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During the tenure of this contract * have-made progress !on three fronts:
1 The recursion operator of the Landau-Lifshitz equation has been computed explicitly. This

has been achieved algorithmically by utilizing methods introduced earlier. It should be emphasized
that in addition to the important implications of these results to general lattice theories and neural
networks, the answers obtained are novel on their own merit since textbooks referred to constructing
the above recursion operation as an outstanding open problem.

- We have been invited to lecture on the above work in several major international conferences
(Italy, Japan, South America, France, Canada, US).

2. We have continued our study of nonlinear optics. We have introduced a new system of

nonlinear PDE's that governs the development path of photoresist fabrication. We have employed
a proof given in collaboration with Araki concerning an iteration scheme, used throughout the
analysis. We have reported this work in various publications and in a number of international
conferences.

3. Substantial progress has been made towards solving the nonlinear Schr6dinger (NLS) equation
on the half-line. Finite boundedness in conjuction with nonlinear evolution equations have alluded
investigators for years. Since nonlinear optics is to be employed on finite boundaries, a major thrust
was needed to achieve viable results. A new method has been introduced and tested on the NLS
on the half-line. For the first time concrete analytical results have been obtained, and the entire
problem has been reduced to linearizing a certain equation satisfied by the scattering data. This
linearization and the application of the above method to other important evolution equaitons is
under investigation.
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A Note on an Exact Solution for the Optical
Absorbance by Thin Films*

H. ARAKI
Research Institute for Mathematical Sciences. K'oto Universin. K roto 606. .apan

and

E. BAROUCH
Department of Mathematics and Computer Sciene. Clarkon Unitversitv. Potsdam. N Y 13676, U, S. A.

(Received: I July 1987)

Abstract. The Babu-Barouch solution of Berning's difference equation (or the electromagnetic fields within
optical thin films is shown to converge in the continuum limit to a solution (expressed as a converging series)
of the limiting differential equation.

1. Introduction

In nonlinear optics, there is mounting interest in a deeper analysis of the effect of the
nonlinear interplay between the light intensity and the complex refractive index. A basic
formulation for the electromagnetic field in thin films was introduced by Berning [2].
Recently, Babu and Barouch [1] obtained an exact analytical solution of Berning's

difference equations in a closed form. This difference equation describes the situation
where the thin film is divided into many sublayers and all relevant quantities in each layer
are constant within the layer.

The purpose of this Letter is to discuss the continuum limit, i.e., the limit of the width
of each sublayer converging to 0. We will establish mathematically that the

Babu-Barouch expression for the electromagnetic field converges in this limit to a
unique solution (explicitly given by a converging series) of differential (or equivalently
integral) equations which is a natural limit of Berning's difference equations.

2. Results

Let E, and H, be the electric and magnetic fields in the jth sublayer, 2 be the wavelength
of the incident (exposing) beam, be the thickness of the jth layer,

A', = n, - iK (2.1)

* Supported in part by the NSF Grant # ECS 8611298 and the mathematics division of AFOSR.
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be its complex refractive index and

• ¢, = 2,UlA (2.2)

(the phase thickness of the jth layer).
Then the Babu-Barouch solution is

fj dx {(E., e 2" +i ,,,)[ic"""'"' cosqp,,, + (iN,, 1)sin4qp, x

H [i [e 2""-2 1 + I cosp, 1) e(, -) e
2 ,1,~21

+ iNj, e 2 n'-x2 ,] sino,,. (2.3)

I

HJ dx (E , . cs0 + iAj ,e 2 '-'sin +1  X

X[ [ei {e 2
,,

2' + 1] cos4,+ I + [(i/N,, )e 2 -,21 +

[Ij+ I

+ iN,, e2 ,i, 2 "'J sin 4p,. 1}. (2.4)

We will consider the limit of

in.co, 6=emax( (1 ) -s0 (2.5)

j = D (the total thickness of the film). (2.6)

We assume that there is a smooth function N(z) such that

N (+. = N sk (2.7)

For j(rn) such that

J-1

we prove that the limits

E(z) = lim E,(,f), Ha(z) = lim H,,,, (2.9)

exist and can be expressed as a series of multiple integral expressions (see equations
(4.15)-(4.20)). They are the unique solution Of Coupled integral equations (5.9) and
(5.10). They are also the unique solution ofthe coupled differential equations (5.11) and
(5.12) with E(D) and H(D) as initial conditions.
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3. x-integration

Each fa(4tor in (2.3) and (2.4) is a sum of two terms (for t1e first two factors) or four
terms (for the remaining factors), each term proportional to an integer power of
w = e"- . After multiplying out into a Laurent polynomial of vv, the x-integration
eliminates all terms except those independent of w.

('ase(l): E,, = 1, H,,, = 0.
The negative ( - 2"'th) power of w multiplying E,,, in the first factor can be cancelled out
by multiplying the first terms of all remaining factors: 2i ' i + Y2' = 2"'. Instead of
taking the first term from all factors, we may replace some of them by other terms.
Replacement by the second or third term will decrease the power of w by 2' or 2" 1,
respectively. Replacement by the fourth term will increase it by 2' (2 + ' 2' + 2').
These changes of the power of w are listed in Table I.

Table I. Change of powers of w according to the chosen terms -
Case (I)

2nd term 3rd term 4th term

2nd factor -21+1 - -

I=j+ I -2
j t  -2i+ 2  2" 1

=j+2 -2ji2 -2" 21, 2

/-factor -21 -21-1 2'

For obtaining the w-independent product, we have to balance the decrease and
increase. If the fourth term is chosen in the 1 = k factor with an increase of 2', this can
be cancelled out only by one of the following combinations: The second term from the
I-factors with I = k - 1 ..., k'(j < k' < k and none here if k' = k) and the third term
from the I-factor for I = k' - 1 if k' > j + I.; the second term from the second factor if
k' =j+ 1.

The above type of sequence of choices may be repeated in mutually nonoverlapping
sequences of factors. Thus, Ej of (2.3) for E,, = 1 H,,, = 0 is given by

Ej= 11 cOsO y I-(-l) 1I (N,,+,IN,,.) tan 0,.,tan 4),,, (3.1)

where the sum is over n = 0, 1, 2, ... and, for n > 0, over all possible integers k, ... k,,,
ki, ... , k. satisfying

m > k,>k', - Il> k,> k2 - l> ... >k,> k, - I>j. (3.2)

The same reasoning gives the following expression for /1,:

Hj = (iNj sin j 1) (i cosp)x
SJ + 2
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x j( 1)( - I)" (N,5  INA,) tn q) Ltai 4),, +

x Hj (Nk,+ IlNk) Lwn 0k: tan q),+ (3.3)

where the sum in (3.2) is now divided into two parts V1 ') and y(
2 according to k, #1 + I

or k. ~j+ I (it = 0 term is in V')).

Case (2): Em = 0, Hm = 1.

product of the x-independent term (the first term in the second factor and the second

term in the remaining factors) is taken as the standard for measuring the increase or
decrease of powers of w according to the choice of terms in each factor, which is listed
in Table 1I. Thus, we obtain

H=t cos', -(-On (N,,/Nk,, 1)tanOktanOp,,±1  (3.4)

where the summation is the same as in (3. 1). We also obtain

E,~~~~~~~~ = 2i~ i , P

x j(1)( lPfj(N4,-/NA . )tan 0k; tan 0,., +

-j )"(/AItank, +1 x

I - I

x H (NA/Nk., 1) tan OA,, tan'P 0, + (3.5)

where the summation is the same as in (3.3).

Table 11. Change of powers of m- according to (lie chosen terms - Case (2)

I st term 2nd term 3rd term 4th term

2nd factor 0) 2''" -

1=i± 1 2''' 10 -2i" 2

1=j±2 2,2 0(2")1

1-fiactor 2'I - 2' 2'-
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4. Continuum Limit

We first discuss the limit of (3. 1) under (2.5) and (2.6). We do this by showing that (i)
the product of cos4p, converges to 1, (ii) the sum is absolutcly convergent with the
convergence uniform in m and {I,}, and (iii) the sum for each fixed n converges to an
explicit multiple integral expression.

(i) Let

G= sup max'JN(z)I, JN(z)K -'} (< c). (4.1)

Due to 1 > cos > I - ((P2/2), we obtain for sufficiently small 6 (so that
(d, 21rG6/A < 1),

1 ] fJ cosp, > (I - 2 2 G2 - 2 11). (4.2)

Since

I, < 6 1, = 6D (4.3)
k I k-I

tends to 0, the extreme right-hand side of (4.2) tends to 1 as 6 - 0. Therefore

lim [ cos(,= I. (4.4)
I=j i

(ii) For sufficiently small 6 so that Ip,1 i< 7r/3, we have cosq),J > cos nr/3 and
hence [ta PI 2Isin~pJ < 2 ,[. By (2.2), each term in the sum in (3.1) is majorized
by

(4G 2)" f] (I PI I (Pk,.1) = (4rTG 2/A)2" 11 ( ) . (4.5)

Therefore, the sum in (3.1) is majorized by

Y (47TG 2 1A)2" (Xlk, i ...k+ I') (4.6)

where the second sum is over all integers k, k .k, such that

ni> k, + I >k, > k ,+ I> ...> k,, + I >k;, >J. (4.7)

The permutation of these integers produces disjoint sets of the ordered set of 2n indices.
Therefore, the sum is majorized by

(4nG i' 2"(n)! 'Z~k, +,/k' " ,, l;,)(4.8)

~-0
where the sum is now all integers such that in > k,. + I >J and m > kl >j. Since

/ ,, Y /k = D, (4.9)
k-j+I k-I
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we have now the majorization of (3. 1) by

S(2ni)! - '(41TG 2 DA)" = cosh(4itG2D/)<. (4.10)

(iii) For sufficiently small 6 so that i 7r13, kwe obtain

tan4Ok - OkI1 SC0 ,j'- 1 qAj -< CVJj (4.11)

by the mean value theorem (and the monotonicity of sec 0, for small 0j). By combining
this estimate with the estimate leading to (4. 10), we obtain

H 1 (Nk+,I/Nk) (tan pk',tan Ok. - - H(NkI +INC)(tOkt kI)}

(C (2n)! -(2n) (47TGD2 ) 2"

=(4C~zG 2D 52/A) sinh(47tG 2 D1 ) (4.12)

which tends to 0 as 5--+ 0. On the other hand, the summation

YX H (Nk, I INk(ck .I )

(2 [/A) 2" H N( (X lAQAk+ (4.13)

(see (2.7)) with n fixed and (3.2) satisfied, tends to

(2 ir/A )" 5dz,,5 N(z. )2 dz, ... N(z,)'dz,

=(2itM.) 2n S N(z, )2 d7, f5 dzi 5z ..5 N(z) 2 dz,, 5z" dz,, (4.14)

as Y-',1 .4 - z by the definition of the (Rieniann) integral.
Thus, we have established the following when E, I 1 If. 0.

limEj= Y (-IY(2r/A)2 " dz:, N d:, ... N:)2 d:,
-0 Sc f .

= 3(1)(21'.) 2"1 5N(:,)2 dz, f dz; . .. f N z,2 d,, dz,,

In (3.3), thle first term tends to 0 because N, ,sin q), 0i while the rcst is estimated

by (4. 10). Therefore, we obtain

lim H, ~ (1)" (2t1A) 2 , - I N(: d,, 5 1d2d. ,, . .z" fN(z)- d: 1
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= i( - )"(27tI).)" N(z) 2 dz " dz .. d z N(z, ,)2 dz,

H, H(z )  (4.16)

when E,,, = 1, H =0.
Similarly, when F = I f, 1. we obtain

limHj = H (- )"(2,/A) 2
-
zJ N(z) 2

dz,, dz,.., /N(z;)2 dz; Sidz
n cn ,( :.

= j(-1Y)"(27z/).) "I dzj f N(z, )2 dz' ... } N(z,) dz,

Hh(z), (4.17)f°+: 1) f. 1 fD
limEj (i(-1)n(21r/A)" d , N(z,):dz,,.. N(z)2 dz; dz,n-0 . f, .. i

= i(-1l)(2n/A)z" J dzj N(zj) 2 dz' ... N (z) 2 d dz,
-0o z fz, f .

-E ( -) . (4 .1 )

The general case can then be obtained as linear combinations:

E(z) = E(D)E,(z) + H(D)Eh(z); (4.19)

11(z) = E(D)H,(z) + H(D)Hh(z); (4.20)

5. Integral and Differential Equations

From (4.16), we see that

H1(z) = (21ti/A) N(z,+ ,) 2E(z,,+ ,)dz,,+ ,. (5.1)

(d/dz)H,(z) = -(2i/))N(z)2E,(z). (5.2)

From (4.15). we also see that

E,(z) = 1 + (2i/2) f H,(z,) dz' , (5.3)

(d/dz)E,(z) = - (2i/A)H,(z). (5.4)

Conversely, the coupled integral equations (5.1) and (5.3) lr/ h and II,. can bc solved

by iteration, giving rise to the first expressions of(4.15) and (4.16) as the unique solution.
The coupled differential equations (5.2) and (5.4) together with the boundary condition

E,(D) = 1, H,(D)= 0 yield (5.1) and (5.3) and, hence, again have a unique set of

solutions E,(z) and 11,(z).
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In case (2), we obtain the following from (4.17) and (4.1IQ)

Eh(z) = (2ilA) JD I1,h(z., dz, (5.5)

(d/dz)Eh(Z) =-(2ltiI).)Hh(z) , (5.6)

H()=I + (2iri/A) f N(zJ2)Eh(z,) dz,, , (5,7)

(dldz)Hh(z) =- (27ti/)L)N(z) 2 E,(z) . (5.8)

Combining the two results, we obtain the following coupled integral and differential
equations for the general case

E(z) =E(D) + (21ri/A) H(z') dz' ,(5.9)

H(z) = H1(D) + (2i/iA) .1N(z' )2 E(z') d.- (5.10)

(d/dz)E(z) =- (27i1iP)H(z), (5.11)

(d,'dZ)H(z) = - (27ri/A)N(ZJ 2E(Z) . (5.12)

Equations (2.3) and (2.4) are solutions of the difference equation (1) of [ 11. Dif-
ferential equations (5.11) and (5.12) are the continuum limit of this difference equation.
Thus we have shown that the limit of the solution (of (1) in [ 1]) is thle solution of the
limit of the equation.
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Simultaneous bleaching of a contrast enhancing film (CEF) and the underlying positive
photoresist is considered in the absence of any interface or substrate reflectivity. The intensity
transmitted by the CEF is determined as a function of exposure time exactly using the absorptivity
of the film in Dill's model equations, Corresponding to this time dependent transmitted intensity,
the concentration profiles in the positive photoresist have been expressed exactly in closed form.
Relations, that implicitly define the developed image profile, are derived assuming that the resist
development can be approximated by a two state process. Furthermore, they are solved
numerically for a polysilane-AZ2400 resist system and a model CEM-388-resist combination
proposed by Mack. The predicted image profiles are in excellent agreement with the
experimentally determined profiles of Hofer et al., for the polysilanes, and the predictions of
PROLITH for the model system of Mack.'

I. INTRODUCTION centration of the photoactive compound (PAC) in the un-

In contrast enhanced lithography' (CEL) a conventional derlying photoresist film, an implicit functional relation for
UV resist is coated with a thin bleachable contrast enhancing the developed image contour is derived. The derivation as-
film (CEF) that exhibits "bleaching latency." ' Exposure of sumes, following Greeneich " and Watts,'' that resist disso-

the CEF above a certain threshold level results in increased lution proceeds down to the substrate in the z direction first,

transmission, while exposures below the threshold produce followed by a lateral development in the x direction.' 2 The

little change. Significant improvement in the quality of pro- final image profile is obtained for an AZ-2400 resist film

jection printed features has been reported by Griffing and exposed through a polysilane layer and developed in an AZ-

West for 0.5 pm images 1.2 and by Hofer et al.3 for 1.0 pm 2401 developer. The calc'ilated images are in excellent

images using CEL. Griffing and West" 2 used an undisclosed agreement with the images reported by Hofer et al.' Devel-

organic dye for the CEF, while Hofer et al.3 used a 0.2-pUm- oped image profiles have also been calculated for the model

thick aliphatic polysilane as the CEF. Hofer et al. also re- CEL-positive resist combination investigated by Mack' 3 us-

ported that the nonlinear bleaching of the polysilane film ing PROLITH to simulate CEM-388. The two calculations are

used by them was well described by an effective concentra- in good agreement.

tion dependent Dill's A parameter,4 given by
A r = 10.5 + 1.4 (M, - 0.4) ]A , (1)

where M, is the concentration of the unbleached polysilane 11. BLEACHING OF THE CEF

with absorbance A. First, the intensity transmitted by the CEF is determined
Recently Dill's model equations for the exposure, bleach- as a function of position and time. The simultaneous bleach-

ing of "linear" resist materials, have been solved exactly in ing of the underlying photoresist is determined as a function
the absence of standing waves,- and the solution extended to of position and exposure using this transmitted intensity.
the image reversal process with positive photoresist.6 More Equation ( 1) may be rewritten more generally as
recently, Dill's model equations have also been solved in a Aff = aM, + /9 (2)
closed form when the bleaching characteristics are nonlin-
ear.7 It has been applied to the simultaneous bleaching of a w te ripdenotnt F a he a a oa
positive resist and that of a contrast enhancing polysilane material dpedent constans or th escaso
film, assuming that the reflections can be ignored. As Old- materials proposed by Griffing and West' and investigated
ham argues' ignoring reflections "is actually appropriate in by Mack,' a in Eq. (2) is equal to zero.The bleaching of the CEF is described in terms of Dill's
many cases since the CEL itself is a major aid in suppressing m

reflections." In any case, the effects of reflections from the model equations by

interfaces can be included using the recently derived closed dMo
form solution for the optical absorbance of thin films in the " - I, M C, (3)

presence of standing waves.9 A comprehensive discussion of and
all reflections and standing waves in the CEL process will be
presented in a later publication. alM- = - (aM 2,+3M, + BI,, (4)

In this paper, using the closed form solution for the con- az

.... " A--tn' l fl12). Mar/Apr 1988 0734-2tIX/88/020564-OSSO1.00 r:c 1980 American Vacuum Society 564
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with the initial and boundary conditions wheref(z) is an integration constant. Substitution oft = 0

M (zxO) = I O<z<1 (5) and use of Eq. (5) in Eq. (7) yieldsf(z) =a/2 +. Then

and Eq. (7) can be integrated as

I,(O~,t) =I 0 (x) for all x and t. (6) z dlny{(a/2)(l -y)
"JR(xjt)

Here z is the normalized depth into the CEF measured from
the top, x is a lateral coordinate measured across the image
and used to define the incident aerial image intensity I,(x), +/3( 1 - y) - B In y}'. (8)
B, is the exposure independent absorption parameter,4 C, is
the bleaching rate, and I is the exposure time. The lower limit g(x,t) is yet to be determined. It is ob-

Following Babu and Barouch,5 a first integral for M, can tained as M, (O,x,t) upon substituting z = 0 in Eq. (8). But
be written as from Eqs. (3) and (6),

g(x) = M, (O,x,t) = exp[ - Io(x)Cct ]. (9)

(a12)M2 ++nMc + BM In Mc +- MInMc =f(z), (7) Differentiating Eq. (8) with respect tot, and combining itdZ with Eq. (2), one also obtains

'n(X) [(a/2)(l -M ) +,6(1 - ) -c In M, (10)
1I (z,x,t) -=•2 (10)()~I f~ ~~~C~I±~I()~(a/2) [ 1 - e - 2 10 *) c ] +, [1 - e- ° )c ] + Bclo( x) Ct

The ratio I ( l,x,t)/1o(x) is a measure of the improve- The lower limit h(x,t) is determined, as before, by substitut-
ment in the contrast of the aerial image due to the nonlinear ing 6 = 0 in Eq. (15) and then using Eq. (14) in Eq. (11),
bleaching of the CEF.

III. BLEACHING OF THE POSITIVE RESIST h(x,t) = M(6 = O,x,t) = exp -C I( lx,t)dtJ.

Simultaneously, as the transmission of the CEF increases, (16)
bleaching of the PAC in the underlying positive resist con-
tinues. The bleaching of the PAC is described by This completes the determination of the closed form solu-

dM tion of the PAC concentration profile in the CEL process,

= IMC (11) when interface reflectivities are not significant.

and

.... (AM+B)I 0<6<1, (12) IV. CEL IMAGE PROFILE CALCULATION

with A, B, C being the usual resist parameters and M the The resist dissolution process can be approximately repre-
concentration of e the usua resis ar asthe depth sented by a two-stage process. '"" In the first stage, dissolu-

concntrtio of he AC.A an Bas ell s te dpth tion proceeds in the z direction until all the resist is cleared
parameter 6, are nondimensionalized using the photoresist thesubstrae in the region of axa the r smit-

thickness. Thus, 6 = 0 at the CEF-resist interface and 6 - I from t he substrate in the regions of maxima in the transmit-

at the resist-substrate interface. ted intensity. This is followed by dissolution in the lateral

The initial condition is still given by (x) direction till the end of the development process.
Let the total development time be td, and the phenomeno-

M(6,x,0) = 1, (13) logical dissolution-development rate function be given by
R[M] (see Refs. 13 and 14). Then

but the boundary condition for I(6,x,t) at 6 = 0 is now time
dependent due to the increased transmission of the CEF.

I(Oxt) =I,(1,xt) (14)

and is determined from Eq. (10).
However, this does not create any difficulty for solving where

Eqs. (II) and (12). Again following Babu and Barouch,5

the solution M(6,x,t) is determined implicitly in the absence ( - (18)
of substrate reflectivity, as Jo R [M(6',x) ]

-("O t6 is determined by setting 6(x) = 1 for all x, where

5=1 d Iny[A( 1 -y) -B Iny-'. (15) 1, (l,x,t) has a maximum. At other values ofx,&(x) is fixed
Jh(,,) using this value of t in Eq. (18).
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Changing the variable of integration from 6 to M in Eq. from the substrate in the regions where I ( l,x,t) has roaxi-
(18) and replacing (d6/dM), with the result obtained by ma, is obtained from Eq. (18) by setting the upper limit
differentiating Eq. ( 151 , one obtains 6(x) = 1. Equation ( 18) leads to the line profile at values of

x, other than those corresponding to the maxima in
dM (19) 1 (l,x,t). Therefore, the solution of Eq. (24) leads to the

Jaco.,o M[A(I - M) -BIn M]R(M) final image contour xf(6), once the model rate function
R[M] has been specified.

or

ts5=f(Mb,M,). (20) VI. RESULTS

The dependence of the integral in Eq. (19) on the expo- The developed image profile is obtained for the polysilane
sure process is now only through the limits of integration, AZ-2400 system ofHofer et al.'and the model CEL positive
which are determined implicitly by Eq. (15). The subscripts resist combination ofMack 3 used by him to simulate CEM-
b and t in Eq. (20) denote the bottom (6 = 1) and top 388 type materials. In both cases, the incident light intensity
(6 = 0) of the photoresist layer. is calculated using the projection optics subroutine from

Then PROLITH. The results for the two resist systems are presented
x (6) dx separately below.

t = Id -- t6 f 6 d (21 )
R[M(&,x) A. Polysilane-AZ2400 resist system

Here x, (6) is the line profile calculated after a development Since it is desired to compare the calculated profiles with
time oft6 and is determined from Eq. ( 18). The final devel- experimentally determined profiles, the simulations here
oped image profile, given by xf(6), has to be determined by have been performed at the process conditions chosen by

. solving Eq. (21) for the given td and the t. obtained from Hofer et al., in their experiments. For completeness, they are
Eq. (18). t. can also be rewritten in terms of the functionfof listed in Table I. The development rate functions R [M] em-
Eq. (20) by changing the variable of integration to M and ployed in these calculations for the 5:1 and the 4:1 AZ2401
recognizing that developers, are given explicitly by Hofer et al. "4 It should be

noted that the exposure wavelength used by Hofer et al. is
S)( = M [A( I - M) -B In M A =313 nm and that the image development using 5/I wa-- ,fx] h -i~"-'Bn (22)t
k dx , h [A( I-h) -. B In h ter/AZ2401 developer requires a very long 660 s or more.

The results are presented in several figures. Figure I presents
where h = h(x,t) is given by Eq. (16). Equation (22) is the normalized aerial image intensity distribution. Figure 2
obtained by differentiating Eq. (15) with respect to x. shows the image profile as a function of development time in

Substitution in Eq. (21 ) yields a 5:1 AZ2401 developer. The effect of surface inhibition on
the profile is evident. The shape of the calculated profiles

=(dInh - agrees very well with those reported by Hofer et al. For com-

S ,)[A,'I - h) -B In h parison, image profiles obtained in the absence of the polysi-

lane film are shown, for otherwise fixed process conditions,
x I d In M{[A( 1 - M) - B In M JR(M)}1 in the same figure. Degradation of the image by a reduction

JaMI-,(h) I in the side wall slope and resist thinning is obvious.
(23)

=( In h) [A (I - h) - B In h I f(Mf,M,), TABLE 1. Polysilane simulations.

(24) Projection system Resist parameters
(AZ2400 @313 nm)

where My and M, are used to denote the two limits of inte- A = 313 nm A - 0.162/pum
gration in Eq. (23). NAo = 0. 167 B=0.I84/tnm

a= 0.52 C= 0.0128 cm2 /mJ
Defocus = 1.87 jm Thickness = 1.25/pm
Linewidth = 1.0pm

V. IMAGE PROFILE EVALUATION Pattern = line-space pair,

The procedure for evaluating the developed'image profile CEL parameters (for 313 nm)
is summarized here. Results are described in the next sec-
tion. ot,4 = 8.93/pum

8E = 0.175/pum
The aerial image intensity 1t(x) incident on the CEF is C, = 0.0376 cm'/mJ

determined by the projection optics. Ic ( l,x,t) is then ob- Thickness = 0.2,pm
'tained from Eqs. (10) and (8). The lower limit of the inte- Energy= I It)mJ/cm2

gral in Eq. (15) is then calculated from the integral in Eq. (except where noted)
(16). The development time to required to clear the resist
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0.7- 125 -- --

0.6- F_~-

0.5- C 075

0.4- 051)

a. ~0,25-

S0.2- 0.00-~ F II

X 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.1-/ Distonce from image center (F m)

FIG. 3. Simulated profiles of 1.00 urn line-space pair in A22400 resist as a
0.0- function of AZ2401 developer concentration for various exposure energies

0 and development times chosen for the same nominal linewidth: - 4:1 and
Normalized distance from im~agescenter 180 mJ/cm., 60 s; --- 5:1 and 180 mi/cm', 240 s; - 4:1 and 110 mi/cm',

140 s; .. 5:1 and 110 mi/cm2
, 725 a.

FIG. 1. Normnalized aerial image intensity distribution of I .00,um line-space
pair. A = 313 tim. NA0 = 0. 167, a =0.52, and defocus = 1.87 pm.

nesses are investigated: 0. 2, 0.4, and 0.6 .sm. Exposu re ener-
Sinc deelopentwit the5:1deveope taes a unuly gy for each thickness is adjusted to give the same nominal

logSimce, developent wfuith th 4:1 developer taks aen sunduly linewidth at the bottom of the opening after development for

at two exposure doses, namely, I110 and 180 mJ/cm'. It may thfied istiorae f.N ucihbtion used here Thpvriatint fth
be noted from Fig. 3 that the 4:1 developer causes resist thin- side wissltiangl with functicness ofre The maeatiin f the
ning at the lower exposure compared to the more dilute 5:1 sd a nl ihCLtikeso h mgsi i.4i

developer, and the final image from an exposure at 180 mJ/ very close to that predicted by Mack from his PROLITH sirnu-
cm 2 and development with 5:1 solution is quite superior over ainsuy

all the other images.

B. CM-38-resst sstemVII. CONCLUSIONS
B. CM-38-resst sstemThe concentration of the PAC in the underlying positive

Finally, Fig. 4 shows the profiles obtained with the CEL- resist has been evaluated in a closed form, allowing for si-
resist combination studied by Mack. The CEL used here is multaneous bleaching of the contrast enhancing layer and
very similar to the CEM-388 manufactured by General Elec- the positive resist. Representing the resist development by a
tric. The nominal parameters for the system are given in two stage prcss" the resulting image profiles have been
Table 11, containing the parameters for the development rate calculated for the polysilane-AZ2400 resist system studied
function R [M) proposed by Mack."3 Three CEL film thick- by Hofer et a!., and for a model CEM-388-resist combina-

tion investigated by Mack. Agreement with the experimen-

1.25-

*1.00 *1oHI

.5

0.0 E0.4

~0.5
0 .,0 0 - /TI 0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 00
Distance from image center tI.m 1 00 0A1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Fla.2. imuate prfiles o 1.0 jn ln~pce r inAZ200 esit uingDistance from image center t
F.m)

5: te 2. Simudatedoerith 1Ops n.ce ai inhasene ofs.2in FIG. 4. Simulated profiles of 0.8 pmn isolated space in model CEM-positive
polysilane layer at various development times: - 575, - 625, - - 675, resist system studied by Mack - 0.2 ium and 120.0 mi/cm'; --- .4p
and - - - - 725 s.O0 with polyiane layer and 0 without polysilane layer. and 180.0 mi/cm'; - -- 0.6 pm and 247.7 mi/cm2 .

J. Viac. Set. Tachnol. 0, Vol. 6, No. 2, Mar/Apr 1988



S"8 Babu, Barouch, and Bradlo: Calculation of Image profWiles 568

TABI E 11. CEM simulations. ACKNOWLEDGMENTS

Projection system Resist parameters The authors express their gratitude to D. C. Hofer, C.
Mack, and A. R. Neureuther for stimulating and useful dis-

A = 405 mm A = 0.6/pum cussions.
NA0 ==O.28 B =0. I/jm
a = 0.70 C =0.020 CM

2
/mJ

No defocus Thickness - 0.8 Mm "Supported in part by the National Science Foundation under Grant No.
Patternt = pac (pithm 4Om ECS-861 1298 and by the Air Force Office of Scientific Research under

Pattrn spae (itch 4.0pm)research Grant No. AFOSR-87-03 10.
CEL parameters Developer conditions 'B. F. Griffing and P. R. West, in Proceedings of the 6th International

Conference on Photopolymers. Ellenville, New York. 1982 (unpub-
A, = 12.0/pum Development time =60 s lished).
B, = 0. 1 0/pm R,. =~ 200 nm/s 'B. F. Griffing and P. R. West, Solid State Technol. 28, 152 (1985).
C, = 0.10 cm2/MJ R,,,i, = I nm/s 'D. C. Hofer, R. D. Miller, C. G. Willson, and A. R. Neureuther, Adv.

MTH =0.5 Resist Technol. 1, Proc. SPIE 469. 108 (1984).
nt 5 'F. H. Dill, W. P. Hornberger, P. S. Hauge, and J. M. Shaw, IEEE Trans.

Exposure energy Electron. Devices 22. 440 (1975).
'S. V. Babu and E. Barouch, IEEE Electron Device Lett. 7. 252 (1986).

Variable (varied for a given CEL 'S. V. Babu, IEEE Electron Device Lett. 7, 250 (1986).
thickness so nominal linewidith 'S. V. Babu and E. Barouch, IEEE Electron Device Lett. (in preas).
attained in 60 s development "W. G. Oldham, IEEE Trans. Electron. Devices 34,247 (1987).
time) 'S. V. Babu and E. Barouch. Studies AppI. Math. (in press).

_________________________________________________ "J. S. Greeneich. J. AppI. Phys. 45, 5264 (1974).
"M. P. C, Watts, J. Vac. Sc,. Technol. B 3, 434 (1985).
'"V. Srinivasan and S. V. Babu. Adv. Resist Technol. Processing III, Proc.

SPIE 631. 268 (1986).
"C. Mack. Adv. Resist Technol. III, SPIE 631, 276 (1986); J. Vac. Sci.

Technol. A 5. 1428 (1987).
tal results of Hofer et aL and the calculations of Mack is very "D. C. Hoifer, C. G. Willson, A. R. Neureuther, and M. Hakey, Proc. SPIE

-good. 334, 196(1982).

J1. Vac Scd. Technol. B. Vol. 6, No. 2, Mar/Apr 1988



Communications in
Commun. Math. Phys. 116, 449 474 (1988) 'a#*ieklbcw

Physics
© Springer-Verlag 1988

Recursion Operators and Bi-I-amiltonian Structures in
Multidimensions. 11

A. S. Fokas and P. M. Santini*
Department of Mathematics and Computer Science and Institute for Nonlinear Studies, Clarkson
University, Potsdam, NY 13676, USA

Abstract. We analyze further the algebraic properties of bi-Hamiltonian
systems in two spatial and one temporal dimensions. By utilizing the Lie algebra
of certain basic (starting) 'symmetry operators we show that these equations
possess infinitely many time dependent symmetries and constants of motion.
The master symmetries T for these equations are simply derived within our
formalism. Furthermore, certain new functions 7,2 are introduced, which
algorithmically imply recursion operators I)2. Finally the theory presented
here and in a previous paper is both motivated and verified by regarding
multidimensional equations as certain singular limits of equations in one spatial
dimension.

1. Introduction

This paper investigates certain algebraic aspects of exactly solvable eolution
equations in 2 + I (i.e. in two spatial and in one temporal dimensions). It is a
continuation of [1], although it can be read independently.

We consider evolution equations in the form

q, K(q),(1.1)

where q(x,y,t) is an element of a suitable space S of functions vanishing rapidly
for large x,y. Let K be a differentiable map on this space and assume that it does
not depend explicitly on x,y,t. If Eq. (1.1) is integrable then it belongs to some
hierarchy (generated by a recursion operator (/), .). hence in association with (1.1)
we shall study q, = Kt")(q). Fundamental in our theory is to write these equations
in the form

q,= fdy 612 (1 I .' - v2  , K"2' = K(i, (1.2)

where 6t2 = (yt - Y2) denotes the Dirac delta function, q, -q(x, vi, t), i = 1, 2,

* Permanent Address: Dipartinento di I isica, tUniversita di Roma, I a Sa rinm/t. J-tXi185 Roma, Italy
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K('"(q ,q 2 ) belong to a suitably extended ,pilcc, (')1 21 h'1' arc operator valued
functions in s. If q is a matrix function then I is replaced by the identity matrix.
Throughout this paper m and n are non-negative integers.

The following results wore obtained in [ 1 J: iJ There is an algorithmic approach
for obtaining the recursion ( perator (1, , front the associated isospectral eigcnvalue
problem. ii) This operato is hereditary. iii) Fach member of the hierarchy
(0 12 K1 2 1), jdy 2 6 1 2P1 2 K' 2 I1 where K' 2 "1 is a starting symmetry, is a

R

symmetry of (1.2). For example the Kadomtsev Petviashvili (KP) equation and
the Davey-Stewartson (DS) equation admit two such hierarchies of commuting
symmetries. iv) If the hereditary operator admits a factorization in terms of two
Hamiltonian operators, then hierarchies of commuting symmetries give rise to
hierarchies of constants of motion in involution with respect to two different
Poisson brackets. For example, the KP and the DS equations admit two such
hierarchies of conserved quantities.

The above results .extend the theory of [2 4] to equations in 2 + I. Novel
aspects of the theory in 2 + I include: i) The role of the Frech6t derivative is now
played by a certain directional derivative. If subscripts f and d denote these
derivatives then there is a simple relationship between directional and total Frech&t
derivatives:

K1 2,[1 2 F12] = K 12,1["J K,, [1 1J + K,, [1"22], (l.3a)
.42

where K,2 is an arbitrary function in , and K,, denotes the Frecht derivative of

K 1 2 with respect to qj, i.e.

Kj, [Fj]. j . K1 2(qi+ :I.qj),. i.j= 1,2, i~j. (.3b)

Operators on which directional derivatives are defined are called admissible [I]
(applications of [he d-derivative in explicit examples can be found in Appendix A,
see also Appendix C of [I]). ii) The starting symmetry KI', can be written as

12 I. where 9', is an admissible operator. Essential to our theory is that the
operators K()2, acting on suitable functions 1, 2 form a Lie algebra.

1. For the equations associated with the K P equation,

P,,=D2 +q1 2 +Dq- 2D-' + qD I.2D , q+2-q, ±q2+ (DITD2)"

(1.4)

where D, - 0/0y. The starting operators K 1,2 are given by

N,2 -- q 2, 12 --)q1'2+q12 D-'qi2, (1.5)

and H,2 is an arbitrary function independent of X, i.e.

1112 u 2(t, Y) (1.6)

The Lie algebra of K' 2 is given by
[N, 2! lt'1, N, 2HnI)JJd = - N, 2"l [NV, II''' Mi2l 'j -Al, 2 ll'

3 ,

2' 12 12' 12 12' 12

[I 2H'), M 2 1".2Id =- (P,2 N 11 A"(.7



Recursion Operators and Bi-Hanillonian Structures 451

where
[Kt;1', K 2 ]d- K''L [K'1  j - K'2 ',, K'',.82- K2222K12 ] I8

[H,,, H, ,2 , 12 3- 1
1 .I -t ) ,,2 • 32 (1.9)

II

2. For the equations associated with the DS equation

(P12 OW 12 -Q 12 12 ), Q '2]F12 - Q I1-12 ± FI 2Q2

P12 F12 F- 1 F 2 - JFI 2,. - F12, J,.

where J=aa, a=diag(l, - 1), Q is a 2 x 2 off-diagonal matrix containing the
potentials q, (x,y), q2(x, y) and )12 is defined on off-diagonal matrices. The starting
operators 132 are given by:

N , 2  Q12, M12  Q12 a, (1.1)

and H, 2 is an arbitrary matrix function satisfying the following properties:

H, 2 diagonal matrix, P1211120. (1.12)
Also

[N2 H( N1 1 2 H 112 2JJ -1 1 HV 13 , 1I 2H' 1 
1 1 11(1f Vfld MI - 3 21

3!
[A1 1 2 H'), M ,

2 H 12 H,

22 1221-d -(3)

iii) The recursion operator 01i2 is admissible and enjoys a simple commutator
operator relation with h,2 = h(y, - y:

• 2 h12] - fl)'. (1.14)

which implies that j 12 K '= 12 12 K I f = I/;' - 11 where

The starting operator K' 2 is also admissible and its commutator relation with
h, 2 implies that 6 1 2K'" can be written in the form

612 K 21 2 K I, 2 (1.15)1=1

for suitable constants b,,,.

1. For the two classes of evolution equations associated with the K 1 equation
we have that

1=-4a,[ ,2 ,h, 2 =0, [1, 2.h,2]=-flvh',2 . I=(/2. (1.16)

and

# for , l - 2

AT"" ,for K' l2E= 0 \t- s
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2. For the two classes of evolution cluations associtcd with the DS equation
"we have that

= 2a, [N12 12 1 1 2 J =P, [ 1 ,]1 12 ] = 0 (l.l8)

and

In [1] we assume knowledge of the underlying isospectral problem. This
problem implies: a) a hereditary operator q, 2 : b) suitable starting operators, say
M 2 and N1,2 , and functions H 1 2; C) two skew symmetric operators such that

(P,= O2 (6,2). Furthermore, it can be shown that 4l2 is a strong symmetry
for the starting symmetries. One then needs to: al Find [ and b,, appearing in
Eqs. (1.14), (1.15). b) Compute the Lie algebras of A/12 , 1 12 on function H1 2 (i.e.
obtain equations analogous to (1.7), (1.13). c) Verify that the starting symmetries

correspond to extended gradients, i.e. verify that ((O ' -9' n1-H 2 )8 , 012 = 12

or N 12 , is symmetric with. respect to the bilincar form

<9f2,J'12> f dxdyhdY2 traceg 21 f 1 2. (1.20)
,3

d) Verify that 0,'), 0( 2' are compatible Hamiltonian operators.
In this paper the following results are presented. i) In Sect. 2 we investigate

further the Lie algebra of the starting symmetries K t2 1, 2 . In [1] we only used a
subclass of solutions of (1.6) and (1.12), given by H 1 2 = '112 = 0 1 -Y2) and
H 1 2 = h1 2(al + ba), , ,constants, respectively. This gave rise to time-independent
commuting syrnnetries. We now choose 1t 2 to be a more general solution of the
above equations; this gives rise to time dependent symmetries. Time dependent
symmetries for the KP have been studied in [6,7, 18,20]. ii) In Sect. 3, using the

Lie algebra of iZt2 H, 2 and an isomorphism between Lie and Poisson brackets
we prove directly that (0%2K%°2H 12 correspond to conserved quantities. This

derivation, which capitalizes on the arbitrariness of H 12, has the advantage that
does not use the bi-Hamiltonian factorization of P 12. In other words, for the theory

developed in this paper one needs only to verify a)-c) above.
We recall that Fuchssteiner and one of the authors (ASF) introduced an

alternative way for generating symmetries, the so-called master-symmetry
approach. A master-symmetry is a function r which has the property that its Lie
commutator with a symmetry is also a symmetry. The r functions for the
Benjamin-Ono and the KP equations were given in [5] and 16 7] respectively.
Several authors (e.g. [8]-[12]) have noticed that master-symmetries also exist for
equations in I + I as well as for finite dimensional systems [13]. Let r and T
denote mastery-symmetries for equations in 2 + I and I + I respectively. If 4) is
the recursion operator and 1= 1K + T , is the scaling symmetry of an equation in

I + 1, q, = K, then T = OTo is a master symmetry. However, there exists a
fundamental difference between r and T. The function 0' 17 (0 is a Hamiltonian
operator) is not a gradient function; this can be used to constructively obtain IP
from T. But 9- 'r is a gradient and hence the above construction of 0 from t fails.

In Sect. 4 we show that r is not the proper analogue of T Let us consider the
KP for concreteness. As it was mentioned earlier, ')' 2k/1 2 "I generates time-
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independent symmetries; it will be shown hcre that 1)"12U '201 + Y21) generates
time-d'ependent symmetries. It turns out that r ) 2 K20) + Y2))± (see
Sect. lID). But e'2 12 Z t - 2 H is an extended gradient for all H12 , hence 09-Y
is a gradient function. In Sect. 4 we show that the proper analogue of T for the
KP is T 12 1 2612 (it corresponds to P2 . I fir the KdV). Actually, " 1 2' '2 is
not an extended gradient and it can be used to constructively obtain U'1 2.

In Sect. 5 we show that exactly solvable 2 + I dimensional equations are exact
reductions of nonlocal evolution equations generated via nonlocal isospectral
eigenvalue problems. This result both motivates the basic ideas and concepts
introduced in [1] and in this paper, as well as verifies several results presented in
the above papers.

11. A Lie-Algebra for Equations in 2 + I

In developing a theory for time-dependent symmetries in 2 + I it is useful first to:
i) characterize the commutator properties of these symmetries, ii) study the action
of O on the Lie commutator [a, biL, where

[a, b]L - a, [b] - b. [a], (2.1)

and a, denotes an appropriate derivative. This derivative is linear and satisfies the
Liebnitz rule. For equations in I + I one only needs [a, b]f, while for equations
in 2 + t one also needs [a 12 ,b12 d (see (1.3)).

Lemma 2.1. a&'i is a time dependent svmmetr' ol order r ofthe equation q, = K, i.e.

- - + [a") K], = 0, (2.2)

iff

I _YZ) -[X(J-1). KL, j l ... r, [KZ]L 0. (2.3)
j0o J

The above result follows from the definition of a symmetry and the assumption
that E( ) is time independent. It implies that constructing a symmetry of order I
is equivalent to finding a function " ° with the property that its (I + 1 )" commutator
with K is zero.

The action of a hereditary operator '1) on a Lie comtnutator is given by:

Theorem 2.1. Let
S - (PL[K] + [(AK 1]. (2.4)

Then

at) Pn[KI,K 2]L [K 1, PK 2]1  , + ( "'St P')K 2. (2.5)

If 0 is hereditary, i.e. if

PL[Ov]w- P'P.[v]w is synntetric with respect to tw, (2.6)
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then the Jb/lowing are true:

a 2 ) 0 ,[ 0 '"K] + ['I, ('P"K)Lj = (PS' (2.7)

a 3) (pn +[K 1 K 2]L = [(P'K,,0("K, j

(2.8)

(in, nt are non-negative integers).

Proof. To prove (2.5) use induction: (2.5), is an identity. Applying 'I' on (2.5). we
obtain

(pn+'[K.PK(YK±(( (P"rs(P,-)K

Equation (2.5).+, follows from the above and the following identity

4)[1K 1, MIL = [K 1 , (PMIL + S1 M.

Equation (2.7) also follows from indaction. To prove (2.8) first note that (2.5) implies

(P m [KI, K]L - (p rt~- K [KI,(Y"K 2 ]L. (2.9)

Equation (2.5) also implies

VP[K,K 2 1L=[(LPK ,I 2 1, (Z(Pn- 2 (pr )Ki.

Let 1k2 = (PinK 2 then (2.6) implies S2 O('"S2 . and the above equation becomes

(P"[K1 , (P'K21L=[VPK, 1 n'"K2] 1.- ( " - 2  i9Ki.

Applying V" on (2.9) and using the above we obtain (2.8).

Corollary 2. 1. Let the hereditary operator (1) he a strong svinietryvr hot/h K ,and
K 2 , i-e. S1 = S2 = 0. Then

On +[K , K2]j,= [('K, OmK1L,(2.10)

In the rest of this section we characterize extended symmetries a,,. The
following theorem, proven in [ I], maps extended symmetries ( 12 to symmetries a.

Theorem 2.2. Assumne t/hat the cointrittator of/ 0 1 2 wit/i /t,2 is given hy (1. 14) and
that the starting operator 'k,2 (ire suc/h that (1.15) is valid. Iffa1 2 is anl extended
symmetry of(1.2), i.e. i

then a I is a symmetry of'(1. 2), i.e.
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+, -- I I ,K t -0. (2.12)

In the above
[a I I, K t] a [K( I K"' [a 1, (2.13)

and

[a1 ad12 l/ 2
•

2 l]d = Z ht,a '2, Ki2  6'1 2 ]d- (2.14)

It is necessary to rewrite (12I 2K' 
1b I in the form appearing in (2.14) since

the directional derivative is defined only for functions of the form L, 2 H 1 2 , where
L1 2 is an admissible operator.

Using Lemma 2.1, Corollary 21 and the Lie algebra of K7,H1 2 (with
appropriate H,2) we obtain extended symmetries, which then via Theorem 2.2
give rise to symmetries.

Proposition 2.1. Assume that the hereditarl operator (1) , is a stronq sy'mmetry Jfr
the admissibh, starting operators A/ I , N 12, lail that (1.14), (1.15) hold. Further
assume that A4 12, 1 2 Jorm a Lie ahtehra (analmoous to (1.7), (1.13)). Consider the
jollowing hierarchies

qI, = fd3,2 5 1 2 ( 12 NI 2.- (-1v2. 1 2 N(") = g("n, (2.15a)
R It

qt= J dy 2 6512iq':2Psi 2 " I - j (yt', 12 M(;) = 'fl . (2.15b)

Then:

a) (P, M. 1). 1, (0 2 N 12, 1), , are s1mnmnetries of Eqs. (2.15).
b) Appropriate linear combinations of ) (1)i2 A 12 It 1"'2 1 , 12 f12 I } r

suitable functions H '2 generate time dependent sy'mmetries for Eqs. (2.15).

Rather than proving the above proposition ii general, we use for concreteness,
the Lie algebra (1.6) to sketch how the above results can be derived. Details are
given in II.A, l.B. Let

N 1 2 - 2 A 1', " . 2 (2.16)

Then, using Corollary 2.1, Eqs. (1.7) imply

[R~~z3)H - A ("It~t,) A f .. -1)lf '.,[ 1 12 1 2 '
1

12Jd --
0 '" 1

2

[A (m)H('12), tN -') H(2)1,H ]2 " " 
=  

- A ) I"2 ' 2 '

[A/i(")H!1l
) Ml;j")J(!]__= - N~ " .... I-" l)113) (2.17)1 2 1 2 2 2

Part a) of the proposition is a direct consequence of IEqs. (2.17) and (2.14). For
example

[&I ,) , - .... 0,
0II = _

since rlH = [l,S6'21 =0; thus &("- I are extended symmetries of (2.15a).
Consider part b) of Proposition 2.1. Let us first consider symmetries of order
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one it t. Then

N "'(Y' +Y2 ) -- 12fl 1

A 'y'O'1 + Y2) -t2 11 '' '' I (2.18

are first order time dependent extended symmetries of (2.15a). Similarly

N1"'(v1 + y2) - t2b 1 nJ 'P " . 1, (2.19a)
()Y - +y 2 ) -+ v t 2bl '" +")" 1, (2.19b)

12 - 2 s'

are extended symmetries of (2.15b) with b., = (-4a) 2 - [,

To derive the above we use Lemma 2.1 and Eqs. (2.17). For example, to derive
(2.18) we look for a function X'' such that its commutator with ,s 2 N2'- ,
commutes with 62 1' ".. Clearly X'= N''(Y1 +Y2) or M^"2(Y1 +Y2). For,
(2.17a) implies

L , + Y2,O 612 ,, &'1"2',. I-,,.

since f} -=[y + y 2 ,5112 ], = - 2(5,. where 6,. 0 if 1 1 or I if I = 1.
In a similar manner

( 'Y ,I+ Y2 )2 - t4fl N '' Y " '+ Y2)- t 4#2 ,l)2 .- 2.

"' .'(y, + y2)2 }t4f(;') ,Y "-I '(n, y2) - 24#2(m) 2n-2).

M1"2(Y1 +Y2) - t~ 1 (Yt +12) + '4 1  Al 2"-2" I (2.20)

are second order time dependent extended symmetries of (2.15b). Similarly

N (m'(Y I + V2 )' - tOn14h -M " -1 (y, + 1,2) + t4b1, N"""m 2n- 1) . (2.2 1a)

ppm)'(y I +' y2)2 - t4h.., N ' (Y1 + "2) + t2 4h.. Il' . ,

b,.= (- 4a)(n + 1)2 (2.21b)

are extended symmetries of (2.15b). Indeed

[
t Q',"'(y 2 + y2)I,,St2 N7 l]d = 4/.( ' )N"'," "-(y, +1 1,

since, [(YI + Y'22, 6)21] = - 4(1y, + Y2) .. Also
[N(".+"-",IV + y,6, N("'- 1] =-2# 1&(';N 2 '.

The extension of the above results to any order in time is straightforward: To
generate a(' 21 consider .y"' = N('"(yl + Y2)' or A," (y, + V2 )' The commutator of

(Y1 +Y2) with 6112 produces (Y1 + 12)'-'. Thus the r"b commutator of (y1 + Y2)'



Recursion Operators and Bi-tlamihonian Stlrucu[c5 457

with c512 produces I which commutes with 6(li; hence Lcmma 2.1 guarantees the
existence of an rth order symmetry.

H.A. Time Dependent Sveineries IM- fle Lhquations A,.so'iled with flie K P
Equation. Following the construction and the arguMnClt sketched ahove, extended
symmetries of order r in time

-(
) = I t'Z 1'2 (2.22)

j: 0
are generated through Proposition 2.1. starting with 1' . or

where H1 , is defined by

H11 2 (YI +.2 . )r; (2.23)
more generally, any homogeneous polynomial of degree r in v1, and Y2 could be
used as well (note H1 2 solves (1.6)). Using

r!

[H(1'2, = - (1 - ( - l)')O(r - s) "r-_s1)2'1, (2.24)
(r -s).

0(a) = O, a 0, (2.25)

we can show that

i) The class of evolution equations (2.15a) with 2  qj2 admits i-dependent
symmetries of order r given by

12 (2 .26a)

12 = X v(r, j, s) N 1 2  "112 (2.26b)

and by
o) = A i 1  H ([), (2.27a)

02 = I v(r,j,s) " "12 (2.27b)

where j2! 1, the summation I is from s1, s2,.Sj zero to P. and 1' =(n - 1)/2 if
n is odd and (n - 2)/2 if n is even. Also

v (r, j,s)- -- , (2.28
)X= r - i s,±+

and b, 4ay(n).

ii) The KP class (2.15b) with M1,2 = Dqt =q 1 2,D-'q 1 2 admits f-dependent
symmetries of order r given by

12 J :( H" lI (2.29a)
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-" 7 2,, S 2,,t,'jI = _Yv(r, 2j, s)N,, .2"111 (2.29b)

-, I,. . , "j "l1j2 j , (2.29c)

and by

,,12 --ji 172, (2.30a)
2,,,: ... 2.£ ,,,,1)

V121 X v(r,2j, s) M 1 2  H1 2 ' ( (2.30b)

4 2 11 '21,+ 1) (, i)214
12 l) 1 v(r, 2j -  1,s)!l N' 1"1112 ''(2.30c)

with j 1 and b,.=, [  - 4)', 2- -,

II.B. Tite Dependent Synminetries for lie Equations Associated with the Davey-
Stewartson Equation. The construction of t-dependent symmetries for the
equations associated with the DS equation is similar. Extended symmetries of order
r in time are generated through Lemma 2.1, starting with IO! ) - )H (1 f ) or
M(,h)H4(i, where H(2 is defined by,

H(r) - diag(¢ ,2 , ,, ,,, - - ' y, + v2 ± 22x. (2.3)

H('2 satisfies the same formula (2.24). obviously replacing [HI'2,(52 ]t by [Hz,

6121]1. Then, using Corollary 2.1 and Eqs. (1.13), one can show that

i) The class of evolution equations (2.15a) with N, 12 = Q,-2 admits t-dependent

symmetries of order r given by Eqs. (2.26) and (2.27), where h,. = 1 ' =) (2- ) (

and j > 1.
ii) The class of evolution equations (2.15b) with AMl2=QI 26 admits t-

dependent symmetries of order r given by Eqs. (2.29 30), replacing: JV*-*().'-h

in Eq. (2.29b), -1 -' 11 in Eq. (2.29c), Ai7)--. AM -e ) in Eq. (2.30b),

/N 1 '-l in Eq. (2.30c) and using h., = (2,'( 1).

II.C. Connection with Known Results. Before' the discovcry [14] of the recursion
operator of the KP equation, a different approach, the so-called master-symmetries
approach, was used to generate an infinite sequence of commuting symmetries [6],
as well as t-dependent symmetries [7- II], of the KP equation (see also [18, 19]).

The existence of a hereditary operator in 2 + I dimensions, together with the
Lie algebra of the starting symmctries allows a simple and elegant characterization
of the 2 + 1 dimensional (gradient) master-symmetries introduced in the above
papers. Here we briefly consider the KP example.
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* lIn Proposition 2.1 and in Sect. 11.11. we have shown that the functions

T(M.)-1 1 2 12, (2.32)
(where H(' is defined in (2.23), but it could he any homogeneous polynomial of

*degree r in Y1 Y2, and K102 is &' 12 or Al1 12) have the property that their (r + 1 )"
commutator with 6,,Kt" is zero, namely

[ r (1721 12 (172) ]d .. (1. (2.33)
rI times r + I time,

* Then Theorem 4.1 of [1] implies that

I.. T0, (2.34)
e
4
+ I times r + I times

namely zA"are the so-called master-symmetries of degree r of KP [11]. Equation
(2.33) essentially follows from the fact that a single commutator ofT(1'y'r with 6,K(' 2

* generates a linear combination of lower degree master-symmetries; in fact, choosing
for concreteness T('-') = 0' 12(y +12'an ', eh

[Ti",5~v'1 ~M"~[ + Y2 )",612]

0 (r - r! b,.IT (2.35)

which implies

ITme AV")f Y 0(r - 1) _-, kjrl +(2.36)

1=1 (r -I W 2.6

For r = I Eq. (2.36) becomes

master-symmetries of degree I generate equations which belong to the given
hierarchy.

* III. Lie and Poisson Brackets for Equations in 2 ± I

In this section we First derive an isoniorphism between Lie and Poisson brackets.
Then, using this isomorphism and the Lie agebra of the operators K I,2 we prove
that e- ' k0 H, 2 are extended gradients. This implies that all extended symmetries
of the previous section give rise to conserved quantit-' s.

Theorem 3.1. Let [a, b]L = aLdb] - h,[a] be a L~ie comnmutat or and <f g> be an
appropriate symmetric bi-linear forin. Let grad I he the gradient of aj fitional 1,
defined by IL[v] = <grad 1, v>; then y i a gradient fict ion iff A~ = Yr.. where M*
denotes the adjoint of the operator M with respect to (lie above hi-linear form, i.e.
< M*f, g> < f, Mg>. Then if the operator 0- is a Hamiltonian operator, i.e. if

09* = -, <a, 1L[Ob]c> + cyclic permut =0, (3.1)
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it follows that

[Of, g]L = 19grad<f, e g> + 0 {(fL - ffL*)[ ] - (#q -gL)[f] }. (3.2)

Proof.

grad<f, Og >[v] = <J'1[v], Og > + ( I, O[I, g> + (j g.]>

= (fU[Og] - gjOf]> = <f*[Og] + M*f -gL*[19g],v>,

where (f, OL[v]Y> = Qf, M,[v] > and M,, denotes a linear operator depending on
g. Hence

[Of, eg]L- 9gradf, eg> = OL[g]f + oIL[o9] - oL[f]- o9gL[of]
-- efg[O] + eOg*[,g] - eM f

= eL[gi]f- 9L[e1f]g - OMf + O{(f, - f*)[Og] - (gL - g)[61f] .

But the sum of the first three terms of the above equals zero because of(3.1). Hence
(3.2) follows.

In the above aL denotes an appropriate directional derivative. For equations
in I + 1:

[a,b]L = [a,b]f, <f,g> = dxtrace gf. (3.3)

For equations in 2 + 1,

[a1 2 ,b12tL =[a 2 ,b 12]d, <f1 1,g11>= J dxdy traceg,,1 f,1,
,

2

" 2f12 = J dxdydy2 trace 9 2 1f 1 2  (3.4)
R

3

(if f and g are scalars, then delete trace), where [ , [ ] are defined in (2.13),
(2.4). Furthermore the following double representation of the functional I

I = j dxdy, trace p,, = I dxdy, dy2 trace p,, (3.5)
R

2  R

allows us to define the extended gradient grad 1 2 1 and the gradient grad I of the
functional I by

Id[v121 = f dxdydy2 612 tracep12[vt 2]- (grad 2I, v 1 2>, (3.6a)
R

3

1i. [v, f ]= dx dy , trace p I, I [vt , < (grad , v, I >. (3.6b)

R
2

The following theorem, proven in [I], maps extended gradients Y 2 to gradients
Yi:

Theorem 3.2.

a) Y1 2 and yV , are extended gradients and gradients respectively iff Y*2, = Y 2,

and y*1 = yt,,, with respect to the bilinear forms (3.4c) and (3.4b) respectively.
b) If Y12 is an extended gradient, then y,, is a gradient corresponding to the

same potential, namely ifV Y2 = grad 1 2 I, then y, = grau 1.
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Proposition 3.1. Assume that the hereditary operator 1), 2 is a strong symmetry.1jr
the starting symmetries l I 211 2 and N 1 2 t12 i. Further assume that Ml 12, N 12 form
a Lie algebra (analogous to (1.7) and (1.13)) and that 12 is a Hamiltonian operator
whose inverse exists. Then

t12 1 2 K1 2l11 2 , K12  l 12 or N 1 2  (3.7)

are extended gradients, proved that 0- k 21112 are extended gradients.

Proof. For concreteness we proof the above proposition for the recursion operator
and starting symmetries associated with the two dimensional Schr6dinger and
2 x 2 AKNS problems.

III.A. Conserved Quantities for Equations Related to KP Equation

Corollary 3.1. Let
N 1 2 M -2 1 2 -Dq 2 +q- 2 D-'q 2 , 112-YI,Y2),

L2 -P7tM2 , R 1 2 - 1 2 N 1 2, 012 
,

* where 012 is the recursion operator associated with the K P and is defined by (1.4).
Then

D p4fl+ 1)H(- grad < 1 "1 H I , D-1/ (t)H(2)

S. .. .12"(3.9)

Proof. We first note that the assumptions of Proposition 3.1 are fulfilled. Namely
<P 2 is hereditary and is a strong symmetry of A 12 1112 , ill 1 2 , (see Lemma 4.2
and Appendix C.la of [1]). The operator D ' is obviously a Hamiltonian
operator. Furthermore, D- Al 12 H1 2 is an extended gradient (see Appendix A).
Since D-' 1 2 H 2 is an extended gradient, Theorem 3.1 and (1.7c) imply
that D-']Q(,'H, 2 is an extended gradient. Then Theorem 3.1 and [A41 1 t12,
*( )Ht 2fl -M(n"+)H(1 imply by induction (3.9a). Finally Theorem 3.1 and
[LMC H\.I(' H(' 211I IQI t)H(l) imply by induction (3.9b).

J . 12, v * 12 d - 12

A consequence of the above result is that all symmetries derived in Sect. II.B.
give rise to conserved quantities. For example, the following t-dependent extended
symmetries (see (2.19b) and (2.21 a))

12l) = Mt3(y1 + 312)+ t12 /(" S I,

(122) 1)(YI + Y2 )2 + t24a m) '(y I + Y2) + [
2 1 44cc 2 1 "  .I,

of the KP equation q,, = M(1
1) = 2(qt,_ + 6q, q,, + 3o2 D- t q, .,) correspond to

extended gradient functions D-O" and D- Irr,2; then they give rise to the
following t-dependent conserved quantities (see Eqs. (4.15))

IM,= dx dy,(. -- (-M!2)y + y2))I+ 0 D-~+tII
j() +3) 1) 1R, \ztm -f.i+t + ( 2

](2)= S dxdy( I(D1 Mm +'(y. + y2) +

A2 \(--m 1 (o N (y +y2) 2)t
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tI tl c I - 36,x1,- M (o' " I, I,+2 ).
21-( 12 (''+Y201+ n+2 (D 1+ in 2-'-2

1II.B. Conserved Quantities.for Equations Related to 1)S quation

Corollary 3.2. Let
M 12 - Q, 2a, N 1 2 -Q1 2,

H12 diagonal and such that

P12 H 1  12  1 M1 2 , ( 12 O -- 7 12' 12 (3.10)

where 0, 2 is the recursion operator associated with the DS equation and is defined
by (1.9). Then

S'.M" H' - grad < H aN1 f H()>

aI H12 grad < M"' 1t '3, aOM1J 12>. (3.11)

Proof. The assumptions of Proposition 3.1 are again fulfilled (see Lemma 4.2
and Appendix C.2a of [1]). The operator a is obviously Hamiltonian in a
space of off-diagonal matrices. Furthermore, Al1 21t12, a 12 NI 212 are extended
gradients (see Appendix A).

Since the above are gradients, [MI"ItV1
11, N "II] - Mf"(n+'l)(I 3 implies

(3.1 a). T hen [ M" ,(n)H ( ), 1 0, H 12)] = ] (')H 1 12 "dH1 im plies (3.1 b).

The above implies that the symmetries derived in Sect. II.C. give rise to
conserved quantities. For example, the I" and 2

"d order t-dcpcndent symmetries
(T(1 12)  ,2 ,, )- 1 fml,,,, -4 l 8oct &")-,l

-=2 IQ "N " - t 16ozM ")11 1 + t 2 64) 2 & 1.r+ 2+.

of the DS equation Q, =M(,')= -[2a(Q,_ + 2Q ,)-QA, + AQ 1 ],

(D - JD, )A, = - 2(D + JD, )aQ' , obtained from Eqs. (2.29-- 30), correspond to the
extended gradients aalt ,aal"2) ; then they give rise to the following t-dependent
conserved quantities (see Eqs. (4.24)):

IG)= fdxdy, trace a Qj'2(m I )(D - ~4')tH),-to + .
12 1

J() = fJdxdytrace a 1)(D ------- 1 M'" '1HA'J) 1 +N 1"2
R2 + n

t2 320 2  1

-- (D- 1 M(~1 11J 11) 11 II + - - D
in + 1 n + 3. 1

IV. On a Non-Gradient Master-Symmetry

In this section we make extensive use of tlhe isonorphism between Lie and Poisson
brackets. Hence it is useful to investigate (ie properties of

O(gL - gt) = T. + 0 T 0- T -O., e l = 0. (4.1)
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Lemma 4.1. Let
S - 0,[), + [0,+7.,1 (4.2)

with its adjoint

S*= l] + [17 . o*J. (4.3)

a) If 0 is hereditary then

0r[O"T] + [OflTlO)* - *(I)T)* S* *'. (4.4)

b) If 0 is factorizable in terms of compatible Hamiltonian operators, i.e. if
0= =D -, where f2+ vO is a Hamiltonian operator, 0 is invertible and v is an
arbitrary constant, then

(±T)( + 0(" OT + T 0I) S*6) (4.5)

where we have assumed for simplicity that 0,. = 0.
c)

((" 7')L + 0(0" T)7 - = "(TL + 0 - ) + (I),- I 0" 1 s* 0 - .

(4.6)

Proof. Equation (4.4) is the adjoint of (2.7) for K = 7. Equation (4.5) is derived in
Appendix B, and (4.6) follows from (4.5) by induction.

Theorem 4.1. Assumne that (i is fictorizahle in [cms of cdmnpatih I lamiltonian
operators and that 01. = 0. further assuine that (- 0" A is a gradient ]Unction
and that 0 is a strong symnetryfirr M. Then

0" 0"-'S'- l 6= gradK 6)- (O"M, 0"">

pr- 10p-rI q I

- V"(I1 + 6)1076) '(0" - • .. [l, "1].. (4.7)

Proof' Using the fact that 6)-0- "NI is a gradient. Eq. (3.2) becomes
[0" M, O'"T]L = )grad (6)' - 0" M, o'" T"> -- {(q0"Tm j, + 0)(0' m"/ ) 0- 0 " M.

(4.8)

Since M is a strong symmetry of 0, Theorem 2.1 implies

[V"M, (PT],= O"+"[M,TI'll,+ "  0"I "$0 n IS lA. 14.91

Using the above and (4.6) in (4.8) we obtain (4.7).
Equations (4.6) and (4.9) are useful in finding non-gradient master-symmetries

for equations in 2 + 1. Furthermore, Theorem 4.1 is useful for deriving the potentials
of various gradients. Formulae (4.6), (4.9) and (4.7) take a particularly simple form
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if the function T, 2 is such that

i) S12 = Si2 = cl, (4.1Oa)

where I is the identity operator and c is an arbitrary constant, and

ii) '12,, + 09 12 '*12,, (-) o2 . (4. 1 Ob)

In the following two examples the non-gradient master-symmetries are generated
through functions T1 2 that satisfy Eqs. (4.10).

IVA. Equations Associated with the KP Equation

Corollary 4.1.

a) (P'26,2 is a non-gradient mnaster-synmnetry j()r the KP and the equations
related to KP:

[on1K 2 2 H, 2 , (P1l2 62]d = bn 1 K102 11 12 , (4.11)

8(,, (Op2  p1 2 )d + 2 (+I 2 692 )d 412 ' (4.12)

where b. and H, 2 are given by

b. = 4n, H1 2 = H(v1 ,Y 2 ) arbitrary, if k2 =1 12, (4.13a)

and by

b.=2(2n+ 1), H 2 =(y +J2)', r=O0, I q. 02 =M 2. (4.13b)

b) Let

V172) - I)2,  12  1-2' K 1,) .  (4.14)
Then

(' H 2 = grad 1 2 I., (4.15a)

t" b + < P172+ 12 ",(>512 ,.+> dx d , '2 1 2 (172' 1) 1112

b + I b + 1R'

f dxdy, ( 1,2 ) t t )1 , A1 (4.15b)
hn+1 21

where b, and H12 are given in (4.13).

Proof. If
TI 2 (512,  (4.16)

Eq. (4.10b) is trivially satisfied and Eq. (4.1Oa) holds for c = 4, since P12a1 12 ]

012,1612] = 4. Equation (4.12) is a simple consequence of (4.6) for n = 2; using the

following results

01 2 LNI 2 Hl 2 ,61 2 ]=O, (4.17a)

O] 2 [MI2(Yl +Y2)r,6l 2 ]d=2,D2IM, 2 (YI +Y 2 )', r=0, 1, (4.17b)

(see Appendix A) in Eqs. (4.9) and (4.7) (with M = kI21112 and H12 as in (4.13)),

we obtain
[01 2K1 2 H1 2 ,'"126.2]d=--b .+--'9 2 1 2 (4.18)
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(that reduces to (4.11) for tin 2), and
b.(Pn+lK0,H, , = 191 2 grad, < ")H, 1 >, (4.19)

where we have used (P121912 = 191 2 (P.3 Eq uation (4.19) reduces to (4.15) if one
uses the definition Of <J1 24112 )> given by (1.20) and (3.4c).

Remark 4.1.

T ) T - p2 1 is a non-gradient master-symmetry for the KdV equation. Given
Tone re covers (P from Tf + 49T*49 ' . Equation (4.12) is the two-dimensional

analogue of this well known formula [8]- [10].
ii) Theorem 3.2 implies that Eqs. (4.15) with in = 1, 1112 1 reduce to the

following formula [6]:

1I ga dxd'1 y1"1,'. (4.20)
In+1 H

An analogous formula, for the 'KdV equation is well known

2(n+ grad J dxy

iii) We observe that Eq. (4.18) for H, 2 = I cannot be projected into Eq. (2.37).

I VB. Equations Associated with the DS Equation

Corollary 4.2.
a) P2 T 2, 1 2(x/2)uQt + 12 1, 1 = diag( 1, 1), is a non-qradient master-symmietry

for the DS and the equations related to DS:

24)12 = (0' 2 TI 2 )d +0 12' 2 TI 2 )d 0 12  012 ~.(4.22)
where k? 2H 12 is defined in (1.11 -12).

b) Let

Then
12 ra 1 1, (4.24a)

In KA' tt(n 1 2  I dxdy 1 dY2 trace 612 Q 1+ a'I +H 1

(+ )dxdy, trace a[Qi,(v 12 "H,,),, (4.24b)

Proof. If

T1 2  aUQ1 2 612I, (4.25)
2

Eq. (4.10b) is satisfied and Eq. (4.10a) holds for c= I (see Appendix A). Then the
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derivation of Eqs. (4.21), (4.22) and (4.24) is analogous to the one ol Corollary 4. 1.
(sbe Appendix A).

V. 2 + I Dimensional Equations as Reductions of Noni-Local Systems

In [I] and [14] tile classes of evoluition eqtjiations

.d 2 ) L12 1i2 K12  51
14

where 0,2 and K' 2 are defined in (1.4 5), were algorithmnically derived from the
spectral problem

S+ qlx, Y) it + Liiv = 0. (5.2)

In this section we show that Eqs. (5.1) are exact reductions of equations
non-local in Y, generated by the following non-local analogue of (5.2):

Iv, + 411 ± onv) = ;,Vt (5.3)

whee W M. .t') S (I (t.'Y 12 U*f (N. 2 ).(5.4)
4

Hereafter the symbols C1 and u,2 indicate the integral operator decfined by

and its kernel u1 2 - ix.yj v,). respecti~elv.
The algorithmic derivation Of thle classes Of evolutionl equations associated with

(5.3) is standard, its main steps are:
i) Compatibility. A compatibility bet ween Eq. (5.3), wkritten in the more

convenient form ()= -l()and thle linear exolution equation

( w )~~ = ( L , yelds the following operator equatio nl:

4:=i~+ [4 + otD,.ie ± [4j ± 2!D, .cJ + [4j + xD,.D- 1[4- + aD~.e]]

- ,e + A 0(i4 + ), - (4 + oDc~ 1  15.6j

where the scalar integral operator 2 is the 1.2 componenit of the 2 x 2 matrix
integral operator ', A, = 0 and [.Iand [,]are the usual commutator and
anticommutator.

ii) Equation for the kernel. The operator equation (5.6), together with the
definition (5.5), implies the following equation1 for tile kernels q 12 21C12, A 1 2:

q1 2, = D "1l2 C')2 -4 12 A12 + 24,W (5.7)

wher T1 -2 D' + 4 1+ + D) -4 12 D +ID 4 1 2 D - q- 2 , (5.8a)

42J 2f W 13.1*32 ± ./'13 Y 2 )dy3 + or(D I T D2)I 2 (5.8b)

iii) Expansion in powers of 2.Let us first assume that

C 2- Y' /20.(5.91
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equating the coefficients of A) < .j n) to zero we obtain:"-i")- C
! ' 2 C J ± H j' )( I <j p i); q 12, = I) ;'' : whre = I y ) Then

I 4s 'PI jH1" and
s0

q1 2 = 4 5 -D 12 12 1' 'l2 l2 (5.10)
s =0

where
t2- D',P 2 D- =D

2 +qt 2 + D 2D '1,21) +. (5.11)

If we assume that

C12 = )o C',, At 2 = -4 Z j. )j( = fj(y,,y 1 )
j=O j =o

then C(") = D-4 2 . /t "2 1) + tlI"4: C 7 .'P 1 2 CV1 -2 D O q ."Itil + HJ 11(1 <

j_ ,); q,2 , = D P, 22CIO) + 4,1 2i((, where 1tV2i = I1111(y1 Y2) The choice 12 0
for 0Oj n yields CI= 1 as-nf,,- 1-i 2-+,)= ~ 1 12 -E t and

s=O

= ~D 'Iz t D 112"t 'I +Y I)- 4*""k2 ~ "+ q12 'lU12 ~ )

s=O s_ 0

(5.12)

Thus the isospectral problem (5.3) generates the classes of evolution equations
(5.10) and (5.12).

It turns out that the transformation q, 2 - 251 ( q q(x. y). is an exact
reduction of Eqs. (5.10 I1) if, at the same time. 4- -nH(14--" /'-')2- - s

(n + 1)5," In this case 4--q' 2,V D 2 and

= + 1 2 -t D' 2 -3 2  D I =1 D 1 2- 12 l 12.1

612 qt,=f lf I V+1 D 2 = 612P2 q 2 "l = 12( 2P 1 2 "l. (5.13b)

Proceeding exactly in the same way it is possible to show that the nonlocal
eigenvalue problem

W x .=J IWy + W +.J w, (5.14)

generates the following class of evolution equations:"

= Q1 12 "12, Q -1-Q(H"t2 Q1 (5.15)
1=0

where
0 1 2F,2 -(P 1 2-Q2 2 P 2

tQ 2)F, 2 , 1"12 -P(x,yty 2 ) off-diagonal (5.16a)

0 12F 2 -Jdv3 (Q1 1 F. 2 ± F1 3 Q32 ), (5.16b)
RI
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= diag(l, - 1) and t1j) is defined by

P1 2 1 = 0, 1i)2 diagonal. (5.16c)

Also in this case the transformation Q12- 12Q, is a reduction of (5.15) if

a,..f(n)(f,--2a) and Htl -42I or 6' 2a. In fact, Qi 2 Qi2,' P12-- 12.

Thus one obtains the following classes of equations:

612Q1,= o 2 12t2=bE 120 2 Q1 2 I (5.17a)

or

6 2QZ, =P 0b 1 2 i102 Q1 2 U" (5.17b)

associated with the eigenvalue problem

Wx= JW 5 + WQ + i.JW.

The above results clearly imply that all the notions introduced in [1] to
characterize the algebraic properties of equations in 2 + I dimensions can be
justified and interpreted in terms of the algebraic structure of the corresponding
non-local versions. For example:

i) The above derivations both motivate and explain the derivation of the
recursion operators introduced in [1] and [14]. In particular the crucial role played
by the integral representation of differential operators is clarified.

ii) The directional derivative introduced in [lI], which is the main tool needed
to investigate the algebraic properties of equations in 2 + I dimensions, can be
derived from the usual Frecht derivative in the space of non-local operators. For
example, the Frecht derivative of ,4 1 2 in a direction 1,2 is

q 1 2 [fi 2 ]19 2 =,12l2', (5.18a)
f1 291 2 -d--yz(f 3 32 ± g13 f 3 2 ), (5.18b)

R

which is exactly the direction derivative qi 2 d[,f 2]fqt 2 introduced in [1].
iii) The definition of an admissible function and of its derivative follows from

the fact that reduced functions admit a double representation; for example (5.13b)
implies

=# ")P-q_6. 12(i 2q 2 I. (5.19)
1 =0 i

But the directional derivative is defined only on the admissible representation given
by the left-hand side of(5.19), which is the form of the function before the reduction:

Z af,0 1 2 qt1 2HA1 2 .
I=0

In Appendix A we investigate (Eqs. (A.3)) the algebra of the nonlocal operators
a12defined in (5.18b). Here we remark that this algebra can also be interpreted as
an algebra of matrices in which + indicates the operations of anticommutator
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and commutater respectively, namely a 17h = ah + ba. (See also Appendix C of [1].)
This'is not a coincidence and the following important observations, here illustrated
on the recursion operator 0,2 of the KP class, can be made.

i) Integral operators:

1 2J'12 = S dy3(ql + f 13 q32), (5.20a)
R

q12 = 61 2 q, + (b' 1 2, (5.20b)

is equivalent to the introduction of the integral operator 4,+,. Then 012 becomes
the nonlocal recursion operator I12, defined in (5.11) and associated with the
nonlocal eigenvalue problem (5.3).

ii) Matrix operators:

q+ f -qf ± f q; q, fmatrices, (5.21)

reduces 012 to the well-knowrl matrix recursion operator

0- D 2 +q+ +Dq D - 1 +q-D-lq-D - 1, (5.22)

associated with the N x N matrix Schroedinger eigenvalue problem in one
dimension [15].

The directional derivative q 12, [fl 2] 1 2 of q 12:

ql 2 d[f12 ]Y12 f 2 912 , (5.23)

i) is exactly the usual Fr6chet derivative 4q 2[ 12 ],Y12 of q' 2.
ii) Corresponds to the usual Fr&chet derivative q t- [f]g of q+:

q±[f]g = f± q = f Y + f. (5.24)

Since the + operators in (5.20a), (5.8b), (5.21) and (5.18b) satisfy the same
algebraic identities (A.3), then important algebraic properties of the recursion
operator 0,, of the KP equation (like hereditariness) are equivalent to the
corresponding properties of the nonlocal recursion operator 012 (5.11) and, even
more remarkable, of the matrix recursion operator 012 (5.22).

In order to make this connection with the matrix formalism more clear, we
observe that the nonlocal problem (5.3) can be obtained taking the N --* 0 limit
of the N x N matrix one dimensional Schroedinger problem

W + qW= 4AW, (5.25)

where the coefficients of the matrix q are chosen in the form

(q)jj = qij(x, t) + a(b3j + I - .- 1, (5.26)

with the obvious prescriptions

qij(x,t) -- q(x,t, yIy 2 ); a(i.j+ - fI ) c - . (5.27)
N-.0 N--

The connection between equations in 2 + I and N x N matrix equations in
1 + 1 was first used by P. Caudrey. He introduced in [16] a N x N spectral problem
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(similar to (5.25)) which reduces to 15.2) in the limit N -- K. lhen he showed that
" the N x N Riemann Hilbert formalism associated with it becomes, in the limit

N - oo, the nonlocal Riemann Hilbert and the i formalisms of (5.2) [17].
The connection established in this section between the spectral problems (5.25),

(5.3) and (5.2) implies that the well established theory of recursion operators and
their connection to the bi-Hamiltonian formalism in I + I dimensions, once applied
to the matrix problem (5.25), gives rise, in the limit N -- f., to the corresponding
theory developed in [1] and this paper for 2 + I dimensional systems.

It is remarkable that both algebraic properties and methoos of solution for
integrable systems in 2 + I dimensions can be justified and obtained from the
corresponding properties of I + I dimensional systems.

Appendix A

In this Appendix we present some of the explicit calculations necessary to apply
the results presented in this paper to the classes of evolution equations associated
with the KP and the DS equations. In order to make this paper self-contained,
we first present some results contained in Appendices B,C of [I].

The directional derivatives of the basic operators qt2 and Q+2, defined in
(1.4b) and (1.10b) respectively, are

q 2,Jf12],12 = .I2Y)2, .1 2,, 2 scalars, (A.la)

Q12.[f t 2],12 = .'12 ,112, f,2 off-diagonal matrix, (A. I b)

where fJ 2 are defined by

ft 2 012 fd(f 3 ,] 3 2 +q 3Jf 32)- (A.2)

The integral operators J12 have the following algebraic properties:

2b12= ± b 2 2 , (A.3a)

((112b12 -- b 2 a 2 )c 22 = ( )2- 2)/ '12 1 -12 1 2 1 2  a-2h 2. (A.3b)

(aj 2bj 2 -b12al.c'12 = (a2b 2) ( '2 ± c12a 2 Il 2 , (A.3c)

a,2 4 ± a12. (A.3d)

Moreover the integral representations

qf 2 f 12 "-- dY 3 (q1 3f 3 2 ±. 1 3 q 3 21) . q1 2 =('12q + '
'
1
2,

A

Q 2f12 =Jd'3(Qt 3i 32 ±fl3 Q32), Q, 2 = 12 Q1,
R

imply that the operators q 2 and Q 2 satisfy Eqs. (A.3) as well. Equations (A.3)
are conveniently used to show that:

a) The recursion operators (P12 (1.4) and (1.10) are strong symmetries of the
starting symmetries ',2 H1 2 (1.5-6) and (1.11-12) respectively. For example, if
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K Q2 = Q- and I12 is given by (1.12),

0) 12 dQ 1 2 H I 2]112 - (Q1 2 HI 2)d[01 2./12 1 + (/) 2 (Q 1 2 "I' )d /1 2 1
- a[(Q1 2 H 1 2)

+ 
P1 I2

1 Q 2 + Q1 2 12 (Q 2 12)+12

-(((PI 2 - Q + I1 2f2 12'12 Q1 'I,'I Qt'2) 1 2 =o
1 '~"2 U.12) 12 + (;(/Q',JII''2 0

since the terms without Q' 2 give

-a(PI 2 f 12 ) 1112 + aP1 2f 21 12 11 .

and the terms with Q; 2 give

- a(Q 2 H1 2) + P12' Q 1 2 - 7Q' 2 P 2
1 (Q, 2 i) +/12-! ++ -H '. f 2 1 -12 (((Q 121 12) +

+(QI2 P12 Q1 2 f 1 2 ) H1 2 - aQI 21' 1, |Q 2 f1 2 12

+ Hi 2 Q 2)P1 2 ' Q1f.2 + Q12Pi 2' (,1'f2Qi12Ht2 + Q]2.1'12112))
= - aQ;2 P-2(H-2 Q ' 12 + .1' 2 Q 1 2 H, 2 Qj 2f 1 ,2 1t,2)=0.

b) The Lie algebra of the starting symmetries is given by Eqs. (1.7) and (1.13).
For example

i) if K?2H 12 are given by (1.5-6):

[N 1 2 H('2, Al 12 2'(21, = ((Dq+2 + ql2O - t q 2 )lJ(,2,)
" 
11(,I - l)lj, 2 f1'11)

+ 1t(12

-(q 111 '2) 1 q1 2 .112! 2 W (12J1")) 11('2

- - 12 (H 1 '2 H'1
2

1 + q 2 D - ( (I', ) - (1 2 i12,

+ (' 1,22)- q 2 - ) 12- 11 ,, I-''2A t :

ii) if/' 2 H 1 2 are given by (I.11 -12)

[N2 H., Al 12 H, , , 2  )- = (Q ;2 al'1 2' )- H 1t - (Q 12 ! 11 ()1- alt 1 
2

= _ I1' ) Q 1 2 -12 + of', 1
2 )) Q 1 2 1"1'2

= - Al , 2 12

c) The functions T, 2 given by (4.16) and (4.25) satisfy Fqs. (4.10): for examples

i) if T 12 =6 1 2 , then -IJt 1/1 a (1 q12 + (112 ) 1 (5. 2 1 2

S2 12 = (P 211]./'2 2 + )1 2 D -t 1 2 + 1) 2))/ 4./12.

since 612 , = 0 and ')'2./'1 2 =2i 21 2I 1 1 2 = 0.

ii) If TI 2 = (x/2)Q 1+2 (5121, then Eqs. (4. 10) arc satisfied using the following results:

T 1 2af 2 ] = a/ 1 1 2 l = '2 1 1i,

T I2 J 1 2 = X(aQ d12 ± I'l 2 (Q 2  I Q2, 112 112 off-diagonal

1"+ a C2.1 2, .J,2 diagonal

For instance:
= - U(T+2 P 2

1 IQ 2 + Q I 2'I'2).I2 + cr(t'1 2 Q 2 1')21Q , c\af,2

- x(Pt 2 1- Q1 2 P 2
1 QI2)f 2 ."12"
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d) 'i 2 [K0H 12 , T12 ]=0, ifK 2 If 12 and T'I2 aregiven b y(l. I 12)and(4.25)
reslectively, or by qj 2 H 12 ,H 12 = I(Y 1,y 2), and 612. For example

i) (' 2 [q1 2 H1 2 ,3 1 2 ]d =( 26l-2 H1 2 =0.

ii) ( 2 Q 2 HI 2, T2]d = 0'"1 2(TI 2111 2 - T, 2,[QI211 2 -)
= '(P 2 (x(7Q1 2 - xUQ1 2 )1 1, 2 = 0.

e) Equation (4.17b) holds. It follows from 12 ,6[ 12 ] D31 2 + 61 2 D 'q1 2 +
ql 2D-'612 = 2D, which implies

0712 [Ml12"H,2 , 612d = 20" 2 D11 2. (A.4)

Different choices of H, 2 =H(y,,y 2 ) give different results. As it was shown in
Appendix B of [1]

2-= -H(12 (12 H 0!,- Y2).

= 'D'H,= (2ot)'P'n'/i 1 2"H '!, H1t2 1  (A.5)

an analogous, although more tedious derivation, gives

0" 1'D'H 2 = 4P1 2 M1 2M 1 2 + E aj()21,Pn2 2 .1 -H(21), (A.6a)
I=1

a'H(y1 + Y2) 1)1(- 1)/2, n odd (A.6b)
yl a-C .- n/2, n even

and the coefficients CIV are obtained through the following recursive construction:
C,(-' = C( '-"+ 2 C,' - )+ C(17- 1),
C(o) = 1, (A.7)

where C ") = 0 if b < 0 and b > a. Equations (A.4) and (A.6) imply Eq. (4.1 7b).

f) E0j K1-2 H 12 are extended gradients; for example if

i) =1N12 - q 2,H 1 2 = H(y1 ,Y 2), 6 12 = D and n = 0:

<fi 2,(D - '1tQ12 H1 2 )d[112]> _ <f 12 ,D-'0g2 n 1 2> = <D-'f 1 2 ,n- 2 91 2>

- <H12 D-'f 1 2,g, 2 > = <D - 'f1 2 1 2 ,g 12 .

ii) 1'°2 -=-M1 2 .Dq 2 +qI 2 D-1 q 2 ,H1 2 = H(yY 2 ),, 2-=D and n=0:

<f12,(D- 1/A 1 2 Hi 2 )d -g1 21>

=<f 1 2 ,g 2 H1 2 + D-'gj2D- 'q2H 2 + D-'ql2D g 2 H>2
= <f 1 2 ,(H*2 -D-'((D-'q H1 2 ) +q1 2 D

- H 1 2  >

= <(H*2 -((D-'q 2 H1 2 ) + H- 2 D1 q 2 )D ')f 1 2 ,, 2>

= <(H 2 -D-'((D-q- H1 2 ) + q12 H12 D ))f, 2 ,9 1 2 >.

iii)k 1 2 = M, Qija,H1 2 defined in (1.12) and n = 0:

<f 1 2,(cl 12H1 2)dg 1 2 > = Kf,2, - H12g 1 2 > = <- I2fJ 1 2,g1 2>.

iv) k02 =R 1 2- Q- 2,H 1 2 defined in (1.12) and n= 1:
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- Kf1 2 - 2 'Q12Q 2H 2 l+ -P 12H12 +Q QH- 2Pj t Q+2 )g12 >

= < -(P 2
1Q +2Qj2 H1 2)~ + P12 H-2 +Q Q1 2 12P 1 2

1 
+j2 J 2, 1

g) Equation (4.24b) holds, since

1 ~2
1 t ict5 2 I 2 12 12

- dxdy dY61trae Q+2UP172+ "H12.
R

3

Appendix B

In this Appendix we show that if '1P is factorizable in terms of compatible
Hamiltonian operators Q and e in the form 0 =.(0 -, and if t9 is invertible and

e,= 0, then Eq. (4.5) holds.
We first show that

-T,*= * + 7*jD, Y.tb- = P,[hJ'T, (B.l1)

OL [v] T + eY*T ' v = (P,,[ T]b. (B.2)

(B.1) simply follows from the definition of the adjoint:

<(0PT)*a,b> = (a, tOL[b T + (PTJ tb]> = K(Y.7' + 7'* (1*)tih>,

while (B.2) requires the use of all the hypothesis of this Lemma.:

< OL[tIT + eY*e Lvot>

=<(2L[e(-'v)]e-T,a> +< ,[e6(]6) -1 t,O t T>

Then, using (B. 1 -2) and (4.4) for n= 0, we obtain Eq. (4.5);

+ &Y*.6'tu+ (T*(P* -(PT)9

'(P(T [vJ + O7-1*&u) + OS*EY t
t.
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Abstract. The algebraic properties of exactly solvable evolution equations in
one spatial and one temporal dimensions have been well studied. In particular,
the factorization of certain operators, called recursion operators, establishes
the bi-Hamiltonian nature of all these equations. Recently, we have presented
the recursion operator and the bi-Hamiltonian formulation of the Kadomtsev-
Petviashvili equation, a two spatial dimensional analogue of the Korteweg-
deVries equation. Here we present the general theory associated with recursion
operators for bi-Hamiltonian equations in two spatial and one temporal
dimensions. As an application we show that general classes of equations, which
include the Kadomtsev-Petviashvili and the Davey-Stewartson equations,
possess infinitely many commuting symmetries and infinitely many constants
of motion in involution under two distinct Poisson brackets. Furthermore, we
show that the relevant recursion operators naturally follow from the underly-
ing isospectral eigenvalue problems.

1. Introduction

In recent years a deep connection has been discovered [1, 2] between certain
nonlinear evolution equations in I + 1, i.e. in one spatial and one temporal
dimensions, and certain linear isospectral eigenvalue (or scattering) equations.
These isospectral problems play a central role in developing methods for solving
several types of initial value problems of the associated nonlinear evolution
equations. The most well known such method, the celebrated inverse scattering
transform (IST) method, deals with initial data decaying at infinity. However, the
isospectral problem is also crucial for characterizing periodic [3] as well as self
similar solutions [4].

It is quite satisfying, from a unified point of view, that the isospectral problems
are also central in investigating the "algebraic" properties of the associated
* Permanent address: Dipartimento di Fisica, Univ-rsiti di Roma, La Sapienza, 1-00185 Roma.

Italy
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nonlinear evolution equations: The isospcctral problem algorithmically implies a
certain linear integrodifferential operator ,it, called the recursion operator. This
operator has remarkable properties: e maps symmetries into symmetries: ,l, has a
certain algebraic property [5] which Fuchssteiner [6] calls hereditary and thus
generates commuting symmetries: ,li*, the adjoint of 'P, maps gradients of
conserved quantities into gradients of conserved quantities; (,, admits a
symplectic-cosymplectic factorization and thus generates constants of motion in
involution [7]; Pl times the first Hamiltonian operator produces the second
Hamiltonian [8], hence the associated nonlinear evolution equations are bi-
Hamiltonian systems; the eigenfunctions of 'P are also symmetries, which actually
characterize the N-soliton solutions [9]; the eigenfunctions of 0 form a complete
set [10].

Well-known scattering problems in 1+1 are the Schr6dinger scattering
problem, the so-called generalized Zakharov-Shabat (ZS) or Ablowitz-Kaup-
Newell-Segur (AKNS) system, and their natural generalization, i.e. the Gel'fand-
Dikii operator, and the N x N AKNS. These isospectral problems are related to
several physically important equations, the Korteweg-deVries (KdV), sine-
Gordon, nonlinear Schr6dinger, modified KdV, Boussinesq, N-wave interaction
equations, etc. The above eigenvalue problems have been thoroughly inves-
tigated with respect to both the IST method and the associated algebraic
properties. The IST of the Schr6dinger was investigated in [1, 11], of the AKNS
in [12], of the N x N AKNS in [13-15], and of the Gel'fand-Dikii in [16]. The
IST of special important cases of the above systems were investigated in [17]
(nonlinear Schr6dinger), [18] (modified KdV), [19, 20] (Boussinesq), [21]
(3-wave interactions). The recursion operator associated with the Schr6dinger
equation was obtained by Lenard, of the AKNS in [12], of the Gel'fand-Dikii in
[22] and of the N x N AKNS in [5] and [23]. The general theory of recursion
operators and their connection to bi-Hamiltonian formulation has been devel-
oped by Magri [8], Gel'fand and Dorfman [24], and Fokas and Fuchssteiner [7].
Other relevant works include [25].

It is also well known that certain two-dimensional generalizations of the above
scattering equations are related to physically interesting nonlinear evolution
equations in 2 + I dimensions. In particular, a generalization of the Schr6dinger
equation is related to the Kadomtsev-Petviashvili (KP) equation (a two-
dimensional analogue of the KdV). Similarly, the two-dimensional version of the
N x N AKNS is related to N-wave interactions in 2 + 1, the Davey-Stewartson
equation (DS) (a two-dimensional analogue of the nonlinear Schr6dinger) and the
modified KP equation. The IST for the above two scattering problems has been
only recently studied [26]. (For other interesting results in this direction see also
[27].) In spite of this success, the question of using the scattering equations to
obtain recursion operators had remained open. Actually, Zakharov and Konopel-
chenko [28] have shown that recursion operators of a certain type, naturally
motivated from the results in I + 1, do not in general exist in multidimensions.
Recursion operators in 2 + 1 dimensions were only known for straightforward
examples like the 2 + I dimension Burgers equation, that can be linearized via a
generalized Cole-Hopf transformation [30b]. For a brief review of the literature of
the various attempts to obtain recursion operators in 2 + I, we refer the reader to
[29]. Here we only note that Konopelchenko and Dubrovsky [30a] were the first
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to establish the importance of working with w(x,y,)w+(x,y2 ), as opposed to
w(x,y)w*(x,y), where w(x,y) and w*(x,y) denote the eigenfunctions of the
associated scattering problem and of its adjoint, respectively. They also found a
linear equation satisfied by w(x,yt)w+(x,y 2 ). However, they failed to recognize
that this equation could actually yield the recursion operator of the entire
associated hierarchy of nonlinear equations. Instead, they used the above equation
to obtain "local" recursion operators. Thus, the question of studying the
remarkably rich structure of the recursion operator, ifi particular, its connection to
symmetries, conservation laws and bi-Hamiltonian operators was not even posed.

Using a suitable generalization, we have recently presented the recursion
operator and the two Hamiltonian operators associated with the KP equation
[29]. In this paper we present the theory associated with thse operators. In
particular, the notions of symmetries, gradients of conserved quantities, strong and
hereditary symmetries, Hamiltonian operators are generalized to equations in
2 + 1. Also a simple algorithmic approach is given for obtaining the recursion
operator from the scattering problem. As examples of the above theory we study
the two-dimensional Schr6dinger problem and the 2 x 2 AKNS problem in two
spatial dimensions. The following concrete results are given:

i) The linear eigenvalue problem

wXX + q(x, y)w + aw, = O, (1.1)

where a is a constant parameter, gives rise to the hereditary recursion operator
012=D 2 +q+ 2 + Dq 2 - I +q 2 D- 1q 2-D, (1.2a)

where the operators q112 are defined by

q± dq 2 4q.±q2 +o(D-T-D 2), D1 - , q1-q(x, y,), i=1,2. (1.2b)

dy1'

The operator 0,2 admits a factorization in terms of compatible Hamiltonian
operators, *12 - ~ ((e lt ) -I, where 9,,)2=D and eOl) are skew symmetric

operators satisfying an appropriate Jacobi identity.
The KP equation

q,= qxx + 6qq, + 3a2D - 'qy, (1.3)

is the second member, n= I (fl, = 1/2) of the following hierarchy generated by 0 12

q,=. I dy 2,(y 1-yZ)'V 2 'ol, n=0,1,2, (1.4)

where u t2=(P12 D)• I ='q,.+q2 +(q, -q 2)D
- '(ql -q 2 )+aD- '(q,, -q 2 ) and

6(Yt--Y2 ) is the Dirac delta function. The KP is a bi-Hamiltonian system:

q,= f dy,6(yY 2) _ dy2 y, -Y2)e(.5)
wr 2 212

where

'0lm 0 1P ao
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The KP equation possesses two infinite hierarchies of time-independent commut-
ing symmetries and constants of motion. For example, (P, 2112) , n = 0, 1, 2, ... are
symmetries of the KP.

The operator 0, 2 is the adjoint with respect to an appropriate bilinear form
(see Sect. 4) of the "squared eigenfunction" operator. One may verify that

*w I 2 =w(x.,) (1.7)

where w' satisfies the adjoint of Eq. (1.1) (see Sect. 4).
ii) The linear eigenvalue problem

w,=Jw,+Qw, (1.8)

where J = ac, a = diag(l, - 1), and Q is a 2 x 2 off-diagonal matrix containing the
potentials q,(x,y), q2(x, ), gives rise to the hereditary recursion operator 012
defined on off-diagonal matrices, where

+ +-

12 - (P12-Q1PI2 Q , (1.9a)

and the operators P12 , Q12 are defined by

P 1 2 F 1 2 -F 1 2,,-JF, 2 ,-F 1 2 J, Qj 2 FI 2 -~QI 12±F 1 2 Q 2 , (1.9b)

and Qj- Q(x, y), i = 1,2. The operator 12 admits a factorization in terms of
Hamiltonian operators, 0,,= 2=&W(, where ,,)=a.

The DS equation

iq, + (qx + 2
q 7 )=q(-q

2); - I 2q (1.10)

corresponds to q2 =q4 =q, f12 = - , and n = 2 of the following hierarchy

Ql, =# Il dy20112Qt2Cr. .1
t

The DS equation is also a bi-Hamiltonian system with respect to the two
Hamiltonian operators ev =cr and 2) = (PI 2a defined on off-diagonal matrices.
It also possesses two infinite hierarchies of time independent commuting
symmetries and constants of motion.

In more detail, this paper is organized as follows: In Sect. 2 we review the
algebraic properties of equations in 1 + I. The KdV equation is used as an
illustrative example. This is in a sense a summary of [7, 8, 24] although we follow
the notation of [7]. In Sect. 3 we derive algorithmically the recursion operators
(1.2), (1.9). This derivation is simpler than the one given in [29]; we now use
expansions in terms of d"6(y, -y,)/dt, where 6 denotes Dirac's function, as
opposed to expansions in terms. of A'. In Sect. 4 we show how *P 2 generates
extended symmetries at2 and extended gradients of conserved quantities y,,. We
then show that a, ,yI, are symmetries and gradients of conserved quantities,
respectively. Furthermore, the remarkably rich theory associated with the bi-
Hamiltonian factorization of 0 2 is developed in this section. In developing this
theory we use two important notions: a) The role of Frech~t derivative is now
played by an appropriate directional derivative, which is naturally motivated from
the underlying isospectral problem. b) An extended symmetry a12 can be written



Recursion Operators and Bi-Hamiltonian Structures. I 379

as 1l2 " 1, where '2 is an appropriate operator. The Lie algebra of these operators

is closed provided they act on appropriate functions H1 2 . Thus in 2 + 1 one is

dealing with a Lie algebra of operators as opposed to a Lic algebra of functions. In
Sect. 5 we give concrete illustrations of the notions introduced in Sect. 4.

We note that Fuchssteiner and one of the authors (ASF) introduced an at-
ternative way for generating symmetries, the so-called mastersymmetry approach.
In particular, it is shown in [31] that for the Benjamin-Ono equation u,=K,
the map [-, r]., where the bracket [, ] is defined in (2.16b), = xK + u2 + 3Hu ,
and H denotes the Hilbert transform, maps symmetries into symmetries. This
approach has been applied to KP in [32], and its general theory has been
developed in [33] (for other applications see [34]). However, the r has certain
disadvantages: a) The relationship between T and the eigenvalue problem has not
been established. b) T is not hereditary. c) It is not known if r can be used to obtain
the second Hamiltonian. In [35] we develop further the theory presented here. In
particular, we: i) analyze further the Lie algebra of the starting symmetries and use
0 1 2 to generate time-dependent symmetries, ii) use an isomorphism between Lie
and Poisson brackets to show that all these symmetries correspond to extended
gradients and hence give rise to conserved quantities, iii) show that the r
mentioned above comes from a time dependent symmetry, and since it corre-
sponds to a gradient cannot be used to generate 0, 2, iv) find a non-gradient
mastersymmetry (for KP it is 'P 1 2) which can be used to generate 0, 2,
v)motivatc and verify some of the results presented here and in [35] by
establishing that equations in 2+1 are exact reductions of certain nonlocal
evolution equations, of which the algebraic properties are straightforward.

Since two central aspects of integrable equations in 2 + I, namely the IST
method and the associated algebraic properties, have now successfully been
studied, we speculate that essentially all aspects of equations in I + 1 will be
successfully studied for equations 2 + 1. (For example, asymptotics and action-
angle formulation of KP have been studied in [36].)

2. Review of Algebraic Properties in I + I

We consider evolution equations of the form

q, = K(q), (2.1)

where q is an element of some space S of functions on the real line vanishing rapidly
for Ix--. oo, and K is some differentiable map on this space depending on q, and on
derivatives of q with respect to x. We use the KdV equation as an illustrative
example:

q, = q... + 6qq,. (2.2)

Equation (2.2) admits the following four-paramctcr Lie-group of transformations

x'=ec(x +r+yt), t'= e'ct +f), q'=e-c(q+6).
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The above transformations (space and time translations. Galilean and scaling
transformations) are uniquely characterized by the following infinitesimal gen-
erators of symmetries [37]:

a61 qx, u 2 =q..+6qq.,, 2, = +6tq, 2 = 2q+xq,+-3t0qx+6qqj,.

(23)
Actually, the KdV possesses infinitely many symmetries

a, = (P"7I , X, = V1, , n = 1, 2. (2.4)

where 0, the recursion operator (a strong symmetry) of the KdV, is given by

O=D 2 + 2q + 2DqD-, (D - f)(x)- j f()d. (2.5)

It turns out that ,P has a certain algebraic property, called hereditary, which implies
that cr;, aj commute. KdV also possess infinitely many constants of motion; the first
few are.

q 2 q2
1= f J.dx, eo=q, 9 , 2= -+q (2.6a)

It is more convenient to work with the gradients of constants of motion:

<gradl, v>= --I(q+ v) where <f, v>= J fvdx

is an appropriate scalar product. The functionals 11, 12 imply

yj =q, Y2=q.x+3q2 . (2.6b)

Equations (2.3), (2.6b) suggest that a = Dy, i.e. D is a Noether operator for the KdV
(it relates symmetries to constants of motion). This follows from the fact that KdV
is a Hamiltonian, actually a bi-Hamiltonian, system:

q,=Dgrad J(\ - +q1 dx=(D3 +2qD+2Dq)grad J jdx. (2.7)

The two Poisson brackets associated with the above are

{i, ljj <grad 1, e gradlj), t= 1 or 2, (2.8)
, D= , 0 2=D3 +2qD+2Dq.

It can be verified that {, is skew symmetric and satisfies the Jacobi identity.
The notion of a conserved covariant y is a mathematical generalization of the

gradient of a conserved quantity. Namely, if the functional I is conserved with
respect to a given evolution, then y = grad I is a conserved covariant. Conversely, if
y is a conserved covariant and if y, is a gradient function, then its potential I is a
conserved quantity. For example EY implies a conserved covariant F, =x-6tq
which is a gradient function, hence it implies a conserved quantity

1= J (xq-3tq 2)dx. However, 1', corresponding to 2:2, is not a gradient and

hence does not correspond to a usual conservation law.
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The above discussion motivates the following definitions:

Definition 2.1. Ii) A function a is a symmetry of (2.1) iff

a'[K] - K'(a) = 0, (2.9)

where prime denotes Frechet derivative, i.e.

'[v] -s q ) Fill(2.10)

(ii) A function y is a conserved covariant of (2.1) iff

y'[K] + K + [y] =0, (2. 11)

where K' is the adjoint of K', namely, <K'+f, g)= <f, K'g>.
(iii) An operator valued function 0 is a recursion operator (strong symmetry)

for (2.1) iff

0 '[K]- [K', -P] = 0, (2.12)

where [,I means commutator.
(iv) An operator valued function 9 is called a Noether operator of(2.1) iff

O'[K]-OK'- - K'9 = 0. (2.13)

(v) An operator valued function 0 is called a Hamiltonian operator iffit is skew
symmetric and it satisfies

(a, O'[eb]c> + cyclic permutations = 0. (2.14)

vi) An operator valued function 0 is called a hereditary operator iff

0'[Ov]w-00'[v]w is symmetric with respect to v, w. (2.15)

(vii) Equation (2.1) is of a Hamiltonian form if it can be written as q,=0y,
where 9 is a Hamiltonian operator and y is a gradient function, i.e. y'= '.

Proposition 2.1. (i) If y is a conserved covariant of (2.1) and if 7' is a gradient function,
then 1, the potential of y, is a conserved quantity for (2. 1).

(ii) 0 maps a's to o's, 0 + maps y's to y's, and e maps y's to a's.
(iii) If (2.1) is of a Hamiltonian form, then 9 maps y's to a's. Furthermore, there

is an isomorphism between Lie and Poisson brackets:

[ey, 197,]L= O grad (y, i9y2>, (2.16a)

where

[a, b], . a'[b] - b'[a], (2.16b)

and 1,'72 are gradient functions.
(iv) If 0 is hereditary and 0 is a strong symmetry for a, then 0"a1 , form an

abelian algebra.
(v) If (2.1) is of a bi-Hamiltonian form, then 0 = 0 2 8 'is a recursion operator

of(2.1).
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(vi) If (2.1) is a compatible hi-lIlamiltonian systen, i.e. if it is hi-Hamiltonicin and

if el +e 2 is also a Hamiltonian operator, then (=O2e I is hereditary.
Furthermore, if y, is a conserved gradient of (2.1), then (P "i, are also conserved
gradients. Thus (2. 1) possesses infinitely many commuting symmetries and infinitely
many conserved quantities in involution.

Given the isospectral eigenvalue problem associated with (2.1) there is an

algorithmic way of obtaining P. Furthermore, if (P has a complete set of
eigenfunctions it must be hereditary:

Proposition 2.2. Let

V.= U(q, ) V (2.17)

be a linear isospectral eigenvalue problem associated with (2.1). Let G, denote the
gradient of the eigenvalue A. If Gi satisfies

PGA =/u(.)G,, (2.18)

then = + is a hereditary operator (provided GA form a complete set).

3. Derivation of Recursion Operators

A. The Schrodinger Eigenvalue Problem

Proposition 3.1. The Schrddinger equation (1.1) is associated with the following
equation:

61,2q, , t12 T2- 2q12aI2 , (3.1)

where q' 2 are given by (1.2b), 6 denotes the Dirac delta function, T, a are arbitrary
functions of the arguments indicated,

612-6(YI- Y 2), TI 2-Tx ynY) 12-yY) 32

and T 12 is given by
W12 - D2 +q 2 +D-'q 2D+Dq- 2D-'q 2 . (3.3)

To derive the above result first write Eq. (1.1) in matrix form

W =U W, W- U=.(3.4)
- w") ' -q-%D, )

Equation (3.4) is compatible witb

if
U, =V.-[U, V]. (3.6)
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The operator equation (3.6) implies

A =B+2C, E,= -B-24C, 2C,=E-A,
(3.7)

q, =-- B. -4A +E4, 4--q + oD,.

The above equations yield

A= -C,+D-[C,4]+A,, -4o =0,
(3.8)

E=C+ D-I[C,41]+ Ao,
(3.9)

q,= C + [4, C] +4,C++ [, D- '[, C]] + A0 - 4A 0 ,

where [,] + is the usual anticommutator of two operators. We represent the
operator C by:

(Cf)(x,y,)= f dy 2T(x,Y,Y 2)f(x,Y2), (3.10)

similarly,

Aof, =2 dy 2al 2f 2.

Then

(4, C± C4,)f1 = dYA(q2T, d)f 2,

[4,,D-'[4,C]]f, = f dy 2(q? 2D-'q 2 T1 2)f2 , (3.11)
IR

(Ao4, - 41A 0 )ft = - I dy 22q- 2a 12f 2 .

Hence applying the arbitrary function f to the operator equation (3.9) we obtain
612q 2,= T12, +(q 2 T 2 ).+q 2 T 2,+qsD- tq 2 T 2 -2q- 2a12 . (3.12)

Remark 3.1. It is easily verified that the following important commutator operator
relationships are valid:

[q- ,h 2 ]=0, [q',t 2,h,]=2afh' 2 , [P1,2 h1 21=4ch'.2 ; (3.13)

hereafter h, 2 is any arbitrary function h(y, - Y2) and h', 2 denotes its derivative with
respect to Y1.

Proposition 3.1 can be used to derive nonlinear evolution equations related to
(1.1). One needs only to assume appropriate expansions of T, , a I2 We give two
examples:

Example I.

Ttz 2 )=C, a12 =0, (3.14)
j=O

where M,61 "I , yI C. an arbitrary constant. Then

qt,=fl,,dy 2612 DT"I[' 1, n= 1,2, (3.15)
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To derive (3.15), use Eqs. (3.14) in (3.12) and use (3.13c) with h, 2 =
632q,=D(i (82  2 T)+4a E 21"' 2)

Equating the coefficients of.I2 and(j, 1 j:n to zero, we obtain

)2T =0, To2 --- P 2 T.

Hence 1'N 12 . 2 4 2T 2
T n c -

j) 
- - C nT j' 2  1 

1 2 q 2 ,= 6 2 D 1 2  2- -'PI 12 - T21,1 -)=Q-2D

Thus (3.15) follows with the normalization (-1)"f. =(4a) -"C..

Example 2.

T,2 = Z , 2T,0 r, '=0, a12 = - . (3.16)
j=O

Then
qt 1, fld), 2'512D'2D -'qI2 • I , n 1, 2 ... 3.17)

R

with the normalization C, =()- )"(4a)",,.

Remark 3.2. 1. The operators 0,2, T, defined by (1.2) and (3.3), respectively, are
related via

01 =D=DP 2 . (3.18)

Hence the hierarchy of Eqs. (3.15) can be written as

ql,=ft. dy 26j 2D~P I.1=#l dy 261 2 V' 2(0, 2D)I 1. (3.19)
R

The KP equation corresponds to n-- I and fl, = -; the next equation of the class
(for fl 2 = ) is

qt = qx,,,x + I Oqq,,, + 20qqxx + 30q2q,,

+ 50C2(2q,,, + D- '(q2 ),, + 2qD - 2q, + 4qD - 'q, + 4qD- 'q,,) + 5 4 D qyyy,

2. Similarly, the hierarchy of Eqs. (3.17) can be written as

q,, ,Jdy6 2DVP 2(D-'q2 1)=, I dy61 2 0"]2 q 1. (3.20)

For n=I and fl= , -, the above becomes q=tq, ,, i.e. it corresponds to a
y-translation.

B. The 2x2 AKNS in 2+1

Proposition 3.2. Equation (1.8) is associated with the Jbllowing equation:

612Q2, = UlT 2 VI2o ,(3.21)
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where VI, denotes an arbitrary off-diagonal mnatrixi and the operator P, 2 (acting
only on off -diagonal matrices) is given by

12 2 #aP 2 QjP 2 Q- , P,,F1  - F,2 -IF F1 J7. (3.22)

To derive the above note that (1.8) can be written its

W=QW, 0~Q +JD, (3.23)

Equation (3.23) is compatible with W,~= PW if

Qt =1'-[Q,1"].(3.24)
We represent the operator P by

f'F)(x, Yd)# d ' Vx X Y1, Y0)F(. Y,). (3.25)

Then [Q ~=dY2 ( 12 V, 2 )F2 , where Q 2 Ft 2 #Q 1 2 -F 1 2 Q2 +J 12 ,

+ F1 2 J. Hence (3.24) implies 612Q,=(D- 1 )V2 . Splitting this equation
into diagonal and off-diagonal parts we obtain

612 Q2, = PI 2 VW 2o -Q- 2 VI 2 t P) 2 VI 21, -Q1 2 VI 2o =0 . (3.26)

where V 20, and V120 are the diagonal and off-diagonal parts of V,2. Hence
Eq. (3.21) follows.

Remark 3.3. The operator 'P, 2 satisfies the following important commutator
relationship:

[' 1 2,hI2]F1 2 ,= -2h 1 2FI 2 o, (3.27)

where F1 20 is the off-diagonal part of the arbitrary matrix function F, 2 and prime
denotes differentiation with respect to y,

The above relationship follows by considering the diagonal and off-diagonal
parts of the following equation

Remark 3.4. Assuming[D-02hI ] 2 2h'2a 2.(28

V1 2,,= Y- 6.' 2 1 P"/) off-diagonal, (3.29)
J=0

Eq. (3.21) implies

Q1= Y62P Qi2 2 PI 2v 1 2, 0 (3.30)

where V,2 . is any diagonal matrix solving (3.30b).

To derive (3.30) note that Eqs. (3.21) and (3.27) imply

622=a Y- 6'21111 2 '-~-22 >' 2"'lj2 ii.(3.31)

Equating the coefficients of 112, 6M2' n tj-2 1, to zero we obtain

12 10, -~ (2 -' '1'2 T I ) 2v P 1f24) (3.32)



386 P. M. Santini and A. S. F okas

Equation (3.32c) can be written as

2ouv t7"2 P,= tp1 2 - Q12t1 l 2L 0=P1V2-Q2I (3.33)
where V,2 ,, is an arhitrary diagonal matrix. [fence (3.32c) and (3.32a)

imply v(l,') ( 1)3(1 2 U, 2 ., where V,2 ,) Solves P1 2 V12 .=0. Ilcnce

V(0- 1/2oo)'WnYQ- V2 .2 and the coefficient 6'mly(.3)

Remark 3.5. Let 0, 2 be defined by (1.9a), then one easily verifies that

Equation (3.30), for special choices Of V1 2. yields hierarchies of integrable
equations:

Example 1. Let v l2.=a then (3.30) imp lies

Q1,= -fI dy62~2I2=.Id2IV2Ia (3.35)

To derive (3.35) note that Q ja = Q +2. Also (3.34) implies that 0", 2' = 2
Hence the integral of Eq. (3.30) implies

-U~nl 2QI+2 i= -0RaaQM+2=0 2 QI 2 U.

Remark 3.6. Equations (3.3 5) for n =0, 1, 2 become

Q1=aQ, fl0=-'z, (3.36a)

Q,= - # 2 [2u(Q~ + Ct2Q,,)-_QA + AQ] (3.6c

(D.-JD,)A= -2(D,+JD )GQ2  I.
Equations (3.36c) under the reduction q2 =4 1 =q yield the IDS equation

iq, + -Lqx + t2 q,,) = q(0 - Jq12),

Example 2. Let vl,2, = 1 then (3.30) implies

Qj,=-fdY2612aWQ =f. dY26120RI2 Q-2 1. (3.38)

Equations (3.28) for n =0, 1,2i become

QI=01(3.39a)
Q, =,XQ" fl. - (3,39b)

Q,= #2E -4caQx, + BQ - QBJ 133c
(D - JD,)B = 4ota(Q 2)y
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Equations (3.39c) under the reduction q2 = il =q yield (/?= -

q , = cq , y + u q ,
- a 2  2(3.39d)ux ' u YY = 2 otql .Y

C. Motivation
A crucial step in deriving the recursion operator associated with the Schr6dinger
equation was to use an integral representation of the operator C [see Eq. (3.10)].
Also in deriving the theory for recursion operators we will need an appropriate
Frechet derivative. Both, the integral representation (3.10) and the above Frechet
derivative can be motivated as follows:

Consider

w,+ 4w+ aw,=0; (4f)(x,y)= f dyq(x,y, Y2)f(x, y 2 ). (3.40)
R

Equation (1.1) can be thought of as the reduction of (3.40) under q(x,y,,Y2)
=b12q(x,y,). It is clear that 4 satisfies an equation similar to (3.9) where q is
replaced by 4. Since the operator 4 has the integral representation (3.40b), one is
lead to consider a similar integral representation for the operator C [Eq. (3.10)].
An equation similar to (3.12) is also valid for 4, where ql'2 are replaced by 41z,

41' 2 f 1 2  f dy 3 (qI 3 f 3 2 ±f 1 3 q3 2 )+ c(D I D 2 )f 1 2 • (3.41)

The Frechrt derivative of 4t 2f1 2 in the direction a12 yields

4 [ 1 2]ff1 2 - jdy3(a1 3f 32±f 1 3a32) •  (3.42)

This is precisely the directional derivative we use in Sect. 4. More details on the
concept of equations in 2 + I dimensions as exact reductions of nonlocal evolution
equations are presented in [35, Sect. V].

4. Algebraic Properties in 2 + I

The theory of algebraic properties in 2 + 1 is based on the following concepts: a) A
crucial step in deriving the recursion operator associated with a given two-
dimensional eigenvalue problem is the use of an integral representation of
operators depending on q and O/8y. In KP for example 4 - q + aa/8y is represented
by

(qI + aDt)fi 2- dy 3ql3f 32 . (4.1a)

The above mapping between an operator and its kernel induces a mapping
between derivatives:

4 1 121f,2 = dy3'rl 3f 32 , (4.1 b)

where 4I[er2] denotes the directional derivative of the operator valued function
4, in the direction U,2. Using an appropriate bilinear form [see (4.7)-(4.8)]
Eqs. (4.1) imply

Jf,2 =(q 2 -aD 2 )f, 2= dy 3ft3q32 , , ftl'jJ' 2 = A dy 3 f 30 3 2. (4.2)
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The recursion operator 0, depends only on 41 and 4*', thus one is able to define
i',, [ol2]. b) The theory of symmetries for equations in I + I is based on the
existence of "starting" symmetries K', which via 0 generate infinitely many
symmetries. For example, for the KdV K' = q.. For equations in 2 + i we find that
the starting symmetries K, 2 can be written as R °21 11 2, where R', is an operator
and H,2 is a suitable function [for the KP H1 2 = H 2(y1,y 2)]. The operators R?2
depend only on 4,, 4,* and thusk 't2, is well defined. The Lie algebra of the starting
operators IZO2 acting on H, 2 is closed. This fact, which is of fundamental
importance for the theory developed both here and in [35], can also be traced back
to the integral representation of the fundamental operator 4. For example,
Eq. (4.1b) implies:

4JU. r 21]-12 - 4jf! 2]1L, 12 = dy3(aI 3f32 -A3U"32) "-

Also using

41,j410"12]f12= Jdy3 (41°' 2 )13f 3 2 = f dy 3 dy'3f 3 2qj 3 try 3 ,
R R.

it follows that

41,[4,a, 2 ]/fz - 4,,[41f4 2]a, 2 = 41 1 dY 3 (, 3 f 3 2 -f130"3 2 )
"

The above equation can be written as

[4 ,f! 2,4 ,a, 2]d = 41 [o12,fA 211,

where the following brackets have been motivated from the above example:
K"'()H'()"(2) 2 R(2)r 2  (4.3a)

12, 2 , 2.1d [.1 2 )H 
1 2

d 122 121 12r,1'1 " ,k t.tI - 1(2 12 12} 12 1.9(2) H( ) H(-a

[H','), H] I dy 3(H1H3 - HHW (4.3b)2 1 13
't  

32)

In I + I, one considers the Lie algebra of functions; in 2 + 1 one, instead, considers
the Lie algebra of operators, thus equations in 2 + 1 have richer algebraic structure
than equations in I + 1. c) The recursion operator 0, 2 and the starting operators
g K 2 have simple commutator relations with 6,2 or more generally with
h, 2 =h(y -Y2)'

Notation. We will consider exactly solvable evolution equations of the form
q, = K(q), where q(x, y, t) is an element of a suitable space S of functions vanishing
rapidly for large x, y. Let K be a differentiable map on this space (we assume for
convenience that it does not depend explicitly on x, y, t). The above equation is a
member of a hierarchy generated by 0P,2 , hence more generally, we shall study
q,=K("'(q). Fundamental in our theory is to write these equations in the form

qt,,= fdY2 61 2 q'P2 R 2"1- Idy 261 2Km) =K '" (4.4),

R

(in the matrix case, 1 is replaced by the identity matrix 1), where K7",(q, q2) belong
to a suitably extended space g, and (,h 2 , 1 2 arc operator valued functions in ,..
For an arbitrary function K, 2(qt,q 2) we define the total Frecht derivative by

K1 2f[F] # K, 2,[F, -_+ K2, [F 22], (4.5a)
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where K, ,,, denotes the Frechet derivative of K, with respect to qj, i.e.

We also define a special directional derivative, dictated by the underlying
isospectral problem and denoted by K,,,. This derivative is linear, satisfies the
Leibnitz rule and is related to the above Frech~t derivative by

K12,[61 2F j121 KI2[F] . (4.6)
For arbitrary functions f12 eg.'and g,, Eg., where S* denotes the dual of S, we

define the following symmetric bilinear form

<912Jf 12>-' f dxdy~dY2traceg 21 ft 2 , A 1 9 12 matrices, (4.7)
Rt

3

where obviously the trace is dropped if f 1 2,g, 2 are scalars. The operator LT'2 is
called the adjoint of L, 2 with respect to the above bilinear form, iff

<L14 2g12,f 12>=<g 12 ,L 12f 12 >. (4.8)
For arbitrary functions f eS and g c-S*, we define the following symmetric

bilinear Jorm

(gf)D Jdxdy tracegf , f, g matrices. (4.9)

The operator L" is called the adjoint of L with respect to the bilinear form (4.9) itT

(L~g,f) =(g, Lf). (4.10)

Remark 4.1. Definitions (4.7) and (4.9) imply

Let I be a functional given by

I= f dxdy, tracee1 1,= f dxdyjdY2b12tracee12,1 e12='e(X,Y1,y2,t)E&'

(ifLV2 is a scalar, then omit trace).
The extended gradient grad 1 of this functional is defined by

The gradient of!1, grad!I, is instead defined by

It is easily seen that a function y, 2 c- 9 is an extended gradient function (i.e. it has a
potential 1) iff

Y12,dYi12,- (4.15a)

A function yec-S is a gradient function iff

Y 1 V=?.f (4,15b)
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Some of the above notions make sense only if for certain functions the directional
derivative exists. Such functions are called admissible.

Throughout this paper in, n denote non-negative integers.

A. Basic Notions

Definition 4.1. i) An operator valued function L 2 is called admissible if its
directional derivative is well defined.

ii) A function K 2 is called admissible if it can be written as K 12 = 1 2Hi2 ,

where R, 2 is an admissible operator and H 12 is an appropriate function [for KP,
H 1 2 -H 1 2(Y[,y 2 )].

In analogy with Sect. 2 we give the following definitions:

Definition 4.2. Consider the evolution equation

qt, = Jdy2612K12=K1t . (4.16)

i) The function a,2 is called an extended symmetry of (4.16) iff

U12,EK ] =(612K12)d1'12]. (4.17)

ii) The function y 2 is called an extended conserved covariant of (4.16) iff

Y 2,g] + (612Kl 2)d,12] =0. (4.18)

iii) The admissible operator valued function 0,2 is called a strong symmetry
(recursion operator) of (4.16) iff

;P 2J[K ] + l0t2, (02K12)d] =0. (4.19)

iv) The admissible operator valued function e12 is called a Noether operator
of (4.16) iff

e.t2f[K ]- e 1 20. 2K ,2)d*-(6,2K,, )d,ft2 = 0. (4.20)

v) The admissible operator valued function 0,2 is called a hereditary
operator iff

( 512,[02fl2]gl2-Ol2o12a[Ji21g|2 is symmetric with respect to fA 2 ,g1 2

(4.21)

Remark 4.2. i) C)2 is an extended symmetry of(4.16) iffO1 2 commutes with 61 2K, 2,

[cl 2,6512K 12 ]d=0. (4.22)

This follows from the fact that 0r12,[b12K1212f[K].

ii) If in (4.12), 9 ,2 is an admissible function, e)12 = A 12
H t2; then the functional I

depends on H2, I=I(H1 2), and Y,12grad1 2l, defined by (4.13), is also an
admissible function 2= 1 t2H2, enjoying the property (4.15a) for every H, 2 . If,
for instance, 1= I dxdytdy 26 12q' D-'q- H, 2 and the directional derivative is

R3

defined in (4.13) [see also (4.1b) and (4.2)], then y 2 =4D-'q 2 H, 2 is the
corresponding extended gradient.
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iii) IfY12 in addition to satisfying (4.18) is also an extended gradient function,
then its potential I is a conserved quantity of (4.16). This follows from the
following:

g I= lf[K] = Id[61 2 K 1 2] = <Y12,6 12K1 2> ,

where Y12=gradl 2 . The derivative of the above in the arbitrary direction v,2 is
zero if (4.18) holds.

iv) 0,2 is a strong symmetry for a, 2 iff

'P1 2jal 2] +[012 ,al 2d]=0. (4.23a)

Hence Eq. (4.21) implies that 0,2 is a strong symmetry for (612K, 2) (see
Lemma 4.1).

v) e12 is a Noether operator for a12 iff

12 [a12 ]- ea, a*2-al 2a012 -0 (4.23b)

Hence Eq. (4.20) implies that e12 is a Noether operator for (6 12K1 2) (see
Lemma 4.1).

vi) In the above definitions we assume that a, 2, Y12, e12, (P12 do not explicitly
depend on t. Otherwise, a12t[K] should be replaced by 2al2 /t+a 1 2r[K];
similarly, for Y12., 191, 012t.

Remark 4.3. i) 0,, maps solutions of (4.17) to solutions of (4.17);
ii) 'tPi2 maps solutions of (4.18) to solutions of (4.18);
iii) e,2 maps solutions of (4.18) to solutions of (4.17);
iv) if e12 solves (4.20) and 012 solves (4.19) then ir 1 2 also solves (4.20).
Definitions 4.2 make sense only if(61 2K, 2)d exists. For equations generated by

0l2, (61 2KI2), is well defined:

Lemma 4.1. Assume that the admissible operators i0P12 and R1 2 satisfy the following
operator equations

[0 12,hl2]= -flh' 2 , (4.24a)
[R0O2, h12] = - 12

h' 
, (4.24b)

where fl, # are constants, S1 2 is some admissible operator, h 12 = h(y, - Y2) and prime
denotes derivative with respect to y,. Then all notions introduced in Definitions 4.2
are well defined for any Eq. (4.4).. In particular:

(61 2 r1 o 2" 1)1 = (('12 +9 -9)"(902 + #91 29)612)d, (4.25)

where the operator . is defined by
[.9,dj 2] = 0, -9 " hi 2 = h.2 , (4.26)

and 41, is any admissible operator. Thus• n( (n) n
('1+-r,=i0 )12*6'1,-. (4.27)

tf= ¢ (n - -)! e! '

Equations (4.24) imply that 61 24V 5 Zot2 '1 =(01 2 + fP-)R(Rg1 2 + P129)6,2 which
is an admissible function since 0, 2' t°%, .I 2 are admissible operators.
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Remark 4.4. i) For the two-dimensional AKNS we use two starting operators °2,
both of these operators commute with h,2 (i.e. #=O). For the two-dimensional
Schr6dinger we also use two starting operators R°2; one of them commutes with

h, 2, the other implies #7= fl, 2 =D.
2'

ii) It is clear that the theory presented here, suitably modified, is also valid for
more general commutator relations than the ones given by (4.24). In investigating a
new eigenvalue problem one first computes the commutator of 0, 2 and k? 2 with
h, 2; one then builds a general theory based on these commutator relations.

iii) We remark that Eq. (4.24a) could be derived directly from the underlying
isospectral problem without using the explicit form of 012. As an example, in
Sect. 4.E we show that the equation (P *2W1W' =4A WW 2' (which is a direct
consequence of the spectral problem W+ 4W=AW) implies Eq. (4.24a), with
,i= -4a.

The usefulness of the extended symmetries and the extended gradients follows
from the fact that their reduction yields symmetries and gradients, respectively.

Theorem 4.1. Assume that the admissible operators 12, 9012, satisfy
[4P, 2, 612] = -#86'1 2, (4.28a)

[Vo 2,6, 23= - 1 26'12 , (4.28b)

where P1, P are constants, ( 2 is such that
912,[' ]H12=-t2,[ ']H12 =0

and prime denotes derivative with respect to y,- Then:
i) If C12 is an extended symmetry of

q 1 = I dy 2 3 1 2 01 2 R'12 1= dy 2 6 12K2 =K 1n, (4.29)

a is a symmetry of (4.29).
ii) Similarly, if Y12 is an extended conserved covariant of (4.29), yl, is a

conserved covariant of (4.29).
iii) If Y 12 is the extended gradient of a conserved quantity of (4.29), y is the

gradient of a conserved quantity of (4.29).

Proof. We first note that Eqs. (4.28) imply
a,) 012,1 ]6312g12--6t2O[22[ ]9t2 = 0 1 (4. 30a)

a2) 4Pl 2,[l612" ]612g12-61 2012d[" ]61 2g912=0, (4.30b)

a 3 ) (612RO°2 * I)-[ 6 1 2( 1 2 1)[ ], (4.30c)
a,) (612Ak12" 1 )d1512" ' --=61 i2(612R0 102

" I)d[ ']. (4.30d)

Equations (4.30a), (4.30b) follow from (4.28a) (see Appendix A). Using (4.28b) and
the fact that St z,[. ]HI 2 = 2 1,[ ]H2 = 0, Eqs. (4.30c), (4.30d) take the form of
(4.30a), (4.30b) (with (P 12 replaced by R 2). However, these equations follow from
(4.28b) following a proof similar to the one given in the Appendix A.
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a) Equations (4.28a), (4.30a), (4.30c) imply

We derive Eq. (4.31 ). by induction: Eq. (4.3 1 ) is (4.30c). Let subscript L denote any

derivative, such that the Leibnitz rule holds. Then
(6,,K("+~ ')L =(bl20lP2 KI')L= P 126. ,K"')L + /1(6; 2K'"')L.

Hence
(61 2K("')~')LE 1 =012P,.[ ]6l 2 K" + 'P2(61 2KI"'),[ I +f( 6'I 2 K()L[ 1- (4.32)

We assume that (4.31). is valid, then applying Qe on it, it follows that
;'Kl"')~[]6 2K'f[ 1(4.33)

is also valid: To derive Eq. (4.33) note that Eqs. (4.26) imply

Applying the L-derivative on the above we obtain

The above equation for L =f, and (4.26) imply (4.33). Equation (4.31 ),, +is valid uTf:

0 12,[ ]6 12 G" + (P12 1 2 Gn)f [ I + P(6'1 2 G")f[

The first terms of the left- and right-hand sides of the above equation are equal
because of (4.30a); the second and the third terms are equal because of (4.31).t and
(4.33), respectively.

b) Equations (4.28a), (4.30b), (4.30d) imply

To derive Eq. (4.34). we use again induction. Equation (4.34)o is (4.30c). Assume
that (4.34),, is valid, then applying the operator -9 on it, it follows that

Using (4.35) it follows that Eq. (4.34).+, is valid if

0t ,62- 2 K''+ 'PI02 VLtM )d612 ] + Pi(6'1 2KI2')d[
6
l 2 -I

The first term of the left- and right-hand sides of the above equation are valid
because of (4.30b); the second and the remainder terms because of(4.34). and (4.35),
respectively.

c) Equations (4.28), (4.30), (4.34)., (4.3 1)., and (4.6) imply:

612MI2 Ro 2 'f('](4.36)
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Using the definitions of symmetries and extended symmetries and Eq. (4.30c-d),
the first part of Theorem 4.1 follows:

a 1 , =J dY2 61 261 2 , = I dy26120(5Iz 2ZO2I2 O1)dl27]

dy 2 ,2(o, 2OI, 2.1)f[]= l, J

The derivation of ii) is similar to the derivation of i): It follows from the
equations

(6 2-P, 21 2. 01 ] 6 2(4,,,i2O2 Of* 1)7 , (4.37a)

(612 2 k'12 ) 14)* 6 2 " ] = 612( 6  20 '" 2R °I2 " 1- • ] , (4.37b)

which are direct consequences of Eqs. (4.31) , (4.34),,, (4.6), (4.7), and (4.8). Then

Y,,= I dy2612Y12,= - idy2612(612012RO2 .1),d[|2]

= - dy2(612OI12/k°2• [1612Y,21 ] = - jdy2(65,2E P2'k12
" 1)*[Y]

=- dy 261 2(Ol 2Rol2 . 1)[y] =- K,,*[y].

The derivation of iii) follows from ii) and the fact that if Y 1 2 is an extended gradient
function y, 1 is a gradient function: Recall that Yi2 is an extended gradient iff Y 2d[ ]

1V2,[ ], namely iff <Y( 2 [gl2],f1 2>=Kg 12,Yvd[fl2]>. Letting f 12-- 61 f1 , and
912-612g12, we obtain (yj 1,[g 2 ],f 1 1)=(gjj,y1 1 1 [f,1 ]) which implies that
y 1 1,=y+1, (y, is a gradient). Moreover, one could easily show that if
Y12 =grad121, then y, ,=gradl.

Another important property of the extended symmetries is given by the
following theorem:

Theorem 4.2. If a,2 is an extended symmetry of Eq. (4.29), then a, = 0 is an auto-
Backlund Tlansformation for Eq. (4.29). In equation a 12 = 0, q, and q2 are viewed as
two different solutions of (4.29).

Proof. If a,, is an extended symmetry of Eq. (4.29) and a,2=O, then D,a,2

d12
- t- +atI 2 [K] =0, which implies the result.

Remark 4.5. Theorems 4.1 and 4.2 show that the symmetries and the auto-
Backlund Transformations of an equation originate from the same entity: the
extended symmetry. This remarkable connection between symmetries and auto-
Backlund Transformations exists also in I + I dimensions. If we consider as an
example the classes of evolution equations in 2 + 1 dimensions (3.19), (3.17), (3.35),
and (3.38), then extended symmetries and gradients for the corresponding 1 + I
dimensional systems are still defined by Eqs. (4.17) and (4.18), in which the
operators (6 2KI2)d and (6 12Kl 21, are evaluated at x=0. For a=0 '12 is indeed
the operator that generates Backlund Transformations in I + I dimensions [38].

The above theorems imply that it is useful to have an effective way of
generating extended symmetries and extended gi.adients of conserved quantities.
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For equations in I + I one makes fundamental use of the following two notions:
a) if 10 is hereditary it generates infinitely many commuting symmetries. b) If 45
admits a factorization in terms of compatible Hamiltonian operators it generates
infinitely many constants of motion in involution. Both the above notions are
extended to equations in 2 + 1.

B. Characterization of the Starting Symmetry R'r I12
through the Recursion Operator 4),2

Fundamental role in the theory presented in this paper is played by a hereditary
operator 0,2 and a starting symmetry Ro2H1 2. It is interesting that the recursion
operator 0, 2 algorithmically implies R 2H,. .Furthermore, if P12 is hereditary, it
is also a strong symmetry for Rl2H 12.

Definition 4.3. A starting symmetry associated with the recursion operator ,12 is
K? 2H 12, where the admissible operator R', and the function H 12 satisfy

91 ,2 ' H 12=- °2 H 1 2 , S12' HI12-0, (4.38)

and S, 2 is an invertible operator, of course, on a space of functions excluding
KerSt2 - H 2 .

Examples. 1. For the KP hierarchies, S 2 = D and/or S, 2 = D(q 1 2)- 'D. This implies
012=Dq' +q- 2D- q~, ,. 2 =D, (4.39a)

R12 =q1-2 , S. 2 =D(q2)-'D, (4.39b)

with H12 any solution of DH 1 2 =O.
2. For the DS hierarchies S12 =(Q12 F-P 12 . This implies

go2=Q 2o and/or ,°2 =Q- 2 , (4.40)

with Hl, any diagonal matrix solving P1 2 H, 2 =0.
For the results presented in this paper we only use a subclass of solutions of

DH 12 =0 and P1 2H12 =O, given by H12=hl2- h(y, -Y2) And Hl 2 =h1 2(aI+bo),
a, b constants, respectively. More general solutions of the above equations are used
in [35] and give rise to time-dependent symmetries.

Lemma 4.2. If gR°2H12 is a starting symmetry associated with the hereditary
operator 0, 2, then 0 12 is a strong symmetry of Rt 2 H12.

Proof. Since 0,2 is hereditary,

0, ,[12Aft1]g1-012012,[f121g2 is symmetric in f 12,g 12 . (4.41)

Letting g,2 S .H1 we obtain

012I 2iIII2I 21 2]fz- 120124[S1 2H, 2]f1 2- rpl 2dj~p1 2f l 2 12I

+ 0, 2012 ,U2]S1 2H, 2 =0.
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Using <PtZS 12HlZ=IZ?2JI12, 9, 211, 2 =0 and its consequence S1 2 j[f1 2 ]Hll1 =O,
for every fl 2 , we obtain

~12~[~1 H1 2 1f I (I 2 H 2)A'4i 1 f2f 1 + ' 2(R1 2H 12)4[f12] =, Vfl 2'
(4.42)

thus 0,2 is a strong symmetry of f<'H,,.

C. Hereditary Symmetries

Theorem 4.3. Assume that the admissible hereditary operator (P 2 and its associated
starting symmetry Ik'2H1 2 , defined via

012S12H12 =9k2H1 2 , S12H, 2=o (4.43)

satisfy (I2hl2 - ht2(44a

[R?2 , h,,]= - 1 h 2 , (4.44b)

where fl, are constants, S, 2 is an admissible operator, hl 2 = h(Y1 _Y2) and prime
denotes derivative with respect to y,. Further assume that

[Rol 2H1l1 Rol H'1]d'", for [H(11),H(2)]_-0 (4.44c)

where [ J~ , are defined by (4.3) and h, 2 belongs to H, 2 . Then

10 IM1 1H12,012t2(122=, for [H~i'rLH~]1 - 0. (4.45a)

Furthermore,

' 2 ,k' 2 I are extended symmetries of (4.4)., (4.4 5b)

for all nonnegative integers m, n.

Proof. In analogy with the results of 1 +I- one easily verifies that if K(I', K~i')
Commute, 012 is hereditary and (P12 is a strong symmetry for both V) and K(21
then OP72K1,, 0'T2V) also commute, for all m, n. Using these results With

(')'~=k 2Ht, X2=R02H % one immediately proves (4,45a) above. To prove
(4.45b) we note that (4.44) imply

6 12K"= b . (4.46)

where b.. depend on fl, # (see Appendix B). Hence

(4.47)
Equation (4.47) follows from (4.45a) since [12 1 =0 for all nonnegative integers
e. The left-hand side of Eq. (4.47) equals

12 1)4I112 I20I 2](6I 2D2 ' l)4[40T 2 R?2 ' 1];

but the first term of the above equals ((P' 2.k'2 - )1IIK ~], hence (4.45b) follows.
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It turns out that the recursion operators associated with both the two-
dimensional Schr6dinger and the two-dimensional 2 x 2 AKNS are hereditary.
Actually, isospectral eigenvalue equations always yield hereditary operators (see
Sect. 4 E).

Remark 4.6. If't,2 generates two classes of evolution equations (4.4)., correspond-
ing to two different starting points Q,2. and 1'2, and if, in addition to (4.44), we
have

[A10, 2H,2 , I,, 12H ], = 0, for [W),H 2] = 0, (4.48)

then V 70,2.1 and 4',72 91 2 .1 are extended symmetries for both classes of
evolution equations.

D. Bi-Hamiltonian Systems

Definition 4.4. i) An admissible operator 092 is called a Hamiltonian (inverse
symplectic) operator iff

a) en2= -0I2, (4.49a)

b) it satisfies the Jacobi identity with respect to the bracket

{a1 2,b, 2 ,c, 2 } -,<a1 2,0, 2j[e, 2 b, 2]c, 2>, (4.49b)

for arbitrary a, 2, b12 , C12 .
ii) An Eq. (4.16) is of a Hamiltonian form (or is a Hamiltonian system) if it can

be written as

q,= dy2 z,2e2Y, 2  (4.50)

where e 12 is a Hamiltonian operator and Y 12 is an extended gradient function of
the form Y12=912' I [with, of course, (,A 2 H 2 )d=( 12 H12)].

The associated Poisson bracket is given by:
{I) , 

1(2))}- (grad, 2
1 , e,2 grad ,112)>, , (4.51)

where the functional 1" is given by 1il' J= dxdydy266 (,'1 H(,H)

Remark 4.7. If e12 satisfies a), b) above then the Poisson bracket (4.51) is skew
symmetric and satisfies the Jacobi identity.

Proposition 4.1. Let

Gt,2=912 f 2 , e,2 skew symmetric. (4.52)

Then for arbitrary a 2, b,, the following identities are valid.

a,) <b, .,(e2 , [G12]-0,2 (G 2 )1, -(G 2 ):, 2 )a, 2>
( {b 2,f.,2,a , 2} + ({At2, a2, b,2) + {a 2, b 2,fA 2

+<(b,2, e, 2(f, 2, - fl2,)0l 2a 12 > (4.53)
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Let 0,2 be Hamiltonian and let a1 , b 12 be extended gradient functions. Then

a2) [e , 2a, 2,e 1 2h 21d = 1 2 grad, 2 <a1 2, e I 2b I. (4.54)

These identities imply:
a,) If 0 12 is a Hamiltonian operator and f, 2 is an extended gradient, then e, 2 is

a Noether operator jbr G1 2.
a4 ) If e12 is a Hamiltonian operator and it is a Noether operator for G, 2 then

fA2 is an extended gradient finction.

The above results are exactly analogous to those in 1 + 1 and thus their
derivation is omitted.

The above results can be used for any Hamiltonian system as soon as the
commutator [O 2,H, 2 ] is specified. However, for a completely integrable
Hamiltonian system additional results are valid.

Proposition 4.2. Let

Assume that e,2 is Hamiltonian, its inverse exists and that P,}H12 are extended
gradients. Further assume that Eqs. (4.4) are valid. Then

i) i ,v, R(m )H (p,)\ i l,l e H.~t 2\0 (4.56)
gl2 

' 
1 2, 1 2

J  
1 2/ - 1/| 2 I2 12 12I

ii) (y(j1,K(".)=O, if [Hrt),H2] 1=0. (4.57)

Proof. Since the hereditary operator 0,2 is a strong symmetry for the starting
symmetry R9' 2H1 2 that satisfies (4.4c), then [,,-2),z,-2, 2d-- if
[H 12), H]] =0. Then (4.56) follows from Proposition 4.Ia 2). Equation (4.57)
follows from (4.56) choosing H11 I= 1 and H-.2)

(y", KI) = Ky~12' tz _ .(m bV,'R026s,> =0-3=0

Theorem 4.4. Let 09, OW, 2)+0(1 be Hamiltonian operators and assume that
e0t) is invertible. Then

012 12 12- is a hereditary operator.
ii) (P (12 ,2, are Hamiltonian operators.

iii) If 2H,"-(021 '-o,2 H1 2 is an extended gradient function and if Eqs.
(4.44) hold, then Eq. (4.4). is a bi-Hamiltonian system having Oev, e( as Noether
operators.

Furthermore, all junctions y1'2

Y12~ =Y 12 9 (J)-I (4.58)

are extended gradients of conserved quantities in involution under the two Poisson
brackets defined by

m,.,.}-( 6
12Y2 "12/'12/ 

1
> 012=0121 or e0,2. (4.59)

Proof. The derivation of the above results is analogous to similar results for
equations in I + 1 (see for example [7]). With respect to iii) above we note that
R IH, 2 =07 2 (8 9 H 1 2, hence 01 2 012 is a Noether operator for OR2 °1 2H, 2 ;
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the arbitrariness of H 12 and (4.46) imply that (P,0','2 is a Noether operator for
(4.4),; hence (4.4)., is a Hamiltonian system with 0".01," as a Noether operator.
However, (P, 2 is a strong symmetry for K7Y2 112, hence (P112 is a strong symmetry
for 'k'2H3 2. Since 07 2 0' 1

'2 is Noether and 0', is a strong symmetry e,,,2) is also
Noether. Thus '9'VI=0P12 12' is also a 'Noether operator. Furthermore,

K)=V,-,~'"' 1ly ', and the operator 0", O-"''~ is both Noether and Hamiltonian,
thus 12" H,2 are extended gradient functions (using Proposition 4.1).

It now trivially follows [since Theorem 4.3 implies that K1[" are extended
symmetries of (4.4),,] that -'("' are conserved covariants of (4.4),. Moreover,
Proposition 4.2 implies:

I " I H -Ki"H (12, ,(12 1,( H 1 
2 
2

2 ,~1"H 1}, 01n 12 12 -0, if [11,'1 2', -
and the choice H(') 1 "', H1)= I yed

012,1112,< 12112 0 , -0 12 = 0~''o) 0 2. (4.60a)

Namely y"), are extended gradients of conserved quantities in involution. If
[01,,,612] 0, then

Combining Theorems 4.1-4.4, we obtain the following important theorem.

Theorem 4.5. Let e,,,2)+ 01i2 2) be a Hamailtonian operator for all constant values of v.
Assume that e,'2) is invertible. Define

'P12 K"12
)(9

11
)' - X I ~ 'P2 1 (0(~1) -'Ko2  (4.61)

Assume that the operator 0, 2 and its associated starting symmetry R0, 2 H1 2 satisfy
(4.44). Further assume that /1 1 is an extended gradient function. Then

i) Equations (4.4), are bi-Hamiltonian svstems.
ii) K"'- OK? -1(7) = (0* mO

12 -I 2 "L.4d,12 1172 are extended symmetries and extended
gradients of conserved quantities, respectively, fo~r Eq. (4.4),

iii) K'N' and yy'' are symmetries and gradients of' conserved quantities in
involution for q, ,= KI I",

i)K1") -0 are auto-Bdcklund TRans'(rmat ions fior Eq. (4.4),

p~m  Pl1  K 1212 02/2> 0, 09 em0 or 0(2) (4.62b)

where

[a, b]f = afb] - b1[a]. (4.62c)

E. Isospectral Problems Yield Hereditary Operators

Section 4.C illustrates the importance of hereditary operators. For equations in
1 + 1, isospectral problems yield hereditary operators. A similar construction is
possible for equations in 2 +1. Furthermore, this construction also provides us
with a simple commutation relation of the type (4.24a) between 0P12 and h, 2 ,
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Proposition 4.3. Let
dl Vd= U(q 4,.)V (4.63)

be an isospectral two-dimensional problem: 4 is an operator depending on q(x, .) and
alOy: A is an eigenvalue. Assume that (G) 2, the extended gradient of , satisfies

i" 12(GA) 12 = #(A)(G) 12 .  (4.64)

Then if 0,, - T T2 has a complete set of eigenjunctions. it is hereditary operator.

Instead of deriving this result we illustrate it by two examples. The interested
reader is referred to [5]. A proof of completeness should follow a two-dimensional
version of the method developed by [10].

The derivation of Eq. (4.24a) from Eqs. (4.63) and (4.64) is also illustrated in an
example.

Example 1. Consider the isospectral problem

vt..+(q +ocDy,)vl =AJv1  (4.65)

Let q #q 1 +xDy, and consider the directional derivative of (4.65):

V 1 , ] +41,[ IVI +41V I[ ] =AvI[ ] + Ad[ Iv,.

Multiplying the above by v+, where vl+ satisfies the adjoint of (4.65), with respect to
the bilinear form (4.9), integrating with respect to dy~dx, and assuming
f dxdyv, v ' = it follows that

Ad[f.21j= J dxdylvj+4ld[fl 2 t'l • (4.66)

Using (4.1 b) to evaluate 41 d[I 21vI it follows that

Ad[;11 ] = f dxdyidy2V2ivlf 2.

Hence, using A 4[f1 2J= f dxdydy2(gradA)2 ,J 2, it follows that

(gradA) 12 = v, V2. (4.67)

Since 0 1 2 defined by (1.2a) satisfies [29]

-P-2vv = 42t' 4.6 8

it follows that 0,l2 is hereditary.

Example 2. Consider the isospectral problem

V, -J V, - Q, Vi = AJ V., (4.69)

where J, Q are defined in (1.8). In analogy with (4.66) and assuming

tr I dxdyV+ JV, =1, we find
R2

A[F12]=tr f" dxdyV,+ OjF,2]V,
IR2
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Hence, using 0 1,[F 1 G1 2 = f dY3 F1 3 G 3 2 , it follows that
R

).[FZI=tr Jdd 1 vV~f 2 '

Thus

(grad2) 12 = VI 1

Since R, 2 -D - 0212 satisfies

R 1 2 VIV 2 =AJV1 V2 , iF1 2 #JF1 2 -Fl 2J, (4.70)

it follows that (R 1-2,) * = i*(R 1-2) = JR 1-2' is hereditary (see [39] for the analogous
result in I + 1 dimensions).

Now we show that Eqs. (4.65) and (4.68) imply

1012,hI1 =4h'12 , h 12 =h(Y[Y2)- (4.71)

First, we recall that Eq. (4.68) follows from Eq. (4.65): Eq. (4.68) and its adjoint

V2 ++(q2- o 2) V2+ = AV2* imply

VV 2 + +(q + D)V =I V, V2 ' , (4.72a)

V V2 + +(q 2 - )D2VI V2 +AV, V'2, (4.72b)

VV 2 + (q, +D)V, V2*=, V 2  (4.73a)

V V2 + +(q2 - oD2) VI 1 ,+ = AV1 V2+ (4.73b)

Adding Eqs. (4.72a) and (4.72b), Eqs. (4.73a) and (4.73b), and subtracting
4 Eq. (4.72b) from Eq. (4.72a) we obtain, respectively,

(D 2 + q12 ) VV 2 = 2 V, V2+ +2A VV 2+ , (4.74a)

V. 2+ 2 q12DV1 V2 - 2 q -(PIV+ V+)+AV 2 (4.74b)

VI V2 IV+=-q ,V+ (4.74c)
Using Eqs. (4.74b-c) into Eq. (4.74a) we finally obtain the eigenvalue equation
(4.68).

Now, by virtue of the commutation relations [q, +aD 1, h 12 ]
=[q2 -oD 2 ,hI 1]=h' 2, Eqs. (4.72) and (4.73) are still valid replacing

VI - V1 2 -'hl2VI, V2 * V 1+2h,,V 2 + and A 1 .+ 2oh 2 ' 1 the iV 2 1

4A 12 V, 2 1 , namely

0i 2 1~ ~h 2 VI V2+ =(h2 II + [0P* 2,hl i)VV1 '2+

-(4Ah 2 +8ah'1 /~V

Using Eq. (4.68) and the completeness of the eigenfunctions of Of2, Eq. (4.71)
follows.
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5. Applications

In this section we apply the theory developed in the previous sections to the classes
of evolutions associated with the Schr6dinger eigenvalue problem (1.1) and with
the 2 x 2 AKNS problem (1.8).

Some interesting details of the explicit calculations concerning these two
examples are separately presented in Appendix C.

An isospectral problem [e.g. (1.1)] yields a recursion operator 0 12 [e.g. (1.2a)].
This operator must be hereditary (see Sect. 4.E). The isospectral problem also
yields a basic operator 12 ; the integral representation of this operator implies a
directional derivative 4'd*.Using the bilinear form (4.7), 4, 4* are also obtained.

i) In investigating the time-independent symmetries of the hierarchies
associated with 0I,2 one then needs to: a) Find the starting symmetries R' 2H1 2
associated with 0,2 (see Sect. 4.B). b) Calculate the commutator relations of
012, 'k2 with h12. c) Compute the Lie algebra of the starting symmetries. Then
Theorems 4.1, 4.3 yield hierarchies of infinitely many commuting symmetries.

ii) In investigating the Hamiltonian nature of the hierarchies associated with
(P 12 one, in addition to the above, also needs to: a) Prove that l'l, W2' where
0 _2=e (2) ( 1 -' are compatible Hamiltonian operators. b) Verify that the
starting covariants are extended gradients. Then Theorem 4.4 yields hierarchies of
infinitely many involutionary conserved quantities.

A. The Schr6dinger Eigenvalue Problem
The spectral problem (1.1) yields the hereditary operator

012 =D
2 +q 2 +Dq+ 2D' +q-2D-'qD- 

1 , (5.1a)

where

q 2 -q ±q 2+a(DJ T D2 ). (5.1b)

The integral representation of the basic operator 4, implies an appropriate
directional derivative:

1f12 --(q, +oD)f 12 =f dy 3 q 1 3 f 3 2 , 4z,[12]f[2= dy 3al 3 f32. (5.2)

The adjoint of Eq. (5.2) implies

f 2 =(q 1 -D 2)f 1 2 = Idy 3f1 3q 3 2 , 4*Uat = dy 3 f1 3 7 3 2 . (5.3)

Combining the above we obtain the following derivative:
al20)~fl] 0 a2( 2+ t~i) ,

1,=0 (5.4)
f1±g212= f" dY3(f13g32 g13f32),

R

which satisfies the projective property (4.6).
i) Let us first investigate the time-independent symmetries of the equations

generated by 012.
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a) Equation (4.33) yields

.1 2 --D, H, 2 =HI2 (yI,y 2), (5.5a)

and starting operators R°2 given by
,2 #q 2 , - Dq +qD-lq (5.5b)

b) The commutators of O, 2 with h12 imply the following operator equations:

[1 2,h, 2] =4ah'12 , [! ,2,h, 2]=0, [,q,2,hI2 1 =2aDh'12 . (5.6)

Hence, if
N(" -'P,29 ,2. 1, 2' " .-- 12 2 -1, (5.7)

then Eq. (4.46) yields
t2 12- ( 4 ) (5.8a)

61Nn=t El (-401 2 N~"12 12,

612M(12-= i~t,, be.et .26'1 2 b,:-(-47)" Y 2-i 1- (5.8b)
( = I J =Qo \" -

(see Appendix B).
c) The Lie algebra of the starting symmetries is given by

"N12, ,,, H,,2)],, - ,2H,,32, [1.,2 H(11,Q 2(1, a12_
2-1 1 - 12 1 2 12Jd- - r 12,

[,f2z"z,) 1H(]d PI2t 2 (3 , H : (3) CH 2I,H (2)11, (5.9)

where C , [,1 are defined by (4.3).
ii) We now investigate the Hamiltonian structure of the equations generated

by 4P12:

a) '1,2z' e- ) = o 12, where

eW,,=D, 0 1*2 +q+ +D'q+ D+D-'q- D-'q-=D"P 2 =P 2

12 12 1 2 1 '(1D T 2

We first note that both eOW=D and e2=0, 2D are skew symmetric:

e9l* -= -=-e 2 *, e (012 D)*= -DP 2 = -4, 2D= - 2 .

Furthermore, the bracket

(at 2 bi2,ci2)}= <a,2,e (2) [ (z)b ]

12t (,zt ~ + D + D(o2)b,) +(e )b z-O-'- ?+ql2- ,. e )b, .2,-)e12>

satisfies the Jacobi identity. Also evl, O2, are compatible.
b) ,2HUa=Dtq2H,2 and ° 2 =D-M,2H,2 are extended gradient func-

tions. Thus the Theorems 4.1 -4.4 imply:

Proposition 5.1. Consider the two compatible Hamiltonian operators O,2 =D and

12W = D3 +q O + Dq12 + q12OD q12,
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and define
( 1 -' 2 

(e12iM = D2 +q{ +Dq 2 D- I + q - D - q'q -D -
2

RJR '.=) '2 , , _. - ';,/ z "(P"R 'INz)-tQ and/or (0(,'2) 1 v f(.),

where the starting operator !I2 and ,2 are delined hy 19,2-q - and
A1 12=Dql 2 +qj 2D-qL1 2 1 Then

i) M(' ) Q(M) • 1 and NI" IQ'-' 1 are extended symmetries Jbr both classes of
evolution equations q1 ,= JdY2 312" 2 -N ]"N , (5.10a)

IR

q., = f dy 2 2 M2-M ; (5.10b)
R

namely [MI,'" 62 K") ],,= CN1'2) 6.12 K Id=
K12, 2 12(5.11)

where K, ") N(") and/or M).
1 2 12

"  
12 '

ii) YI-' )- - ) " I are extended gradients of conserved quantities of both classes of
evolution equations (5.10), namely

Yd12Ki"'] + (6 2 K())*[()]- 0, (5.12a)

vHtI2)d ={Yl2HI2 )d , H 2 0, (.12b)

where * indicates the adjoint operation with respect to the bilinear form

f 2 ,1 2) # JdxdIdY2f 2 lgt 2. (5.13)

iii) The two classes of evolution equations (5.10) are bi-Hamiltonian, namely they
can be written in the form

q., dy2 61 , '2 ,1'2= Yy262 1 22y 1 2  . (5.14)
R R

iv) M(") and N( , ) are infinitely many commuting symmetries of the classes of
evolution equations (5.10), namely[M( ), MM(M-)

[M,", , j:[ - [M ", N "f]= [Ni', N(n)]r=O. (5.15)

v) Y '( are infinitely many gradients of conserved quantities of the equations

(5.10), namely
OVI.') rA7 =.(. 1 .. +.l-0, (S.1I6a)

),(m _ ,(.)+(5. 16b)

where + indicates the operation of adjoint with respect to the bilinear form

(f,g)+ J. dxdyjg. (5.17)

The corresponding conserved quantities are in involution with respect to the Poisson
brackets

{n),( '
)} 

3I 0 
,

2Y(, 91 2y( , ,> , n e, ,'' or e2); (5.18a)
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e.12 =e,.,, <6.12)o, Dy'1"> = (-'7n D,("). (5.1 8b)

vi) The equations 0 = 0 and NI-1 = 0 are Backlund Transformations for both
classes of evolution equations (5.10).

B. The 2 x 2 A KNS Problem

The spectral problem (1.8) yields the hereditary operator

0 12 =6(p 12 -Q 1 2 P 12 Q +) (5.19)

acting on off-diagonal matrices, where
F1 2 _.Q IF,±,Q , (5.20a)

PF1 2 - 1F2 -F 2± F,Q 2 1.(20

The integral representation of the basic operator 0, =_QI +JDj, implies an
appropriate directional derivative:

Q. F. 2 *(Q. + JD.)F12= dY3Q 3F32, 0j(Yu, 2]FI2 = fdY3a,13F3 2,

(5.21)
and the adjoint of Eqs. (5.21) imply

F2 = F,2Q 2 -F, 2 J= dY3F13Q3 2 , 0tji1,[,,]F 2 = f 1V'3 F, 13732
R

(5.22)

Then the reduction to the space of off-diagonal matrices performed in Sect. 3
induces the following derivative of the operator 0, 2 :

,P,2 ,[G1 2] = -(G 2 PI2 Q+2 +Q QP-2
1Gj' (5.23a)

G±F12 # dY3(GI A 2 ± F I3G 32 ), (5.23b)

Again the Leibnitz rule and property (4.6) are satisfied.
i) The investigation of the time-independent symmetries of the evolution

equations generated by 15,2 gives the following results.
a) Equations (4.38) yield 912 =(Qj* 2 )l, the starting operators Ko are

given by
1 1'a 12 Q a (5.24)

and H,2 is diagonal and such that P12 HI2 =0.
b) The commutators of 012 with h, 2 imply the following operator equations:

[012, h 12] 2ah't 2 , 11q 12, h 12 =[11 2, h,] j=0, (5.25)

valid on arbitrary off-diagonal matrices. Hence, if

N(R) V1 2 111 2 *I, 1 41 2 (P 2 ,I (5.26)
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then Eq. (4.46) yields
:V 1 "7) v- - (5.27a)

6, Z~ ( ," / 21 21 5.27b)

c) The Lie algebra of the starting symmetries is given by[R, H('), . 21, =_ N ,1,) [R. ,, ,- , -H,"l M .H-
21  " It 2J1d --* 12''12 [t 1 2H'1 , 1 2 

1
H 2]d- --" 12H

2 
1 2~

2 2 2 2 12[A"I 2H", Q2. 12 H 2
d] -H (J3 - [H1 1, Hl,2)]. (5.28)

ii) We now investigate the Hamiltonian structure of the equations generated
by 012:

a) 012e0 (- 12 0-,2, where

e12 =a, *2 =6(PI 2-- 2  12 2 (5.29)

notice that on the space of off-diagonal matrices aF 12 =[a, F121, e,,=a and

e()= o',20 I are skew-symmetric in the space of off-diagonal matrices:

<F12,aG12 )= -<aF1 2,G 1 2>,

and

e (2)*( ( q 1 -- 2 e 2)12* = ((127)* = - UO'2 = - fP'l2 = - Oll

Furthermore, the bracket { A1 2, BI 2,C1 2} - <A. 2, Oe2j[Ot 2)B 12]C 1 2> satisfies
the Jacobi identity and (9,J, Ot9) are compatible.

b) Hi 2 -,.") 1 ,2 , (/o=!2 or ft 1 2) are extended gradients, thus

Theorems 4.1-4.4 imply:

Proposition 5.2. Consider t/e two compatible Hamiltonian operatorseiv =a and
2) -Q 2 P 2

1 Q 2 acting on ofi-diagonal matrices, and define

I,=1-Q2, 12 P 2 Q 2 1 2 Q 2 ,~ 2='z~el,' 12)121)-1 -P + - I RIO

-''~ " 12, 1  ) "- 2-'RIO) and/or (.1t14(,)0 17l 2' 1 t 2 1q 2 1^ 7 0 1, ' " ) 1 2 0,'- 12)), 1 2 ,

where the starting operators '#t and k 1 2 are defined by 9 12 -Q- 2 and
4,, 1 Qt2a. Then the results iY-vi) of Proposition 5.1 are all valid for the two

classes of evolution equations

Q f d 2 61 2 T2 = N(O), (5.30a)
It

" i d , ,i, 2.t'l = 1t, (5.30b)

introducing trace in the right-hand side Eqs. (5.13) and (5.17) and replacing (5.18b)

by

, ,. , , 121 --tl lU (1),
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Appendix A

Now we show that the assumptions (4.30a), (4.30b) follow from (4.28a), without
using the explicit form of the operator. We show this for the recursion operator
associated with the Schr6dinger eigenvalue problem.

Admissibility requires 0, 2 to depend on q i2, moreover, (4.2 8a) and (3.13) imply
that ' 12 depends linearly on q' . Then, without loss of generality we have

0 12,f 1 2]g 12 = Ycjfl'djgl 2 + Yp5 (q- 2)ft-r,(q7)g 12 , (A.la)
j S

'P1 2,[f]g 2 = Zc,4f 1 +f2 2)djg12 + YP,(qI 2)(fl, -f 22)rs(qj12)g12 , (A.1b)

where c,, d, are arbitrary functions of D, D ; ps, r, are arbitrary functions of q12

and f,' are defined in (5.4b).
Then the commutation property [q 12 , h 2 ] = 0 implies

01 2 d[hI2fA2161 2g12 = hI 2 1 2a[f 216 1 2g 1 2 , (A.2a)

0t12 1[f]h 12g 12 =h I 2(P12 [fUg 19 2 . (A.2b)

Appendix B

In this appendix we show that equations

[' 12,hl 2]= -flh'1 2 , h12 =h1(h -Y2), (B.la)
1'k02 , h. 2j = - flg 2h' 2 , (B. Ib)

and some additional notions concerning the associated spectral problem, imply

61 2 K(R= Y ~R 2 ~ (B.2)

(0

for suitable constants b..
We first observe that the case #=0 is particularly simple; indeed, in this case

12'=t0 ° 1=(t+l)g2, b...4ml -,26,2, (B.3a)
612K" ~ ~ ~ =-l ,12i2Z2 1=(1 -9nl21

'=0

This is the case for the two classes of evolution equations associated with the two-
dimensional AKNS problem and for Eqs. (3.20). For the KP class (3.19),
go12 =Aq1 2 4-Dq 2 +q- 2D-'q 2 , #=f/2= -2a, gS2=D and the result (B.2) is less
straightforward.

In order to obtain it, we first show that

'P' 2 "t2 •1 =0, Vn>0; r, 2 -rP0 2D- 1 2 . (B.4)

This result could be easily derived using the explicit form of 'p, 2 and 41 2. Here we
give a different derivation using the underlying spectral problem (and the
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consequent eigenvalue equation satisfied by 0' 2 ). This derivation is similar in
spirit to the one of (B.la) presented in Sect. 4.E.

From Eq. (4.38), it follows that F12 can be written as

Fr2 =A12D, Af 2 HI 2 *0. B.5)

The operator A 12, which is part of 01 2, is admissible depending on D, D- q1 2. If
for any admissible operator L, 2 , we define L' as LN- L,,2Iq=o, then

0 (B.6)

since D-'qD • I=0 and [L°',D]=O. On the other hand, if q=O, w=I solves
Eq. (1.1) and its adjoint, then Eq. (1.7) implies that

V2- 1=0 (and A,' I =0). (B.7)

Equations (B.7) imply DtzA11) - I =0 which is equivalent to (B.4).
Equation (B.4) and Eqs. (B.1) imply (B.2). In fact, multiplying Eq. (B.4) by h, 2

and using Eqs. (B.I) we obtain
(0 12 + #-9)" + 'D.- h, 12 = (0~ 12 + #9 )"(Aai t z + #-9D)-h 12. (13.8)

The above can be written in the following recursive way:
A, + I(h12) = B.(h 12) + Aj(lh', 2), (B.9)

where

'4.(h 12)- (n) V, -1 eD" ,(( Ao(h,2)=O, (B.10 a)

hl) 11'(B.10c)

The solution A, ,(h 12) = S B_ (PIh 1,2 of Eqs. (B.9) and (B.10) implies Eq. (B.2).
$ 0

Indeed,

312 K =61 (P12 A 1 I 1 =.612 02M 1 -12 = A,+1(6,2)

.. b,,0 ... ( A4,26' 2 (B.11)

where

h, '. Y- _, # ,,s1 (B12)

For example, for the KP equation (I =Dq 2+q. D-I'q-2 ):

612M2=612012a121 0 2jq12 2 1 2 -6a 1 , 26 '12 , (B.13a)
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and for the DS equation (a 1 2 =Q 12 a):

(B.13b)

Finally, we use again Eq. (B.4) to derive the following interesting equation:

Multiplying Eq. (B.4) by h, 2 and using (Bl1a), we obtain

Equation I B. 15) for j =n and Eqs. (B.I) imply
P'~ ~ ~ ~ ~~h' (B. h1= 2 ~ 2 h 2 +~/) 16)
12 1=1'1 2+ O1 2 12'B

and hence Eq. (B.1 4).

Remark B.). i) Equation (B.14) contains (BA4) if h 2 = 1

ii) Equation (B.14) can be used to obtain (13.2), (13.12) in an alternative way. In
fact,

Y_2I2 c5 2f9 D1= Z0 3j' 2'P~ 112h('=
Vi-~l1 'I 12 b,,O" 'R.A2 12 ,F:o =o /-S s

since the identity

implies that

e + t Z~fssn-s) ,

Appendix C

In this appendix we define explicitly the directional derivative introduced in Sect. 4
for the KP and IDS classes. Then we use it to verify some of the results contained in
this paper.

Cf. Evolution Equations Associated with the K P Equation

The directional derivative of the basic operators q: q I ± q 2 + o4D FD,) as-
sociated with the non-stationary Schrodinger problem (1.1) is the usual Frechet
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derivative with respect to the kernel q, 2 of their integral representation:

q1 2 g 1 = fdY3 (q 1 3 g 3 2 ±g 1 3 q 3 2 ), q 1 2 = 1 2 q,+ 11 2 , (C.la)
R

q 72 -lf,,l 2 12 2, (C. I b)

J'1g 1 2 =-- J dy 3(U'1 3g 3 2 +g 1 3 f 3 2 ). (C. Ic)
R

In order to make explicit calculations, it is convenient to use the following basic
identities of this algebra of integral operators

at 2 b 2 = _bl 2 a 2 , (C.2a).
(a' bt2-b t2 a' 2 )c1 2=(a 2 bt 2 ) C1 2 - -c 2 a 2 b 1 2 , (C.2b)±

(a' 2b- 2Tb' 2at 2)c12 =(a 12 Tb 2)±c1 2= ±c± taT 2 b (C.2c)

where at2, b2, ct2 are arbitrary functions of x, yt, y2 decaying at oo and
alt2, bt 2 , cit 2 are the corresponding integral operators defined in (C.lc).

The integral representations (C.Ia) imply that the basic operators q±2 can
replace a±2 (and/or b±2 , c 2 in Eqs. (C.2). For instance, ifat2 =f,±2± q± and122f2 2, 2b12 =1t2, n

c± =H±2 , the identity (C.2c)_ becomes
] 1 2qf 2 Hl 2 +q+ 2 f 1 Hn 2 +f n 2 q, 2 f1 2 =O, (C.3)

where we have also used Eq. (C.2a)+ to replace f1 +q1 2 by the expression qt 2 f1 2 in
which the kernel q, 2 does not appear explicitly.

It is worthwhile to remark that formulas (C.2) can also be interpreted as matrix
identities in which a, b, c are matrices and the + operations denote anti-
commutator and commutator:

a'b-ab+ba. (C.4)

Interpreting the operation at 2b, 2 as in (C.4), the recursion operator (1.2) of the KP
class becomes the recursion operator

O=D 2+q +Dq+D-+q-D-q-D-1 (C.5)

;ssociated with the N x N matrix Schr6dinger problem in 1 dimension and
introduced by Calogero and Degasperis [38]. Then important properties of the
recursion operator of the KP, like its hereditariness (4.21), are equivalent to the
corresponding properties of the matrix operator (C.5)! This important connection
is explained from the fact that thdc2 + 1 dimensional systems considered here can be
viewed as reductions of certain evolution equations nonlocal in y. These equations
are directly connected to matrix evolution equations (see Sect. 5 of [35]).

Now we use Eqs. (C.2) to verify some results concerning the symmetries and the
bi-Hamiltonian structure of Eqs. (3.19) and (3.20).

a) (P,2 is a strong symmetry of 191 2H1 2, where 1,2 =q1-2 and H 1 2, =0 (this
result is a consequence of Lemma 4.2; but here it is verified directly).
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4(,2,[q I,2H,,f 2 -(q I2H 2 )[p I2f1 2] + P I 2(q I-2HI 2)d[f 1 2]

=(q 2H1 2 )+ fI2 + D(q 2HI 2)+ D - tf 1 21q2H )- D- 'q q7D- .1 2 +q qt D - 1(q- H 2-ID- 'f. 2
+(q H11 2)D q 2 

1 2 12 ' 12 12)D f2
-(Df 1 2 +qt 2f,2 + Dqf 2D-2f 1 2 +q- 2 D - 'q- 2D- fV1 2 )-H 2

+(D 2 +q+ 2 +Dq 2D-' +q- 2D -
1 q- 2 D- ')ft2H 1 2 =0, since:

the terms without q, 2 give

-f,-2_H 1 2 + D 2ftH 2 =0;

the terms linear in q', give
(q Hn 2)+ f12 +D(q 2Hi2)+D-t f2-(q +2f2)- t -D(q + 21 2 - 1 2D-' ft2)- H12

+ ft-Hi+DqD -'f.-H =fl+qt2t t ;f-b t2+ntq;f

D((D- f1 2) q 2 H12 + qj 2(D- 1f1 ,)-12 + t 2q 2D- 'f 12)=0,

using Eq. (C.3);

the terms quadratic in q' 2 give

(q 2H 12)D q q 1 2 + H 12qt 2D 1q 2D 1f1 2
+ql 2 D '(-(D -f 2 )-q 2H 2 +qj 2D -f 1 2H 2)

=(-ql-2 HI2 + Hl 2 ql 2 +(ql 2H 2)-)D- 'q 2D- ft2=0.

b) The Lie algebra of the starting symmetries is given by the following
equations:

[iHi,1QiH2fd -R. 2 H(,'), [)9 2H~II,AQ1 Id A 11 , 192HH2]t 2] (3)
[a .¥12J 2 '2) la It 2H (2)] = 23) (3 - 2 )]d- - - 2lt

[M1 2H(1, H 2  =- 0] 21 12 2H 12 H 2 -3 [H(-1 HrJ, _(H(I))-H(2)2't 12ta 2 **t 2":" 2, 1 2' * 2.1 - 12/ 12,

where (C.6)

-t 2 -q1 2 , l 1 2 -Dq 2 +qt 2 D-'q?2 , H12 =0.
Equation (C.6a) holds, since,

[q- .(11 a- H-/2)' - - H..(2)) ')- (11 t - H.(ll -H.(2)
[ 2 2 1 2  1

2
1d = (q 12H12) - - ./12 12 12

-- -- '(H- 12(2q- l - - 1 ( I)-.
2
,

using (C.2b)_. Equation (C.6b) holds since:
- ((' 1)) +q- q - (

2
D11q2 t2,( q, q , 12 1 ,)H12],

=((Dq(H+2+-2)-t' - )H(2 ))-+It) aq- q2D 2
r1 2 H 12 1 12 12 - 12 H I 2! 2

Th- He,'fc- at-- o(f E q -(D-(q -left t th- reader-12H 2) 12 2t 1q2D (t 2 ) H 2
D((- .() - q+ H12) + H(2)) + q- H(l) - Hli)-q1- q-H2

D 2) t 2H 2+( 2 1t2H 2)- H ) 2 D 12 12t
-1 - (2)) - 1 - - 21)

+(D-%-2HI2) qtHI,+q-,D (H 2-q-2H(|,
:= --'t~~q12 ' 12 2 ' 2rq t2

D  
2 1 12 12 T~# 2 [2* 2

- Dq+ t')) 1 - (2) 1-D ' 2

- 0, t2(H t2) - Ht2)

The verification of Eq. (C.6c) is left to the reader.
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The notion of an extended symmetry a,2 of the evolution equation

q1,= dY2
-

1 2 K K(, plays an important role in 2+1 dimensions. a 2 is a

solution of the equation
al 2,LK ]-i 012K"DI21, (C.Ta)

where
(01 2 K("7)d# h.,2((P 1

V 2I 5,). (C.7b)
12~ - e) 012o ,g"2)

/=0

Again the use of Eqs. (C.2) and the property

(61 2) ±t 2 = (D"n +-(- 1 )"D"2)Wl (C.8)

simplify the calculations of the operator (C.7b).
C) a,2 is an extended symmetry of

i) the wave equation q,, M() 2q, iff

U1 [2q.] = 2Da 1 2 ; (C.9a)

ii) the KP equation q,, = M(t ) 2(q, _ + 6qtq,. + 3 Ct2 D'q,,. ) iff

a1 2f[2(qxxx + 6qqx + 3aD - qy.)] = 2[D3 + 6D(q + q2)- 3c(D- (q-q2,))

+6a(q, -q 2)D- '(D, +D2)+6oxD- 1(D, +D 2 )
2]a"1 2

•  (C.9b)

(b 12 K(10)E fl 21 ]=(t 26 5AI , ) 1J1 = oDA 2 , 2 12 A 2,

+ q12D -'f -2612 = 2DJ*1 .
(b 12 K1'2)dlfl 2] (0 1O2A1212 - 61JI4126'i 2)dn[A 2]

= 1 2dI 2] 126 12 + 0 1 2 26,2)d[Jl] - 6(, 2 6'1 )[M 2]
(f,+ + Dj D- I + f,- D- 'q- D + q-sD- '- D- ')(Dq 2+ q- 2 D 'q7)6 12

+D' + q 2 + Dq*D-' + q ,D - 'q-D- ')(Df,+ +f,-D-'qj +q-D-'f-)612

-6a(Df 1* +f -D -'q 2 +q 2 D '] )1

=2[D 3 + 6D(qI + q 2)- 3(D -'(q,,,- q2 ,,))

+6x(q, -q 2)D '(D, + D2) + 6oc2 D ' (Dt + D2)2],

since, for instance:
I+ ~q + 612= =(DqJ 2) /J 12612AJ 2q] 2= 2(q I + q2)xft 2,

Dftq 2 6 12=2Df, q 12 =2Dq+2ft,2

Dfl 26' 5 = D(' 12 ) > f 2 = D(D, -D 2 )f1 2 ,

=(D '(D, + D)ql 2)-J2 =(D-'(q,,, -q2,,))f,2 ,

f(2D- 1q-2 6' 2 = - D '(6'1 2) J2 = D -'(D0 I+) 2
ql 2D-'f 1 6'12 = -qI 2D1 I2 J 2 -q7 2 D 1 D+ 2)f 2 ,
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and we have used, for the first and only time in this appendix, the explicit
representation iC.la) of q, 2.

In order to investigate the Hamiltonian structure of the equations generated by
P,,, in addition to Eqs. JC.2) we use the following properties:

at= a1" q = ±q 2 . (C.10)

These properties follow from the definitions (C.lt C. Ia), and (4.8):

<.12 L, 1 g 1> dI G1d1v,dv5  3( 32 ± g 3a3 2)

f ddV tiv2dv 3 (123031 ± .f3ta23)g2
R
4

d) Q?; ,H,=D 1K 2 21', = N 1 and .) are extended gradients, namely
H 2 ; H )d = ( O 2 H , 2 ,1.

it If K( =V,., then (;t.jg' 2  D Ig7,Ut, and

= -( tD9 1 1 , 11, an
12 (I01 1.26, 12 > f D. (D 1 2 9 2g zKt4~%F1 19jg12 JH 1 Kf.D g> 1 2  <12

I I72 g,[/ 2> = 1  2 g>= <('q 2tunii_/, g, 2>.

ii) If K°, = At , then
(It-HI) gI 21=1g72 +D-'g[2D-g,+) ,(,D 'g 1,)H,

and
( .0 H 1, A°: l 19~1 A = t2 g 21tH 2 + D - -21) Zt[ f 1-- ),? tg - 2 1

= ( u2,/-t'2-D - ((D 'q,-2ft1, )- +q :D - tt 21 2

=<(H2-[)D-'qH +tlU) Lj,D " 'j 2,g1 ,)

(H,2 - D - ((D- 1-2 "1) +, 21 ,

= ';2HI 2)d[fI l 2]g2)

e) In [351 we show that

1'12 -- grad 2, ,C. 11 a)

1I( '-- -- -"" t 2 . . . I d x'd vtd "2 t ;t .... I I2(2n+3) (, t2 1 2 I(2n + 3) p

- 22n+ 31 jdxdyy7,11+  e(C. IIb)

where D 'K'' and K lere we directly verify this result for n=0,

U0[ /112] = 40~12' A'L[. 2 1
y 1

1

1 1>

K <4', 2 jU 2112) .1)2

6 K 7 1 2 cp 1 1 > C (.2
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which implies that ,- 2 = grad, 21). (In this derivation we have used the property
)I2d --I12 '1212 rr.'21 2),) , - ,D saife

f) The bracket {a, , b c <2 -a ,z 02ju [12,.b , (21 , 2D satisfies
the Jacobi identity for every a2 , b12, c1 2. Here we only display some of the
calculations for the linear terms in q 2.

<a,2, [(q 2
D b

, 2 + Dq 2b 2)
+ 
D +D(q, 2Db, 2 +Dql 2h 2)

+(D3b,2)-D- lq -z +ql2D -'(D
3bl2)-]cl2

+ cyclic permutations of a1 2, b12, 12

=at2, b 2, C2)} + < [D(q +2Dc, 2 + Dq +2C, 2) + + (q ',Dc, 2 + Dq+ CI,2) D

_q-2D- '(D3c12)- -(D3 12)-D- 'qj2]b1 2,a12>
+ <C2 2, (Dbt2) (qj2Da1 2 + Dqj2a, 2) + Db + (q 2Da, 2 + Dq 2a1 2)

-{D-'q 2 b12 ) Da 2 -q2 D b2 D3a 2 12>= a 2, L1 2(b2, c 2)>,

where
L 1bl2,cI 2) 1q2Db12 + Dq 2b 2)Dc12 + D(q 2Dbl2 + Dq+ 2b,2) c,2

+(D3h 12)-D - q 2c12 + q12D -(D
3h1 2)-c, 2

+ D(q 2Dc1 2 + Dq 2c,2) b22 + (q 2Dc 2 + Dq + Db

-q12D -'(D
3c2)b 2-(D

3c 2)-D
- 'q-2b 2 -Dq+2(Db2)+c1 2

-q 2D(Db1 2 c2 + Dq 2b 2 Dc1 2 +q+2Db+ Dc12
-D 3 (D- q 2b 2)-ct 2-Dbl2D

- ql2C 2.

Using Eqs. (C.2), it is possible to show that L 1 2(b 2,C2)=O, Vb[ 2, 1Ci.

C2. Evolution Equations Associated with the DS Equation

As in the previous case, it is easy to check from their definitions

Q1 2 G 12-QG 12 ±G1 2Q2 = f d 3(Q13G32 --G 3Q 32), Q12 =61 2Q1,

(C.13a)
Q 24[F,2JG2 =F 2 G,2 , (C.1 3b)

F 2G, 2 - dY 3(F1 3G32 ± GI 3F 32), (C.I 3c)

that the operators QI' 2 and F, 2 satisfy Eqs. (C.2) and (C.10). Moreover, it is possible
to show that the operator P, 2, defined by

P12F%2 -F 2 -JF 2 ,- F 2J, (C.14)

satisfies the following equations
1F2G  = F ±G+ FP 12G  ,(C.15a)

P 2 F' G , 2= (P 2F 2) I2- - 1 i 2 ) 1 2,

12 F 2 1G 2 - 2(P I2 F12) +P I-2tG I2 . (C .!I 5b)
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Now we use Eqs. (C.13), (C.2), and (C.15) to verify some result concerning
symmetries and bi-Hamiltonian structure of Eqs. (3.35) and (3.38).

a) 0,, is a strong symmetry for RO2,12, where k° 2=? 1 2-Q 2 and
P12 H 2 =O, H1 2 diagonal.

4'l 2 [Qt 2H1 2F 2 -(Q- 2 Ht 2)d[OI 2F1 2] + -(QtH1 2)a[F1 2]

= - -a[(Q l2n 2)+ P I-2Q 2+ O ?2P 12 1z 2 + F 2
-(C(P 1 2 -Ql2 P 2 Q+2 )F 2)-H 1 2 +(Pt z-Q-IP2 2 )F-2 H1 2 =O, since:

the terms without Q12 give

-a1P 12F 12)-H 12 +aP1 2F1 2 H1 2 =O;

the terms with Q1 2 give

a[((Q 2H 1 2 ) + + H 2 Q+ 2)P 1 Q 2F1+ + -2 P 2
1

+2  - 2 1 2H 1 2 )]
-aQ 2 P

1 
(H- 2 Q+2 F1 2 + F 2Q1 2H 12 +Q' 2F- 2 H 1 2 )=O

(in order to show that 0 1 2 is a strong symmetry for °Z2H12, where

1?2 =M 1 2 -Q2za, it is enough to replace H1 2 by H1 2 in the previous
calculation).

b) The Lie algebra of the starting operators (on H, 2) is given by the following
equations:

[ 12~, 12, 2 1
2f d- 1q. 12 H( 3 , [JR 12H4

1,AM __ H 2~] - t H12I" H" (21 21),2

[]= 
3  , i [H2 ---2 , 2],=(H(')H( 2 , (C.16)

where

R12 -Q1 2 , 112- Q 2a, P1 2H 'I')=O, H diagonal, i=1,2,3,

[Q 2 n -", Q- H] 2 -i _Q- H(2 )) -H 2 -(Q - n12 )- H (2)12 12 12 12 2 d-'x 12 12 I 1 I2 -- t: 12* 1 2

.2- -' 12 12 2 - 1 2M 12

1-- I2, ' 2J ' 12'

Equations (C.16b) and (C.16c) are obtained replacing H' by aH1 and H by
aH' 2, i = 1, 2, respectively, in the derivation of (C.16a).

c) The operator

12 t-a( P - Q12P?2t -Q 1) ,  (C.17)

defined on off-diagonal matrices, is hereditary, namely

0I2,[0IzFI 2 ]G, 2 -) 2 , 2d[F 2 ]GI 2 is symmetric in F1 2 , G, 2 . (C.18)

In order to show it, we make use of Eqs. (C.2), (C.15) and of

SfF't 2 G12 , G, 2 diagonal,
(aF1 2 )±G 1 2 = jF F2G 12 , G, 2 off-diagonal. (C19)
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Here we display the caliculationis for the terms lincar in Q'2
-(uP1 2FI 2) *Pt-2

1Q2 I'Z 2 - QI ZP2 (.7P1 2FI 2) Gl 2

+aPI 2(FI-ZPI-Z IQI2GI 2 +Q 2 P17'Fl 2G, 2)

5r(Q I P (PI 2F1 2) , + 2 Fj~ 21 2 + p 1Q2 P 2  )

which is symmetric in F, 2, G 12, since

FI-2 G, =GI+2FI,

1~2P12 (P12 F12 yG1  1F2QG 1

= Qt 2Fl 2GI 2 + Ql 2Pi(P 1 2G;1 2rF, + FI 2QtZGI 2
G' 2Q' jF,, + Q - P - (PI A 2)F 12.

d) Cr 2 is an extended symmetry of

a, 2 E-27Q]= -2a612, (C.20a)

ii) Q,,=M(\'t= -2Q 1 ,. iff

CI 2 1 - 2Q] -2Dt 12. (C20b)

(52A12")[F21=(226 2)d[F12 = F- a12

=-aF+ 6, 2 = -2aF, 2 .

(3 12 M'1)d[F 12 =(0 1 2Q - a + 2ctQ - U6'1 ALFF1]

IP 24 1F I 1 Q I2ab 1 2 + 12Q ?Q 2,[F I 2]3r ,2. +2c*Q I2 ,[II 1 a a' 2

12 -uF 22 Qj 2 +QI 2P1 2 ' F 2)Q 2a 1
-(P1 2-Q+2P-2 Qj)F 2 a~1 2 + F+2 '1 2']

=t-2P 2 -2aaD, -D 2))F, 2 = -2DF 1 2 ,

since, for instance,

GP1 2 F-,a6 2 = -P,F+,(, 1 I= -2P 1 2 F,,.

-UQ[ 2P1 2
t 2F-2u6 2 =Q1 2 Pl 2

1 Ql 2F,'2 1 2I, 2Q12PIJ'Qj 2F. 2 1

1~2(J, 2' IDL) - D2 )F 1 2'

- aQt2 P-2 F 2 Q1 2 oi1 2Q 1 '2' F1 2Q I2'Jl 21=2Q, ,P1 'F1 Qi 2

having used the properties

GI a= -0 1 2 ,G off-diagOnal,

(e)±F, 2 =(D, (
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e) 902Ht2 " ao'ZH1  2 (/k?2 = R and/or Alt 2) are extended gradients, namely
(gtzH, 2b -( ' tH ,,•

i) If 9 ° 2 =6r 12 =aQ12, then (9° 2H,)a[G 2 1=aG 12 ,= -aH 2 Gz, and

<F12,(' 2H.2)a,[G12]) = - <F,2, aHI 2 G1 2> = < -rH, 2F 2, G1 2 >

= <(';°2H, 2),[Fl 2], G1 2>;

ii) If °=a1 12 =CQ 26= -Q' , then

(' 2H, )[G 1 2 1= -Gt-H 1 2 = - H 2 G 1 2 ,

and
<f 2, (9°2H I2)[G 121> = < F t2,  1 H 2G 12 > < 1 12 , H ' G- '  G 12>

= <G 102 H. 2)d[F, 2], G 12>.
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It was shown recently that the Kadomtsev-Petviashvili (KP) equation (an integrable equation
in 2 + 1, i.e., in two-spatial and one-temporal dimensions) admits a bi-[lamiltonian
formulation. This was achieved by considering KP as a reduction of a (3 -i- 1 )-dimensional
system (in the variables x,y, y,t). It is shown here, using the KP as a concrete example, that
equations in 2 + I possess two bi-Hamiltonian formulations and too recursion operators. Both
Hamiltonian operators associated with the x direction are local; in contrast only one of the
Hamiltonian operators associated with they direction is local. Furthermore, using the
Benjamin-Ono equation as a concrete example, it is shown that intergrodifferential equations
in I + I admit an algebraic formulation analogous to that of equations in 2 + 1.

1. INTRODUCTION q, =I dY26(yI-y 2)K ,, qI=q(x,y,t), (1.1)

This paper investigates symmetries, conserved quanti- where R denotes integration along the real axis, 6 is the
ties, recursion operators, mastersymmetries, and the bi- Dirac distribution, and K, 2 is some function of q, and
Hamiltonian formulation of two physically important exact- = q(XY 2,). The introduction of the above form is natu-ly solvable evolution equations: the Kadomtsev- q =qxy,.Thinrdconothabefrmintu
Petviashvili (KP) and Benjamin-Ono2v t (BO) equations rally motivated considering KP as a reduction of a nonlocal
ThePeua iisP an prototypeintenogra(b equation s. (3 + 1 )-dimensional system (in the variables x, y,, Y2, and
The KP equation is a prototype integrable equation in 2 ± I t.~ 5, h above extension is necessary in order to bypass the

(i.e., in two-spatial and in one-temporal dimensions), while Z."habov elceno res on he onexi s ore
theBO quaionis prtotpe inglarintgroiffrenial Zakharov-Konopelchenko result on the nonexistence of re-

the 80 equation is a prototype singular integrodiferential cursion and bi-Hamiltonian operators in the usual ( I + I )-
equation in ! + 1. The results presented here fit in the gen- dimensional formalism. 14

eral theory developed in Refs. 4 and 5; however, the follow- Hierarchies of infinitely many time-independent and

ing conceptual aspects are novel.Hirrheofifntlmayie-dpnetad
(i) Equations in two spatial dimensions (x andy) time-dependent symmetries and conserved quantities of the

sess two recursion operators and two sets of compatible BO equation have been obtained in Refs. 12 and 15, via the

Hamiltonian operators. The set associated with they direc- mastersymmetry approach introduced by Fuchssteiner and
tionHastoni eredtonRefs. 4-6. Hreswet invesoc ate the one of the authors (A.S.F.). This approach was subsequent-
tion was considered in Refs. 4-6. Here we investigate the ly applied to the KP equation. It was shown in Ref. 5 that the
recursion operator and the pair of ocal Hamiltoiian opera- mastersymmetry approach is contained in the general theory
tor associated with the x direction.delodinRf.4ad5

(ii) Integrodifferential equations in 1 + I share many

common features with equations in 2 + L.7 This is because
integrodifferential equations are also formulated in terms of A. Basic notions
two space operators, for example 0, and H (the Hilbert We consider an evolution equation i its abstract form,
transform) in the case of the BO equation. It is shown here (1.2)
that the algebraic formulation of integrodifferential equa-
tions is analogous to that of equations in 2 + 1. on a hormed space M of functions of R. K is a suitable C

The existence ofa double representation, corresponding vector field on M. We assume that the space of smooth vec-
to two recursion operators and two sets of bi-Hamiltonian tot fields on M is some space S of C - functions on the real
operators, is also a property of integrodifferential equations line or on the plane vanishing rapidly at infinity. By K,[vI
in I + 1; this will be shown in a separate paper' for two we denote the Fr6chet derivative of K in the direction v, i.e.,
explicit examples: the intermediate long waveo and the BO d [+v) 1
equations. K d[e] -Ktq±+) o (1.3)

Hierarchies of infinitely many time-independent and Let S * be the dual of S with respect to the following bilinear
time-dependent symmetries and conserved quantities of the form:
KP equation have been obtained in Refs. 11 and 12. A recur-
sion operator and a bi-Hamiltonian formulation of the KP (y,)f dxyor or (y,o)-fdxdy yr, (1.4)
were found in Refs. 4-6. This was achieved by introducing
the following extended representation of the KP equation: yS *, oS. Let 1: S- R be a functional, then its gradient is

defined by

"Permanent Address: Universita Degli Studi-Roma. Isiito di Fisica I, 1al = (grad . (1.5)

"Guglielmo Marconi," Piazzale delle Scienze, 5, 1-00185 Roma, Italy. It is well known that the function y is a gradient ofa func-
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tional I if where the adjoint of all operator L is Inriegi ile I lamnlltoru,,n "' ',,tcini'i ha~ e an excep-
det~ned by (L y,o) =( y,Lor). tionally rich algebraic structure: 'They are bi-Hlamdtlonian

Definition 1.1.- 0i) A functiono'cS is asynetr of ( 1.2) systems. [lie existence of two Hamiltonian operatorl 0"',
iff the flow q, = ar commutes with the flow ( 1.2). 'This im- i= 1.2. implies the exisience of a recursion operator
plies Pf)O- (01) 'which generates infinitely many symme-

do ,t tries. while 'I) generates infinitely many gradients of con-

67 rfi - Kf [or] = 0 (1.6) served quantities. For example. the two Hamiltonian opera-
0i)A fncionl is onervd b te fow( 12)iffdl tors associated with the Kortew-eg-de Vries (KdV)

dt = 0. Henceeqaini gvnb

+ 0K D,=D. 8 2 D ± Dq±+2qD, D d,.
+r,)= 0, r' grad I, The KdV call be written as

andr-S* is called aconserved gradient of ( 1.2). Differentiat- q, =q_, + 6qq, = O' 1 Y' = t2 2

ing the above equation in the arbitrary direction v it follows where
that r satisfies

21'-
dy +r[KI+ f[ j=0 f=y (1.7) 11 q =grajx--

at± 1 [K ±Ki] 0 =,p-
(iii) Equation ( 1.2) is a Hamiltonian system iff it can be y"' =q_, ± 3q 2 

=grad dx -;

wiritten in the form Jr 2 +q3

qef (1.8) Furthermore, (F (
2 (e1) - Iis a recursion operator for

the KdV. i.e., (P) generatcs symmetries and (1)+ generates
where/is a gradient function, i.e.,! 1 =f and 0is a Ham- gradients of conserved quantities. The KdV is the second
iltonian operator where member, n = I, of the following Lax hierarchies:

( 1) 0 is skew symmetric, 0 0, q,0 = (1)"q, n = lion-negative integer (1.12)

(2) E satisfies a Jacobi identity , ( 1.9a) (throughout this paper n.m,r denote non-negative integers),

(a,O'[eb 1c) + cyclic permutation = 0. (l1.9b) where q, is astartingsymmetry.

A Hailtoianopertor isassoiate wih th 1'os- xactly solvable equations in 2 + 1, written in the form
so braketona (prtr0i soiae ihtePi 1. 1). also Iadmit a bi-Hamiltonian formulation."~ For the

son backetKIP, the two Hamiltonian operators are given by
{ILH} = (grad 1, e grad H) . (.9c)

(iv) An operator (P is called a recursion (pL'rctor or a -- D, 2' = D '+ Dq,; + q,' D + q,, D 'ql 2
strong symmetry of ( 1.2) iff it maps symmetries of ( 1.2) to 1. l13a)
symmetries of ( 1.2). Requiring that oa and (Poa are symme- where
tries; of ( 1.2), it follows that an operator (P satisfying the
operator equation D d , q 1' -q I± q2 + a (D, --:D) .1b

3± 1f[ [(F,Kf. =0 (1.10) D, -_rd, , i =1,.2,(I1b

arid q, -q(x,,j), i -- 1.2. Indeed
is a recursion operator of ( 1.2). q ,,,j ± 6q, qj + 3a2D 'q,,,,

(v) An operator (P is called hereditary or Nijenhuis iff it
generates an Abelian algebra. Assume that the flow q, = or =K,, 1 42 51 . f dy 61,1',2,:
commutes with the flows q, = v', q, = IFv, anid that the flow

q,= v commutes with the flow q, =(Poa, where or, v are arbi- (.4
trary functions. Requiring that the flows q, = (Por, q, (Dv where (5,2 - M(y, y)and ; i) = 1,2, are suitable ex-
also commute it follows that tended gradients, i~e.,

(Pf (For]v - ("f F[(Pv~oa is symmetric w.r.t. ar~v 1.1)

(we have assumed for simplicity that d(D/dt = 0). ' =

Exactly solvable evolution equations in I + I admit infi- I h b~ iesbcitddntsasial ietoa
nitely many symmetries. These symmetries are usually gen- drvtead( )dnosasuabeilerfrm"F-
erated by a hereditary recursion operator (F. An alternative dhervatie r ursio deotesratsuitable bilnear form.Fr-
approach is to use the notion of a mastersyminetry. A func- throe th reuso2prtre,,6~( ' 'gnr

tion r is a master symmetry of Eq. ( 1.2) iff the map ates extended symmetries ar,,, while the adjoint ob, of 6,,

r, wereI ra,, - rI o) - ,,( r)with respect to ( , ) generates extended conserved gradients
fr, IL'whee [ra]L~r~f'J 2~~ ,. henaU, " ) are symmetriesarid conserved gradients of

maps symmetries of (l1.2). Here r is called agradient master- the KIP, i.e., they satisfy Eqs. ( 1.6) arid ( 1.7), respectively,
symmetry (with respect to the invertible Hamiltonian opera- where a7, y, K are replaced by or,, y,, K,,. and K,, is defined
tore0) iffe0-'r is agradient function. in ( 1. 14).
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In analogy with Eq. ( 1. 12). KP is tile second mnemiber,
n 1 (,61 ~) of the following hierarchy: K,,, I 2 or,, I f 7 -(q 4- cal, ,q + Eaj. )f,2

q,,~ dy2.3(y, -y~b 2 MI"2f 1, (1.15) where 1 .24a)

where Ail I (Dq, + q,- D -'q,' I is a starting ex-
tended symmnetry. Actually the operator o5,, admits two Or, f J dx 71 1 fl 2 + ( 12 ] i 0 (1.24h)

starting symmetry operators Mand N1, q12 -I'licy give 'Ilfie two Hanmiltonian operators associated with the KP
rise to the following two hierarchies of time-independent equation (1.21 ) are given by
symmetries:

*~~ ~ 1,($N 1.(.6) e 1 D, + D,, ()2 =ad, + q;,- (1.25)
Time-dependent symmetries of order r of the KP are pro- whr 21  r eie n(.2) h prtr w -12

duced by linear combinations of are skew symmetric, and satisfy the Jacobi identity

(.07m 2  (y, +Y2)'),, (0,1 C yl +Y2 )1 i (1.17) (a, [bl2J 1 2) + cyclic permutation = 0, (1.26)

and are closely related to gradient mastersymmetries. The where e 2 , and ( , are defined by (l1.22)-( 1.24).
above hierarchies of time-independent and time-dependent It should be stressed that, in contrast to the Hamiltonian
symmetries give rise to time-independent and time-depen- pair ( 1. 13), both of the above Hamiltonian operators are
dent conserved quantities."~ Finally, there exists a simple local. The KP is a bi-Hamiltonian system,
relationship between 0, and a nongradient mastersymmetry ql, = ql, x + 6qq, + 3a2 D Iq,
T, 2:

T,= 02  =5 ( -Y~C5r~ 1 ,+ T DK,, =jd 2  ~ ~ i 2(1.27)

wher C s aconsant Th aboe euatons re he wo- where y ', are appropriate extended gradients.

dimensional analogs of the following formulas, valid for the hierarchy: orhmmen=3,o h olwn a

KdV: 
heacy

q6 - 1, CO = T +DTD. (1.19) q,,=,,J dx2 6(X - x 2 )V 2 KO2 - I, (1.28)

It is well known that the KP equation is associated with where
the linear problem

w_~ + (q(xy,t) + a (3)w =0. (1.20) 2 I. -' 10 2a,±q . (.9
The recursion operation (P1I2 admits only one starting sym-

The recursion operator ( , is algorithmically derived from ^(
E.(2)4.6 metry operator K?2 , which generates the time-independent

symmetries ((P712K7 2 - I),,. Values ofm zero or even corre-
spond to ( 1. 16a), while m odd corresponds to ( 1. 16b). Thus

B. New results in the new formulation the two different hierarchies ob-

('2 The KPequation.: In Refs. 4-6 the algebraic proper- tamned in Ref. 4 are unified. Similarly 4), generates extended
ties of KP wvere investigated by expanding in terms of conserved gradients which give rise to conserved gradi-
5 (YI - Y2). Now we expand in terms of 5(x, - x.) (Ref. ents 7j;"

16) and write KP in the form A nongradient mastersymmetry is given by

q,, JR 6x - x,)K,., q, = q(x,,yJ) ,(i.2) 12

where K,, is some function of q,, q, = q(.,y~t). Let sub- The recursion operator (D,, can also be algorithmically
scripts 12 denote dependence on x,, x,y; then for arbitrary obtained from the 1,near equation ( 1.20)
functionsf 2 1 g,, we define the following bilinear form: 00i The 110 equation: The DO equation

q, = 2qq, + Hq,,, q =q(x,l) , 1l.30a)

(A 2,912 ) dXl dx2 dyf.1g 12 .(1.22) where!H denotes the Hilbert transform (throughout this pa-

per principal value integrals are assumed if needed)

Let the arbitrary operator K,, depend on the operators q,,

q 1q +DHfD d D,=- x

2 q ± 2 +L 1 21(1.23) can be written in the form

q ,~~~~~ qIy ~ ) ix = 2 ;q , X ( A , - x ) K , , , q , = q ( x , ) , ( . 1
then the directional derivative of K, in the direction a,,, is I- I
denoted by ki 2 4 ta'21I and is defined 'by where K,, is some function ofq,, q2 =q(x2.i). Let subscript

606 J. Math. Phys.. Vol 29. No 3, March 1988 A S. Fokas and P.M. Santini 606



12 denote dependence on x, x.; then for arbitrary functions ("
f,, g,2 we define the following bilinear form: q, [ d ,5(x, x2)4)7,K '

( fl1, " R dxdrf:g, . (1.2) .. ill dx. 6(x, -.1c,)(D, +- D,) q,' I , (2.2)

Let the arbitrary operator K, 2 uepend on the operators q,, where /f3, are constants, D, -d,., i = 1,2, and the opera-
l , where tors +b, 1?, k' 1,, A i) ire defincd by

q, -q= ± q2 + i(D, T D2), D, =a,, (1.33) (l1),( +l)(D, + D,)
q= q(x,,t), i = 1,2; ( (a d, ± q, 2 (2.3a)

then the directional derivative of K, in the arbitrary direc- (DI + D2 'F,2 =), 2 (D, + D,)

tion o'12 is denoted by K,2,[, 2 1 and is defined by ( 1.24). q,2 = 41- q 2 , K'72 =a a, + qi2 • (2.3b)
Two compatible Hamiltonian operators associated with

the BO equation are given by Remark 2.1: (i) 42 = 4*, where * denotes the adjoint
0(,"- . = (q,+ - iq,-H12 )q , 1.34a) with respect to the bilinear form (1.22).(ii) T/, = (*.

where the operator H 2 is an extended H operator, (iii) Equation (2.2) with n = 0,1,2,3 and /3l ,

(Hif)(xix2) 7--fd (x, +x 2 )]-I /2 -,/3, = - implies
.I4 q,, =0, q, =ql,, qj, =aq,, (24)X F ( ,x t x ) ,( .3 4 b ) q ,, = q j.,., ' + 1q q l ' + 3 a D t- ' , q .( 2 4

andf(x,,x 2 ) = F(x, + x2 ,x, - x2 ). The BO equation is a bi- Thu bot t x- + a d
Hamiltonian system with respect to the above Hamiltonian Thus both (hex-translation and they-translation hierarchies
operators. of the KP are generated by the same extended starting sym-

The BO equation is a member of the following Lax hier- metry K', • = q, - q,"
archy: To derive the above Lax hierarchy we look for compati-

ble flows

qi, =fl. dx2 6(xl-X 2 )D 2 q ,  w, = VW, V polynomial in da. (2.5)

- . (1.35) Compatibility of (2.1), (2.5) implies the operator equation
- iqH,2 . q, = - (aV, + [q + Od,V]). (2.6)

Indeed, (1.35) with n = 1 and n = 2 yields Assuming the integral representation

q,, = 2i6'oq, , q,, = 41fl,(2qql, +Hq,.. ) . (1.36) (Vf)(xly) = dx, v(xx 2,y)f(x2,y), V,2 --V(X,x,y)

The peraor ,z t,2>A,,, -,(2.7)
The operator 4,, = 0 ,(, )-' generates the time-inde-

pendent symmetries of the BO equation (4)'q,- • and noting that
Similarly, 4)*, generates extended conserved gradients yj( 2 fq

The above recursion operator 1,2 can be derived algo-
rithmically from the associated linear problem of the BO
equation. V,(q,+D )f= dx 2 {(q 2 + D

2 )v,}f2,
This paper is organized as follows. In Sec. II we derive J

the second representation of the KP class and we investigate v.f = F dx., "

the algebraic properties of the associated recursion operator Ji,
and bi-Hamiltonian operators. In Sec. III we derive the ex- we obtain the distribution equation
tended representation of the BO class and we investigate the q - - + Z"12, + ) . (2.8)
algebraic properties of the associated recursion and hi-Hait-
iltonian operators. In addition we discuss the connection Thus
with the mastersymmetries theory of the BO equation and q1,6, = - (DI + D,) 2 vl2  (2.9
with the complex Burgers hierarchy. W,,(D, + D() 2(9) +q, 2

The operator (D, + D2)',, satisfies the following commu-
II. THE KP EQUATION tator operator equation:
A. Derivation of the second representation

Proposition 2.1: The linear equation I (D, + D,)')q 11,h,1 2 = 2h ;2 (D, + L)2)
hl,= h(xi-x,), h2 = d (2.10)

aw, = 4w, 4 -q(xv,t) + d , (2.1) dx,

is associated witd thie LilA licilicy Using tlie above equation and assuming the expansion
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U2
d d ( +dO - q. )v12 v =0 (2.18)

S ,dx2. To derive the above results, take the directional deriv-
Eq. (2.9) yields ative of ( 2.16a) in the arbitrary directionf , 2, multiply this

equation by t' and integrate over dx dy to obtain
q, 6, 2 = 6, (D-,+ D2)'V, 2 [v=

'
,=.. "dIf,1.l f, dx, dy v,' l f,, Iv,.

+ 2 6, (D, + D2)V(1 2 Using (2.13) the above becomes

Thus Ia[f/ 2 1 = dx, dx1 d o vvf 2 .

(D, + D2) v ,' =0, q,6,2 = 6 2(D + D2)q1 2  2 But
- 4 Ylt V, 2 1 , 2, - I )- j W12v12 = U1

Therefore vj'°=(- 4)'T72 jv' . Hence assuming Ad[fA2] = dx, dx2 dy(grad A ) 21f 2

v,2 the above equations imply hence (2.17) follows. Equation (2.18) is a trivial conse-

ql,6 12 = 6 12 (D, + D 2 ) q/72+ I quence of (2.16).
Equation (2.18) suggests that (D,2 is a hereditary (Ni-

= 1512 ) 2 ) 12(DI + D 2 ) I jenhuis) operator (see Proposition 4.3 of Ref. 4). Actual-

where ly it can be easily verified that

(D, + D2)'p 1 2 = 1P12(D, + D 2) 12, [ 12 A 2 ]g1 2 - 1)12 (b12,,[ f1 2 1g1 2

is symmetric w.r.t. fA2, g 2, (2.19)

B. Isospectrality yields a hereditary operator i.e., (D12 is indeed hereditary (see Appendix A).

To make this paper self-contained we first introduce an
appropriate directional derivative. Recall t>e integral repre- C. Symmetries and conserved gradients
sentation [Eq. (2.7) 1, 1. Starting symmetries

Vf)(xlV)= [dx 3 v(x,,x3,y)jjx3,y) . We recall that the starting symmetry operators play
JR an important role in the theory developed in Refs. 4 and 5.

Also, allowing f to depend on x 2 we obtain Vf, 2  An operator (2 algorithmically implies starting symme-
-= dx3 U11 32. In particular, try operators: Look for operators S 2 such that

(2.12) S 2HI2 = 0, but (1) 2S]1H2 00. Then a starting symmetry
ql f 2 (qa-t+ D)fn 2 Jx 3 q 3 f3 2 . (2.12) operatorK, is given byK°2 H 2 -z1,2 S 2 H.

Equation (2.12) is a map between an operator and its ker- Proposition 2.3. Let
nel and induces the following directional derivative: K° 2 - a (, + q 12 , H12 - H(xI - X2,Y) , (2.20)

f where H is an arbitrary function of the arguments indicat-
[a, 2 2 - JRf = dx3 o', f3 2 . ( 2.1i3) ed. Then the following statements obtain.

Equation (2.12) and the bilinear form (1.22) imply that (i) K, . If,, is a starting symmetry associated with

the adjoint of 4, 40 = q2 + D 2 has the representation the operator (12 [defined in (2.3) 1.
(ii) K o2 satisfies a simple commutator operator equa-

fi02f=(q 2 +D f 2 =fdx~qf 1 3 . (2.14) tionwithh 2 .- h(x,-x2 ),

2 V12 xj q32 3 (2.1 ) 12 2 )

Hence [K1 %,hI21 = 2 (DI + D2) . (2.21)

4.[, 2  = 2 dx3  A . (2.15) (iii) N,,2 is a strong symmetry for k2 H, 2, i.e.,

Equations (2.12)-(2.15) and q t, ± 4 imply (1.24). ,
Proposition 2.2: (i) Consider the isospectral equation -'D1 [K°2 H12] + [1)I?,(Kt 2 nl 2)1 ] = 0. (2.22)

4u + au, = At, (2.16a) (iv) The Lie algebra of the starting symmetry operator

and its adjoint, with respect to the bilinear form (1.4), satisfies

o+--av+ =Av + . (2.16b) [21 2 H'",° H']a =K%[UU" 14 ,(.3

Then where

(grad A),2 = v,v,, (2.17) [K 1 ,K 1t 2 I K t K (, - K 2 K[K I (2.24a)

where (grad A) 12 denotes the gradient of A with respect to
the baiine-u C.- ek 112 NJ )H2 HC)(2)[H 1 ,H 1

I r dx ( H 13' -H
1 H 1

(ii) Equations (2.16) imply J. (2.24b)

608 J. Math. Phys., Vol 29, No. 3. March 1988 A. S Fokas and P M. Santin 608



To derne (i) let S,, D, +- D, theni Ili, is defined by 3. A nongradient mastersynmetry
,+ D,)H,, = 0. thus I/,, H(x, - x..v) . Also I~~b,25 ~--'yS, . 7(.

K' H,, =(a d, +- q,~12 Part (ii) is a sit aiglitlorward X a sannrdctlatrvnityo h I
calculation and part (iii ) follows from the definition of a class, since
starting symmetry and the fact that (b,, is hereditary (seeI
Lemma 4.2 of Ref. 4).* Part (iv) is a tedious calculation [ K',2 K 2 H, ,., J, = (n + lI 'K7, 2H . (2129)
[seeAppendixA foradirect verificationcof Eq. (2.22) and (ii T, . generates the recursion operator P, via

2. Symmetries (iii) Lect

We recall that o,,, is a time-independent extended ~ ~=(D, + D,) K0, .(2.31)

symmetry of Eq. (2.2) iff 711"I ('*2 "e1n7,1

I'512 (P 12 0. (22)02H, grad,, 1 , (2.32a)
Proposition 2.4: /n+2(Y''H 2 6 2  23b

(i)6IF72 K?2 I ~ b,,,'.F- 'K? ~ I lie proof of (i)-(iii) is a consequence of equations

I.0 (V 12'[ 12 1 and of Eq. (4.9), (4.6), and
b,., constants . (2.26) (4.7) of Ref. 5, respectively.

00i [,,2 S12 k 72  1, (P';? H12I
1 12 1 dIll. THE BO EQUATION

= b,,,F72' "KO12 [b12 ,H,,. The linear problem associated with the BO equation

l=0(2.27) (1.30) is the following differential Riemann-Hilbert
(RIu) boundary value problem:

(iii 2 '~7 K' - I are time- inrdependent ex- d,( '(x = Hx i6.t + (3.1)
tended symmetries of (2.2) .(qx+

(iv) orl-7' are symmetries of (2.2) .where d,( and 0&' i re the boundizry values on the line
(v) r,"= 0are utoBilcklud tansormaion of Im x = 0 of fuilcions holomorphic in the upper and lower

2v r r uoBckudtasomtoso half-plane, respectively,'" and the spectral parameter has
(2.2), where q,, q2 are interpreted to be two different solu- been rescaled away.
tions of (2.2). Equation (3. 1) plays a crucial role in the derivation of

Part (i) of the above follows from the recursion and bi-H-amiltonian operators of the BO

[(, 2,h12 I = 2h '1, [k?21h12, = 2h ;2 (L), + D,) . class.

(2.28)

To derive (ii) note that A. Derivation of the recursion and bi-Hamiltonian
[6, 2 ~2 K2 . , I,'~K, H, Idoperators

[612)12k 10 11(D'1k01 H1 IdProposition 3. 1.- The linear problem (3.1 ifs associated

= b,. , [ V, 'K02 6'1 1,," K?, H,, ]J with the hierarchy

1 0

=~~ ~ I q,,~'"'~ 13,,Jrr, dx, Mx, -x.,,) q,' 2 ',: (32

/=0where 13,, are constanits and the operators (P,., IP,, and
where we have used (for the third equality) the fact that '4V k(,2 are defined by
is hereditary and a strong symmetry for K' - H,,2' and
the fourth equality follows from Eq. (2.23). Part (iii) fol- (b, q ' - iq 12 Il,, q, TI, = 14,q,;, K? I -q-
lows from (ii) by taking H,2 = 1. Part (iv) follows from (3.3a)

(iii) and (2.8) (see Theorem 4.1 of Ref. 4). For part (v) H, -r d x+x, F,,x)
see Theorem 4.2 of Ref. 4. Hf 2idi-xx)'(..x)

Remark 2.I1:(i) Using Eq. (2.27) with suitable func- f Jf(xx,) = F(x~ ,±x-,,x , - X') ,(3.3b)

tions H,,, it should be possible to show that time-depen-
dent symmetries of (2.2) are generated by linear combina- q,2 4 q, ± q2 + i(D, TD,), q, q(x,tI) ,(3.3c)
tions of (V',K 2 H 2. See Ref. 5 for the -corresponding D,=a. =12

results associated with the first representation.
(ii ) An analysis about conserved gradients should fol- Remark 3.1.- (i) IP,, = (tV*, where * denotes the ad-

low closely the methods developed in Refs. 4 and 5. For joint with respect to the bilinear form ( 1.32).
example, it can be shown that IV",, H,, are extended gra- (ii) The first few equations of the BO hierarchy are
dients for all H,, = H(x, .- .x2,y). then
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q, = 0, n = 0, (3.4a) Remark 3.2. The following operator commutator equa-

q, = q,, n = =13= (2i) - (wave equation) tions hold:

( 3 .4 h ) q ,2  .h , ] 1/ ,..h , ,1 =( A
q, =2qq, +Hq.,, n='2, 6,= (4i) ' (BO equation), h (3.14)

(3.4c) [q,5,h,1  ] [,I,,h,. - 2ih _,, h ' -

q, = ( - q,_ + q' + J (qIfq, + llqq,) , and her'aliler h, indicates an arbitrary function of

n = 3, 3 (8i)' (higher-order BO equation) -x.SubstitutingtheexpansionL, = o into
(3.4d) Eq. (3.13) and using Eqs. (3.14) one obtains

and are obtained from (3.2) using Eqs. (3.16b)-(3.16f). D,) = 0: i, = (i/2)(tV 2 1, l<j<n -

To derive the representation (3.2) we first seek 6, = (i/2)61 ,t 1 - . (3.15)
compatibility between the differential RH problem (3.1) 2

and the evolution equations The iteration (3.15) implies that -101) - (i12)

(V± 7, 32 ,. "; to determine b 2 we notice that ,2
= V2' - '{2 0 implies V1) = C, = const,

where V1 I) are differential operators of the form and then

V( ) VJ( ± ) W(x O (3.6) 5;' (1 )fl V2

-0 + q1 2 (W 2' '" + v(, ') 1c, =ic,q-2  I .
and the coefficients V, + (x) and V' - '(x) are holomor-

phic in the upper and lower halfx plane, respectively. Equation (3.2) is then obtained defining

The compatibility condition between (3.1) and (3.5) - i(i/2) "c,,.

yields the operator equation B. Properties of the extended Hilbert transform

, = W - (q + i d ) - (q + i d, ) W , (3.7) In this subsection we list several interestingand useful

which can be converted into a scalar distribution equation properties of the extended Hilbert transform.
by formally introducing the integral representation Proposilion 3.2. The extended Hilbert transform H,
VIf)(X,) d v,2 v, 2± venjoys the following properties.

(I) [H,,,h,2  =0, (3.16a)
(3.8) (2) 11,a(x, ) = 11, a(x,), j= 1,2, (3.16b)

For instance, the operator V , - '(q, + i a,, ) gives rise to
the scalar kernel (q 2 - i 3,, )v-, since Hif(xXx)-,- dy(y-xj)-f(x,,y), '#.

V'1-'q + i d. , )f(x,) =[dx2 V1 2- '(q2 + i '3., )fXI) (3.16c)

(3) fdbHf,=HfI(3.16d)
f J dx2 ((q2 - i (,9 )V(- ')f(x 2)

(3,9 (4) Cl,,lt 'fQ = H 11 2 ,,f1 , j 1 2 , (3.16e)

Equation (3.7) then correspond- to the following distri- (5) H 2 1 . (3.16f)

bution scalar equation: Moreover,

(5(x, - x,) q,, = - (q, + i 3,, )v(2, ) + (qz - i W, )v21 - (6) H, J'2 h, = (11 12J12 ) h 1 2 , (3.17a)

= - 4(q, (v(,+ ,  1), )) (7) H,, ( gi,0  ,, 2 + (HI g1 2 )-ft 2

+q,- (v,+ + v, -). (3.10) - -g 1 ;f + (H,g 2 ) -H, 2f 2 , (3.17b)

Equations (3.6), (3.8), and (3.10) imply forv ' the (8) 2 (3.17c)
following expansions in derivatives Of 6p: Here H,, induces the following analytic properties:

(9) if

'a= 112 ,v'±2. (3.11) f ± 't-+ (TiWI IV)f, 2

Combining (3.11), (3.8),and the analyticity propertiesof = (2rri) dy( y - (x, + x +_ 1!) i)
V I ± '(x), we obtain that vi,' ) and v2- ' are holomorphic JR

in the upper and lower x, + x, plane, respectively. Then, x F(y,x, - x2 ), (3.18)
in particular, then

v
(
,'- ) -  

= - iH 1 2 ( V(1 ' - v12 ) (3.12) (i)f(,2 ' ' andf 2, 'are holomorphic for lm(x, + x 2 ) > 0

[see Eq. (3.19) 1, and Eq. (3.10) becomes and Im(x, + x,) . 0, respectively.

61ql = - 4(1112 2 , 5 2 .1,. 1 2' )- V(12
-  (3 i3) (ii)f 2'' +f;, )= - tH1 2 (f'1

2  )  fP 2 - ) (3.19)
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Proof Equations (3.1ff) and (3.17b) are interesting KJ,,: .,:( = K1 2 ,g1 K. K , KI gI: .J
generalizations of well-known identities H2= - 1, (3 26)
H(gHf±/Ig) = - gf + (Ig) (Hf )and can be proven where K, denotes the Frechet derivative of K, with re-
using Fourierspace. Equations ( 3.16a)-( 3.16e), (3.17a),

(3.17c),and (3.18), (3.19) aredirect consequencesofthe spect to q,. ie..

definition of H, 2 (see Appendix B for details). K, 2,. [g,, I --d, K,.(q, +- cg,,qs .... i = 1.2. ij.
(3.27)

C. Algebraic properties of the BO class

In this section we show that the main algebraic proper- 3. The starting symmetry K102 hil, its Lie algebra, and
ties of the BO class can be entirely described using the theory its characterization through the recursion operator
developed in Ref. 4; we refer to that paper for details and The starting symmetry K ,'2 = q, - q2 of the BO class

proofs. is written as q,- - 1. As in 2 + I dimensions a crucial as-

1. Representation of the class pect of this theory is that the operator K, q, 2 , acting
on suitable functions h,, = h(x , - x,), solutions of the

It was shown in Sec. III A that the BO class admits the RH problem h 2
' - h 12 - =0 [( + ) and ( - ) herein-

following representation: dicate analyticity in the upper and lower x, + x. half-

planes, then h,, = h 1,2+.... h ,2- form a Lie algebra,
q, = J dx 2 6, 2(V 2K? 2 -I ,,dx. 5 2K K 7' given by

(3.20) [q,2 h12,q12  12  = - q12  [h,4,h1 2 1,, (3.28)

whereK1 2 = q1- and 422 is defined in (3.3a). where the Lie brackets [ I d, [ , 1, are defined by

The recursion operator P,2 and the "starting" opera-

tor k0 2 enjoy simple commutator relations with h,2 V 2 ,9 2 I A 2 , 2  g12d[f12 1 (3.29a)

= h(x, - x 2 ) [h1 ,,, ,1 dx3 (h13 hA2 - h13h3 2 ) . (3.29b)

14,2,h 2  2 2  [ 2 ,h 2  (3.21) Asin2 + I dimensions, thestartingsymmetryK° 2  h ,can

which imply that 6,,K can be written in the following be characterized through the recursion operator @,1 via the

alternativu form: equations

5 2  K ( = 2 d 1'(x , - x ,) ( ,,,(h 2' - h 2 ) q ,2  (h + - h ,2 1) + q -2 (h
z = )(,2 a + h 2- = 2K?2h 2 , (3.30a)

(3.22) h 2  =h 2_ =h,, (3.30b)

2. The d derivative obtained using Eqs. (3.3a) and (3.19).

As in 2 + I dimensions, the derivation of the extended 4. Symmetries, strong and hereditary symmetries

algebraic structures of the BO class is based on integral rep- The recursion operator (D,, and the starting operator

resentations of operators depending on q, a,, and H. This K1 2 = q,2 are the ingredients of the evolution equations
mapping between operators and their corresponding kernels

induces a mapping between derivatives and leads to the in- q , -512 K, 2 • (3.31)

troduction of a new directional derivative, the so-called d

derivative.' Here we briefly remark that the basic operators They enioy the following properties.

q,:' appearing in the BO formalism are the same as for the Proposition 3.3." (i) The recursion operator (1, is

KP case, replacingxj byyj and iby the parameter a [see Eqs. hereditary, namely,

(l.13b) and (1.33)]. Thentheird derivative is simply given (F12,E[1 2 fl 2 1g1 2 - V12 12,[ fl2

by is symmetric w.r.t. A2i and g, 2 ; (3.32)

q1 2 2 f 20 (V291 t-f 1 2 , (3.23) (ii) @,2 is a strong symmetry for K', h, namely,

g 1 f 2 -- f dx3(g, 3 f 2 ±f3 g 3 2 )
•  (324() d ( K

-RD1,[K ]2 h,,] + [(@f,(K 2 h,2 )] =0. (3.33)

Since 4, and K 2 are expressed in terms ofq2 , their d Proof: Equations (3.32) and (3.33) are verified in
derivatives are well defined, Appendix A, although this check is not strictly necessary,

for two reasons.
(tF21[g 1 ji =g1+ - ig2Hi2, K1)2 [g 2] =g 1 2 • (3.25) (1) ' 2 comes from the isospectral problem (3.1),

and an extension of the theorem presented in Ref. 18

As for the (2 + 1)-dimensional case, the connection be- should guarantee its hereditariness (see also Ref. 4, §4.E).

tween the d derivative and the usual Fr6chet derivative is It is also interesting to remark that a direct proof of the

given by the following projective formula: hereditariness of (D,, makes use of Eq. (3.17b).
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(2) The hereditariness of (1), and the charactert7a- satistics the following "well-coupling' condition:
tion (3.30) implies that Proposition 3.3 (ii) holds (see , 0 ,(* (3.42)
Lemma 4.2 of Ref. 4 and Appendix A for a direct check).

The operator >,2 generates infinitely many commut- (iii) h, h12  is an extended gradient,
ing symmetries of the'BO class; precisely, since (),, is a namely,
hereditary operator and strong symmetry for the starting (k'2"h,),' = (, 3,,),. 343)
symmetry K°,h,2 that satisfies Eq. (3.28), then Theorem
4.3 of Ref. 4 implies that a,T.,,, re Proof" Eqations (3.40)-(3.42) are a direct conse-

12q2 -q ence of [lie definitions (3 39), of Eqs. (3.17b) andsymmetries of every evolution equation of the BO class, 3.17c), and of the property q,= q,,.
namely, Remark 3.3: Using Eq. (3.42) the BO class can be

a['K " ] = (6, 2 K 1,)a Iit2 (3.34) written in the following form:

for every non-negative integer n and m, where, using q"(3.22), ql [ , dx , 6 ,,q, - (D * ) I

( 12K '(1'2 ,d-- - 2i)'(')( 7'-'° 2 ,' 2 ) d . (3.35) = f dx, q,26, 2((F 2 )f 1

The first three operators (6 , (12' )d of the BO class are
explicitly reported below: =d T dx 2 612( D1 2  1 " il 3, ,Y
(6K0) )d =0, (3.36a)(112,K 12 (3.44)
(o2K ('1)d = 2i(.a, + k,,) (3.36b) The first Htamiltonian operator 1') = q,- commutes

( I2K(2) with 6,, and reduces to iO . Then a, is the (projected
(51 2 1 2 )d +version of the) first Hamiltonian operator of the BO class;

= 4i(H 2 ( d, + do, )2 + (d, + dh, ) (q, + q,) this result was already known."

+ i((Hq, )x, - (H2q 2 )x2) The existence of a compatible pair of Hamiltonian op-
erators is connected to the existence of infinitely many
constants of motion in involution. Theorems 4.1-4.5 of

(see Appendix A). Ref. 4 can finally be summarized in the following proposi-
The usefulness of the extended symmetries o"' fol- tion.

lows from the fact that they give rise to symmetries and Proposition 3.5. Consider the compatible pair of Ham-
Backlund transformations; precisely according to iltonian operators 0e - q, 2 , (q,*2 - iq,-2 H,,)q,;
Theorem 4.2 of Ref. 4: and define D, e ()O2 th teowgsr

If o')" is an extended symmetry of Eq. (3.31), then (2) (-th is a hereditary operator.

(i) a(,"' = o(,') I ., is a symmetry of Eq. (3.31), name- (it) -  ,'q- - I and " .-- (42 )'" -1 are ex-
ly, tended symmetries and extended gradients of conserved

Ia'I,-,) I ] K1'[I ; (3.37) quantities, respectively, for Eqs. (3.2), namely,

and (ii) the equation o,2' [K"] =(, 2 , ) [ol;"] , (3.45a)

,7' = a"'' (q,,q,) = 0 (3.38) ,' , [K"'] + (6 ,2K ' )d[y12 =0, (3.45b)
is a Bicklund transformation for (3.31) where, of course, (((I,)'"h*-,2)d = (I2 )'h 2 ) , h = h(x, - x,)

q, and q2 are now viewed as two different solutions of (3.45c)
(3.31). (iii) Equations (3.2) are bi-Hamiltonian systems,

since they can be written in the following two "extended"
Hamiltonian forms

5. (Bi-) Hamiltonian formalism and constants of
motion in Involution q,Y ;/" dx 2 6, 2  y' =f d.

Proposition 3.4: (i) If we define
(3.46)

(iv) o') and y1" are symmetries and gradients ofthen ~~~ KO(-A t ,,-) is a Hamiltonian operator for all
then , + 2OT conserved quantities for Eq. (3.2), namely,
constants K, namely, 0" [K, K (["I) (3.47a)

(a) e,2 = - e 2 , (3.40a) I [I IK 101T"'I =0

(b) 0, 2 satisfy the Jacobi identity w.r.t. ihe bracket ' K + K 0, (3.47b)

{a 1 b2, 2 C t21} - (a ,2 , 2, t , 2b , c ,2) . (3 .40 b ) rl"' = T = , -( 3.4 7c )

where * denotes the operation ofadjoint w.r.t. the bilin-
(it) The adjoint (Fy of the recursion operator, given ear form (fg) -- ,dxfg.

by (v) The corresponding conserved quantities I,,,, relat-

(F1 =ql' - iHq- , (3.41) ed to yj'' and T)'," via equations
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y , = grad,2  I_, I-, [ l, I (grad, l ( 3 .48a (1) , [q,.(x, + x.) + [) .(q,. (x, + l.))I

Y'1' = grad 1,,,, ffI [f -(grad I,,). (3.48b) -iq 12 [ff,,,(x1  4-x.) , 3-57a)

are constants of motion of Eqs. (3.2). ( 2 -
(vi) These constahts of motion are in involution with (2) [H1 ,.(x i + x,) ]I, -- dyJF(yx, - x)

respect to the Poisson brackets (3.57b)

{4,J,,, } *(6, -''.) , e,"= and/or O ' I, ./4 A,,x ' l"x, x.,x, X,) ( 3.5 7c)
(3.49 ) (3 ) 4 1 1t //t 1 (X I - X2) 1 0 ;, K ' ; 1 = o , V s, I: .

namely, ( 3.57d)
{I,I,, } = 0. (3.50) These follow from the definitions (3.3) and from equation

(vii) The equations K ' " (qq) =0 are lim )(' I a ' ' "
Bcklund transformations (BT) for the BO class (3.2), -0 = 0

interpreting q, and q2 as to different solutions of (3.2). (3 .5 7 e)
Remark 3.4. (i) The first extended symmetries of the (see Appendix C). Equation (3.56) follows from (3.55)

BO class are given by using Theorem 4.1 of Ref. 4.

(o)= q,- - I =q - q2  (3.51a) Remark 3.4: As for the KP case,' time-dependent

o,," -1,I"q,2 I symmetries of the BO hierarchy should be generated via

i(q, + q2 , ) + Hq - Hq mastersymmetries r 7" of degree r> 1. In this case, an
= , . q,, -2q, equation analogous to (3.55) should follow from a suit-

+ (q, + q2)(q, - q2) able generalization of Eq. (3.57a) obtained replacing

- i(q, - q 2 ) (H,q, - H 2q2 ) , (3.5 1b) (XI + X2 ) by (x, + X2  r > 1.

then their projections are the first symmetries of the BO E. Connection with the complex Burgers hierarchy
class It is well known that ifq(x,t) is analytic in the upper x

i
0 0, o'1' = 2iq, , (3.52) plane, then the BO equation (1.30) reduces to the (com-

and equations plex) Burgers equation

o0, "= 0, a(",) =0, (3.53) q, = 2qq + iq_ , (3.58)

since
are the first two BT's of the class. We remark that the BT's
generated by (P,, are polynomial in q,, q2, unlike the pre- Hf = i ;f1 ±)' (3.59)
viously known examples."' wheref' '(x) andf' - W(x) are holomorphic in the up-

pcr and lower half x plane, respectively. The same result
D. Connection with the mastersymmetries theory obviously holds for the whole hierarchy.

The mastersymmetry approach was introduced by Proposition 3. 7. If q(x,t) is holomorphic in the upper
Fuchssteinerandoneoftheauthors (A.S.F.)' 5 asanalter- x plane, then the BO hierarchy (3.2) reduces to the fol-
native way of generating symmetries of the BO equation. lowing complex Burgers hierarchy (investigated in Ref.
This approach was subsequently applied to (2 + )-di- 20):
mensional systems like KP,' ' I + I systems like KdV, "2."I
and finite-dimensional systems like the Calogero-Moser q,= b, (i a + d q ( l- 'q., n> 1, (3.60a)
problem. "-

In this section we briefly show that the existence of a b, -2"i13, d '. I dx. (3.60b)
hereditary operator 4,2 allows a simple and elegant char-
acterization of the BO mastersymmetries (analogous and Proof" The proof is straightforward and relies on the
more detailed results for KP were reported in Ref. 5). fact that each gradient y(," is a holomorphic function in

Proposition 3.6: (i) If the upper x, and x 2 planes; hence Eq. (3.59) implies that

K 21 'D 7q,-2  1 (3.54a) t*2 y, ' = (q, - iHl2 q,- )y','
q,' -- (X + X ) ",(3.54b)then = ( q. [ + q, )y' = 2(q, + i 2,)y"'

1 ' ,Then
.512K r, =4inK 1 (3.55)

I .r,2 ' , are mastersymmetries ofde- q,, =/3 dx 2 6, 2 q,- (, )"I

gree I of the BO class, since Jn

[KIf '-.' 1 ] =4inK 7+,'-' (3.56) =2i/, d., f dx1z 2 OD) 1

Proof" The derivation of Eq. (3.55), presented in Ap-
pendix C, is based on the following important properties: = 2" ' 3.,, (q, + i d, )"
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=b, , (q, e i d , " 'q, i.h : i h LI '( 3

=b d,.(q, +iO,,) 'd.jq, (adq, - ,a, ) (a,.,.) c,= - c,.a h, ,
(A3b)

b, (i d, +d, q, d )" q," (a, b1, -ib a,.)c,1= (a,;,b1,) c, + + c,-a,-b,.
(A3c)
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APPENDIX A '12, [(),1 I (I2 (DI + D)

In this appendix we use the notion of directional de- (K"' 2 1,)d [a 1 = , 2 H12

rivative and extended bilinear form introduced in (1.24) and
and (1.22), (1.32), respectively, to prove some of the re-
sults presented in this paper. In order to give a self-con- 12

tained presentation, we first present some results con- If(K',.,) - (D, + D2 )-
tained in Appendix C of Ref. 4. - 1I + (P f

The directional derivative of the basic operators q, 2

1.13b), (1.23), (1.33), is ((a 3, + q12 )H,,) g, 2

q,.[ f, ]g,2 =f, g,2 , (Al) - ((a 3, + q,- )g, 2) H, + (a 3 + q,1 )gl H,2 ,

where the integral operatorsf, , defined by having introduced g, 4' (D, + D2) _'A2 and used
11,(D, + D,) = (D, + D.) -'H,,. Using (A3a) we

f 9- 2  dxJA3, (A2) obtain g, qtJ, - H 12q,12g, 2 - q, 2 gH,,, which is
zero, for (A3b) .

enjoy the following algebraic properties: (2) (D,2 is a hereditary operator. Indeed

(Pid12, 1'f]2 1912 - DI2(PI2, [ fl2]gl2 - (sym. w-r-t, f12'-912t)

=((a d, + q12- ) (D, + D,)-f -(D, + D,)-_'g12 - (a (9y + q12- ) (D, + D,) -'f,- (D, + D2)-_'g,2 -(sym..

#=((DI + D) -g, )- (a 3 , + q,- ) (D, + L) - fi, - ((D, + D ) -'J2 )- (a 3 + q, ) (D, + D ) -'g12

(a d. + q, )(DI + D 2)-'(fl- (D, + D,) g2 - g,-(D, + D,)-f )=0,

using integration by parts, For the BO class the following is true.

CD(4) D1', is a strong symmetry of q,-h,,.(D, + D2) -  f, 2 (DI + D2))-g 92 + h,2 = ht(.X - x,). Indeed, using (3.43a), we have= ( D + D - f , _ Y 1 (D , + D 2) - g lZ - D
x (((D, + D) 71-g,2 - g 1- (D, + D L)-'f2) Y/'(0,2,q,, h - (q, 2 h,2 ) /f2 - t( q,2 h,) -H, 2 ,

and Eq. (A3b). + (q,' - iq, H, 2 )f,-h,2

(3) [^' 2 HW, , 'o (2)]d (ql 2f, 2  -q, H,2 f,)-h,.
" 12 12 1 2 0 

- -q' l2- iq1

= 2 - 22 )-H Using Eqs. (A3a) and property (3.17a) [see Appen-
.(- H -(a d, + q. ) dix B (5)] we obtain

+ H (a d, + q,- )H,) (J, q,- h, + q,'f,2 h,, + h, 2 q, 2f, 2)

--K 2H H "2) , +i((H, 2 f, 2)-q 2 h,2 -q, 2 (H,,f,2 )-h,

for (A3a) and (A3b)- - , q2 2 l f, 2).
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and the two expressions in parentheses are zero using and ( 1.3 ) I hcir irmmediate imrplications arc Eqs.
(A3c) and (A3b -. respectively. (3.17c), (3.40a), and (3.41).

(5) (i2 is a hereditary operator. Using (3.24a) we (7) O , ' =q,2 and Oe" are Hamiltonian operators.
have that [hey are skew symmetric, since

i2, [I2 A 2 ]g 2 - t2 I2a [1> 12 , - iq?- H1,)q )* = (q1 t - )

- (sym. w.r.t. A 2*-g12 ) = - q12 (q,' - iH, 2 q,2

-=(qu2fA 2 - qH12 jf 2 )g,1"- 0 12" (being q3 q, 2 = q1 2 q);

- i(q.1 fA2 - iq, 2 .2 H 2 g 2  They satisfy the Jacobi identity (3.40b), for instance
- q,' ( f *g, 2 - if1- 2 n, 2 ) (l,,e"; [01b,, ]c,2 )

+ iq,2 n,2( f1 ~g,2 - if 12H,2 g, 2) = (a, 2,q,;d [q,2 b, 2 ic12) + cycl. perm. s

- (sym. w.r.t, fA2.g1U) .= (a,,,( q,- bf 2 ) -cf 2) + cyci. perm. s.
Using (A3c) and (A3b) we obtain

q2 jH,2fl2 + (H, A 2 ) Using (A3a) and (A3d) we obtainq ,- (H 2[g-9 n z12 + H 12 g12)-f b -212
+ g1f22 - (H1 2 gi 2) -H12 A 2 ) a12, - c1; q, b12 + b 12 q2 c12 - q12 b 12 c, 2)

which is zero for any a, 2, b, 2, C12, for Eq. (A3b).
which is zero for Eq. (3.17b). (8) The derivation of Eqs. (3.36) is the same as for

(6) qt2° = +q the corresponding ones of the KP hier'rchy (see Appen-

These are direct consequences of the definitions (1.32) dix C of Ref. 4) and makes extensive use of the equations

(672) IA 2 = (6 , ( -l)'A,)f 1 2 , (AS)
(6, 2 K ,TfA 2 I = (6, 2q, 'l)d[F12] = (q,6,2)d[A 2 1 =f6,I 2 = 6,f, 2 =0,

(6, 2K (12")d I/21= (0, 2q,-26 2 ) df, 2 1 - 2i(q,612 )d[f. 2 ]

= 112, [ A 2 Jq1 612 + 0q,1 2 , [A 2 16,2 - 2iq,2 f,2 1612

= ( f - f 12 )H2) q 512 +1>12 f12 512 - 2if 12
=f1+ q,- 612 - if,- H12q,- 612 - (D1261 2 + 2i( )-2 = 2i( d,, + d )f 2

since
f,+ q,- 6,2 = q-f+ 62 - V qf 2 = 2( q, - ql, )f 2  0,

f - H12q, 612 =fA2 12H, 2(q, - q 2 ) = f,2 612(HIqI - H 2q2 ) = 0,

(6 1:-f,2 = (a +a ,AV2,
(6,'2K,)d[] = (- 2 q 6, 2 )d[A 2 1 - 4i(O212q-6:2 )dI121 - 4(q,-6 2 )d[/,2]

-WA 2 , [/f2 ]4i 2 q, 612 + q,2 0,2, [/12 2,6 + )d q,I [A 16,2

- 4i02 [fA2 ]q.-, 2 -- 4i(, 2q1 4 [A 6:, - 4q [f 2 1]32
= (f,' -i f, H, 2)'bI2q_6 612 + 412( fl - if H,2)q,- 6,2 ± "Df,,12 6,2

- 4i( f - if,- H1 2)q,- 6 - 4i012 f 12 - 4/2 6 2

= 4i(HI2(0, + d,,)2 + (d,. + 0 , )(q, + q 2 ) + i(HI q, -H 2q 2 ) - i(q, - q2 )Hi 2 ( d, +a, )67

since, for instance,

/1b 2 q,-21 2 =fll (6. 2 K ) + 2iW2 K ° =,0 (K Kl') 2 )

=A 2 (2i(q,., + q 2 ,) - 2i(q,., + q 2 ,)) = 0,

,-H.2(612 K ( )U + 2i652 K ,2 ) =f, (6. 2H,2 K I,2  + 2i6:2H, 2K T ),

-f. 2 (H 2K ,i - HIK :,) - 2i[(a., (AH 32 + (,, (/ 2H,3K ))

= 2i((Htq,.,'- H 2q2 , ) - (H, q., - H2 q2, ))fl2 = 0;
f 1- 61 2 + lfI1

f q 6 2  = qt/,ft t -6' + q, 2 = (q, (a, 0 ,) - )q,;)f 2  - (q,, +q )f,2 .

f Ht2q,2612 =/f ,'6:, (Hq, - H2q2) = - ( f,(f3,(H 3q3 - Hq 2) ),.. - (., 32(H,qt - HAq) ), ..

= - H 2 q2 " + Hq,

615 J. Math. Phys., Vol. 29, No. 3, March 1988 A. S. Fokas and P. M. Santin, 615



APPENDIX B (H,(x, + x:)- - (x1 x,) tiJI '

In this appendix we prove some of the properties of = Il,! f dxd (x, ± x,)6 J. - 61,J,,(x, + x.) ]

the extended Hilbert transform presented in Proposition
3.2. -jdx[ (x, + x')tf ,b"j-1

(l) &r dx61,Ht, g12 = Higll, -I l il,/ , x r

since i/ (( -1) (s(d',, J 2 . ,

+ (x, ±.,)(J'J.2 ),
fdxzt 6 T' fdy[y-(x+ x,) 'G(y-x,-x,) -s(,, If,j, - (x, +x 2 )(",fj 3 ).f. 

( )s H, , -

"- I  dy 2)-(,
0  - ( - l2x)lt ' - .

+ (x, +x.)(H, 2 d'f,2 ) . ) +s(H, d'f,), ,

r-' f dy(y - x,) -G(2yO) = HigtI , + (x1 + x,)(HI, 1 .3f, 3 ).. ,

g(x1 ,x 2) *G(x, + x 2,x 1 - x 2 ) where we have used Eq. (3.16e); using now (3.16d) we ob-

(2) H,a(xj) = Ha(xj), j= 1,2, tain

since IH,2,(x1 + x 2 ) 1(( - I)(',f 2) .. -,

H,2 a(x,) and Eq. (3.57b) finally leads to Eq. (Cl).

S ((Y + x,-x2 Equation (3.57d) directly follows from Eq. (C1) when

-= I- J dyly - (x + X2 ) -( + 22 f"= K ,, since Eq. (3.57e) holds.

7 dy(y-x,)a(y) 
(b) Derivation of Eq. (3.55):

rr- d~y xt-Iay)=Ha~ )[.5,2K 2 ,T," 1]d

APPENDIX C -> '( [,2 'q,26, 2 ,),2q,2 (x, + x 2 ) Id

In order to prove that Eq. (3.55) holds, we must first nq6tq"iderive Eqs. (3.57). 1 i( -- 2i)'()V, f,l bi2,q, 7- (x, + X2) Id

(a) Derivation of Eqs. (3.57) '.

'(vl 1 2 ,q,- (x, + x 2) ),2  + i4"K' " (72 2 'qI [H 2 ,(x +x 2)-]
=(q 2-(x +x ) 

4
fiz-i(q i + x 2 ) )-H, 2 f, 2 A2.

+ (ql+ - iql- H12 )f,; (x, + x 2) 2
(Xhaving used the fact that X2), is a strong symmetry ofq, h,,

- (ql+ f12 - iql;H12 A 2 )(x Eq. (3.57a) and Eq. (2.8) of Ref. 5. Equation (3.28) and
Then, using Eqs. (A3a), (A3c), and (A3b), we obtain equation [ 6,,,(x, +x2)], =26,., 6., 1 ifl= I and0if

"Z ('P12,q t (XI + X2 ) )fI 
* 1, then yield

iqi ((H,2 f, 2)x + x ) - H 2 flj (XI +x 2 ) 4inK ' .. +
2 + X21221

iq,2(H,2 (x, +x 2 )- - (xI +x 2 )-H 2 )fV 2 , + i n) -

which is Eq. (3.57a) 1o, 0 , o
Equation (3.57b) is a straightforward generalization x [H,2,(x, + x,)(61+K ' ) 4inKI),,",

of equation for Eq. (3.57d)
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A. Recursion Operator for the Toda Lattice

The equations of motion for the Iamiltonian System of the Toda lattice with Hlamiltonian

H = {p 12 + (1)+I .r

ai'C:

., p p, = e' - "  e -Z, -X (2)

and the shift operator of the Lax pair acting on the vector

is given by (Takhtadzhan and Fadeev (1979))

Ln(A),=, (4)

where

After introducing

(4) vields the following second order difference equation for v,:

A, - n+l + + t'- (7)

Define now
a. - e " -"  , b_ = -pN (S)

then (7) is written as:
(L,,V,l+l + bnVn + v,,_1  AV,, (9)

The tillue ,vollitioi of the auxillia-v v.ctor On,, is expressed iI terills of u,,'s is

vnt = (Anl,.+l - 13,,1)a, (10)

and the compatibility of (9), (10) gives:

[a,,., + Aa,(A,+, - A,) - (ln(b,,+i A,1+, - bA.) - 3,,(,,. I3,,+] - , [],, )j ,,,,+I



+ [b,,, + A(a,,,B,,- a,,-B,,_,) + b,,(a,,-, B,-,- anB,,,)+ a,, ,A,,_ ,- a,A,+1 V," = 0 (11)

hence both coefficients of v, and vn+ should vanish i.e.

a,,, + Aa,,(A,+, - An) - a,,(bn+,A,n+1 - bnA,n) - an(an+iB,n+1 - an,1 B,n, 1 ) = 0 (12)

and
b,,, + A(aB, - a,lB,n_1) + b,(a,_IB,_I - a,B,,) + an.-_A, - - aA,+I = 0 (13)

One may postulate
N I

An _ - A(J 'A B 1 ,) (1)
J=0 1=0

So after substitution of (15) into (12), (13) and equating coefficients of A', one obtains the following
equations: e (An + - A ) = 0 ,a ,B('v) - a ,,_iI3 = 0 (15)

unIt = a,(b,+i (" - b, 1
0 )) + a~(a,,+iBT,+(I) -ai ,( )) (16)

B() B ) -(a)+ aA a ) (17)

b,,, = bj(anB ° n n-, 11.-) A (no+ I a nl- -I

4,A(2-1) A0-1)) = a,(bn (j) I - bn.,A ( ) ) + a,,(a,+l-,+) - a,,_ i 1 ) (1s)
"n+l nn +n

aB(J-') a -B(3-1) = b,%(anB(') - a,,_ B (J))  + (J)l a,'_ (19
at n  - n-I~~ nn-) 

"3"
a n+l Ia- -

forj= 1...,n.

Uponi introducing the operators A, A (cf. Soliani et a]., (1983))

"li n  17+I - I,

i, - ti (20)

one may write (17), (18) in matrix form

[,t = [ a,,(L. -A+)a,, a, bj [B

Lb,,:J L~ -(0)

:3



B (0)
J1 (21)

and (1S), (19) expressed as:

L A -1  = (22)

where
f 0 °a, 1

Note that this operator was present by Soliani et al., (19S3). The recursion relation tales the furin

[~:n n ~ tf (21)

From (25) one obtains recursively:

13(o) B(N)1K ] qN 71V) (25)

and since a solution of (1.5) is
A (N) = C , Bp N) =0 (26)

where c is an arbitrary constant, the hierarchy of the Toda lattice is given by:

a,,,] [ k ]N(2 7)
bn,t

The first sYstem of equations (N = 0 , c = -1)

[1'.t 1, [- i bn a, [ (b,, - , b+ 1)1  (2 S)+a, (2n-SOI,.,, J a. aJ = antla, 0  J

is equivil,'Lt to (2), using (S). The second system (N = 1) is:

I .t I r (29)

bn4



and, after noting that

(A- U) U,~31
)71

(29) becomes:

= -t a,(a,+x - 2an + an..I) - a,,(b+- V~) ](3)r n 1 r b(an-1 - (In) - an( bn+1 - 1b,,) + n ',n

B. Landau-Lifshitz Equationi

The Landau-Lifshitz equation (LL) is given by

S, S X Sx + S X is (1)

where J is the diagonial mnatrix
J= diag (J1 , J2 , J3 ) (2)

and S is thc classical unit spin S = (SI, S2, S3), i.e.,

S S= 1. (3)

It is, well known that (1) is conipletely integrable and Sklya nin (1N9 anIthl rsne t
Lax-pair. Since the LL equation is the continuum limit of the equiation of not ion of the quiantumn
non-isotropic Hleisenbe)rg Hamiltonian (the so-called XYZ), it is not surJprismlg that the Lax pair
is expressed in terms of Jacobi elliptic functions. The algebraic structure of ( 1) was studhied In
de-tail by Date, .1iinbo, Nasiwara and Milwa (1933) who derivcd its quasi-period ic solutions as well.
Furthermore. Friclissteizier (1934) studied its master-symmectries.

Consider the equation for the auxilliary vector i,, given by

= -7, 1,1, -ILy

while L may be viewed as the sift operator associated with the Lax p~air. T1'lic operators (7 are the
Pauli spinl operators given by



and the Jacobi elliptic functions IVj are given I)y SkIyanin as:

1

sn(u, k)

W2  P dn(u, k) (6)

V3 = pcn(u, k)
n(it, k)

with the modulus k given by

J3 J, 0<k<1 (7)

and the arbitrary normalization parameter p as well as the parameters or, 0 are defined by

w- =2 1
I'(J 2 J_ 1 = _ j (Sa )

I2I, , 2 = (S( ) -sb)

Porially, one may express the time evolution of the auxilliary vector 0 as

V,, =-v (90)

and the structure of the operator L suggests that V has similar form, i.e. one may postulate

'1 - -i { V T1Ai V' ( 10)

with the compatibility condition
L- - i[L. 1 0 ii)

tilat takcs the form

3 3 [3 13
IV - I 1jV.o, - ': SJII V3 . I l ; 0 (12)

.=1 J=l 3= =

Equating coefficients of o forj = 1,2,3, one obtains

21 "2TV3 ,
S1,, = 1-V2-( S3 V2 - S2 Y3 ) + Vx (13)

6



as well as other cyclic permutations.
It is convenient to introduce the parametrization

A 14/J W2 W 3, 11 M I1/.I (14)1

with the immediate identity
1

A2 = -i(O' + a)(i, + ) (15)
4

where a, 3 have been defined by (8a), (Sb). Thus, (13) and its cyclic permutations take the form

S __ = (p + 3) (S3V2 - S2 V3 ) + V1,1  (16a)
A

S2 , = + ' (Sv3  VS ) + v2. (1Gb)

S (i' + 0)(it + a)(S2 - S),V2 ) + V (ICc)

One may formally represent the operators VI by the finite expansions

V I ( G + i3) nr l- - (1) 7L T1(J

At / 1 0'a 1  + ~L 1 b a)
j=O j=0

j=O =O

V3 = 1:+,( + ,n-1.0)"+ Eit-,@' (17c)
A, j O ) O

In other words, determination of the operators ai) M ' ) is equivalent to a (lct 'rnf IIat iol of V.
Upon substitution of (17) in (16a) one obtains

0't +,) it .- j.0) + 1:i I I ,oj)
SI., A I: , - - ,.

j=O J=,:

M/, + -) [ 01(i + a)(/' + 3) 0) +uP + . A

7



-S3 u"-j'a2~ + 1i an-bTIiS
j=O J=O

I hla I ]l IV s,, "' + a) -j( -,.l--o ':1+sb" + ,-J b,.,,"
SAtj - S2b~') + S31A(~ + i

j=O 
2=O

n' n

-4(p, + 3)- 2 E l-'i' + 4n Z -, (0i)
J=O j=O

or

Si,- ' ja,- S2b'1 + S3b1-,) + E -

j=O 
2=O3

n-I

-4 E j-'[S2a
j+ '' - q3a&+')  (20)

J=----(

Similarly, the other two equations are given by

(, + n - n -)F, -j j)/ S abj + ,b j

= ~ ~ , (a 2o(,. - S3b' + 3~~' Li'1~ + 4Or S3 It1
. =\ J=O 2,t 2,z

nt-l

n' -

-4 ' 7-,(S~a~ + ' - sa '+ '))  (20b)

(11 + 0)(, + C,) n7-j, o .s b' +
E': P t3,x 2- +)~
j=O

+ n-I

+ .,-(0. - 1cSa ) + 4/S2a(
j)) - 4 E q - .%,,j2 +1 ) (20c)

2=0 3j=-I

Equating coefficients of /Ij and ,\-il independently one obtains

S x a(°) 0 (21)

S x = -a' ;j=0,1,.,n (22)

. . . . . .. . 0 , 1 ' ( 2 2 1 
• m



Sa~j') - (J - (AS) x a0)j 0,1,. (23)

St= W)- 4(AS) x a((24

where A is diagonal matrix given byv

A= diag (a, , 0) (25)

First, one solves (22) for 0)~
b -S x a~' + giS (26)

wlicrc y1 is a scalar function of x to be determined lby requiring the solvability condition for (23):

{bJ) - (4AS) x a(j)} (27)

This condition gives: 9 ' ~ ( ,A ) x ai

gi, = {1 fS.. x a~j) + (4 AS) x a(-? S) (29)

where a-' indicates antiderivative with respect to x.

b()= -S x a~j + [(4.45) x a(J) - S1 S

+ [1({S-, x a~') + (4.45) x a(;)} -s)] s, (30)

N~mw (23) yieldls:

-OI I S x fW)- (.1.4) x a()+ fj+,S (:31)

hrethe scala r .fj+l is to be dectermined by the requireniviit

a0+0. S= 0(:32)

for (22) to be solvable for bW-'. Using (31), (32) yields

fj+*Z = z x5 f {br) - (.lAS) x a(')} S (33)

9



i.e.

fj+ = 0- (S, x f{b(J) - (4,4S) x a(')} S) (341)

(S x fb) - (4.AS) x a )

+ {b ) - (4AS) x aW} S) S (35)

44

Finally, introducing the operators:

0-'a s x a + [-'(s, x a s)] S (:36)

and a {-S x a. - (4AS) x a + [(4AS) x a S] S
4

+ [0' ({S. x ar + (4AS) x a) S)]S } (:37)

we can write (35) and (24) as:

a(j-+ 1) = =-aO ) - kFa O )  (3S)

and

St = 4Qa (n )  (39)

Next, one has to deal with the "starting points" of the recursion, a (° ) , b(° ). It is best illustrated

by an explicit derivation of the hierarchy (39) for n = 1:
From (21), solving for a (° ) , one obtains:

0 [S (40)

It turns out that F, is a constant in order to be able to solve (22) for b('):

b ( ) = -F S x Sr+,GS (41)

where G0 is a new constant in order that (23) be solvable for a('):

I

a0 )  fS + I {Go(S x S.) + Fo [S,. - (S S..)SI)

10



+F. {(S - AS)S - AS} (42)

Since a( ) has to be normal to S,

- Fo { -(S,. S..) - S.. AS)} = 0 (43)

Since S is a unit vector, i.e. S • S = 1, one has:

S. S,- = -S. s (4)

and 3
S. s x = 3.(s s ,) ((1.5)

so (43) yields:

f= F, + 8F [(S-. - 4AS) S] (46)

where F1 is a constant. Hence

and 
a
= F + 8F, [(S. - 4AS).- SI S

+ I {(S, - 4AS).- S, + (S - 4AS • S} S

+ (, S x S, + I I. -s . F -(s. s-sS - AS s(4s)

4 4

+F {(S - AS)S + (S - -ASJ (48)

Then, solving (22) for 0), one gets

P) = yS - S x a .' .4)

11



Where 91 has to satisfy the equation (cf. (28))

I,. = #Go [Si Sxi + 4AS. S,]- [S. x (4AS.) S

+S, x (4AS) S - S. x Si,,,S. 5] (50)

i.e.

,= o [Sr. S., + 4AS S]

+.F o [Sx x (S,., - 4AS) (.1)

and because of (45):

II
9, G, - -Go [(S,, - 4AS) S1 + F [S. x (S,- 14AS) S] (52)

8 4

One may set it = in equation (24). The resulting evolution equation contains the arbitrarv
constants Cl, Fl, Go, Fo. By letting all but one vanish, one obtains the hierarchy of evolution
equations as:

(i) St = s5 (.53)

(ii) S,=S xS,-- +(4AS) xS

wvinth is the samne as
St= S x S", +S x JS 

(54)

because of (Sa,b) and (25).

- 3
(iii) S, = S".. + 3 [(S," S.) - JS. S + J3]S, + 3(S,. Si,)S (.55)

TI is equation wits obtai ncd by Date, Jimbo, IKaslil wara and Milwa (1983)

(iv) S, =S x SZZII+S ×S - - S,, S -SS xS

+ [3(S,. S,.,.) - S,. IS]S x S, - [S, X (S", + .IS)- S] S.

12



1S+ I 3(S.- S, ) + (S.- JS)] (JS) x S

- [S. x (S** + JS). S]. S + (S x JS,). + S.. x (JS).

Detailed account of this work, in particular the bi-Ilamiltonian formulation and the connectioil
with the master-symmetry approach, will be published elsewhere.
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1 Introduction
The LL equation describes nonlinear spin waves in an anisotropic ferroniagnet. It is gi1venl by

Sj =S A Sr+ S AJS(l)

%%here

J = diag( 1 , J2,Jh), S =(SI, S2, SA) IS12 = S - S 1. I1i

InI the above the diagonal mnatrix J is a measure of the anisotropy, J, < J2 < J3, S Is aII
x- and t-(lependent vector of unit normi in R , and o, A denote the usuial scalar and vector
products.

The partially anisotropic IIMI and the HIM equations correspond to J, = 12 < J3, and
J,= J2 = J3 respectively. It was pointed out in (1] that t~e LL is the iiotst general mnagnet

model admitting an r-inatrix formulation. Furthermore, 1)0th the SG and NLS eq nationls are
limiting cases of the LL equation. The analysis of the LL is technically more complicated than
that of JIM, SG and NLS. This is because the isospectral linear eigenvalue problem associated
with LL involves elliptic functions [2]:

U1 (X, t, A) = - * (>S 3 (X, t)IV 1(A)a%) U(x, t, A) --' ILO, 1 .2a)

%%here the Pauli spin matrices are given by

ad

IV, (A) p I IV2(A\) p (In (A, k) ,r I A cnz(A, k) 1.3a)
sn(A, k)' n(,k' '-s(Ak)

wVith1

[in the isospectral probilems associated with the HMN, SG and NLS equationks the spectral
pVtrametor A ran-es over the comnplex plane C, however the naturial range oJf A inI ( 1.2) is ant
Celliptic cuirye: The torus E =C/i' where F is the lattice generated by 4hIC and 4li C. where A'
and A" are the complete elliptic integrals of mnodutli k and k' = -

The Lax pair of the LL was found by Sklyanin [2) (see also [3]), who also obtained the
actioit-angle-s variables (for rapidly ap~proaching a fixed unit vector boundary conditions) by
introducing the notion of the classical r-rnatrix. The initial value problem for similar data was
studied by NMikhailov [41 (see also [5]) using a Rietnann-hlilbert problenm onl an ehiiptic curve. A
general (descripitionL of finlite-gap) solutions was givenl inl [61 antd explicit forinulae were obtained
in [7] and [8] in terms of Prvmn thieta fuict ionls.



Algebraic properties of the LL were studied in [7] where also the necxt mnember of its lli-
erarchv was explici tly given. Fuclissteiner [9] presented hicra rchies of t inie-inmdoeundonit svzn-
ilietries, tiiiie-(Iepenideiit syllniict nts and conserved quantities usinig the notion of a mnts ter-
SVmnIuc~tr 'v introdu mced iii [10]. H owever, the recu rsion operator couldl not be fomid ;m ni ce

its hi-I lain iitonian form ulation could not be established. Tis is a serious d isad va ii; ge s mcc

the bi-Ilamiltomian property app)ears to be a funidanmental l-oper'ty 1mm e1icr lyig itegnImj lJ

[il-I 5]. indeed, tie i-i ai itomiianm formiulation of N LS and] SC are wvell est at)! jled. Also thme
rectirsiomi operator and tile hierarchy of Hlamiltoniain operators associated with I tile HM NI IiCe
been found in [16] using time gauge equivalence of the JIM to tie IN S ([17], [I8]).

There exist various approaches in the literature for coinstructinmg recuirsion oeprators r 19]
We favor the one which uses the associated isospectral proliem. Indeed , this a pprJ~w] hmm 'I ;l.-o

been successful for obtaining recursion op~erators in lattices [20] and in nmuitidinmemisions '21 ].
:\ so, it has the adv~antage to yield hereditary recursion operators [22]. 111 §j2 we illuIstrat e our
imiethod0 by deriving time recursion operator of t he 11MN equnation; tiiis operator coi Iidciil( %m ilh

time oime given in [I16]. 111 §3 we derive the recursion op~erator of time LL eq nationi aond ista I ishI

Its bi-lfainiltoiiaii factorization [23].
Thme method of deriving the recursion, operator from an isospectral lproblcin mikcs cruc-Ial

use of a certain expansion in powers of the spectral parameter A. Time main difficulty' we
enmcounteredl in apl~pying this method to LL stemmed from the fact that A moves onl an elliptic
curve. This problem was bypassed by using the parametrization

21"l 1 3, It _111.3I )

2 (_ _ 1 1_ 110,~j + (01 + i3); a 4-(J1  h J), 3 -- 42-.1) 15

This paper is organized as follows. In § 1.1 we reviewv the basic notions of s 'yllme(_tries.

,gradients of conserved quanmtities, recursion operators and Hiamiltonian operators. InI § 1 .2 we
establish thle connection between these results and thos of Fuchssteiner [9] by showinig how the
rec ursion operator derived in this paper algorithimically implies tire miastersvminet rv found
in [9]. 1In §2. §3 we derive thle factorizable recursion operators of the 11MN and LL qupations
rvse' c t ivel..

1.1 Basic Notions

We considier the evolution equation (1.1) in the abstract form

S,= AK(S) ( (

Let -,: dciiote time vector space of C ~ - mmaps from R into R3  n e Bdioetlesaeo

.Ilitalfe C -ec torfields onl P. Time ma ni fold oi which thle flow (1.6) takes place is dentoted
by NI. anmmd thle " pace' of its Smoothi vector fields by T.i . Clearl ,v M NIS is SIlbSjpaCe of E s uclI

hamt ScE satisfies S o S = 1. Similarly TNM is a sub~space' of TB, Such thamt '( S p 'i L' satisfies
V'(S) o S = 0, i.e. I/( (x)) belongs to the tangent plane of the Unit sphere at S(X).

In TM! we defiuie thme usual Lie-bracket by

h , G]~ A"'5 -G G'[ It' . ( h



where K'f C] denotes the Freclikt derivative of K in the direction G, 1.0.

AK'[G] +Ka v(S + cG)K,=. (.h

Let T*1I be the dual of TM\ with respect to the bilinear foriii

(-t' ") j f dxj * (7: -y(T'If, (7(T.1..

Let I :Al - R be a functional; then its gradient, V 1, is dlefined b\

I'v _(V1, v), v'T.1I. (1,9)

It is well known that a function f is a gradient iff f ' = (f')+, where the adjoint L+ of anl
op~erator L is defined by ( L+-t a) = (-f, L,7). InI order to [make the gradient unique we consider
its projection onto the tanugent plane of tlie.unit sphere in R 3 aIt the pok~int S(r); i.e. e S =0.

The conserved quantities of the LL equiation take the form

I jdx (r(S) -r(e)), e -.(0, 0,1)+, (1.10)

where we have assunwod that S -e as xr ±cc As anl exampfle conlsider

II I dxr(I'0 (S) - ro(e)), -,) ( -( is5 - s, *s,,). (1.1 Ia)

t hen

II'[v]j dx(v e JS *Z) jdxv * (iS -4 S,,),

VII, = 7.(S,, + iS), -a --'-S A (S A a) = a - (a * S )S. jIb)

(i) The hierarchy of the LL equation consists of all flowvs which coiwiitc with (11:i.e. it
consists of all time-independent symmetries or. W\e recall thait (7 is aI snlil ictrl of(1)
Iff

0(7+[a.KL=, (-1

(ii) All equation ( 1.6) is a Ilainiltonian systelui iff it Canl be writtenl III tlle furuii1

S = II'11 1. 13,1)

where 0 is a Ila inil toil ianl operator, i.e. 0 is s kew-syinimetric withI resl:_c t to (1.S ) and]
it satisfies, also, the Jacobi identity:

VII. , '[712J1 3 ) + cyclic poriutatiouis =0. 71, ]".1/. 1 1.. 1. (1v))



and H! is a functional. The Hlaniltonian operator 0 induces the following Poisson bracket,

{It, 12} - (71 1,0712 ). (1.14)

(iii) A functional I is a conserved quantity of (1.6) if I'[K] =0, or- (cf. 1.13a).

qq= (VI, 071) = {I, I1} 0.

It turns out that it is more convenient to work with gradients of conserved quantities; these
conserved gradients satisfy

- +~y'IC]+ (A')+[-t] =0, -y 7 1. (.

For Hlamiltonian sy stems there is an isoinorphisin between the Li12 commutator (1.7a) and
the Poisson bracket (11), [ 10].[ 12]:

[0VJ11, ( V2]1L = ( 11{I, 12}). (1.16)

This isomorphism implies that, for a H amiltoniani systemn, symmetries and gradients of con-
served quantities are related by

(7 = 0 7 , a (El , 7 1 T'.1. (1.17)

It is well known that the UL equation is a Hanmiltonian system. Indleed, it can beC written
in the formi:

St = S A 7, (1.1,

where VHI, is defined by (1.11) and 0 = SA is a Hlamiltonian operator ( 0 is obviously skew-
syummnetric and it is a straightforward exercise to show that it sati~sfies the Jacobi identity).

Fundamental role in the characterization of the algebraic p~rop~erties of in~tegrahie evolution
equations is played by hereditary (Nijenhluis) recursion Operators.

if 4) is a hereditary (Nijenliuis) operator then

[VK, 'FAILr = 0, (((D+)nVI!, 11~"'I) == 0,1.9

and(l "'O are Ha miltonian operators coiupatible withI 0 for all un meN. (T1'wo HIail tonianm
opera tors are comnpatible if tlmei r stim is a H1amiil tonia n operator).
lIn j2.3 we derive hereditary recursion opera tors for II NI and UL equnat ions. Thliu (1)"' . (( ~~
4)"(S A .) dlefi ne hierarchies of comnmuting symmetries, conservokd grad hie us lin in vol umiorn and
H amiltonian operators resJpectively.

1.2 Mastersymme tries

T1he general theory associated with mastersymmuetries of evolution equations in one spatial
anmd one temp loral dimnension Ii well established [21], [2-1], [25]. He(re we only note that given a
1 umu-uepeidemit svmnmmetrjy a of the form

A __



0' Oro0 + ica1 , 1.2 0a)

and a recursionl op~era tar 1) t lien

r = 4 o(1.20/1))

is a mastersymmetry. Alternati velv, if

7f = -to + tyn (1.21a)

is a tinie-dependeuit conserved gradient, and 4' = 4+, thenz

T = (Tto1.2 1b)

is a iastersyrnrntry.
It turnis out that

7 = S A 4 'LL(XS), (1.22a)

whecre 4 'LL is the adjoint of the recursion operator of the LL (sce equation (3.1), is a inas-
tcrsymmetry of the LL equation. This coincides with the one given by Fuchissteiner If)

2 The Heisenberg Model (HM)

The II.N equation is givei by

St =S AS,,, S eS =1. (2.1)

Its associated isoispectral cigenvalue problem is given by

3
LJ1SO'A - (2.2)

w zere A is the spectral parameter and the Pauli matrices Oa1 are defined in (1.2b)).

Propositioni 2.1

(a) The isospectral eigenvaliue problem (2.2) yields the recursion operator (DIN defined by

'[S A D - {D-'(S A Sr .S,]j. 21

b) T Iie a Ijoi I It of (I/jj withi resjwc to, the hiihijieiir. funII ( 1.' )

= -(S Al D {D'(S e D)}S A S,) (2A1)
2

.Sa tIs fies

S A (T4' ,r) = 4)1/.%,(S A .(.)

6j



(c) The isospoctral problem (2.2) is associated with the hierarchy of integrable evolltioH
equations

, = S A q'IM(S A S.) = 47[(-S,), n = 1,2,3... (2.6)

The lINt equation corresponds to n = 2.

(d) The hierarchy S A ' it'M, n = 0, 1,2,.. . is a hierarchy of Iamiltonian operators. Il
particular the second lamiltonian operator of the JIM is given by Q/A - S A k¢l.1, Ihus the
IM is a bi-Ilamiltonian system with compatible Iamiltonian operators SA and ,t.w.

Proof. Given (2.2) we look for compatible flows in the form

Ut = -i 3 e . (2.7)

The compatibility condition Ut, = U.t of equations (2.2), (2.7) itl)lies

S= AV -2S A V, V = (, V2, 1'3). (2)

We seek solutions V in the form

V = En V())k. 2.9)

Then (2.S) yields

-S t  2. 0)

V( + ') = 2S A VW, j = I ... t - 1, 2.11)

S A V (n) = 0. 2.12)

Since VX(Ij e S = 0, we define vo1 ) as follows:

v -S A V, (2. 13)

i

v(J) a2.i S 0

Then, equations (2.10)-(2.12) are transformed into

S A S = -0 ),  (2.15)

v] + ')= -2[S A (S A (D - 1{S A v(:)}))], (2.16)

S A /)-'(S A v(n)) ='o. (2.17)



We solve equation (2.16) for v0) as follows:
Equation (2.16) is equivalent to

v + ' ) = 2D-' {S A V ) } - 2(S D -' (S A vO)})S.

lence

v -+l =2S A )- 2(S D-(S A vO'))S 7 - 2(S D-'I{SAvO))zS. (2.18)

Fromn equation (2.18), taking SA and So of both sides we obtain

S A v(' + ' ) = -90 ) - 2(S * D-' {S A vj)}))S A S. (2.19)

and

S . v,',) -, (s. D-'{S A

i.e.

2S * D-{S A v = -D-(S . v(J+')). (2.20)

Substituting in (2.19), we get

1D) (s A v(+) {D-l(S . v(')}S A S). (2.21)i vO = 2 _

i.e. (cf. (2.4))

v(O) = v(J+,).

So.

V ( 1
)  

= I n-l ( ),

and solving (2.15) and (2.17) we get

St = S A 'pn-I(S A S,). (2.22)

In the Appendix, we show that SA and 0I.1 are coml)patible lIlnliltouiialn op,;i tors thus.
stahlishing the bi-lIamiltonia structure of the lH.M.

Remarks 2.1.

(i) Equation (1.15) is derived by differentiating (-, K) = 0 in the a rbitra ry direction V, where
V * S = 0. Thus, one can extend the definition of a conserved gradient by allowing
functions y which are not of the form iry, provided that

S A(2- + '[Aj + (")+[z5]) = 0, (2.2:1)

mi8



([5,'- ( ')+]a,b) = 0, a, b orthogonal to S. (2.24)

Indeed the starting -t of the IIM hierarchy satisfies,

3

S As , 5'[A] + (A")+N[- = -- (S. 0 SAxS, (2.25)

- (-)+],-, b) = (S A a, b) = 0. (2.26)

(ii) 'I.Pt(S A S,) = S = V1 0 , where

110 d( 0(s) - F0(c)). o = 2 * 0 S,. (2.27)

(iii) "(') -S A S, - 2tS, is a conserved gradient of the 11M. Hence

r.O','n,,(xS A S,) = xS A VIIo + S A Sx (2.2,S)

is a mastersymmetry of II.M. This coincides with equation (12) of [9] if J = 0.

(iv) It is shown in the Appendix that the operator Qj~jlj S A 'PnI, satisfies the Jacol)i
identity. !j,, is equivalent to L( = .(D + D{SD-'(S • .)}), since S o a = 0. lowever,
in order to prove the Jacol)i identity for Q2 we have to take into account that (.a *
b = b 9 c = * a = 0 which are Fr6chet-derivative consequences of the equations
Sea= Sob =Sc=0.

3 The Landau-Lifshitz (LL) Equation.

Proposition 3.1.

(a) The isospectral eigenvalue prol)lem (1.2), yields the recursion operator T LL defined by:

L -"-p2 ((4AS)^ A.) - (D'{S. • -AS A (SA .)})S, - (D-'{S e(S A •})( a^SAS)

(3. la)
(b) The adjoint of 4LL with respect to the l)ilinear form 1.S) is

%P'L 2 1S•)

L + -S A ((i.-S)A. -()-{S-..1ASA )S.- (D{S .}).IASAS

(:3. 1b)
and satisfies

S A ('OLL.) - 4dLL(S A.) = QLL (3.1C)

l[9



(c) The associated hierarchy of integrable evolution equations is given by

S, = SA T l(nS AS,), n = 1,2,3,..., ar = constant (3.2a)

St = S A L L (0), n = 1,2,3, (3.2b)

The LL-equation corresponds to (3.2b), n=2. Note that in (3.21)) L)-'(0) is understood
;Is I constant.

(d) The hierarchy S A 47LL, n = 0, 1, 2, ... is a hierarchy of IlaniltoilIj it operators. lII
particular the second Hlamiltonian operator of the LL equation is given by ?S;.so - SA qJ L.
thus the LL is a bi-Ilainiltonian system with compatible N amiltonian operators SA ad
S2LL.

Proof . Given (1.2). we seek coimpatible flows in the form

,= - i 1 IV.,'> 1 } I. (:3.; )

The compatibility condition U,, = U-t of equations (1.2), (3.3) implies

L-,3 S 1,I,a E 3 3 1 S)=I ajIE3 t

j= , ).I ) I I - * = = I = 0. (1.-)

Equ tig iig coeffci ents of (7;. for j = 1.2, 3, one obtains

"21 I'91 '3
•-i't - (S 3V2 - S2 1 3 ) + 1",,, (:3.5)

iv,1

and cyclic permutations.
In terms of the parameters I. v (cf. (1..), (1.5)), we get

1,0- ( + (3)($31,2 - 5 2 1"3 ) + V,'. (3 .G,
L/

.5"2,,* ( + a) p ,$1 3 - :,
I (S1 3 - S3 Vi ) + V2 ,x, 3.Gb)

. ( + )(1+ a)(S2 1 - SV2) + V3, X (3.6c)

\WO seek ,.olitionis V,; j - 1.2.3. in the form

- + ') X rt3j (0) + n , (.) (3.7 a)

V* j3 0 I J j-Oi L

( + (+t= &"J"U + El-l .b (3.7b)
2 V ~ J=011 2L + O/ b2

(' + /3)(/1 + (0 , n-) 0) )
..)=u/t a3 + E "-Jb (3.7c)

Upon sthl1itttion, of (3.7) iii (3.6) i e o)btlidns

10



- /4/ + ;3) 0) -i/

S3 (/(5+a ois'-a + En Oin-] b~j)) (3. 8)

i'(,~ ± =O J3 (aVIj - S..b~-') + S3b ')) + j~ (~

3=i-!/ (.52a32I - 53(2( .(39

and similarly for the other two cq~uations.
Equating coefficienits of jL' and v- I P independently, one obtainls

S A a(0 ) = 0, (3. 10)

S A 0) a() (:3.11)

S A a0+ - b~) - (4AS) A a(J)} (3.12)
4 x

S,= b()- (4AS) A a).(:3.13)

Wec definle

q0- -S A {i.~l) -(4.4S) A aW}. :314

Thien (3.12) yields

1q0) a( -l (S * a(U+'))S. (3.15)

Sin1ce ar~'* S = 0 .(cf.3.1 I )

(i+I1) __1( D - D'(S .q(/))}5S). (3. 16)

ApplYing the op~erators ('1AS)A and D(SA)D on (3.16i) we obtain

(:1:15I) A tJl = (AS) A q(U) - {D-'(S o q,.J))(..S) A S, (3.17)

a III



+( b~' S+(*b~')S=-D{S A q~j) - [D)-'(S . qo)I]S A S,}, (3.IS,)

I)(cCdIlse of (3.1 1).
Taiking So of (3.18S), (3.12) a nd -(3.17) wve get

-(S o lb('") + (S o b~j'~)1 = S *D{S A qp)}. (.

S * (J' = S *(lA.-S) A a~+) (3.20)

a dS (lA S ) A a 0 +0' + + S * ( S ) A q ( .(3.21)

Therefore

S * 0 1 !D-1{ IS. [D{ S A qVJ)} + (-L-IS) A qW} (3.22)
4X

Fromn (3.14), (3.17), (3.18) and (3.22) we get, (cf. (2-1) also),

q = ph2j,q()+ ISA ((4AS) A q(J) - (D-'{S - 4AS A q(J)))5 - (D' {S q q })(44S) AS)

(:3.2:3)

lierfore, establishing (3.lb).

Remarks 3.1
(i) yfo = xS is a conserved gradient for the LL equation not however in T'I. It turns out

that

r =SA 4LL(XS)= x(SAS,,+SAJS) +SAS, (3.24)

is a mastcrsvnmetry of the LL equation.
(ii) In the isotropic limiit (A - diag(0, 0, 0)), 4 LL-
(iii) There exist several equivalent. forins of the recursion operator 4?LL and of the second

HIamiltonian op~erator QLL. One may verify the Jacobi identitY of these equivalent forms b.w
iiIng the approach of Remark 2.1 (iv).

Appendix
III this appIendhix, we prove thiat thle operator Q/1.1 giv-en hv Ihle formula

Q,%a= S A ('Ij1.a) = I-(a, - I{SD-'(S *a))(11
2

is a Hlamiltoniiain operator comipati ble with 0 = SA.
InI the following "=-" will denote equiality up to perfect derivatives.

Mi Q).11 is skew-s Vmllaitric:

Conisideri a, 1) in T.\!, then

12



2 (01IAfa) * b = a. * b - b a D{SD-'(S a a,)}

-a e b, + (b, a S)D-'(S * a,)

-a * b. - (S * a1 )D-'(S a b,)

= -a. b1 + (a e S.)D-'(S a b,)

= -2QIIAb * a,

therefore,

(OI/Afa, b) = -(a, QII~fib). (A.2)

(ii) OHM satisfies the Jacobi identity:

Consider a, b, c in T*M, then

4(Q'jj[/Mfi/b ea) • c =- {b, a c, - (S • c1 )(S * b,) - (S, a c,)D-'(S * b)}D-(S * a,)

-(b,, e a. - (S a a,)(S a b,) - (S, * a,)D-'(S * b)}D-'(S * c 1 ). (A.3)

Therefore, 4(fi 1 t[QII~jbja) a c+ (cyclic permutations of a, b, c) =

- {b, c, - (S 9 c,)(S * b,) - (S, e c,)D-'(S * b)}D-(S e a,)

+{-b, * a, + (S * a,)(S • b,) + (S, * a)D-'(S b,)}D-(S e c,.)

+{c e a, - (S * a,)(S a c,) - (S, e a,)D-'(S a cr)}D-'(S * 1))

+{-c, b, + (S a b,)(S o c,) + (S, o b,)D-(S o c)}D1 (S o a,)

+ b. - (S * b,)(S e a,) - (S, * b,)D-'(S * a)}D-(S o c,)

+ -ae + (S * c,)(S o a,) + (S., c)D-'(S # a,)}D-(S b,) M0 (A-.4)

(iii) The Iamiltonian operators SHM and 0 are compatible i.e. their sum is a lamiltonian
operator.

Since Q fZ and 0 are Ilamiltonian operators, it is sufficient to prove tiat

({Q'j1 1 ,[Ob]a+(-~! ln ]aa, c) + c'cli,: ,t'i lutatimis = 0. ..l.J

lOr ill a, b, c in "I'M.
Indeed

-2 (fl'lrkf[Obla+O'[Qlfbla)oc = (SAbec)(Soa,)+f(SAb)oc](S.a 1 )+(ceS,)D-'(SAbea,)

-b, A a * c + (S A a * c)S 1),

z 3



-[(S A b)- * cID)'(S o a,) - (S A b * c.,)D-1 (S @ a,)+ [(S A b), o c]D-'(S o I,)

*D( oc,)(S A bo*a,) - (b, A a.c) - [(S A a). c]D-'(S oh1 ) - (S A a. c,)]D'(S * 1).

-(S A b o c,)D-'(S o a,) + (S A b o a,)D-'(S o c,) - (b., A a oc)

-(S A a, o c)D-'(S o lb1 ) - S A a.o cD-'(S o b,).(.W

So

2(f2',,t,[Oh)Ia +O'[Qbja)o.c ± cyclic lpcrmuitaticlns of a, b, c=

-b, 1 Aac±(SAbec)D (Sea.,)-(SAbea,)D-'(Sec,)±(SAa_,ec)D-1(Seb,)±(SAaec,)D- 1(Sob,)

+a 1 Acob+( SA.I- jD-'(Sec,)-(SAaec,)D-'(Seb,)+( SAc 1 .b )D-'(Sea 1 )+(SAc. b,) 1Y(So.1 )

= (1 A a.c)1 -= 0
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Abstract

A new idea is introduced requiring that each development path will be the path

of least resistance to developer penetration. Consequently, minimum dissolition time

is required for the development of the final line profile. This idea manifests itself in

a variational calculation of the path integral along each local development trajectory.

from which the dissolution profile is obtained uniquely, as a solution of a non-linear

PDE. The PAC' concentration is obtained from the standard Dill's equations for the

exlposure-bleaching process for both monotonic as well as standing waves. The pro-

ce(lure has been implemented and tested. It has been found to be very accurate and

it eliminates the path crossings inherent in the predictions of the string algorithm.

The arbitrary elimination of unfavorable points is avoided as well for all developing

times.

* Supported in part by Grants AFOSR-S7-0310 and NSF #ECS-8611298
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I. Introduction

The importance of simulations for \LSI lithography and etching processes is

widely accepted and many simulation techniques are utilized throughout the W( in-

dustry. The most coi mon simulation systems are SAMPLE (1) and PROLITII (2)

which are the established standards. Both SAMPLE and PROLITH allow the user

to search for optimal conditions for an experiment at hand. Both combine a projec-

tion exposure moIdel for a thin photoresist film with a "'development" model. and an

ultimate goal of both systems is an accurate prediction of the line profile over any

substrate topography.

The --exposure" model is a system of coupled, non-linear partial differential equa-

tions first proposed by Dill (3). The two unknown functions are t[,, ,), the pho-

toactive compound concentration (PAC). and f(x, z, t) , the intensity of light at coor-

dinates (x, :) at time t. One should note that the order of the equation determining

(.r. z, t) or the corresponding electric field E(x, z, t) is either first or second depending

on whether the film is thick (no standing waves present) or thin (standing waves are

a dominant feature). File second equation is a first order rate equation, expressing

the assumption that the rate of change of log .l is declining and it is proportional to

the light intensity I, with initial condition !(. z.,0) = i.

The monotonic case has been solved analytically (1) and the solution has been

used in various applications (5, 6). The standing waves case has been solved exactly

(7) but the solution is very complicated and a \IKB approximation scheme has been

proposed (8) to replace the standard iteration schemes.

In this paper we assume that the PAC concentration .1(x, :) is a given function

that has been obtained by one of the above methods. after an exposure time t1 .

Here we concentrate on the etching-development model. Various authors (9-13) of-

fered phenomenological dissolution rate-development functions R(M), that in essence

represent the velocity of dissolution of the exposed PAC.
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lButh s iiiturrs S.\NllPL. lPIOLlT1ll ( IMPlov thre irnglvP 1) fI,3

I-iti li InI t heir (lvlpietecirgmodel . he lkoirflarv b~etwe thr Ile (el" 3(l

anrIdundl( evelop~ed regionsis IeX Jressedl as series of points in lie .cz-plarie (nmictiJ

by linear s phlines (a st rinrg). Each poi nt advances along die an gle bisect or or t 3i two

adjacent segments. withI a velocity I?(x. s ). As tire densityv of points Intcreases III "()II(

locations several are eliminatedl. andI others are Introduced in sparse relgions, so their

dlensity alorig the string remains roughly constant. WVhen the finiI developmnent tiIri1e

is achieved the programis report the final simulated profle.

It is the purpose of this paper to propose an alternative to this st ring al'-orit himi.

based our least square action prinrciple. It has several advarntagres over thle st rinr-

Ii It is miathiematically rigoros.

(11) The pirop~osed met hod Is applicable to three dimensions -a serious limuitation

of the string algori thmn.

(iii) It contains no arbi t rarv additions arid subitractins (of points along thle profle I.

Iv ) There are rio crossinrgs of (developmiernt p~aths t hat create loops ifr) thre prolile.

Threse loop~s are p~resent in the stanidardl simulations, creatinrg the necessi ty to delete

hem.

IL. Propagationl of a disturbance

Let a (list rirbanice propagate thirourgh a miediurm withI veloci ty fl[.11(x *d z The

dlist. rrbance propagates orthogonal to Itself. In other wvordls, at t ime t, one( muIISt

obtarri1

grad t1= R1)

or more precisely (for tire standard case)

+Ox12 R 2 [MI(x,z) 2

:3



lius is a non-linear first order PDE which can be solved by tile meth1od of envolope-

characteristics.

It can be shown that as long as a "'ra'" dops not cross any other development

'ray", its ,r(.s) and z(.s) coordinates as functions of the arclength along the ray are

determined by the following system of ordinary differential equations:

d2,r loyR (dx) 2 + OlogR (d.r dz OlogR (3)

,; - Ox ds 0: 0 x

d2 z OlogR dx dz OloR (d:)2 OloyR

(IS2 - x s )s z

The standard formulation of development time t is given by

[I (IS

Jo R[={x(s), z(s)}] (4)

The variation of t, i.e. St. resulting from a slight development br. : leads precisely

to equations (3a) and (3b). In other words I as given by equation (4) solves the

non-linear DE (2) inside its envelope.

This formulation (introduced by Carrier &: Pearson) dictates the algorithm we

use.

(i) Obtain an initial profile

(ii) Develop each point for a time interval At using the system of equations (3a.

3b), and make sure that the paths do not cross by selecting At to be small enough

(iii) Use tile new profile as the initial profile and repeat the process.

The time interval At is dependent on the curvature of the profile, since it de-

termines the thickness of the characteristic strip. Note that we are dealing with a

local process and that the individual rays may not cross, since the physical process

is unique and smooth and crossing rays would lead to either shock-waves or a non

unique solution. Thus t! - strips must be dealt with on an infinitesimal level and not

globally.
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III. Implementation and Examples

ilie initial profile is taken as the x-axis. with 51 equally spaced points. \ pt-

eialized Runge-l'Kitt a scheme was developed for a system of five ordinary differential

equations that include tile two coordinates, their arclength derivatives and the de-

velopment time. For most processes tested, the average development time step. ._t.

was found to be 0.05 sec. After each time step an optimizing cubic spline routine was

implemented, resulting in a smooth representation of the profile. The new profile is

divided into segments of equal arclength in order to maintain consistency with the

previous profile. Thus the number of segments varies according to the shape of the

profile. This process is repeated until the prescribed development time has elapsed.

We refer to this program by the name EIIKP(S.

It should be emphasized that the description of a three dimensional profile must

be determined parametrically. However, the cases reported here can be expressed

explicitly as finctions of the coordinates. In these cases the profle is reported in var-

ious segments, where in each segment the corresponding functions are single-valued.

These segments are connected to represent the final etching profile.

The dissolution rate function R(M) employed in this study is the one proposed

v C. Mack(9). Throughout this paper the following development parameters were

used: Rm. : = 200 nm/s, Ri, = I nm/s, m.71 = 0.5, n = 5. Figure I illustrates the

relative development rate as a function of the relative PAC concentration.

As described in the introduction two data files of A!(x,z) values are utilized.

RYIl and EXPOSE. The file RNII has been generated to simulate the CEMI-positive

resist system proposed by Mack(14), which corresponds to the monotonic example

illustrated in this paper. The exact solutions of the Dill's model equations(4) were

used in this simulation. The file EXPOSE was given to us by C. Mack, and it

corresponds to a standard standing waves example in PROLITIL. Both of these data

files are used for demonstration purposes only.

5



In fig. 2.3 we compare the dissolution profile obtained from the string algorithmn

for the monotonic case to the results obtained from the proposed algorithli, enlploving

tie file R-M 1. In these figures 60 sec of development iie at 0.05 sec per ti je step was

similated. The program of the string algorithm has the -loop eli iniiator"1t ili(e

turned off. The reader should observe the early formation of a loop at the upper

corner, while the EIIKPCS profile does not exhibit this aberration. In fig. 4.5 we make

a similar comparison at 75 sec (levelopment time, and the 1oo) is clearly denionst rated.

In fig. 6,7,8 we display the utility of our system to handle standing waves using

the data file EXPOSE. In these examples, development times of :30 sec, 4.5 sec and 60

sec were employed. The final profiles do not exhibit any loop. They contain approxi-

mately 230 points and as the resolution increases they can be made smoother. It is

well-known that the standing waves systems display several sizeable loops when the

string algorithm is employed and when these loops are eliminated they tend to give

the impression of somewhat reduced amplitude.

IV. Conclusion

\We conclude that the mathematically rigorous algorithm indeed performs as ex-

pected, thus reducing the ambiguity in development simulation.
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Figure Captions

Figure 1: Relative development rate vs. relative PA(' concentration using NAks

model. The development parameters are Rm,, = 200nm/s, Rmn lnm/.l.

MTH = 0.5 and n = 5.

Figure 2: Simulated resist profile of 60 sec development time using the program

EIKPCS developed in this work and the data file RNII

Figure 3: Simulated resist profile of 60 sec development time using the string algo-

rithm and the data file RNIl

Figure 4: Simulated resist profile of 75 sec development time using the program

EIKPCS developed in this work and the data file RNil

Figure 5: Simulated resist profile of 75 sec development time using the string algo-

rithm and the data file RNII

Figure 6: Simulated dissolution profile of a photoresist with reflecting substrate,

using the data file EXPOSE of C..lack and the program EIIKPCS at 30 sec

development time

Figure 7: Simulated dissolution profile of a photoresist with reflecting substrate,

using the data file EXPOSE of C.Mack and the program EIKPCS at .45 sec

development time

Figure 8: Simulated dissolution profile of a photoresist with reflecting substrate.

using the data file EXPOSE of C.Mack and the program EIKPCS at 60 sec

development time
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An Initial-Boundary Value Problem for the
Nonlinear Schr6dinger Equation
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Abstract

We present a method for studying initial-boundary value problems associated with
integrable nonlinear evolution equations. For concreteness we consider the nonlinear
Schrdinger equation in the variable q(x, t), z in [0, oo), with a mixed boundary
condition, i.e. q,(O, t) + aq(O, t) is given (a is an arbitrary real constant). q(x, t)
can be obtained by solving a linear integral equation uniquely defined in terms of
appropriate scattering data. These data satisfy a single nonlinear integrodifferential
equation uniquely defined in terms of the boundary condition. For the special case of
a homogeneous boundary condition, the scattering data is found in closed form.

INS #81

*Permanent address: Department of Mathematics and Computer Science and Institute for
Nonlinear Studies, Clarkson University, Potsdam, New York 13676
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1 Introduction

It is well known that the inverse scattering transform (IST) has been applied to a large
number of physically important nonlinear evolution equations in 1+1 (i.e. in one spatial
and one temporal dimensions). The initial value problems for decaying [1], periodic [2], and
self similar potentials [3] has received much attention. The IST has also been successfully
extended to initial value problems for decaying potentials for equations in 2+1 (i.e. in two
spatial and one temporal dimensions) [4].

In spite of the above success, the question of extending the IST to solve initial-boundary
value problems remains essentially open [5]. The simplest such problem arises if an equation
is formulated on the half-infinite line. Let us consider the nonlinear Schr6dinger equation
(NLS)

iqt = q.±21q12 q, 0 x < o0; q(x,0) = h(x), q (O,t) +aq(O,t) = g(t), (1.1)

where h(x) decays for large x, a is a real constant, and the given functions h(x), g(t)
have appropriate smoothness, and satisfy the necessary compatibility conditions to ensure
the existence of solution at x = 0, t = 0. Solving such an initial-boundary value problem
has important physical and mathematical implications:

(i) Most physical problems are naturally formulated as boundary value problems. For
example, injecting current in a neuron, or sending optical solitons down a monomode fiber
are boundary value problems. In particular, NLS with an additional term q_ on the right
hand side and a --+ oo, models water waves [1]. Equation (1.1) also arises in the propagation
of optical solitons [6], as well as in several other important physical problems. Since NLS
usually arises in applications in non-laboratory coordinates it is useful to consider equation
(1.1) with a 0 0.

(ii) The linear limit of the standard IST (where -oo < x < oc, q(x, 0) given) is the
Fourier transform, which is why the IST is considered as the nonlinear analogue of the
Fourier transform [7]. The linear limit of (1.1), i.e.

iqt = q., 0 <x < oc; q(x, 0) = h(x), q (O, t) + aq(O, t) = g(t), (1.2)

can be solved by the sine transform (a -- oc), or the cosine transform (a = 0), or in general
by the transform [8]

'o 2ik + a

4(k) - 0 dW(e 'ikt + f(k)e-2 ikl)q( )d, f(k) - 2ik -a

1o 0 dk(e - 2tkx + f(-k)e2ikz)4(k) + 2aez- j 0de-q-a ), (1.3)

where the second term of (1.3b) is missing if a < 0. It is thus natural to ask what is the
nonlinear analogue of the above transforms.
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In this paper we present a method for studying boundary value problems in 1 + 1, and
we apply this method to equation (1.1):

(i) The first step involves finding the correct x-transform of the given nonlinear equation.
Indeed, our formalism in the linear limit, i.e. q small, reduces to the inversion formula (1.3).

(ii) The next step involves finding the evolution of the scattering data. In the linear case
it corresponds to using the transform (1.3) to solve iqt = q.z. In the usual IST one uses
the t-part of the Lax pair to find the evolution of the scattering data. However, in our case
%t. - T 0 0, where T(x, t, k) is the eigenfunction appearing in the Lax pair, and one needs
first to obtain the correct t-part. In this respect we use the given evolution equation and
an integral (as opposed to the usual differential) representation of the x-part of the Lax-pair
(hence we do not need apriori knowledge of Tt., - 'Iit). An alternative way to finding the
t-part of the Lax pair is to use that tk(x, t) is continuous at x = 0. Having obtained the
t-part of the Lax pair, the evolution of the scattering data follows. The correct choice of the
x-transform is reflected by the fact that the evolution of the scattering data depends on g(t)
and not on q_(0, t), g(0, t) separately. Furthermore, in the linear limit the scattering data
satisfies

4t - 4ik 4k= k (q(O, t) + aq(O, t)), (1.4)

2ik -a

which is precisely the time evolution of the linear transform (1.3) when applied to equation
(1.2). However, the above evolution also depends on certain quadratic products of '1(0, t, k).

(iii) The final step consists of expressing these quadratic products in terms of the scat-
tering data. This yields a nonlinear, equation for the scattering data. In the case of the NLS
equation (1.1), this yields the following nonlinear singular integro-differentiation equation
for the reflection coefficient b(a -- co)

- i 2b +k ) (k) (15bt-4ik = -q(O, t) + 8 dk' k '  HIn(1 ;12) V.(4k -0 k, '- k &t l  tl)k) 15

(a) The application of the above method to other equations in 1 + 1 has certain ana-
lytical complications reflecting difficulties with the linearized version of the given equation.
However, it can be applied to other equations in 1 + 1, as well as in 2 + 1.

(b) This method opens the way for studying boundary value problems on finite do-
mains.

(c) It can be used to study forced integrable systems where the forcing involves Dirac's
delta function and its derivatives.

The special cases of q(x, 0) = 0 and q,,(x, 0) = 0 were considered in [9]. Also for the
case of a general homogeneous boundary condition, i.e. qx(x, 0) + aq(x, 0) = 0, Sklyanin has
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established complete integrabilities by proving the existence of infinitely many conservation

laws [10].

A. Outline and Open Questions

In §II we consider the NLS with q(0, t) given, i.e. we study the nonlinear analogue of
the sine transform. If q(O, t) = 0 the analysis is straightforward: This problem is equivalent
to one formulated in -0o < z < oo [9] and can be solved in terms of a system of linear
integral equations. If q(0, t) 0 0 the analysis becomes nonlinear. The main result of this
section is expressed by proposition 2.10: The problem is again formulated in terms of a
system of linear integral equations uniquely defined in terms of appropriate scattering data.
However, while these scattering data are found in closed form if q(0, t) = 0, they satisfy a
nonlinear singular integrodifferential equation if q(0, t) $ 0 (see (2.45)). The existence and
uniqueness of solutions of this nonlinear equation remains open. Throughout this section we
assume that the transmission coefficients - 1 ) do not have poles in the upper, lower half

k-complex plane (see (c) below).
In §3 we consider the general case where q,(O, t) + ceq(O, t) is given. The two main results

of this section are:

(i) If q.(0, t) + aq(0, t) = 0 the problem is equivalent to one for -cc < x < cc and can
be solved via a system of linear integral equations uniquely defined in terms of appropriate
scattering data; these data are found in closed form.

(ii) If q=(0, t) +a(0, t) 0 0 the problem is nonlinear since the scattering data again satisfy a
nonlinear singular integrodifferential equation. The evolution of the scattering data is given
explicitly and involves q=(O, t) + aq(O, t). For brevity of presentation, the details of how to
derive the analogue of (2.45) are omitted. We again assume that , do not have poles.

Several important problems remain open:

(a) The uniqueness and existence of solutions of the nonlinear singualr integrodifferen-
tial equation satisfied by the scattering data needs to be established.

(b) The question of whether the above equation can be linearized remains open. This
question is important not only for practical but also for theoretical reasons: It has been
assumed so far that complete integrability is a local property. However, if the above equation
can not be linearized, it would be implied that integrability also depends on the boundary
conditions.

(c) The formalism presented here can be modified to include poles of the transmission
coefficients. However, since these poles move in time, the analysis becomes quite more
complicated. Preliminary results indicate that it might be possible to avoid considering
directly these poles by mapping the given initial and boundary data to suitable data which
do not possess poles. We have found [17] that t -- -t and q -- q* are useful transformations
in this respect.
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(d) The existence and uniqueness of solution for the Korteweg-deVries (KdV) equation
for 0 < x < oo, where q(x, 0) and q(0, t) are given, has been proven by Bona and Winther
[11]. The application of our method to the KdV equation has certain difficulties stemming
from the fact that even the application of the x-transform to solving the linearized KdV is
problematic. This suggests that perhaps one needs to study the nonlinear analogue of the
Laplace transform. We expect that some of the ideas presented here will also be useful for
this study of this problem as well.

(e) It has been established numerically that the KdV with 0 < x < oo, q(x, 0) given,
can be used to generate solitons (see the discussion by Keller [12] for details). Similar results
have recently been found for the NLS [16). An asymptotic investigation of the nonlinear
equation mentioned above (equation (1.5)), taking into consideration (c), should provide
some insight into these numerical observations as well as should yield the appropriate math-
ematical formulae.

2 Dirichlet Boundary Condition

We first consider (1.1) with a .-- o. The linear analogue of this problem is given by

iqt = qx, 0 < x < c, q(x,0) = h(x), q(O,t) given, (2.1)

and can be solved by the sine transform,

(k, t) j d~q( , t)sink , q(x, t) = 2 dk4(k, t)sinkx, (2.2)

where the sine data satisfies

6 = ik2 4 - ikq(O, t). (2.3)

Alternatively, one may solve (2.1) by the Fourier transform, by embedding (2.1) in -cc <
c < c; this can be achieved by using an odd extension, then (2.1) is equivalent to

iit = 4. - 2q(O, t)6'(x), -oc < x < cc, q(x, 0) = h(x), (2.4)

4(x, t) - q(x, t)H(x) - q(-x, t)H(-x),

where H(z) denotes the Heaviside function, i.e. H(x) = 1, if x > 0, H(x) = 0 if x <
0, and 6'(x) denotes the derivative of the Dirac distribution.

Similar considerations apply to the nonlinear problem at hand, which also can be embed-
ded in -oo < x < oo by employing distributions (the details are given in [13]). Here we use
an odd extension of q(x, t) in order to derive the nonlinear analogue of the sine transform,
but we avoid the explicit use of distributions.



2.1 The Nonlinear Analogue of the Sine Transform

The first step of our method involves finding the correct x-transform for the nonlinear equa-
tion (1.1). This amounts to using the x-part of the Lax pair to derive an inversion formula
which reduces to (2.2) for small q.

A. Analytic Eigenfunctions

Let us consider the linear eigenvalue problem

W = ikjbp + W -00 < X < 00, Q Q(x)H(x) - Q(-x)H(-x), (2.5)

where p is a 2 x 2 matrix valued function of x. Let W = $Oexp(ikxJ) then (2.5) becomes

where ,jdenotes the usual commutator.

Proposition 2.1. Let the matrices 'IF, 40 solve

L' d~ek(z0JQIQ, 4, = I + p'0 deek(t)Q, (2.7)
where if F is an arbitrary 2 x 2 matrix and if Y is a diagonal matrix, then exp(Y)F
exp(Y)Fexp(-Y). Then

(i) IQ, 'P solve (2.6).
(ii) 4Ii = (%P-, %Pr+), 0 = (4+, t-) where ±(-) denotes analyticity in the upper(lower)

half k-complex plane.

B. The Scattering Equation

Proposition 2.2.

(i) The eigenfunctions 'I, 4D defined by (2.7) are related via

%P(x, k) = 4(X, k)eik2?JS(k), S6k b -00ekJQ~~(, ) 28

(ii) d(k), a(k) are +,-functions respectively. (2.9)
(iii) detS(k) = 1 (2.10)
(iv) *I(-x, -k) = O(x, k) (2.11)
(v) S(k)S(-k) = I, or d(-k) = a(k), (-k) = -4(k), b(-k) = -b(k). (2.12)
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(i) Since both T, O satisfy (2.6) they are related via T O exp(ikxj)C, where C
is an x-independent matrix. The form of C follows by considering the above equation as
X -4+ - 00.

(ii) Follows from the definitions of S, 'T.

(iii) Follows from the facts that detTI = det0 = 1.
(iv) Follows from the fact that Q(-x) -Q(x).
(v) Follows from (2.8) and (2.11).

C. The Large k Behavior

The potential Q(x) is discontinuous at the origin. Thus we expect that the scattering
data decay slowly for large k.

Proposition 2.3. Let k be real. Then

(i) a-*l, a-l, b -. , b- !2 as k-oo. (2.13)
(ii) Let x > 0, then

/1 2tk '0 -- -(OOe2 hs 2) as k --+ 00. (2.14)

T-- - ik 1~z + r(+,i 2ik ik
i ik ik1

Proof 
2l e 2k

(i) For large k, I' -* I, thus a -* 1, a -- 1, b -- -f 2. dqe k -/o
° dfq( )(e :ik -

e2 ik ). Integrating the last equation by parts we obtain b ---. ,

(ii) Equation (2.14a) follows from (2.7a). To obtain (2.14b) note that (2.7b) implies

It+ 40 " 1 40+ 4,- -iz t)
.0 4 -d e 2 i k (

x
- 4

)  r

Thus@+--1, f- I and

(P- 0 dq( - ) e - i k(x- t) + f d~q( )e-2ik(=-) -[ e2 k [ q(x) - 2q(0)].

D. The Inversion Formula

Proposition 2.4. Let a, b, d, b be defined by (2.8).

(i) Assume that the vectors 0+, V solve

(1) 00 b '-2k'z4 - k')

D+ 0' - dk', (k) e

( irk - k-(k+_iO)
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I [ aRk') e-'2I"x+ (k')0- _ (-) + d - ->0. (2.15)

2ri k' -(k -iO)

Then

q(x) =-. oo dk "e-7''4, r(x) =d- bdek-', X >0. (2.16)

(ii) Assume that the vector %F+, %P- solve

=1 _ - l- k/)e2ik'.T+(k')

2+O 1 f dk' k'e- (k iO)
dk, (ki , x>0. (2.17)

Then

1 /) dk Le_2ikxTI-, r(x) = 1'dk b2kT+, X > 0. (2.18)
a a00

Proof. The scattering equation implies

O"= V+ _e2ikzb -

a a

-- - + -e-2ix +

a

Assuming that a, a have no zeros in the lower, upper half k-complex plane, the above equa-
tions define a Riemann-Hilbert (RH) problem [141, which is equivalent to (2.15). Similarly,
the scattering equation in the form 0 = 'Iexp(ikxJ)S- implies (2.17). To obtain (2.16) we
need to consider the alrge k behavior of (2.15). Equation (2.15a) is

1 V b,2k'xfv I e)-x D

4,(k) = - 0 dk'- -,(k),
2ri -oo k' - k 2 a

where - oodenotes a principal value integral. As k --. oo, W i 2 k"

The terms with 1 behavior will give a nontrivial contribution:

b+r(O), 2 j,.) r(0) e2ik'

a 2 a 2 ike iki

and

jo, dk'k,(k- k) = k (

Hence, for x > 0
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4D+(k) -~~h fk' (b 2 ik'z(D + "(0 2ikZ ) +1r0(e2ikz), as k -* 0. (2.19)

Comparing equation (2.19) with

0 (k) __r(z) + r(O)e2 ik'
2 2ik ik

(see equation(2.14)), it follows that
1 (b. r(0)- '

r(x)= .-- 1 -dk 1 ('e 2ikz.j(k) + - e2ik + r(0). (2.20)

The above reduces to '2.'6b), since dkC= = -i"r, if x > 0.

Remarks 2.1.
(i) The linear limit of the inversion formulae given by Proposition 2.4, is the sine

transform: In the linear limit a -- 1, T! -- I, and

6 - j d ql+Jik , q(x) = -1 dkb e-2ik4-,

yield the well known sine transform formulae

6 -- 2i j dq( )sin2k4, q(x) =_2i f dkb(k)sin2k . (2.21)

(ii) The above procedure reconstructs odd potentials as expected. For example,

1(x) l b(k) =i 1krx b(-k) 2;k k
r(-x) = 0 - A e - -x k) = -- 1 m -k

I (k) ,, b ~o) a(- k)

1= - ak k e 2p (x, k) =-r'x ) .
7 . (k) 2

2.2 Evolution of the Scattering Data

We recall the well known (121 Lax pair associated with the NLS equation

.= ikJv + Qqp, Wt = U(p, U = -2ik 2J - iqrJ - 2kQ - iQ.,J. (2.22)

Indeed, the compatibility condition w=t = wt. implies

Qt = -iQz:J + 2iqrQJ, (2.23)

which reduces to the NLS if r = ±q*, where * denotes complex consjugate.

. .. . . t | si, •i m i .- .9,



Proposition 2.5. Let %F and Q solve (2.7a) and (2.23) respectively. Then ik 'exp(ikxJ),
solves

Ot= Utk + 2ik'iOJ - 4kH(-x)ip tr' (0, t, k)Q(O, t)V)(0, t, k), (2.24a)

where

U4-2ikJ -~; - 2kQ - iQZJ, Q(0, t) (O t) 0 (2.24b)

(i) We first derive the above result using a continuity argument. It is easily shown that
equations (2.22) and Wt = UWo + cpF also imply (2.23) for an arbitrary function F(x, k). To
derive (2.24) we choose F to be a discontinuous function of x such that Ot is continuous. Let

as x --* +oo, i-.exp(ikxJ), thus F = 2ik 2 J, hence

Ot =UOk+ 2ik 24V)j, X >0.

Let

t =U0 + 2ik 2 bj + VC, x<O,
and fix C by requiring that Ot is continuous at x = 0, thus

C = -4ko-I (0, t, k)Q(0, t)0b(0, t, k).

(ii) Equation ?k satisfies

?= e - LJ d~eik(a?-)Qlk, X > 0

O=ez- jwd~eik(z-)JQlk + I dlkeik(z-)JQ(-s )l, x <0.

Postulate Ot = U4' + f, then for x > 0

=t - L d~etk(x-)J(QtO + Q0,
or

UOb + f 1 - f d~ei'(-)J(-iQ,.zJ + 2iqrQJ + QU)4I + f,

and similarly for x < 0. This yields an integral equation for f which implies (2.24).

Re~mark 2.2. Equation (2.24) and 0.. = ikJO + Qip imply that iOt. - 0,,t is a distribution,
for details see [131.
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Using the t-part of the Lax pair it is now straightforward to derive the evolution of the
scattering data:

Proposition 2.6. Let S be defined by (2.8) and assume that Q, 0 evolve according to
equation (2.23), (2.24) respectively. Then

St = -2ik 2 [J, S1 - 4kSTI-'(0, t, k)Q(O, t)T(0, t, k), (2.25)

i.e.

at = -4k(ap + bM-), dt = 4k(dy - bM+), (2.26)

bt = -4ik 2 b - 4k(blu + M-), b = 4ik2b + 4k(blA - aM+), (2.27)

where

q%-+- rxFtQj q( qr) 2 
-r(%Pl +)2\

M(t, k) (0, t, k)Q(O, t)P(, t, k) r() - q() r i - q 1 (0, t k)

-M + (2.28)

Remarks 2.3.

(i) In the homogeneous case Q(0, t) = 0, then

a(t, k) = a(O, k), a(t, k) =(O, k), b(t, k) = b(O, k)e - 4ik2t, b(t, k) = b(0, k)e4.k2t. (2.29)

(ii) In the linear limit, -- 0, M + -+ q, M- --+ r. Thus

k " 4ik 2b - 4kq(O, t).

This is precisely the time evolution of the sine transform (see (2.3) and (2.21)).
(iii) It can be shown that equations (2.26)-(2.27) are invariant under k --+ -k.

2.3 A Nonlinear Equation for the Scattering Data

The main difficulty associated with the inhomogeneous boundary value problems is the
dependence of the evolution of the scattering data on quadratic products of eigenfunctions
evaluated at x = 0. It seems quite remarkable that it is possible to completely eliminate
these products and obtain equations involving only the scattering data:

Proposition 2.7.
The scattering data b, b satisfy the following equations:
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4k = q(O, t) + dk', H ln(1 - bb)(k'), (2.30)4kWt +1-.k at

bt + 4ik2b b0k,) b' a
= -r(O,t) + dk' k Hln(1 -bb)(k'), (2.31)4k f . k' k t(.1

where H denotes the Hilbert transform, i.e.

(Hf)(x) - -f d /f. (2.32)

Having obtained b, b, then a, & followed by solving the Riemann-Hilbert problem

aa = 1 + bA, a, a -- 1 as k -oo. (2.33)

Proof . Let

N(t,k) - -'(0,t,k)Q(O,t),D(0,t,k) ( ) . (2.34)

Then

M = T-'QT = S- - S= S-'NS,

thus

SM = NS. (2.35)

The above equation can be written in the following convenient form:

M+ N- b - b
S- = - (aM + b + (ay - bM + ) - A, (2.36a)

a a a a

S - b(a + bM-) + b(ap - bM + ) B. (2.36b)

a a a a

Equation (2.36a) implies

M +  1 00 A(k')
- q(O t) + - k -- i0  (2.37)

We next express - and A in terms of scattering data:

A = --- a 4--a - (in In a), (2.38)
4ka 4k 4k Ot

12
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where we have used the definition of A and (2.26). Also equation (2.36a) implies

N- = b(a + -M) + - (b6+ l ) M
+  b at +b-4-k

a a a 4k a 4k

where we have used (2.26) and (2.27). Thus

M +  N- b at bt - 4ik 2b
a a 4k a 4k

Substituting (2.38), (2.39) in (2.37) we obtain
;t - 4ik ba ta

= _ W, t + L + iH b !(r t '

4k 8k ( T a a) 8- a a/'

Thus

4k = -q(O, t)+ (4 ) - (- 4 ) (2.40)

where P± denote the usual projection operators, i.e.

P:1f -. ±+ 1 Hf. (2.41)

Alternatively, using (2.33) the above yields

bt-4ik b b a b 8
t 4k q(O,t) + - In(l + bb) + iH-j(Ina - lna). (2.42)

But

- ln(1 + bb) = - H ln(1 + b;),

and

Ina - Ina = -iH(lna + Ina) = -iHln(1 + bb),

since In a, Ina are +, - functions respectively. Thus equation (2.42) implies (2.30). Simi-
larly, equation (2.36b) yields

bt+4ik2b + bat ( b at
4k - -r(O, (4k a4k a) ' (2.43)

which implies (2.31).

Remark2..
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(i) In the linear limit equations (2.30), (2.31) reduce to

bt - 4ik2b = -4kq(O, t), bt + 4ik 2 b = -4kr(0, t),

which are the time evolution of the sine transform.
(ii) Equations (2.30), (2.31) become linear if A6 is known.
(iii) The scattering data y - b/a, b/a satisfy the following equations:

t - 4ik 2 / = -4kq(O, t) + 4kP- 1 = -' 5t 4k ) 1 -3" H ( ln(1 -

-t + 4ik 2_= -4kr(O, t) + 4kP+ { -- - 4ik2 y + 1 - H (ln(1 '

A. The NLS

The NLS

iqt =q. - 2olql2q, a = ±1 (2.44)

corresponds to r = crq*, then b(k, t) = ,b*(k*, t), and b satisfies

-4ik 2 b _

4k b= 4kq(O, t) + dk' Skk,- k -Hln(1 - (k') (2.45)

Proposition 2.8. The initial-boundary value problem associated with the NLS equation
(2.44), where q(x, 0), q(O, t) are given appropriately smooth functions and q(x, 0) decays for
large x, is solved by

q(x, t) =dk(k,t)e-2ikxOV(X, t, k), x > 0, (2.46)
r1 -. a

where b solves the nonlinear integrodifferential equation (2.45), a solves (2.33), and T =

(Tir, %P2-) solves the linear integral equations

41 = 1 - P-{ ' e2ikx( 2 )}, T = -aP-{5"e 2ik( Opi)*}. (2.47)

Proof. The above result follows from Proposition 2.7 and 2.4: for real k, O'=o, thus
(2.17) imply kP' - a('P-), =T = (lk-)" and they reduce to (2.47).

Remark 2.5. If q(0, t) = 0, (2.45) reduces bt - 4ik2b = 0.

14



B. A Note on the Odd Extension

The above analysis is based on considering an odd extension of the potential q. This has
two consequences: (i) The linear limit of the analysis reduces to the sine transform formalism.
(ii) The formalism involves only q(0, t) (which is given) and not q,(0, t). However, the above
formalism is nonlinear, since satisfies a nonlinear integrodifferential equation. It is thus
natural to ask if there exist an alternative linear formalism. It appears to the author that
the odd extension is the only natural one associated with this problem. This is based on the
following. Let us consider

1),= ik[J, 41+ QD, 0 < x < o

The eigenfunctions

d= I- j deik(z-)iQtI, . = eikjA(k, t) + Xdeik(x-N()Q4, (2.48)

define the RH problem

4.= 'TeWjS, S - A(k, t) + jo d~e -ikJQ4, (2.49)

provided that A21, A 12 are +,- functions in k. Letting W = -PeikzJ it can be shown that pt
satisfies

ot = Uo + oA-'(At + (2ik 2j + iQ (O, t)J + i(qr)(0, t)J + 2kQ(O, t))A]. (2.50)

Then the evolution of the scattering data (2.49b) depends on the term in the bracket ap-
pearing in (2.50). Thus we need to choose A such that:

(i) A21, A12 have proper analyticity properties in k.
(ii) The evolution of the scattering data does not depend on Q,(0, t). We claim that if

A(k, t) j 0 deikJQ( , t)p(-, t, k), (2.51)

then the above two requirements are satisfied. Indeed

A = I' d~etA gJQ( , t)4.(- , t, k)e - iktj = j d~eik'JQ( , t)(- , t, k)

has the correct analyticity properties. Also it can be shown that (ii) is fulfilled. However,
the eigenfunctions (2.48) with A defined as above are the eigenfunctions (2.7) which follow

from an odd extension. Furthermore, it appears that (2.51) is the unique choice satisfying
(i), (ii): From the linear limit of the inversion formula, it follows that

A = I - j0 deik JQ( , t)F( , t, k),

where F --+ I in the linear limit. The choices F = I, or F = A contradict (ii) , while
F = p( , t, k) contradicts (i).
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3 The General Case

Equation (1.2) can be solved by the transform (1.3). The inverse data satisfy

- 4ik 2  i = - k - [q.(O, t) + ceq(O, t)]. (3.1)

It should be stressed that the factor f(k) appearing in (1.3) is uniquely determined by the
requirement that the inverse data depend only of g(t) and not separately on q(O, t), q,(O, t).
Indeed,

4t d (e2'i + f(k)e 2k )q( ) = -i d (e 1Ic + f(k)e-2ik)qt =

= 4ik 2 + i(1 + f) .(O,t) - 2ik0 f ) q(O,t)]

Thus, if -2ikfOj +Z) = a, then f =
T, +7)2ik-a"

3.1 The Nonlinear Analogue of the Transform (1.3)

Motivated by the linear problem we consider the following extension of the potential Q:

Q(x, t, k)- Q(x, t)H(z) + F(k)Q(-x, t)H(-x), F(k) = diag(f(k), f(-k)). (3.2)

Remarks 3.1.
(i) Suppose that Q satisfies the first member of the AKNS hierarchy, i.e. Q solves (2.23).

Then F(k)Q(-x, t) also solves (2.23). (This follows from the fact that f(k)f(-k) = 1.)
(ii) The potential Q satisfies the symmetry condition

Q(-x, k)-- F(-k)Q(x, k) (3.3)

*, A. Analytic Eigenfunctions

Proposition 3.1. Let the matrices T, solve (2.7) where Q is given by (3.2). Let x > 0.
Then T, -0:

(i) Solve (2.6), with Q defined by (3.2).
(ii) Satisfy the following symmetry condition

(-f(k) 0 (
0(-x, -k) = A(-k)%P(x, k)A(k), A(k) 0 1 (3.4)

or in component form, if T - (IV, qV+), 4 = (,+, )-), then

(D+(-x,-k) = %'(x,k), P+(-x,-k)= -f(k)T-(x,k),
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ID(-x,-k) = -f(-k)I+(x, k), D+(-x,-k) = T+(x, k) (3.5)
(iii) T+, x- are +, - vectors in the complex k-plane. D+, i- for a > 0 are sectionally

meromorphic functions in the complex k plane: 0+ is analytic in the upper half complex
k-plane and has a pole at .'-, if a > 0 ; similarly ID- is analytic in the lower half complex
k-plane and has a pole at ' if a > 0.

Pof. (i) is straightforward. To prove (ii) note that

IF(-x, -k) = I - j de-'k(--)JQ( , -k)W( , -k) =

_ = I - j d k~eJ(-k)Q(, k)''(- , -k).

Multiply the above matrix by a matrix C = diag(Ci, C2) and choose C such that CF(-k)Q(x, k) =
-Q(x, k)C, i.e. C1 = -C 2f(k), for example let C = A, defined by (3.4). Thus

AI(-x, -k) = A + L- d~eik(z-)JQ( ,k)AIF(-,-k),

or

Aql(-x, -k)A-1 = I + d4 ek(x-iQ( , k)ATI(- , -k)A - ,

and hence (3.4a) follows, since A- 1 (k) = A(-k).
(iii) Consider (2.7a) with x > 0. Then '+, T- are +, - functions respectively, since

((,k) = Q( ). Equation (2.7b), for x > 0 imply

0+=1 + jd~q + j d~f(k)q(- )>D,

= I ~r~e2ikfr-4) + 0 f-k)r( eik )

letting -- - in the integrals over (-oo,0) and using D+(-x, k) =-f(-k)T-(x,-k),
+ (- x, k) ID 1(x,-k) we obtain

= 1- jd&qP+( , -k) + j q~t

(D+ f(-k)j d~e 2ik(z+ ) rFI( , -k) + jd~e2ik(x- )r4t. (3.6)

Since T I (x, k), T 2(x, k) are - functions it follows that TI(x,-k), T2 (x,-k) are + func-
tions. Also exp(2ikx) is a + function since x > 0. Thus the forcing of the above in-
tegral equations is a function analytic in the upper half k-complex plane with a pole at
2ik+a =0 iff a >0. Similarly

D- f~) 0 d e -2ik(x+(). q+( - k+ d~e -2ik(x-C) q(,' = f(k)j Jo" '- k) +

0- =1 - f d~r'(- k) +d&rD. (3.7)
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B. The Scattering Equation

Proposition 3.2.
(i) The eigenfunctions %P, 1 defined by (2.7), where Q is given by (3.2), are related via

(2.8).
(ii) detS = 1.
(iii) The scattering data satisfy the following symmetry condition,

S(-k) = A(-k)S-'(k)A(k), (3.8)

where A(k) is defined in (3.4b), or in component form

a(-k) = a(k), b(-k) = f(-k)(k), b(-k) = f(k)b(k). (3.9)

(iv) i, a are analytic in the upper, lower half complex k-plane with a pole at !--, -iff2' 2

a>0.

Proof. The derivation of (i), (ii) is similar to that of Proposition (2.2). To derive (iii) use
(3.4). To derive (iv), note that

a(k) = 1 - f(-k) J dr(- )T+( , k) + f d~r( )T+( , k),

or

a(k) = I - f(-k) j0 dkr'I4, + k) + j0 d~r' T +( , k). (3.10)

Similarly for a(k)

Remark 3.2.
(i) When a - o, f -- -1, A -- I and (3.4), (3.8) reduce to 'D(-x, -k)

T(x, k), S(-k)S(k) = I, i.e. to equations (2.11), (2.12).
(ii) When a --. 0, i.e. when q,(0, t) is given, the linear problem is solved by the cosine

transform. In this case f = 1, A = J and (3.4), (3.8) reduce to

0(-x, -k) = JTI(x, k)J, a(-k) = a(k), b(-k) = b(k), b(-k) = b(k). (3.11)

C. The Inverse Problem

In the case of a = 0, the potential Q is continuous at the origin, while Q, is discontinuous.
Hence the scattering data b, b behave like - for large k. Since for large k, f --- 1, actually
the above behavior is also valid for all finite values of a (the case a --* o is different and
was considered separately in §2.)

Proposition 3.3. The inverse formulae of Proposi-;on 2.4 are also valid if the scattering data
are defined by (2.8), with Q given by (3.2).
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Pro.If a < 0 the result is straightforward, since all the quantities of interest have the
proper analyticity properties. If a > 0, these quantities have removable singularities and
hence the analysis goes through. For example, near k i-, -(+(k) -, f(-k) and a(k)
f (- k), thus ~-has a removable singularity.

Remark 3.2. The linear limit of the inversion formulae given by Proposition 3.3, is the
transform defined by (1.3): Recall that

q= -f dke~k~~~~ I ;b d~e 2kqI. (3.12a)

The linear limit is straightforward if a < 0: %P-, T+, a, tend to 1 and the above yield

=b d~e2 Ikf(k)q(- ) - d~e 1kq, q =- dke ikb - j dke2 ~b

or

q dk (e 2ik, + f(-k)e 2ik-) b(k), 6 00- d (e2ikt + f(k)e-2ike) q. (3.12b)

If a >0, then 1+ ~ develop pole singularities since 4 , -V still behave like f (-k), f (k)
near k=' k -, respectively, but d, a -* 1. The contribution from these singularities
is e--C, C constant, which yields the additional term appearing in (1.3).

3.2 Evolution of the Scattering Data
In analogy with Propositions 2.5, 2.6 we have:

Proposition 3.4. Let IF' and Q solve (2.7a) and (2.23) respectively, where Q is given by (3.2).
The

(i) 0 '1exp(ikxJ) solves

=t U4 + 2ik 2i + iH(-x)V4'(0, t)-'J(I + F)(Q.,(0, t) + aQ(0, t))4O(0, t), (3.13)

where F = diag(f (k), f(- k)).
(ii) The scattering data S satisfies

St = [Uo, S] + i'P(0, t)-'J(I + F)(Q..(0, t) + aQ(0, t))%F(0, t). (3.14)

Elg The derivation is similar to that of Proposition 2.5, 2.6: If t = (JO + 2ik 2 0 J +
H(-x)PC, continuity implies

C =0~(0, ty'1[2k(F - I)Q(0, t) + i(F + I)JQ.,(O, t)]O(0, t)=

= k(0, t)1'[iJ(F + I)(Q-,(0, t) + aQ(0, t))]Vk(0, t).
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As x -cc, (3.13) implies (3.14).

Remarks 3.3.
(i) In the linear limit, the evolution of the scattering data reduces to (3.1). For example,

one of the components of (3.14) gives

i4k (q.(O, t) + aq(O, t)). (3.15)[h =4ikb +2ik - a

Equations (3.12b), (3.15) provide the solution of (2.1) (for a < 0).
(ii) In the homogeneous case Q=(O, t) + aQ(O, t) = 0 and the scattering data can be found

in closed form (see equations (2.28)).
Exploring the analyticity structure of %P(0, t) one may again formulate a nonlinear equa-

tion for the scattering data similar to that given in 2.3. The study of this nonlinear singular
integrodifferential equation will be presented elsewhere.

Acknowledgements
This work was supported in part by the National Science Foundation under Grant Num-

ber DMS-8501325 and the Air Force Office of Scientific Research under Grant Number 87-
0310. I am grateful to M.J. Ablowitz for several important suggestions. I also acknowledge
useful discussions with J. Bona, J. Keller, V. Papageorgiou, P.M. Santini, E.K. Sklyanin and
Y. Yortsos. I am grateful to J. Keller and his group at the Department of Mathematics, for
their hospitality during my sabbatical leave at Stanford University.

References

[1) Ablowitz, I ,.J. and Segur, H., Solitons and the Inverse Scattering Transform, SIAM
Studies in A ,pl. Math., Philadelphia, PA (1981).

Calogero, F. and Degasperis, Spectral Transform and Solitons I, Stud. in Math. and
its Appl., North-Holland, (1982).

Newell, A.C., Solitons in Mathematics and Physics, SIAM, Philadelphia, 45 (1985).

[2] Zakharov, V E., Manakov, S.V., Novikov, S.P., and Pitaievski, L.P., Theory of Solitons,
The Inverse Method, Nauka, Moscow, (1980) (in Russian).

[31 Its, A.R. an6 Novokshenov, V. Yu., The Isomonodromic Deformation Method and the
Theory of P'inlevi Equations, Lecture Notes in Mathematics, 1191, Springer-Verlag
(1985).

[4] Fokas, A.S. and Ablowitz, M.J., (1983). Phys. Rev. Lett. 51, 6; (1984), J. Math.
Phys. 25, 2505; (1983), Stud. Appl. Math. 69, 211; (1983), Lectures on the IST in
Multidimensions, 137-183, Springer Verlag, Ed. by K.B. Wolf.

[5] Kaup, D.J., Wave Phenomena, C. Rogers, T.B. Moodie (ed.), North-Holland, (1984).

[6] Kodama, Y., J..of Stat. Phys., 39, 597 (1985).

20



[7] Ablowitz, M.J., Kaup, D.J., Newell, A.C., and Segur, H., Phys. Rev. Lett. 30 1262
(1973); Stud. Appl. Math. 53, 249 (1974).

[8] Friedman, B., Principles and Techniques in Applied Mathematics, John Wiley, N.Y.
(1956).

[9] Ablowitz, M.J. and Segur, H., J. Math. Phys. 16, 1054 (1975).

[101 Sklyanin, E.K., Boundary Conditions for Integrable Quantum Systems, Leningrad,
(1986).

[11] Bona, J. and Winther, R., SIAM J. Math. Anal. 14 (1983).

[12] Keller, J., Soliton Generation and Nonlinear Wave Propagation, Phil. Trans. R. Soc.
Lond. A., 315, 367 (1985).

[13] Fokas, A.S., IST of the Half-Line: The Nonlinear Analogue of the Sine Transform, in
Inverse Problems, ed. by P. Sabatier, Academic Press (1987).

[141 Gakhov, F.D., Boundary Value Problems, Pergamon, (1966).

[15] Zakharov, V.E. and Shabat, P.B., Sov. Phys. JETP, 34, 62 (1972).

[161 Bona, J., private communciation.

[17] Bona, J. and Fokas, A.S., unpublished results (1988).

21


