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During the tenure of this contract we have-maderrogress ‘on three fronts:

1. The recursion operator of the Landau-Lifshitz equation has been computed explicitly. This
has been achieved algorithmically by utilizing methods introduced earlier. It should be emphasized
that in addition to the important implications of these results to general lattice theories and neural
networks, the answers obtained are novel on their own merit since textbooks referred to constructing
the above recursion operation as an outstanding open problem.

“"We have been invited to lecture on the above work in several major international conferences
(Italy, Japan, South America, France, Canada, US).

2. We have continued our study of nonlinear optics. We have introduced a new system of
nonlinear PDE’s that governs the development path of photoresist fabrication. We have employed
a proof given in collaboration with Araki concerning an iteration scheme, used throughout the
analysis. We have reported this work in various publications and in a number of international
conferences.

3. Substantial progress has been made towards solving the nonlinear Schrodinger (NLS) equation
on the half-line. Finite boundedness in conjuction with nonlinear evolution equations have alluded
investigators for years. Since nonlinear optics is to be employed on finite boundaries, a major thrust
was needed to achieve viable results. A new method has been introduced and tested on the NLS
on the half-line. For the first time concrete analytical results have been obtained, and the entire
problem has been reduced to linearizing a certain equation satisfied by the scattering data. This
linearization and the application of the above method to other important evolution equaitons is
under investigation. -
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A N‘ote on an Exact Solution for the Optical
Absorbance by Thin Films*

H. ARAKI
Rescarch Institute for Mathematical Sciences, Kyoto University, Kyoto 606, Japan

and

E. BAROUCH
Department of Mathematics and Computer Science, Clarkson University, Potsdam. NY 13676, U.S.A.

(Received: | July 1987)

Abstract. The Babu~Barouch solution of Berning's difference equation for the clectromagnetic fields within
optical thin films is shown to converge in the continuum limit to a solution (expressed as a converging series)
of the limiting differential equation.

1. Introduction

In nonlinear optics, there is mounting interest in a deeper analysis of the effect of the
nonlinear interplay between the light intensity and the complex refractive index. A basic
formulation for the electromagnetic field in thin films was introduced by Berning [2].
Recently, Babu and Barouch [1] obtained an exact analytical solution of Berning's
difference equations in a closed form. This difference equation describes the situation
where the thin film is divided into many sublayers and all relevant quantities in each layer
are constant within the layer.

The purpose of this Letter is to discuss the continuum limit, i.e., the limit of the width
of each sublayer converging to 0. We will establish mathematically that the
Babu-Barouch expression for the electromagnetic field converges in this limit to a
unique solution (explicitly given by a converging series) of differential (or equivalently
integral) equations which is a natural limit of Berning’s difference equations.

2. Results

Let £, and H, be the electric and magnetic fields in the jth sublayer, A be the wavelength
of the incident (exposing) beam, /; be the thickness of the jth layer,

N, =n, - iK, 2.1)

* Supported in part by the NSF Grant # ECS 8611298 and the mathematics division of AFOSR.
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228 H. ARAKI AND E. BAROUCH
be its complex refractive index and
“ ¢, = 2rlN, /A (2.2)
[ (the phase thickness of the jth layer).
1 Then the Babu-Barouch solution is
} ! :
1 b‘_,= J\ d.\' {(Enle SEmne + Il;n) lc-'"l\l"'cus(pl‘ 1 + (l/N/o I)Sind)jtll x
0
m -1
X I: H {[eznuzl + 1jcos¢,,, + [(i/N,, e 2y
I1=j+1
+ iNl+leZ"iX2I”] Sin¢l¢l}]}v (23)
1
H, = J dx {(E,,, e 2™+ H ) [cosg;,  +iN,, €™ ¥ 'sing,, ] x
0 .
m— |
x [ [T {[e**+ 1]cosg,, \ + [N, )e 2" +
I=j+1
F +iN,, €2 [sing, }]} . (2.4)
! We will consider the limit of
1 m-— oo, 5Emjax (¢)-0, 2.5)
Y L =D (the total thickness of the film). (2.6)
j=1
\ We assunie that there is a smooth function N(z) such that
J ;
N,=N<Z lk>. 2.7
b k=1
For j(m) such that
r
. Jlm)
) lim Y I =z, (2.8)
J=1
we prove that the limits
{ E(z) = lim E,,,, H(z) = lim H,,,, (2.9)
! exist and can be expressed as a series of multiple integral expressions (see equations
: (4.15)-(4.20)). They are the unique solution of coupled integral equations (5.9) and
(5.10). They are also the unique solution of the coupled differential equations (5.11) and
(5.12) with E(D) and H(D) as initial conditions.
4
A
{
<
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3. x-integration

Each fagtor in (2.3) and (2.4) is a sum of two terms (for the first two factors) or four
terms (for the remaining factors), each term proportional to an integer power of
w = e2™*_ After multiplying out into a Laurent polynomial of w, the x-integration
climinates all terms except those independent of w.

Case(l): E, =1, H, =0.

The negative ( —2™th) power of w multiplying E,,, in the first factor can be cancelled out
by multiplying the first terms of all remaining factors: 27' ' + £2/ = 2™ Instead of
taking the first term from all factors, we may replace some of them by other terms.
Replacement by the second or third term will decrease the power of w by 2/ or 2/* 1,
respectively. Replacement by the fourth term will increase it by 2/ (2/*' = 2/ + 2/).
These changes of the power of w are listed in Table I.

Table I. Change of powers of w according to the chosen terms -

Case (1)

2nd term 3rd term 4th term
2nd factor -2/ - -
I=j+l _2/‘| _2“2 2:;1
I=j+2 —2i*2 YRS 2742
I-factor -2 =20+t 2

For obtaining the w-independent product, we have to balance the decrease and
increase. If the fourth term is chosen in the [ = k factor with an increase of 2%, this can
be cancelled out only by one of the following combinations: The second term from the
Ifactors with =k - 1,..., k' (j < k' € k and none here if &” = k) and the third term
from the /-factor for { = k" - 1 if k" > j + I+; the second term from the second factor if
K =j+1

The above type of sequence of choices may be repeated in mutually nonoverlapping
sequences of factors. Thus, E; of (2.3) for £,, = I, H,, = 0 is given by

”

E = (/ ﬁ 1 cos¢,) Y (-1 “1 N, o IN) Lan gy tangy, (3.1)
-+ ve
where the sum is over n = 0, 1, 2, ... and, for n > 0, over all possible integers k, .. .k,,,
ki, ..., k, satisfying
m>k >k —-1>k,>ky-1>...>k, >k, - 12]. (3.2)
The same reasoning gives the following expression for H,:

H; = (iN,, | Sin¢,+,)< ﬁ cos¢,) X

I=j+2
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x ZM(=1)" [] (N, /N langy. tandy , , +

v=1

+ ( |1 Cosd),) EO(=1)" N, langy, , X

I=j+1

n-1

X [] (Ne, o (/N ) tan @, tangy, , (3.3)
v=1
where the sum in (3.2} is now divided into two parts £‘" and £?’ according to k;, # j + 1
ork,=j+1(n=0termis in Z").

Case(2). E,, =0,H, = 1.

We follow the same method of computation as in the previous case. In (2.4) for H, the
product of the x-independent term (the first term in the second factor and the second
term in the remaining factors) is taken as the standard for measuring the increase or

decrease of powers of w according to the choice of terms in each factor, which is listed
in Table II. Thus, we obtain

H; = ( ﬁ cosqb,) Y- ﬁl (N /Ny, ) tan g, tan gy, 3.4)
l1=j+1 V=

where the summation is the sane as in (3.1). We also obtain

n

E; = (i/N;,)sing,, ,( [1 2cosqb,) X

I=j+

X ZW(=1)" [] NN, o) tang,, tang, ,, +

v=1

¥ ( I cos¢,) IO N ) tan gy, g

I=5+1

n-1

X [T (N /N, ) tang,, tang, ., (3.5)

v—1

where the summation is the same as in (3.3).

Table 1I.  Change of powers of w according to the chosen terms — Case (2)

Ist term 2nd term 3rd term 4th term
2nd factor 0 2001 - -
{=j+1 214! 0 _i+1 9142
I=j+2 202 0 -t 2?

I-factor 2 0 -2 241
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4. Continuum Limit

We first disguss the limit of (3.1) under (2.5) and (2.6). We do this by showing that (i)
the product of cos ¢, converges to 1, (ii) the sum is absolutcly convergent with the
convergence uniform in m and {/;}, and (iii) the sum for each fixed n converges to an
explicit multiple integral expression,
(1) Let
G = sup max{|N(@),IN@)| '} (<x). 4.1
O0<z<D

Due to 1z2cos¢>1-(¢?/2), we obtain for sufficiently small & (so that
19l < 21GYjA < 1),

12 [1 cos¢> [] (1-222G227217). (4.2)
I=j+1 k=1
Since
Y <6 Y I =D (4.3)
A=1 k=1

tends to 0, the extreme right-hand side of (4.2) tends to 1 as 3 — 0. Therefore
lim [] cos¢=1. (4.4)
I=5+1

(it) For sufficiently small ¢ so that | ¢, < /3, we have |cos¢,| = cosn/3 = | and
hence [tan ¢, < 2(sin¢,| < 2[¢,[. By (2.2), cach term in the sum in (3.1) is majorized
by

@6 [ (il 190, 11) = nG207 [ Gk, “5)
Therefore, the sum in (3.1) is majorized by

}:jo @RGAZ (Eh, il - e k) (4.6)
where the second sum is over all integers &,, ki, ..., k,, such that

mzky+t>ki>k+ 1> . >k, +1>k,>]. “.n

The permutation of these integers produces disjoint sets of the ordered set of 2n indices.
Therefore, the sum is majorized by

Y @RGP il b ol 4.8)

"
n=0

where the sum is now all integers such that m 2k, + 1> jand m = k] > j. Since

L< Y L,=D, (4.9)
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we have now the majorization of (3.1) by

'w Z Q)11 @4rG2D(A)* = cosh(dnGDjA) < 5 . (4.10)
)

n=

(iii) For sufficiently small & so that [¢, | < n/3, we obtain
[tan @y ~ @] < (sec®@) [Pl < 41" < CO7) ¢y | (4.11)

by the mean value theorem (and the monotonicity of sec ¢, for small ¢, ). By combining
this estimate with the estimate leading to (4.10), we obtain

Z H Ij (Nkv-O- l/Nk;)(tan¢k; tang,, , ) - f]‘ (Nk,+ l/Nk;)(¢k;¢kv+ |)H

£C? f (2n)!~'(2n) (AnG*Dj2)*"

n=1
= (4CnG?Dd?/4) sinh(4nG>D[A) 4.12)

which tends to 0 as d— 0. On the other hand, the summation

) ﬁl N PN ) (P i, o 1)

” k,v 1l 2
= Qr/A)*E [] N( y lk) Uedes 1) (4.13)
ve= | k=t

(see (2.7)) with n fixed and (3.2) satisfied, tends to

D D D D
(Zn//l)z”j dz,’,J‘ N(z")"‘dz,,j j N(z,)? dz,

D 4 2y EAR Z,
=(27r/,1)2"j N(z,)zdz,j d:;j J N(zn)zdz,,J dz.  (4.14)

as %/ 1, — z by the definition of the (Riemann) integral.
Thus, we have established the following when £, = 1, H,, = 0.

n-=

7. D D D
limE, = Z(—l)"(Zn/l)z"J d:,’,J N(:,,)Jd:,,...j N(z,)? dz,
)] be I, 71

7 I) R :"l i :'l
Y (-hr@mry> J N{z,)? dz, f dz; ... J N(z,)? dz, J dz,
n=0 = z z

=£.(2). (4.15)

In (3.3), the first term tends to 0 because N, | sing, , - » U while the rest is estimated
by (4.10). Therefore, we obtain

"= o1

¥ D D n
imH, = Y i(-1)"@2r/A)> ! j NGz, ) dz, 4( d:,’,...J N(z,)? dz,
0 H Sy i

s
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- i.-(_x)"(zﬂ/x)w‘j NGz dz, J:’d:;

"=y
= H,(2)

when £, =1, H,=0.
Similarly, when £,

“a

=0, H,

»

=], we obtain

233

J dz;, jWN(Z,,. O dz,

(4.16)

L4 D n D D
mH, = Z (- D)"Qn/A)y" j N(z,)? dz,, J dz, ... J N(z ) dz, j. dz,
n=0 z 2 ES) 2
x 14 2y T
= ¥ (-D)@n* j dz, J‘ N(z})?dz) ... J N{z,)? dz,,
n=0 z F4 z
= H,(2), 4.17)
) - D D n D
L ImE, = Z G(-1)"QnfA)> ! j dz, ., J N(z)*dz, ... J N(z,)? dz; j dz,
ne=0 z . Zoay ES3 “\

=E,(2).

5 i(~l)"(27t/l)2"”J dz, J:‘N(z;)z dz ..

J N(:,',)zd:,',J dz,

(4.18)

The general case can then be obtained as linear combinations:

E(z) = E(D)E.(z) + HD)E,(2) ;
H(z) = E(D)H.(z) + H(D)H,(2) ;

5. Integral and Differential Equations

From (4.16), we see that

D
H,(z) = (Zﬂi/i)f Ny )P Ezay ) dz, oy

(d/d2)H (2) = — 27if2)N(2)2E,(2) -
From (4.15), we also see that

2l
E.(2) = 1 + (2ni/4) J H,(z,)dz,,

(d/d2)E(2) = ~ (2mi[A)H (2}

(4.19)
(4.20)

3.1

(5.2)

(5.3)

(5.4)

Conversely, the coupled integral equations (5.1) and (5.3) tar I and /{1, can be solved
by iteration, giving rise to the first expressions of (4.15) and (4.16) as the unique solution,
The coupled differential equations (5.2) and (5.4) together with the boundary condition
E.(D) =1, H.(D) =0 yield (5.1) and (5.3) and, hence, again have a unigue set of

solutions £,(z) and H,(z).
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In case (2), we obtain the following from (4.17) and (4.18)

N E(2) = 2mifd) LD Hy(z,,\)dz, ., (5.5)
(d/d2)E,(z) = - Q2mifA)H,(z) (5.6)
Hy(z) = 1 + (2mif4) JDN(zj,)ZEh(z;)dz,;, (5.7)
(d/dz}H,(2) = - (2rif A)N(z)2E,(z) . (5.8)

Combining the two results, we obtain the following coupled integral and differential
equations for the general case

p

E(z) = E(D) + (2mi/A) J. H(z')dz", (5.9)
zD

H(Z)=H(D)+(21ti/ﬂ.)j N )E(Z')d:, (5.10)

(d/d2)E(2) = - (2mijA)H(z), (5.11)

(d/dz)H(z) = - QrilA)N(2)?E(z) . (5.12)

Equations (2.3) and (2.4) are solutions of the difference equation (1) of [1]. Dif-
ferential equations (5.11) and (5.12) are the continuum limit of this difference equation.
Thus we have shown that the limit of the solution (of (1) in [1]) is the solution of the
limit of the equation.
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Simuitaneous bleaching of a contrast enhancing film (CEF) and the underlying positive
photoresist is considered in the absence of any interface or substrate reflectivity. The intensity
transmitted by the CEF is determined as a function of exposure time exactly using the absorptivity
of the film in Dill's model equations. Corresponding to this time dependent transmitted intensity,
the concentration profiles in the positive photoresist have been expressed exactly in closed form.
Relations, that implicitly define the developed image profile, are derived assuming that the resist
davelopment can be approximated by a two state process. Furthermore, they are soived
numerically for a polysilane-AZ2400 resist system and a model CEM-388-resist combination
proposed by Mack. The predicted image profiles are in excellent agreement with the
experimentally determined profiles of Hofer er al., for the polysilanes, and the predictions of

PROLITH for the model system of Mack.’

I. INTRODUCTION

In contrast enhanced lithography'? (CEL) a conventional
UV resist is coated with a thin bleachable contrast enhancing
film (CEF) that exhibits “bleaching latency.” > Exposure of
the CEF above a certain threshold level results in increased
transmission, while exposures below the threshold produce
little change. Significant improvement in the quality of pro-
jection printed features has been reported by Griffing and
West for 0.5 um images'? and by Hofer et al.* for 1.0 um
images using CEL. Griffing and West'? used an undisclosed
organic dye for the CEF, while Hofer et al.? used a 0.2-um-
thick aliphatic polysilane as the CEF. Hofer et al. also re-
ported that the nonlinear bleaching of the polysilane film
used by them was well described by an effective concentra-
tion dependent Dill's 4 parameter,* given by

Ay = [0.5+ 1.4(M, —04)]4, (1

where M. is the concentration of the unbleached polysilane
with absorbance A.

Recently Dill’s model equations for the exposure, bleach-
ing of “linear” resist materials, have been solved exactly in
the absence of standing waves,’ and the solution extended to
the image reversal process with positive photoresist.® More
recently, Dill's model equations have also been solved in a
closed form when the bleaching characteristics are nonlin-
ear.” It has been applied to the simultaneous bleaching of a
positive resist and that of a contrast enhancing polysilane
film, assuming that the reflections can be ignored. As Old-
ham argues® ignoring reflections “is actually appropriate in
many cases since the CEL itself is a major aid in suppressing
reflections.” In any case, the effects of reflections from the
interfaces can be included using the recently derived closed
form solution for the optical absorbance of thin films in the
presence of standing waves.” A comprehensive discussion of
all reflections and standing waves in the CEL process will be

*- presented in a later publication.

In this paper, using the closed form solution for the con-

Tt Teohnal A6 {2). Mar/Apr 1988 0734-211X/88/020564-05$01.00

centration of the photoactive compound (PAC) in the un-
derlying photoresist film, an implicit functional relation for
the developed image contour is derived. The derivation as-
sumes, following Greeneich'® and Watts,'' that resist disso-
lution proceeds down to the substrate in the z direction first,
followed by a lateral development in the x direction.'? The
final image profile is obtained for an AZ-2400 resist film
exposed through a polysilane layer and developed in an AZ-
2401 developer. The calculated images are in excellent
agreement with the images reported by Hofer et al.’ Devel-
oped image profiles have also been calculated for the model
CEL-positive resist combination investigated by Mack'® us-
ing PROLITH to simulate CEM-388. The two calculations are
in good agreement.

Il. BLEACHING OF THE CEF

First, the intensity transmitted by the CEF is determined
as a function of position and time. The simultaneous bleach-
ing of the underlying photoresist is determined as a function
of position and exposure using this transmitted intensity.

Equation (1) may be rewritten more generally as

Ac(f = aMc + B (2)
with the subscript ¢ denoting the CEF and where a and B are
two material dependent constants. For the CEM class of
materials proposed by Griffing and West' and investigated
by Mack,'" a in Eq. (2) is equal to zero.

The bleaching of the CEF is described in terms of Dill’s
model equations by

.

—<=—IM.C, (3
ot )
and
al. )
—= —(aM; + M,  + B.)I,, (4)
dJz
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with the initial and boundary conditions

M (zx0)=1 0<zKl (3
and ‘N
I (0x,t) =I,(x) for all x and . (6)

Here z is the normalized depth into the CEF measured from
the top, x is a lateral coordinate measured across the image
and used to define the incident aerial image intensity /,(x),
B, is the exposure independent absorption parameter,* C, is
the bleaching rate, and ¢ is the exposure time. .

Following Babu and Barouch,’ a first integral for M, can
be written as

(a/2)M? +BM_+ B, In M, +ailnMc =f(z), ()
74
}

Li(x)[(a/2)(1 = M%) +B(1 —M_) — B

565

where f(z) is an inicgration constant. Substitution oft=0
and use of Eq. (5) in Eq. (7) yields f(z) = a/2 + 3. Then
Eq. (7) can be integrated as

M (z.x.1)
z=f diny{(a/2)(1 —y*)

(x.1)

+B(l—y)— B, Iny}~". (8)

The lower limit g(x,t) is yet to be determined. It is ob-
tained as M, (0,x,t) upon substituting z = 0in Eq. (8). But
from Egs. (3) and (6),

g(x) = M, (O,x,t) = exp[ — Ip(x)C.t]. 9)

Differentiating Eq. (8) with respect to ¢, and combining it
with Eq. (2), one also obtains

InM.]

I (zx,0) =

The ratio 1 (1,x,¢)/I,(x) is a measure of the improve-
ment in the contrast of the aerial image due to the nonlinear
bleaching of the CEF.

ill. BLEACHING OF THE POSITIVE RESIST

Simultaneously, as the transmission of the CEF increases,
bleaching of the PAC in the underlying positive resist con-
tinues. The bleaching of the PAC is described by

M

M _ _ mc 1
> (11)
and
7‘%: — (AM + B)I 0<5<1, (12)

with 4, B, C being the usual resist parameters and M the
concentration of the PAC. 4 and B, as well as the depth
parameter §, are nondimensionalized using the photoresist
thickness. Thus, § = 0 at the CEF-resist interfaceand § = 1
at the resist—substrate interface.

The initial condition is still given by

M(6,x0) =1, (13)

but the boundary condition for /(8,x,t) at § = 0 is now time
dependent due to the increased transmission of the CEF.

1(0x,t) = 1. (1,x,0) (14)

and is determined from Eq. (10).

However, this does not create any difficalty for solving
Egs. (11) and (12). Again following Babu and Barouch,’
the solution M(8,x,¢) is determined implicitly in the absence
of substrate reflectivity, as

M(Bx)
6= diny[A(1 —y) —Blny]~" (15)

h(x0)
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(@/2)[1 —e %) L B[1—e "] 4 B I,(x)C.t .

(10)

—

The lower limit #(x,t) is determined, as before, by substitut-
ingd =0in Eq. (15) and then using Eq. (14) in Eq. (11),

hix,t) = M6 =0,x,t) = exp[ - Cf I.(1,x,t)dt ]
0
(16)

This completes the determination of the closed form solu-
tion of the PAC cuncentration profile in the CEL process,
when interface reflectivities are not significant.

V. CEL IMAGE PROFILE CALCULATION

The resist dissolution process can be approximately repre-
sented by a two-stage process.'®!! In the first stage, dissolu-
tion proceeds in the z direction until all the resist is cleared
from the substrate in the regions of maxima in the transmit-
ted intensity. This is followed by dissolution in the lateral
(x) direction till the end of the development process.

Let the total development time be ¢4, and the phenomeno-
logical dissolution~development rate function be given by
R[M] (see Refs. 13 and 14). Then

ty =15+ 1, 17
where
S x) ’
o R[M(68'x)]

t; is determined by setting 8(x) =1 for all x, where
I.(1,x,t) has a maximum. At other values of x,6(x) is fixed
using this value of #5 in Eq. (18).
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Changing the variable of integration from &§ to M in Eq.
(18) and replacing (36/dM), with the result obtained by
differentiating Eq. (15), one obtains

M(8.x,1) dM
8" Juomn M[A(1—M)—BlnM)R(M)

or

ts Ef(Mle) (20)

The dependence of the integral in Eq. (19) on the expo-
sure process is now only through the limits of integration,
which are determined implicitly by Eq. (15). The subscripts
b and t in Eq. (20) denote the bottom (6 =1) and top
(6 = 0) of the photoresist layer.

Then

x7(8) dx
=ty —t; = - ! 21
xTleTe J;,(G) R[M(6x)] h

Here x, (8) is the line profile calculated after a development
time of ¢5 and is determined from Eq. (18). The final devel-
oped image profile, given by x,(8), has to be determined by

_solving Eq. (21) for the given #, and the ¢, obtained from

Eq- (18). ¢, can also be rewritten in terms of the function fof
Eq. (20) by changing the variable of integration to M and
recognizing that

(a_lv_{) =(_@_) M[A(l =M) —BInM] 22)
ox/se \dx/)i hla(1—h)—=Blnh) '

where h = h(x,t) is given by Eq. (16). Equation (22) is
obtained by differentiating Eq. (15) with respect to x.
Substitution in Eq. (21) yields

-1
,=(‘““") [A(1—h)—Blnkh]~"
ax t
M [x,(8)])
xf din M{[4(1 = M) —BInM]IR(M)}""
M (x5
23)
dlnh\-!
=( - ) [A(1 = h) = Blnh =" F(MM,),
(24)

where M, and M, are used to denote the two limits of inte-
gration in Eq. (23).

V. IMAGE PROFILE EVALUATION

The procedure for evaluating the developed image profile
is summarized here. Results are described in the next sec-
tion. . ' '

The aerial image intensity [,(x) incident on the CEF is
determined by the projection optics. /. (1,x,¢) is then ob-

‘tained from Egs. (10) and (8). The lower limit of the inte-

gral in Eq. (15) is then calculated from the integrai in Eq.
(16). The development time ¢, required to clear the resist
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from the substrate in the regions where I, (1,x,t) has maxi-
ma, is obtained from Eq. (18) by setting the upper limit
S8(x) = 1. Equation ( 18) leads to the line profile at values of
x, other than those corresponding to the maxima in
[.(1,x,t). Therefore, the solution of Eq. (24) leads 1o the
final image contour x,(5), once the model rate function
R{M] has been specified.

VL. RESULTS

The developed image profile is obtained for the polysilane
AZ-2400 system of Hofer et al.* and the model CEL positive
resist combination of Mack'? used by him to simulate CEM-
388 type materials. In both cases, the incident light intensity
is calculated using the projection optics subroutine from
PROLITH. The results for the two resist systems are presented
separately below.

A. Polysilane-AZ2400 resist system

Since it is desired to compare the calculated profiles with
experimentally determined profiles, the simulations here
have been performed at the process conditions chosen by
Hofer et al., in their experiments. For completeness, they are
listed in Table I. The development rate functions R[M] em-
ployed in these calculations for the 5:1 and the 4:1 AZ2401
developers, are given explicitly by Hofer et al.'* It should be
noted that the exposure wavelength used by Hofer ez al. is
A = 313 nm and that the image development using 5/1 wa-
ter/AZ2401 developer requires a very long 660 s or more.
The results are presented in several figures. Figure 1 presents
the normalized aerial image intensity distribution. Figure 2
shows the image profile as a function of development time in
a 5:1 AZ2401 developer. The effect of surface inhibition on
the profile is evident. The shape of the calculated profiles
agrees very well with those reported by Hofer et al. For com-
parison, image profiles obtained in the absence of the polysi-
lane film are shown, for otherwise fixed process conditions,
in the same figure. Degradation of the image by a reduction
in the side wall slope and resist thinning is obvious.

TABLE I. Polysilane simulations.

Resist parameters
(AZ2400 @313 nm)

Projection system

A=313nm A =0.162/um
Ndy=0.167 B =0.184/um
o=0.52 C = 0.0128 cm*/mJ

Defocus = 1.87 um
Linewidth = 1.0 um
Pattern = line-space pair,

Thickness = 1.25 um

CEL parameters (for 313 nm)

A, =89)/um

8. =0.175/um

C, =0.0376 cm*/m)
Thickness = 0.2 um

Energy = 110 m)/cm?
(except where noted)
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F1G. 1. Normalized aerial image intensity distribution of 1.00 um line-space
pair: 4 = 313 nm, N4, = 0.167, 0 = 0.52, and defocus = 1.87 um.

Since development with the 5:1 developer takes an unduly
long time, the effect of using a 4:1 developer has been studied
at two exposure doses, namely, 110 and 180 mJ/cm?. It may
be noted from Fig. 3 that the 4:1 developer causes resist thin-
ning at the lower exposure compared to the more dilute 5:1
developer, and the final image from an exposure at 180 mJ/
cm? and development with 5:1 solution is quite superior over
all the other images.

B. CEM-388-resist system

Finally, Fig. 4 shows the profiles obtained with the CEL—
resist combination studied by Mack. The CEL used here is
very similar to the CEM-388 manufactured by Generai Elec-
tric. The nominal parameters for the system are given in
Table I1, containing the parameters for the development rate
function R[M] proposed by Mack.'? Three CEL film thick-

1.25
1.00 4
0.75*1

0.50

Developed thickness { um)

0.25

0.00

T T T 7T LR T T T T
00 01 02 03 04 05 06 07 08 09 1O

Distance from imaqe center (,um}

F10. 2. Simulated profiles of 1.00 um line~space pair in AZ2400 resist using
5:1 water/AZ240] developer in the presence and in the absence of 0.2 um
polysilane layer at various development times: — 575, — 625, — - 675,
and - - - 725 3. O with polysilane layer and O without polysilane layer.
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FiG. 3. Simulated profiles of 1.00 «m line—space pair in AZ2400 resist as a
function of AZ2401 developer concentration for various exposure energies
and development times chosen for the same nominal linewidth: — 4:1 and
180 mJ/cm?, 60's; --- 5:1 and 180 mJ/cm’, 240s; — 4:1and 110 mJ/cm?,
140s; --- 5:1and 110 mJ/cm?, 725 s,

nesses are investigated: 0.2, 0.4, and 0.6 um. Exposure ener-
gy for each thickness is adjusted to give the same nominal
linewidth at the bottom of the opening after development for
a fixed time of 60 s. No surface inhibition term is present in
the dissolution rate function used here. The variation of the
side wall angle with CEL thickness of the images in Fig. 4 is
very close to that predicted by Mack from his PROLITH simu-
lation study.

VIl. CONCLUSIONS

The concentration of the PAC in the underlying positive
resist has been evaluated in a closed form, allowing for si-
multaneous bleaching of the contrast enhancing layer and
the positive resist. Representing the resist development by a
two stage process'™!! the resulting image profiles have been
calculated for the polysilane~AZ2400 resist system studied
by Hofer et al., and for a model CEM-388-resist combina-
tion investigated by Mack. Agreement with the experimen-

0.8

0.7
06
05
0.4—1

o
w

0.2

Developed thickness (um)

0t

00+ L T T T T
00 Q. 02 03 0.4 05 06 07 08
Distance from image center { um}

F1G. 4. Simulated profiles of 0.8 sm isolated space in model CEM-positive
resist system studied by Mack — 0.2 um and 120.0 m}/cm?; --- 0.4 um
and 180.0 mJ/cm?; - - - 0.6 um and 247.7 mJ/cm’.
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TABLE 11. CEM simulations.

Projection system Resist parameters
A =405 mm A=0.6/um
NA, =028 B=0.1/um
=070 C = 0.020 cm’/mJ
No defocus Thickness = 0.8 um
Linewidth = 0.8 um
Pattern = space (pitch = 4.0 um)
CEL parameters Developer conditions
A, =12.0/um Development time = 60 s
B, =0.10/um Ry =200 nm/s
C. =0.10 cm*/mJ Ropin = | nm/s

MLy =05

n=3

Exposure energy

Variable (varied for a given CEL
thickness so nominal linewidth
attained in 60 s development
time)

tal results of Hofer et al. and the calculations of Mack is very
-good.
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Recursion Operators and Bi-Hamiltonian Structures in
Multidimensions. 11

A. S. Fokas and P. M. Santini*

Department of Mathematics and Computer Science and Institute for Nonlinear Studies, Clarkson
University, Potsdam, NY 13676, USA

Abstract. We analyze further the algebraic properties of bi-Hamiltonian
systems in two spatial and one temporal dimensions. By utilizing the Lie algebra
of certain basic (starting) symmetry operators we show that these equations
possess infinitely many time dependent symmetries and constants of motion.
The master symmetries t for these equations are simply derived within our
formalism. Furthermore, certain new functions 7,, are introduced, which
algorithmically imply recursion operators @,,. Finally the thcory presented
here and in a previous paper is both motivated and verified by regarding
multidimensional equations as certain singular limits of equations in one spatial
dimension.

I. Introduction

This paper investigates certain algebraic aspects of exactly solvable evolution
equations in 2 + 1 (i.e. in two spatial and in on¢ temporal dimensions). It is a
continuation of [1]. although it can be read independently.

We consider evolution equations in the form

4, = K(y), (1.1)

where g(x, y,1) is an element of a suitable space S of functions vanishing rapidiy
for large x, y. Let K be a differentiable map on this space and assume that it does
not depend explicitly on x,),t. If Eq. (1.1) is integrable then it belongs to some
hierarchy (generated by a recursion operator @, ,). hence in association with (1.1)
we shall study g, = K""(q). Fundamental in our theory is to write these equations
in the form

49, = ,[dyz‘snz‘p';zle?z‘l = jd."zdn K13 =K, (1.2)

R

R

where d,, = 4d(y, — y;) denotes the Dirac dclta function, g; =q(x,y;.1), i=1.2,

* Permancnt Address: Dipartimento di Fisica, Universita di Roma, Fa Supicnza, J-00185 Roma, Haly
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K, .4,) bclong 1o 4 suitably extended space S, &y, KRy, are operator valued
funcllons in 8. If ¢ is a matrix function then 1 is replaced by the identity matrix.
Throughout this paper m and »n are non-negative integers.

The following results were obtained in | 1]: 1) There is an algorithmic approach
for obtaining the recursion « perator @, from the associated isospectral eigenvalue
problem i) This operato is hereditary. iii) Lach member of the hlcrdrchy
(PT,K$, l)“—jdyzolzlbulslz 1, where K§,-1 is a starting symmetry, is a

symmetry of (1.2). For example the Kadomtsev Petviashvili (KP) cquation and
the Davey-Stewartson (DS) equation admit two such hierarchies of commuting
symmetries. iv) If the hereditary operator admits a factorization in terms of two
Hamiltonian operators, then hicrarchies of commuting symmetries give rise to
hierarchies of constants of motion in involution with respect to two different
Poisson brackets. For example, the KP and the DS equations admit two such
hierarchies of conserved quantities.

The above results extend the theory of [2 4] to equations in 2+ 1. Novel
aspects of the theory in 2 + 1 include: i) The role of the Frechét derivative is now
played by a certain directional derivative. If subscripts  and d denote these
derivatives then there is a simple relationship between directional and total Frechét
derivatives:

K3, [00:F0)=K,,, [(F1=K), [l”]+K,, [lzzJ (1.3a)

where K |, is an arbitrary function in §, and K., denotes lhu Frechét derivative of
K, with respect to g,, i.e. “

-

( I3 . - . . .
Klzq'[Fﬁ];'(-581\12(4.‘+‘:l'ii~‘lj)|n:n- Lj=12 i#}] (1.3b)

Operators on which directional derivatives are defined are called admissible [_'I]
(applications of the d-derivative in explicit examples can be found in Appendix A
sce also Appendlx C of [1]). i) The starting symmetry K¢, can be written as
K9, 1. where K9, is an admissible operator. Essential to our theory is that the
operalors K?,. acting on suitable functions H,,. form a Lic algebra.

. For the equations associated with the K P equation,

D, =D 44y, +Dq ;D7 + 4,0 g2 D ' giF g, g+ oD, F D)
(1.4)

where D, = /dy;. The starting operators K, are given by
Niy=di, Mi;=Dql,+4q,D Vg, (1.5)
and H,, is an arbitrary (unction independent 4:)[ x, L.
H,=H y .y, (1.6)
The Lie algebra of K9, is given by
[NGHYUN  HE = ~ N GHY N GHY M Y ] = — M 0,
[M,zHlZ,MlZH'Z’J,,—~(l)lZN,2H,, (1.7)
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where
(K3 KB, =K, [K3) ~ K, 1KY, (1.8)
HY = [HY HYY = [dyy (I HE - 1R IYY), (1.9)
n

2. For the equations associated with the DS equation
P,=0(P,—0LPL'0) Qi F 20 Fiat k20,
PyFyasFyo —JF, —F J, (1.10)

where J =ao,0 =diag(l, — 1), Q is a 2 x 2 off-diagonal matrix containing the
potentials q,(‘c Y 4>(x, y) and @, is defined on ofl-diagonal matrices. The starting
operators K¢, are given by:

lef;"Qx—zv an#erzav (1.1

and H,, is an arbitrary matrix function satisfying the following propertics:

H,, diagonal matrix, P,,H,,=0. (1.12)
Also
[NIZH(llZ”NIZH(Z):]d = NlZHIZ’ [NIZH(lil)‘ 1‘7‘211(‘22}]4 = - MlZH‘lJZ)»
[M,HY), M HYly= — N, HY). (1.13)

iii) The recursion operator @, is admissible and enjoys a simple commutator
operator relation with iy, = h(y, — y,):

ch
(@5, 0] = — B, h',z.ﬁm_". (1.14)
RS}
which implics that 8,,K\{) =0,,®",K{,-1 /)”( )‘/’"110 K{;1, where
1 1)

02 = 1‘512/8‘1 .
The starting operator K9, is also admissible and its commutator relation with
h,, implies that é,,K' can be written in the form

02K = ‘512‘1’72’:?2" =3y a7, K580, (1.15)
=1
for suitable constants b, ,.

1. For the two classes of evolution equations associated with the KP equation
we have that

B=—40, [N, h,1=0. [M,.h, 1= =D, F=p2.  (1.16)

1;’(';), for KUy=N,,

! ~f{Nn—3y o %
$pp( 7)) o K=t
$=0 s

and

boy= (.17
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2. For the two classes of evolution cquations associated with the DS equation

“we have that

B =2a, [le-”lzJ:[MlzJ’lz]:O (1.18)

I»,,I,-:/!'(’;). (1.19)

In [1] we assume knowledge of the underlying isospectral problem. This
problem implies: a) a hereditary operator ®;;: b) suitable starling operators, say
M,z and N,,, and functions H,,; ¢) two skew symmetric operators such that

D, = @F(OY))~1. Furthermore, it can be shown that @, is a strong symmetry
for the starting symmetries. One then needs to: a) Find 8 and b, appearing in
Egs. (1.14), (1.15). b) Compute the Lic algebras of M, ,,N,, on function H,, (i.e.
obtain equations analogous to (1.7), (1.13). ¢) Verily that the starting symmetries
correspond to extended gradients, i.e. verify that ((©4)™! K¢ H,,), KOG =M,
or N,,, is symmetric with.respect to the bilincar form

(G2 f127 = jJ‘IXd}'ldh trace g, f1- (1.20)
R

and

d) Verify that 8}, ©¥ are compatible Hamiltonian operalors.

In this paper the following results are presented. i) In Sect. 2 we investigate
further the Lie algebra of the starting symmetries K9, H,. In [1] we only used a
subclass of solutions of (1.6) and (1.12), given by H,,=h,,=h(y, —y,) and
H,, = hyy(al + ba), a, b, constants, respectively. This gave rise to time-independent
commuting syrnmetrics. We now choosce 11, to be a more general solution of the
above equations; this gives rise to time dependent symmetries. Time dependent
symmetries for the KP have been studied in [6,7,18,20]. ii) In Sect. 3. using the
Lie algebra of K%, H,, and an isomorphism between Lie and Poisson brackets
we prove directly that @7,K9,H,, correspond to conserved quantities. This
derivation. which capitalizes on the arbitrariness of H,. has the advantage that
does not use the bi-Hamiltonian factorization of @, ,. In other words, for the theory
developed in this paper one needs only to verify a)-c) above.

We recall that Fuchssteiner and one of the authors (ASF) introduced an
alternative way for generating symmetrics, the so-called master-symmetry
approach. A master-symmetry is a function t which has the property that its Lie
commutator with a symmetry is also a symmetry. The t functions for the
Benjumin—Ono and the KP equations were given in [$] and {6 7] respectively.
Several authors (e.g. [8]-[12]) have noticed that master-symmetries also exist for
equations in | + | as well as for finite dimensional systems [13]. Let r and T
denote mastery-symmetries for equations in 2+ l'and 1 + | respectively. If @ is
the recursion operator and X = (K + 7, is the scaling symmetry of an cquation in
t+1, =K, then T=®T, is a master symmetry. However, there exists a
fundamental difference between t and T. The function @ ™' T (@ is a Hamiltonian
operator) is not a gradient function; this can be used to constructively obtain @
from T. But @ 't is a gradient and hence the above construction of ¢ from 1 fails.

In Sect. 4 we show that t is not the proper analogue of T. Let us consider the
KP for concreteness. As it was mentioned earlier, @7,K,-1 generates time-
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independent symmetries; it will be shown here that @}, K{,(y, + y,)™ gencrates
time-dependent symmetries. It turns out that t=(®2, K%y, + v,)),; (sce
Sect. IID). But @,! @%,K?,H , is an extended gradient for all H,,, hence @ "'t
is a gradient function. In Sect. 4 we show that the proper analoguc of T for the
KPis Ty, = ®%,45,, (it corresponds to @21 for the KdV). Actually, @, T, is
not an extended gradient and it can be uscd to constructively obtain @, ,.

In Sect. 5 we show that exactly solvable 2 + 1 dimensional equations are exact
reductions of nonlocal evolution equations generated via nonlocal isospectral
eigenvalue problems. This result both motivates the basic ideas and concepts
introduced in [1] and in this paper, as well as verifies several results presented in
the above papers.

11. A Lie-Algebra for Equations in 2 + 1

In developing a theory for time-dependent symmetries in 2 + 1 it is useful first to:
i) characterize the commutator propertics of these symmetrics, ii) study the action
of @ on the Lie commutator [a,b],, where

[a,b], = a,[b] - b, [a], (2.1)

and a, denotes an appropriate derivative. This derivative is linear and satisfies the
Liebnitz rule. For equations in 1+ 1 onc only needs [a,b],, while for equations
in 2+ | one also needs [a,,,b,,], (see (1.3)).

Lemma 2.1. ¢ is a time dependent symmetry of order r of the equation 4, = K, i.e.

Nl

T e" K] =0, (2.2)

r

=Y tEV, zm#—}[zu-“.mb, j=l..r [K.Z"],=0. (23)

j=0

The above result follows from the definition of a symmetry and the assumption
that XY is time independent. It implies that constructing a symmetry of order [
is equivalent to finding a function X with the property thatits ({ + [)* commutator
with K is zero.

The action of a hereditary operator ® on a Lic commutator is given by:

Theorem 2.1. Let
S=¢ [K]+[P. K, ] ) (2.4)

Then

r=1

a,) 'D"[Kth]L=[Kn¢"Kz]l.+<Z d’"A'Sld"—l)Kz- (2.5)

If @ is hereditary, re. if

@, [Pv]w— @D, [v]w is symmetric with respect to v, w, (2.6)
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then the following are true.
a;) O [P"K]+ [P (P"K) |=@"S, 2.7)
as) ‘D"H"[Kth]L =[@"K,P"K, ],

+ l])"( X " ’S\ 17/l 1)1\'2 . (l)m( Z 17/ 4 'Szd)’ -1 )l\ -
r=1 r=1
(2.8)
(m, n are non-negative integers).

Proof. To prove (2.5) use induction: (2.5), is an identity. Applying @ on (2.5), we
obtain

D" 1K, K,1, = DK, ©"K,], + m( Y w""Sltb"‘)KZ.
r=1

Equation (2.5), ., follows from the above and the following identity

DK, ,M], =[K,, ®M], + S5, M.
Equation (2.7) also follows from induction. To prove (2.8) first note that (2.5) implies
O"[K,, K, — (i omrS, d)”‘)l(z =[K,,®"K,],. 2.9)
Equation (2.5) also implies
O"[K,,K,).=[®"K,.K, ], - (Z‘ @S, tD"‘)K,,

Let K, = ®™K,, then (2.6) implics S, = @™$,. and the above equation becomes
P°[K,, O"K, ], = [w"Kl,d’”KzJL—< > ‘1’""‘1’”52‘1’"‘)1(:-
r=1

Applying @" on (2.9) and using the above we obtain (2.8).
Corollary 2.1. Let the hereditary operator @ be a strony symmetry for both K| and
K,,ie. 8, =8,=0. Then

&"*"[K,.K,]), =[®"K,,0"K,],. (2.10)

In the rest of this section we characterize extended symmetries o,,. The
following theorem, proven in [ 1], maps extended symmetries o, , to symmetries o, ,.

Theorem 2.2. Assume that the commutator of @y, with hy, is given by (1.14) and
that the starting operator K¢, are such that (1.15) is valid. If o, is an extended
symmetry of (1.2), ie. if

P

o +[”lz“slz"";z’:‘l)z"Ju=()~ (211)
(

then o, is a symmetry of (1.2), i.e.
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(’a
‘v - +[(7“,l\‘,"} =0 (2.12)
In the above
[o11. K u]f—‘fn U\W : K‘((LL“HL (2.13y
and
[0\2,(5124”{21( 1271 1e= Z boiloy, @1, 'K 12012]:1 (2.14)

=0

It is necessary to rewrite d,,d%,KY, 1 in the form appearing in (2.14) since
the directional derivative is defined only for functions of the form L,,H ,, where
L,, is an admissible operator.

Using Lemma 2.1, Corollary 21 and the Lic algebra of K9,H,, (with
appropriate H,,) we obtain extended symmetries, which then via Theorem 2.2
give rise to symmetries.

Proposition 2.1. Assume that the /wu’(lltan operator @y, is a strong symmetry for
the admissible slurtmy operators M, > Ny s and that (1.14), (1.15) hold. Further
assume that Mlz, N12 Jorm a Lie algehra (analogous to (1.7), (1.13)). Consider the
Jollowing hierarchies

4y, =J.d.\'zlsxzq)';zle‘I :.‘-‘l.\'z‘slzNﬁ"z’ = NY1, (2.15a)

4, _jd)louw,zm‘z = fdy,8,, My = M) (2.15b)
14
Then:
a) (@7 M,z D1, (@T,N, 301, are symmetries of Egs. (2.15).
b) Appropriate linear combinations of {®@T, M HY,,, {@T,N LHDY,, for
suitable functions HY), generate time dependent symmetries for Egs. (2.15).

Rather than proving the above proposition in general, we use for concreteness,
the Lie algebra (1.6) to sketch how the above results can be derived. Details are
given in ILA, IL.B. Let

NP =@d"N,,. MU =d"M,,. (2.16)

Then, using Corollary 2.1, Egs. (1.7) imply

[N‘I"E)Ii‘lz) N(‘ I)H(’)J — _ Ntmtn- nHm

[N""’H”’ M(l n”(lzz)]d: __M(‘mzon b,

(MGYHY, NP HYY, = - My 01

CMEYHY MYV HY ) = — Ny R, (2.17)
Part a) of the proposition is a direct consequence of Egs. (2.17) and (2.14). For
example

[(ND1,6,,N{ 1)y = — Z by (Nem+n-n il
=0
since H®, =[1,6,,1, =0; thus N3+ 1 arc extended symmetries of (2.15a).
Consider part b) of Proposition 2.1. Let us first consider symmetries of order
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one it t. Then

Ny +y,) - r2/f<']')1\7‘{"2*"“ .,

-~ } h -
MO+ ya) - 12/f<l')M',"5'" D (2.18)
are first order time dependent extended symmetries of (2.15a). Similarly
N3y + v2) — 12, M m0e, (2.19a)
M{Y-(yy + ¥2)— 12b, (NP1, (2.19b)
are extended symmetries of (2.15b) with b, , = ( — 4a) Z 2 ’(1 s
— 5

To derive the above we use Lemma 2.1 and Egs. (2 l7) For example, to derive
(2.18) we look for a function XY} such that its commutator with 3,,N-1,
commutes with §,,N%)-1. Clearly £ = N'"(y, +y,) or M{3(y, +y,). For,
(2.17a) implies

[N + 32,0, MY lJ.,—zlf( )N it

since 'Y = [v, + v,.04,], = — 25, . where 8, ,=0if [#1 or 1 if I=1.
In a similar manner

-

2
in— n 7(m + 20— 2
N (}’1+}2)2—‘4/’,< ) ) ”(."1‘*)'2)—’24/]2(1) N an= 2,
M a2 MY men-1) . 2an2f MY rim+ 2n-2)
Ry -4 | M (b +y,)+074p l M 1 (2.20)

are second order time dependent cxtended symmetries of (2.15b). Similarly
ﬁ(m)'(yl + }'2)2 - I4b,._1 [\:l(m"'i ”'(_\'1 +y,)+ 124}’5.1 Nmﬂ . 1, (2-213)

M(M)'U'l +)2)? —tdb, N "o(vy +ry) 2 4Ab A I,
b1 =(—40)(n+}) (2.21b)

are extended symmetries of (2.15b). Indeed
INTH Yy + 3% 8, N 1]4—4/1( > N D00+ 32),
since, [(yy + ¥2)%, 0121 = — 40y + ¥2), 4. Also
L9930y 4+ v2) 012N 1] = 41< )N'm*“ o
The extension of the above results to any order in time is straightforward: To

generate ¢U'} consider %= N (y, + \2)' or M™(y, + v,V. The commutator of
(v, + y,) with &, produces (y, + y,)" "\ Thus the r'® commutator of (y, +y,)
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with 6,2 produces | which commutes with 6%; hence Lemma 2.1 guaranteces the
existence of an r'® order symmetry.

11.A. Time Dependent Symmetries for the Equations Associated with the KP
Equation. Following the construction and the argument sketehed above, extended
symmetries of order r in time

Z vEY (2.22)
=0
are generated through Proposition 2.1, starting with £4) = N{7- HYY or M-HY),
where HY}, is defined by
HY) =y +y,): (2.23)

more generally, any homogeneous polynomial of degree r in ¥y, and y, could be
used as well (note HY, solves (1.6)). Using

) rl
[HTY, 01, ) = = (1 = (= 1))0(r — S)('r*—ws)' HY7®, (2.24)
I, a=0,
0(a) = {0‘ 4 <0, (2.25)

we can show that

i) The class of evolution equations (2.15a) with N,,= 41, admits ¢-dependent
symmetries of order r given by

ZQ=N{-HY, {2.26a)
(m'/n s u,»l) (r—— 3 2.‘,41)
29 = Zvr, ./-S)le = Hy . {2.26b)
and by
=N "" HY, (2.27a)
Amvm L) (0 Sye)
2P =Xvr j,s)M H, . {2.27b)

where j = 1, the summation X is from $1382,...,8;zeroto Poand P, =(n—1)/2 if
nis odd and (n — 2)/2 if n is even. Also

g o) g o
and b, = (- 4a)‘< ;’)

i) The KP class (2.15b) with M, = Dgq;, = 4,207 "¢, admits t-dependent
symmetries of order r given by

)= N(l"lZl'H(l')Zs (2.29a)

v(r, j,5) =
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(mo mag \2\,n|’ (r EE\,-I)

E@ =Evirn2j, )N, o Hy, . (2.29b)
(mu ;o 1 ::‘__le,cl) (r }I}_‘Zx,il)
SO = Fy(r,2j - 1,5)M,, B/ PP v (229¢)
and by
=N =M1y, (2.30a)
(mb miy ‘ pIRITR] l) (r ifz:,&l)
ZH = Zv(r2j, )M, a "Hy, ™ . (2.30b)

. A(nu(lj Ly 5_\2‘,”) (r :’);‘Zslol)
IV =Evn2j - LNy, He o (2300

H — 3
with j= 1 and b,,= ¥ /1"‘5;'&‘(” )—(—4001 Y2 ( “)
s=0 { I—s
I1.B. Time Dependent Symmetries for the Equations Associated with the Davey-
Stewartson Equation. The construction of (-dependent symmetries for the
equations associated with the DS cquation is similar. Extended symmetries of order
r in time are generated through Lemma 2.1, starting with Z'%) = N™HY) or

MY HYY, where HY) is defined by,

HYy =diag(¢ ;. 8%, &4, 0 + )y 2ax. (2.31)

HY) satisfies the same formula (2.24). obviously replacing [HY). 85,7, by [HY,
63,1];. Then, using Corollary 2.1 and Egs. {1.13), onc can show that

i) The class of evolution cquations (2.15a) with N, = 0, admits ¢-dependent

symmetries of order r given by Eqgs. (2.26) and (2.27), where b, , = /}'< ) (2a) ( )

and j2 I.

ii) The class of evolution cquations (2.15b) with M,, =070 admits t-
dependent symmetrics of order r given by Eqgs. (2.29 30), replacing: N©' —» Nt 9
in Eq. (229b), M= MY i in Eq. (229), MY M in Eq. (2.30b),

N©S NC~ in Eq. (2.30c) and using b, = (21p’<’;).

I1.C. Connection with Known Results. Belore the discovery [14] of the recursion
operator of the KP equation, a different approach, the so-called master-symmetries
approach, was used to generate an infinite sequence of commuting symmetries [6],
as well as t-dependent symmetries [7- 11], of the KP equation (see also [18, 19]).

The existence of a hereditary operator in 2 + | dimensions, together with the
Lic algebra of the starting symmetrics allows a simple and clegant characterization
of the 2 + | dimensional (gradient) master-symmetries introduced in the above
papers. Here we briefly consider the KP example.
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In Proposition 2.1 and in Sect. II.B. we have shown that the functions
0 = o, K, HYY, (2.32)

(where HY} is defined in (2.23), but it could be any homogencous polynomial of
degree r in y,,y,, and K¢, is N, or M,;) have the property that their (r + 1)¥
commutator with J,, K%} is zero, namely

[« [ 0,,KM1, - 1s =0 (2.33)
r+ 1 times r+ 1 times
Then Theorem 4.1 of [1] implies that
- Oy ",K‘,"{]f 1, =0, (2.34)
r+1 times r+1times

namely t{}"” are the so-called master-symmetries of degree r of KP [11]. Equation
(2.33) essentially follows from the fact that a single commutator of t{%” with 6,, K¢}
generates a linear combination of lower degree master-symmetries; in fact, choosing
for concreteness t{3" = @7, N,,(y, + y,) and K} = M{), we have

[2{37, 0, M T ], = — Z b, M ("H")[U’ + ¥, 512]

150
=’i Or = 1) r'/y bagty™ " (2.35)
which implies
[z, M ) Z o — :!1)' v (2.36)
For r=1 Eq. (2.36) becomes
G0 MY, = by M (2.37)

master-symmetries of degree | generate equations which belong to the given
hierarchy.

IIL. Lie and Poisson Brackets for Equations in 2 + 1

In this section we first derive an isomorphism between Lie and Poisson brackets.
Then, using this isomorphism and the Lic algebra of the operators KY,, we prove
that @, K9, H,, are extended gradients. This implics that all extended symmetries
of the previous section give rise to conserved quantit'=s.

Theorem 3.1. Let [a,b], =a,[b] — b, [a] be a Lie commutator and {f,g> be an
appropriate symmetric bi-linear form. Let grad I be the gradient of a functional I,
defined by [, [v] = (grad I,v); then y is a gradient function iff y, = y¥, where M*
denotes the adjoint of the operator M with respect to the above bi-linear form, i.e.
(M*f,g>=C{f,Mg). Then if the operator @ is a Hamiltonian operator, i.e. if

O*= -0, {(a,0,[6Ob]c) + cyclic permut =0, 3.1
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it‘ Jollows that
[6f,0g]. = Ograd{{,0y) + O{(f, — [})[Og) — (g —9})[Of1}. (3.2)
Proof.

grad{f,@g>[v] = {f,.[v], Og> + {f. O\ vlg) + {J, Oy, [v])
=(/11Og] —9t[Of1)> = f1[Og) + M} f —gt[Og],v),
where (f, @, [v]g> = {f,M,[v]) and M denotcs a lincar operator depending on
g. Hence
[©f,0g]), — Ograd{ [, Og)> = OL[Oy] [ + Of [Og] — 6,[Of]g — Og,[Of]
- Of1[O0g1+ Ogt[Og] — OM} f
=0,[0g]1f - O.[0f1g— OM; f + O{(f.— f1)(Og] — (9. — gt)[OSf ]}

But the sum of the first three terms of the above equals zero because of (3.1). Hence
(3.2) follows.

In the above a; denotes an appropriate directional derivative. For equations
inl+1:

[a,b],=[abl,, <{fig)= {dx trace gf. (3.3)
For equations in 2 + 1,
lai2,b12)=1a12,b,2]4 (fn,g“>=';fzdxdy traceg,, f1y,
-(f,z,gu):"jsdxdyldyz trace g,, f12 (3.4)

(if f and g are scalars, then delete trace), where [ , 1 [, 1, are defined in (2.13),
(2.4). Furthermore the following double representation of the {unctional [

I= [dxdy, tracep,, = [ dxdy,dy,trace p,, (3.5
r2 Rr3

allows us to define the extended gradient grad,, I and the gradient grad I of the
functional I by

Ii[vy,]= LdXd}HdYZ(Slztracepu[vu] ={grad,; I,v,,>, (3.6a)
R

I;[v,, 1= jzdxdy, trace pyy, (v, ] = <grad Ly, ). (3.6b)
R

The following theorem, proven in [ 1], maps extended gradients y, , to gradients
Y11 ¢

Theorem 3.2.

a) yy; and y,, are extended gradients and gradients respectively ifl y¥,, = 7;,,
and yY\, =11, with respect to the bilinear forms (3.4¢) and (3.4b) respectively.

b) If y,, is an extended gradient, then y, is a gradient corresponding to the
same potential, namely if y,, = grad I, theny,, =graul.

-
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Proposition 3.1. Assume that the hereditary operator @, is a strong symmetry for
the stdrting symmetries M, H,, and N, H,,. Further assume that M, N, form
a Lie algebra (analogous to (1.7) and (1.13)) and that @, is a Hamiltonian operator
whose inverse exists. Then

O ®7,K,Hy,, KG=M, or Ny, 3.7
are extended gradients, proved that @[} KO, H,, are extended gradients.

Proaof. For concreteness we proof the above proposition for the recursion operator
and starting symmetries associated with the two dimensional Schrodinger and
2 x 2 AKNS problems.

I11.A. Conserved Quantities for Equations Related to KP Equation
Corollary 3.1, Let

le =412, Mlz = Dq), +4sz-14fz- H,;=H(y,,y;),

N i (3.8
M(xg?d)sztz» Nxz— 12N12‘ @xz=1)~ )

where @, is the recursion operator associated with the KP and is defined by (1.4).
Then

DT M®™*YHY = grad (M®HY, D' NVHB),

D IN®*VHY) = grad(M™HY, D ' MHY). (3.9)
Proof. We first note that the assumptions of Proposition 3.1 are fulfilled. Namely
&, , is hereditary and is a strong symmetry of M,,H,,.NH,,, (scc Lemma 4.2
and Appendix C.la of [1]). The operator D"! is obviously a Hamiltonian
operator. Furthermore, D™'M,, H,, is an extended gradient (see Appendix A).
Since D"'M,,H,, is an extended gradient, Theorem 3.1 and (1.7¢) imply
that D~*N{)H,, is an extended gradient. Then Theorem 3.1 and [M™H!Y,
IV:"H‘lzz’],= —M®*YH®) imply by induction (3.9a). Finally Theorem 3.1 and
[M®HY MHY]), = — N**YHY imply by induction (3.9b).

A consequence of the above result is that all symmetries derived in Sect. I1.B.

give rise to conserved quantities. For example, the following t-dependent extended
symmetries (see (2.19b) and (2.21a))

ol = M{Iy, +y2) + 122N 1
oY = NPy + 2)2 +124a M- (3, + 3,) + 121442 N -,

of the KP equation q,, = M{} = 2(q,m+6q,q1 +3a?D" ‘q, ,.) correspond to
extended gradient functions D~ '¢{!) and D~ '0{Y); then they give rise to the
following t-dependent conserved quantities (see Egs. (4.15))

{ Jout L Kma
"= j,dx‘iy‘(z(z **73)"(0 MO Oy + y2)) + 4—2(1) 'NT3 2)'1)u>,
R

1
2) 1 Aj{m+1)
1 njzdxdyl(q +1)(D N Dy 4+ 3,0
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20 - SR N
2m+3( lM(I"EH)()'I + ¥ + (D IN“" 2. ”n)-

[11.B. Conserved Quantities for Equations Related to DS Equation

Corollary 3.2, Let A
M, =000 Ni3=0,,

H,, diagonal and such that

P,H, =0, M(I"% = (D’;ZMlZv N‘,”% = w’x’zﬁxz’ 6,;=o0, (3.10)
where @, , is the recursion operator associated with the DS equation and is defined
by (1.9). Then

oM"*VHY) = grad (MW HY, o NV HY>,
oN™HY) = grad{ M H\), e MH'))>.

Proof. The assumptions of Proposition 3.1 are again fulfilled (see Lemma 4.2
and Appendix C.2a of [1]). The operator g is obviously Hamiltonian in a
space¢ of off-diagonal matrices. Furthermore, oM, H,,,6¢,, N, H,, are extended
gradients (see Appendix A). R A

Since the above are gradients, [M" 1] N 11{)], = — MY implies
(3.11a). Then [M"H'), MH'J] = — N™ H'¥) implies (3.11b).

The above implies that the symmetries derived in Sect. 11.C. give rise to
conscrved quamitics. For cxumplc, the 1% and 2" order t-dependent symmetries
D — 8at N1,

0‘122’= NYPHE — (16aM Y HYY + 126422 Nt 2,
of the DS equation Q=M =~[20(Q, +2°Q, )-Q1A4;+4,0],
(D—=JDy)A, = — 2(D + JD,)aQ?, obtained from Egs. (2.29- 30), correspond to the

extended gradients o6'),00'Y; then they give rise to the following t-dependent
conserved quantitics (see Egs. (4.24)):

3.11)

t4x
(1) — (DY MmO ) m+ 1), 1
I ujzdxdytracea[g,, +1)( M YHY),, m+1N” ]

] ~
1= f dxdy, trauea[Ql.z(m L 1)(l)_ N VI,

B ., - 232e% o
—;'r_;](D MO UHMD,, + mA-;f'(D IN(12+3)'1)11]'
1V. On a Non-Gradient Master-Symmetry

In this section we make extensive use of the isomorphism between Lie and Poisson
brackets. Hence it is useful to investigate the propertics of

@, —glf)=T,+OT}O ', T=60y © =0 “.1)
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Lemma 4.1. Let
““ S=@[T]+[,T,), (4.2)
with its adjoint
S*=dFT)+[TF.D*) (4.3)
a) If @ is hereditary then
QHO"T]+[@"T]F@* — QX (P"T)f = S*P*". (4.4)
b) If @ is factorizable in terms of compatible Hamiltonian operators, ic. if
D=00"" where Q+vO is a Hamiltonian operator, @ is invertible and v is an
arbitrary constant, then
(OT) + O@THO ' =T, + OTO "+ OS*@ ', 4.5)

where we have assumed for simplicity that © =0.

) .

(@"T), + Q@' TO ' = (I, +OT+O ") + z DTIODFSFO
r=1
(4.6)

Proof. Equation (4.4) is the adjoint of (2.7) for K = T. Equation (4.5) is derived in
Appendix B, and (4.6) follows from (4.5) by induction,

Theorem 4.1. Assume that @ is fuctorizable in terms of compatible Hamiltonian
operators and that @ = 0. Further assume that @' @"M is a gradient function
and that @ is a strong symmetry for M. Then
n
"Ny O"TTSOTTIM = Ograd< O O"M, O™ T

r=1
=Y O OPFS* O "M
r=1

— @1, +@TFO Ho"M —O" "M, T],. 47)
Proof. Using the fact that @ ' @"M is a gradient, Eq. (3.2) becomes

[O"M, O™ T], = Ograd( O ' d"M,d"T> — (A" T), + O(D" T} @ 1} " M.
4.8)

Since M is a strong symmetry of @, Theorem 2.1 implies

"

[O"M, O™ T], = d"*"[M, T], + (l)’"( Y o 'Sd)")M. 4.9)
r=1
Using the above and (4.6} in (4.8) we obtain (4.7).
Equations (4.6) and {4.9) are useful in finding non-gradient master-symmetrics
for equationsin 2 + 1. Furthermore, Theorem 4.1 is useful for deriving the potentials
of various gradients. Formulac (4.6), (4.9) and (4.7) takc a particularly simpie form

e T VS W
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if the function T, is such that
T Siy=Sh=cl, (4.10a)
where 1 is the identity operator and ¢ is an arbitrary constant, and

ii) T: 24 + G)l 2 "'Tz,,(”) 1'2l =), (4.10b)

In the following two examples the non-gradient master-symmetries are generated
through functions T, that satisfy Egs. (4.10).

IV A. Equations Associated with the KP Equation
Corollary 4.1.

a) ®%,8,, is a non-gradient master-symmetry for the KP and the equations
related to KP:

[@1,K$:H,p, 91,0,,)u=b, @15 K, Hy,, (@.11)
8D, =(P},012)i+ O (91,8,,)5 0, 4.12)
where b, and H, are given by
b,=4n, H,,=H(y,,y,) arbitrary, if KO, =N,,, (4.13a)
and by
b,=22n+1), H,=+y,), r=01 if K{;=M,,. (413b)
b) Let A
7= @t 72, Pl = 61“2l K1s. (4.14)
Then
71y H = grad, 1, (4.15a)
! i sn ¢
1,.#B———O"‘{'{”11,2,5,2)=h — j‘dxdy,dyzé,z}f‘lz DH.,
n+1 n+1 R
1
= [dxdy,(f77 VH )0, {4.15b)
bn+1 r?

where b, and H,, are given in (4.13).

Proof. If
Ty =9y, (4.16)

Eq. (4.10b) is trivially satisfied and Eq. (4.10a) holds for ¢ =4, since @,,,[6,,]1=
@%,,[,,]1=4. Equation (4.12) is a simple consequence of (4.6) for n = 2; using the
following resuits ¢

qu[ﬁathz’éxz]nv:O, : (4.17a)
w’llz[MIZ(yl +Y2)”‘512]d=2‘p’{;1M12(}'1 + v, ), r=0,1, 4.17b)

(see Appendix A) in Egs. (4.9) and (4.7) (with M = K$,H,, and H,, as in (4.13)),
we obtain ) A
[d)';zK?an"DTz‘slz]d:bn‘D:;m—lK?zle (4-18)

——
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(tha} reduces to (4.11) for m=2), and

' by @™ R, H s = O grad, ;G H 5 0750,), 4.19)
where we have used @17, 0,, = @,,®*]. Equation (4.19) reduces to (4.15) if one
uses the definition of {f},.¢,,) given by (1.20) and (3.4¢).
Remark 4.1.

i) T=®?1 is a non-gradient master-symmetry for the KdV equation. Given
T one recovers @ from T, + @T}@". Equation (4.12) is the two-dimensional
analogue of this well known formula [8]--[10].
i) Theorem 3.2 implies that Egs. (4.15) with m=1, H,, =1 reduce to the
following formula [6]:
P = BL grad _f dxdy, y{t Y. (4.20)
W

nt+l

An analogous formula, for the KdV equation is well known

1
v — _ " _orad [dxy"t n

= 3y 3y 2l 40y

iii) We observe that Eq. (4.18) for H,, = 1 cannot be projected into Eq. (2.37).

IV B. Equations Associated with the DS Equation
Corollary 4.2.

a) @2, T,,, T, =(x/2)0Q126,,1, I = diag(1, 1), is a non-gradient master-symmeltry
Jor the DS and the equations related 1o DS:

[quK?ZIIlZ!(DfITlZ]d="(‘D'I’EII{:(I)ZIIID 4.21)
20, = (91, T\2)s+ 0,(P1, T, 0, O, =0, (4.22)
where K9, H ,, is defined in (1.11-12).
b) Let R
=0, 1.,=0,'K{,, 0,=0 4.23)
Then
P74H,, =grad,, I, (4.24a)
{ (n ain
lu¢n+ I G VH Ty ) = —mé‘;d"dhd)’z trace 8,,Q,,07; "H,,
1 ~(n+ ’
=3t I)'ifzdxdy,tracea[Q,.(y‘,z YH)ud (4.24b)
Proof. 1f
X
T, $§0Q:25121' (4.25)

Eq. (4.10b) is satisflied and Eq. (4.10a) holds for ¢ = 1 {(sce Appendix A). Then the
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derivation of Eqgs. (4.21), (4.22) and (4.24) is analogous (o the one of Corollary 4.1.
(see Appendix A).

V. 2 + 1 Dimensional Equations as Reductions of Non-Local Systems
In [1] and [14] the classes of evolution cquations
qh=I(1_x'2<5lzd)ﬁzle(fz'l, (5.1)
L}
where @, and K9, are defined in {1.4-5), were algorithmically derived from the
spectral problem
Wex +glx, y)w +aw, = 0. (5.2)

In this section we show that Eqgs. (5.1) are exact reductions of equations
non-local in y, generated by the following non-local analogue of (5.2):

Wy G 4w, = Aw, (5.3)
where o
(@@I0x = fdy g v ) 1Ny, {5.4)

R

Hereafter the symbols i and u, indicate the integral operator defined by

(X y) = .(d.\"z X, vy ) SN y,) (5.5)

and its kernel u,, = w(x. v, ), respectively.

The algorithmic derivation of the classes ol evolution equations associated with
(5.3) is standard: its matn steps arc:

i) Compatibility. A compatibility between Eq. (5.3) written in the more

. W 0, 1/ w ) . )
convenient form = . ) . and the linear evolution equation
Wa/x A—=q—=D.. 0/\w,
w ~(w i . .
=V , yields the following operator equation:
W,/ W,

Go=Coex H[G+aD,.¢) + G+ 2D, ¢ 1" +[G+aD. D G+ 2D, 7]
—4iC, + Agld + aD,) —(§ + 2D ) Ay, (5.6)

where the scalar integral operator 2¢ is the 1,2 component of the 2 x 2 matrix
integral operator V,on =0and [ . Jand { , ]* arc the usual commutator and
anticommutator.

i) Equation for the kernel. The operator equation (5.6), together with the
definition (5.5), implies the following equation for the kernels ¢,,.¢ ;. 4,5:

412, =D ¥,Cyy— A1+ 4y, (5.7)
where -
Y =D 44, +D71 D+ D7g D7 G, (5.8a)
Giofi2= a2 Faga)dys + D F DY) /4, (5.8b)
n

ii)) Expansion in powers of A. Let us first assume that

Ciy=Y MO, A,=0, (5.9)
1

j=0
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equating the cocflicients of H{0< j<n) to zero we obtain: O = HY CY; 1 =
}‘;’,ZC“’ +HY VU SjSn) gy =DW,,C% where H =1y, y,). Then
%= Z #nPn sHY Y and

§=0

Qia,= L ATDEE Y = Y 4Ty, (5.10)
s=0 s=0

where
G, =DP D =D 4§+ DILD R, D 1§D L (S
If we assume that

n nt1 .
Cip,= Z}~jc(1j)za Alz——4z}*'”(1”2v H =H! .hs}z)s
j=o

=0

then CV}=D"'gi, e\ + 1% CYy D LEL,C0 4+ DTGy, 1Y + HYS ‘*u <
JEn) g, =D¥,,CQ +4¢7{211,2, where HY = H(y,,y,). The LhOlLC HY, =

for 0 <j < nyields C{Y = Z g nPrsspigo, eSSt and

s=0

nt+l n+ 1

qu, z 4‘ "Dl’"’ :+ID llxz l{(n t+l)_ Z 4‘ nwn ‘+quz Il(ln2*1+l)'
s=0
(5.12)

Thus the isospectral problem (5.3) generates the classes of evolution equations
(5.10) and (5.12).

It turns out that the translormation ¢,,—0,,¢4,.¢; =¢(x.y,). is an exact
reduction of Egs. (5.10 11) if, at the same time, 47 "HY 2 4 "Hy -9,

n+1 . -
ﬁ’< s )’,2. In this case i, - ¢1,,9,,— P, and

n+l

n+1 . -
8124y, = ZB’( ) DULIDS, =6, D1 =6,,@",M,,-1, (5.13a)

n+1

n+1 _ B ~ .
0129, = Zﬁ‘( )d"izlﬂlhz'élnz=512‘D'}2‘llz']=512¢12an‘1' {5.13b)

Proceeding exactly in the same way it is possible to show that the nonlocal

eigenvalue problem .
W,=JW,+ QW+ iJW, (5.14)

generates the following class of evolution equations:”

Q12 =(—Zoa"-"d~),l'5’Ql_2.H(l”2* Q12 =Q(x. 51, )2) (5.15)

where
D, Fy=0(Pry— 0P 01)F . Fip s F(xy,.y,) off-diagonal  (5.16a)

01:.Fy, = [dys(Qi3Fyy £ Fi304,) (5.16b)
R

PER NP RS S
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o =diag(l, — 1) and HY), is defined by
P, HY, =0, HY) diagonal. {5.16¢)
Also in this case the transformation Q,,—3d,,0, is a reduction of (5.15) if
n ~ ~
an.l—’ﬂ‘<l>(ﬂ =2a) and HY,—6},1 or d8y,0. In fact, Q, =00 P~ Dy,

Thus one obtains the following classes of equations:

n n g -
8120, =l=20/3’(l)‘p';zlgxz‘5l121 =0,,P7,01,1 (5.17a)
or
L " B _
512Q1‘=‘_Zoﬂl<l>‘bannzélxz‘7=512¢:2Q12¢7v (5.17b)

associated with the eigenvalue problem
W,=JW,+ WQ + JW.

The above results clearly imply that all the notions introduced in [1] to
characterize the algebraic properties of equations in 2+ | dimensions can be
justified and interpreted in terms of the algebraic structure of the corresponding
non-local versions. For example:

i) The above derivations both motivate and explain the derivation of the
recursion operators introduced in [ 1] and [14]. In particular the crucial role played
by the integral representation of differential operators is clarified.

ii) The directional derivative introduced in [ 1], which is the main tool nceded
to investigate the algebraic propertics of cquations in 2 + 1 dimensions, can be
derived from the usual Frechét derivative in the space of non-local operators. For
example, the Frechét derivative of §39,, in a direction [, is

Gialf120912=f {2912 (5.18a)
fi2912= [dvs(fi3d32 2913 f32), (5.18b)
R

which is exactly the direction derivative ¢{,,[ f,,]g,, introduced in [1].

iii) The definition of an admissible function and of its derivative follows from
the fact that reduced functions admit a double representation; for example (5.13b)
implies

n n . _
,_zoﬂ'(l)‘p';il‘hzéllz=‘512d";2‘112'1- (5.19)

But the directional derivative is defined only on the admissible representation given
by the left-hand side of (5.19), which is the form of the function before the reduction:

n

hHn-1~- )
Zan,l‘plz 4. HY:.
=0

In Appendix A we investigate (Egs. (A.3)) the algebra of the nonlocal operators
ai,defined in (5.18b). Here we remark that this algebra can also be interpreted as
an algebra of matrices in which + indicates the opcrations of anticommutator

il
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and commutater respectively, namely a*h=ab + ba. (Sec also Appendix C of [1].)
This'is not a coincidence and the following important observations, here illustrated
on the recursion operator @,, of the KP class, can be made.

1) Integral operators:

a2 f12=§dy3d13 S22 % f13dsa) (5.20a)
R

412 =90,29, +ad},, (5.20b)

is equivalent to the introduction of the intcgral operator 4. Then @,, becomes
the nonlocal recursion operator ®,,, defined in (5.11) and associated with the
nonlocal eigenvalue problem (5.3).

i) Matrix operators:

q*f=af +fq; gq,f matrices, (5:21)
reduces @,, to the well-known matrix recursion operator
&=D*+q*+Dg*D ' +q D 'q D}, (5.22)

associated with the N x N matrix Schroedinger eigenvalue problem in one
dimension [15].

The directional derivative qi,,[ f1,]19.2 of g{,:

szd[fnz]gxzzfxizglzs (5.23)

i) is exactly the usual Fréchet derivative §i,[f1,149,2 of §1,.
ii) Corresponds to the usual Fréchet derivative ¢ *[ f]g of ¢*:

a*[flg=f*g=Sg+4f. (5.24)

Since the + operators in (5.20a), (5.8b), (5.21) and (5.18b) satisfy the same
algebraic identities (A.3), then important algebraic properties of the recursion
operator @,, of the KP equation (like hereditariness) are equivalent to the
corresponding properties of the nonlocal recursion operator @,, (5.11) and, even
more remarkable, of the matrix recursion operator @, (5.22).

In order to make this connection with the matrix formalism more clear, we
observe that the nonlocal problem (5.3) can be obtained taking the N — oo limit
of the N x N matrix one dimensional Schroedinger problem

W+ qW =AW, (5.25)
where the coefficients of the matrix q are chosen in the form
()i = 40 1) + a6, 4y — iy 1) (5.26)

with the obvious prescriptions

q

C
qijlx, ) —> q(x, 8, y1, y2 )i a1 —5-'.1—1)_’“5 -
N-w N-o U}y

(5.27)

The connection between equations in 2+ 1 and N x N matrix equations in
1 + 1 was first used by P. Caudrey. He introduced in [16]a N x N spectral problem
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{similar to {5.25)) which reduces 1o {5.2) in the limit N -+~ _Then he showed that
the N x N Riemunn--Hilbert formalism associated with it becomes, in the limit
N — o0, the nonlocal Riemann -Hilbert and the ¢ formalisms of (5.2) [17].

The connection established in this section between the spectral problems (5.25),
(5.3) and (5.2) implies that the well established theory of recursion operators and
their connection to the bi-Hamiltonian formalism in 1 + 1 dimensions, once applied
to the matrix problem (5.25), gives rise, in the limit N — o, to the corresponding
theory developed in [1] and this paper for 2 + | dimensional systems.

It is remarkable that both algebraic properties and methoas of solution for
integrable systems in 2 + | dimensions can be justificd and obtained from the
corresponding properties of 1 + 1 dimensional systems.

.

Appendix A

In this Appendix we present some of the explicit calculations necessary to apply
the results presented in this paper to the classes of evolution cquations associated
with the KP and the DS cquations. In order to make this paper self-contained,
we [irst present some results contained in Appendices B,C of [1].

The directional derivatives of the basic operators g, and Q},, defined in
{1.4b) and (1.10b) respectively, are

‘hiz,,[fxz]gu =f1‘2§luv J12.4y 5 scalars, (Ala)
Qi2,[f121912= 12412 [12 off-diagonal matrix, (A.1b)

where f[,are defined by
ffz.‘hz#J.d."s(fn!hzi.‘lmf:sz)- (A.2)
[}

The integral operators f |, have the following algebraic propertics:

aibi,=+bira,,, (A.3a)
(airbiy—biralz)ci=(a2b12) ¢y = —canby,. (A.3b)
(@ by Fhigagy)e, = a0, by ) ¢y = tejya0,byy, (A.3c)
al, = +al,. (A.3d)

Moreover the integral representations
q;zfxz = fd)'s(‘hsfsz + f13932h e d12 =d1,q, + xd),,
R

Qlizflz =jd}'3(Q13f32 + f13032) QO =0d,,0,,
R

imply that the operators ¢,,and Q/,satisly Egs. (A.3) as well. Equations (A.3)
are conveniently used to show that

a) The recursion operators @, (1.4) and (1.10) are strong symmetries of the
starting symmetries K9, H,, (1.5-6) and (1.11-12) respectively. For example, if
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K9, =0y, and H,; is given by (1.12),
d)IZd[Ql—ZHlZJ./AIZ_(QFZHlZ)J[d)lZ./.IZ]+‘/)IZ(QH[{IZ’JI,’.IZI
= _U[(Q{2H12)+ PI'ZIQTZ+Ql‘21)lzl'QIZ’112)*]’IZ
—(a(Py, “QrzpleQl*z)flz) i taly, Qllll,l.’](.)l..’)/ 121 =0,
since the terms without @], give
—0(Pyofi2) Hyg+al,fH =0,
and the terms with Q,, give
—U(Qnﬂszz)‘LPl—lerzfxz_UQ;z’)[zl(leiinz)‘.f'lz
+(UQ1+2P1-Z|Q1¢Z.{12)7H12"OQI‘ZPIZ‘Q;Lt.lZ!{lZ: —ollQ,, H )"
+HGOL)PL QU S+ 00 P U200 H o+ 00,0 H )
=—00L, P HLOL 12+ 1200:H,,+ 0,0, 1H,,)=0.
b) The Lie algebra of the starting symmetries is given by Egs. (1.7) and (1.13).
For example
i) if K, H,, are given by (1.5-6):
[leH(llz’vaz”(lzz' d:((qul +‘];2D_l‘112)11(122))“ ll(ll.’.l - D(‘h:”(xlz‘)‘ ”(122)
_(‘l{zH(llz))‘D—l‘h:”'lzz'_‘llzl) 1(‘Ilz”ﬁlz)””(lzz)
= - Dq;z(H‘llzl)_H‘EZ) + ‘I;ZDVI(""”'II:“W ‘liz”‘lzz’
+(HE) g 1Y) = — M 1Y
ii) if K9,H,, are given by (1.11-12)
[N HY M G HE), = Q1,0 ) HY = Q1 HYD) oY
_”l‘llz)rQu"’”(l:z"*‘(”'”‘lzz')) O, 1
— M HY.

I

¢) The functions T,, given by (4.16) and (4.25) satisfy Eqgs. (4.10) for examples
1) if Ty, =9,,, then
Sif12= @i, 0021012 =280 81D Yy +qia D 00 1 =4,
since dy,,=0and 87, /,,=2f1,.9,2/,,=0.
Wy If T,y = (x/2)aQ [, 0,1, then Egs. (4.10) are satisficd using the following results:
Tinlfia) =30/ fadil =0/,

., : . Q12115 1), oll-diagonal
Ti2f1,=x(6Q, /12 £ [1200,) =-\'U{QIL ’-lz ,-]2 diagonal
12012y Sz UK d

For instance:
Si2fi2= _U(szszXQrz + Ql}zpizl 1.1‘2)./.12 +a(Py; - Ql‘Zl)iZIQlOZ)'\‘U.’IIZ
- x{(Py, _Q;’ZPl‘ZlQl‘Z)le = f1s.
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d) #1,[K%,H,,.T,,]1=0, if K¢, H,, and T, are given by (1.11 -12) and (4.25)
respectively, or by q;,H,,,H,, = H(y,,y,). and §,,. For example
1) @1,0912H,3,0,21a= 1,0, H,, =0.
i) @1,[00H ;. Ti2]a= @ T H , —T,,,[0::11,:])
=@,(x001, — x6Q,) H;=0.

e) Equation (4.17b) holds. It follows from Mu,[o‘,z] =D&}, +8,,D tqr, +
412D~ '6;, = 2D, which implies

¢’{2[M12.H12v612]d=2¢,;ZD.1112‘ (A4)

Different choices of H,, = H(y,,y,) give different results. As it was shown in
Appendix B of [1]

n N H’_‘
O30 Hi = 2 Qa0 Mg HY, H‘:’z#a’iéTh_): (A5)

an analogous, although more tedious derivation, gives
P1;'DHy,y= d)';lez'le + Z al(?”v)ﬂcb';iﬂan'H(lZz”» (A.6a)
=1

O HQ + )

a2 CHOA YD) L {ln —1)/2, nodd

A.6b
n/2, neven (A.6b)

oy
and the coefficients C{? are obtained through the foltowing recursive construction:
m _ tm—1 m=1 m-
g‘ior;lc,; A A7)
where Ci¥ =0 if b <0 and b > a. Equations (A.4) and (A.6) imply Eq. (4.17b).
f) O7; @7,K9,H,, are extended gradients; for example if
i) K$;=Ny; =43 H; =H(y,,y,), ©,=D and n=0:
f12sD7 N H13)il9121) = < Sf12. D7 g, Hip > = <D 7 f1 5, H 012
= —C(H D7 f13,912) =<{D "' f11H,3.912).
ii) K(1)2=M12 =Dg{, +91,D7 g1, Hi; = H(y1, ). ©,, =D and n=0:
<f12»(D-1M12H12)d[g12]>
={f12:91:H12+ D¢, D7 g, Hy, + D7 g, D7 g0 Hy )
={S12,(H; =D (D7 g1, Hy2)™ + 412D 7 Hib))g2)
HG—((D7'qH )" + H ;D7 40D ) f12.942)
(HG=D7H(D7 g1 Hiy) + 472 H D7) f1249:02)
iii) K9, =M, =01,0,H,, defined in (1.12) and n=0:
<f12’(UM12H12)4912>=<fxzv-Hfz.‘hz>=<“Hn+zf1z~!hz>~
iv) K¢, =N,,=00,,H,, defined in (1.12) and n=1:

s ]
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'<f12$(61\7(ll2)H12)dglz>
V=S (P00 G H ) = PO HG + QL L P 091D
== (P Q00 H ) —PLHL +QLH P 05 12,4120
g) Equation (4.24b) holds, since
M2 VHy,%0070,0,,1) = — (xQ{07y VH ,,0,,1)
=§[3dxdy,dy2612trace Q2070 " Hy,.

Appendix B

In this Appendix we show that if @ is factorizable in terms of compatible
Hamiltonian operators 2and @ in the form &= Q20 !, and if @ is invertible and
O, =0, then Eq. (4.5) holds.
We first show that .
(OT)E = LE+THO*, Lrb=d,|b)T, (B.1)
O []T+O¥3O o=, [T]h. (B.2)
(B.1) simply follows from the definition of the adjoint:
A@T)La,b) =a, @ b]T + T, [b]> =(LF+ TFd*)a,b),
while (B.2) requires the use of all the hypothesis of this Lemma.:
(P []T+OL*O v, a)
=[O ']O ' Ta) +{Q[Ox]O 'r,®@ 'T)
=, [T]1O "v) =2, & [T]v).
Then, using (B.1-2) and (4.4) for n =0, we obtain Eq. (4.5):
(T + @O Y= (T, [v]+OTrO 'v)+ &, [¢]T
+OL O e+ O(THD* — O*TF)O v
=T [v]+OTrO 't)+ OS*O v,
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Recursion Operators
and Bi-Hamiltonian Structures in Multidimensions. I
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Abstract. The algebraic properties of exactly solvable evolution equations in
one spatial and one temporal dimensions have been well studied. In particular,
the factorization of certain operators, called recursion operators, establishes
the bi-Hamiltonian nature of all these equations. Recently, we have presented
the recursion operator and the bi-Hamiltonian formulation of the Kadomtsev-
Petviashvili equation, a two spatial dimensional analogue of the Korteweg-
deVries equation. Here we present the general theory associated with recursion
operators for bi-Hamiltonian equations in two spatial and one temporal
dimensions. As an application we show that general classes of equations, which
include the Kadomtsev-Petviashvili and the Davey-Stewartson equations,
possess infinitely many commuting symmetries and infinitely many constants
of motion in involution under two distinct Poisson brackets. Furthermore, we
show that the relevant recursion operators naturally follow from the underly-
ing isospectral eigenvalue problems.

1. Introduction

In recent years a deep connection has been discovered [1, 2] between certain
nonlinear evolution equations in 1+1, i.e. in one spatial and one temporal
dimensions, and ceriain linear isospectral eigenvalue (or scattering) equations.
These isospectral problems play a central role in developing methods for solving
several types of initial value problems of the associated nonlinear evolution
equations. The most well known such method, the celebrated inverse scattering
transform (IST) method, deals with initial data decaying at infinity. However, the
isospectral problem is also crucial for characterizing periodic [3] as well as self
similar solutions [4].

It is quite satisfying, from a unified point of view, that the isospectral problems
are also central in investigating the “algebraic” properties of the associated
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nonlincar cvolution cquations: The isospectral problem algorithmically implics a
certain linear integrodifferential operator @, called the recursion operator. This
operator has remarkable properties: ® maps symmetries into symmetries; ® has a
certain algebraic property [5] which Fuchssteiner [6] calls hereditary and thus
generates commuting symmetrics: #*, the adjoint of @, maps gradients of
conserved quantities into gradients of conserved quantities: @, admits a
symplectic-cosymplectic factorization and thus generates constants of motion in
involution [7]; & times the first Hamiltonian operator produces the second
Hamiltonian [8], hence the associated nonlinear evolution equations are bi-
Hamiltonian systems; the eigenfunctions of & are also symmetries, which actually
characterize the N-soliton solutions [9]; the eigenfunctions of @ form a complete
set [10].

Well-known scattering problems in |+| are the Schrddinger scattering
problem, the so-called generalized Zakharov-Shabat (ZS) or Ablowitz-Kaup-
Newell-Segur (AKNS) system, and their natural generalization, i.e. the Gel'fand-
Dikii operator, and the N x N AKNS. Thesc isospectral problems are related to
several physically important equations, the Korteweg-deVries (KdV), sine-
Gordon, nonlinear Schrédinger, modified KdV, Boussinesq, N-wave interaction
equations, etc. The above eigenvalue problems have been thoroughly inves-
tigated with respect to both the IST method and the associated algebraic
properties. The IST of the Schrodinger was investigated in [1, 11], of the AKNS
in [12], of the N x N AKNS in [13-15], and of the Gel'fand-Dikii in [16]. The
IST of special important cases of the above systems were investigated in [17]
(nonlinear Schrédinger). [18] (modified KdV), [19, 20] (Boussinesq), [21]
(3-wave interactions). The recursion operator associated with the Schrodinger
equation was obtained by Lenard, of the AKNS in [12], of the Gel'fand-Dikii in
[22] and of the N x N AKNS in [5] and [23]. The general theory of recursion
operators and their connection to bi-Hamiltonian formulation has been devel-
oped by Magri [8], Gel'fand and Dorfman [24], and Fokas and Fuchssteiner [7].
Other relevant works include [25].

It is also well known that certain two-dimensional generalizations of the above
scattering equations are related to physically interesting nonlinear evolution
equations in 2+ 1 dimensions. In particular, a generalization of the Schrédinger
equation is related to the Kadomtsev-Petviashvili (KP) equation (a two-
dimensional analogue of the KdV). Similarly, the two-dimensional version of the
N x N AKNS is related to N-wave interactions in 2+ 1, the Davey-Stewartson
equation (DS) (a two-dimensional analogue of the nonlinear Schrédinger) and the
modified KP equation. The IST for the above two scattering problems has been
only recently studied [26]. (For other interesting results in this direction see also
[27].) In spite of this success, the question of using the scattering equations to
obtain recursion operators had remained open. Actually, Zakharov and Konopel-
chenko [28] have shown that rccursion opcrators of a certain type, naturally
motivated from the results in 1 +1, do not in general exist in multidimensions.
Recursion operators in 2+ 1 dimensions were only known for straightforward
examples like the 2+ 1 dimension Burgers equation, that can be linearized via a
generalized Cole-Hopf transformation [30b]. For a brief review of the literature of
the various attempts to obtain recursion operators in 2 + 1, we refer the reader to
[29]. Here we only note that Konopelchenko and Dubrovsky [30a] were the first
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to establish the importance of working with w(x,y,)w*(x,y,), as opposed to
w(x, y)w*(x,y), where w(x,y) and w"(x,y) denote the eigenfunctions of the
associated scattering problem and of its adjoint, respectively. They also found a
linear equation satisfied by w(x, y,)w*(x, y,). However, they failed to recognize
that this equation could actually yield the recursion operator of the entire
associated hierarchy of nonlinear equations. Instead, they used the above equation
to obtain “local” recursion operators. Thus, the question of studying the
remarkably rich structure of the recursion operator, ifi particular, its connection to
symmetries, conservation laws and bi-Hamiltonian operators was not even posed.

Using a suitable generalization, we have recently presented the recursion
operator and the two Hamiltonian operators associated with the KP equation
[29]. In this paper we present the theory associated with these operators. In
particular, the notions of symmetries, gradients of conserved quantities, strong and
hereditary symmetries, Hamiltonian operators are generalized to equations in
2+1. Also a simple algorithmic approach is given for obtaining the recursion
operator from the scattering problem. As examples of the above theory we study
the two-dimensional Schrodinger problem and the 2 x2 AKNS problem in two
spatial dimensions. The following concrete results are given:

1) The linear eigenvalue problem

Wer +4(x, y)w+aw, =0, (1.1
where « is a constant parameter, gives rise to the hereditary recursion operator
®,,=D*+q[,+Dq{,D™" +q;,D " 'q(; D", (1.22)

where the operators g}, are defined by
4y =01 +q,+aD, ¥ D)), D@f—,
Vi

The operator @,, admits a factorization in terms of compatible Hamiltonian

operators, ®,,=0'0OV)"", where 0!)=D and O} are skew symmetric

operators satisfying an appropriate Jacobi identity. '
The KP equation

qai=q(x,y), i=1,2. (1.2b)

4y =quze+599,+32’D7'q,, (1.3)
is the second member, n=1 (8, =1/2) of the following hierarchy generated by &,,
4,,=p. _f dy, 8y, —y)®1,6%, n=0,1,2,..., (1.4)

where o'%=(®,D)-1=q, +4q,,+(9,—9)D " "(q, —q:)+ 2D '(q,,, —43,,) and
&(y, —y3) is the Dirac delta function. The KP is a bi-Hamiltonian system:

@O L)
4= Im dy,8(y, —y2)O\ W)= | dy,d(y, -y )OI, (1.5)
- - a0
where L
Yi=D""1a, H=D""d 6} (1.6)
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The KP equation possesses two infinite hierarchies of time-independent commut-
ing symmetries and constants of motion. For example, (®7,6'%),,,n=0,1,2, ... are
symmetries of the KP.

The operator @, is the adjoint with respect to an appropriate bilinear form
(see Sect. 4) of the “squared cigenfunction™ operator. One may verify that

Ot,w,wy =0,  w;=w(x,v) (1.7)

where w™ satisfies the adjoint of Eq. (1.1) (see Sect. 4).
ii) The linear eigenvalue problem

W.=JW,+QW, (1.8)

where J = a0, 6 =diag(l, — 1), and Q is a 2 x 2 off-diagonal matrix containing the
potentials g,(x, y). q,(x,y), gives rise to the hereditary recursion operator ®,,
defined on off-diagonal matrices, where

‘ D,=0(P,—0,P;'012), (1.9a)
and the operators P,, Qf, are defined by
PlZFIZ'_:—.FIZ,_JFIZyl_FIZ,’JV QItZF12¢QIF|2iFIZQ21 (lgb)

and Q;=Q(x,y,), i=1,2. The operator ¢,, admits a factorization in terms of
Hamiltonian operators, ®,,=0{J(0')~!, where 0\ =0.
The DS equation

i+ 1+ 22q,)=q(d—1aP);  be— 279, =24l (1.10)
corresponds to g, =4, =4, ;= — % and n=2 of the following hierarchy
Qu"’ﬂni[d)’zd’:zQx_zU- (1.11)

The DS equation is also a bi-Hamiltonian system with respect to the two
Hamiltonian operators 6"} =g and @'} = @, ,0 defined on off-diagonal matrices.
It also possesses two infinite hierarchies of time independent commuting
symmetries and constants of motion.

In more detail, this paper is organized as follows: In Sect. 2 we review the
algebraic properties of equations in 1+ 1. The KdV equation is used as an
illustrative example. This is in a sense a summary of [7, 8, 24] although we follow
the notation of [7]. In Sect. 3 we derive algorithmically the recursion operators
(1.2), (1.9). This derivation is simpler than the one given in [29]; we now use
expansions in terms of d‘6(y, — y,)/dy}, where & denotes Dirac’s function, as
opposed to expansions in terms. of i°. In Sect. 4 we show how @,, generates
extended symmetries o, , and extended gradients of conserved quantities y,,. We
then show that o,,,y,, are symmetries and gradients of conserved quantities,
respectively. Furthermore, the remarkably rich theory associated with the bi-
Hamiltonian factorization of &, is developed in this section. In developing this
theory we use two important notions: a) The role of Frechét derivative is now
played by an appropriate directional derivative, which is naturally motivated from
the underlying isospectral problem. b) An extended symmetry o, can be written
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asd,,- 1, where é,, is an appropriate operator. The Lie algebra ol these operators
is closed provided they act on appropriate functions H,,. Thus in 2+ 1 one is
dealing with a Lie algebra of operators as opposed to a Lic algebra of functions. In
Sect. 5 we give concrete iltustrations of the notions introduced in Sect. 4.

We note that Fuchssteiner and one of the authors (ASF) introduced an al-
ternative way for generating symmetries, the so-called mastersymmetry approach.
In particular, it is shown in [31] that for the Benjamin-Ono equation u,=K,
the map [ -, t],, where the bracket [, ], is defined in (2.16b), v = xK +u® + 3 Hu,,
and H denotes the Hilbert transform, maps symmetries into symmetries. This
approach has been applied to KP in [32], and its general theory has been
developed in [33] (for other applications see [34]). However, the t has certain
disadvantages: a) The relationship between t and the eigenvalue problem has not
been established. b) t is not hereditary. c¢) It is not known if 7 can be used to obtain
the second Hamiltonian. In [35] we develop further the theory presented here. In
particular, we: i) analyze further the Lie algebra of the starting symmetries and use
&,, to generate time-dependent symmetries, i) use an isomorphism between Lie
and Poisson brackets to show that all these symmetries correspond to extended
gradients and hence give rise to conserved quantities, iii) show that the t
mentioned above comes from a time dependent symmetry, and since it corre-
sponds to a gradient cannot be used to generate @,,, iv)find a non-gradient
mastersymmetry (for KP it is #3d,,) which can be used to generate ®,,,
v) motivatc and verify some of the results presented here and in [35] by
establishing that equations in 2+ 1 are exact reductions of certain nonlocal
evolution equations, of which the algebraic properties are straightforward.

Since two central aspects of integrable equations in 241, namely the IST
method and the associated algebraic properties, have now successfully been
studied, we speculate that essentially all aspects of equations in 1+1 will be
successfully studied for equations 2+ 1. (For example, asymptotics and action-
angle formulation of KP have been studied in [36].)

2. Review of Algebraic Properties in 1+ 1
We consider evolution equations of the form
9,=K(q), (2.1)

where g is an element of some space S of functions on the real line vanishing rapidly
for |x) -0, and K is some differentiable map on this space depending on g, and on
derivatives of q with respect to x. We use the KdV equation as an illustrative
example:

4y =qxxx+64q;. (22
Equation (2.2) admits the following four-paramcter Lic-group of transformations

X =é(x+atyt), t=eX(t+p), q'=e“n<q+ %)
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The above transformations (space and time translations, Galilean and scaling
transformations) are uniquely characterized by the following infinitesimal gen-
erators of symmetries [37]:
01=dx, 0;=qext0gqgc. 2, =14+60q,,  2;=2q+xq,+ 31 +64q,)-
(23)
Actually, the KdV possesses infinitely many symmetries
g,=®"0,, IL,=9"2,, n=12.., (2.9)

where @, the recursion operator (a strong symmetry) of the KdV, is given by
O@=D2+2q+2DgD™"', (D7'N)x)= | f(EME. (2.5)

[t turns out that @ has a certain algebraic property, called hereditary, which implies
that o;, 0 ;commute. KdV also possess infinitely many constants of motion; the first
few are.

¢

0 qZ
l= I Qndxv Qo=q, Ql::"—”y QZ=— +q3 (26a)
-@ 2 2
It is more convenient to work with the gradients of constants of motion:

(gradl,v>=§; Itg+ev) , where (f,v)= ?fvdx

£=0

is an appropriate scalar product. The functionals I,, 1, imply

Y1=4, Y1=q+3¢%. (2.6b)

Equations (2.3), (2.6b) suggest that ¢ =Dy, i.e. D is a Noether operator for the KdV
(it relates symmetries to constants of motion). This follows from the fact that KdV
is a Hamiltonian, actually a bi-Hamiltonian, system:

o 2 ®© P
g, =Dgrad | (—%’+q3)dx=(03+2qv+2oq)grad f %dx. 2.7)

The two Poisson brackets associated with the above are
{I,1;)=<gradl,O,gradl;», ¢=1o0r2,

(2.8)
©,=D, ©,=D*+2qD+2Dq.

1t can be verified that {.} is skew symmetric and satisfics the Jacobi identity.
The notion of a conserved covariant y is a mathematical generalization of the
gradient of a conserved quantity. Namely, if the functional I is conserved with
respect to a given evolution, then y =grad/ is a conserved covariant. Conversely, if
y is a conserved covariant and if y is a gradient function, then its potential I is a
conserved quantity. For example X, implies a conserved covariant I, =x—6tq
which is a gradient function, hence it implies a conserved quantity

= aj? (xq — 3tqg*)dx. However, I, corresponding to X, is not a gradicnt and
- o

hence does not correspond to a usual conservation law.
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The above discussion motivates the following definitions:

Definition 2.1. (i) A function o is a symmectry of (2.1) iff

o[K]1-K'(6)=0, (2.9)
where prime denotes Frechét derivative, i.e.
olv]= icf(q+£v) . (2.10)
68 e=0

(i) A function y is a conserved covariant of (2.1) iff
YIKI+ K" [y]1=0, (2.11)
where K'* is the adjoint of K', namely, <K' f, g>={f, K'g>.

(iii) An operator valued function @ is a recursion operator (strong symmetry)
for (2.1) iff

P[K]-[K,®]=0, (2.12)

where [ ,] means commutator.
(iv) An operator valued function @ is called a Noether operator of (2.1) iff
@[K]-OK' " —-K'©=0. (2.13)

(v) An operator valued function @ is called a Hamiltonian operator iffit is skew
symmetric and it satisfies

{a, @'[@b]c) +cyclic permutations=0. (2.14)

vi) An operator valued function @ is called a hereditary operator iff
¢d'[Pv]w— PP [v]w is symmetric with respect to v, w. (2.15)

(vii) Equation (2.1) is of a Hamiltonian form if it can be written as g, = &7,
where @ is a Hamiltonian operator and y is a gradient function, i.e. y =¢'".

Proposition 2.1. (i) If y is a conserved covariant of (2.1) and if y is a gradient function,
then I, the potential of v, is a conserved quantity for (2.1).

(ii) @ maps o’s to o’s, ®* maps y’s to y’s, and © maps y's to o’s.

(iii) If (2.1)is of a Hamiltonian form, then © maps y’s to o’s. Furthermore, there
is an isomorphism between Lie and Poisson brackets:

[07,,07,).=0 grad(y,,0y,>, (2.16a)
where
(a b],.=a[b]-b'[a], (2.16b)

and y,,7, are gradient functions.

(iv) If ® is hereditary and ® is a strong symmetry for o, then ®"a,, form an
abelian algebra.

(v) If (2.1)is of a bi-Hamiltonian form, then ® = ©,0 ' is a recursion operator

of (2.1).
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(vi) If (2.1} is a compatible bi-Humiltonian system, i.e. if it is bi-Hamiltonian and
if ©,+0,; is also a Hamiltonian operator, then ®=0,0;"' is hereditary.
Furthermore, if y, is a conserved gradient of (2.1), then ® *"y, are also conserved
gradients. Thus (2.1) possesses infinitely many commuting symmetries and infinitely
many conserved quantities in involution,

Given the isospectral eigenvalue problem associated with (2.1) there is an
algorithmic way of obtaining &. Furthermore, if @ has a complete set of
eigenfunctions it must be hereditary:

Proposition 2.2. Let
V.=U(g, )V (2.17)

be a linear isospectral eigenvalue problem associated with (2.1). Let G, denote the
gradient of the eigenvalue A. If G, satisfies

¥YG,=uA)G,, (2.18)

then ®=Y¥"* is a hereditary operator ( provided G, form a complete set ).

3. Derivation of Recursion Operators

A. The Schridinger Eigenvalue Problem

Proposition 3.1. The Schriodinger equation (1.1) is associated with the following
equation:

4129, =D¥;T1,—291a,,, (3.1)

where qi, are given by (1.2b), & denotes the Dirac delta function, T, a are arbitrary
Sfunctions of the arguments indicuted,

01250y —y2), T=Tx, ¥y, azxayy,ya), (3.2)
and ¥, is given by
¥,,=D*+q4{,+D 'q/,D+D""'q;,D""qy;. (3.3)

To derive the above result first write Eq. (1.1) in matrix form

w 0 1
=UW W'(w,)' v <_q_au, 0) 24

Equation (3.4) is compatible with

(4 2¢
W=VWw, VT<B E) (3.5)
if
U=V.—[U,V]. (3.6)
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The operator equation (3.6) implies
A,=B+2Cq, E.,=-B~-24C, 2C,=E-—A4,

3.7)
q(='—Bx—qA+E4s é=q+aDy
The above equations yield
A=—C,+D7'[C, 4]+ 4y, 45,=0,
. ’ (3.8)
= _Cxx_[cyq] 5
E=C,+D7'[C,4]1+A4,,
(3.9)

ql=Cxxx+[4’ C]: +[q7 Cx]+ +[47D_ l[qv C]]+AOQ_QAO ’

where [,]* is the usual anticommutator of two operators. We represent the
operator C by:

(CHlx, )= i[‘d)’znxv,"hh)f(xa)’z)» (3.10)

similarly,
Aof, =2§( dyai.2f;.

Then
(2, C+Cq)f, =£d}’2(‘lfz'rxz)fz )

[4,,D" l[‘?hc]]fl = '};d)’2(‘h_zD— l‘11_27‘12)fz s (3.11)
(Aod) —4,40) 1=~ ld}’zqu_zaxzfz-

Hence applying the arbitrary function f to the operator equation (3.9) we obtain
01292, =T2,.. + @2 T2+ T2, +902D 7190, T~ 2902a,2. (3.12)

Remark 3.1. It is easily verified that the following important commutator operator
relationships are valid:

[912,12)=0, [q{shid=2ah\,, [¥i5h]=4ah),; (3.13)

hereafter h,, is any arbitrary function h(y, — y,) and k), denotes its derivative with

respect to y,.
Proposition 3.1 can be used to derive nonlinear evolution equations related to

(1.1). One needs only to assume appropriate expansions of T, ,, a,,. We give two
examples:

Example (.
T|2= ,2051111?{)’ 1'1("2)=Cn7 a12=0v (314)
j=

where &, = 8’8, ,/0y}, C, an arbitrary constant. Then
Q=B [dy:0,:D¥1 1, =12 (3.15)
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To derive (3.15), use Egs. (3.14) in (3.12) and use (3.13¢) with h,,=4,,,
n n+1
512‘12,=D< Y oL,V T +4a Y ‘5]127.;57”)
i=0 i=1

Equating the coefficients of 373 ' and ¢4,, 1 £ j<n to zero, we obtain

. |
T3.=0. T V=- ¥,

Hence
. 1\ . R - 1Y .. n
n’i ”=<_ I&) GV 1, 012‘12,=012D'{’12’r\(g)=<— 4—a> Cn‘)lqu'ﬁl 1.

Thus (3.15) follows with the normalization (—1)"8,=(42)""C,.

Example 2.
' no ) 1
T,,= ¥ 8,T{Y. T7=0, ‘112=_§Cn5';z- (3.16)
=0
Then
g1, =P, [dy,0,,D¥1,D g, 1, n=12,..., (3.17)
R

with the normalization C,=(—1)"(4a)"8,.

Remark 3.2. 1. The operators @,,, ¥, defined by (1.2) and (3.3), respectively, are
related via

¢,,D=DY¥,,. (3.18)
Hence the hierarchy of Eqgs. (3.15) can be written as
ql'=ﬁ,,._£dy26uD'I"{;‘ -1 =ﬂnl{d}’2512¢12(¢120)' 1. (3.19)

The K P equation corresponds to n=1 and f, = ; the next equation of the class
(for B,=Y is

4= Gurxsx + 1099, + 2099, + 309%q,
+ SaZ(quyx +D~ ‘(qz))'y +2¢.D" 2qyy +4q,D" “Iy +49D" ‘qy,) +5¢*D " qury -
2. Similarly, the hierarchy of Egs. (3.17) can be written as
Q|,=ﬂn'{d}'5lsz72(D§ IR 1)=ﬁn£d)’zélz¢':2‘h—z 1. (3.20)

For n=1 and B, =1 the above becomes ¢, =aq, , ie. it corresponds to a
y-translation. '

B. The 2x2 AKNS in 2 +1
Propasition 3.2, Equation (1.8) is ussociated with the following equation:

‘5\2Q2.=‘7'P\2V120» 3.21)
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where V, ,, denotes an arbitrary off-diagonal matrix and the operator ¥, (acting
only on off-diagonal matrices) is given by
V1% 0(P— Q1P 00), PIZFIZ#FIZl_'IFIZYI—FIZ),IJ' (3.22)

To derive the above note that (1.8) can be written as

W,=0W, 0=Q+JD,. (3.23)
Equation (3.23) is compatible with W,=FPW if ~
0,=V.-[0.7]. (3.24)
We represent the operator ¥ by
(VF)x,y,) = '[zdy2 Vix, vy, va)Fx vy, (3.25)

Then [Q, 17]=.j;dy2(Q,2V,2)FZ, where QIZFIZ#QIFIZ'—FIZQZ'{'JFlZ,I

+F,, J. Hence (3.24) implies 6,,0, =(D—0,,)V,,. Splitting this equation
into diagonal and off-diagonal parts we obtain

5\1Q1.=P\1V\20—Q\—2V\1u» Py 3Via,—Q12Vi2,=0. (3.26)

where V,, and V,,  are the diagonal and off-diagonal parts of V,,. Hence
Eq. (3.21) follows.

Remark 3.3. The operator ¥,, satisfies the following important commutator
relationship:
[lpllthZJFllo= "2“}‘,12’:120, (3.27)

where F,, , is the off-diagonal part of the arbitrary matrix function F, and prime
denotes differentiation with respect to y,.

The above relationship follows by considering the diagonal and off-diagonal
parts of the following equation

{(D—=0,3h,,]F, ;= =2ah,,0F,,,. _(3.28)
Remark 3.4. Assuming
Vo= j—io 8,03, o) off-diagonal , (3.29)
Eq. (3.21) implies
Q|'=0£dy25”‘1”;2Q,_zv,2D; Py, =0, (3.30)

where v, 1s any diagonal matrix solving (3.30b).
To derive (3.30) note that Eqs. (3.21) and (3.27) imply

n n+l o
512Q2, =‘7< _ZO 81, 0} -2 Zl 0,0V ”)- (3.31)
j= 7=
Equating the coefficients of 873, 84,, n2j2 1, to zero we obtain
1 . i )
=0, o= W%*u‘” D 2 V= o (3.32)

e e+
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Equation (3.32¢) can be written as
a0y V=Pt = Q050 0,. 0=Pw,, — 05t {3.33)
where v,,, is an arbitrary diagonal matrix. Hence (3.32c) and (3.32a)
imply o3 V= ;o:) 6Q,0y,,, where vy, solves P ,v,,,=0. Hence
%= —1/(20)"¥13 '0Q 0,5, and the coeflicient 52, imply (3.30).
Remark 3.5. Let @, be defined by (1.9a), then one easily verifies that
b ,0=0¥,,. (3.34)

Equation (3.30), for special choices of v, yields hierarchies of integrable
equations:

Example 1. Let v,, =o, then (3.30) implies
Q.= '_BnidyZ(SIZOlII’I'ZQ;.ZI=ﬁn£dy2612¢’;2Q1—20' (3.35)

To derive (3.35) note that 0,0 = — g Q. Also(3.34) implies that ¢],0 =g ¥7,.
Hence the integral of Eq. (3.30) implies

—o¥7,0 0= —-d},00/,1=97,0;,0.
Remark 3.6. Equations (3.35) for n=0, 1,2 become
Q=0Q, fo=-1, (3.36a)
0,=0., pi=-1%, 3.36b)

Ql =— ﬂz[ZU(Qxx + azny)_ QA + AQ]
(D,—IDJA=— 2D, +JD YoQ? '
Equations (3.36c) under the reduction q,=§,=q yield the DS equation

[

(3.36¢)

iql + %(qxx + azqyy) =‘I(¢ - Iqlz) s

s ) (3.37)
¢xx—a ¢yy=2|q|xx .
Example 2. Let v,, =1, then (3.30) implies

Q= ‘ﬂn'{dYZéllaWTZQrz =ﬁu£d}’2512¢72Q1—21- (3.38)

Equations (3.28) for n=0, 1,2 become
0,=0, (3.39a)
Qi=2Q,, B,=-1, (3.39b)

(=3[ —4a0Q,, +BQ—-0B

Q=R Ox +BQ-0Q J}- (3,39

(Dx_JDl)B=4ao(Qf)y
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Equations (3.39¢) under the reduction ¢, =4, =4 yicld (i,= —})

q,=aq,.,+uq,
(3.39d)
Uy, —atu,, =2alglZ,.

C. Motivation

A crucial step in deriving the recursion operator associated with the Schrodinger
equation was to use an integral representation of the operator C [see Eq. (3.10)].
Also in deriving the theory for recursion operators we will need an appropriate
Frechét derivative. Both, the integral representation {3.10) and the above Frecheét
derivative can be motivated as follows:

Consider

Wt dw+aw,=0;  (§f)(x,y)= |{ dy,q(x, y, y:)f(x, ;). (3.40)

Equation (1.1) can be thought of as the reduction of (3.40) under g(x, y,,y,)
=d,,4(x,y,). It is clear that § satisfies an equation similar to (3.9) where q is
replaced by §. Since the operator § has the integral representation (3.40b), one is
lead to consider a similar integral representation for the operator C [Eq. (3.10)].
An equation similar to (3.12) is also valid for §, where q{, are replaced by §,,

3t fi2% l..;dyJ(ql3f32if13q32)+a(Dl ¥D))f,. (3.41)

The Frechét derivative of 4, f,, in the direction o,, yields
diiloalfa % l!;dh(”nfszif\aan)- (3.42)

This is precisely the directional derivative we use in Sect. 4. More details on the
concept of equations in 2 + 1 dimensions as exact reductions of nonlocal evolution
equations are presented in 35, Sect. V].

4. Algebraic Properties in 2+ 1

The theory of algebraic properties in 2 + 1 is based on the following concepts: a) A
crucial step in deriving the recursion operator associated with a given two-
dimensional eigenvalue problem is the use of an integral representation of
operators depending on q and d/dy. In KP for example § = q + ad/dy is represented
by

Wn‘*‘“&)f;z*&d}’sqnfu- (4.1a)

The above mapping between an operator and its kernel induces a mapping
between derivatives:

414[”12]f|z=£d.V3‘7|3f32s (4.1b)

where 9, [0,,] denotes the directional derivative of the operator valued function
4, in the direction ¢,,. Using an appropriate bilinear form [see (4.7)4.8)]
Egs. (4.1) imply

‘).fflz=(‘lz"¢Dz)f|2=id}’sfuqsz, 4?,[‘712]/'17.:&‘1}'3.[13632- 4.2)
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The recursion operator @, depends only on ¢, and ¢}, thus one is able to define
®,,,[0,,]. b) The theory of symmetrics for equations in 1+ 1 is based on the
existence of “starting” symmetries K°, which via @ generate infinitely many
symmetries. For example, for the KdV K®=g,. For equations in 2 + 1 we find that
the starting symmetrics K¢, can be written as K$,H, ,. where K9, is an operator
and H,, is a suitable function [for the KP H,,=H,,(y,,y,)]. The operators K9,
depend only on 4, 4T and thus K?z is well defined. The Lie algebra of the starting
operators K9, acting on H,, is closed. This fact, which is of fundamental
importance for the theory developed both here and in [35], can also be traced back
to the integral representation of the fundamental operator . For example,
Eq. (4.1b) implies:

qn,["lz]flz_‘il.,[flz]fflz= id,Vs(stfsz —/f13032)-

Also using
d1.ld10121/12= );d)’s(‘?l"lz)ufaz= Jz dysdy’sf324,3053,

it follows that

41,[41‘712]/‘12_‘?14[41.[12]‘712:41idh(alsfsz"‘fuo'sz)-
The above equation can be written as

[4:/124101:)a=4di[012, f12]1s

where the following brackets have been motivated from the above example:
[RY3HY, RAHEL = K\ IREGHYIHY - RY,RYHYIHY,  43a)
[ HEL + [ dys(HYSHG— HEHY). (4.3b)

In 1+ 1, one considers the Lie algebra of functions; in 2 + 1 one, instead, considers
the Lie algebra of operators, thus equations in 2 + 1 have richer algebraic structure
than equations in 1+ 1. ¢) The recursion operator @,, and the starting operators
K9, have simple commutator relations with 8,, or more generally with
hya=h(y, —y,).

Notation. We will consider exactly solvable evolution equations of the form
= K(q), where q(x, y,t) is an element of a suitable space S of functions vanishing
rapidly for large x, y. Let K be a differentiable map on this space (we assume for
convenience that it does not depend explicitly on x, y,t). The above equation is a
member of a hierarchy generated by @, ,, hence more generally, we shall study
q,=K'"(q). Fundamental in our theory is to write these equations in the form

9= .[ dy;0,,97,KS, 1% 'J;d)’zélzK(ﬂ =K} (4.4),
(in the matrix case, 1 is replaced by the identity matrix I), where K{}g,.g,) belong

to a suitably extended space 8, and @, ,, K9, arc operator valued functions in S.
For an arbitrary function K ,,(q,,¢,) we define the total Frechét derivative by

Ky, [F] #K12.|[F1|]+K12,1[F22]- (4.52)

~~— - - = e - Rt ol kot - oo St
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where K,,_denotes the Frechét derivative of K, with respect to g;, i.e.

0 - .
Klz._[ﬂi]*B_BKlz(qi"'Fm‘{j) s Lj=12, i), (4.5b)

We also define a special directional derivative, dictated by the underlying
isospectral problem and denoted by K, ,,. This derivative is linear, satisfies the
Leibnitz rule and is related to the above Frechét derivative by

sz,[‘s\zFlz]:K:z,[Fl (4.6)

For arbitrary functions f,, €S and g,, € §*, where $* denotes the dual of S, we
define the following symmetric bilinear form

<8|2,fxz>$RI)dXdde}’z"acegzxfnz) J12: 81, matrices, @.7)

where obviously the trace is dropped if f,, g,, are scalars. The operator L%, is
called the adjoint of L,, with respect to the above bilinear form, iff

LYgvn i)=& L2 /1) (4.8)

For arbitrary functions feS and ge S*, we define the following symmetric
bilinear form

(g,f).é'! dxdytracegf, f, g matrices. (4.9)
The operator L* is called the adjoint of L with respect to the bilinear form (4.9) iff
(L*g f)=(g,Lf). (4.10)

Remark 4.1. Definitions (4.7) and (4.9) imply
(612812 [120=C812:012/122 =1, /1)) (4.11)

Let I be a functional given by

1= ILd"d,\’n traceg,, = ﬁf)dxdy,dyz&,z traceg,;, @i2=0(x,yy, ¥, 008

4.12)
(if ¢, is a scalar, then omit trace).
The extended gradient grad,, I of this functional is defined by
Cgrad,, [, Y=, -]1= IL dxdy,dy;6,,0,,,[]. (4.13)
The gradient of I, gradl, is instead defined by
(gradl,-)#I,[-]=|dedygf[-]. (4.14)

It is easily seen that a function y, , € $* is an extended gradient function (i.c. it has a
potential I) iff

Y124="12.- (4.15a)
A function y€ S is a gradient function iff
. Yr=vr- (4.15b)
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Some of the above notions make sense only if for certain functions the directional
derivative exists. Such functions are called admissible.
Throughout this paper m, n denote non-negative integers.

A. Basic Notions

Definition 4.1. i) An operator valued function L,, is called admissible if its
directional derivative is well defined.

ii) A function K, is called admissible if it can be written as K,, =K ,H,,,
where K, is an admissible operator and H,, is an appropriate function [for KP,

Hy;=H,,(y..y,)) )
In analogy with Sect. 2 we give the following definitions:

Definition 4.2. Consider the evolution equation

q1,=£dy26,2K‘z=K,,. (4.16)
1) 'i'he function a,, is called an extended symmetry of (4.16) iff
012,[K]=(0,2K2)d0,,]- 4.17)
i) The function y,, is called an extended conserved covariant of (4.16) iff
Y12,LK]+(612K2)i[712]1=0. (4.18)

iii) The admissible operator valued function @, is called a strong symmetry
(recursion operator) of (4.16) iff

¢1z,[K]+[¢12’(5|2K12)4]=0~ 4.19)

iv) The admissible operator valued function @, is called a Noether operator
of (4.16) iff

912,[K]_612(612K12):_(512K12)46l2=0' (4.20)

v) The admissible operator valued function &,, is called a hereditary
operator iff

D, [P,:0121812— D129y, [f12]g,, is symmetric with respect to f,,,8,,

(4.21)
Remark 4.2. i) 6, is an extended symmetry of (4.16) iff o, , commutes with §,,K , ;,
[012,6,,K;,]4=0. 4.22)

This follows from the fact that ¢,,,[6,,K,;]1=0,,[K]

ii) Ifin(4.12),¢,, is an admissible function, ¢,, =g, ,H, ,; then the functional I
depends on H,,, I=I(H,,), and y,,=grad,I, defined by (4.13), is also an
admissible function y,, =7,,H ;. enjoying the property (4.15a) for every H,,. If,
for instance, [ = .{, dxdy,dy,8,,q:,D 'q;,H,; and the directional derivative is

defined in (4.13) [see also (4.1b) and (4.2)], then y,,=4D"'q[,H,, is the
corresponding extended gradient.
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iii) If y,, in addition to satisfying (4.18) is also an extended gradient function,
then its potential / is a conserved quantity of (4.16). This follows from the
following:

1,=1;[K]=I,,[5,2K,2]=(y,2,6121(,2),

where y,,=grad,, /. The derivative of the above in the arbitrary direction v,, is
zero if (4.18) holds.
iv) @,, is a strong symmetry for a,, iff

?,,,la,.]+[P3.a,,,]1=0. (4.23a)

Hence Eq. (4.21) implies that @,, is a strong symmetry for (§,,K,,) (see
Lemma 4.1).
v) ©,, is a Noether operator for a,, iff

912,[‘112]—912‘1?2,_‘1124912=0- (4.23b)

Hence Eq. (4.20) implies that ©,, is a Noether operator for (§,,K,,) (see
Lemma 4.1).

vi) In the above definitions we assume that 6, ,,7,,, ©,,, ®,, do not explicitly
depend on t. Otherwise, ,, [K] should be replaced by dayy/0t+0,, [K];

similarly, for y,;,, ©,,,, ®,,,.

Remark 4.3. i) &, maps solutions of (4.17) to solutions of (4.17);
ii) ®¥, maps solutions of (4.18) to solutions of (4.18);
iii) &,, maps solutions of (4.18) to solutions of (4.17);
iv) if @, solves (4.20) and &, solves (4.19) then #"@,, also solves (4.20).
Definitions 4.2 make sense only if (§,,K , ;), exists. For equations generated by
®,,,(8,,K,,), is well defined:

Lemma 4.1. Assume that the admissible operators &, , and K9, satisfy the following
operator equations

(@2 hlZ] = _'ﬂh'l 2 (4.24a)
[R?z’hlz]= ‘ﬂgnzhllz ’ ' (4.24b)

where B, B are constants, $, , is some admissible operator, hy;=h(y, —y,) and prime
denotes derivative with respect to y,. Then all notions introduced in Definitions 4.2
are well defined for any Eq. (4.4),. In particular:

(61297:R ;- 104=((®,,+BDV(RS; + BS,,9)5,,)s, (4.25)
where the operator 9 is defined by
[2,4,,1=0, 2 h,,=h,,, (4.26)
and 4., is any admissible operator. Thus
" n n n!
(¢1z+ﬁ9)'5:z=‘Z,oﬁl<{)¢13t5’|z» <(>=m (4.27)

Equations(4.24) imply that 5, ,#},R%, - 1 =(®,, + BARS, + BS,:2)8, , which
is an admissible function since ®,,, K$,, S,, are admissible operators.
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Remark 4.4. i) For the two-dimensional AKNS we use two starting operators K9,;
both of these operators commute with h,, (ie. F=0). For the two-dimensional
Schrodinger we also use two starting operators K¢,; one of them commutes with

h,,, the other implies f= g— S,,=D.

ii) [tisclear that the theory presented here, suitably modified, is also valid for
more general commutator relations than the ones given by (4.24). In investigating a
new eigenvalue problem one first computes the commutator of @, , and K¢, with
h,,; one then builds a general theory based on these commutator relations.

iii) We remark that Eq. (4.24a) could be derived directly from the underiying
isospectral problem without using the explicit form of @,,. As an example, in
Sect. 4.E we show that the equation &%, W, W," =4AW,W," (which is a direct
consequence of the spectral problem W, +qW=AW) implies Eq. (4.24a), with
f=—4a

The usefulness of the extended symmetries and the extended gradients follows
from the fact that their reduction yields symmetries and gradients, respectively.

Theorem 4.1. Assume that the admissible operators ®,,, R?,, satisfy
(®12,9,:]=— 512, (4.28a)
[k?z,512]= —3&25'12 ’ (4.28b)
where B, B are constants, §,, is such that
gxz,[']H|2=§|z,[']H12=0

and prime denotes derivative with respect to y,. Then:
i) If o, is an extended symmetry of

4, = id}’zénd’q K 1= id}’zélzK(H =K}, (4.29)

0., is a symmetry of (4.29).

ii) Similarly, if y,, is an extended conserved covariant of (4.29), y,, is a
conserved covariant of (4.29).

iii) If y,, is the extended gradient of a conserved quantity of (4.29), y,, is the
gradient of a conserved quantity of (4.29).

Proof. We first note that Egs. {4.28) imply

a) ®5,[ 1612812—-612P12,[ 1812.=0, (-4.30a)
a,) ®13,[012:1012812—012P12,[-1012812=0, {4.30b)
a;) (812K DL 1=012(KE:- 1)L 1, (4.30¢)
a,) (012K, 1al6y2-1=01200,,KF; - 1)l - . (4.30d)

Equations (4.30a), (4.30b) follow from (4.28a) (see Appendix A). Using (4.28b) and
the fact that gll/[ ‘JH,,=8,,,[ - 1H,,=0, Egs. (4.30¢), (4.30d) take the form of
(4.30a), (4.30b) (with @, , replaced by K¢,). However, these equations follow from
(4.28b) following a proof similar to the one given in the Appendix A.
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a) Equations (4.28a), (4.30a), (4.30c) imply
w\:‘ﬂ: ?2‘1);[]=5\2(‘V{zk?2'”;[]~ (4.31),

We derive Eq. (4.31), by induction: Eq. (4.31)y is (4.30c). Let subscript L denote any
derivative, such that the Leibnitz rule holds. Then

(012KTT L =(8,,9 K =(P1,0,, KT+ B0, KT, -

Hence ’

(012K L 1=, [ 162K+ @126, ,KTH[ 1+ B8, K[ 1. (432)
We assume that (4.31), is valid, then applying & on it, it follows that

(512K(|"5)f[ 1= 612Kl2,[ ] 4.33)
is also valid: To derive Eq. (4.33) note that Egs. (4.26) imply
28138,, 1=0\,8,"1.
Applying the L-derivative on the above we obtain
D(0,28,2 N[ 1=183,,- [ ]
The above equation for L =, and (4.26) imply (4.33). Equation (4.31), , , is valid iff:
¢l 2,[ ]61 ZG” + (DI 2(61 ZG")[[ ] +ﬂ(6ll 2(;")[[ }
=0,,8,,,[ 1G"+(P,,0,,+p5,,)G, [ ].

The first terms of the left- and right-hand sides of the above equation are equal
because of (4.30a); the second and the third terms are equal because of (4.31), and

(4.33), respectively.
b) Equations (4.28a), (4.30b), (4.30d) imply

wu‘ﬂzk?z' ”4[512']=5|2(‘511¢72K?2' n,L-1. (4.34),

To derive Eq. (4.34), we use again induction. Equation (4.34), is (4.30c). Assume
that (4.34), is valid, then applying the operator 2 on it, it follows that

2KDal612- =050 Kl - 1481206, .KTDa[ - 1. (4.35)
Using (4.35) it follows that Eq. (4.34),., is valid if
®2,[0,2° 162K+ ®,5(0,,K)al015 - 1+ B8, KTDald12 -]
=8,,9,2,[- 16,1, K +(P,20,2+ 81200, 2Kl - 1+ 0,280}, K]

The first term of the left- and right-hand sides of the above equation are valid
because of (4.30b); the second and the remainder terms because of (4.34), and (4.35),
respectively,
¢) Equations (4.28), (4.30), (4.34),, (4.31),, and (4.6) imply:
512(5|z¢11k?2 : ”4[']=(6|z¢';zk?2 ’ 1)4[512 ' ] =(512¢11K?2 : 1)/[']
=5|2(¢12k?2'”/[‘]~ (4.36)
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Using the definitions of symmetries and extended symmetries and Eq. (4.30¢c-d),
the first part of Theorem 4.1 follows:

04, = '..;dyZ(SIZGIZ.= ljld)’z‘slz(‘slz‘p';zktl)z'1)4[‘712]

= 'J;d)/zélz(‘p';zk?z ’ l)f[o'] = K(l":/[al J.

The derivation of ii) is similar to the derivation of i): It follows from the
equations

(612072K%: V30 1=6,2(07,RS; 131 1, (4.37a)
6,91, RQ - 1)2(8,, 1=06,,(6,,91,K%, - 1)} -1, (4.37b)
which are direct consequences of Egs. (4.31),, (4.34),, (4.6), (4.7), and (4.8). Then
Vi = [dyadiabia= - i(ldyzéu(élzd’"lzK?z' Di0r12]
= = [4761201K - VS8 ,aniz) = = [dya61:#1aRE - 150)
== [dy200:(; 12 D3lv]=— KB

The derivation of iii) follows from ii) and the fact that if y, , is an extended gradient
functiony,, is a gradient function: Recall that y , is an extended gradient iff y, [ ]
=yt2,[ 1, namely iff <y,,,[8,2]. /120 =<812:¥12.[/12])- Letting f;,—6,,f;, and
812012812, we obtain (y; [811]. f1)=(811,711,[/1,]) which implies that
Y11,=711, (1, is a gradient). Moreover, one could easily show that if
Y12 =grad,, [, then y,, =gradl.

Another important property of the extended symmetries is given by the
following theorem:

Theorem 4.2. If o, is an extended symmetry of Eq.(4.29), then ., =0 is an auto-
Bdcklund Transformation for Eq. (4.29). In equation o, =0, q, and q, are viewed as
two different solutions of (4.29).

Proof. If a,, is an extended symmetry of Eq. (4.29) and ¢,,=0, then Do,
= 63% +0,,,[K]=0, which implies the result.
Remark 4.5. Theorems 4.1 and 4.2 show that the symmetries and the auto-
Bicklund Transformations of an equation originate from the same entity: the
extended symmetry. This remarkable connection between symmetries and auto-
Bicklund Transformations exists also in 1 +1 dimensions. If we consider as an
example the classes of evolution equations in 2 + 1 dimensions (3.19), (3.17), (3.35),
and (3.38), then extended symmetries and gradients for the corresponding 1 +1
dimensional systems are still defined by Egs. (4.17) and (4.18), in which the
operators (8,,K,,), and (J,,K, ,)f are evaluated at «=0. For =0 &, is indeed
the operator that generates Biicklund Transformations in 1 + 1 dimensions [38].
The above thcorems imply that it is uscful to have an effective way of
generating extended symmetries and extended giadients of conserved quantities.
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For equations in 1+ 1 one makes fundamental use of the following two notions:
a)if & is hereditary it generates infinitely many commuting symmetries. b) If ¢
admits a factorization in terms of compatible Hamiltonian operators it generates
infinitely many constants of motion in involution. Both the above notions are
extended to equations in 2+ 1.

B. Characterization of the Starting Symmetry RS, - H ,
through the Recursion Operator ¢,

Fundamental role in the theory presented in this paper is played by a hereditary
operator @, , and a starting symmetry K{,H ,. [tis interesting that the recursion
operator &, , algorithmically implies K9, H ,,. Furthermore, if @, , is hereditary, it
is also a strong symmetry for K9,H,.

Definition 4.3. A starting symmetry associated with the recursion operator @, , is
K8¢,H,,, where the admissible operator K¢, and the function H,, satisfy

¢,2§,2-H,2=k?2H,2, glz'Hu:Ov (4.38)
and $,, is an invertible operator, of course, on a space of functions excluding
Ker§;3H,,.

Examples. 1. For the KP hierarchies, §,; = Dand/or §,, = D(q;;) ~ ' D. This implies
R?:=Dql,+q:07'ar;, 1=, (4.392)
R?:=4i;,  $1,=Dlgr,)™'D, (4.39b)

with H,, any solution of DH,,=0.
2. For the DS hierarchies S,, =(Q/,)~'P,,. This implies

R{:=Qn0 andjor K{;=0;, (4.40)

with H,, any diagonal matrix solving P, H,,=0.
For the results presented in this paper we only use a subclass of solutions of
DH,,=0and P,,H,,=0,given by H,,=h,, =h(y, —y,) and H,,=h,,(al +ba),

a, bconstants, respectively. More general solutions of the above equations are used
in [35] and give rise to time-dependent symmetries.

Lemma 4.2. If R%,H,, is a starting symmetry associated with the hereditary
operator ®,,, then &, is a strong symmetry of R9,H,,.
Proof. Since @, is hereditary,
®2,[P12/12)812— P12P12,[f12]812 Is symmetric in f,;, g, A(4-41)
Letting g,,=S,,- H,, we obtain
¢l 2‘[01 ZSI 2"1 Z]fll - ¢12¢12¢[$l ZHI Z]fl 27 (pl 2.,[“)! Zfl 2]Sl 2H12
+0,,9,,,01/1215::H,,=0.
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»

Using ®,,8,,H,, =R, ,, $,,11,,=0 and its consequence §, [ f,,]1H,=0,
for every f,,, we obtain

¢124[K?2Hl2]f12 —(K9:H, )l 120120 +D1,(KO,H )l /12]=0,  Yf,
(4.42)
thus &, is a strong symmetry of K$,H,,.

C. Hereditary Symmetries

Theorem 4.3. Assume that the admissible hereditary operator @, and its associated
starting symmetry K$,H ,,, defined via

‘puSuHu:K?zHu; szsz=0 (4.43)

satisfy ’
[P2,h12]=~pHy;, (4.44a)
(R hio]=—BS, ;. (4.44b)

where B, f are constants, S,, is an admissible operator, h,, =h(y, —y,) and prime
denotes derivative with respect to y,. Further assume that

[RE,HY, RS, HF,=0, for [HY},H3], =0, (4.44c)
where [ 14, [ 1, are defined by (4.3) and h,, belongs to H,,. Then
(o7,K,HY, &7,RS,HZY,=0, for [H{LHY), = (4.452)
Furthermore,
@7,RS, 1 are extended symmetries of (4.4),, (4.45b)

Jor all nonnegative integers m, n.

Proof. In analogy with the results of 1 +1 one easily verifies that if K{}, K\
commute, &, , is hereditary and @, is a strong symmetry for both K} and K‘fz’,
then &} K‘,‘z’, @7, K% also commute, for all m, n. Using these results with
K‘{‘z"—-K?ZH“‘l’, K‘f{:K“’zH‘Z’ one immediately proves (4.45a) above. To prove

(4.45b) we note that (4.44) imply
‘Stsz = Z bn.(d"f;[ ?25[12, (4.46)
=0
where b, , depend on B, f (see Appendix B). Hence

[97,R9,  1,(P,, +$2)5,,KS 1],,-[ %1, z b, 13RS, - & l
(4.47)

Equation (4.47) follows from (4.45a) since {1, 67,], =0 for ali nonnegative integers
¢. The left-hand side of Eq. (4.47) equals

(‘V\"zk?z' { ’4[612¢12K?2' 1] ‘(5lz¢7zk?z ’ ”4["’72[2?2 115
but the first term of the above equals (®7,K$, - 1),[K™], hence (4.45b) follows.
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It turns out that the recursion operators associated with both the two-
dimensional Schrédinger and the two-dimensional 2 x 2 AKNS are hereditary.
Actually, isospectral eigenvalue equations always yicld hereditary operators (see
Sect. 4E).

Remark 4.6. If &, generates two classes of evolution equations (4.4),, correspond-
ing to two different starting points M, and N ,, and if, in addition to (4.44), we

have )

[MIZH‘I‘Z)iﬁle(IZZ)]d;'O! for [H‘,‘},Hﬁ’],:O, (4.48)

then ®7,M,,-1 and #T,N,,-1 are extended symmetries for both classes of
evolution equations.

-

D. Bi-Hamiltonian Systems

Definition 4.4. i) An admissible op:erator ©,, is called a Hamiltonian (inverse
symplectic) operator iff

a) Ot,=-0,, (4.49a)
b) it satisfies the Jacobi identity with respect to the bracket
{a12,012,¢12} 412,01, [01:01:]c12), (4.49b)

for arbitrary ay,, b,,, ¢y3.
11) An Eq. (4.16) is of a Hamiltonian form (or is a Hamiltonian system) if it can
be written as

9= théu@.mz, (4.50)

where €, is a Hamiltonian operator and y,, is an extended gradient function of
the form y,; =7, -1 [with, of course, (7,,H ,);=(7,.H2)%].
The associated Poisson bracket is given by:

{1, 1)y = (grad , 'V, @, grad , I}, . (4.51)
where the functional I? is given by ['= | dxdy,dy,d,,0(,H,.
R3
Remark 4.7. If @, satisfies a), b) above then the Poisson bracket (4.51) is skew
symmetric and satisfies the Jacabi identity.
Proposition 4.1, Let
G,=0 3112, O, skew symmetric. (4.52)
Then for arbitrary a,,, b,, the following identities are valid.
a1) (b12,(0,3,[G12]1-0:(G )t —(G,)10 ,)a,,)

‘={blz’flz’all}+{fl2’al2ib12} +{012sblz’f|2}
+<b12,0,3(f12,— /20012012 (4.53)

x A A
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Let O, be Hamiltonian and let a,,, b, be extended gradient functions. Then
ay) [0,:412,0,012]4=0,8rad,<a,2.03b,,). (4.54)

These identities imply:

a,) If @, isa Hamiltonian operator and f,, is an extended gradient, then @, is
a Noether operator for G,,.

a,) If @, is a Hamiltonian operator and it is a Noether operator for G, , then
fi2 is an extended gradient function.

The above results are exactly analogous to those in 1+1 and thus their
derivation is omitted.

The above results can be used for any Hamiltonian system as soon as the
commutator [@,,, H,,] is specified. However, for a completely integrable
Hamiltonian system additional results are valid.

Proposition 4.2. Let
=)0 KV ¥R ER1, T =#1,KY,. (4.55)

Assume that @, is Hamiltonian, its inverse exists and that §{3H , are extended
gradients. Further assume that Eqs. (4.4) are valid. Then

1) GHY, RUHED = PITHYY, 0 i1 H =0, (4.56)
i) OfL KD =0, if [H), HE,=0. (4.57)
Proof. Since the hereditary operator ®,, is a strong symmetry for the starting
symmetry K9,H,, that satisfies (4.4c), then [K{YH(Y, R{HP,=0 if

[HY, HEY ,-0 Then (4.56) follows from Proposition 4.1a,). Equation (4.57)
follows from (4.56) choosing H{"J=1 and H})=4,:

O KD =G0 LK D = (1L E b #15°K 00D =0.

Theorem 4.4. Let @'Y, ©'3, 0\ + &3 be Hamiltonian operators and assume that
@\) is invertible. Then
i) @,,=0NON)" " is a hereditary operator.

ii) 97,04, are Hamiltonian operators.

i) If 79,H,,=(0Y))"'K9,H,, is an extended gradient function and if Egs.
(4.44) hold, then Eq. (4.4), is a bi-Hamiltonian system having @\"}, ©\3) as Noether
operators.

Furthermore, all functions y{;

7("5)'— ("y' 1, )J(l’? —(9(1'2))‘ lK(lm)' IZ‘,"}’= 4’12 (4.58)

(m}

are extended gradients of conserved quantities in involution under the two Poisson
brackets defined by

{I(M)J(")}¢<6|2V'rz’v912}’(ﬂ>, @12-@“ or @(2,- (4.59)

Proof. The derivation of the above results is analogous to similar results for
equations in 1+ 1 (see for example (7]). With respect to iii) above we note that
RMH,,=$7,0\453,H,,, hence ¢],0'] is a Noether operator for ®7,K,H,,;
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the arbitrariness of H,, and (4.46) imply that ¢7,0!") is a Noether operator for
{4.4),; hence (4.4), is a Hamiltonian system with rb, 9‘,'1 as a Noether operator.
However, ®,, is a strong symmetry for K¢,H,,, hence @1, is a strong symmetry
for KY,H,,. Since @7,0Y}) is Noether and &7, is a strong symmetry @'Y is also
Noether. Thus & 2-—¢,29‘,2 i1s also a Noether operator. Furthermore,
K" = @230 "y, and the operator @70} is both Noether and Hamiltonian,
thus 7\"YH, are extended gradient functions {using Proposition 4.1).
It now trivially follows [since Theorem 4.3 implies that K{ are extended
symmetries of (4.4),] that {3 are conserved covariants of (4.4),. Moreover,
Proposition 4.2 implies:

(1,1, = B, O
=<,;,(lrr£iH<llz)‘ Q(I.’lh.l,(ln{ l)H(]zz)> :0‘ if [H‘llj), (2)] __0
and the choice H{"} =46}, H% =1 yiclds
M I 200,747,090, =0, 0,,=0{ or o). (4.60a)

Namely V), are extended gradients of conserved quantities in involution. If
(@,,,3,,1=0, then
G, @1,711)=0. (4.60b)

Combining Theorems 4.1-4.4, we obtain the following important theorem.

Theorem 4.5. Let ©\)) + vO'Y be a Hamiltonian operator for all constant values of v.
Assume that O\ is invertible. Define

o, 20000 ", Kp=o,R 2,20 KS, . (461)

Assume that the operator @, and its associated starting symmetry R%,H , satisfy
{4.44). Further assume that ¥\"} is an extended gradient function. Then

1) Equations (4 4), are bt Hamiltonian systems.

i) KW =o7,K%, -1, 70 =(d¥,)™?°, are extended symmetries and extended
gradients of conserved quanmtes, respectively, for Eq. (4.4),.

iii) K7 and Y7 are symmetries and gradients of conserved quantities in
involution for q,,= K.

iv) K\ =0 are auto-Bdcklund Transformations for Eq.(4.4),.

v) (K KM, =0, (4.62a)
(I 1™ =(5,,7M,. 0,71 =0, 0,,=0'or 63, (4.62b)

where
[a,b];=a [b]—b,[d]. (4.62c)

E. Isospectral Problems Yield Hereditary Operators

Section 4.C illustrates the importance of hereditary operators. For equations in
14 1, isospectral problems yield hereditary operators. A similar construction is
possible for equations in 2+ 1. Furthermore, this construction also provides us
with a simple commutation relation of the type (4.24a) between @,, and h,.
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Proposition 4.3, Let
dV o

- =U(q, AV (4.63)

dx

be an isospectral two-dimensional problem; § is an operator depending on q(x. y) und
0/8y; A is an eigenvalue. Assume that (G,),,, the extended gradient of 1 satisfies

Y1 AG) 2 =mANG ), - (4.64)
Then if &,,="¥%, has a complete set of eigenfunctions, it is hereditary operator.

Instead of deriving this result we illustrate it by two examples. The interested
reader is referred to [5]. A proof of completeness should follow a two-dimensional
version of the method developed by [10].

The derivation of Eq. (4.24a) from Eqs. (4.63) and (4.64) is also illustrated in an
example.

Example 1. Consider the isospectral problem
Uit (@ +aDy vy = 4o, . (4.65)
Let 4, =g, +aD,, and consider the directional derivative of (4.65):
vy, LI1+4 [0 +4,0, 0L )=Av, [ T+ 4L To, .

Multiplying the above by v, where v satisfies the adjoint of (4.65), with respect to
the bilinear form (4.9), integrating with respect to dy,dx, and assuming
)’z dxdy,v,v{ =1 it follows that

R

Al fi12]= ﬁfz dXdle;‘?ld[fl 2Jey . (4.66)

Using (4.1b} to evaluate 4, [ f;,]v, it follows that
Al Si2]= |i[s dxdy,dyea0) fi; -

Hence, using 4,[ f,,]= Rj3 dxdy,dy,(grad 4),, /i, it follows that

(gradd),,=v,v; . {4.67)
Since @, defined by (1.2a) satisfies [29]
Prvv5 =405, 11.68)

it follows that &, is hereditary.
Example 2. Consider the isospectral problem
V.=V, —Q V=4V, (4.69)

where J,Q are defined in (1.8). In analogy with (4.66) and assuming
tr { dxdy,V,"JV, =1, we find
R2

’ld[FlZ:I:trRIdedylVl+Q~l¢[F12]Vl'
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Hence, using 0, [F,;]G,,= [dy;F;G,,, it follows that
R
ALFG]=tr [ dxdydy, V7 F LV,
R

Thus
(grad A}, , =V, V)" .
Since R,,=D—0,, satisfies ‘
R, VWV =AIVVyr, JF,=JF ,—F,,J, (4.70)

it follows that (R} J)* = J*(R})* = JR;}' is hereditary (sce [39] for the analogous
result in 1+ 1 dimensions).
Now we show that Eqgs. (4.65) and (4.68) imply
(D20 ]=4ak,,  h,=hy,—y,). (4.71)

First, we recall that Eq. (4.68) follows from Eq. (4.65): Eq. (4.68) and its adjoint
Vio. +ga—aDy)Vy" =4V," imply

ARARY TR AAEF A AN (4.72a)

VoVt +@y—aD )V Yy =iV, vy, (4.72b)
Vi Vet +q +aD )V, V=V vyt (4.73a)
Vi Vi @y —aD)V, Vit =V, V. (4.73b)

Adding Egs. (4.72a) and (4.72b), Eqgs. (4.73a) and (4.73b), and subtracting
Eq. (4.72b) from Eq. (4.72a) we obtain, respectively,

(D*+g )V, V" =2V, V), + 240 V", (4.74a)
_1 -

D D
ViV =- TquDV. - qu—Z(VI Vii-W, W+ AN YT, (4.74b)

AATI AR MV IAAAS (4.74c)
Using Eqgs. (4.74b—) into Eq. (4.74a) we finally obtain the eigenvalue equation
(4.68).

Now, by virtue of the commutation relations [q,+aD,,h,,]
=[gy—aD;, h,,]=ah},, Eqs. (4.72) and (4.73) are still valid replacing
VioVig=h Vi, V' = V5 5h,, 1" and A—4,; =4+ 2ah),/h,,; then @1,V,,1,;
=42,,V,, V%, namely

PV V=R VY =(hi, 0, + (91, A1V VS
=(4Ah%, 4+ 8ah' ,/h )V, Vy' .
Using Eq. (4.68) and the completeness of the cigenfunctions of ¢%¥,, Eq. (4.71)
follows.

-
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5. Applications

In this section we apply the theory developed in the previous sections to the classes
of evolutions associated with the Schrodinger eigenvalue problem (1.1) and with
the 2 x 2 AKNS problem (1.8).

Some interesting details of the cxplicit calculations concerning these two
examples are separately presented in Appendix C.

An isospectral problem [e.g. (1.1)] yields a recursion operator @, [e.g. (1.2a)}.
This operator must be hereditary (see Sect. 4.E). The isospectral problem also
yields a basic operator 4, ,; the integral representation of this operator implies a
directional derivative 4,,. Using the bilinear form {4.7), 4%, 4%, are also obtained.

i) In investigating the time-independent symmetries of the hierarchies
associated with @, one then needs to: a) Find the starting symmetries K$,H,,
associated with ¢,, (see Sect. 4.B). b) Calculate the commutator relations of
®,,, K?, with h,,. c) Compute the Lie algebra of the starting symmetries. Then
Theorems 4.1, 4.3 yield hierarchies of infinitely many commuting symmetries.

ii) In investigating the Hamiltonian nature of the hierarchies associated with
@, , one, in addition to the above, also needs to: a) Prove that &Y}, %, where
?,,=0%(OY) ", are compatible Hamiltonian operators. b) Verify that the
starting covariants are extended gradients. Then Theorem 4.4 yields hierarchies of
infinitely many involutionary conserved quantities.

A. The Schridinger Eigenvalue Problem
The spectral problem (1.1) yiclds the hereditary operator

®,,=D*+q/,+Dq},D ' +q;,D" 'q;,D", (5.1a)
where
425924 +HD, FDy). (5.1b)

The integral representation of the basic operator ¢, implies an appropriate
directional derivative:

dif125(q +aDy)f,, = 'J;d}’sqlsfsz s ‘?1,[‘712].[12: &d."salafsz- (5.2)

The adjoint of Eq. (5.2) implies
Qtfi2=(q,—aD,)f,,= );d}’qu‘hzv gt lodfi2= ‘[(dhfn"n- (5.3)

Combining the above we obtain the following derivative:

’
e=0

.9 i
ay Al f12]1= (;.9 a,2q1; +2f13)

N (5.4)
f3812= l.id)’s(fngaziglsfsz),

which satisfies the projective property (4.6).
i) Let us first investigate the time-independent symmetries of the equations
generated by &, ,.
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a) Equation (4.33) yields

$i2=D, Hy=Hly,y), (5.5a)
and starting operators K¢, given by
Ni2%47, M =Dl +47,D 745, (5.5b)

b) The commutators of ¢, , with h,, imply the following operator equations:
[®2.h,,]=4ak,,, [Nh,]1=0, [M,,h,;]=2aDh,,. (56)
Hence, if
N =@, N1, MPU=d1,M,, 1, (5.7)
then Eq. (4.46) yields

512N(|"§ = (; (*4‘1){ (;) ¢p';;f[\7l25’12 s (5.8a)

512M‘1";=(§.l bn,{(p':;(MlZé,lZ’ z-("‘h){ Z 27 ( j) (5.8b)

{see Appendix B).
¢) The Lie algebra of the starting symmetries is given by

[N\ZH(l” IZH(Z)]J_—NIZH(lZ’ [NI2H(IIZ)'MIZH(IZ£]4=_MlZH(|32)7
(M HO M H = -0, NG HY,  HY=(HY, HY],, (5.9)
where [, 14, [, 1, are defined by (4.3).
1) We now investigate the Hamiltonian structure of the equations generated

by @,,:
a) ¢,,0\0=01e¢*, where

e)=D, ¢|‘2=Dz+q,+2+D"ql*zD+D"'(1,’20"q,"2=D_'¢,zD=“‘l’,2.
We first note that both @‘,‘2’=D and O3 =9,,D are skew symmetric:
O =—p=-0Y, )* = (¢,,D)* = — DP¥,= —®,,D=— OR.
Furthermore, the bracket
{812,b12,¢12} =<a,,, 0, [0%by,]c, ;)
=2 (O'Yb,3)* D + D(OFb,)* +(@Eb,,)" D™ 'q7,+q1,D " (@Fb,) )e12d

satisfies the Jacobi identity Also @‘,‘2’, 6‘2’ are compatible.
b) $9,H,,=D"'q;,H,, and $}, =D~ 'M,H,, are extended gradient func-
tions. Thus the Theorems 4.1-4.4 imply:

Proposition 5.1. Consider the two compatible Hamiltonian operators '}=D and

603 =D+q/;D+Dq,+4q,,D 'q;,,
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and define
=00 =D 44/, +Dg D 4y, D 'y,D7Y,
le*(plz]qlzv M&’?*‘p’;zmlzv :1z~(@(x) lez andjor (9(112))»1"'?(&

where the starting nperamr Ny, and M, are defined by N,,=q/, and
M:z—D‘hz‘“th 4y Then

) MUY =M1 and NYY = N -1 are extended symmetries for both classes of
evalutwn equations

41,= [dy0, 2N T3 =NfY, {5.10a)
= [ dya0,, M3 = MY (5.10b)
namely
[M{,6,,K =N, 6,,.K(114=0, (5.11)
where K{ =N} and/or MY).

(m)

i) iy = y‘(’;’ 1 are extended gradients of conserved quantities of both classes of
evolution equations {5.10), namely

3001 K133+, KD ¥{3] =0, (5.12a)
OTPH e=(7H )f,  H,y,, =0, (5.12b)

where * indicates the adjoint operation with respect to the bilinear form
<fxz‘g|z>$de—“d}’ld}’zleglz' (5.13)

iif) The two classes of evolution equations (5.10) are bi-Hamiltonian, namely they
can be written in the form

1, = l{dyzélzgtlib({'; = fd}’zfsxz@(lzz)y‘lnz ar {5.14)
iv) MY and N are infinitely many commuting symmetries of the classes of
evolution equations (5.10), namely
(MY, MTY ], =M, NTY ] = [NTT, N, =0, (5.15)
v) Y\ are infinitely many gradients of conserved quantities of the equations
(5.10), namely
ALK+ KT 1] =0, (5.16)
W= {5.16b)
where * indicates the operation of adjoint with respect to the bilinear form
(f.8)% J dxdye. (5.17)
The corresponding conserved quantities are in involution with respect to the Poisson
brackets
1™ =875 @107, ©1,=0%or o (5.18a)
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if
0,,= @(llz) ’ {9, 27'(3’ D‘r"lmz)> :(3'(x":, D'/"lmzj) . (5.18b}

vi) The equations M"Y =0 and N\ =0 are Bdicklund Transformations for both
classes of evolution equations (5.10).

B. The 2x2 AKNS Problem _
The spectral problem (1.8) yields the hereditary operator

®,,=0(P,,—0[,P,0) (5.19)

acting on off-diagonal matrices, where
OhHF,=Q F 12 F,0,,, (5.20a)
P Fy=F —JF g, —Fip J. {5.20b)

The integral representation of the basic operator @, =Q, +JD,, implies an
appropriate directional derivative:

0,F,;%(Q,+JD)F,,= '{d}’sQnFJz, Qld[(’lz]’:nzzﬁfd}'saul:n,
(5.21)
and the adjoint of Egs. (5.21) imply
Q7F12=F12Q2“F|z,x-’= lthHan QTJ[”nz]F12= ll;d)'spndsz-
(5.22)

Then the reduction to the space of off-diagonal matrices performed in Sect. 3
induces the following derivative of the operator @, ,:

®,,,[G12]=—0(G,P;' 0, + 0, PG, (5.23a)
G,tZF”#&dyJG”GniF”Gn). (5.23b)

Again the Leibnitz rule and property (4.6) are satisfied.

1) The investigation of the time-independent symmetries of the evolution
equations generated by @, , gives the following results.

a) Equations (4.38) yield $,,=(Q/,) 'P,,, the starting operators K9, are
given by

Ny2=0r,, M,=0,0, (5.24)

and H,, is diagonal and such that P,,H,,=0.
b) The commutators of @, , with h,, imply the following operator equations:

[®12,h12]=~2ah},, [le’hll]z[MIZ'h12]=Ov (5.25)
valid on arbitrary off-diagonal matrices. Hence, if
NP =@, R, 01, MP=d7,M, -1, (5.26)

—~——
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then Eqg. (4.40) yiclds

N " ‘n\ .
0y N = 11‘21){(/)4’72’ 12012 (5.27a)

N\

RYIEN N (’1)( )wuano,, (5.27b)

¢) The Lie algebra of the starting symmetries is given by
[NIZH\ NIZHIZ d— —Nlllpl};' [NIZHIZ'MIZH(IZ]d—'_M HI‘Zy
(M, HY M HEY,= - NLHY, HYS[HY HE),. (5.28)

i) We now investigate the Hamiltonian structure of the equations generated
by @,,:
a) 9,,0\)=6\)®t,, where

O=0, @5, =0(P,—Q P Qi)=0""®,0=¥,,; {5.29)

notice that on the space of off- diagona! matrices oF ;= 4[0,F,;], ©®)=0 and
Y =¢,,0!) are skew-symmetric in the space of off-diagonal matrices:

(Fi3,06G2)=—C(0F2,Gy2),
and
O =(P,,0/*=—0d¥,=—d,,0=—0F.

Furthermore, the bracket {A12~ B,,,Cy,} =<4, 03 [0YB,,]1C,,) satisfies
the Jacobi identity and @43, @3 are compatlble
b) $9,H,,=(01) 'R, H (R,Z—N 12 or M,,) are extended gradients, thus
Theorcms 4.1-4.4 imply:
Proposition 5.2. Consider the two compatible Hamiltonian operators 0} =g and
Y =P,,—Q1,P,)' O, acting on off-diagonal matrices, and define
?,,=030)" ‘U(sz—Q:szlerz)y N =d1,N,,
MO =o7,M,,, 7 O) N and/or (OV)'MYL,

where the starting operators .‘V” and M, are defined by N,=Q;, and
M,,=0Q;,0. Then the results i}-vi) of Proposition 5.1 are all valid for the two
classes of evolution equations

Q.= i’;d.rz()-lztlv(,"; =N, (5.30a)
O, = jdvsd, M =M™ (5.30b)
. Jx 1

introducing trace in the nght-hand side Eqgs. (5.13) and (5.17) and replacing (5.18b)
by

), =0\ -. NS D (T N T B
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Appendix A

Now we show that the assumptions (4.30a), (4.30b) follow from (4.28a), without
using the explicit form of the operator. We show this for the recursion operator
associated with the Schrddinger eigenvalue problem.

Admissibility requires @, , to depend on g{,, moreover, (4.28a) and (3.13) imply
that @, depends linearly on g;,. Then, without loss of generality we have

@,2,0f121812= L1381+ Zpsequ)fx_z’s(qu)gxz ) (A.1a)
J s
®,,,[f1812= Z}:C;{fn + 3204812+ L pdqi) 11 — 22 (q12)812, (A1)
where ¢, d; are arbitrary functions of D, D™'; p, r, are arbitrary functions of q,

and f,} are defined in (5.4b).
Then the commutation property [g2, h,,] =0 implies

P13, [h12/120612812=h12P12,[ /121012812 (A.2a)
‘pnz,[f]hlzgxz=h12¢12,[f]g|2- (A.2b)
Appendix B
In this appendix we show that equations
[¢IZ9h12]=—ﬁh,er hyy=h(y,—y,), (B.1a)
[R5 k2= —BS15ha, (B.1b)

and some additional notions concerning the associated spectral problem, imply
5|2K(1"5={};obn.:‘p';;lﬁ?zélxz (B.2)

for suitable constants b, ,.
We first observe that the case f=0 is particularly simple; indeed, in this case

512K(|'5=5|2¢';2K?2' 1 =(¢12+B9)RK?2512 = z;o bn.:‘p’;itﬁ?zé{z , (B.3a)

b,,,#ﬁ’</>. {B.3b)

This is the case for the two classes of evolution equations associated with the two-
dimensional AKNS problem and for Egs. (3.20). For the KP class (3.19),
R%,=M,,=Dq},+q;,D 'q7;, B=B/2=—2a,§,,=D and the result (B.2) is less
straightforward.

In order to obtain it, we first show that

&, 1=0, VYn20; TI,,=¢,D-M,,. (B.4)

This result could be easily derived using the explicit form of @, , and M, ,. Here we
give a different derivation using the underlying spectral problem (and the
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consequent eigenvalue equation satisfied by @%,). This derivation is similar in
spirit to the one of (B.1a) presented in Sect. 4.E.
From Egq. (4.38), it follows that [}, can be written as

l,=4,D, Atzle*O- (B.5)

The operator 4, ,, which is part of @, ,, is admlssible depending onD, D' 4. If
for any admissible operator L,,, we define L} as L'} = L,,|,-,, then

@, 0, 1=P7,4,,D-1=07,49D -1 =D¥?,49-1, (B.6)

since D™ 'gD-1=0 and [L'?},D]=0. On the other hand, if g=0, w=1 solves
Eq. (1.1) and its adjoint, then Eq. (1.7) implies that

PO 1=0 (and 49 1=0). (B.7)

Equations (B.7) imply D¥7,4% -1 =0 which is equivalent to (B.4).
Equation (B.4) and Egs. (B.1) imply (B.2). In fact, multiplying Eq. (B.4) by h,,
and using Egs. (B.1) we obtain

(@12+PD)*'D-hyy=(®,+ PPV (M o+ BDD) by, . (B8)
The above can be written in the following recursive way:
A+ 1(hy2)=By(hy2)+ AdBhi ), (B.9)
where
(hy3)= Z /3/< )¢';le h‘,’% v Aolhy)=0, (B.10a)

B(hi3)= Z ﬂl< >¢12/M12h12, Bo(h12)=M12h129 (B.10b)

iy

i

The solution 4, , 4(h,,)= ): B, A[°HsL) of Egs. (B.9) and (B.10) implies Eq. (B.2).
Indeed,

(/) =
hiy =

(B.10c)

6”[(‘1—0124’12/"!2 =9 lz¢"+lD‘1=An+1(5|z)
SRR W R (B.11)

where

<

z BB (z j) (B.12)

For example, for the KP equation (M =Dgq{, +4:.D " 'q;,):
512M(1l2)=512¢12M|2 -1 =¢12M12512_6°‘Mlz‘5'12 , (B.13a)
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and for the DS equation (M,,=0Q},0):
8 MB=6,,01,M 1, [=D1,M ,5,,+4ad ;M 18, +4a>M 163,
(B.13b)

Finally, we use again Eq. (B.4) to derive the following interesting equation:
3D hiy= 3 (F-BrOTy M A, (B.14)
Multiplying Eq. (B.4) by h,, and using (B.1a), we obtain
@150 51377 D 11—} M,, 1)=0,  j<n. (B.15)
Equation (B.15) for j=n and Eqs. (B.1) imply
$13'D hy =@, M -y, +(B— P&} ,D-HY, (B.16)

and hence Eq. (B.14).

Remark B.1. i) Equation (B.14) contains (B.4) if h,=1.
ii) Equation (B.14) can be used to obtain (B.2), (B.12) in an alternative way. In
fact,

+1
é lez—‘s 2‘“; D-1= Z ﬂ’(n )(D’;;l"D'h(I',Z
_sfn+1 n o
S o AT B R R e S

since the identity

n-s\ ¢ veaf VY (n+1
() () e

Zﬁ"“(ﬂ ﬂ)‘("“) z - ’3’(??), /<n.

N

implies that

Appendix C

In this appendix we define explicitly the directional derivative introduced in Sect. 4
for the KP and DS classes. Then we use it to verify some of the results contained in

this paper.

C1. Evolution Equations Associated with the KP Equation

The directional derivative of the basic operators qf, =g, +q, +a(D, ¥ D,) as-
sociated with the non-stationary Schrodinger problem (1.1) is the usual Frechét
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derivative with respect to the kernel g,, of their integral representation:

4i2812= l,EdYJ(‘Ingni'.glsqsz)v q12=029, +ad,, (C.1a)
qltzd[flz.]gll=flt2g121 (C.1b)
flgglz*I{d}’s(fxsgsziglsfsz)- (C.1¢c)

In order to make explicit calculations, it is convenient to use the following basic
identities of this algebra of integral operators

aib,=+bhay,, (C.2a),
(altzbliz“'blizaltz)cnz=(afzb12)_clz= —€12812by5, (C.2b},
(afzbl_zibfzaliz)clz=(axz$blz)icxz= iclizalIZbIZ; (C20),

where a,,, by, ¢\, are arbitrary functions of x,y,,y, decaying at oo and
afy, by, cff, are the corresponding integral operators defined in (C.1c).

The integral representations (C.1a) imply that the basic operators g, can
replace a{, (and/or b{,, cf;) in Egs. (C.2). For instance, if af, =3, b, =q1,, and
ct;=H#E,, the identity (C.2c)_ becomes

J590H+ a2 fGH + HDa 0 f,,=0, (C3

where we have also used Eq. (C.2a), to replace f,%4,, by the expression q;, f,, in
which the kernel q,, does not appear explicitly.

Itis worthwhile to remark that formulas (C.2) can also be interpreted as matrix
identities in which a, b, ¢ are matrices and the + operations denote anti-
commutator and commutator:

atb=ab+ba. (C4)

Interpreting the operation af,b, , as in (C.4), the recursion operator (1.2) of the KP
class becomes the recursion operator

¢=D’+q*+Dq*D"'+q D" 'q D! (C.5)

ussociated with the N x N matrix Schriédinger problem in 1 dimension and
introduced by Calogero and Degasperis [38]. Then important properties of the
recursion operator of the KP, like its hereditariness (4.21), are equivalent to the
corresponding properties of the matrix operator (C.5)! This important connection
is explained from the fact that theé'2 + 1 dimensional systems considered here can be
viewed as reductions of certain evolution equations nonlocal in y. These equations
are directly connected to matrix evolution equations (see Sect. 5 of {35]).

Now we use Egs. (C.2) to verify some results concerning the symmetries and the
bi-Hamiltonian structure of Eqgs. (3.19) and (3.20).

a) @, is a strong symmetry of N,,H,,, where §,,=q;, and H,,_=0 (this
result is a consequence of Lemma 4.2; but here it is verified directly).

S e ey
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@12,[912H1 2112 @0 H D[ 12121+ @15(q 02 H )l f 2]
=(qi2H12)" fi2+ D, H )" D7y,
+(q12H,2) D7 'q1: D7 1, +90,D7 g H ) DTS,
=(D*fi2, 4402 fi12+Dq, D™ fi1,+47,D 7 g, D7 1) "H,
+(D*+4q7,+Dq,D™ ' +q7,D 7 'q;, D™ ) f3H,, =0, since:
the terms without g3, give ’
—fi2.H 2+ D f3H,,=0;
the terms linear in gi, give
(41_2H12)+f\z+D(41—2H12)+D_lfnz“(qrzflz)_le—D(41+2D~lflz)-le
+a\2 /20 +Da D G H = 1% 0 H o +ah fGH L Hat f
D((D-'flz)+q;2H12+qrz(D_lflz)_le'f'Hl-zqrzD_lflz)=0,
using Eq. (C.3);
the terms quadratic in g, give
(ql_zﬂlz)-D_le_zD—if12+H1_241—2D—lq1-20—1f12
+q0 DT (=D 1) a0, +40,D 7 3 H )
=(—qr2H2+ Hiq72+(qrH 3)7)D ™', D 7 fy,=0.
b) The Lie algebra of the starting symmetries is given by the following
equations:
(N HY) R HB=-R,,HY,  [(R,HY, M HY = - M, HY,
(M HY M HEY) =~ 0,8 GHY,  HY=[HY,HY], =(HY) HY,
(C.6)
where
Ri2%q0:, M,=Dal+490,D 7 'ay,, Hy,, =0.
Equation (C.6a) holds, since,
(a::H\). 45, H,=q H3)" HY}—(q,H!) HY
= —(H)"qHY +(H) "9, HY) = —q,(HY) " HY,
using (C.2b)_. Equation (C.6b) holds since:
(q1:H\.(Day, +q1,D ™ ') HB),
=((Dq{2+4:1;,D™ 'q;)HY) " H\Y) - Dig, H{)* HY
—(q;zH'nlz’)_D-l‘ln_zH(lzz)—q;zD_l(ql_zH(l'z))_thzz)
= _D«H(lll))_quH(lzz'+(H(lzz))*ql—ZH(llz))_(H(llz))—q;ZD_ ‘g1, HY
+(D™ g, H) g1, H) + 90,07 (HY) ~q,HY}
= —Dq,*z(H“’)'Hm-{»quD— l(—(H(llz))—q;zH(lzz)+(H(|22))—q;2H(1|2))
= =M (H{) " HY.
The, yeriﬁcation of Eq. (C.6¢c) is left to the reader.

PRy

PR
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The notion of an extended symmetry a,, of the evolution equation
4y, = iidyzdlzl(‘l"}=K‘l"|’ plays an important role in 2+ 1 dimensions. o,, is a
solution of the equation

T4 ZI[-K(M] =(3,,KT)sl042], (C.7a)

where
12K THa% Y ba A®T3 R8s (C.7b)

Again the use of Egs. (C.2) and the property
(072)* f12=(DT £(=1)"D3)f 1, (C.8j
simplify the calculations of the operator (C.7b).

¢) o, is an extended symmetry of
i) the wave equation ¢,,= M\’ =2q, _iff

012,029:1=2D0,,; (C.9a)
ii) the KP equation q,'=1\1‘,‘1’=2(q,x"+6q1q,x+3azD“q,M) iff
012,[2Gyex + 699, +30?D 7 "q,,)]=2[D* +6D(q, +4;) = 3D (q1,,— 43, ))
+6alg, —q,)D YD, +D,)+6aD~ (D, +D;)*]o,,. (C.9b)
012 KDlf12]=(M 36,3040 f1:1=Df 58,2+ f13D 14720,
+40:D 7 f12012=2Df\,.
(512K(|lz))d[f|z]=(¢12M12‘5|2_6°‘M12‘5’|z)d[flz]
=@,,,[/12IM 33,5+ B (M 36,50 f12] —66M (38720l /1]
=(fi3+Df5D T+ /13D g7 DT 4+ 4, D 7 1D T NDG 1 + 902D 71 12)0,
+D?+4{,+Dq 5D +47,D 7 'q0D T UL+ [12D 7 940D 12000,
—6a(Dfy3+ f13D 7141, + 41D 7 /120012
=2[D3+6D(41+qz)‘3°‘(D_l(th“‘h\.,”
+6a(q, —q)D "D, +D;)+6a*D~ (D, +D,)*],
since, for instance:
£15D9120,,=(Dqg,2)* [15612—9012/12412 =24, +d3):f12
foz‘ll*zél'z=2Df1+2412=20‘11+2f12»
Dfy581,=D(815) " f12=D(D —Di)fy2,
fixD 1413012 = —(D‘lql.lé'lz)—fl2=(l)—|(éll2)—q12)—f12
=(D~!(D, +Dz)412)_f|2=(0-’(‘hyl—Qz,,))flz,
912D 7' 12012= — 412D " (S12) 12 = ~q1: D7D+ D))z,

S SN
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and we have used, for the first and only time in this appendix, the explicit
representation (C.1a) of g, ,.

In order to investigate the Hamiltonian structure of the equations generated by
&, ,. in addition 1o Egs. (C.2) we use the following properties:

aif=xaf,.  qit=145. (C.10)

These properties follow from the definitions ((f.lc). (C.1a), and (4.8):

i

Ciadiags dxdy,dy,dyy ty(dy 83, T8, 385,)

-

]
R

= {dxdydy,dyyfasay, + f3d,3)8,,
R4
= ¥« .;Itl_/ Q|a>
d)$9,H,, =D 'K$,H,; (K, =N, and M, ;) are extended gradients, namely
(l)lH 1):‘:(1?21:112)'
0 IfKY, =N, then (V. H ),[g,.}=D ‘'g,,H,, and

oG gD =< D7 e Hy =D 7 0 Hiyg )
:_<}{I—’Di‘,‘l’ g0 =<D7 3 H g
=<1y [’l’)d[/l’] €122
iy If K9,=M,,, then
(FaH (g )=+ D7 gD g+ D gD T g ) H
and
\/,’1:~(flx):le)u[gu]>:<.’V1:-gl’:”12+D_]gn-zDAl‘llﬁ”lz“‘Dv“ln:Dilgl‘zHlﬁ
=CSintH=D7WD g H )" 49D T H g, o
=HG-UD g, H ) +H,D DTN g
={H=D7MUD gL H ) g HLD e
=M H Dl f2) 2000
e) In [35] we show that

A =grad,, 1, (C.11a)
. ] * dne 1)
I sy ”>_7(7n+1) J dodvidyaoaits
1 .
- L lnt L C.11b
A2+ 3) 'ded}llll > { )

where 77 =D 'K and K9, =M, ,. Here we directly verify this result for n =0,
[ud[/'nz]-‘-l(dlz-/“' [/.1]>
<I’l2‘[()12.] fi =G L0021 fi
l((sz,,[(’lz]/‘l”z'+‘b|w'luz)l[5|z]‘ L fi2
=420, L =G0 D (C.12)
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which implies that 7\ = grad,, [,,. {In this derivation we have used the property

AUk (L)
YiZs =i,

f) The bracket {a,,,b,,.¢,,} ={a,,, O [OPFb,:]c, ;). O =, ,D satisfies
the Jacobi identity for every a,,.b,;,c,,. Here we only display some of the
calculations for the linear terms in g,.

ay3, [(4/2Dby 3 + Dqi3b15) D+ D(g,,Db,, + Dq 5y 5)*
+(D%b1)) D7 q 1 +q,D 7 (Db, 5)  Jey,
+cyclic permutations of a,,,b,,,¢,,
={812,b12,¢12} +{[D(g12Dey 3+ Dq{5¢,5) " +(q13Dcy 3+ Dqipcy3) "D
_szD_l(Dsflz)‘_(chlz)_D_lqn_z]bxz»alﬁ
+<Clzv(Dblz)+(q;zDanz+DQ;zaxz)+Dbrz(q;zDalz+quzaxz)
—(D7'q03by2) DAy, —q D7 b, D%ay ) =<ay,, Lyg(by 5 ¢y 0)),

where

Liybi2,¢12)£(412Dbyy + Dby )Dey; + Dig Dby + Dgibg) ey,
+(D%h )" D" '9,2¢2 441, D71 (Dby)) ¢y,
+D(qy2Dc 2 +Dqi5¢,5) by +(q3Dey 2+ Dgiacy )" Dby,
=41 D7 UD%¢,3) by, —(D3¢,;) D7 qi3by 2 — Dg1a(Dbyy) ey,
—=q2D(Dby3) ¢y + Dqy3b{;Dey; +q13,Db13De
=D*D7'qy3by5) " ci; = Db D g6
Using Eqgs. (C.2), it is possible to show that L,,(b,;,¢,2)=0, Vb5, ¢,

C2. Evolution Equations Associated with the DS Equation

As in the previous case, it is easy to check from their definitions

086G, 0,6, £6G,0,= '._[{d.VJ(QlSGSZIGIBQJZ)s Q012=01,0,.

(C.13a)
Qliz.,[Flz_]ze:Flizclz- (C.13b)
FltZGlZ#idy;}(FlJGJzi'G]jFJZ)' (C.13¢)

that the operators Q f, and F f; satisfy Egs. (C.2) and {C.10). Moreover, it is possible
to show that the operator P,,, defined by

PioF o 2Fy —JF,, —Fy J, (C.14)
satisfies the following equations
P, FLG, ;=P F )*G,,+F5P,,G,,, (C.15a)
szlFlizclzZ(P{lelz)tGlz—szl(P:_lelz)tplzclz
=F5PG,— PP, F)EPLG,,. (C.15b)
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Now we use Egs. (C.13), (C.2), and (C.15) to verify some result concerning
symmetries and bi-Hamiltonian structure of Eqs. (3.35) and (3.38).
a) ®,, is a strong symmetry for K9,H,,, where R%,=N,,=0[, and
P,,H,,=0, H,, diagonal.
@, [00LHIF ,—(Q1H )@, F 1]+ @,,(0,H,)[F,,]
=—0[(Q,H,) PO+ 00LPIHOLH L) )F,
—(U(Pnz—szsz‘QTz)Flz)“Hu+0(Pnz—szsz‘sz)FszxFO, since:

the terms without Qf, give
—o(P,F\))"Hyy+0P,F,H ,=0;
the terms with Q}, give
—o{((Q2H, )" + HDQ 0P Q0LF 1+ Q0PN F L0 H L — QL F L H Y,
=—0Q P HLQLF +FLQGH  + Q1 FLH, ) =0
(in order to show that &,, is a strong symmetry for K9,H,,, where
K%, =M,,=0Q,0, it is enough to replace H,, by oH,, in the previous
calculation).
b) The Lie algebra of the starting operators (on H,,) is given by the following
equations:
[leH(xlz),leH(z)]d= _NIZH(J)v [lele, 12Hm]d= —Mlexz ’
(M HY M HPl = —N,HY, HY=[HVY HEL=(H) T HE, (C.16)
where
N.,=05:, M,=00,0, P,,H",=0, H® diagonal, i=1,2,3,
[0 HY, QL HA=(Q,HY) ™ H) ~(Q,H)) HY)
__H(l) QlZH(Z) (2) QIZHH)
= _QlZ(H(llZ) H(lzl)'
Equations (C.16b) and (C.16¢) are obtained replacing H{} by cH'Y) and H{, by

oHY,, i=1,2, respectively, in the derivation of (C.16a).
¢) The operator

®,,%0(P;—0,P 00, (CA7)
defined on off-diagonal matrices, is hereditary, namely
@, [P ,F,]1G,—P,¥,,[F,]G,, issymmetricin F,, G,,. (C.18)
In order to show it, we make use of Egs. (C.2), (C.15) and of

oF%G,,, G,, diagonal,

oF},G,,, G,, off-diagonal. (C19)

(aFlz)’G”= {
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Here we display the calculations for the terms lincar in QF,:
—(0PF ) PLQ LG, — Q0P 0P F ) Gy
+aP(F P QNG +00, P FHLG )
=0(Q1 2P (P12F ) "Gy +F1005G,+ P00 P FLGy ),
which is symmetric in F,,, G,, since
FrzGlz=Gl+zFlz'
QP (P2F ) G+ FHLOT,G,,
=01, F 26, + 0P (P61 Fi2+F1,00,G,,
=GL00F,+Q0P (PG Fyy.

dj o), is an extended symmetry of
) 0, =MP=-24Q,,iff

0y2,[~20Q)=—206,,, (C.20a)
i) Ql:=M(lll‘= _2Q1,, iff
a,2,[-20,]=~2D0,. (C.20b)

(‘512M|z‘1)4[F12]Z(szaélz)a[Flz]=Ff205|2
= —UF;2(312=—26F12.

(013 MDLF,]=(®,,0,00 + 200,05, ,),[F,,]
=9,,,[F,]101:06,, +¢12QI2,[F12)U‘312 +2aQ7,,1F ;)00
=—0[(F, P73 Qv+ QP F1)Q1,008,,

—(Pu-Q?szz‘Q?z)Ffzo%+FT25’121]
=(~2P,—2a0iD, - D,))F,,= ~2DF,,
since, for instance,
0P F{300,,= — P F (0,0 = 2P ,F,,.
_GQrzpleszFfzcén2=Q1‘2P|‘21Q1‘2F1&251z’v ZQf:P{lel_zFlz'
F{y8 =D = Dy)F,,.
_GQ;ZPI_ZYFI*ZQ(ZO‘)VIZ=Q!ll)lile12Ql‘2‘s|Zl=:Ql:P12‘F;2QII
=_2Q1-2P{Z‘Q{:P‘|2-
having used the properties :
Gho=—0G{,, G,, off-diagonal,
Qha=—-aQ;.

U8 F =Dy £ (= 17DYF, ;.

~é
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e) 99,H,,=0R%,H (RS, =N, and/or M ,) are extended gradients, namely

(?‘1’2”12);:(??2”12)4- _ o _
i) If §9,=0N,, =001, then (0;H,,),[G,,]=0G,H,, = —6H[,G,,, and

(Fi2.00:H04[G 12> = —(F 2, 0H G ) =(—0H [, F 5, G )
=121 Dl F121.G 12
i) If 99, =0M,,=0Q[,6=—Q/,, then J
(“f?zle)a[ze]= ~GH,,= _HrzGlz,
and

<F12r(}7?2H|z)a[G|z]>=<F|z, —HrzG|2>=<‘H1+zF12,Glz>
=<(}7?2H|Z’J[Flz],clz>‘
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Bi-Hamiltonian formulation of the Kadomtsev-Petviashvili and Benjamin-

Ono equations
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It was shown recently that the Kadomtsev-Petviashvili (KP) equation (an integrable equation
in 2 + 1, i.e, in two-spatial and one-temporal dimensions) admits a bi-Hamiltonian
formulation. This was achieved by considering KP as a reduction of a (3 + 1)-dimensional
system (in the variables x,p,, y,.t). It is shown here, using the KP as a concrete example, that
equations in 2 + | possess fwo bi-Hamiltonian formulations and rwo recursion operators. Both
Hamiltonian operators associated with the x direction are local; in contrast only one of the
Hamiltonian operators associated with the y direction is local. Furthermore, using the
Benjamin-Ono equation as a concrete example, it is shown that intergrodifferential equations
in 1 + 1 admit an algebraic formulation analogous to that of equations in 2 + 1.

1. INTRODUCTION

This paper investigates symmetries, conserved quanti-
ties, recursion operators, mastersymmetries, and the bi-
Hamiltonian formulation of two physically important exact-
ly solvable evolution equations: the Kadomtsev~
Petviashvili' (KP) and Benjamin-Ono”? (BO) equations.
The KP equation is a prototype integrable equation in 2 + 1
(i.e, in two-spatial and in one-temporal dimensions), while
the BO equation is a prototype singular integrodifferential
equation in 1 + 1. The results presented here fit in the gen-
eral theory developed in Refs. 4 and 5; however, the follow-
ing conceptual aspects are novel.

(1) Equations in two spatial dimensions (x and y) pos-
sess fwo recursion operators and fwo sets of compatible
Hamiltonian operators. The set associated with the y direc-
tion was considered in Refs. 4-6. Here we investigate the
recursion operator and the pair of loca/l Hamiltonian opera-
tors associated with the x direction.

(ii) Integrodifferential equations in 1 + 1 share many
common features with equations in 2 + 1.7 This is because
integrodifferential equations are also formulated in terms of
two space operators, for example d, and H (the Hilbert
transform) in the case of the BO equation. It is shown here
that the algebraic formulation of integrodifferential equa-
tions is analogous to that of equations in 2 4 1.

The existence of a double representation, corresponding
to two recursion operators and two sets of bi-Hamiltonian
operators, is also a property of integrodifferential equations
in 1 + 1; this will be shown in a separate paper® for two
explicit examples: the intermediate long wave®'? and the BO
equations.

Hierarchies of infinitely many time-independent and
time-dependent symmetries and conserved quantities of the
KP equation have been obtained in Refs. 11 and 12. A recur-
sion operator and a bi-Hamiltonian formulation of the KP
were found in Refs. 4-6. This was achieved by introducing
the following extended representation of the KP equation:

*' Permanent Address: Universita Degli Studi-Roma, Istituto di Fisica
"Guglielmo Marconi,” Piazzale delle Scienze, 5, 1-00185 Roma, Italy.
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41,=J;(dy25()’|—}’2)Kuz» g, =g{xy,t), (L1

where R denotes integration along the real axis, § is the
Dirac distribution, and K, is some function of ¢, and
q2 = g{x.y,,t). The introduction of the above form is natu-
rally motivated considering KP as a reduction of a nonlocal
(3 + 1)-dimensional system (in the variables x, y,, y,, and
t).>!? The above extension is necessary in order to bypass the
Zakharov-Konopelchenko result on the nonexistence of re-
cursion and bi-Hamiltonian operators in the usual (1 + 1)-
dimensional formalism.'*

Hierarchies of infinitely many time-independent and
time-dependent symmetries and conserved quantities of the
BO equation have been obtained in Refs. 12 and 15, via the
mastersymmetry approach introduced by Fuchssteiner and
one of the authors ( A.S.F.). This approach was subsequent-
ly applied to the KP equation. It was shown in Ref. 5 that the
mastersymmetry approach is contained in the general theory
developed in Refs. 4 and 5.

A. Basic notions
We consider an evolution equation 15 its abstract form,
9, =K(q), (1.2)

on a normed space M of functions of R: K is a suitable C ~
vector field on M. We assume that the space of smooth vec-
tor fields on M is some space S of C  functions on the real
line or on the plane vanishing rapidly at infinity. By K, [v]
we denote the Fréchet derivative of K in the direction v, i.e.,

(1.3)

d
K (v]==—Kg+e€
/[] e q v)

€=0
Let S * be the dual of S with respect to the following bilinear
form:

(y,o)#f dx yo or (y.a)#f dxdy yo, (1.4)
R R

yeS*, oeS. Let I: S—R be a functional, then its gradient is
defined by

I,[v] = (grad /.v) . (1.5
1t is well known that the function y is a gradient of a func-
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tional /1ff 3, = y,” . where the adjoint of an operator L 15
defned by (L *y,0) = (y,Lo).
Definition 1.1 (i) A function geSis a symmetryof (1.2)
iff the flow ¢, = o commutes with the flow (1.2). This im-
plies
do
7-}-0,[1(] —K;[og] =0.
(i1) A functional [ is conserved by the flow (1.2) iffd/ /
dt = 0. Hence

3_I+ (y.K) =0, y=grad/,

at
and yeS * is called a conserved gradient of (1.2). Differentiat-
ing the above equation in the arbitrary direction v it follows

that y satisfies

d + N
a_)t,+7/[K]+K/ [¥1=0, y,=v.

.

(1.6)

(L.7)

(iii) Equation (1.2) is a Hamiltonian system iff it can be
written in the form

q:=ef» (1.8)

where fis a gradient function, i.e., f, = f /", and O is a Ham-
iltonian operator where

(1) O is skew symmetric, 8+ = — O,
(2) O satisfies a Jacobi identity , (1.9a)
(a,©'[0b ]c) + cyclic permutation = 0. (1.9b)

A Hamiltonian operator © is associated with the Pois-
son bracket

{I,H} = (grad /,© grad H) . (1.9¢)

(iv) An operator ¥ is called a recursion operator or a
strong symmetry of (1.2) iff it maps symmetries of (1.2) to
symmetries of (1.2). Requiring that ¢ and ¢ are symme-
tries of (1.2), it follows that an operator ® satisfving the
operator equation

aod

5t YLK+ (0K ] =0

(1.10)

is a recursion operator of (1.2).

(v) An operator P is called hereditary or Nijenhuis iff it
generates an Abelian algebra. Assume that the flow ¢, = o
commutes with the flows ¢, = v, ¢, = ®v, and that the flow
¢, = vcommutes with the flow ¢, = &g, where o, v are arbi-
trary functions. Requiring that the flows ¢, = &0, g, = dv
also commute it follows that

D, [Po]v — PP, [DPur]ois symmetric w.r.t. o (L

(we have assumed for simplicity that db/dr = 0).

Exactly solvable evolution equations in 1 + 1 admit infi-
nitely many symmetries. These symmetries are usually gen-
erated by a hereditary recursion operator ®. An alternative
approach is to use the notion of a mastersymmetry. A func-
tion 7 is a master symmetry of Eq. (1.2) iff the map

[ 7, ][_ ,
maps symmetries of (1.2). Here ris called a gradient master-

symmetry (with respect to the invertible Hamiltonian opera-
tor ) iff @~ 'r is a gradient function.

where [r,0], =71,[0) —o/7}.
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Integrable Hamultontan systemsin t o+ 1 havean excep-
tionally rich algebraic structure: They are di-Hamiltonian
systems. The existence of two Hamiltonian operators ©'",
1 =12, umplies the exiswence of a recursion operator
D=671(60'") ! which generates infinitely many symme-
tries, while ¢ ' generates infinitely many gradients of con-
served quantities. For example, the two Hamiltonian opera-
tors associated with the Korteweg-de Vries (KdV)
equation arc given by

0" =D ©%=D'4+2Dg+2¢D, D=4, .

The KdJV can be written as

ql :q”‘ + 6q‘]( :e(l)yil} :e(.‘.)y(ll ,
where
;""’:q:gradex‘L.
R 2
- q:

P =q. +3¢ = gradf dx -
n 2+q’

Furthermore, ®=0'(0'") "' is a recursion operator for
the KdV. ie., &b generatcs symmetries and ®* generates
gradients of conserved quantities. The KdV is the second
member, n = |, of the following Lax hierarchies:

9, =P"q.. (1.12)

(throughout this paper n.m,r denote non-negative integers),
where g, is a starting symmetry.

Exactly solvable equations in 2 + 1, written in the form
(1.1), also admit a bi-Hamiltonian formulation.* ® For the
KP, the two Hamiltonian operators are given by

n = non-negative integer

o\ =D, (}15)20‘+DQIE +4¢3;D+4q,D I‘hz'
(1.13a)
where
D=d.. gy %q, +q.+al(D, T D),
S ' (1.13b)

D = 17‘.‘ .

) =12,
and ¢, —g(x,p,.t), i = 1.2, Indeed

91, =G + 07,9, + 3a’D lqlt‘,b'.

dy, ‘5|:0‘|§'}'(|§) :J dy, 5|:9(1§]7'(r§] .
”
(1.14)

S
where §,, — 8(p, ) and iY, = 1,2, are suitable ex-
tended gradients, i.e.,

1] = ,<7'(|':‘vl'|2) .

In the above the subscript d denotes a suitable directional
derivative and { . ) denotes a suitable bilinear form.* Fur-
thermore, the recursion operator é,,=6{3'(84;') ~' gener-
ates extended symmetries o,,, while the adjoint ¢¥, of &,,
with respect to ( , ) generates extended conserved gradients
¥,». Theno . 3, are symmetries and conserved gradients of
the KP, i.e., they satisfy Egs. (1.6) and (1.7), respectively,
where o, y, K are replaced by 0, ,, ¥, K,,. and K, is defined
in (1.14).
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j - v — .
In analogy with Eq. (1.12). KP is the second member, . oK
n=1(8, = 1), of the following hierarchy: Ky lonlfi,= —;f'—'(qﬁ +€0y .4 + €00 L
i . .
< l.
ql,:BnJ- dy: () =y My L, (1.15) (1.24a)
R “ where
where My, - 1 = (Dgt +q;D ~'q,%) - 1is astarting ex- . )
tended symmetry. Actually the operator ¢,. admits two ohfE J- dx (o fiz +0u/f0) . (1.24h)
~ ~ 1t

starting symmetry operators M, and ¥, +q,,. They give
rise to the following two hierarchies of time-independent
symmetries:

(¢Tszl|z'l)m MT‘J’.;'I)..- (1.16)

Time-dependent symmetries of order r of the KP are pro-
duced by linear combinations of

@M O+ T BLN O +p) )0 (LIT)
and are closely related to gradient mastersymmetries. The
above hierarchies of time-independent and time-dependent
symmetries give rise to time-independent and time-depen-
dent conserved quantities.*~® Finally, there exists a simple

relationship between @, and a nongradient mastersymmetry
T,
T:=¢1 8 —»), Co,= Ty, +DT%H D',
(1.18)

where C is a constant. The above equations are the two-
dimensional analogs of the following formulas, valid for the
KdV:

T=¢-1, C6=T,+DT}D"". (1.19)

It is well known that the KP equation is associated with
the linear problem

we +glxpt) +ad,)w=0. (1.20)

The recursion operator &,, is algorithmically derived from
Eq. (1.20).*¢

B. New results

(i} The KP equation.: In Refs. 4-6 the algebraic proper-
ties of KP were investigated by expanding in terms of
8(y, — ¥;). Now we expand in terms of §(x, — x.) (Ref.
16) and write KP in the form

q, =f dx,6(x;, —x,)K5, g, =qlx, p.0), (1.21)
R

where K|, is some function of ¢,, ¢, = ¢(x,.y.1). Let sub-
scripts 12 denote dependence on x,, x,, y; then for arbitrary
functions /,, g,, we define the following bilinear form:

<f|z»8|z)¢f dx, dx,dy f,,.8,; . (1.22)
-

Let the arbitrary operator l?.z depend on the operators g,5.
4,3, where

9591 £q:+ D} £ D}, D =3, (1.23)

9, =qlx;.pt), i=12;

then the directional derivative of[?,z in the direction o, is
denoted by K, [0,,] and is defined by
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The two Hamiltonian operators associated with the KpP
equation (1.21) are given by

0.'=D, + D, ©7'=ad, +4q;. (1.25)
where g,§ are defined in (1.23). The operators 69, i = 1,2,
are skew symmetric, and satisfy the Jacobi identity

(a,,81 [b,,]c,;) + cyclic permutation =0, (1.26)

where ©,, and ( , ) are defined by (1.22)-(1.24).

It should be stressed that, in contrast to the Hamiltonian
pair (1.13), both of the above Hamiltonian operators are
local. The KP is a bi-Hamiltonian system,

9, =Grepnx + 64,4, + 3a’D ‘qu,

=K, =f dx, 6,,0\9viy, i=12, (1.27)
R
where ¥} are appropriate extended gradients.
KP is the fourth member, n = 3, of the following Lax
hierarchy:

q, :an dx, 6(x; — x) P KO, - 1, (1.28)
R
where
G, =0 O !, Kh=ad, +q;. (129

The recursion operation P, admits only one starting sym-

metry operator IA(:,’Z, which generates the time-independent
symmetries (P73} K7, - 1),,. Values of m zero or even corre-
spond to (1.16a), while m odd corresponds to (1.16b). Thus
in the new formulation the two different hierarchies ob-
tained in Ref. 4 are unified. Similarly &%, generates extended

(m)

conserved gradients ¢}57, which give rise to conserved gradi-
{my

ents ¥y
A nongradient mastersymmetry is given by

: 10(x, — x,
®, r((t‘l X,) _
dx,

The recursion operator @, can also be algorithmically
obtained from the Linear equation (1.20)

(i1) The BO equation: The BO equation
9, =299, + Hq,,, q=q(x1), (1.30a)

where H denotes the Hilbert transform (throughout this pa-
per principal value integrals are assumed if needed)

= [ deg -0, (1.30b)
[}
can be written in the form

9., = rd-“zé(i‘l"‘:)KIZv g1 =q(x,1), (1.3

where K, is some function of ¢,, g, = g(x,.1). Let subscript
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12 denote dependence on x,, x.; then for arbitrary functions
Jfi» 812 we define the following bilinear form:

(.fll'gu):::f dx;dx; f8:;- (1.32)
R

Let the arbitrary operator K, uepend on the operators ¢},
q.3, where

95=q tq.+i(D,FDy, D =4,,

1.33
g =q(x.t), i=12; ( )

then the directional derivative ofl?,2 in the arbitrary direc-
tion o, is denoted by K, {0,,] and is defined by (1.24).

Two compatible Hamiltonian operators associated with
the BO equation are given by

01’=¢g;. O =(q5 —ignHie;, (1.34a)
where the operator H , is an extended H operator,

(lef)(xnxz);'ﬂ'_lfdé- (- +x]!
®

XF(§x, —x3), (1.34b)

and f(x,,x,) = F(x, + x,,x, — x;). The BO equation is a bi-
Hamiltonian system with respect to the above Hamiltonian
operators.

The BO equation is 2 member of the following Lax hier-
archy:

q, =8, f dx; 6(x; — x)®N,9,; - |,
R (1.35)

P,=q); —ignH,,.
Indeed, (1.35) with n = 1 and n = 2 yields
4, = Z’BOQI," 4, = ‘1”B|(2q|q|,I + H\qi, ) - (1.36)

The operator ®,, = 6{1'(6{}’) ~! generates the time-inde-
pendent symmetries of the BO equation (®73q,; * 1),,.
Simtlarly, @, generates extended conserved gradients y|7".

The above recursion operator ®,, can be derived algo-
rithmically from the associated linear problem of the BO
equation.

This paper is organized as follows. In Sec. 1I we derive
the second representation of the KP class and we investigate
the algebraic properties of the associated recursion operator
and bi-Hamiltonian operators. In Sec. III we derive the ex-
tended representation of the BO class and we investigate the
algebraic properties of the associated recursion and bi-Ham-
iltonian operators. In addition we discuss the connection
with the mastersymmetries theory of the BO equation and
with the complex Burgers hierarchy.

Il. THE KP EQUATION
A. Derivation of the second representation
Proposition 2.1: The linear equation
—aw, =§w, §=q(xpt) +3%, (2.1)

is associated wiils ihe Lua nerarchy
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q., :/)’,,J dx, 8(x, —x,)P7,KY, - 1

"

=0, dx,;0(x, —x,) (D, + Dy Wi ' 1, (2.2)
{1
where 3, are constants, D, =d,, { = 1,2, and the opera-
tors b K, are defined by

bo=(ad, +¢,;)(D, + D) ",
(Dy+ D)V, =®,,(D, + Ds),

(2.3a)

9 =4+ ¢ KY, =a5y + 4. - (2.3b)

Remark 2.1: (i) §, = ¢t, where * denotes the adjoint
with respect to the bilinear form (1.22).

(i) ¥, = &%,

(iii) Equation (2.2) with n=0,1,2,3 and B3, = {,
B, = 4.3y = 4 implies

g, =0, 9, =, 9, T A, (2.4)
9, =9 .., + 6qt‘]|,| +3a’D Iql” .

Thus both the x-translation and the y-translation hierarchies
of the KP are generated by the same extended starting sym-
metry K9, © 1 = ¢, — ¢».

To derive the above Lax hierarchy we look for compati-
ble flows

w, = Vw, V polynomial in d,. (2.5)
Compatibility of (2.1), (2.5) implies the operator equation
g9 = —(aV, + [¢g+3 V] . (2.6)

Assuming the integral representation

(Ff)(x,y) = f dxy (X, X )f(X20). V12 F0(X,X,500)
R
(2.7)
and noting that

(g + DIV, S, =f dx{(q, + Dol
n

Vitg,+ D}, = f dl"z{(% + D} )Ulz}fz ,
R

va:f dxy v, /o,
®

we obtain the distribution equation
.6, = — (av,, +q;00). (2.8)
Thus
§.6,= — (D, + D)¥,0,,,
W= (D, + Dy) " Nad, +q1) .

The operator (D, + D,)¥,, satisfies the following commu-
tator operator equation:

2.9)

(D + D)W 0, hp ] =205, (D, + D,),

(2.10
hn:h(_\',—xz). h;z = ihlZ' :
X

Using the above equation and assuming the expansion
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b= S S0 5, = 2., (211)
12 IZO 12412 12 dxl 12

Eq. (2.9) yields

ql,élz— Z 61y (D+ D)W 504
o
n+ 1
+22 8{, (D, +Dz)UU_”.

J=1

Thus
(D, + D) vy =0, q., 8,2=98,(D,+ D,)¥,, vy,
— 4V, = ”(12'—”‘

Therefore v{3 = ( — )"¥7,vi3 .
vi3’ = 1, the above equations imply

4,6, =6,2(D, + D,) LD
=6, P (D, + Dy) - |,

Hence assuming

where
(D, +D))¥; =®,(D,+ D).

B. Isospectrality yields a hereditary operator

To make this paper self-contained we first introduce an
appropriate directional derivative. Recall the integral repre-
sentation (Eq. (2.7)],

(K (x,wp) = f dxy v(x,x3,)f(x3,y) .
R

Also, allowing f to depend on x, we obtain Vf|,
= (adxyU,yf5;. Inparticular,

@ fi=(+ DD, = J;dxsqnfsr

Equation (2.12) is 2 map between an operator and its ker-
nel and induces the following directional derivative:

zh,[alz]flz = J;dx, 0. /5

Equation (2.12) and the bilinear form (1.22) imply that
the adjoint of §,, §¥ = q, + D3 has the representation

(2.12)

(2.13)

itfa=(@+D)f,, = f dxy qs; /i3 - (2.14)
R
Hence
ﬁl‘,[”n]fan‘“dxgaufl,\- (2.15)

Equations (2.12)-(2.15) and ¢,§ =§, + ¢? imply (1.24).
Proposition 2.2: (i) Consider the isospectral equation

gutav, =4v, (2.16a)
and its adjoint, with respect to the bilinear form (1.4),

gt —av =Av* (2.16b)
Then '

(grad 4),, =v0," , 2.17)

where (grad A4),, denotes the gradient of A with respect to

the bilinear form (1.22).

(ii) Equations (2.16) imply

608 J. Math. Phys_, Vol 29, No. 3, March 1988

(ad, +q,)vvy =0, (2.18)
To derive the above results, take the directional deriv-
ativeof (2.16a) in thearbitrary direction f,, multiply this

equation by ¢\’ and integrate over dx dy to obtain

A4l 2] :J"dxl dyvl'éx,,[flzlvl .

Using (2.13) the above becomes

<L f12] =f dx,dx,dyv,"v: /.
-
But

Aul ] =f dx, dx, dy(grad A),, i,
B

hence (2.17) follows. Equation (2.18) is a trivial conse-
quence of (2.16). '

Equation (2.18) suggests that @, is a hereditary (Ni-
jenhuis) operator (see Proposition 4.3 of Ref. 4). Actual-
ly it can be easily verified that

q’lz,,[q)lzf:z]gnz - q)lzq’lz,[fn]glz

is symmetric w.r.t. f,;, £12, (2.19)

i.e., ®,, is indeed hereditary (see Appendix A).

C. Symmetries and conserved gradients
1. Starting symmetries

We recall that the starting symmetry operators play
an important role in the theory developed in Refs. 4 and 5.
An operator $,, algorithmically implies starting symme-
try operators: Look for operators S;, such that
S,,H,, =0, but ¢,ZS,2H,2;£O Thena startmg symmetry
operator K 1: is given by K % H,=¢ ,25,211,2
Proposition 2.3: Let
H,=H(x, —x5y), (2.20)
where H is an arbitrary function of the arguments indicat-
ed. Then the following statements obtain.
(i) K9, - I,, is a starting symmetry associated with
the operator &, [defined in (2.3)].
(ii) K'Y, satisfies a simple commutator operator equa-
tion with A, = hA(x, — x;),
dh

K?Ziaay + 43,

[Klz» 2] =2 an(D v+ Dy) . 2.21)

(iii) b,, is a strong symmetry for K%, - H,, i.e.,
L@ oKL H )

=0, [KGH ) + [P KGH G =0 (222)

(iv) The Lie algebra of the starting symmetry operator
satisfies

A~

(KGHPKOGHP ) =KG[HWHP],, (223)
where
[KPKDPL =KD (KD -K DKl (2.242)
[H:;’,H‘“],—l dx,(H{PHP — HPHY) .
(2.24b)
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To derive (1) let S‘,_‘ = D, + D, then /{,1sdetined by
(Di+ D,)H,, =0, thus H,=H(x, —x,p). Also
KU H,, = (ad, +q,)H,,. Part (ii) isastraightforward
calculation and part (iii) follows from the definition of a
starting symmetry and the fact that &, is hereditary (see
Lemma 4.2 of Ref. 4). Part (iv) is a tedious calculation
[see Appendix A for adirect verification of Eq. (2.22) and
(2.23)).

2. Symmetries

We recall that o,, is a time-independent extended
symmetry of Eq. (2.2) iff

[6,97,KS - 1,0,,]4 =0. (2.25)

Proposition 2.4:
M 5|:¢72k?1 1= 3 b,,Ply 'K%8,,
=0

b, constants . (2.26)
(ii)  [6,; @}, ?z 1, P ?z 'le]d

= i b, d1,! H"R?z [6121HIZ]I .
= (2.27)
(i) o =0n K ® -1 are time-independent ex-
tended symmetries of (2.2) .
(iv) o7 are symmetries of (2.2) .

(v) o} =0 are auto-Backlund transformations of
(2.2), whereg,, g, are interpreted to be two different solu-
tions of (2.2).

Part (i) of the above follows from

[(blZ'hIZ | =2h 129 [K?z'hnz] =2h 12 (D, + D,).

(2.28)

To derive (ii) note that
[612¢71K?2 -1 ‘I"l"zk?z ’ Hl:]d
z bn.l[d)’l'[] (l)z 12'¢),I"2K(IJZH|2]d

=0

¥ bn./q)’x'z_l +m[K?z‘S'lzvK?an]4
=0

It

e’
Z b, @7, K, [&zv”nz]: ,
<o

where we have used (for the third equality )Athe fact that ¢
is hereditary and a strong symmetry for K9, - H,,, and
the fourth equality follows from Eq. (2.23). Part (iii) fol-
lows from (ii) by taking H,, = 1. Part (iv) follows from
(ii1) and (2.8) (see Theorem 4.1 of Ref. 4). For part (v)
see Theorem 4.2 of Ref. 4.

Remark 2.1: (i) Using Eq. (2.27) with suitable func-
tions H,, it should be possible to show that time-depen-
dentsymmetries of (2.2) are generated by linear combina-
tions of ®7,K {, H,,. See Ref. 5 for thecorresponding
results associated with the first representation.

(1i) An analysis about conserved gradients should fol-
low closely the methods developed in Refs. 4 and 5. For
example, it can be shown that W7, - H,, are extended gra-
dients for all H,, = H(x, — x,,p).
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3. A nongradient mastersymmetry
Proposition  2.5: (1) T, +d7, 8], 8, =ddix,
- X,)/dxyis a nongradient mastersymmetry of the Kp
class, since
[®7 K9 H. T, Ja = (n+ 1)y l;Cl'z H,,. (229)
(ii) T, generates the recursion operator ¢, via
by, T, 6 (D DT, (D + DY) boo(2.30)
(iti) Let

M= (Dr) Y, =D+ D) 'K, . (2.31)
Then

WWOH,, = grad,, I, , (2.32a)

I =1/(n+2)(y5* "H,5,8%) . (2.32b)

The proof of (i)-(iii) is a consequence of equations
i, =0, @, [8,] =1 and of Eq. (4.9), (4.6), and
(4.7) of Ref. 5, respectively.

Il. THE BO EQUATION

The linear problem associated with the BO equation
(1.30) is the following differential Riemann-Hilbert
(RH) boundary value problem:

OO X)) =(g(x) +id W (3.1)

where ¢ * ' and ¢' 7’ are the boundary values on the line
Im x = O offunciions holomorphic in the upper and lower
half-plane, respectively,'” and the spectral parameter has
been rescaled away.

Equation {3.1) plays acrucial role in the derivation of
the recursion and bi-Hamiltonian operators of the BO
class.

A. Derivation of the recursion and bi-Hamiltonian
operators

Proposition 3. 1: The linear problem (3.1) is associated
with the hierarchy

0@ :/3,,J dx, 8(x, — x2) DK, - 1

n
:/},,J dx, 8(x, — x3) g W0, - 1, (3.2)
n”
where 3, are constants and the operators ®,,, ¥,,, and
K9, are defined by

b, =q)5 —igHin gV =P,49:, K% =q:.
(3.3a)
f’lzflz#”'“I f d§ [§— (x; + xy) ]_'F(S‘-vxl —X;),
R
Fi2=/1x,x5) = F(x, + X%, — x3), (3.3b)

g5 Fq £+ (D FD), g, =q(x,0),

3.3¢)
D, =4, i=12. (

Remark 3.1: (i) W, = &%, where * denotes the ad-
joint with respect to the bilinear form (1.32).

(ii) The first few equations of the BO hierarchy are
then
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ql=0' n=0, (34&)
¢, =4q., n=1 B, =(2) " (waveequation),
(3.4b)
4. =299, + Hq.., n =2, B, = (3)" ' (BO equation) ,
(3.4¢)

g =(—qu +q'+ ilqllg + lgq.))..
B, = (8)) ™" (higher-order BO equation),
(3.4d)

and are obtained from (3.2) using Eqgs. (3.16b)-(3.16f).
To derive the representation (3.2) we first seek

compatibility between the differential RH problem (3.1)

and the evolution equations
'/,:xlz y(z>¢<t)’

where V! *? are differential operators of the form

n=13,

(3.5,

Vsl =% Vit'(x)d’
J=0
and the coefficients ¥ *’(x) and ¥ ~'(x) are holomor-
phic in the upper and lower half x plane, respectively.
The compatibility condition between (3.1) and (3.5)
yields the operator equation

g =V 'g+id)—(g+id IV, (37

which can be converted into a scalar distribution equation
by formally introducing the integral representation

(3.6)

(V£ N(x) = f dx, vif 'flxy), ot =0t (xx;) .
R
(3.8)

For instance, the operator V|~ (g, +i d, ) gives rise to
the scalar kernel (g, — i 4, v}, ’, since

Vit (g +id,)f(x) =f dx, vy (g, + 13, )f(x,)
R

= [ dxtta —i 3t 1
R

(3.9)
Equation (3.7) then corresponds io the following distri-

bution scalar equation:

5(xy —x3)q,, = — (g +1 ax, Wi+ (g — d,, oy !
= - ‘}(91; (U§z+ - i)

+q3 (v +viy ). (3.10)

Equations (3.6), (3.8), and {3.10) imply forv};*’ the
following expansions in derivatives of 6,,:

(3.11)

vt = z S{;vit" .
1=0
Combining (3.11), (3.8), and the analyticity properties of
V{*'(x), we obtain that v{," ' and v{, ' are holomorphic
in the upper and lower x, + x, plane, respectively. Then,
in particular,

Vit =iy = —iH () =) (3.12)
[see Eq. (3.19) ], and Eq. (3.10) becomes
8109y, = — 4@ 0 Bp=vn ) vl (33)

610 J. Math. Phys_, Vol. 29, No. 3, March 1988

Remark 3.2: The following operator commutator equa-
tions hold: '
lgiahis] = LH Wb ] =0, 3t

(3.14)
(g0 e = (Dohy] =201y, w1 = P
Jdx,
and hereafter A, indicates an arbitrary function of
X, — X, Substituting the expansion &,, = £7_,8{,04 into
Eq. (3.13) and using Eqs. (3.14) one obtains

0y =00 0 UV =(/2) P00, I<j<n—1,
6|2q|, = (1/2)6,,¥,; ag(z)) . (3.15)
The iteration (3.15) implies that !9’ = (i/2)" !

x @7, '\ 1 to determine b}~ ") we notice that i}
=i, " — vl " =0 implies v{3’ = v} " = ¢, = const,

and then
BT = (i/2) [g4s (vl 7 = 0l ™)
(+n

+ gy, (V4
(3.2) is

+ ol ") e, =ic,q - L.
Equation then

B, =i(i/2)"c,.

obtained defining

B. Properties of the extended Hilbert transtorm

In this subsection we list several interesting and useful
properties of the extended Hilbert transform.

Proposition 3.2: The extended Hilbert transform H,,
enjoys the following properties.

(N [levhu]:O,
(2) Hyalx) = Ha(x), j=12,

(3.16a)
(3.16b)

Hflx,x)=m" f dy(y — x,) " fAx,.y), i#).
14

(3.16¢c)

(3) J-dxzé,:il,zf,zzﬂ,f,,, (3.16d)
R

(4) (7"11,2fu =H, d, fin j=12, (3.16e)

(5) H}, = — 1. (3.16f)
Moreover,

(6) Hi,f i hy = (Hyfiy) thy,, (3.17a)

(7) HolgoH  fo,+ (Hg) " fi)
= —guSia+ (H82) "Hy fiz, (3.17b)
8) HY) = —H,,. (3.17¢)

Here H, induces the following analytic properties:
(9) If

fid'= £ YA TiH N,
= (2mi) ! f dyly — (x, + x, + 0) )"
R

x F(yx, — x,), (3.18)
then

(i) S, "andf!, ' are holomorphic for Im(x, + x,) >0

‘and Im(x, + x,) <0, respectively.

£ (319)

(i) [+ /0 = =il ()
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Proof: Equations (3.16f) and (3.17b) are interesting
generalizations of well-known identities H?*= - I,
H(gHf + fHg) = — g f+ (Hg)(Hf).and can be proven
using Fourier space. Equations (3.16a)-(3.16e), (3.17a),
(3.17c), and (3.18), (3.19) are direct consequences of the
definition of H,, (see Appendix B for details).

C. Algebraic properties of the BO class

In this section we show that the main algebraic proper-
ties of the BO class can be entirely described using the theory
developed in Ref. 4; we refer to that paper for details and
proofs.

1. Representation of the class

It was shown in Sec. III A that the BO class admits the
following representation:

9, =6, [ dx,8.0uRY 128, [ de 8 K=K
R R
(3.20)
where l?‘,’z =gq,; and ®,, is defined in (3.3a).
The recursion operator &, and the *‘starting” opera-
tor K9, enjoy simple commutator relations with 4,
=h(x, —x;),

. Oh -~
[®ih,,] =2 71_2_' [K?z,hn =0,

x,

(3.21)

which imply that §,,K {3’ can be written in the following
alternative form:

n ~ 1 _
sukiy = 3 (= 2m(]Jor Ry, Loz x)
DY 3

X

(3.22)

2. The d derivative

As in 2 + 1 dimensions, the derivation of the extended
algebraic structures of the BO class is based on integral rep-
resentations of operators depending on ¢, d,, and H. This
mapping between operators and their corresponding kernels
induces a mapping between derivatives and leads to the in-
troduction of a new directional derivative, the so-called d
derivative.* Here we briefly remark that the basic operators
g5 appearing in the BO formalism are the same as for the
KP case, replacing x; by y; and i by the parameter a [see Eqs.
(1.13b) and (1.33)]. Then theird derivativeis simply given
by

g5 gl fi =85/, (3.23)

85 /n=* f dxy(g; Sz 1 /i5 832) - (3.24)
R

Since ¢, and k‘,’z are expressed in terms of ¢,%, their d

derivatives are well defined,

®,,, (8] =85 —igiHia K?z,lgnz] =81 - (3.25)
As for the (2 + 1)-dimensional case, the connection be-
tween the d derivative and the usual Fréchet derivative is
given by the following projective formula:
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Kl?,“sl.‘ sl = K (gl '?"Kls:vlgnl + KIA"“H.‘,“ .
C(326)
where K|, denotes the Frechet derivative of K, with re-
spect to q, i,
i

Klzq'[gu | =d.K:(q, +€g.,.9, . ij=12,
) (3.27)

3. The starting symmetry K & - Mg, its Lie algebra, and
its characterization through the recursion operator

Thestartingsymmetry K {3’ = g, — g, of the BO class
is written as ¢,; - 1. Asin 2 + | dimensions a crucial as-
pect of this theory is that the operator K $, = ¢, acting
on suitable functions 4, = h(x, — x,), solutions of the
RH problem A !, —h{,; ' =0[( + )and ( — ) herein-
dicate analyticity in the upper and lower x, + x, half-
planes, then h,, =h,’’ =h{; '}, form a Lie algebra,
given by

[qlzhlzv‘hzhtzld= —qu Akl (3.28)

where the Lie brackets [ , 14, [ , ], are defined by
U282 }a £/12,1812] —gn,l Sl (3.29a)

[hmi’lz]lif dxy(hyshyy — hyshy) (3.29b)
R

Asin2 + | dimensions, the starting symmetry K 9, - h,,can
be characterized through the recursion operator ¢, via the
equations

C,hy ) —hiy ) =g (h =R g (A L
+hiy ") =2K%h,,  (3.30a)

By =h'y =h,, (3.30b)

obtained using Egs. (3.3a) and (3.19).

4. Symmetries, strong and hereditary symmetries

R The recursion operator ®,, and the starting operator
K1Y, = q,; are the ingredients of the evolution equations

q, :f 8,K\7 .
R

They enioy the following properties.
Proposition 3.3: (i) The recursion operator &, is
hereditary, namely,

q’lz,[q)lzflz]glz - q)IZ(bIzd[flz}gIZ

is symmetric w.r.t. fi,and g5

(3.31)

(3.32)
(ii) ®,, is a strong symmetry for K %, A,,, namely,
(D, K% h,) '
=®, [Khhn] + [ (KGhp) ] =0, (3.33)

Preof: Equations (3.32) and (3.33) are verified in
Appendix A, although this check is not strictly necessary,
for two reasons.

(1) ®,, comes from the isospectral problem (3.1),
and an extension of the theorem presented in Ref. 18
should guarantee its hereditariness (see also Ref. 4, §4.E).
It is also interesting to remark that a direct proof of the
hereditariness of ®,, makes use of Eq. (3.17b).
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(2) The hereditariness of ®,, and the characteriza-
tion (3.30) implies that Proposition 3.3 (ii) holds (see
Lemma 4.2 of Ref. 4 and Appendix A for a direct check).

The operator ®,, generates infinitely many commut-
ing symmetries of the 'BO class; precisely, since ®,, is a
hereditary operator and strong symmetry for the starting
symmetry K 9, h,, that satisfies Eq. (3.28), then Theorem
4.3 of Ref. 4 implies that {7’ =®7,q,; -1 are extended
symmetries of every evolution equation of the BO class,
namely,

ol (K™ = (6,:K433)4[017] (3.34)

for every non-negative integer n and m, where, using
(3.22),

N SIOFEDY (—Zi)'(';)((br;’ir?zé{,)d. (3.35)
=0

The first three operators (8,,K {3'), of the BO class are
explicitly reported below:

(6,:K19), =0, (3.36a)
(0K 1) =2i(d,, +3,), (3.36b)
(6|2K(1))d

=4i(H,,(d,, +39,)*+ (9, +3d.)(q, +4q)
+i((H,q))x, — (Hyq)x, )
_i(q|—q2)H|z( aX. +a_,,)) (3.36¢)
(see Appendix A).

The usefulness of the extended symmetries o}7" fol-
lows from the fact that they give rise to symmetries and
Backlund transformations; precisely according to
Theorem 4.2 of Ref. 4:

If o{3” is an extended symmetry of Eq. (3.31), then

() o\ = o\7’[,, _ ., isasymmetry of Eq. (3.31), name-
ly,

all,)[K(")]_ ”,’[U(m’ ) (3.37)
and (ii) the equation

gy =0'"(4,49,) = (3.38)

is a Backlund transformation for (3.31) where, of course,
¢, and g, are now viewed as two different solutions of
(3.31).

5. (Bi-) Hamiltonian formalism and constants of
motion in involution

Proposition 3.4: (i) If we define
ell Fq12, eg)*q’lze:;) , (3.39)

then ©,, 0!}’ + xO{2 is a Hamiltonian operator for all
constants x, namely,

(a) O = — 0,,, (3.40a)
(b) O, satisfy the Jacobi identity w.r.t. the bracket
{a|z,b|2,(’|2} #(albeu‘[eubn 'Cn) . (340b)

(ii) The adjoint ®%, of the recursion operator, given
by

o =495 —iHq,; , (3.41)
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satisties the tollowing “well-coupling™ condition:

©,.0 =0 b, . (3.42)

(iii) 312 .= D% - h,, is an extended gradient,
namely,

(P e = (P A s (3.43)

Proof: Equations (3.40)-(3.42) are a direct conse-
quence of the definitions (3.39), of Egs. (3.17b) and
(3.17¢), and of the property g5 " = + ¢q.%.

Remark 3.3: Using Eq. (3.42) the BO class can be
written in the following form:

q:, =P8, fdxz 8129 (PH)”
=8, fdxz 28, (PH)"

=id, fdxz p(PH)" 1=, 8,. it
(3.44)

The first Hamiltonian operator 6!}’ = ¢,; commutes
with &,, and reduces to i d,,. Then g, is the (projected
version of the) first Hamiltonian operator of the BO class;
this result was already known.'?

The existence of a compatible pair of Hamiltonian op-
erators is connected to the existence of infinitely many
constants of motion in involution. Theorems 4.1-4.5 of
Ref. 4 can finally be summarized in the following proposi-
tion.

Proposition 3.5: Consider the compatible pair of Ham-
iltonian operators 04}’ =q,;, 0! =(q,5 —iq,;; H:2)q:;
and define &, =0{2(6{}') ~'; then the following is true.

(1) &, is a hereditary operator

(i) oi7'=d(7’q; - L and y!7" = (P% )™ - | are ex-
tended symmetries and extended gradients of conserved
quantities, respectively, for Eqs. (3.2), namely,

U(llzn’[KM)] = (5|2K=;))d[¢7§;ﬂ] ) (3.45a)

Vi LK™ + (8, K i) riT' ] =0, (3.45b)

(D1 7h)y = ((PH)ThL)E, By =hix, —x3) .
(3.45¢)

(iii) Equations (3.2) are bi-Hamiltonian systems,
since they can be written in the following two ‘“‘extended”
Hamiltonian forms

q,, =B, f dx, 6,,04,'r\}’ =8, f dx,8,,03vi; 7" .
" R’

(3.46)

(iv) o and y{7" are symmetries and gradients of
conserved quantities for Eq. (3.2), namely,

o [KiT] =KD [a7], (3.47a)

YUK+ KD oim] =0, (3.47b)

7 = ;f‘"”' , (3.47¢c)

where * denotes the operation of ad;oint w.r.t. the bilin-
ear form ( f.g) = [odx /2.

(v) The corresponding conserved quantities /,,, relat-
ed to y{3"” and ¥} via equations
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i =grady, 1., L, [ fi:l=(grad; I,..fi;). (3.48a)
Yiv' = L Ifl=(grad I, . /). (3.48b)

are constants of motion of Egs. (3.2).
(vi) These constahts of motion are in involution with
respect to the Poisson brackets

=grad /,,,

{1,,1,} £5,:0.0L,r5), O, =6 and/or O,
(3.49)

namely,
{1,,1,}=0. (3.50)

(vii) The equations K |7’ =K ""(q,,4.) =0 are
Bicklund transformations (BT) for the BO class (3.2),
interpreting ¢, and ¢, as to different solutions of (3.2).

Remark 3.4: (i) The first extended symmetries of the
BO class are given by

oY =q;  1=¢,—9q,, (3.51a)
ol =®iq; - 1
_'(an +q2,1) +1{|q|'| —quz'z

+ (g1 +9(q, — q7)
—i(q, —q;)(H\q, — Hyq,) , (3.51b)

then their projections are the first syminetries of the BO
class

oy =0, o‘,}’=21q,.‘ , (3.52)
and equations
0¥ =0, ol)=0, (3.53)

are the first two BT's of the class. We remark that the BT's
generated by ¢, are polynomial in g,, ¢,, unlike the pre-
viously known examples.'’

D. Connection with the mastersymmetries theory

The mastersymmetry approach was introduced by
Fuchssteiner and one of the authors (A.S.F.) '® asan alter-
native way of generating symmetries of the BO equation.
This approach was subsequently applied to (2 + 1)-di-
mensional systems like KP,'' | + 1systems like KdV,'>'8
and finite-dimensional systems like the Calogero-Moser
problem.'®

In this section we briefly show that the existence of a
hereditary operator @, allows a simple and elegant char-
acterization of the BO mastersymmetries (analogous and
more detailed results for KP were reported in Ref. 5).

Proposition 3.6: (i) If

Ki3'=dl,q; 1, (3.54a)

A0 =0Ng; (X, +x,)", (3.54b)
then

[6:,.K };’,r,;"”]d =4inK 3+m-" . . (3.55)

(i) riPV =77, _ . are mastersymmetries of de-
gree | of the BO class, since

(K], =dink 7+, (3.56)

Proof: The derivation of Eq. (3.55), presented in Ap-
pendix C, is based on the following important properties:
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(0 Dy (g0t + 12 | + {aig); (x, + x|
=gy, [Hin(x +x) ), (357a)

(2) [Hidx, +x) 1 /.= LJ dy Fly.x, — x,),
7 Jn

(3.57b)

S Sty Rl b g - xG ), (3.57¢)
(3) dg [ H(x, —x) [E,KE)=0, Vsl.0.

(3.57d)

These follow from the definitions (3.3) and from equation
Ilm (Z(—l) '-'a‘,;"'a’,:l(‘,;‘) =0

(3,57

(see Appendix C). Equation (3.56) follows from (3.55)
using Theorem 4.1 of Ref. 4.

Remark 3.4: As for the KP case,® time-dependent
symmetries of the BO hierarchy should be generated via
mastersymmetries 75" of degree r> 1. In this case, an
equation analogous to (3.55) should follow from a suit-
able generalization of Eq. (3.57a) obtained replacing
(x; 4+ x;) by (x; +x3), r> L.

E. Connection with the complex Burgers hierarchy

Itis well known that if g(x,¢) is analytic in the upper x
plane, then the BO equation (1.30) reduces to the (com-
plex) Burgers equation

ql = qut + I.qxx ’ (358)
since
Hf't'=ii'f(t), (3.59)

where f**’(x) and f* 7’ (x) are holomorphic in the up-
per and lower half x plane, respectively. The same result
obviously holds for the whole hierarchy.

Proposition 3.7: 1f g( x,t) is holomorphic in the upper
x plane, then the BO hierarchy (3.2) reduces to the fol-
lowing complex Burgers hierarchy (investigated in Ref.
20):

q,=b,(id, +3,99,")" 'q., n>1, (3.60a)
b,=2"3,, 0,'¢J dx . (3.60b)

Proof: The proof is straightforward and relies on the
fact that each gradient ¥{3’ is a holomorphic function in
the upper x, and x, planes; hence Eq. (3.59) implies that

%y = (g5 —iH 9577
=(94 +93)vi =2(q +id vy -
Then

0, =0, [ dxibugi ()"
=20, d,, f dx; 8, (P%)"
it
=2"""B,0, (g +id. )"
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Ay g—— ———

- -

4 -

P

=b, dx,(ql + dn. ) l‘ll
=b,d, (g +id. )" '3 "q
=b,(id, +3d,4, 3., ’q,_l )
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APPENDIX A

In this appendix we use the notion of directional de-
rivative and extended bilinear form introduced in (1.24)
and (1.22), (1.32), respectively, to prove some of the re-
sults presented in this paper. In order to give a self-con-
tained presentation, we first present some results con-
tained in Appendix C of Ref. 4.

The directional derivative of the basic operators ¢}
(1.13b), (1.23), (1.33), 1s

9i3,(fi218:=/ 3812, (Al)

where the integral operators /|5, defined by

f|§g|z¢J;dxl(fugjzigmf\z)v (A2)

enjoy the following algebraic properties:

J

ash, voba (A3a)
(ayb s —bgad)en=tanhy) co= — ¢,aub;.
(Alb)
(@b FTbhianenn=(aiby) ¢+ +cjaib,,.
(Alc)
a; = tap. (Ald)

Morcover the integral representation
9/ = | dean fetfiaw) (A4)
R

implies that ¢, satisly Eqs. (A3) as well. Equations (A3)
are conveniently used to prove the following properties of
the recursion and Hamiltonian operators of the KP and
BO equations.

For the KP class, the following is true.

(D ®,=(ad, +q,,)(D,+ D,) "' isastrong sym-
metry of K$, H,, = (@ d, + ¢q,3 )H . [ndeed

P, o] =0,(D + D,) o

(R",’Zli,z)d[(r,zl =0,H,,
and
2D KU H D
= (K% H,,) (D + Dy ',
— (P, fi) Hyp+ @, foHp
=((ad, + g )H;) 80,
—((ad, +¢;)8:) H+(ad, +93)8:H

having introduced g,,=(D, + D,)"'f;; and used
H. D, +D,) "=(D, + D,) 'H,, Using (Al3a) we

obtain g, g, M, ~ H\,9,,8, — 9.8 Hy,, which is
zero, for (A3b) ~.

(2) ®,, is a hereditary operator. Indeed

Py (P12 £121812 — PPy, [ f12]812 — (sym. wort. fir058,3)
=((@d, +q) (D, +Dy) " fi) (D, +Dy) gy —(a 3, + 9, ) (D + D)) "' f5(D,+ D;) " 'g;— (sym. *+-)
=((Dy+ D)) 7'¢:) (@8, +93) (D, + D)~ fy; = (D + D)~ fn) (@ d, +¢3) (D + D)™ '8y
—(ad, +9y YDy + D))" f (D + D) gy, — g3 (D + D))" 'f,) =0,

using integration by parts,
(D, +D)""f3(D,+ D) "g;
=D+ D) 'f,) (D, + D))" '8, — (D, + D!

X (((Dy+ D))" f12) 812 — 83 (D + D)7 ')
and Eq. (A3b).

3 (KGHPKLHD),
= (RGHP) HY — (RGHI) HY
= —H{Y (ad, +413) '
+HP (ad, +q7)H Y
= —KLHY HP,
for (A3a)  and (A3b) .
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For the BO class the following is true.
(4) &,, is a strong symmetry of gq;h..
hyy = h(x, — x,). Indeed, using (3.43a), we have

LD g ) = (g3 h3) "fiu—i(qahn) Hy fin
+ (g —ig Hy)) 13 h
— (g3 /2 — g Hy i) "hiy

Using Eqs. (A3a) and property (3.17a) [see Appen-
dix B (5)] we obtain

(fognhn+asf b+ hu9500)
+i((Hy £12) " g hi — g (His fi2) Thys
—hiq 0 0.
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and the two expressions in parentheses are zero using
(Alc) and (A3b) ", respectively.

(5) ®,, is a hereditary operator. Using (3.24a) we
have that

¢|z,[¢|zf|z]g|z "bu‘blz,[fu]gn
— (sym. w.r.t. fi,8,;)
=(q3fi2—iga H\2 [12)81%
—i(q3fiz = ig Hiy f12) " Hyz 800
— g5 (38— if 2 H\ 812)
+igy Hi( f13812— f 11 H 12 812)
— (sym. w.r.t. fl,g8,,) .
Using (Alc) and (A3b) we obtain
gz (Hylgr Hiy fra + (Hy; 802)7 /1)

+ 82— (Hi; 82)"H: fid) s
which is zero for Eq. (3.17b).
(6) g3 = +qi -
These are direct consequences of the definitions (1.32)

J

() Efi,=10% £ (—1)"3%) fia,

and (L340 Thar mamediate impheations are Egs.
(3.17c), (3.40a), and (3.41).

(7) ©)}’ = g,; and 61}’ are Hamiltonian operators.
They are skew symmetric, since

O =g —igi Hiq:)* =q:"(q5 —iH 1,q,;")
= —q(q\; —iH;,;q;)
= -0} (being 959, =91,9,3) -
They satisfy the Jacobi identity (3.40b), for instance
<012'9H;[9:;)blzlclz)
=(a,4:3,[912 b12]¢12) + cycl. perm. s
= (a,3,(¢y3 by) “¢2) + cycl. perm. 5.
Using (A3a) and (A3d) we obtain
(a1 — c292bi2+ b gz —g9i2b e,
which is zero for any a,,, b,,, ¢,,, for Eq. (A3b).
(8) The derivation of Egs. (3.36) is the same as for

the corresponding ones of the KP hierarchy (see Appen-
dix C of Ref. 4) and makes extensive use of the equations

(A5)

(6K 1) alfi2] = (61292 "DalFi2] = (92614 fi) =f3612= — 8.3/, =0,
(6K )4 fiz] = (@129:3812) o[ f12] = 2i(q 3 81,) 4 [ fi2)
=@, [£12)93602 + ©2903,[ /1216, — 2iq.3,1 /12161,
=(f:—faH2)9382+ P, f38,— 236,
=f59200— i H1,938: — 01285 1+ 2(81;) "fia = 2i( d, +9. )/ izs

since

[54320:=93f56:2—-6%93/12=2(9; — 922/, =0,

SH 2936, =f3060,H,(9,~q) = f36,,(H g, — Hy,) =0,

(01:) fiu=1(d,, + d. M2

(6K 34 fi2] = (91,936,) 4 [ f12] — 4i(P129380,) 4 [ f12] —4(9136%,)al fi2]

4 =0, [f2]9012926: + PP [ 121926+ Phgi, [ /1216,
—4id,;, [ /12192 81; — 4912913, /12181, — 492, /12167,
' =(fs —faHP,938:+ (s —if Hi2a36:: + ®Lf 38,
_ ~4( S —if 7 Hi2) 9381 — 4%, 1360 — 4160,
’ = 4(H (3, + ) + (3r, +9:,) (@ + q;) +i(H g~ Hyq, ) —i(q, —g:)H 5 (9, +3.,)),
since, for instance,
FE92938,=f56,K 1 +26L,K\D) =fi (K + K1) — 2[00 (K2 f13))ei o vy — (05, (K ($f52) s =, ]
=/f(2i(q, +4q,, ) —2i(q, +94..))=0,
SaH(6,K 3 +28,K9) =/3(6,H,K 1) + 25\, H,,K 2
=fi(H K3 — HK D) — 2i[005, (fisHu K ) 2y + (00, (f52H 3 K3 )s 25, ]
=2((Hyq,, '~ quz,z) - (Hiq,, — Hz‘h,z N2=0;
[i39260 =9i3/1581 = 8" 92 fu=19i3 (9, —3,) = (3, =9, )qulfu= — (g, +q, ) 0;
1 fﬁﬂlqu;‘s:z =f|—15:z (H\q, — H.qy) = — (8, (fi3(Hgy — Hygy) Demx, — (0, 520 H g, — Hyqy) be, = %,

- Hz‘lz,, + qul,! .
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APPENDIX B

In this appendix we prove some of the properties of
the extended Hilbert transform presented in Proposition
32 -

() J‘ dx,8,.H,, g, =Hg, .,
M

since

f dx, 5,7 " f dyly — (x, +x3) 1 7'G(y.x, — x3)
R R
=f*f@uéhn”mwn
R

=7 f dy(y — x,)"'G(2y,0) = H g,,,
R
8(x1,x2) =G (x; + x2.X, — X3) .
(2) Hya(x;) = Ha(x)), j=1.2,
since

Ha(x,)

=7 j dyly — (x, + x3) ]“a(L + 0 -xz)
R 2 2

=r! f dy(y — x,) "'a(y) = Ha(x,) .
R
APPENDIX C

In order to prove that Eq. (3.55) holds, we must first
derive Egs. (3.57).
(a) Derivation of Eqgs. (3.57}:

L(Pi2912 (x, +x2) ) /1,
= (g (xy+x) ) fiz—ilg (xy + x3) ) Hy, £
+ (g — g Hi)f i (x +x,)
= (g2 fru— g2 H\3 [12) 7 (xy + x3) .
Then, using Eqs. (A3a), (A3c), and (A3b), we obtain
Z( 12,93 (x, + x2)) fra
=igy ((Hyy fr2) " (X + %) — Hyy f13 (% +x3))
=gy (Hyy(xy + %) 7 — (x, +x) "H 3 ) fias

which is Eq. (3.57a)

Equation (3.57b) is a straightforward generalization
of equation

(Hx)f= —'—f dx' fix').
T Jr

In order to prove Eq. (3.57d), we first prove that
(Hip(xy + x3) 7 — (x, + %) "H; )81, /1) = ¢, (Cla)

=+ | du,dx, 6,03, +3.)
T Jr?
s—-1
XF (=D a L S
=0
s -1
= —fdx a, ( (_n'-'a'—'-'a,,f.z) .
(Clb)
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(H(x) +x3) 7 = Loy +x3) H00L /0,
=II|3f dx [ (x, + x3)63,/1, — &
"’

RYES +-‘:)]

——J dx,[ (x) + x)H 6%,/
i

S (S0 x|
=Hu(C= D0 Yo -
+ (x + )0 firde < o)
=53, S e = 0 +x)0 fis) k)
— (= D{s(H, 3 'f‘l)r. = x,
+(x + XD H GO fi) e o)+ s(H LA i) - o
+ (5 +x)(H ;38 Si3) s o v,

where we have used Eq. (3.16e); using now (3.16d) we ob-
tain
[H 2 (x) + x) (- l)‘(a;,j:lz)x.=x, — (@ is)e =)

and Eq. (3.57b) finally leads to Eq. (C1).

Equation (3.57d) directly follows from Eq. (C1) when
Si2 = K2, since Eq. (3.57e) holds.

(b) Derivation of Eq. (3.55):

[5 ZK(Z 'TI;”)]d
Z( — 21) ( ) L P I?lzélzvcbrz‘h; (x, +x2)]d
o
Z( — 2i) ( )(‘sz*m—”%z 2@z (X + %) |4
i 4]

rion 'S

r=1

g [Hn(x +x3)7]

X P, ’4.2«541).

having used the fact that &, is a strong symmetry of g5 A,
Eq. (3.57a) and Eq. (2.8) of Ref. 5. Equation (3.28) and
equation [&},,(x, + x,) ], =26,,,6,, = lifl=1and 0if
! #1, then yield

4,'nK(n+m~I)

+1 E Hz”il( —2) ( )(21)( ;

I=0r~1,;=0

1

X[Hw.(X. +x2)—](5l+/K(r—l—/)) ,_4"1K(n#mf )'
for Eq. (3.57d) .
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A. Recursion Operator for the Toda Lattice

The equations of motion for the Hamiltonian System of the Toda lattice with [lamiltonian

1
H=3 {;Pi + e"‘“""}

_ — oTn4i=T Tn=ZTn-
Tn¢ = Pny  Pag = €TI0 - gfn Tt

and the shift operator of the Lax pair acting on the vector

tn
wn= "]
671

is given by (Takhtadzhan and Fadeev (1979))

Ln()\)wn = /‘n+l

where
I + A — e
Ln(/\) - [[ﬂ }
g~ Tn 0
After introducing
Vn = €nel

(4) vields the following second order difference equation for v,:

Ins1—=ZIn

/\l"n =c€ Unsy + ("‘[M)Un + Unoy

Define now

an = eI.’n+l“In , bn = __p"

then (7) is written as:
(nUny + bnvn + Unel1 = '\vn

The time evolution of the auxilliary vector ¢, is expressed in terins of ©,'s as

Une = (Anl'n+l - Bn”n)”n

and the compatibility of (9), (10) gives:

{(ln.l -+ A(l"(.4"+| - An) - (ln(bn+lAn+l - [)nfln) - ”n(”n+1 [}"4_]

-~y [))Tw-l )] Untl

(10)



+ [bn,t + A(aan - an—an—l) + bn(an-an—-l - aan) R R PR ‘ln":‘n‘#-l] va =0 (11)

hence both coefficients of v, and v,,; should vanish i.e.

an,; + /\an(An+l h 4n) e an(bn+lAn+l - bnAn) - an(an+an+l - an—an—l) =0 (12)

and
bn.t + ’\(aan - an-an—l) + bn(an—an—l - aan) + an-lAn—l - an'4n+1 =0 (13)

One may postulate
N

N .
Aa=S AN B, =3 BYWN (11)
=0

=0

So after substitution of (15) into (12), (13) and equating coeflicients of \?, one obtains the following
equations:

an(AY) =AMy =0 e BN —a, B =0 (15)

Uny = a,,(b,,H,»lEﬂ, - bnA(nO)) + a,l(anHBfgzl - an_leto_)l) (16)

by = ba(an B = 4oy B) + an AL ~ anar 4, (17)

an( AV = AU = ap(bas AY), = 0,40)) + tn(anii B, = ana B (18)
anBO™Y = 4 B = by(aaBY — ancy BE) + anAlly = anci Al (19)

fory=1,...,n
Upon introducing the operators A, A7 (cf. Soliani et al., (1983))

A“n = Uppr — Un

AU, = unoy — Un (20)

one may write (17), (13) in matrix form

[an,t] _ [ an(A - A+)an anAbn ] [BLO)]

bo.: b, A*a, anA — Ata, | [ AD

M el cndinhan o Stk ot GEien i




BO
Q[AQJ

and (13), (19) expressed as:

BU-Y B
o] =2 ]

[ 0 an A ]
—A*a, 0

where

S

Note that this operator was present by Soliani et al., (1983). The recursion relation takes the form

BY-1] .-1 BY _ BY
A&J—l) = @ Q A&J) =V 4&])
['rom (25) one obtains recursively:

BOY B
[APJZW Lﬁ”J

AS{V):C , BSI’V)zo

and since a solution of (13) is

where ¢ is an arbitrary constant, the hierarchy of the Toda lattice is given by:
a 0
[ n.t] — Q\I/N [
b c
Tlie first system of equations (N =0, ¢ = —1)
Une| _ _anA[)n _ an(bn - bn+l)
/’n,t Ata, An-1 — an
is equivadent to (2), using (8). The sccond system (N = 1) 1s:

] -ow L2

/.

(29)




and, after noting that

@-—1 — 0 ar—xl(A+)_l
AN 0
where
+20
(A '), = — Z u,
J=
(29) becomes:
\ , ,
Une| _ an(amH - 2“n + an-—l) - an([':,.n - bfx)
/’n,t B _bn(an—l - (1,\) - an(bn+] - ,)n) + an—lbn-l ”n[’n

B. Landau-Lifshitz Equation

The Landau-Lifshitz equation (LL) is given by
S(=SXSII+SXJS

where J is the diagonal matrix

J = diag (J;, J2, J3)

~ ~

and S is the classical unit spin § = (54, 57, 53), iL.e.,

S-S=1.

(30)

[t is well known that (1) is completely integrable and Sklyanin (1979) and others presented its
Lax-pair. Since the LL equation is the continuum limit of the equation of motion of the quantum
non-isotropic lleisenberg Hamiltonian (the so-called XYZ), it is not surprising that the Lax pair
is expressed in terms of Jacobi elliptic functions. The algebraic structure of (1) was studied in
detail by Date, Jimbo, Kashiwara and Miwa (1983) who derived its quasi-periodic solutions as well.

Furthermore, Fuchssteiner (1984) studied its master-symmetries.
Cousider the equation for the auxilliary vector v given by

3
v, = —i (Z S,H/’Ja,) = —tLy
=1

—
SN

while L may be viewed as the shift operator associated with the Lax pair. The operators g, are the

Pauli spin operators given by




¥

PR

and the Jacobi elliptic functions IV, are given by Sklyanin as:

1

W, = p—r——rn

' psn(u,k)

dn(u, k)
W, = p—— G
? psn(u, k) ()

W, = pcn(u, k)

sn(u, k)

with the modulus k given by
Jy = I M? -

k= { } 0<k«l 7)
Ja - Ji (‘)

and the arbitrary normalization parameter p as well as the parameters a, 8 are defined by

1
H/12 - ”/32 = I(Jg - Jl)

a (Sa)

1
”/'22 - ”/32 = I(Jg - ./2)

8 (3b)
Formally, one may express the time evolution of the auxilhary vector ¥ as
Y= -1V (9)
and the structure of the operator L suggests that V has similar form, i.e. one may postulate

3
Yy = —i {Z ll"]\"jaj} % (10)
=1

with the compatibility condition
L= V=L V]=0 (11)
that takes the form
3 3 3 3
S S W, =S VW, =i (S, W0, 5 Vie, | =0 (12)
1=1 =1 1=1 1=1
Equating coeflicients of o, for j = 1,2,3, one obtains

211, 1Vs
ST

(53V2 = S:Va) + Vi (13)

6




as well as other cyclic permutations.
It is convenient to introduce the parametrization

A= W W, Ws, u=W?2 (14)

o] —

with the immediate identity

A= %#(# +a)(u + B) (13)

where a, 3 have been defined by (8a), (8b). Thus, (13) and its cyclic permutations take the form

: |
Sii = ﬂ"—;l)(ssvz — SpVa) + Vi (16a)
Spe= B Gy V) + Vo, (166)
DRSS LTSV AR T (16¢)

/\

One may formally represent the operators Vi by the finite expansions

V, = /‘(l‘;’ B) Zi‘"_ja(l” + Z “n—Jb(lJ) (17a)
i= 1=0 .
V, = (e + a)p z n—jagj) + Z/ n-Jb(J) (170)
A 1=0 =0
+ z - = ne L
V= & ﬂ)A(u+a)Z#n 1a§) 4 3 ) (17¢)
j= )=0

In other words, determination of the operators af\_j)

Upon substitution of (17) in (16a) one obtains

, bf"‘) is equivalent to a determination of 1.

t+8) & a- n-
Sl.t‘_" /l(/ ﬁ)Z#n la ‘J) +Z# )[)(J)

A j=0 )=0

Mt 5) [52((”0 (e +8) Z ag,>+zpn-,,,g,,)
/ 1=0

-~1




N
-

pr+ o) SN i ) = aej
_53(_£_,\—.Z”n ]a(zl) + Z#n Jblzl))
J=0 - =0
namcly
v wr S G : "o
Sie= = o u T = Sobg) + 5aby) + 3 b
J=0

=

~d(p + 3)52 Z a4 4uSs > wal

j=0

or

p +3) & ; ' z ‘ .
Sie= e ; ) Z/‘ (a(ljl Szb(sj) + 530(21)) + an—][b(l]‘l_ — 435 (J)]

)lls
71=0 =0

-4 Z ‘un—J (J+l) S3a£j+l)]

1=-1

Similarly, the other two equations are given by

v a ‘ ‘ : -
Sy = (1 + a)p Z/‘ﬂ ](a(J) 531)&” + Slbg”) +> b(” +daSa!”)

=0

n—1 )
~4 3w (Ssay"Y - Siaf™Y)

1==1

_(e+Buta) i#n-,-(agj)

tr)
oW
T~

_ 5111(2]) + 52[)([1))

+Z/l b(") - 1aS,a2")+4Bb am —4 Z u Sla.()jH) - 52(1(1’“))
1=-1

Equating cocflicients of 17 and A~'x? independently one obtains

Sxa?=9

Sx b =all ;j=0,1,.

o
{

(19)

(20)

(200)

(20¢)
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. 1 .
S x alt!) = b —(a8) xa i =01, -1

S, = bl" - 4(48) x a™
where A\ is diagonal matrix given by

A = diag (e, 3,0)

First, one solves (22) for b7 | |
b = —_8 x a(rJ) +9,S

(20)

where g; is a scalar function of x to be determined by requiring the solvability condition for (23):

{b‘,’) — (4AS) x a(j)} -§=0

This condition gives:

i = {Sz x al) + (44S) x xal}:s
-t ({S, x al?) + (4A48) x a")} : S)
where 971 indicates antiderivative with respect to x.
Then
bY) = S x al) + [(44S) x at - ] s
+ {07 ({S. x a¥) +(148) x aW} - s)] s,

Now (23) vields:
b+ = _is x {bY) = (148) x a¥} + £,4,8

where the scalar f4, is to be determined by the requirement

alit.g =g |

for (22) to be solvable for b(). Using (31), (32) yields

S. x {bY) - (148) x a"} . 5

3
f)+l.z: = i

0

(27)

(30)

(31)




ol

v ~—¥ — - T T~ T e T e ey
-

41 =07 (S, X {b(x” - (144S) x a‘”} -S) (34)

1
4
0,

, 1 4
G+1) — _ () (1)
alvt = 45 X {sz (4A4S) x a’}

+% [0 (s: x {b¥ - (445) x a®}.s)|s (35)

Finally, introducing the operators: .

O 'a=Sxa+ [0S, xa 8)|S . (36)

and

Qa = %{—Sxa,,-(4AS) x a+[(4AS) x a-S]S

+[071 ({82 x a; + (14S) x a} - S)] S, } (37)
we can write (33) and (24) as:
alltt) = @100 = gya» (338)
and .

Next, one has to deal with the “starting points” of the recursion, al®, b9, It is best illustrated
by an explicit derivation of the hierarchy (39) for n = 1: '
From (21), solving for a® one obtains:

a9 =FS (10)

It turns out that F, is a constant in order to be able to solve (22) for bV

b9 = ~FS xS, +G.,S (41)

where G, is a new constant in order that (23) be solvable for al!):

a“) = fls + ;{GO(S x S;) + Fo [S:: - (S : Szr)S”

10




+F, {(S- AS)S — AS}

Since al!') has to be normal to S,

1
fro— 1-:,{;(8, .S..) -8, .43)} ~0

Since S is a unit vector, t.e. S-S =1, one has:

§$-8;:=-S;-S;

and
S Sz'::z =

oW

(S "Sz:)z

so (43) yields:
1
f] = Fl + gFo [(Szz - 4AS) . S]

where [] is a constant. lence

a) = {F, + ér ((Sex — 4A4S) - S]} S+ %GOS xS,

+1—FO(S,, ~(S-S:5)S) + F,[(S- AS)S — AS]

and

Al = {Fi + <F.((S.e - 44S) 8]} s,
I,
+ 2 {(See = 448) S, + (Surx — 44S.) S} S

1
+IGOS X Srr + %Fa {Srz: - (Sr . S:r)s - (S . Srrr)s - (S ) Srr)Sr}

+F, {2(S; - AS)S + (S - AS)S, — AS,;

Then, solving (22) for b'", one gets

bV = 4§ - § x all

11

(42)

(19)




1

- - - -
- ———— v

where g, has to satisfly the equation (cf. (28))

1
gie = 7Go[Ss - Sur + 445 -8, - %Fo [S. x (44S.,) - S
+S.: X (44S)-S = S, X S,z - S (50)
i.c. 1
J1,r = §Go [S, . SI + 4AS : S]:
|
LR[S, x (S, - 145) 8], (51)
and because of (45):
1
g = Gi = 3G, [(See ~ 445) - 5] + i—Fo [S. X (Ssz — 44S) - S] (52)

One may set n = 1 in equation (24). The resulting evolution equation contains the arbitrary

constants Gy, Fy, G,, I',. By letting all but one vanish, one obtains the hicrarchy of evolution
cquations as:

(i) Se=S; (33)

(i) S¢=S x S,z + (44S) x S

which Is ti.e same as

S:=8xS;:+SxJS (34) -

because of (8a,b) and (23).
3
(i) S, =S, + ;[(S, -8;)—=JS S+ J3]S: +3(S:- S:2)S (53)

This equation was obtained by Date, Jimbo, Kashiwara and Miwa (1933)

1
(lV) S¢=S xsrr:t+srXSIII_;[:BS.SII+S'JS]S X S,r

+[3(Ss - Sss) = Si - JS|S x S; — [Sz X (S, + JS) - ]S,




o -—— v —r e e e

+%[3(S -S:z) + (S JS)|(JS) x S
~[Sz X (Szz + JS) -S|, S+ (S x JS,); + Szz x (JS).

Dctailed account of this work, in particular the bi-Ilamiltonian formulation and the connection
with the master-symmetry approach, will be published clsewhere.
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1 Introduction

The LL equation describes nonlincar spin waves in an anisotropic ferromagnet. It is given by
S;=SAS..+SAJS (l.1a)

where
J = diag(J1,J2,J3), S=1(51,52,53), IS|?=SeS =1. (1.10)

In the above the diagonal matrix J is a measure of the anisotropy, J; < J; < J3, S is au
x- and t-dependent vector of unit norm in R3, and o, A denote the usnal scalar and vector
products.

The partially anisotropic 1IM and the HM equations correspond to J; = J; < J3, and
Jv = Jy = J3 respectively. It was pointed out in {1] that the LL is the most general magnet
model admitting an r-matrix formulation. Furthermore, both the SG and NLS equations are
limiting cases of the LL equation. The analysis of the LL is technically more complicated than
that of M, SG and NLS. Tlhis is because the isospectral lincar eigenvalue problem associated
with LL involves elliptic functions [2]:

Uelz,t,0) = =i (S30,5,(z. OW,(No;) Ul 1, A) = ~iLU, (1.24)

where the Pauli spin matrices are given by

01 0 —i 1 0
o= R RS : (1.20)
1o i 0 0 -1
and
1 dn(A, k) cen(A k)
Wi (A) 2 p———, Wy(A) & pit IW3(A) = p—ii :
) P (3 k) 23 (kY ()4 P sn(n k) (1.34)
with

_(J2= S \V? . .
k= AN , 0<k<l, p=vVJa-Ji. (1.34)
3~ J1 '

In the isospectral problems associated with the IIA, SG and NLS cquations the spectral
paraieter A ranges over the complex plane €, however the natural range of A in (1.2) is an
clliptic curve: The torus E = C/I" where T is the lattice generated by 4/ and 47/A7. where IV
and N’ are the complete elliptic integrals of moduli & and &' = V1 - k2,

The Lax pair of the LL was found by Sklyanin [2] (see also [3]), who also obtained the
action-angles variables (for rapidly approaching a fixed unit vector boundary conditions} by
introducing the notion of the classical r-matrix. The initial value problem for similar data was
studied by Mikhailov (4] (sce also [5]) using a Riemann-I{ilbert problem on an cliiptic curve. A
general description of finite-gap solutions was given in [6] and explicit formulae were obtained
in [7] and [$] in terms of Prym theta functions.




Algebraic properties of the LL were studied in {7] where also the next memnber of its hi-
erarchy was explicitly given. Fuchssteiner [9] presented hierarchies of time-independent sym-
metries, time-dependent symmetries and conserved quantities using the notion of a4 master-
symietry introduced in [10]. However, the recursion operator could not be found aud hence
its bi-lHamiltonian formulation could not be established. This is a serious disadvantage since
the bi-llamiltonian property appears to be a fundamental property underlying integrability
(11-13]. Indeed, the bi-llamiltonian formulation of NLS and SG are well established. Also the
recursion operator and the hierarchy of Hamiltonian operators associated with the HM! have
been found in [16] using the gauge equivalence of the IIN to the NLS ({17], [18]).

There exist various approaches in the literature for constructing recursion aceprators [19].
We favor the one which uses the associated isospectral problem. Indeed, this approach hus also
been successful for obtaining recursion operators in lattices [20] and in multidimensions [21].
Also, it has the advantage to yield hereditary recursion operators [22]. I §2 we illustrate our
method by deriving the recursion operator of the HM equation; this operator coincides with
the one given in [16]. In §3 we derive the recursion operator of the LL equation wnd establish
its bi-lMlamiltonian factorization [23].

The method of deriving the recursion operator from an isospectral problém makes crucial
use of a certain expansion in powers of the spectral parameter A. The main difliculty we
encountered in applying this method to LL stemmed from the fact that A moves on an elliptic
curve. This problem was bypassed by using the parametrization

1
vo= EHQIVQH@, =3, (1.4)
2 _ 1 L1 .1 -
vt = I}l(/t+(t)(/l+/3); a;—Z(Jl - J3), 3= —:(./2_—.13). {1.5)

This paper is organized as follows. In §1.1 we review the basic notions of syiunetries,
gradients of conserved quantitics, recursion operators and Hamiltonian operators. In §1.2 we
establish the connection between these results and thos of Fuchssteiner [9] by showing how the
recursion operator derived in this paper algorithmically implies tire mastersymmetry found
in {9]. In §2. §3 we derive the factorizable recursion operators of the HM and LL equations
respectively.

1.1 Basic Notions

We consider the evolution equation (1.1) in the abstract form
S = K(S) (1.6)

Let 4 denote the vector space of C® — maps from R into R? and let TE denote the space of
suitable €™ vectorfields on E. The manifold on which the flow (1.6G) takes place is denoted
by M and the space of its smooth vector fields by TAL Clearly . M is a subspace of I2 such
that SeE satisfiecs S o S = 1. Similarly TM is a subspace of TE such that V(S)(Tg L sutislies
1'(S)eS =0, i.e. V(S(z)) belongs to the tangent plane of the unit sphere at S(x).

In TAM we define the usual Lie-bracket by

(K,G)r, = K'[G] - G'[K]. (1.74)

]

- ———— —a
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where N'[G] denotes the Frechét derivative of K in the direction G, i.e.

.
RG] % 5. K(S + G)le=o. (1.70)

Let T*M be the dual of TM with respect to the bilinear forin
(v,0)= / dryeo. veT X, ocT\M. (1.5)
®

Let [: M — R be a functional; then its gradient, V1, is defined by

I'lv] = (VI,v), veTM. (1.9)
\

It is well known that a function fis a gradient iff f' = (f)*, where the adjoint LY of an
operator L is defined by (L*v,0) = (v, Lo). In order to make the gradient unique we consider

its projection onto the tangent plane of the.unit sphere in R? at the point S(r);ic. ~ oS = 0.
The conserved quantities of the LL eqnation take the forn

[:/dr(F(S)— [(e)), e=(0,0,1)", (1.10)
R

where we have assumed that S — e as z — £2c. As an example counsider

i1, = /“d.r(I‘O(S) ~Tole)), T, = %(s «JS—S,eS,). (1.11a)
then

] = /;dr(v-’JS Cveby) =/ndrvo(.]S + S0,
thus

I, =x(S;;+JS), ra=-SA(SAa)=a~-(asS)S. 111b)
{1) The hierarchy of the LL equation consists of all flows which commute with (1.1): i.e. it
consists of all time-independent symmetries o. We recall that ¢ is a syvunnetry of (1.1)

iff

J . -
o K], =0, oel'M. (1.12]
t

(i) An equation {(1.6) is a Hamiltonian system HT it can be written in the Torm

S, =0vVv/, {1 130a)

wlere O is a Hamiltonian operator, i.e. O is skew-symmetric with respoct to (1.8) and
it satisfies, also, the Jacobi identity:

(VIO VLIV + cvclic permutations =0, Lm0 (= 1,2.4. {(1.130)

4
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and /1 is a functional. The familtonian operator @ induces the following Poisson bracket,

{11,12}#(V[1,®V[2). (1.14)

(ii1) A functional Lis a conserved quantity of (1.6) iff I'lA] = 0, or (cf. 1.13a).

I'[K)=(VI,0VH)={I,I[}=0.

It turns out that it is more convenient to work with gradients of conserved quantities: these
conserved gradients satisfy

o

oy F VI +H (K ] =0, 12 V1. H)

For Hamiltonian systems there is an isomorphis.m between the Lie commutator (1.7a) and
the Poisson bracket (1.14), [10]-[12]:

OV 1,0V L)L = OV ({1, I}). (1.16)

This isomorphism implies that, for a Hamiltonian system, symmetries and gradients of con-
scerved quantities are related by

o =0V, acl'M, V[T AL (1.17)

It is well known that the LL equation is a Hamiltonian system. Indeed, it can be written
in the form:

Se=SANI,, (1.18)

where VI, is defined by (1.11) and © = SA is a Hamiltonian operator { @ is obviously skew-
symmetric and it is a straightforward exercise to show that it satisfies the Jacobi identity).
Fundamental role in the characterization of the algebraic properties of integrable evolution
cquations is played by hereditary (Nijenhuis) recursion operators.
If & is a hereditary (Nijenhuis) operator then

["K,@™K], =0, ((®%)"VIH, O(&*)"VI) =0, (1.19)

and ®"0O are Hamiltonian operators compatible with @ for all n.meN. (Two llawniltonian
operators are compatible if their sum s a Hamiltonian operator).

In §4§2.3 we derive hereditary recursion operators for I\ and LL equations. Then o7 N (¢H)*V I,

¢S A ) define hierarchies of commuting symmetries, conservaed gridients in involution and
Ilamiltonian operators respectively.

1.2 Mastersymmetries

The general theory associated with mastersymmetries of evolution cquations in one spatial
and one temporal dimension is well established [21], {24], (25]. Here we only note that given a
time-dependent symnnetry o of the form




Ak
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o =09+ oy, (1.20a)
and a recursion operator ¢, then
T = bog (1.204)
is a mastersymmetry. Alternatively, if
Y=Y+1in (1.21a)

is a time-dependent conserved gradient, and ¥ = &+ then

T =0V (1.210)

is a mastersyminetry.
[t turns out that

r=SAVY.(z2S), (1.22a)

where W is the adjoint of the recursion operator of the LL (see equation (3.1) ), is a mas-
tersymmetry of the LL equation. This coincides with the one given by Fuchssteiner [9)].

2 The Heisenberg Model (HM)

The HM equation is given by

S‘=S/\S;:‘ SeS=1. (21)

Its associated isospectral cigenvalue problem is given by

1
- -3 r
U = /\u‘,:lSJa]L,

——
(B
~

—

where A is the spectral paramneter and the Pauli matrices ¢; are defined in (1.2h).

Proposition 2.1
{a) The isospectral eigenvalue problem (2.2) yields the recursion operator ¢ ar defined by

1 s .
Bisi = -5 [SAD-{D7NSAS 0 )}S,]. (1)

(b) The adjoint of d 4y with respect to the bilinear form (1.8 ),

. | |
Wity 2 0fyy = =5(SAD = (DS e D)ISAS,) (2.1)
satisfies
SA(¥par)=Cya(SA). (2.5)
)
N - . e ———————————————————————




(c) The isospectral problem (2.2) is associated with the hicrarchy of integrable evolution
equations

Se=SAV;(SAS,) =34 (=S,), n=1,2,3,... . (2.6)

The HM equation corresponds to n = 2.

(d) The hierarchy SA ¥}, n =0,1,2,...is a hierarchy of Hamiltonian operators. lu
particular the second IHamiltonian operator of the IIM is given by Quar = S A Wy, thus the
I is a bi-llamiltonian system with compatible amiltonian operators SA and §2;74;.
Proof. Given (2.2) we look for compatible flows in the form

Uy = —iSi_ Veael. (2.7)
The compatibility condition U,z = Uy of equations (2.2), (2.7) implics

Si= AV, —2SAV, V= (V1 13). (2.8)

\We seck solutions V in the form

V= VK i2.9)
Then (2.8) vields
s, =V (2.10)
3
VOrD =925 A VO j=1,... n-1, (2.11)
SAV® =g (2.12)

Since V) oS = 0. we define v?) as follows:
V(j) = -SA V.(r”' (2.13)

with

2
e 4

v e s = 0. BN EE

Theu equations (2.10)-(2.12) are transforimed into

1? SAS,=-vil, (2.15)
' v+ = _2[S A (SA (DS A VI, (2.16)
H SADHSAvVIM) =0 (2.17)
A ~

hat3
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We solve cquation (2.16) for v{?) as follows:
Equation (2.16) is equivalent to

V(j+l) - QD—I{S A v(])} p— ‘2(3 (] D_I{S /\ V(J)})S
Hence
VI 225 A v 2(S. DS A VIS, — %S e DHs A vi)y,s. (2.1%)

From equation (2.18), taking SA and Se of both sides we obtain

SAvUTY = —avl) _o(se DS A VIS A S, (2.19)
and
Sevi*l = —2(se DS A vy
i.c.

2Se DTS AV} = —D-1(S e vt (2.20)
Substituting in (2.19), we get

vl =

1o —

(SAV(Ij+l)—{D'I(Sov(:"“))}S/\SI>. (2.21)
e, (cf. (2.4))
vl = pyl+h),
So.
V() = gn=t ),
and solving (2.15) and (2.17) we get

S;=SA¥Y"YHSAS,). (2.22)

ln the Appendix, we show that SA and Q747 are compatible Hamiltonian operators thus.
establishing the bi-Ilamiltonian structure of the H\I,

Remarks 2.1.

(1) Equation (1.15) is derived by differentiating (v, A') = 0 in the arbitrary direction v, where
veS = 0. Thus, one can extend the definition of a conserved gradient by allowing
functions ¥ which are not of the form 73, provided that

SA (‘?)—? + ¥ [N+ (K5 =0, (2.2

~
(4
pns
—
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(%' - (3)*]a,b) =0, a,b orthogonal to S. (2.24)

Indeed the starting v of the HM hierarchy satisfies,
-~ . -7 I~ 3 .
¥=SAS,, [N+ (KN [3]= —-5(8;-8:),8. (2.25)

(% - (3")*]a,b) = (S Aa,b) = 0. (2.26)
(i1) ¥ar(SAS,) = 7S, = VI, where

had 1
o= [~ da(To(S) = Tote)). Ty = -3S:eS. (2.07) .
(iii) YV = 2SA'S, - 2(S,; is a conserved gradient of the UM. Hence

T=0V n{aSAS)=2SAVIg+SAS, (2.2%)
is a mastersymmetry of HIM. This coincides with equation (12) of [9] if J = 0.

(iv) It is shown in the Appendix that the operator Qs = S A ¥y satisfies the Jacobi
identity. Qs is equivalent to Q = %—(D + D{SD~Y(S;e-)}), since Sea = 0. However,
in order to prove the Jacobi identity for Q we have to take into account that Qa e

b=0bec = Qcea =0 which are Fréchet-derivative couscquences of the equations
Sea=Seb=Sec=0.

3 The Landau-Lifshitz (LL) Equation.

Proposition 3.1.

(a) The isospectral cigenvalue problem (1.2), vields the recursion operator Wy defined by:

®Lp = 4)7,,\,-%: ((4ASYA(SA-) = (DS e 4ASA(SA)})S; = (DT'{S e (S A );}){14S A s))
(3.1a)
(b) The adjoint of &7 with respect to the bilinear form (1.8) is

‘I’LL = W?,.\, + %S A ((115) N - —(I)_I{S . llS A )SJ. - ( [)-I{S [ ] /)})llS A S> .

(3.1h)
and satisfics

SA(Y L) =¢(SA)= Q. (3.1c)




(c) The associated hicrarchy of integrable evolution equations is given by

S;=SA WZZ‘((\S AS;), n=1,2,3,..., a= constant (3.2a)

S, =SA¥N0), n=1,2,3,... . (3.20)

The LL-equation corresponds to (3.2b), n=2. Note that in (3.2h) L~'(0) is understood
as a constant. .

(d) The hierarchy SA WY}, n = 0,1,2,... is a hicrarchy of Hamiltonian operatars. I
particular the seccond Hamiltonian operator of the LL equation is given by Q. = SAY ;.
thus the LL is a bi-lfamiltonian system with compatible Hamiltonian operators SA and
QL.

Proof . Given (1.2). we seck compatible flows in the form

Ue = -i{SLW, V0 U ' (3.3]
The compatibility condition U, = U, of equations (1.2), (3.3) iinplies
Sa1$,dV,0, = S0 Ve Wy0, - [Sf=151”’1"11 S VelVear| = 0. (3.-1)

i

Eqnating coefficients of oy, for j = 1.2,3, one obtains

A

Sia= Tr—SaVa = $2V3) + Vs (3.5)
1

and cyclic permutations.
In terms of the parameters p. v (cf. (1.4), (1.3)), we get

+ 3y .., Y., ] oo
Sl,z = l—‘_"_‘(/lu )(53"2 - 5, ¥3) + ‘x,p (3.6a)
IO Cha- LIy RS VST 3.60)
124

G - Wt Buta)
3.t = _T—’_—

(5:Vy = S1V2) + Vi, z. : (3.6¢)
We seek solutions Vs 7= 123000 the form

3 ; — -
v, = ’———'(“:' )‘_‘.3;0/&""«(,’) + Shoon b (.7a)

+ 4 "n— T "n— . -
V= (_E_u_lms_;;o/‘l Yaf + y=ont” by (3.70)

(p+ P)p+ ),

Vy = FU/t""(zg)) + S;‘zO;L"-J_b.(J”. (3.7¢)

14

Upon substitution of (3.7) in (3.6} one obtains
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- - S— SE——— T e T e e ey ey
dr+8) -5 0 non-
St = ST o el + Sl ou T,
l(l+/3 ‘+a(‘+ - y n n—
N ;V )[52((; L; E)S};o/t" Jaf + S u ,wjn)
i+ a " -
-53 (li/—u—)g;go;z"-’ag” + S;‘=O/L"‘Jb(2”>} (3.%)
i.c.
. (p+ 0 _ ; ; e .
S = /————(/ » )Snr_o/t" J ((l.(lji - Sgbgj) + 53[)(2])) + S;‘=Ult J ([‘(le - «Igi.SguﬁJ))
-—tIS;';_l_l/L"'j (.S’ga:(,JH) - 53(1(2"“)) . (3.9)
and similarly for the other two ei]uatioxls.
Equating cocflicients of g’ and v~!u’ independently, one obtains
S Aal® =, (3.10)
SAbY = al), (3.11)
1 .
S A alt) = Z{b‘,”—(4AS)/\a“’}, (3.12)
Se=b{M —(448)A V. (3.13)
\We define
¢ = =S A {b0) - (445) A} (3.14)
Then (3.12) yields
éq“’ = al/*) _(Sealit!))s, (3.15)
Since a?* M oS =0 L (cf.3.11),
alit) = %(q(” - {D (S eq)}S). (3.16)
Applying the operators (1AS)A and D(SA)D on (3.16) we obtain
(1AS) A 2+ = (AS) A ) = {D7'(Se qh}(AS)A S, (3.17)

illl(l
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~bU) 4 (SebhU+)) S 4 (SeblUthS, = %D{s AqY) — (DTN (SeqM)SAS, ). (3.18)

because of (3.11).
Taking Se of (3.18), (3.12) and (3.17) we get

: L
—(SebUtD) L (Sebl+l)y = SeD{SA q}. (3.19)
Seblt) = § ¢ (4.48) A al+Y), (3.20)
and
Se(44S) A ali*l = +]TS o (14AS) A gt (3.21)
Therefore
Se bl = %D“{S o [D{SAQY} + (14S) A q)} (3.22)

From (3.14), (3.17), (3.18) and (3.22) we get, (cf. (2.4) also),

5 ! )
qUY = w3, 9+ IS/\((L-lS) AQ = (DTS e dAS A })S, = (DTS e qV})(1S) A s) .
(3.23)

therfore, establishing (3.1Dh).

Remarks 3.1

{1) y0 = zS is a conserved gradient for the LL equation not however in T=M. It turns out
that

T=SAV(2S)=2(SAS..+SAJS)+SAS, (3.24)
is a mastersymimetry of the LL equation.
(i1) In the isotropic limit (A — diag(0,0,0)),&r. — %,,,.
(111) There exist several equivalent forms of the recursion operator ¢z and of the second

Hamiltonian operator Q7. One may verify the Jacobi identity of these cquivalent forms by
using the approach of Remark 2.1 (iv).

Appendix
In this appendix, we prove that the operator Q737 given by the formula
1 _
Quaa=SA{(¥Yya) = 5(3, - D{SD l(S ea,)}) (4.1)

is a llamiltonian operator compatible with @ = SA.
[u the following “=" will denote equality up to perfect derivatives.
(1) Qyrap is skew-svmmetric:

Consider a, b in T=M, then




—p—

2Quaa)eb=a,eb-beD{SD~'(Sea,)}
= ~-aeb,+(b,eS)D ! (Sea;)
=-aeb;~(Sea;)D"}(Seb,)
—aeb;+(aeS;)D" (Seb,)
-2Qarb 0 a,

therefore,

(Qura, b) = —(a, Quarb). (A.2)
(i1) Qprag satisfies the Jacobi identity:

Consider a, b, c¢in T*M, then
4(Q’[[‘\][QII.‘\!b]a) *C= {br eC, — (S . C,)(S ° b:) ~(Srpe CI)D—l(S L4 bz)}D—l(S sa;)

—{byea,—(Sea,)Seb,)-(S:ea,)D ! (Seb,)}D ' (Sec,). (A.3)

Therefore, 4(QaSarbla) o ¢+ (cyclic permutations of a, b, ¢) =

={b,ec,—(Sec;)(Seb;)—(S;ec,)D ' (Seb,)}D " (Sea,)
+{-brea; + (Sea;)(Seb;)+(S;ea;)D " (Seb;)}D ! (Sec,)
+{c;ea; = (Sea;)(Sec,) - (S;ear)D ' (Sec,)}D7H(Seh,)
+{-crobs+ (Seb;)(Sec;)+(S;eb;)D7'(Sec,)} D7} (Sea;)
+{a;eb; —(Seb;}(Sea;) - (S;eb,)D"!(Sea;)}D N (Sec;)
+{-a;0c; +(Sec;)(Sea;)+(S:ec;)D(Sea,)}D ' (Seb,)=0 (A.4)

(iii) The Hamiltonian operators Qa7 and © are compatible i.e. their sum is a llamiltonian

operator.
Since Qyrar and © are Ilamiltonian operators, it is suflicient to prove that

({Q32[Ob]a + O'[Qya/bla}, €) +  cyclic permutations = 0. (4.0
for any a, b, e¢in T\
Indeed
~2(R;3,[Obla+ O [Rarbla)ec = (SAbec)(Sea,)+{(SAb) ec)Sen,)+(ceS,) D™ (SAbsas)

-b,Aasc+(SAaec)Sebh,
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= -[(SAb),ec]D ' (Sea;)~(SAbec,)D"'(Sea,)+[(SAb),ec]D "} (Sea,)

+D"YSec.)(SAbea,)—(bAaec)—[(SAa);ec]D ' (Seb)—(SAaec, )" (Seb,)

-(SAbec,)D"Y (Sea,)+(SAbea,)D ' (Sec;)—(bAaec)

~(SAa,ec)D7'(Seb)-SAaec, D7 (Seb,). (A.6)

21 [Obla + O'[Qbla)ec + cyclic permutations of a,b,c =

= byAaec+(SAbec,)D 7' (Sea,)~(SAbea;) D" (Sec,)+(SAa ec)D~ ! (Seb,)+(SAaec,) D! (Seb,)
+c,Abea+(SAcea,) D7} (Seb.) -(SAceb )D ' (Sea,)+(SAb,ea)D ™! (Sec.)+(SAbea, )™ ({Sec,)

+ayAceb+(SAaeh_)D ' (Sec;)—(SAasc ) D (Seb,)+(SAc eb)D ! (Sear)+(SAceb, ) D" (Sea,}

=(bAaec), =0
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Abstract

A new idea is introduced requiring that cach development path will be the path
of least resistance to developer penctration. Consequently, minimum dissolution time
is required for the development of the final line profile. This idea manifests itself in
a variational calculation of the path integral along each local development trajectory.
from which the dissolution profile is obtained uniquely. as a solution of a non-linear
PDE. The PAC concentration is obtained from the standard Dill's equations for the
exposure-bleaching process for both monotonic as well as standing waves. The pro-
cedure has been implemented and tested. [t has been found to be very accurate and
it climinates the path crossings inherent in the predictions of the string algorithm.
The arbitrary elimination of unfavorable points is avoided as well for all developing

times.

* Supported in part by Grants AFOSR-87-0310 and NSF #ECS-3611298
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I. Introduction

The importance of simulations for VLSI lithography and etching processes is
widely accepted and many simulation techniques are utilized throughout the [(" in-
dustry. The most cot mon simulation systems are SAMPLE (1) and PROLITH (2)
which are the established standards. Both SAMPLE and PROLITH allow the user
to search for optimal conditions for an experiment at hand. Both combine a projec-
tion exposure model for a thin photoresist ilm with a “development™ model. and an
ultimate goal of both systems is an accurate prediction of the line profile over any
substrate topography.

The “exposure™ model is a system of coupled. non-linear partial differential equa-
tions first proposed by Dill (3). The two unknown functions are M(r,z,t). the pho-
toactive compound concentration (PAC). and [(z,z.t), the intensity of light at coor-
dinates (r,z) at time t. One should note that the order of the equation determining
[(r.z.t)or the corresponding electric field E'(r. z.t) is either first or second depending
on whether the filin is thick (no standing waves present) or thin (standing waves are
a dominant feature). The second equation is a first order rate equation, expressing
the assumption that the rate of change of log M is declining and it is proportional to
the light intensity [, with initial condition M (z,z,0) = 1.

The monotonic case has been solved analytically (1) and the solution has been
used in various applications (3, 6). The standing waves case has been solved exactly
(7) but the solution is very complicated and a WIKDB approximation scheme has been
proposed (8) to replace the stanaard iteration schemes.

In this paper we assume that the PAC concentration A/ (r,z) is a given function
that has been obtained by one of the above methods. after an exposure time #;.
Here we concentrate on the etching-development model. Various authors (9-13) of-
fered phenomenological dissolution rate-development functions R(.M), that in essence

represent the velocity of dissolution of the exposed PAC.
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Both sinlators (SAMPLE. PROLITH) employ the “string development aluo-
rithm™ in their development-ctching model . The boundary between the developed
and undeveloped regions is expressed as series of points in the rz-plane connected
by linear splines (a string). Each point advances along the angle bisector of the two
adjacent segments. with a velocity f(r.z). As the density of points increases in some
locations several are eliminated. and others are introduced in sparse regions, so their
density along the string remains roughly constant. When the final development time
is achieved the programs veport the final simulated profile.

[t is the purpose of this paper to propose an alternative to this string algorithm.
based on least square action principle. It has several advantages over the string-
algorithm:

(1) It is mathematically rigorous.

(11) The proposed method is applicable to three dimensions - a serious limitation
of the string algorithm.

(i11) It contains no arbitrary additions and subtractions of points along the profile.

(iv) There are no crossings of development paths that create loops in the profile.
These loops are present in the standard simulations. creating the necessity to delete
them.

II. Propagation of a disturbance

Let a disturbance propagate through a medium with velocity R[M (2. =)]. The
disturbance propagates orthogonal to itself. In other words. at time . one must

obtain

| gradt|= R™' (1)

or more precisely (for the standard case)

oy, oy
9z) t\a: © R*M(x, )]

—_
[ ]
—




This is a non-linear first ovder PDE which can be solved by the method of envelope-
characteristics.

[t can be shown that as long as a “ray”™ does not cross any other development
"ray”. its r(s) and z(s) coordinates as functions of the arclength along the rav are

determined by the following system of ordinary differential equations:

d*r  OlogR dr , dlogR dx.  dz dlogR

dst Oz \ds Dz ds’ ' ds' Oz (3a)
& _ JlogR dz . d= . dlogR d= , OlogR (3b
ds?  Jr ‘ds’ ds dz ds’ 0= 3)
The standard formulation of development time ¢ is given by
f = /1 ds )
o R[M{z(s),=(s)}]

The variation of ¢, i.e. ét. resulting from a slight development éz. 6z leads precisely
to equations (3a) and (3b). In other words ¢ as given by equation (1) solves the
non-linear PDE (2) inside its envelope.

This formulation (introduced by Carrier & FPearson) dictates the algorithm we
use.

(1) Obtain an initial profile

(11) Develop each point for a time interval At using the system of equations (3a.
3b), and make sure that the paths do not cross by selecting At to be small enough

(1) Use the new profile as the initial profile and repeat the process.

The time interval At is dependent on the curvature of the profile, since it de-
termines the thickness of the characteristic strip. Note that we are dealing with a
local process and that the individual rays may not cross, since the physical process
is unique and smooth and crossing rays would lead to either shock-waves or a non
unique solution. Thus t! = strips must be dealt with on an infinitesimal level and not

globally.
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III. Implementation and Examples

The initial profile is taken as the r-axis. with 51 equally spaced points. .\ <pe-
cialized Runge-IKutta scheme was developed for a system of five ordinary differential
equations that include the two coordinates, their arclength derivatives and the de-
velopment time. For most processes tested. the average development time step. ¢,
was found to be 0.03 sec. After each time step an optimizing cubic spline routine was
implemented. resulting in a smooth representation of the profile. The new profile is
divided into segments of equal arclength in order to maintain consistency with the
previous profile. Thus the number of segments varies according to the shape of the
profile. This process is repeated until the prescribed development time has elapsed.
We refer to this program by the name EIKPCS.

It should be emphasized that the description of a three dimensional profile must
be determined parametrically. [lowever, the cases reported here can be expressed
explicitly as functions of the coordinates. In these cases the profile is reported in var-
ious segments, where in each segment the corresponding functions are single-valued.
These segments are connected to represent the final etching profile.

The dissolution rate function R(.\M) employed in this study is the one proposed
by C. Mack(9). Throughout this paper the following development parameters were
used: Ropq: = 200 nm/s, Rpin = | nm/s, mry = 0.5, n = 5. Figure 1 illustrates the
relative development rate as a function of the relative PAC concentration.

As described in the introduction two data files of M(x,z) values are utilized.
RMI1 and EXPOSE. The file RM1 has been generated to simulate the CEM-positive
resist system proposed by Mack(14), which corresponds to the monotonic example
illustrated in this paper. The exact solutions of the Dill's model equations(4) were
used in this simulation. The file EXPOSE was given to us by C. Mack, and it
corresponds to a standard standing waves example in PROLITH. Both of these data

files are used for demonstration purposes only.
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In fig. 2.3 we compare the dissolution profile obtained from the string algorithm
for the monotonic case to the results obtained from the proposed algorithm. emploving
the file RM1. In these figures 60 sec of development time at 0.03 sec per time step was
simulated. The program of the string algorithm has the “loop eliminator™ routine
turned off. The reader should observe the early formation of a loop at the npper
corner. while the EIIKNPCS profile does not exhibit this aberration. In fig. 4.5 we make
a similar comparison at 75 sec development time, and the loop is clearly demonstrated.

In fig. 6,7.8 we display the utility of our system to handle standing waves using
the data file EXPOSE. In these examples, development times of 30 sec, 45 sec and 60
scc were employed. The final profiles do not exhibit any loop. They contain approxi-
mately 230 points and as the resolution increases they can he made smoother. It is
well-known that the standing waves systems display several sizeable loops when the
string algorithm is employved and when these loops are elininated they tend to give

the impression of somewhat reduced amplitude.

IV. Conclusion
We conclude that the mathematically rigorous algorithm indeed performs as ex-

pected, thus reducing the ambiguity in development simulation.
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Figure Captions
f Figure 1: Relative development rate vs. relative PAC' concentration using MACK's
3 model. The development parameters are R,,, = 200nm/s, Rpnn = Llnm/s.

mryg = 0.5 and n = 5.

Figure 2: Simulated resist profile of 60 sec development time using the program

EIKPCS developed in this work and the data file RM1

Figure 3: Simulated resist profile of 60 sec development time using the string algo-

rithm and the data file RMI1

Figure 4: Simulated resist profile of 75 sec development time using the program

EIKPCS developed in this work and the data file RM1

[ligure 5: Simulated resist profile of 75 sec development time using the string algo-

rithm and the data file RM1

Figure 6: Simulated dissolution profile of a photoresist with reflecting substrate.
using the data file EXPOSE of C.Mack and the program EIKPCS at 30 scc

development time

Figure 7: Simulated dissolution profile of a photoresist with reflecting substrate.
using the data file EXPOSE of C.Mack and the program EIKPCS at 15 sec

development time

Figure 8: Simulated dissolution profile of a photoresist with reflecting substrate.
using the data file EXPOSE of C.Mack and the program EIKPCS at 60 sec

development time
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An Initial-Boundary Value Problem for the
Nonlinear Schrédinger Equation

A.S. Fokas*
Department of Mathematics
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Stanford, California 94305

December 1987

Abstract

We present a method for studying initial-boundary value problems associated with
integrable nonlinear evolution equations. For concreteness we consider the nonlinear -
Schrodinger equation in the variable g(z,t), =z in [0,00), with a mixed boundary
condition, i.e. ¢-(0,t) + ag(0,t) is given (a is an arbitrary real constant). ¢(z,?)
can be obtained by solving a linear integral equation uniquely defined in terms of
appropriate scattering data. These data satisfy a single nonlinear integrodifferential
equation uniquely defined in terms of the boundary condition. For the special case of
a homogeneous boundary condition, the scattering data is found in closed form.

INS #81

*Permanent address: Department of Mathematics and Computer Science and Institute for
Nonlinear Studies, Clarkson University, Potsdam, New York 13676
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1 Introduction

It is well known that the inverse scattering transform (IST) has been applied to a large
number of physically important nonlinear evolution equations in 141 (i.e. in one spatial
and one temporal dimensions). The initial value problems for decaying [1], periodic [2], and
self similar potentials [3] has received much attention. The IST has also been successfully
extended to initial value problems for decaying potentials for equations in 2+1 (i.e. in two
spatial and one temporal dimensions) [4].

In spite of the above success, the question of extending the IST to solve initial-boundary
value problems remains essentially open [5]. The simplest such problem arises if an equation

is formulated on the half-infinite line. Let us consider the nonlinear Schrodinger equation
(NLS) ' '

iq: = gz £ 2lg/’q, 0<z <o00; q(z,0) = h(z), 4.(0,t)+ aq(0,t) = g(t), (1.1)

where h(z) decays for large z, a is a real constant, and the given functions h(z), g¢(t)
have appropriate smoothness, and satisfy the necessary compatibility conditions to ensure
the existence of solution at z = 0, t = 0. Solving such an initial-boundary value problem
has important physical and mathematical implications:

(i) Most physical problems are naturally formulated as boundary value problems. For
example, injecting current in a neuron, or sending optical solitons down a monomode fiber
are boundary value problems. In particular, NLS with an additional term ¢, on the right
hand side and a — oo, models water waves [1]. Equation (1.1) also arises in the propagation
of optical solitons [6], as well as in several other important physical problems. Since NLS
usually arises in applications in non-laboratory coordinates it is useful to consider equation

(1.1) with a # 0.

(ii) The linear limit of the standard IST (where —oc0 < £ < o0, ¢(z,0) given) is the
Fourier transform, which is why the IST is considered as the nonlinear analogue of the
Fourier transform [7]. The linear limit of (1.1), i.e.

iQt =gz, 05z <00; q(z,0)=h(z), ¢(0,t)+ aq(0,t) = ¢(t), (1.2)

can be solved by the sine transform (a — o0), or the cosine transform (& = 0), or in general
by the transform (8]

ik + [T A + fRe e, fB) = S,
a(@) = = [7 ak(e + f(—k)erRi(k) + 20e77 [T dgetg(e), (1)

where the second term of (1.3b) is missing if @ < 0. It is thus natural to ask what is the
nonlinear analogue of the above transforms.
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In this paper we present a method for studying boundary value problems in 1 + 1, and
we apply this method to equation (1.1):

(i) The first step involves finding the correct x-transform of the given nonlinear equation.
Indeed, our formalism in the linear limit, i.e. q small, reduces to the inversion formula (1.3).

(i) The next step involves finding the evolution of the scattering data. In the linear case
it corresponds to using the transform (1.3) to solve ig: = ¢.-. In the usual IST one uses
the t-part of the Lax pair to find the evolution of the scattering data. However, in our case
U, — W, # 0, where ¥(z, ¢, k) is the eigenfunction appearing in the Lax pair, and one needs
first to obtain the correct t-part. In this respect we use the given evolution equation and
an integral (as opposed to the usual differential) representation of the x-part of the Lax-pair
(hence we do not need apriori knowledge of ¥, — ¥.;). An alternative way to finding the
t-part of the Lax pair is to use that ¥(z,t) is continuous at z = 0. Having obtained the
t-part of the Lax pair, the evolution of the scattering data follows. The correct choice of the
x-transform is reflected by the fact that the evolution of the scattering data depends on g(¢)
and not on ¢,(0,t), g¢(0,¢) separately. Furthermore, in the linear limit the scattering data
satisfies

-4

. i2a k
Ge — 4ik*§ = 5TE = a(q,(o, t) + aq(0,1)), (1.4)

which is precisely the time evolution of the linear transform (1.3) when applied to equation
(1.2). However, the above evolution also depends on certain quadratic products of ¥(0, ¢, k).

(iii)  The final step consists of expressing these quadratic products in terms of the scat-
tering data. This yields a nonlinear equation for the scattering data. In the case of the NLS
equation (1.1), this yields the following nonlinear singular integro-differentiation equation
for the reflection coefficient b(a — oo)

5‘_4ik25_ * I%Tt'ﬂ—%ﬂa 712 '
A = 0+ [ R E I (L (B (K). (1.5)

(a) The application of the above method to other equations in 1 4+ 1 has certain ana-
lytical complications reflecting difficulties with the linearized version of the given equation.
However, it can be applied to other equations in 1 + 1, as well as in 2 + 1.

(b) This method opens the way for studying boundary value problems on finite do-
mains.

(¢) It can be used to study forced integrable systems where the forcing involves Dirac’s
delta function and its derivatives.

The special cases of ¢(z,0) = 0 and ¢.(z,0) = 0 were considered in [9]. Also for the
case of a general homogeneous boundary condition, i.e. ¢z(z,0) + aq(z,0) = 0, Sklyanin has




established complete integrabilities by proving the existence of infinitely many conservation
laws [10].

A. Outline and Open Questions

In §II we consider the NLS with ¢(0,t) given, i.e. we study the nonlinear analogue of
the sine transform. If ¢(0,t) = 0 the analysis is straightforward: This problem is equivalent
to one formulated in —co < z < oo [9] and can be solved in terms of a system of linear
integral equations. If ¢(0,t) # O the analysis becomes nonlinear. The main result of this
section is expressed by proposition 2.10: The problem is again formulated in terms of a
system of linear integral equations uniquely defined in terms of appropriate scattering data.
However, while these scattering data are found in closed form if ¢(0,¢) = 0, they satisfy a
nonlinear singular integrodifferential equation if ¢(0,t) # 0 (see (2.45)). The existence and
uniqueness of solutions of this nonlinear equation remains open. Throughout this section we
assume that the transmission coefficients &(l—k), ;1@_ do not have poles in the upper, lower half
k-complex plane (see (c) below).

In §3 we consider the general case where ¢.(0, t) + aq(0, ) is given. The two main results
of this section are:

(i) If ¢z(0,t) + aq(0,t) = 0 the problem is equivalent to one for —o0 < z < oo and can
be solved via a system of linear integral equations uniquely defined in terms of appropriate
scattering data; these data are found in closed form.

(ii) Ifq-(0,t)+(0,t) # 0 the problem is nonlinear since the scattering data again satisfy a

nonlinear singular integrodifferential equation. The evolution of the scattering data is given

explicitly and involves ¢,(0,t) + aq(0,¢). For brevity of presentation, the details of how to

derive the analogue of (2.45) are omitted. We again assume that 1, 1 do not have poles.
Several important problems remain open:

(a) The uniqueness and existence of solutions of the nonlinear singualr integrodifferen-
tial equation satisfied by the scattering data needs to be established.

(b) The question of whether the above equation can be linearized remains open. This
question is important not only for practical but also for theoretical reasons: It has been
assumed so far that complete integrability is a local property. However, if the above equation
can not be linearized, it would be implied that integrability also depends on the boundary
conditions.

(¢) The formalism presented here can be modified to include poles of the transmission
coefficients. However, since these poles move in time, the analysis becomes quite more
complicated. Preliminary results indicate that it might be possible to avoid considering
directly these poles by mapping the given initial and boundary data to suitable data which
do not possess poles. We have found [17] that ¢t — —t and ¢ — ¢" are useful transformations
in this respect.
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(d) The existence and uniqueness of solution for the Korteweg-deVries (KdV) equation
for 0 < z < oo, where ¢(z,0) and ¢(0,t) are given, has been proven by Bona and Winther
(11]. The application of our method to the KdV equation has certain difficulties stemming
from the fact that even the application of the x-transform to solving the linearized KdV is
problematic. This suggests that perhaps one needs to study the nonlinear analogue of the

Laplace transform. We expect that some of the ideas presented here will also be useful for
this study of this problem as well.

(e) It has been established numerically that the KdV with 0 < z < oo, ¢(z,0) given,
can be used to generate solitons (see the discussion by Keller [12] for details). Similar results
have recently been found for the NLS [16]. An asymptotic investigation of the nonlinear
equation mentioned above (equation (1.5)), taking into consideration (c), should provide

some insight into these numerical observations as well as should yield the appropriate math-
ematical formulae.

2 Dirichlet Boundary Condition
We first consider (1.1) with a — oo. The linear analogue of this problem is given by

1qt = gzzy, 0< z <00, ¢(z,0) =h(z), ¢(0,t) given, (2.1)

and can be solved by the sine transform,

ik 0) 5 [ dealé, sinke, alz,t)= = [ dki(k, fsinks, (2:2)

where the sine data satisfies

Ge = 1k*§ — ikq(0,1). (2.3)

Alternatively, one may solve (2.1) by the Fourier transform, by embedding (2.1) in —c0 <
T < oo; this can be achieved by using an odd extension, then (2.1) is equivalent to

1§t = ez — 29(0,8)8'(z), —00 <z <00, ¢q(z,0) = h(z), (2.4)

q(za t) ¥ q(I, t)H(:L‘) - q(—z, t)H(_I)’

where H(z) denotes the Heaviside function, i.e. H(z) =1, if >0, H(z)=0 if z <
0, and &(z) denotes the derivative of the Dirac distribution.

Similar considerations apply to the nonlinear problem at hand, which also can be embed-
ded in —o0 < z < 0o by employing distributions (the details are given in [13]). Here we use
an odd extension of q(z,¢) in order to derive the nonlinear analogue of the sine transform,
but we avoid the explicit use of distributions.




2.1 The Nonlinear Analogue of the Sine Transform

The first step of our method involves finding the correct x-transform for the nonlinear equa-
tion (1.1). This amounts to using the x-part of the Lax pair to derive an inversion formula
which reduces to (2.2) for small g.

A. Analytic Eigenfunctions
Let us consider the linear eigenvalue problem

pr =ikJo+Qp, —0 <z <0, Q= Q(z)H(z)- Q(—z)H(-2), (2.5)

o (31) (i V)

where ¢ is a 2 X 2 matrix valued function of x. Let ¢ = ®exp(ikzJ) then (2.5) becomes
o, = ik[J, 0] + 9, (2.6)
where [ , | denotes the usual commutator.

Proposition 2.1. Let the matrices ¥, & solve

g / " dee* =00y, o =1+ / " e =000, 2.7)
F 4 -0Q

where if F is an arbitrary 2 x 2 matrix and if Y is a diagonal matrix, then ezp(f/)F =
ezp(Y)Fezp(-Y). Then

(i) ¥,d solve (2.6).
(ii) ¥ = (¥~,¥*), & = (®*+,P~), where +(—) denotes analyticity in the upper(lower)
half k-complex plane.

B. The Scattering Equation

Proposition 2.2.

(i)  The eigenfunctions ¥, ® defined by (2.7) are related via

U(z, k) = B(z, k)e* S(k), S(k)¢(‘; ”)=1- |7 aee*oeue . @9

(ii) a(k), a(k) are +,— functions respectively. (2.9)
(iii) detS(k) =1 (2.10)
(iv) ¥(—z,-k) = ®(z,k) (2.11)

(v)  S(K)S(=k) =1, or a(—k)=a(k), b(~k)=—b(k), b(—k)=—bk). (2.12)

e —— ———— —yp T
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Proof

(i) Since both ¥, ® satisfy (2.6) they are related via ¥ = Qexp(ikzj)C, where C
is an x-independent matrix. The form of C follows by considering the above equation as
T — —oo.

(ii) Follows from the definitions of S, ¥.

(i) Follows from the facts that det¥ = det® = 1.

(iv) Follows from the fact that Q(—z) = ~Q(z).

(v)  Follows from (2.8) and (2.11).

C. The Large k Behavior

The potential Q(z) is discontinuous at the origin. Thus we expect that the scattering
data decay slowly for large k.

Proposition 2.3. Let k be real. Then

(i) a—1, @—1, B——»i-f,g)-, b—»—ﬂizolas k — oco. (2.13)
(ii) Let z > 0, then
¥ L5 1 o~ dg
N —Lz(ikl 1 ’ ®— _r=) + r(O)e’“" 1 as k — oo. (214)
i 21k 1k
Proof

(i) For large k,¥ — I, thusa —» 1, @ —= 1, b— — [ dtGe?™ = = [ dEq(&)(e~?k¢ —
e?*€), Integrating the last equation by parts we obtain b — 5-'(7‘91.

(i1) Equation (2.14a) follows from (2.7a). To obtain (2.14b) note that (2.7b) implies

o7 oF 10 o3 bz e =0
( o7 &; ) (0 1 )+/ dé( FOF 2ik(==0) 0y '

Thus &F — 1, &7 — 1 and

-2ikz

87 -~ [ deg(-e)e -0 4 [“deq(e)e M0 — S [ePh(z) - 29(0)].

D. The Inversion Formula

Proposition 2.4. Let a,b,a,b be defined by (2.8).

(i) Assume that the vectors *,®~ solve

,b(k' 2|k’z¢ (k')
o 1rz/ dk’s k - (k+10) ~’




(kl)e-mk'xq)+(kr)
k' — (k—i0)

i 3 +_/ dk' 2 z>0.

Then

Lo b ket D N Al T
Q(I)——;/_wdkze o7, T(z)——;/_wdka—e ®;, z>0.

(ii) Assume that the vector ¥+ ¥~ solve

- 1 ,a(k’)e"""\ll"‘(k')
v _(é)—Q_w—i./ dk k' — (k —10)

Brpn -2ik'z\y~( L+

1 fo° 2(k')e= 2k =0~ (k)
+ _ (0 la
= ‘)+2i/ dk

vy o °>°

Then

1 b

1o b,
W) =-=f "~ dk=e Y], r(z) = - " dkZe Ut o >0,

-0

Proof. The scattering equation implies

_‘I!_ = Q-P + bCZtk:q)—
a
+ b .
\I!T =& + ge—2tkz¢+_
a a

(2.15)

(2.16)

(2.17)

(2.18)

Assuming that a,a have no zeros in the lower, upper half k-complex plane, the above equa-
tions define a Riemann-Hilbert (RH) problem [14], which is equivalent to (2.15). Similarly,
the scattering equation in the form ® = Wezp(tkzJ)S~! implies (2.17). To obtain (2.16) we

need to consider the alrge k behavior of (2.15). Equation (2.15a) is

211:::@- 14 ..
+ I ik -
7 (k) 27rz]£ dk 32 2 (k)

where £2° denotes a principal value integral. As k — o0, & — -10 o 1,

iE
The terms with + behavior will give a nontrivial contribution:
b e b L r(0) L r(0)e2*'z
hdl o = | - 2tk P —— 2dk'z \ _ —_—
a’ 2 a’ 2+t p e k!

and

-,

0 2ik'z )
f.oo dk'pze%’—-j)- = —-TW (1 - 62*:) .

Hence, for z > 0

- 1
Ql _');.
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1 ’ b sk’ 1'(0) ik'z tkz
8 (k) = 5= [][ dk (a Wepy + ——= o e )+7rr(0)(1-e“) , as k— oo. (2.19)

Comparing equation (2.19) with
r(z) , r(0)e

+ —
20 = %k ik
(see equation(2.14)), it follows that
r(z) = -——][ dk ( ¥ =P (k) + —+ (O) "2"") + r(0). (2.20)
The above reduces to {2.16b), since 455, dk‘-m' = -, if £>0.

Remarks 2.1.
(i) The linear limit of the inversion formulae given by Proposition 2.4, is the sine

transform: In the linear limita — 1, ¥ — I, and
7 Rl i 1 [ b ke
o [t =L b

yield the well known sine transform formulae

b 2 [ dea(€)oin2ke, o(z) = = [T dkb(k)sin2ke. (221)

(ii) The above procedure reconstructs odd potentials as expected. For example,

r(—z) = —= / deE: e %P (—z, k) = —— / dkjg g e¥*e®; (~z, —k)

b(k) itz ,
= —/ dlc_Ek; sk g (2, k) = —r{z).
2.2 Evolution of the Scattering Data
We recall the well known (12] Lax pair associated with the NLS equation
0o = ikJp+Qp, @i=Up, Uz —2kJ—iqrd ~2kQ — iQ,J. (2.22)
Indeed, the compatibility condition ¢.¢ = ¢, implies
Qe = —1QzzJ + 2iqrQJ, (2.23)

which reduces to the NLS if r = +q*, where * denotes complex consjugate.




Proposition 2.5. Let ¥ and Q solve (2.7a) and (2.23) respectively. Then ¢ = Vezp(ikzJ),
solves

e = Uy + 20k%J — 4kH(=)pp(0,¢, K)Q(0, )$(0, 1, k), (2.24a)

where
0 = —2ik*] — igiJ — 2%G — iQ.d, Q(0,1) = ( 2(0, ) 109 ) . (2.24)

Proof.

(i) We first derive the above result using a continuity argument. It is easily shown that
equations (2.22) and ¢; = Uy + @F also imply (2.23) for an arbitrary function F(z, k). To
derive (2.24) we choose F’ to be a discontinuous function of z such that 1), is continuous. Let

be=Up+9F, z>0;
as z — 400, % — ezp(ikzJ), thus F = 2:k*J, hence
be = U+ 2ik%9J, z>0.
Let
e = U + 2ik*J +9C, z <0,
and fix C by requiring that ¢, is continuous at z = 0, thus
= —4ky™1(0, ¢, k)Q(0, )¥(0, 8, k).

(i1) Equation v satisfies

b= eI _ /°° dEe* =090y 250

. 0 . 0 .
11[’ = elk::J_/ dfe'k(z-e)JQl/)'*'/ dwetk(z-f)JQ(_E)d)’ z <0.
0 E]
Postulate ¥, = Uy + f, then for z > 0

%= — /,w dée™* == (Qup + Qr),

or
U+ f =~ [ dee™e=07(=iQ.a] +2igrQJ + QU + f,

and similarly for z < 0. This yields an integral equation for f which implies (2.24).

Remark 2.2. Equation (2.24) and ¢, = ikJy + Q¢v imply that ¥, — ¥ is a distribution,
for details see [13].
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Using the t-part of the Lax pair it is now straightforward to derive the evolution of the
scattering data:

Proposition 2.6. Let S be defined by (2.8) and assume that @, ¢ evolve according to
equation (2.23), (2.24) respectively. Then

St = =2k*[J, S] — 4kSE~1(0, ¢, £)Q(0, t)¥(0, ¢, k), (2.25)
i.e.
ay = —4k(ap +dM™), a, = 4k(au — bM™), (2.26)
be = —4ik?b — 4k(bu +aM™), b, = 4ik?b + 4k(by — aM™), (2.27)
where

. _ ‘I’_‘I’+ . ‘I,+\I,- \I’+ 2 _ \p+ 2
Mt E) + 70,6, QU.0%(0, 0.0 = ( JSE N Y O ) 0,0

e M
() -
(i)  In the homogeneous case Q(0,t) = 0, then

a(t, k) = a(0,k), a(t, k) =a(0,k), b(t,k)=>b(0,k)e"*** Bt k) =050, k)e** . (2.29)
(i1) In the linear limit, 4 — 0, M* —q, M~ — r. Thus
b ~ 4ik*b — 4kq(0,1).
This is precisely the time evolution of the sine transform (see (2.3) and (2.21)).

(iii) It can be shown that equations (2.26)-(2.27) are invariant under k — —k.

2.3 A Nonlinear Equation for the Scattering Data

The main difficulty associated with the inhomogeneous boundary value problems is the
dependence of the evolution of the scattering data on quadratic products of eigenfunctions
evaluated at z = 0. It seems quite remarkable that it is possible to completely eliminate
these products and obtain equations involving only the scattering data:

Proposition 2.7. )
The scattering data b, b satisfy the following equations:

11
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b, — 4ik?b k) _ MR 5 o

A = —q0,0) +/ ak' BT H (1 - 5E)(K), (2.30)
be + 4ik?b R o

i t)+/ ak' B - H In(1 - B)(K), (2.31)

where H denotes the Hilbert transform, i.e.

Lo f(6)
(Hf)(z) = = ][_w dez=. (2.32)
Having obtained b, 3, then a, followed by solving the Riemann-Hilbert problem
ai=1+bb, a,a—1 as k — oo. (2.33)
Proof . Let
v N~
N(t, k) = ®1(0,t, k)Q(0,t)®(0,t,k) = . (2.34)
Nt —v
Then
M=9"'Q¥ = S5"1¢"1Q®dS = S"'NS,
thus
SM = NS. (2.35)
The above equation can be written in the following convenient form:
+ -
M N -(ap IM) + 2an— M) = A, (2.36a)
a a a
Nt M- b - b +
—_——— = Y+ —{au — = B. .36b
= - a(ap+bM)+a(ap bM™)= B (2.36b)
Equation (2.36a) implies
M* A(k')
LY e e

We next express MT+ and A in terms of scattering data:

E(ln& —Ina), (2.38)

Té



where we have used the definition of A and (2.26). Also equation (2.36a) implies

N- b T 1 M+ ba b, — 4ik?b
-= _a(ap+bM )+ by — (bb+1) -ZE;-{-T,

where we have used (2.26) and (2.27). Thus

M* N- ba b — 4ik?b
EERr IR T i (239)
Substituting (2.38), (2.39) in (2.37) we obtain
Bg - 4lk b a; at) R Z &t ag
w -0+ g ( +3)+ing (3-2).
Thus
bg - 41k2b + b Qg _ E a;
—g = —q(0,t)+ P <4k - _p w3 ) (2.40)
where P* denote the usual projection operators, i.e.
sp.f 1
P f7:t2+2in. _ (2.41)
Alternatively, using (2.33) the above yields
b ~ 4ik?b b o b o
% - -q(0,t) + — 3% 31 = In(1 + bb) + zH—ka—(lna —lna). (2.42)
But
b o = b 0
==z B) = — —
SF Bt In(1 + ) = HaHln(1+bb)
and

Ind —lna = ~iH(Iné@ + Ina) = —iH In(1 + bb),

since Ina, Ina are +,— functions respectively. Thus equation (2.42) implies (2.30). Simi-
larly, equation (2.36b) yields

bg+4lk2b + ba. - b(-lg
=0 +P (/ca)—P (4“), (2.43)

which implies (2.31).
Remark 2.4.

13
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(1) In the linear limit equations (2.30), (2.31) reduce to

be — 4ik?b = —4kq(0,t), b, + 4ik%b = —4kr(0,1),

which are the time evolution of the sine transform.
(ii) Equations (2.30), (2.31) become linear if b is known.
(iii) The scattering data v = b/a, % = b/a satisfy the following equations:

o - 5 Ye — 41k%5 iy In(1 — ~%)
<~ _ 25 . _ ¢ Y Yt _ t
3 — 4iky 4kq(0,t) + 4kP {1_7‘_’ ( m 1_7‘_711 P ,

a2 + [ 07 (= 4kt 1y In(1 — %)
vt + 4ik*y = —4kr(0,t) + 4k P {1_7‘7( i +1‘7‘7H i ,

A. The NLS

The NLS

19t = Qzz — 20|Q|2q’ o=z=l (2.44)
corresponds to r = aq", then b(k,t) = ob*(k*,t), and b satisfies
k) _ 3E) g

= —4kq(0,t) + /_: k' BB = (1 ~ o[B*)(K'). (2.45)

b, — 4ik?b
4k

Proposition 2.8. The initial-boundary value problem associated with the NLS equation

(2.44), where g(z,0), ¢(0,t) are given appropriately smooth functions and ¢(z,0) decays for
large x, is solved by

g(z,t) = —;lr-.[-: dky(k,t)e 2205 (2,8, k), 7= b z >0, (2.46)

a7
where b solves the nonlinear integrodifferential equation (2.45), a solves (2.33), and ¥ =
(U7, ¥7) solves the linear integral equations

‘I’l— =1-= P-{‘—Y-e%kz(‘p;)-}’ \I’; = —aP'{'“y'ezik’(\Ill')‘}. (247)

Proof. The above result follows from Proposition 2.7 and 2.4: for real k, ¥ = o%*, thus
(2.17) imply ¥ = o(¥7)*, ¥F = (¥7)* and they reduce to (2.47).

Remark 2.5. If ¢(0,t) = 0, (2.45) reduces b, — 4ik?b = 0.
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B. A Note on the Odd Extension

The above analysis is based on considering an odd extension of the potential q. This has
two consequences: (1) The linear limit of the analysis reduces to the sine transform formalism.
(ii) The formalism involves only ¢(0,t) (which is given) and not ¢.(0,t). However, the above
formalism is nonlinear, since ¥ satisfies a nonlinear integrodifferential equation. It is thus
natural to ask if there exist an alternative linear formalism. It appears to the author that
the odd extension is the only natural one associated with this problem. This is based on the
following. Let us consider

&, = ik[J,0] + QP, 0<z < oo.

The eigenfunctions

¥=1— / Z deeM=0I0w, & = ¢ Ak, 1) + / " dee*=-09 00, (2.48)
4 0
define the RH problem
® = Ue*sls, S= Alk,t)+ / " dee=* 00, (2.49)
0
provided that A, A;; are +,~ functions in k. Letting ¢ = ®e**/ it can be shown that ¢,
satisfies
0r = U + @A A, + (20k*J +iQ (0, t)J + i(qr)(0,t)J + 2kQ(0, t)) A). (2.50)

Then the evolution of the scattering data (2.49b) depends on the term in the bracket ap-
pearing in (2.50). Thus we need to choose A such that:

(1) Az, A1z have proper analyticity properties in k.

(ii) The evolution of the scattering data does not depend on Q:(0,t). We claim that if

Ak t) + [[7 de™IQE, thpl(—£, 1, K), (2:51)

then the above two requirements are satisfied. Indeed

A= /0 " dge Qe )0(—¢, 1, k)M = /0 ~ dee™IQ(E, 1) (=€, t, k)

has the correct analyticity properties. Also it can be shown that (ii) is fulfilled. However,
the eigenfunctions (2.48) with A defined as above are the eigenfunctions (2.7) which follow
from an odd extension. Furthermore, it appears that (2.51) is the unique choice satisfying
(i), (ii): From the linear limit of the inversion formula, it follows that

A=1- / ” dee* I Q(E P (€, 1, k),

where F — I in the linear limit. The choices F = I, or F = A contradict (ii) , while
F = ¢(¢&,t, k) contradicts (i).

15
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3 The General Case

Equation (1.2) can be solved by the transform (1.3). The inverse data satisfy

th—4ik2A=—

k
s l9:0,1) + aq(0,)]. (3.1

It should be stressed that the factor f(k) appearing in (1.3) is uniquely determined by the
requirement that the inverse data depend only of g(t) and not separately on ¢(0,t), ¢.(0,¢).
Indeed,

Go= [ de(e ™ + F(R)e g ) = —i [ de(eMH 4 f(k)eH)gqe =

B 2= 9
= 4ik*: +i(1 + [,O,t —2k(——— O,t].
1 ( f) |g=( ) 1 1+fq( )
Thus, if —2:k i;f) =aq, then f= e

3.1 The Nonlinear Analogue of the Transform (1.3)

Motivated by the linear problem we consider the following extension of the potential Q:

O(z,1,%) = Q(, Y H(z) + F(H)Q(, H(-z), F(k)=diag(f(k),f(=k)).  (3.2)

Remarks 3.1.

(i) Suppose that Q satisfies the first member of the AKNS hierarchy, i.e. Q solves (2.23).
Then F(k)Q(—z,t) also solves (2.23). (This follows from the fact that f(k)f(—k) =1.)

(ii) The potential Q satisfies the symmetry condition

Q(=z,k) = F(—k)Q(, k) (3.3)
A. Analytic Eigenfunctions

Proposition 3.1. Let the matrices ¥, ® solve (2.7) where Q is given by (3.2). Let z > 0.
Then ¥, $:

(i) Solve (2.6), with Q defined by (3.2).
(i1) Satisfy the following symmetry condition

o(=2,—k) = AC-B¥ AR, k)= ( 40 D), 3.4
or in component form, if ¥ = (¥, ¥*+) ® = (&+,d~), then

QI(_I’ _k) = ‘I’;(I’ k)a Q;(—:L‘, —k) = —f(k)‘I’;(.’L',k),
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&7 (—z,—k) = —f(=k)¥{ (2, k), @7 (~z,~k)=¥](z,k) (3.5)
(iii) $*, ¥~ are +, — vectors in the complex k-plane. &+ &~ for @ > 0 are sectionally
meromorphic functions in the complex k plane: &+ is analytic in the upper half complex
k-plane and has a pole at %, if a >0 ; similarly 7 is analytic in the lower half complex
k-plane and has a pole at == if a > 0.

Proof. (i) is straightforward. To prove (ii) note that

U(-z,—k) = I — [ dee™ =00 Q(¢, ~k)w (¢, ~ k) =

=1 [ dee* =0T F(=k)Q(E, k)W(~¢, k).

Multiply the above matrix by a matrix C = diag(C1, C3) and choose C such that CF(-k)Q(z, k) =
—-Q(z,k)C, i.e. Cr=—Cyf(k), for example let C = A, defined by (3.4). Thus

AU(=z,—k) = A+ /_ T dee* 0T k) AU(—E, —k),
or =
AY(~2,—k)AT =T+ [ dee=0IQ(¢, k) AU(~€, - k) A7,

and hence (3.4a) follows, since A™!(k) = A(—k).
_ (iii) Consider (2.7a) with z > 0. Then ¥+, ¥~ are +, — functions respectively, since
Q& k) = Q(€). Equation (2.7b), for z > 0 imply

P 0
&} =1+/0 déqd? +/_°° déf(k)q(—€)®7,

z ‘ 0 .
(I);' - / d{r(p-lf'ehk(z-f) + / d{f(_k)r( _6)6;-62&(:—{)’
0 —o0

letting ¢ — —¢ in the integrals over (—o00,0) and using ®F(—=z,k) = —f(—k)¥; (z, —k),
®F(—z,k) = ¥7(z, —k) we obtain

of =1~ [ dequi(e,—k)+ [ deqot,

oF = f(~F) /0 e =+ (¢, k) + /0 FTEICLN e (3.6)

Since ¥y (z, k), ¥;5(z, k) are — functions it follows that ¥y (z,—k), W¥;(z,—k) are + func-
tions. Also exp(2ikz) is a + function since z > 0. Thus the forcing of the above in-
tegral equations is a function analytic in the upper half k-complex plane with a pole at
2tk +a=0 iff a>0.Similarly

[ <] . z .
o7 = (k) [ dee = 0qus(e — k) + [ deeT™0g07,

o; =1- /0°° dérwt (€ — k) +./0z dérd;. (3.7)
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B. The Scattering Equation

Proposition 3.2.

(i) The eigenfunctions ¥, ® defined by (2.7), where Q is given by (3.2), are related via
(2.8).

(ii) detS = 1.

(ii1) The scattering data satisfy the following symmetry condition,

S(=k) = A(=k)S™'(k)A(F), (3.8)
where A{k) is defined in (3.4b), or in component form

a(=k) =a(k), b(—k)= f(—k)b(k), b(—k)= f(k)b(k). (3.9)
(iv) @, a are analytic in the upper, lower half complex k-plane with a pole at "7", "zﬁ iff

a>0.

Proof. The derivation of (i), (ii) is similar to that of Proposition (2.2). To derive (iii) use
(3.4). To derive (iv), note that

(k) = 1= f(=k) [_der(-UF (6,0 + [ der(€)ut (6, 8),

or

a(k) = 1= f(=k) [ dervt (=€) + [ dervt (e k). (3.10)
Similarly for a(k) .

Remark 3.2. :

(i) When a — oo, f — -1, A — I and (3.4), (3.8) reduce to ®(~z,—k) =
U(z, k), S(—k)S(k)=1,i.e. to equations (2.11), (2.12).

(ii)) When a — 0, i.e. when ¢,(0,t) is given, the linear problem is solved by the cosine
transform. In this case f =1, A = J and (3.4), (3.8) reduce to

®(—z,~k) = JU(z,k)J, a(—k)=a(k), b(—k)=>b(k), b(—k)=b(k). (3.11)
C. The Inverse Problem

In the case of a = 0, the potential Q is continuous at the origin, while Q. is discontinuous.
Hence the scattering data b, b behave like #r for large k. Since for large k, f — 1, actually
the above behavior is also valid for all finite values of a (the case a — oo is different and
was considered separately in §2.)

Proposition 3.3. The inverse formulae of Proposivion 2.4 are also valid if the scattering data
are defined by (2.8), with Q given by (3.2).
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Proof. If o < 0 the result is straightforward, since all the quantities of interest have the
proper analyticity properties. If o > 0, these quantities have removable singularities and
hence the anaiysis goes through. For example, near k = %, ®*(k) ~ f(~k) and a(k) ~
f(—k), thus & has a removable singularity.

Remark 3.2. The linear limit of the inversion formulae given by Proposition 3.3, is the
transform defined by (1.3): Recall that
1 feo —2iked o 7 X e 26kE g+
q=—;/ dke™™ 207, 5> 0, b=-/ dee?™ Gt (3.12a)
The linear limit is straightforward if e <0: ¥y, ¥}, a4, tend to 1 and the above yield

3 o ; b ; 0 ez L [® 5 sikey
b= - [ dee™ f(k)a(—¢) - [ dee, q= - [ akereb— = [T aperiveg,

or

g= _—% |k (7% 4 f=0e =) Bk), b= [T de (% 4 fk)eHH) g, (3.028)

Ifa > 0, then %t, %’- develop pole singularities since ®*, @~ still behave like f(—k), f(k)
near k = %, k= —'¢, respectively, but @,a — 1. The contribution from these singularities
is e=**C, C constant, which yields the additional term appearing in (1.3).

3.2 Evolution of the Scattering Data

In analogy with Propositions 2.5, 2.6 we have:

Proposition 3.4. Let ¥ and @Q solve (2.7a) and (2.23) respectively, where Q is given by (3.2).
The
(i) ¥ = Vezp(ikzJ) solves

Yo = U+ 2ik™ + iH(=2)pp(0,8) I (I + F)(Q4(0,t) + aQ(0, £))%(0, 1), (3.13)

where F = diag( f(k), f(—F)).
(ii) The scattering data S satisfies

St = [Uo, S] +19(0,¢)" ' J(I + F)(Qz(0,t) + aQ(0,¢))¥(0, t). (3.14)

Proof. The derivation is similar to that of Proposition 2.5, 2.6: If v, = Uy + 2ik?ypJ +
H(—z)yC, continuity implies

C =9(0,8) Y 2k(F — 1)Q(0,t) + i(F + 1)JQ(0,t)]¥(0,t) =

= 9(0,8) ' [iJ(F + I)(Q=(0, 1) + aQ(0,))](0, t).
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As £ — —o00, (3.13) implies (3.14).

Remarks 3.3.
(i) In the linear limit, the evolution of the scattering data reduces to (3.1). For example,
one of the components of (3.14) gives

Bg = 4Zk25 +

e (4:(0,1) + aq(0,)). (3.15)

Equations (3.12b), (3.15) provide the solution of (2.1) (for a < 0).

(i1) In the homogeneous case Q-(0,t) + aQ(0,t) = 0 and the scattering data can be found
in closed form (see equations (2.28)).

Exploring the analyticity structure of ¥(0,¢) one may again formulate a nonlinear equa-
tion for the scattering data similar to that given in 2.3. The study of this nonlinear singular
integrodifferential equation will be presented elsewhere.
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