of an [ T-tvpe parallel lugic proces-

sor. Ly, Lo and L. three equal-fucal-length Fourier transform

lenses. BS heam splitter: NLM, nonlinear material. £4. E- and E,.

collimated input beams: E.. output beam: Ty and T:. two coded

input masks superposed in the plane 4; T, a mask containing a

central &-function placed in the plane [); T a logic uperation mask
placed in the plane C.

—D--

'y d, ‘Q{j'
N T \L‘ ~
. | .
DEj” e T >
b ‘
Fig 7 Correlation of the overlapped inputs with four shifted 8-

tunctions: [0 wadth of ceded input variable mek: o, and 4. .

displacements of the ith -function: teftr overfapped imputs con-

tatniny four possible dluminated areas (see the lett side of Tahle I

cnstitter fonr shifted S-functions: trighty the correlation result con-
tuining nine possible illuminated areas

N S 3 o

where « and * denote correlation and convolution opera-
tions, respectively.  To obtain the required multiplication
operation for the I T-tvpe parallel OPC logic. the twa logic
input masks T yand Ty are superimposed and placed on the
F i beam. Inanalogy to the [-T LED . urce arrav. a corre-
sponding source mask Ty is inserted : ‘o the path of the E¢
beam with four transparent dots reprc senting four displaced
Dirac A-functions.  Rince no additional convolution is re-
aquired, the £, beam mask has a single on-axis dot represent-
ing a central & function. To obtain the correct correlation
function. the £, heam 4-function displacements d, and d, .
wherer = 1,2, 30 and 4. must be chosen as
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ld,| =ld, | = D4 (3

where D is the input pixel size. Since the convolution of a
function with a é-function shifts that function after the OPC
correlation/convolution operation, the needed 1-T-type par-
allel OPC logic is obtained. To insure the correct correla-
tion/convolution result, the NLM cell should be make thin
enough to enclose only the optical Fourier spectra of the
three interacting beams.®® For clarity, in Fig. 3, the 2.D
correlation of a square and four properly displaced §-func-
tions is illustrated. The leftmost box contains four sub-
squares, each of which represents a possible transparent
area. When all four middle box 3-functions are on, the
correlation result, shown in the rightmost box, contains nine
possible illuminated areas. With this method, using sixteen
possible on/off combinations of the four 8-functions, the
sixteen two-variable binary logic operations can be per-
formed. In the I-T method, because the input and output
areas are not identical, in general, it is difficult to cascade two
or more of these processors. For this reason, a conventional
(black/white encoded) I-T OSC method is classified as sin-
gle-instruction multiple-data (SIMD) processing.* To per-
form parallel MIMD operations. another encoding scheme,
such as the use of polarization encoding.!® is needed. In
polarization encoding. the two orthogonal linear polariza-
tions are used as two binary states. The thus encoded logic
inputs, after a particular OSC manipulation, can generate
two sets of orthogonal output patterns representing two
different logic operations.

Tosummarize: the use of a real-time OPC triple-product
device to generate coherent optical parallel logic operations
is described. A NLM can be used as a major interconnection
device that connects logic inputs to different output ports
where different logic operations can be performed. The use

196 APPLIED OPTICS ¢ Vol 26.No 2 ¢ 15 January 1987

of both the Yatagai and [-T-tvpe parallel OPC logic imple-
mentation schemes is discussed. When both input signals
are generated in real time, i.e., by two spatial light modu'a-
tors, fast real-time parallel logic processing of 2-D data can
be performed.

This work was supported in part by a grant from the Air
Force Office of Scientific Research No. 84-0144.
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A new optical binary pivel paitern recognizer for optical symbolic substitution cOSS) digiial computanon 1s proposed. Uang
optical spaual shift and optical phase-comugate AND operations, imput ssmbolic pattern recoemition can be performed  Some

il experimental results obtained with preosecond laser pulses are presented

1. Introduction

Opucs offers both the speed and parallelism
required for digital signal processing and computa-
uon. Two pronmising parallel optical computation
schemes are a parallel theta-modulation-based logic
system suggested by Bartelt, Lohmann and Sicre [ 1]
and opucal shadow casuing logic processors pro-
posed by Ichioka and Tamida [2]. and Yatagar [3].
To generate a complete set of 1wo-variable boolean
logic operations, there are other possible optical par-
allel structures [4-7]. Most recently. Brenner, Huang.
and Streibl (8] proposed an optical symbolic sub-
stitutton (OSSY computation scheme. With an O8S
scheme instead of decomposing the computation into
stages of boolean logic operations that use multiple
inputs to generate a stngle output. both muluple spa-
tial mputs and their relative locations are utihzed to
gencerate. 1n parallel, multuple spatial outputs.

The OSS method can be decomposed into a pat-
tern recognition and scription step [8]. In its oper-
ation. pattern recognition (searchung for the dark
miael locations) consists of possible input multiple
spatial shifts. a collincar superposition tan OR). a
threshold NOR. and a masking tan AND) opera-
tuons. In this approach. tor the shitt and superposi-
tuon operatton. an interferometer 1s employed. while
tor the NOR operations. a matriy of paralle) nonlin-
car optical threshold NOR gates 18 also used. From
the DeMorgan's theorem. howeser.,

(A=B=C=XN=Y~/ZV=4ABC- XY/ (h

a muluple-input NOR gate can be synthesized with
INVERTERSs and AND gates [8.9]. For INVER-
SION, nstead of searching for the dark. the white
ttransparent) pixels are recognized. Compared 1o a
threshold NOR. an optical threshold AND-based
approach has the advantage that it ss easier 1o imple-
ment opuically. However.in terms of signal-to-noise
ratio. an optical threshold-AND gate may introduce
an additional recognition error. When an .\ pinel
pattern s to be recognized using an optical threshold
AND gate. an output of one will be achieved only
when the detected total intensity (N where [ ois a
single pixel intensity § s above a threshold. Thus, with
this type of gate. one must distinguish between levels
(N~ 1yl and N/ As N ancreases. 1ts nowse immu-
nily decreases. For this reason. a threshold NOR
logie-based approach possesses a larger signal-to-noise
ratio than s threshold AND-based counterpart [8].
For the pattern seripuon step. the previously rec-
ognized pivel patiern ts used in another device where
only spatial shift operations are performed.

In this fetter. a new OSS pattern recognizer that
cmplovs a multiple-input boolean AND c¢lement 1s
desertbed and demonstrated. To recognize a mulu-
ple-white-pinel pattern. in addiion to muluple spa-
tal shifts. onlv AND operations are used. To prevent
noise accumulanion caused by a threshold-based
approach. an optical phasc-conmugate (OPCY mul-

N 030-4018/87:8013.50 ¢ Elsevier Scrence Publishers BV RN

tNorth-Holland Physics Publishing Division)
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Table 1

Fourteen possible four-pixel optical symbolic patterns 10 be rec-
ogmzed. According to the number of transparent pixels. these
patterns can further be classified into three groups. To recognize
a .V N 1203 ransparent-pinel pattern, N - 1 relative spatial
shiftvand a V- 1 input AND gate is needed

No.of - No.of nputs
WIS nput patterns sr;hs for AND

S AERTEPE -
AW 3

- . L R

€

)

S T Sl - <

uple-input boolean AND element is emploved
{7.i0~11]. The advantages of using an OP(C-based
symbolic recognition scheme are discussed. Some
preliminary experimental results using picosecond

laser pulses are presented.

2. An AND-based symbolic pattern recognition

For an OSS operation. the first step is a ssmbolic
pattern recognition. The input is a 2-D rectangular
patiern array that contains several elemental light
pixel patterns (the elemental patterns). For the pur-
pose of this discussion. let the elemental pattern con-
sist of a square of four-pixels. When the modulation
is a transparent/opaque code. this elemental pattern
can form sixteen different pixel combinations.
Excluding the two trivial patterns (either all trans-
parent or opaque) that can be recogmzed by other
methods. 1in table 1. the remaiming tourteen combi-
nations are listed. These patterns can be classified
into three groups: A, B and C. Since for the recog-
nition of the four group-A patterns only an optical
mashing operation on these patterns 1s needed. no
turther discussion is presented.

To recognize the six group-B patterns, shift oper-
ations must be performed. As an example, consider
the 1input pattern shown in fig. |. The input image
contains four four-pixel elemental patterns where one
ot them that contains two transparent main-diagonal
pixels 1s to be searched. To recognize this four-pixel
clemental-pattern. first, the image is replicated 1nto
two parts which are then either spatially shifted up
or 10 the left by one unit. respectively. Together with

search pattern

5 shft 4

recognition
R output

recegnition \-'AND
- mMasK

shift =

Fig. 1. Example of a four-pixel type-B pattern recognition. To
locate the search pattern, two copies o the spatialls shifted input
are directed. together with a recognition mask. to a three-input
parailel AND device.

a recognition mask that consists of four transparent
pixels at the four elemental pattern’s lower left-hand
corners. the shifted images are next directed to a
three-input 2-D parallel AND gate. In this case. its
output indicates that the search pattern resides at the
upper-right input image location. The three-input 2D
AND operation can also be viewed as 1wo cascaded
two-input AND operations. i.e. an AND between the
two shifted inputs. and a second AND between the
tfirst AND output and the recognition mask. In par-
ucular, the two two-input AND operations may help
to discriminate against both intra- and inter-clemen-
tal-pattern noises. For other type-B inputs (sece table
1). differential spatial shifts and recognition mask
are used. When one of the two replicated inputs 1s
stationary. only a single spabial shift. a shift that
allows the two transparent pixeis to overlap. 1s suf-
ficient. For example. 1in fig. 1. by fixing the lower
image posttion. only the upper image needs to be
shitled in the upper right direction to a position where
the two intra-elemental-pattern transparent pivels
overlap. In general. to recognize a two-transparent-
pixel pattern, a single relative shift and a taree-input
AND operation are required.

Stmilcrly, for the group-C patterns. to discrimi-
nate against the intra-clemental-pattern noises. three
coptes of an input image with two relative shifis and
a three-input AND clement are needed. To discrim-
inate against inter-clemental-pattern noises. an addi-
tional masking (AND) operation is used. As an
cexample. 1 fig. 2, a twpe-C pattern recognition s

~¥-
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1 - Fi Y
T ::; / recognition
ﬂ output

shift

Fig. 2. Example of a four-pivel tvpe-C patiern recogmuon. To
locate the search pattern, ihree copies of the spatially shifted input
are directed. together wath o recognition mash. to a four-input
parallel AND device.

shown. The input image contains two clemental
scarch patterns. Here. either a single four-input or
three two-input parallel AND elements needs to be
employved. In general. to search for a V-transparent-
pixel elemental pattern. V-1 pattern spaual shifts
and a N-input paralicl AND clement must be used.

3. Optical implementations

In this section. the use of an OPC effect for a boo-
lean muluple-input AND-based 2SS pattern recog-
mzer 1s described. In an OPC matenal. two
counterpropagating optical beams and a third ( com-
ing from an arbitran direction) arrive at a third order
optical nonlinear y ' material. When the phase
matching condition is satisfied. in a backward (with
respect to the third beam) propagation direction. a
fourth. the so-called optical phase-conjugate (OPC)
beam. 1s generated [10). Using this OPC beam gen-
eration property. various analog and digital signal
processing and computation applications have been
proposed [7.10-11}.

The OPC device can be considered as a three-input
boolean logic AND element. In fig. 3ta). an OPC-
based AND device is shown. A collimated tvpe-B
input image beam 1s divided. using a beamsphitter.
intwo two copies. Directed by two plane mirrors, the
two beams counterpropagate, with a relative spautal

mask
Ev X,/M

BS

:\: ih

Fig. 3 ta) A schematic ultrafast OPC-based sy mbolic pattern

PR

recogmuion device. (b} Experimental result obained with a 32
ps Nd'" YAG laser source and a 2 mm thick CS. cell. The input
pattern that consists of four elemental-patterns 1s shown on the
left-hand side where the clemental-pattern to be scarched con-
tamns two main-diagonal transparent hght cells. The recognized
output pattern 1s shown on the right-hand side.

shift. to an OPC matenial. A third beam. containing
the recogmition mask. is also directed to the 7' mate-
nal. The generated OPC signal counterpropagates
with respect 1o the third beam. Finally, using a sec-
ond beamsplhitter. this signal s directed to the system
output. With a slight modification. the OPC device
can also be configured as a four-input. an ¢lement
called for the 1vpe-C pattern recognition, AND ele-
ment. In this case. all the three OPC input ports are
used to carry spanally shitted input 1mages. At the
output port. the recognition mask 1s placed.

U'sing a polanzation encoding method. 1t 1s also
possihle 1o colhinear!y combine the third beam with
one of the counterpropagating mputs [ 10] (see tig
4 for the geometny b, Assume that the two counter-
propagating inputs are hinearlv polarized. With a
polarizing beamsplitting cube. the third input beam
that 1s orthogonally polanized 15 also collinearly
guided. with one of the counterpropagating inputs,
to the nonlinear maternial. In this case. the polan-
zation of the OPC output s idenucal to the thirg
input polarization direction and 1t can casily be sep-
arated by the polanzing beamsplitter.
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phase cori;;gdor PBS

Fig 4 An aliernative OPC-hased ssmhohic pattern recogmzer
With urthogonal polanzatoens.input £ and £ are colhinearhy
directed into the OPC matenal

4. Fxperiment

To verify the operation of the OPC-OSS pattern
recognizer. using a  QUANTEL modelocked
Nd' :YAG laser that generates 32-ps optical pulses.
an experiment was performed. A 2x telescope was
e¢mploved 10 expand the spatial profile *¢ an area of
2 cm* out of which a small portion (about | cm”)
was used. For a larger aperture OPC pixel pattern
recognition, before beam expansion. the source needs
to be spatially filtered. In the experiment (see fig.
3ta) tor the geometry). the sixteen-pixel input image
contains four four-pixel type-B elemental patterns.
The search pattern was a main-diagonal transparent
pixel elemental pattern. With an appropriate spatal
shift. the two beams ( A and B) containing two shifted
copies of the input mask were directed from the
opposite directions to a 2 mm thick CS. cell. The
recognition mask used 1n the probe beam (C) was
angularly shifted by 5° from one of the counterpro-
pagating beams. As illustrated 1n fig. 3(b). the pico-
second OPC output signals shows that the expected
scarch pattern was located at the input 1mage uper-
left and Jower-right hand corners. The residue at the
upper-right corner is the stray light noise. Using a
threshold detector. this stray hght noise can be
tiltered.

5. Discussion
This new OP(C-based symbolic recogmtion scheme

has the following advantages over the other schemes
[8.9]:
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(1) Instead of performing. as required by the
scheme of ref. [8]. three different ¢an 1mage super-
position equivalent to a logic OR. a threshold NOR
and a masking equivalent to an AND) logic opera-
uons, here. only a single logic element. a muluple-
input optical AND gate. is employed.

(2) The OPC-based scheme allows ultrafast pro-
cessing. Using materials such as semiconductor-
doped glasses or nonlinear polymers pico- or sub-
picosecond OPC switching response times have been
observed [12.13]. When the input binany pixel pat-
tern 1s also generated by an ultrafast 2D modulation
scheme such as from a parallel bistable etalon array
[14] an ultrafast OSS patiern recognition can be
performed.

(3) The OPC-based approach reduces the cumu-
lative error that occurs with a threshold-based AND
gate. This is true because the generation of an OPC-
AND output is based on the input phase-matching
condition that does not. to the first order. depend on
the input intensity levels.

(4) The OPC-based approach also reduces the
interference errors that occur n a collincar input
pattern superposition geometry. With the refs. [8.9]
schemes. it 1s important 1o perform a large aperture
nearly perfect image superposition. Otherwise. any
disturbance that changes input wavefront by a frac-
tion of a wavelength will produce a slowly changing
interference pattern leading 1o recognition errors.
This 1s not the case with the OPC AND-based device
since the off-axis angular inputs produce much higher
density interference fringes. The averaged pixel
intensity of the high density fringes can reduce the
decision error.

{5) The OPC outputs are potenually cascadable.
With a matenal. ¢.g. a muluple-quantum-well sem-
iconductor. that exhibits a large nonlineanty and with
an increased beam interaction region. ¢.g. & colhn-
carly combined polarization-encoded OPC geometn
(sce fig. 4). an amphfiecd OPC output can be
obtained. The OPC amphification has been expen-
mentally observed in CS. [10]. Thus. muluiple-stages
ot OSS operation are possible.

One of the problems with the OPC-based scheme
1s that to recognize a N-transparent-input {where N
ts larger than three) patiern. a number of cascading
AND stages are needed. This sequential operation
does decrease the recognition speed. One way to
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minimize this problem is to use a tree-t1ype (1n log;,
N steps) logic decomposition structure. Another
problem with the OPC-based scheme is that the OPC
off-axis input 1s scaled causing a vignetled output.
The polarization-encoded counterpropagating OPC
geometny (see fig. 4) can eliminate this problem.

6. Summary

A new OPC binary pixel pattern recognizer for OSS
has been proposed and demonstrated. Using a num-
ber of spanial shift and AND operations. a given
optical pixel pattern can be recognized. For an opti-
cal implementation. mirrors and beamsplitters were
used 1o obtain the required spatial shifts while an
OPC-based device was used for the logic AND oper-
ation. Using an OPC-based scheme. ultrafast sym-
bolic pattern recognition was experimentally
demonstrated.
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MULTISTABLE FABRY-PFROT RESONATOR WITH AN ACTIVE SAGNAC
INTERFEROMETER AS ITS RETRO-REFLECTOR
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Multistable operations of an active Fabry-Perot (FP) resonator with an active Sagnac interferumeter as its opucally
pumped vanable retlectance retro-retlector (SIFP), 15 analyzed. Intensity~dependent trangmission (reflection) curves are
derved. The corresponding multistable eperation s also indicated. By adjusting the SII P parameters. 1t can be configured
to be enther an optical limiter. or an amplifier, or a logic or a memory element.

1. Introduction

Recently. the dvnanuc properties of a Sagnac,
also Known as a cyclic or an antiresonant ning. mter-
terometer (S1) have been studied. A pussive Sl is a
highly mechanically sutostabilized device [1] that
can be used as an optical retroretlector. Using the
SI as an equivalent end retlector, both mode-ocked
Nd:glass and dve lasers have been constructed [2.3].
Among its applications are laser cavity dumping [4].
optical nonlinear parameter measurements [S], opti-
cal switching [5.6]. and optical digital computing {7].

To study optical multistability, there are two ma-
jor analytic approaches. In the first approach,
Maxwell's equations together with proper boundary
conditions are utihized to analvze multistabiity in
different optical resonator geometries, such as g co-
lnear Fabry-Perot (FP) resonator {K], a ring resonator
[9].etc. In a second approach, introduced by Felber
and Marburger (F-M) {10]. a replacement of a inear
by an equivalent nonlinear refractive index m a non-
absorbing co-hnear 1vpe FP resonator 1s used. In this
work , the use of a FP resonator with an active Sl as
1ts retro-retlector (SIFP). is proposed. In the follow-
ing sections. both passive SIFP transmussion and re-
flection equations are denved. By substituting the lin-

ear by its nonlinear intensity dependent phase counter-

part and using the F-M approach, subsequently, difter-
ent aspects of an active SIFP are studied. Finally . the

use of an active SIFP to perform optical amplification,
limiting. and digital logic are also described.

2. The SIFP as an equivalent FP cavity

In fig. 1(a). an SIFP with three mirrors (M, .1 =
1.2.3) and a beam-splhitter (BS) and with wuve direc-
tion-dependent amplitude transmission and retlection
coefficients as 7,(¢;) and (,(r/') withy = 1.b.and with
round-trip phases for the co-inear. the clockwise
{counterclockwise ) St sections as &, 8,15, ). respec-
tively 1s depicted. In fig. 1(b). an equivalent FP for
this SIFP is shown. The »urpose of this section is to
derive the intensity dependent transnussion (reflec-
tion) coefficients of its equivalent FP.

The SI complex amphitude transmittance and .e-
flectance. denoted as 7, and 7, . are *

z\_\ Srary {r;; explidd 1)
: ri oXpl 138, 2)fexp(id,) . h

Fo = 2raryry ty cos{A82) explidy) . (2)
where the average Sl counterpropagating wave phase
* A similar equation has been described in ret. [1]. Here.

w > let two Sl counterpropagating beams have different
round-tnp phases (8¢ = 6, ).

0 030-401.86:303.50 = Elsevier Science Publishers B.V. °s
( North-Holland Physics Publhishing Division )

~-88-




Volume 61, number |

hoE
(a) '
t i,
%- t 5 1.““
f g T § = Sane
Eme s = /" retro—reflector
i m
(b)

Fig. 1. (a) A schematic diag-am of the SIFP: £; and £,(£)),
the resonator input and transmitted (reflected) output waves:
M, i = 1.2,3). mirrors: BS, beamsplitter; ;7)) and r; 1 =
1.b), direction-dependent mirror and BS wave amphitude
transmittance and reflectance; 87 and 64y {85,), co-linear sec-
tien and the SI clockwise (counterclockwise) section round-
tip phases. (b) The equivalent | P diagram with an effective
ST as un retro-reflector tMgy). £5 and rg. SI wave amplitude
effective transmittance and reflectance.

and phase “:fference are &= (8, + &,,).2 and A,

=6 — 8,1, 1espectively. The cotresponding Sl inten-

sity transmittance (T;) and reflectance (R, ) are

TS::tSi:=R2R3_RS- (3)

R, =ir" = 4R RyR, T} cos(A5,2)

s

=R, cos"(A§, 2). (4

where R, is the maximum Sl intensity reflectance.
In agreement with ref. [1] tor unity intensity reflec-
tance forboth Ry and R and R, = T, = 0.5, Eys. (3)
and (4) become zero and one, respectively.

For the SIFP. the equivalent amplitude transmis-
ston {7) and reflection (r) coefficients are

e qifxmw,f)

o rir exp(15y)
t ry o+ 1 exp(is))

y = C = . ! S.\., AE‘_I_ (S)
£, rir, explib;)
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Using egs. (1)—(5). the SIFP intensity transmittance
(7) and reflectance (R) are

R T S— (6)
1+ Fsin=(67:2)
B +Fsin2(8,/2)
R =2 =.__L. 7
L+ Fsin2(87/2)
where
4R R,
T . (8)
(1 —\/R]RS)'
(1 =R MUR5R3 - R)) o
= 3 . 9)
(1 -VR|R))-
and
?\/Rl B VRs :::
B= —= . (§10)]

where the total round-trip phase is § 7 = (6, + ;).
For the SIFP 1n addition 10 a total round-trip phase
8 7. because of the use of R, both T and R also de-
pend on the SI beam counterpropagating phase dif-
ference A6 . Similar to an active FP, an intensity-
dependent nonlinear refractive material (NLM) can
be used to modulate both R and T(R) leading to
an intensitvdependent cavitv round-trip phase. The
intensity Jependent round-trip phase. in turn, changes
the cavity transmuttance (retlectance) and results in
multistable behavior of the equivalent FP cavity.

3. Active SIFP
A passive S1iv a mechanically stable device. How-

nals within the SIFP can cause the device to be vpu-
cally multistable. Since different NLM placements

in a SIFP can cause completely different transmission
(reflection) effects, two different cases need to be
considered. First. let the averaged SI phase 8; be
fixed while the co-inear section phase §; vary. Be-
cause now the two SI counterpropagating waves tra-
verse identical optical path, the S! phase difference 1s

-8Y-
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zero or 85y = 6.,. Thus, fromeq.(4), R, =Ry, is
tixed. This is similar to a co-linear FP case. Since the
parameters R, and Ry are not always equal 10 unity.
in eq. (9). instead of the usual co-linear factor (1 - R,)
the factor (R, R3 — Ry) is used. This replacement
causes the SIFP transmission modulation to be lower
than that of the corresponding FP. For an equal-ratio
BS, the power transmission of eqs. (6) and (9) reduces
to zero, while for a non-equal-ratio BS, transmission
(reflection) expressions are similar to a conventional
FP expressions. Thus, further discussions on its char-
acteristics are omitted.

Next. we Jet the co-linear phase §; be fixed while
we vary. with the pump intensity, the average phase
55‘ Because the two Sl counterpropagating beams
now traverse different optical paths. the SI phase
difference is nonzero. As the phase difference a8,
changes. R oscillates between its maximum value
R, and zero. This configuration is equivalent to a
co-linear FP with a single fixed and a variable reflec-

tance mirror. By inserting 4 cubic optical NLM in the
SIloop.ie.n =ng +n,(E?), and using an non-equal-
ratio BS, an intensity-dependent non-zero phase dit-
ference A, can be obtained [6,9]. Substituting in
eqs. (6) and (7) the relations

6y =bpg + A8, , (11)
A8 = (2R, ~ 1) A8

=(2Ry — D(2AL/A) n(ED) (12)

where 81, A8, and L are the initial total round-trip
phase, the SI average phase change and the NLM cell
length, respectively, results in an intensity dependent
SIFP transmission (reflection) curve. While with a FP
tuning either the mirror reflectance or the initial reso.
nator phase either affects the transmission modulation
depth or translates the transmission curve, with a SIFP,
because of different sine- and cosine-square function
frequencies and initial phases in egs. (4), (6) and (7),

(.o
0.8
0.6
0.4 (Q)
0.2
0.0
o 1.0
g
5 0.8
= o
é 0.4 (b)
c
S o.2
5.0
a
L 1.0
Do I \
o b A1 S=m2 | I
0.8 I ! Fa , | I (c)
v \ . Vil oA ‘ y
oz} I Lo X [N S W% .
0.0 1 —1 ‘1 - ——

o

! 2 3 4
SIFP normalized cavity phase

Fig. 2. Intensity transmission versus SIFP normalized resonator phase curves with adjustable parameters (a) input murror reflec-

tance Ry, (b) BS reflectance Ry and (c) resunator initial phase 6 7.
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-9uU-




Volume AL number | OPTICS COMMUNICATIONS | Januars f9n”

the corresponding tuning can result i radically ditter-
ent curves.

As examples. in figs. 2(a.b, ¢), three sets of the
SEFP transmussion versus input intensity curves, with
ditterent adjustable parameters Ry Ry, and & are
shown In g *(a) the eftect of changing the front
muror reflectance Ry is shown. For large R . because
in cach period the peaks of the two off-center reso-
nances are higher than the center resonance peak
there are two dominant transmission regions. These
multiple resonances are due to competitions between
Jitterent sine- and cosine-square phase tunctions.
Also. because of multiple-beam interference. the res-
onance bands are relatively narrow. As R decreases.
the resonance curve broadens and the center (side)
transussion gradually increases (decreases) As R
approaches zero. in agreement with ref. [6] the oft-
center peaks recede yielding a single SI sinusoidal
transmission curve. By varying the BS reflectance R, .
the curves of fig. 2(b) are obtained. Two extreme
cases. when Ry, 1sequal to 0.0 (1.0) and 0.5 (2 equal-
ratio BS), are of interest. In the former case, a con-
stant bias (i RyIR- Ry curve is obtained indivcat-
mng. that in this case, there is no interterence effect.
For a balanced (equal-ratio) BS. because on both
sides o1 the NLM the Si incident intensities are iden-
treal. the SI phase difference is zero and, therefore.
R, =R, is fixed. A_llhough the intensity <lependent
round-trip SI phase 8 = 6.y = 6,5 does vary, indepen-
dent of 84 (R2R3 — Ry) is always equal to zero.
Thus. except for a change in geometry . the above
two ypecial cases belong 1o a FP category. In fig.
2(¢). the ettect of varving the nitial phase 64 15 il
lustrated. Unlike a FP, where a change of the initial
phase translates the transmission curve here, a change
in the tmual phase. because it only affects the sine-
square function. modifies the transmission curve.

To study resonator multistability phenomena. the
SIFP transmission (reflection) curves of tig. 2 are
uttlized. Using the F-M method, taking transmission
as an example. eq. (6) is interpreted as a solution of
two simultaneous equations where the left hand side
is a linear equation with a fixed slope as a function
of input intensity while the right hand side is the non-
lincar intensity dependent transmission curve [10].
For a given slope, wherever mulitiple intersections of
two curves can be found, multistable intensity trans-
missions may exist. When a pump eam illuminated

TR
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Fig. 3. (a) Typical SIFP transmission versus input intensity
curve used for SIFP multistability analysis. Intersections of
the straight line with the nonlinear transmission curve indi-
cate multiple critical switching input and output intensities.
(b Multistable input and output SIFP intensity refations
with corresponding critical switching points 2. b through
m.n.

co-linear section NLM is used. the corresponding mul-
tistable SIFP operators exhibits the same chuaracteris-
tics as does the usual co-linear FP. For this case both
experimental and theoretical resulis are available
{8.10.11]). When a pump beam illuminated S! sec-
tion NLM is used, different multistable operation is
expected. In fig. 3(a). indicated by the solid line, 1wo
cycles of a fig. 2(b) SIFP transmission curve is shown.
The horizontal and vertical axes represent the input
intensity and SIFP intensity transmittance , respective-
Iv. Initially. indicated by the intersection between
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the transmission curve and the vertical coordinate,
the SIFP is in a low transmission state. Increasing the

input intensity decreases the slope of the straight-line.

The intersection then gradually moves up toward a
point a where the straight line is tangent to the non-
linear curve. Correspondingly, the output intensity
slowly increases. By increasing the input intensity

(a further decrease in the straight line slope), a second
intersection between the straight line and the nonlin-
ear curve is sought. The closest intersection to a is the
point b which is the next transmission state. Increas-
ing the input intensity until the intersection reaches
another tangential point ¢ results in a slowly increas-
ing output intensity. Past intersection ¢, another sud-
den jump brings the transmission state to a new inter-
section d resulting in another output intensity jump.
Similarly. by continuously decreasing the output in-
tensity the intensity-dependent transmission is forced
to change from point ¢ through n, and finally reaches
a zero output intensity state. In fig. 3(b) the corre-
sponding multistable intensity discontinuities are illu-
strated. The first (second) switch-on threshold input
intensities are labeled as [, ;| ([, 2 ). respectively,
To obtain bistability . the input intensity should be
below /-, Forinput intensities larger than/,, 5,

4 number of vutput intensity levels can be probed.

In principle. a SIFP and the nonlinear antiresonant
ring interterometric switch proposed by ref. [6] have
the same switching power requirement. In both de-
vices, using an identical NLM, the switching power
depends on the BS intensity transmittance (reflec-
tunce ). The larger the imbalance between the values
of the BS intensity transmittance and reflectance,
the less the switching power 1s required. To lower the
switching power requirement, materials with a large
nonlinearity must be used. However, some large non-
linearity materials can have a severe carrier diftusion
problem. For example. because the diffusion length
15 60 um in 4 InSb [12.13], nonlinear index modulu-
tion of a pertod less than this length will be washed
out. To avercome the diffusion problem, the use of
multple-quantum-well semiconductor matenals may
he helpful [14]. It has been reported that semicon-
Juctordoped glasses can produce large. tast and dif-
tuston-tree optical third order nonlinearities [15].
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4. Applications

Finally, compared to a nonlinear FP, a nonlinear
multistable SIFP is a tlexible device with several ad-
ditional adjustahle parameters. The NLM may be
placed in either one ot two possible locations. With
this device, in addition to the primary (cavity) input
beam, using differently placed NLMs other external
incident beams can also be used. As the overall induc-
ing intensity exceeds the first switch-on threshold.
both hysteretic and non-hysteretic bistabilities are
obtainable. While a hysteretic bistability is suitable
for optical memory and sequential logic operations.
for asynchronous logic operation. a non-hysteretic
bistability can be used to implement an optical lim-
iter or a sw.*ch. The use of higher input intensities
can cause SIFP multistable outputs. The tuning of
initial phase, and other parameters such as BS reflec-
tivity . can totally change the transmission curve.
Properly choosing these parameters leads to different
multistable operations. A SIFP multistability appli-
cation is multistable optical switching. A combina-
tion of different SIFP multistable operation modes
may help in the design of multiple-valued optical
logic and arithmetic computing elements.

5. Summary

To summarize, nonlinear operations in a FP cavity
consisting uf a Sagnac interferometer and reflector
are studied. A simple model that uses plane wave,
and non-absorbing refractive nonlinearity assumptions
is described. Different aspects of this sctive device
are outlined. Applications 1n optical switching and
computing are indicated.
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The generation of an optical Hough transform {OHT) to detect a circle is proposed. The method is based on the use of a 2D
multimode step-index optical fiber array. Both the position and radius of a circle can be detected. Some of the OHT performance

parameters are also discussed.

1. Introduction

The Hough transform (HT) is an algorithm that
transforms a particular curve to its corresponding
parameter domain. The HT was originally intro-
duced to detect straight lines in a two dimensional
(2D) image {1]. The digital implementation of the
HT has been extensively investigated [2~4]. Using
the HT straight line detection concept, a generalized
HT for the detection of other curves, such as circles,
parabolas, ellipses, etc. have also been proposed and
digitally implemented {5-8]. The generalized HT
offers an effective means for digital image processing
and pattern recognition. Recently, an optical HT
(OHT) has been discussed. For OHT straight line
detection, Eichmann and Dong [9] proposed a coh-
erent space-invariant processor where the OHT is
implemented by successively retating the input image
while translating the recording medium that records
a 1D space-invariant transform. Another OHT
implementation, proposed by Steier and Shon {10],
uses a scanning dove prism and a linear detector array
so that a faster processing speed can be achicved. In
this letter, another space-variant OHT method for the
detection of a circle using a 2D multimode step-index
fiber array is proposed. This method is generally
suitable for detecting all three parameters (i.e. radius
and origin) of a circle.

248

2. Generalized Hough transform

In a plane cartesian coordinate system a straight
line can be represented as

(1)

where the two parameters u, and v, correspond to
the straight line slope and its y coordinate intercept.
Using the two parameters ¥ and v as two new coor-
dinates, the HT maps each cartesian point (xo, ¥ ) to
another straight line in {(u, ) domain, i.e.

V=uUgX+1yg

(2)

where — x, and y, serves as its new slope and the v
axis intercept. If the input image is a straight line, it
can always be decomposed into an infinite set of
image points. In the HT domain, these infinite points
are transformed into an infinite number of straight
lines crossing at a common point (o, ty). Thus, for
the straight line detection, the HT of a 2D binary
image f{x, ) can be expressed as

v= —XoU+)o,

H(u, 1)= T

- x

Jﬂx‘y) d(y—-ux—v)ydxdy, (3)

where §(-) is the Dirac delta function. Similarly, to
detect a circle

(4

where u,, 1, and r, denote its origin and rcdius.

(x—ug)" + (¥—1o) =715,

0030-401/87/$03.50 € Elsevier Science Publishers B. V.
(North-Holland Physics Publishing Division)
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(O) Fig. 2. A schematic diagram showing the input and output angu-
lar relations for a multimode step-index fiber. For each angular
h input. a conical output illumination is formed.
transform o o )
—> point in the 2D :artesian input domain (e.g. A = i,

Fig. 1. The Hough transform for circular inputs. (a) A point (u.
1) in the 2D cartesian inout (x, v) domain 1s transformed to a
cone in the 3D (uw. ¢, r) HT domain. The cone diverges at a 45°
angle oniented toward the positive r direction. (b) A 2D input
circle is transformed to a point (ug, tq, fo) in the 3D HT domain.
This point is formed by an intersection of infinite cones that are
transformed from infinite input circle points.

respectively, the corresponding HT can be expressed
as

H{u.v,ry= J J‘ﬂX.J')
XO[(x—u) +(y-v)?—ri] dxdy. (5)

where again f{x, y) is a binary input image and u. v
and r are the three parametric HT coordinates. Thus,
an input point in the (x, y) domain is transformed
into a 3D cone that diverges along the positive r
direction in the HT domain (see fig. 1(a)). When
the input image contains a circle, an infinite set of
cones, generated from the circle image points, will
intersect at a common point (U, iy, ry) inthe 3D HT
coordinate system. In fig. i (b), this transformation
from a 2D circle into a point in the 3D HT domain
is shown.

3. OHT implementation

For OHT circle detection, an optical space-variant
transformation must be performed. In particular, a

y=1y) 15 to be transformed into a 3D conical surface
whose tip starts at a point u=ug, =1y, and r=0 and
is flared ata 45° angle in the positive rdirection (see
fig. 1(a)). To generate such an impulse response. a
multimode step index fiber can be used [11]. In fig.
2, a schematic multimode fiber light transmission
diagram is shown. Light emanating from a set of dis-
placed point sources is incident. at different entrance
ingles, into a multimode step-index fiber. Because of
the existence of discrete fiber modes. all angular
inputs can be assigned to separate and independent
channels. At the output. light from each angularly
multiplexed channel will be converted to a corre-
sponding sheet of conical surface illumination. At an
output screen. different size circles, corresponding to
different angular inputs, are displaved. This angular
multiplexing property of multimode step-index fibers
has been utilized in many fiber optic applications,
such as reduction of intermodal dispersion, enhance-
ment of fiber transmission efficiency, geometrical
transformations, etc. [11-13]. Here. the use of the
angular multiplexing property of a multimode fiber
is described for generalized OHT implementation.
For a fixed input coupling angle. the cone shaped
output illumination is predetermined. Using a com-
mon input coupling angle to the 2D fiber array. an
array of laterally displaced cone-shaped illumination
is obtained. With an identical fiber packing sequence
at both the input and output, this array can be used
to implerment a generalized OHT. In fig. 3, the pro-
posed multimode step-index fiber-based OHT sys-
tem is shown. The input illumination is a collimated
beam of monochromatic light. To obtain the required
input coupling angle, in front of the input plane. a
computer-controlled acousto-optic (AQO) deflectoris
used. The input image is an edge-enhanced 2D trans-
parency that contains the circles to be detected. Next
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Fig. 3. A computer-controlled generalized OHT circle detection
system. For obtaining different input angles. an AO deflector is
used. Input image 1s located in front of the 2D multimode fiber
array that performs the space-vanant point to conical transfor-
mation. At the output, a 2D linear diode array mounted on a
scannable translational stage 1s used. The signal 1s thresholded
and displayed.

to the input transparency is a 2D multimode step-
index fiber array that performs the generalized OHT.
Since the output is in a 3D parameter domain, for
detection. a 2D linear diode array mounted on a
computer-controlled longitudinally scannable trans-
lation state 1s used. To extract the correct output at
the intersection point from the noise, the detected
signal is thresholded. Finally. the three extracted
parameters (u,. 1, and r;,) are displaved.

There are two ways to generate the generalized
OHT. With the first method. the input deflection
angle ¢, is fixed while the longitudinal detector loca-
tion (c) varies. In this case, a fixed output conical
illumination is obtained for each input point. For
input circles with identical radii centered at different
origins, the output HT points are located on a plane
which is at a particular longitudinal distance away
from the fiber output plane. On the other hand. the
HT points of concentric circles are distributed along
the longttudinal direction. When the input contains
circles with different radii centered at different
origins, their generalized HT points are, in general.
at different places in the 3D domain. Thus, a scan
needs 1o be performed in the 3D parameter domain.
When a 2D self-scannable diode array is used, only a
longitudinal mechanical scan is to be performed.
After thresholding, the peak obtained at a point (ug,
1. <o) represents the position of the detected circle.
{ 4. 1) and its radius z, tan ¢,, where 1an ¢, is a lon-
gitudinal scaling factor. With the second method, the
angular multiplexing property of the fiber is utilized.
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Here, instead of using a fixed input angle and longi-
tudinal output scan, the input deflection angle is
scanned while the output detector location =, 1s fixed.
In this case. in addition to the 2D diode array self-
scan, the third dimension is the angle 8 to be scanned
by the input AQ deflector. The three detected param-
eters are again u,, Uy and ¢, corresponding to the
position of the input circle (u. v) and its radius z,
tan ¢,. Because of the AQO scan, the speed of detec-
tion is faster in this case.

4. OHT performance factors

Next. we discuss the resolution of the fiber-based
OHT. The first factor 1o be considered is the fiber
angular multiplexability, a capability that is impor-
tant for the above-mentioned second detection
method where the scanning of the input angle rather
than the output distance is used. The guided modes
of a step-index fiber can be charactenized by the
compound mode number m which 1s composed of an
axial (/). and a radial mode (g1 number. m =+ ¢
Corresponding to each compound riode m. a prop-
agation angle o, can be assigned where

O =Am/dan . (6)

and 4 is the input wavelength in air. and g and » are
the step-index fiber core radius and refractive index.
respectively. From eq. (6). the angular spacing
between two adjacent modes is

A0 =0m. — O, =A/dan . (7)

Assume that the input acceptance angle (inside the
core) is ¢, then the number of angular channels is
(13]

N=0/10. (8)

For example, for A=0.8 um, a=100 um. ¢, =0.13 rad
and n=1.5, in principle, a hundred angular channels
are obtainable. This number allows the possibility of
a smoodh angular scan. In practice. however, because
of mode coupling (crosstalk) the number of usable
channels is limited. Due to non-uniformity of the
refractive index, lack of core-cladding interface
smoothness, etc., light in one angular channel will
cross into other channels (crosstalk) resulting in a
decrease in the number of multiplexable channels.
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Also, due to the angular broadening of power distri-
bution within each channel, the crossialk increases
with fiber length. Thus. for OHT implementation
short (less than a meter) high quality fibers should
be used.

Other factors to be considered are the OHT input
image size and its resolution which are determined
by the size of the 2D fiber array, by the fiber input
acceptance angle, and by the available range of the
output longitudinally scanning distances. For exam-
ple. to detect a circle of 1.5 cm radius using fibers
with overall core-clading radius of 150 um, a bundle
of at least ten thousands fibers is needed. This num-
ber corresponds to an array packing density of about
1400 fibers/cm”. This density sets the lower limit for
circle detection. At this limit, circles with radii less
than a few hundred microns can not illuminate suf-
ficiently many fibers for correct angular transforma-
tion. This packing density also ¢:ts the upper limit
for OHT position and radius resolutions, i.e. Au,, 4ty
and Jr,. There are distances below which two circles
with either their origin or radius shifted can not be
distinguished. The resolution of the position and
radius also depends on the angular spread of each
fiber mode, the longitudinal focusing distance as well
as ray diffraction effects. Assuming a practical angu-
lar channel spread (including diffraction effect) and
the required output longitudinal propagation dis-
tance be 4o, and z,, respectively, the position and
radius resolutions can be found to be

dry=(Jul + 203)'"? =46, 2

=40, ro/tan @, . (9

For input circles with larger radii or for longitudinal
focusing distance, the resolution of the output posi-
tion decreases. Since the maximum input acceptance
angle of the fiber is limited (to about 0.25 rad. with
a glass fiber). detection of a circle of 1.0 cm radius
requires a 5 cm longitudinal focusing distance. For
circles with larger radii, the required increase in dis-
tance between the fiber output and detector plane
may cause a diffraction problem. To shorten the lon-
gitudinal scanning distance, a fiber with a large input

acceptance angle, corresponding to 4 high fiber core
refractive index. should to be used.

5. Summary

In this letter, a new method to perform a general-
ized OHT is proposed. The space-variant OHT 1s
implemented with a 2D array of optical multimode
step-index fibers. This method is suitable to detect
both the ongin and radius of a circle. Using a 2D fiber
and a scannable detector array. all three parameters,
1.e. the position and the radius of the input circle. can
be detected. The operational principles of the setup
have been described and some factors involving the
multimode fiber performance were discussed.
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