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PREFACE

This document represents the findings of a six month long research effort (July, 1987 to January,

1988) to survey software features of non-von Neumann architectures, including parallel computers,

systolic arrays, and dataflow machines. Rome Air Development Center (RADC), located at the

Griffiss Air Force Base in Rome, New York, provided Amherst Systems Inc., a private research

firm located in Buffalo, New York, with the funds to perform the research (contract

F30602-87-C-0082).

This document serves to familiarize the reader with the underlying concepts of parallel

computing. Chapter 1 defines basic parallel computing terminology and concepts in order to

prepare the reader for the particular terminology which is adopted throughout this document.

Chapter 2 surveys the various ways to link processors to processors and processors to memories in

parallel computers (i.e., interconnection networks). Chapter 3 surveys various commercially

available and research parallel computers. Chapter 4 discusses high level programming languages

for parallel computers and describes several existing and proposed languages. Chapter 5 discusses

the various programming techniques used for communication and synchronization between

processors in a parallel computer. Chapter 6 discusses various issues associated with designing

algorithms for parallel computers and gives a few illustrated examples. Chapter 7 discusses

operating systems issues for parallel computers. Chapter 8 surveys various software tools available

for parallel computers. Chapter 9 provides an extension to the conventional software life cycle (of

serial computers) for parallel computers. Chapter 10 discusses various supercomputer research

centers, most of which are found in the United States. Chapter 11 discusses research topics which
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need to be addressed by the scientific community. Chapter 12 gives a list of journals and books in

which the reader will find more information on parallel computing.

The principal audience for this document is intended to be people with an understanding of the

basic concepts of computer science, including high-level language programming, operating

systems, and computer architecture.

We would like to thank Dr. Russ Miller, Assistant Professor in the Department of Computer

Science at the State University of New York at Buffalo, for several fruitful discussions and for

reviewing this document.

.4-
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3

CHAPTER 1

TERMINOLOGY

Introduction

This chapter serves to familiarize the reader with basic parallel processing terminology and

concepts. Since the field of parallel processing is such a new field, terminology is often

inconsistent; a variety of definitions can be found in the literature for any given parallel processing

concept. Therefore, we recommend all readers, both knowledgeable and new to the field of parallel

processing, to familiarize themselves with the particular set of definitions adopted throughout this

document.

1-1 Supercomputers

Supercomputers are defined as the most powerful general-purpose scientific computer systems

available at a given time. Notice that according to this definition, supercomputers have always, and

will always exist. [Lincoln 1982] '
[Kozdrowicki Theis 1984] states that a supercomputer is generally characterized by three main

features: (1) high computational speed, (2) large main memory, and (3) fast and large secondary

memory.

[Kosinski 1987] states that to qualify as a minisupercomputer, at the time of the writing of this

document, a system must meet the following three criteria: (1) it must perform at least some

scientific and engineering applications using 64-bit floating point arithmetic at a peak speed of not

IBMS



4 TERMINOLOGY

less than one-tenth that of a low-end supercomputer, (2) it must be capable of running an entire

compiled program, and (3) the typical price should range between $200,000 and $1 million, with

the maximum price for a fully configured system at about $2 million. Common minisupercomputer

features include large memories and some combination of vector or parallel support (to be defined).

[Hwang 1987] classifies supercomputers as either full-scale supercomputers, near

supercomputers or minisupercomputers according to performance and cost. Figure 1-1 illustrates

the performance and cost ranges of these three classes of commercial supercomputers in 1987.

Class Peak Speed Cost Examples

full-scale 200 MFLOPS Cray 2, Cray X-MP,
fl e$2M to $25M NEC SX, FACOM VP,

W supercomputers 2.4 GFLOPS ETA-10, IBM GF11

5M PLoral MPP,
near to $4P CDC Cyberplus,

supercomputers 5 t$1M to $4M BBN Butterfly,supecomutes 50 MFOPSConnection Machine

1M SAlliant FX/8, CMU Warp,10 MIFLOPSCovxC1 S40
minisupercomputers to $100K to $1.5M Convex C-l, SCS-40,ELXSI 6400, Intel iPSC,

100 MFLOPS Encore Multimax

superminicomputers Less than VAX/780, VAX 8600,
(not considered a $20K to $400K IBM 4300, IBM 9370

supercomputer) I I I I
Figure 1-1. Supercomputer classes and performance/cost ranges in 1987. The superminicomputer
category is only given as a comparison. Super-minicomputers are not supercomputers.

1-2 Parallel Processing

[Quinn 19871 points out that while most high-performance modem computers exhibit a great deal

of concurrency, it is not desirable to call every modern computer a parallel computer. The

concurrency of many machines is totally invisible to the user. For this reason, we adopt the

following definitions.

Parallel processing is a type of information processing that emphasizes the concurrent

manipulation of data elements belonging to one or more processes solving a single problem.

Pipelining and parallelism are two ways of achieving concurrency. Pipelining increases

~*'J4I



TERMINOLOGY 5

concurrency by dividing a computation into a number of steps, while parallelism is the use of

multiple resources to increase concurrency. A parallel computer is a computer designed for the

purpose of parallel processing. [Quinn 1987]

1-3 Pipelining

A pipelined computation is a computation divided into a number of steps, called stages, which can

operate autonomously, and the stages are then performed in overlapped mode. Each stage works at

full speed on a particular part of the whole computation. The output of one stage is the input to the

next stage. Assuming all stages work at the same speed, the work rate of the pipeline is equal to the

sum of the work rates of the stages (once the pipe is full). Concurrency is increased as a result of

dividing the computation into a number of steps. [Quinn 1987]

In instruction pipelining, the execution of each instruction is divided into a number of stages,

such as instruction fetch, instruction decode, operand fetch, and instruction execute. By using

pipelining, more than one instruction can be in some stage of execution at the same time. [Perrott

Zarea-Aliabadi 1986]

Pipelining the data stream (data pipelining) is a natural evolution from the traditional serial

model of computation. Instead of fetching scalars from memory and performing arithmetic on

them, vectors are streamed from memory into the CPU, where pipelined arithmetic units manipulate

them. [Quinn 1987]

Figure 1-2 illustrates the relationship between sequential and pipelined execution based on a

four-stage process with each stage taking one unit of time.

1-4 Serialism versus Parallelism versus Pipelining

Suppose it takes 4 units of time for a lawn service to do one lawn and that there are four steps to the

process - rake, mow, edge, and sweep - each requiring exactly one unit of time. A single person

can do a lawn by spending one unit of time raking, one unit of time mowing, one unit of time

edging and one unit of time sweeping. Therefore, a single person can do one lawn in 4 units of

time, two lawns in 8 units of time, three lawns in 12 units of time, and so on, as shown in Figure
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1-3a. Now suppose each of the four subtasks is assigned to a different person, Alex, Bob, Chris,

and Denise. Alex rakes a lawn every time unit and then gives Bob the okay to start mowing. After

Bob is through, he gives Chris the okay to start edging. After Chris is through, she gives Denise

the okay to start sweeping. As each person completes their task on the current lawn, they move

onto the next one. By pipelining the process, one lawn is completed in 4 units of time (initial time

to fill the pipeline), two lawns are completed in 5 units of time, three lawns are completed in 6 units

of time, and so on, as shown in Figure 1-3b. Now suppose the said lawn service is doing so well

that they are able to hire three mor lawn crews, making a total of four crews. Each crew does one

complete lawn and then moves onto the next one. Clearly, four lawns are done in 4 units of time,

eight lawns are done in 8 units of time, twelve lawns are done in 12 units of time, and so on, as

shown in Figure 1-3c.

stage 4 A A B C

stage 3 A B C . Sequential
stage 2 A B C Execution

stage A1 B C I j_
1 2 3 4 5 6 7 8 9 10 11 12

time

stage4 A B C D E F G H I

stage3 A B C D E F G H I J ... Pipelined

stage2 A B C D E F T H I J K Execution

stagel A B CID E F G H I J K L

1 2 3 4 5 6 7 8 9 10 11 12
tnne

Figure 1-2. An illustration of the relationship between sequential and pipelined execution
of a process that has four stages, with each stage of the process taking one unit of time.

1-5 Vector Computers

In contrast to the instruction set of a serial computer which allows the manipulation of only scalar

operands, the instruction set of a vector computer contains operations on vectors as well as scalars.

[Quinn 1987] The computational processes of a vector computer are pipelined.

In general, tasks are usually divided among a vector processor and a very high speed scalar
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processor since it is unlikely that all of the code in a particular program will be vectorizable. The

high speed scalar processor is used to avoid a system bottleneck or the degradation of vector

performance. [Perrott Zarea-Aliabadi 1986]

Vector computers can be divided into two categories, memory-to-memory vector computers and

register-to-register vector computers. In the memory-to-memory architecture, source operands and

intermediate and final results are retrieved directly between the pipelines and the main memory. In

the register-to-register architecture, operands and results are loaded from the main memory to a

large number of vector or scalar registers before they can be used by the pipelines. [Tutorial 1984]

three lawns two lawns one lawn completed

3 I1 1 12 1 1 1 I l I (a)
. Ythree lawns

. twolans1
; e lawn completed

,,, A A BIID 1019 8[716 15 14 13 12 111 (b)

twelve lawns eight lawns four lawns completed

r ~Figure 1-3. (a) Serialism vs. (b) Pipelining vs. (c) Parallelism. (Each square represents one time unlit)U

A B IIIJ15 11 11t6
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Vector Terminology and Concepts

The primary reference for this section is [Quinn 1987], except as noted.

A vector is an ordered n-tuple of elements. For example, a row or column of a two-dimensional

array is a vector. Vectors are made up of scalar quantities such as integers, floating-point numbers,

booleans, or characters. In general, vector instructions can be divided into three categories as

shown in Figure 1-4.

Instruction Example

Vector +- Vector Vector square root: each element of the
resultant vector is the square root of the
corresponding element of the original vector

8 3 1 16 2 251 12 64 1

2"/2 3 14 142 15 12431 8 1

Vector 4- Vector op Vector Vector addition: Vector 4- Vector + Vector

1 3 111 7 1-4 121 -914 2

23 1 -6 7 3 2 2 5 1

26 12 1 3 24 -7 6 7 1

Vector +- Scalar op Vector Vector-scalar multiplication: eachelernent
of the resultant vector is assigned the product of a
scalar and the corresponding element of the
input vector

4 1-2 1 1 6 11 -5 -21 9

-16 1 8 -4 1-24 1-44 20 84 -36

Figure 1-4. Three kinds of vector instructions. (Note that an instruction of the form
Scalar +- Vector (e.g., vector summation) is not considered to be a vector instruction.IThis operation has a scalar result, and it cannot be pipelined.)

F!
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Masking vectors are boolean vectors used to enable or disable operations on particular vector

elements. Figure 1-5 illustrates the use of a masking vector to compute the absolute value of a

vector. When an operation is to be performed on a very small percentage of the elements of a

vector, it is not a good idea to use a masking vector because it is wasteful to manipulate a long

vector when so little work is done. The compress operation provides an alternative. A compress

instruction loads a vector according to the values in a corresponding masking vector, at which point

the compressed vector can be manipulated as an operand in vector instructions. The inverse of the

compress operation is an expand operation. The expand operation is used to store a vector

according to the values in a corresponding masking vector. Figure 1-6 illustrates both compress

and expand operations. One final example of a vector operation is the merge operation, which

merges two vectors according to the values in a masking vector. Figure 1-7 illustrates the merge

operation.

2 1-43 111 98 -1 -7 1-5 123 1 ArgumentVector

10 11101011 11 11 0 Maskingvector

12 143 1 11 198 11 7 1 5  123 Resultant vector

Figure 1-5. Use of a masking vector to compute the absolute value of
a vector by negating selected elements.

1 , -61 13 1 1 162

010 0101 0

-6 13 162]RW*Vcoan

Figure 1-6. Illustration of compress and expand vector operations.

+ +od/E
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3 9 - 4 Argument vector 2

-5 
7 6 2 

Argument 
vector 

1

1 10 1 11 10 10 1 1 0 1Making vector

1-5 13 17 16 19 1-11 2 41 ] Resultantvector

Figure 1-7. mustration of a merge vector operation. A 1 in the masking vector means
take the next argument from vector 1; a 0 means take the next argument from vector 2.

The compiler's role in analyzing user programs and producing object codes to execute on the

vector hardware is called vectorization. The portion of the compiler which carries out the

vectorization is called the vectorizer. The process of modifying and adapting an application program

in order to reveal its vector content and to improve the performance is called vector migration.

Vector migration assists the vectorizing compiler in exploiting the vector hardware for that

program. [Hwang 1987]

The basic unit of vectorization is the do loop. Strip mining is the process of dividing a do loop

into a number of smaller loops to be executed sequentially. This process is performed in

register-to-register pipelined vector computers because of the limitations of vector registers. For

example, suppose a program written for the Cray- 1 (a register-to-register architecture) contains a

single Fortran do loop that performs vector addition on two 100 element vectors. The vector

registers on the Cray-I can hold at most 64 elements; so the do loop must be performed in two

steps: (1) load the first 64 elements from each vector, perform the 64 additions, and store the first

64 results; and (2) load the final 36 elements from each vector, perform the final 36 additions, and

store the final 36 results. A series of vector operations can be chained together, allowing a second

vector operation to begin as soon as results begin streaming out of the first functional unit's

pipeline.

- S
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1-6 Shared Memory versus Distributed Memory

A shared memory machine has a single global memory accessible to all processors. A key feature

of current shared memory systems is that the access time to a piece of data is independent of the

processor making the request. In distributed memory machines, each processor has its own local

memory. The only way for an application to share data among the processors is for the programmer

to explicitly code commands to move data from one processor to another. The time it takes for a

processor to access data is dependent on its distance from the processor that currently has the data

in its local memory. [Karp 1987]

1-7 Flynn's Taxonomy

Michael Flynn [Flynn 1966] classifies computer architectures according to the concepts of

instruction stream and data stream. An instruction stream is a sequence of instructions performed

by a computer. A data stream is a sequence of data used to execute an instruction stream. An

architecture is categorized by the multiplicity of hardware used to manipulate instruction and data

streams. Given the possible multiplicity of instruction and data streams, there are four possible

classes of computers: (1) Single-Instruction stream, Single-Data stream (SISD), (2)

Single-Instruction stream, Multiple-Data stream (SIMD), (3) Multiple-Instruction stream,

Single-Data stream (MISD), and (4) Multiple-Instruction stream, Multiple-Data stream (MIMD).

[Quinn 1987] These four classes of computers are described below.

Single-Instruction stream, Single-Data stream (SISD) Computers

In single-instruction stream, single-data stream computers, the execution of instructions may be

pipelined, but only one instruction is decoded per unit time. SISD computers may have multiple

functional units, but they are under the direction of a single control unit. Most serial computers fall

under this category. [Quinn 1987]

Single-Instruction stream, Multiple-Data stream (SIMD) Computers

A single-instruction stream, multiple-data stream machine typically consists of n processing

I'' I IN .. . .. III F I I ll 1 , . ,1 " 1, , W •I I I I, I • " .



12 TERMINOLOGY

elements (PEs), a control unit, and an interconnection network. The control unit stores the program

and broadcasts instructions to all PEs simultaneously. Enabled PEs execute the same instruction at

the same time, but on the contents of their own local memory. PEs may be enabled or disabled at

any time during the execution of the program through the use of a mask. [Miller Stout 1987]

SIMD machines are generally designed to exploit the fine-grained parallelism of tasks such as

those involving matrix operations and digitized pictures, where the same operation is performed on

many different matrix or image elements. The word size that each PE in an SIMD machine operates

on varies from system to system. For example, the Iliac IV uses 64-bit words and the Massively

Parallel Processor (MPP) uses 1-bit words. As an example of the possible size of SIMD machines,

the Connection Machine-2 has 65,536 simple processing elements. [Siegel 1984] SIMD models

may differ from one another in that PEs may communicate with each other through shared memory

or through some interconnection network. The shared-memory based SIMD model, shown in

Figure 1-8, consists of a control unit, a global random access memory, and n processors. [Quinn

1987]

Global Random Access Memory *-

Processor Processor Processor
0 1 n-1

Control [.,

Unit "

Figure 1-8. Shared-memory SIMD model diagram.
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The majority of parallel SIMD algorithms being developed assume a shared global memory that

allows the n PEs to access simultaneously any n locations in the entire memory space in constant

time. This SIMD shared-memory model is the optimal parallel computer model. However, it is not

feasible to build such machines for large numbers of processors, so no actual SIMD machines have

been built based on this model. It is more realistic to assume that each PE has its own private

memory and that PEs can pass data via an interconnection network, as shown in Figure 1-9.

[Quinn 1987] (Interconnection networks are discussed in detail in Chapter 2.)

Note that it is still extremely important to develop algorithms for the optimal SIMD

shared-memory model in order to find out what the absolute lower bounds are for solving

problems. Once these optimal times are known, researchers can try to get as close as possible to

these times on feasible architectural models.

Interconnection Network
10

PE0 PE1 ... PE.. Control,E PE nUnit

Meoymemory Memory Megrm

Figure 1-9. Interconnection network-based SIMD model diagram.

To understand better how SIMD machines operate, consider the following simple task (taken

from [Quinn 1987]). Assume that each of A, B, and Sum is a one-dimensional array (vector) of N

elements and that the task to be performed is the element-wise addition of A and B, storing the

result in Sum. In a uniprocessor (serial) system, this task can be expressed as:
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FORI-0TON-1 DO

Sum[i] +- A[l] + B[i]

This computation will take N steps on a serial machine because the body of the loop executes N

times.

Now assume A, B, and Sum are stored in an SIMD machine with N PEs, such that A[ i, B[fl,

and Sum[i] are all stored in the local memory of PE i, 0:< i < N. To perform an element-wise

addition of the vectors A and B and store the result in Sum, all PEs would (simultaneously) execute

Sum4.-A +B

with PE i doing the addition of A(i) and B(i), and storing the result in Sum(i), for all i, 0 5 i < N

Since there are N PEs and N elements in each of the vectors A, B, and Sum, each PE does only

one addition. The SIMD machine does in one step a task requiring N steps on a serial processor.

Consider a variation on this example (taken from [Siegel 1984]), which calls for use of the

interconnection network. Assume the N-step serial task is:

FOR i -- 1 TON- 1 DO

Swn(i) +- A(i) + B(i - 1)

Swn(0) +- A(0)

Given the same data allocation as in the previous example, an SIMD machine performs this task in

three different stages:

(1) The value of B(i - 1) is moved through the interconnection network

from PEi5 to PE,, 1 < i < N. Most SIMD interconnection networks

allow all of these PEs to do this in one parallel data transfer.

(2) In PE, add A(i) to B(i - 1) and store the result in Sum(i), 1 < i <N

(processor 0 is inactive).

(3) In PEo, store A(0) in Sum(0) (all other PEs are inactive).

-'2
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Multiple-Instruction stream, Single-Data stream (MISD) Computers

Multiple-instruction stream, single-data stream machines employ two or more processors that

perform separate instructions on the same data. This approach is thought to be impractical and

current literature states that no existing computers fall under this category.

Multiple-Instruction stream, Multiple-Data stream (MIMD) Computers

The following information is based on [Siegel 1984].

A multiple-instruction strewn, multiple-data stream computer typically consists of n processing

elements (PEs), n memory modules, and an interconnection network. Each of the n PEs stores and

executes its own program. (Therefore, there are multiple instruction streams as opposed to the

SIMD architecture that consists of only a single instruction stream.) Each PE fetches its own data

on which . operate. (Thus, there are multiple data streams, as in the SIMD system.) The

interconnection network provides communications among the processors and memory modules.

While in an SIMD system all active PEs use the interconnection network at the same time (i.e.,

synchronously), in an MIMD system, because each PE is executing its own program, inputs to the

network arrive independently (i.e., asynchronously).

MIM) machines can be organized as distributed memory machines or shared memory

machines, illustrated in Figures 1-10 and 1-11, respectively. When using the shared-memory

configuration, a local memory or cache can be associated with each processor.

Whereas all active PEs operate in a synchronous lockstep way in SIMD machines, PEs in an

MIMD machine operate asynchronously with respect to each other. With this increased flexibility

comes an increase in overhead costs to perform process synchronization and design programs for

each of the n PEs (there may not be a single program, as in SIMD operation). Nevertheless, certain

problems are not appropriate to the single instruction stream limitations of SIMD machines, so

MIMID costs are justified.

_ .
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PE 0 PE I PE 2 PE n-1

processor 0 processor 1 pr 2 ]prcessor n-1

I I I I

r interconnection network

Figure 1-10. Distributed Memory MIMD machine configuration.

processor° 0 proesor 1 LEp eor 2 ... Iprocssorn- 1

J interonnection network

I memory 0 memory 1 memory 2 moryn- I

Shared Memory

Figure 1-11. Shared memory MIM) machine configuration.

Muitiple-SIMD Machines and Partitionable-SIMD/MIMD Machines

[Siegel 1984] discusses two variations on SLMD and MIMD machines, namely, multiple-SIMD

machines and partionable-SMIMA]D machine. A multiple-SIMD machine is a parallel processing

system that can be dynamically reconfigured to operate as one or more independent virtual SIMD

machines of various sizes. A multiple-SDMD system consists of n processors, n memory modules,

an interconnection network, and q control units, where q < n.

There are several advantages of multiple-SIMD systems over SIMD systems (with a similar

number of processors). First, when high reliability is needed, numerous partitions can run the same

program on the same data and compare results. Second, if a single processing element fails, only

those partitions that include the failed processing element are affected. The rest of the system can

continue to function. Third, multiple users can each be simultaneously executing a different SIMD

program. Fourth, debugging is easier because the programmer can execute the program on, say,

32 processing elements, instead of 1024. Fifth, multiple-SIMD machines are more efficient because

if a task requires only half of the processors, the other half can be used for another task. Finally,
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two or more independent SIMD subtasks that are part of the same job can be executed in parallel,

sharing results if necessary.

A partionable-SIMD/MIMD machine is a parallel processing system that can be structured as

one or more independent SIMD and/or MIMD machines of various sizes. A

partitionable-SIMD/MIMD system consists of n processors, n memory modules, an interconnection

network, and q control units, where q < n. Each processor can follow its own instructions (MIMD

operation) in addition to being capable of accepting an instruction stream from a control unit (SIMD

operation). The advantages listed for multiple-SIMD machines also apply here, where each partition

can operate in either the SIMD or the MIMD mode of parallelism. In addition, in a

partitionable-SIMD/MIMD machine the same set of processors can switch between the SIMD and

MIMD modes of parallelism when performing a task.

1-8 Granularity

The granularity of a machine typically denotes the relative number and complexity of the

processors. Afine-grained machine typically consists of a large number of small, simple (in terms

of computational power and local memory) processors, while a coarse-grained machine typically

consists of relatively few large, powerful processors. With respect to current technology (1987),

fine-grained machines have on the order of 10,000 processors, while coarse-grained machines have

on the order of 10 processors. Medium-grained machine- -epresent a compromise in performance

and size between that of fine-grained and coarse-grained machines, with on the order of 100

processors. In general, SIMD machines are thought of (and constructed) as fine-grained machines,

where all processors operate in lockstep fashion on the contents of their own small local memory.

MIM) machines are more often thought of as coarse-grained machines that either share a global

memory or have the memory distributed among the processors. [Miller Stout 1987]

The term granularity is also used to express the ratio between computation and communication

in a parallel program. Fine-grained parallel programs spend more time communicating than

coarse-grained parallel programs. [Howe Moxon 1987]

N NI" N ".%6N0
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1-9 Multiprocessors versus Multicomputers

Multiprocessors are MIMD machines that permit all processors to directly share main memory. In

contrast, multicomputers are MIMI machines in which each processor has its own private memory

and all communication and synchronization between processors is done through message passing.

[Quinn 1987] A multiprocessor or multicomputer is further characterized by the topology of the

interconnection network it uses. Multiprocessor organizations include the crossbar switch, the

common bus to global memory, and the multistage network. Multicomputer architectures include

topologies such as the hypercube, the mesh, the ring, and the tree. [Bhuyan 1987] Interconnection

networks are discussed in detail in Chapter 2.

1-10 Tightly Coupled versus Loosely Coupled Machines

A computer is tightly coupled if the degree of interactions among the processors is high. Otherwise,

a computer is considered loosely coupled. [Hwang Briggs 1984]

1-11 Processor Arrays and Associative Processors

A processor array consists of a single control unit and a set of identical synchronized processing

elements (PEs) each of which has its own local memory. Instructions can be executed locally in the

control unit or they can be broadcast to the PEs for execution in lockstep mode. No instruction can

cause the PEs to perform dissimilar operations. The only possible variation in their operation is that

they may be masked out under program control. [Perrott Zarea-Aliabadi 1986] A processor array

can be classified as a special-purpose fine-grained SIMD machine.

An associative processor is a special kind of processor array. Whereas a processor array is built

around a random access memory, an associative processor is built around an associative memory

that allows the entire memory to be simultaneously searched for some specified contents. [Quinn

1987]

1-12 Attached Processors (array processors)

An attached processor (sometimes referred to as an array processor) is a special-purpose pipelined

=0
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processor which attaches to a general-purpose host computer and is designed to process large

vectors or arrays. Attached processors are a low-cost alternative to pipelined vector computers.

Similarities exist between attached processors and pipelined vector computers. Both contain

multiple pipelined functional units and parallel data paths. Attached processors do not have vector

instructions, but instead rely on carefully coded libraries of routines that use pipelining to achieve

good performance on array and matrix manipulations. [Quinn 1987]

1-13 Dataflow Machines

The following information is based on [Barszoz Howard 1987], [Dennis 1984], [Ghosal Bhuyan

1987], and [Haynes Lau Siewiorek Mizell 1982].

Instruction execution in a dataflow machine is determined by the presence of data, not by a

program counter. When all data for an instruction is present, it is executed without regard for its

position in the program.

A dataflow program is represented by a dataflow graph showing data dependencies. A dataflow

graph is composed of nodes and arcs. Nodes represent instructions to be executed. Arcs represent

data dependencies between nodes. During execution, a node "fires," consuming input data and

generating a result. Tokens carry copies of the result along the output arcs to dependent nodes. A

node is enabled or ready to fire when there are tokens on all input arcs.

Consider the computation of the dot product of two vectors, A = (a1, a2) and B = (b1, b2),

yielding A.B = alb1 + a2 b2. The dataflow graph for this computation is given in Figure 1-12a.

Each computation is encoded into an activity template as shown in Figure 1-12b. The dataflow

program to be executed consists of activity templates, each with a unique address. When the

required data is available for an activity template, the unique address of the template is enqueued,

assigned a processor (as one becomes available), and executed. This generates one result packet for

each destination field of the operation packet.

There are two basic implementations of dataflow: static dauzflow and dynamic dataflow. Static

dataflow allows at most one token on an arc at any given instant. A dynamic dataflow machine uses

tagged tokens permitting more than one token to co-exist in any arc at any time. This tagging is

$0
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achieved by attaching a label with each token. The label essentially identifies the context in which

the particular token was generated.

a1b1

(a) A-B

b 1 2

a1

(b)

b2

Figure 1-12. (a) The flow graph for the dot product of two vectors. (b) Corresponding activity templates.

1-14 Systolic Systems

The following information is based on [Haynes Lau Siewiorek Mizell 1982] and [Kung 1982].

A systolic system consists of a set of interconnected processing elements (PEs), each capable of

performing some simple operation. Because simple and regular communication and control

structures have substantial advantages over complicated ones in design and implementation, PEs in

a systolic system are typically interconnected to form a systolic array or a systolic tree. Information

in a systolic system flows between cells in a pipelined fashion, and communication with the outside

world occurs only at the "boundary PEs." For example, in a systolic array, only those PEs on the

array boundaries may be I/O ports for the system.

The basic principle of a systolic architecture is that by replacing a single PE with an array of

PEs, a higher computation throughput can be achieved without increased memory bandwidth
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(Figure 1-13). Data is "pulsed" through the array of PEs from the memory. Once a data item is

brought out from memory it can be used effectively at each PE it passes while being "pumped"

from PE to PE along the array.

Figure 1-15 illustrates multiplication of two band matrices, C -- A.B, on a hexagonally

connected systolic array. A matrix of bandwidth w may have o diagonals that are not zeroes.

Matrices A, B, and C are shown in Figure 1-14. Both matrix A and matrix B have bandwidth 4

along their principal diagonals. Thus, C has bandwidth 7 along its principal diagonal. A, B, and C

are all of dimension n x n. The entries outside the diagonal band are all zeroes. The first three

iterations of the multiplication algorithm are given in Figures 1-16a, b, and c.

Conventional

Systolic
Array

Figure 1-13. Illustration of the basic principle of a systolic architecture.

1-15 Reconfigurable Architectures

The objective of reconfiguration is to achieve the best possible match between a problem and the

hardware. Reconfigurability is a broad term that is generally applied to features of a system that

make it more flexible. Reconfiguration can take place in three places:

(1) System level (includes the entire facility). Reconfiguration is performed to keep the system

running even in the presence of a failed subsystem or to "tune" the performance of a mixture of

jobs in a multiprogrammed environment.

(2) Within the machine itself. Reconfigurability is important for achieving performance

improvements and to a lesser degree, for fault tolerance. The areas most suitable for investigation
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are reconfiguration of the processors and memory to achieve a better match to the program to be

executed.

(3) Hardware fiactional ut level. Reconfiguration offers the potential to improve performance

many times. The goal of this research is to develop design methods for computational units that

have the performance of special purpose hardware but are not "hardwired". This involves the

reconiguration of data paths and control structures. [SRC 1986b]
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The following information is based on [Quinn 1987].

A set of concurrent processes is said to be in deadlock if each holds nonpreemptible resources

that must be aquired by some other process in order for it to proceed. Deadlock can occur in both

multiprocessors and multicomputers. Figure 1-17 illustrates the idea of deadlock. Process A and

Process B try to lock the same two resources. (The lock mechanism is discussed in Section 5-2.)

Process A locks resourcel while process B locks resource2. Process A is suspended when it trys

to lock resource2. Likewise, process B is suspended when it trys to lock resource). Neither

process can proceed. They are in deadlock.

There are four conditions necessary for a deadlock to exist: (1) mutual exclusion - each process

has exclusive use of its resource, (2) nonpreemption - a process never releases resources it holds

until it is through using them, (3) resource waiting - each process holds resources while waiting for

other processes to release theirs, and (4) a cycle of waiting processes - each process in the cycle

waits for resources that the next process owns and will not relinquish.

There are at least three ways to address the problem of deadlock: (1) one can try to detect

deadlocks when they occur and try to recover from them, (2) one can avoid deadlock by using

beforehand information about requests for resources to control allocation so that the next allocation

of a resource will not cause processes to enter a situation in which deadlock may occur, or (3) one

can prevent deadlock by forbidding one of the first three conditions listed in the previous

paragraph.

Process A Process B

lock(resourcel); lock(resource2);

lock(resource2); lock(resourcel);

Figure 1-17. An illustration of a deadlock situation.I W.
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1-17 Speedup

In a parallel system consisting of a set of identical processing elements (PEs), the speedup of a

program can be obtained by taking the ratio of the execution time on one PE to that of a number of

PEs. If the number of PEs in the parallel system is n, then from the computational point of view the

maximum speedup that the program can achieve is n. This is called linear speedup. However, there

are many factors which can substantially reduce this ratio, including the amount of serialization in

the program, overheads of communication/synchronization mechanisms, and system contention

resulting from concurrent accesses to physical resources. [Hwang 1987]

1-18 MFLOPS, GFLOPS, and MIPS

MFLOPS is the acronym for millions of floating point operations per second, GFLOPS is the

acronym for billions of floating point operations per second, and MIPS is the acronym for millions

of instructions per second. The theoretical maximum speed for a given computer is called peak

speed.

~,



29

CHAPTER 2

INTERCONNECTION NETWORKS

Introduction

This chapter formally defines various interconnection networks, which are used to connect

processors to processors and processors to memory. Specifically, we define an interconnection

network to be a connection of switches and links that permits data communication between

processors and/or memories in a system consisting of multiple processors. Many factors are

involved in the cost-effectiveness of a particular network design, including the computational tasks

it will be used for, the desired speed of interprocessor data transfers, the actual hardware

implementation of the network, the number of processors in the system, and any cost constraints

on the construction. [Bhuyan 1987]

The concept of switching methodologies for communications between processing elements may

arise later in this document, so we define it here. The two major switching methodologies are

circuit switching and packet switching. In circuit switching, a physical path is actually established

between a source and a destination. In packet switching, data is put in a packet and routed through

the interconnection ,;twork without establishing a physical connection path. In general, circuit

switching is much more suitable for bulk data transmission, and packet switching is more efficient

for many short data messages. [Hwang 1987]

1
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2.1 Processor to Processor Interconnection Networks

A few definitions are necessary before specific processor to processor interconnection networks are

discussed. The degree of a node is defined as the number of communication links per node. For

example, the degree of a node in the interconnection network of Figure 2-1 is 7 (in general, n - 1).

The communication diameter of a machine is the maximum of the minimum distance (number of

communication links) between any two processors in the interconnection network. [Miller Stout

1987] For example, the maximum number of links a message must travel between any source node

and any destination node along the shortest path in the interconnection network of Figure 2-1 is 1.

The communication diameter of a network is generally higher in machines connecting nodes of

low degree than in machines connecting nodes of high degree. However, it is usually much more

expensive to design networks with nodes of high degree. Ideally, low diameter machines

consisting of nodes with low degree are desired.

We now describe a variety of interconnection networks. The first two show the extreme

situations of node degree versus communication diameter.

Completely Connected Network

Ideally, each processor in a parallel computer should be linked directly to every other processor so

that the system is completely connected, as illustrated in Figure 2-1. This topology is highly

impractical when n is large because n - 1 unidirectional lines are required per processor. [Siegel

0The completely connected network is an example of an interconnection network with high

degree per node, in fact, the highest possible without duplicate connections, and with the lowest

communication diameter, in that each node can communicate with every other node directly.

Ring Network

In a ring network, n processors are connected on a circular bus and each processor can
communicate directly with its two nearest neighbors, as illustrated in Figure 2-2. [Haynes Lau

Siewiorek Mizell 1982] Therefore, the degree of each node is at a minimum for a connected system

S ,
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with more than two nodes. The maximum number of links which must be traversed to reach a

destination node, however, might be as high as n/2.

4

Figure 2-2. A ring network.

Nz.
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Mesh Network

The processors of a mesh computer of size n are configured as a rectangular lattice (Figure 2-3a).

Meshes are frequently constructed as square lattices, where n is often an integral power of 4. Each

processor in a mesh computer can communicate directly with its four nearest neighbors: north,

south, east, and west. The communication diameter of a mesh with n processing elements is

proportional to n112, i.e., the edge length of the mesh.

Some variations on the mesh are derived from connecting the boundaries of the mesh to form a

cylinder (north-south or east-west), torus (doughnut), or spiral. Figure 2-3b shows a variation

allowing for wrap-around connections between processors on the edge of the mesh. Several

interconnection networks have been designed which are augmentations to the mesh. These include

the pyramid computer and the mesh-of-trees, both of which are discussed later in this Chapter.

II

(I0 t

(a) (b)

Figure 2-3. Two-dimensional mesh networks of size 16 (4 x 4): (a) No wrap-around.
Interior nodes can communicate with 4 other nodes. (b) Wrap-around between nodes in the
same row or column. All nodes can communicate with 4 other nodes.

Hypercube (Binary n-cube)

A hypercube of size n, where n is an integral power of 2, has n processing elements (PEs) indexed

by the integers (0, ... , - - 1). Viewing each integer in the index range as a log2 (n)-bit string, two

PEs are connected via a bidirectional communication link if and only if their indices differ by

exactly one bit, as illustrated in Figure 2-4. The communication diameter of a hypercube of size n is I7
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proportional to log(n), in that PE x can send a piece of data to PE y by correcting each of the

differing bits in the source node's label to be the destination node's label, as illustrated in Figure

2-5. [Miler Miller 1987] [Hypercube 1986]

00 '0------- 000 1 --- 0

0-dimensional 1-dimensional 2-dimensional 3-dimensional

1011

1011

0001010

4-dimensional

Figure 2-4. There are n = 2d nodes in a d-dimensional hypercube. A hypercube of size n is created
recursively from two hypercubes of size n/2 by labeling each hypercube of size n/2 identically and
independently with the indices {0, ..., nf2 - 1), and then appending a I in front of the bit-strings of
one of the cubes and a 0 in front of the other, 'creating' a new link from each PE in one cube to the

4 corresponding PE in the other cube.

Cube-Connected Cycles Network

The cube-connected cycles network is obtained by taking a hypercube and replacing each of its n

nodes with a ring of d = log(n) nodes, as illustrated in Figure 2-6. Each ring node connects to one

of the d links incident on the vertex, fixing the degree of each node at three. The communication

diameter of a cube-connected cycles network is the same as a hypercube network, but the

cube-connected cycles network has an advantage over the hypercube network in that the degree of

each node is fixed at three. Therefore, the cube-connected cycles network is expandable "forever."
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The degree of a node in a hypercube network grows logarithmically with each new dimension, and

therefore, is not expandable "forever." [Reed Grunwald 1987]

100 110

000 010

10111

001 011

Send a message from node 000 to node I 11.

1110 1011 100 110

00000 010 000 010

101111l 101 111il

001 001 011 001 O11

Correct the high-order bit. Correct the middle bit. Correct the low-order bit.

Figure 2-5. illustration of why the communication diameter of a hypercube is proportional to log(n).
The nodes of a hypercube are labeled by the integers (0, .... n-1), each viewed as a log2(n)-bit string. To
send a message from node x to node y, each differing bit in node x's label is corrected to form node y's
label. For example, in this illustration, a message is sent from node 000 to node 111 via the path 000 --
100 -- 110 -4 111. Note that this is not the only possible path - five other paths exist.

Pyramid

A pyramid of size n is a machine that can be viewed as a complete 4-ary rooted tree of height

log4(n), with additional horizontal interprocessor links so that the processors in every tree level

form a two-dimensional square mesh, as illustrated in Figure 2-7. There is a two-dimensional

network of n = k2 processing elements at the base of a pyramid of size n. The levels of*the pyramid

are numbered from 0 at the base of a pyramid to log4(n) at the apex of the pyramid. A PE at level i

is connected via bidirectional communication links to its nine neighbors (assuming that they exist):

11 '6
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a parent at level i - 1, four siblings at level i, and four children at level i + 1. The communication

diameter of a pyramid computer of size n is proportional to log(n), in that any two PEs can

communicate by sending information through the apex. [Miller Stout 1987]

Figure 2-6. A cube-connected cycles network for d =3.

level 2 apex

level 

level 0 Zbs

Figure 2-7. A pyramid of size n = 16.

Vq
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Mesh-of-Trees

A mesh-of-trees of base size n, where n is an integral power of 4, has a total of 3n - 2n112

processing elements (PEs). n of these are base PEs arranged as a mesh of size n. Above each row

and above each column of the mesh is a perfect binary tree of PEs. Each row (column) tree has as

its leaves an entire row (column) of base PEs. All row trees are disjoint, as are all column trees.

Every row has exactly one leaf PE in common with each column tree. The communication diameter

of a mesh-of-trees of size n is proportional to log(n), in that two PEs can communicate by a row

and column tree. A sample mesh-of-trees is given in Figure 2-8. [Miller Stout 1987]

Figre24.A e-oftes of bs ien.

AI

"4 P

Figure 2-8. A mesh-of-tres of base size n 16.

46
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Shuffle-Exchange Network

A shuffle-exchange network consists of n = 2k nodes, labeled from 0 to n - 1 and two kinds of

connections, shuffle and exchange, as illustrated in Figure 2-9. Exchange connections link pairs of

nodes whose labels differ in their least significant bit. The perfect shuffle connection links node i

with node 2i modulo n - 1, with the exception that node n - 1 is connected to itself. [Quinn 1987]

(a)

~000 0 010 Ol 100 0 1 1

MR %% ~ t t%%SSSS

shuffle connectionsexchange connections

Split the deck into (-i
~ ~d~w [ t wo text hal ~vesl.°

(b) Shuffle the deck
perfectly.

- Result

Figure 2-9. (a) A shuffle-exchange network wilt 8 nodes. (b) Illustration of where the name
perfect shuffle comes from: notice that the final position of the card that began at index i can be

determined by following the shuffle link from node i in the shuffle-exchange network of (a). I1a
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X.Tree

An X-tree is a simple binary tree with all nodes at each level connected in a ring (Figure 2-10),

reducing the commumcation bottleneck near the root of the tree. [Reed Grunwald 1987]

Figure 2-10. An X-tree.

Star Network

In a star network, a central processor connects to all other processors (Figure 2-11). The maximum

6istance from one processor to another is two. The center processor usually differs from the other

processors because of the huge amount of traffic that it must handle. This traffic problem limits the

number of processors feasible in such a system. [Karp 1987]

Figure 2-11. A star network.

0
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2-2 Processor to Memory Interconnection Networks

We now describe a variety of interconnection networks which are used to connect processors to

memories.

Single Shared Bus

Although the single shared bus (Figure 2-12) is the least complicated interconnection network, it

has the disadvantage that only one processor can access the shared memory at a time. Large

systems of this type are impractical to build because only so many processors can share a bus

before the bus becomes saturated. [Siegel 19841

The performance of a bus-based system can be improved by adding high-speed local memories

(caches) to each processor. Caches can respond to most memory references, reducing contention

for the common bus. However, cache consistency becomes a problem because each processor can

modify its copy of data elements independently. Special hardware can be added to synchronize the

contents of all caches, but this adds to the cost of each processor. [Howe Moxon 1987]

Shared Bus

0 1 .0n-i

Figure 2-12. A single shared bus.

Crossbar Switch

In the crossbar switch, every processor is logically connected to every other. The scheme is

implemented by using n2 switches to connect n processors and n memories, as shown in Figure

2-13. A matrix of interconnection points, called crosspoints, connects system elements. All

possible distinct connections between the processors and memories are supported, in that by setting

the switch appropriately, every PE can access any memory module in a single time unit. [Siegel

1984]

I 11Y W I
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In a crossbar switch, there is never contention for communication resources, although there

might be contention for memory. No calculation, other than address translation, is required to

establish a route. [Haynes Lau Siewiorek Mizell 1982] Unfortunately, the number of crosspoints

required is proportional to the square of the number of processors. This complexity growth tends to

eliminate the crossbar as a viable design in all but the simplest configuration option, not only

because of the complexity but because of pinout, power, and size considerations. [Welch 1984]

Memories

Crosspoint

switch

Figure 2-13. A crossbar switch.

Multistage Interconnection Networks (MINs)

The following information on multistage interconnection networks is taken from [Bhuyan 1987],

[Howe Moxon 1987] and [Siegel 1984].

A machine based on a multistage interconnection network (MIN) connects processors and

memory modules through a specialized switching network. The entire memory can be accessed by

any processor as in a bus-based system, but MINs can expand to at least 200 processors because

the switching network expands and the switching bandwidth increases as processors are added.

Many processors can simultaneously access many memories because multiple paths exist through

the network.
Formally, an n x n MIN connects n processors to n memories. For n a power of two, it

generally uses log2(n) stages of 2 x 2 switches, each with two inputs and two outputs, with n/2
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switches per stage. The connection between an input and an output depends on a control bit c

provided by the input. When c = 0, the input is connected to the upper output; when c = 1, it is

connected to the lower output.

Many significant M]Ns have been proposed, including the omega network, the flip network, the

indirect binary n-cube network, the SW-Banyan network, the butterfly network, the multistage

shuffle-exchange network, the baseline network, the delta network, and the generalized cube

network. This is often quite confusing, but one should keep in mind that all of these log2(n)-stage

networks are functionally equivalent and differ only in the interconnection between the adjacent

stages. For example, an omega network is characterized by a perfect shuffle interconnection

preceding every stage of the switches, as illustrated in Figure 2-14. A butterfly network, illustrated

in Figure 2-15, is made up of "butterfly" patterns, hence its name.

Other MINs include the extra stage cube (ESC) network, the F-network, the dynamic

redundancy network, the IADM network, the -network, the C-network, the INDRA network

[Adams Agrawal Siegel 1987], the data manipulator network [Siegel 1979], and the Benes network

[Feng 1981].

0 0
1 1.

2 2

3 3

4 4

5 5

6 6

7 7

Figure 2-14. An 8 x 8 omega network.
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Figure 2-15. A 32-node Butterfly network.
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CHAPTER 3

PARALLEL COMPUTERS

Introduction

This chapter gives a brief description of a variety of existing parallel computers, including

commercially available machines and research computers. The quantity and quality of information

varies from machine to machine due to the availability of literature supplied by the vendors and

research centers associated with each machine.

THE CONTENTS OF THIS CHAPTER ARE BASED ON INFORMATION AVAILABLE

THROUGH LATE 1987 AND WLL CHANGE WITH THE NEXT EDITION OF THIS

DOCUMENT, DUE TO BE RELEASED IN LATE 1988.

3-1 Commercially Available Parallel Computers

Alliant FX/8

The following information is based on [Hwang 1987].

The Alliant FX/8 is a shared-memory multiprocessor system manufactured by Alliant Computer

Systems Corporation. The FX/8 system contains up to 8 processing elements with vector capability

and up to 12 interactive processors with independent I/O channels. The interactive processors

execute interactive user jobs, operating system tasks, and I/O.

Alliant's FX/Fortran compiler automatically identifies opportunities for fine-grained parallel
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processing and vector execution and generates globally optimized code that executes efficiently on

multiple processors. C and Ada are currently being extended to take maximum advantage of

Alliant's parallel architecture. Alliant's Concentrix operating system, a multi-user UNIX

4.2BSD-based operating system, supports fully concurrent parallel processing.

ASPRO (Associative Processor)

The following information is based on [Goodyear 1984], [Law Miller 1983], and [Loral ASPRO

1982].

The ASPRO is an extremely small (0.44 cubic feet) SIMD computer manufactured by Loral

Systems Group, a division of Loral Corporation. One particular ASPRO system designed by Loral

Systems for usage on the NAVY/Grumman E-2C AEW aircraft consists of 1792 processing

elements (PEs) with 8192 bits of local memory per PE. It is possible to configure the ASPRO with

a much larger array of PEs and local memory when a size restriction like that of the E-2C is not

required.

Figure 3-1 illustrates the block diagram of ASPRO. The Array consists of 14 array groups.

Each array group consists of a 128-word by 8192-bit array of solid-state multidimensional access

storage and 128 processing elements (128 * 14 = 1792 PEs). The Array Control unit performs all

conventional (sequential) data manipulations and drives the Array unit, which performs associative

(parallel) operations. The Array Control unit also provides program storage as well as program

execution. The Control Memory is made up of three types of storage: (1) buffer memory, (2)

program memory, and (3) fixed (or read-only) memory. The Register and Arithmetic subsystem

contains one 32-bit and one 16-bit data bus, plus sixteen 16-bit general registers, the array select

register, and nine special registers. There is also an arithmetic and logic unit in this subsystem used

for both data processing and for memory address generation. The Program and Execution Control

Subsystem provides for controlling the sequence of execution of instructions store in the program

memory.

ASPRO can run VAX/VMS or UNIX operating systems. Fortran, OPS-83 (an expert systems

tool), and ASPRO ,.-: -nbler programming languages are supported. Ada and C will be available
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for the Advanced VHSIC ASPRO. The ASPRO costs approximately $500,000.

Memory Bus A dMaontrol Memory Bus B

W i ta
instructions

Array olntrol Register andControl Co I :ution:I Arithmeic-

control 
dt

Array

Figure 3-1. Block Diagram of ASPRO.

Butterfly Parallel Processor

The follkwing information is based on [BBN 1986].

The Butterfly Parallel Processor is a tightly coupled shared memory MIMD machine

manufactured by Bolt, Berenek and Newman (BBN). (Note that BBN likes to view the Butterfly as

a shared memory machine, but in reality the memory is distributed among the nodes.) Each node

independently executes its own sequence of instructions, referencing data as specified by the

instructions. Nodes are tightly coupled by the Butterfly Switch. Tight coupling permits efficient

interprocessor communication and allows each processor to access all system memory efficiently.

The Butterfly Parallel Processor consists of processors with memory (referred to as nodes) and

a log-stage switch interconnecting the processors (the Butterfly Switch). The local memory of the

nodes collectively forms the shared memory of the machine. That is, any node can access any of

the memory of the machine using the Butterfly Switch. The only difference between references to a

node's own memory and references to memory on other node's is that remote references take a little

longer. A Butterfly system can be configured with from 1 to 256 nodes, each with 1 to 4

megabytes of memory. Each node is capable of executing 0.5 MIPS.

- €" , ,,eY~e~e . ,e " ,e I 'e ' -", ".-I. e
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The Butterfly Switch is illustrated in Figure 3-2. Each Butterfly switching node is a 4 input-4

output switching element. There is a path through the switch network from each node to every

other node. Operation of the switch works as follows. The switching nodes use packet address bits

to route the packet through the switch from source to destination node. Each processor uses two

bits of the packet address to select one of its four output ports. Figure 3-3 illustrates how node #4

sends a message to node #7. Node #4 builds a packet containing the address of node #7 (7 10 =

01112) and the message data and sends the packet into the switch. The first switching node strips

the two least significant a 'dress bits (11) off of the packet and uses them to switch the remainder of

the packet out its port 3 (310 = 112). The next switching node strips off the next two address bits

(01) to switch the packet out its port 1 (110 = 012) to node #7. Notice that the structure of the

switch network ensures that packets with address 0111 will be routed with the same number of

steps to node #7 regardless of the node sending them.

Application programs run under the Butterfly Chrysalis Operating System, which provides a

familiar, UNiX-like environment that supports programming in high-level languages. The Butterfly

Parallel Processor is usually programmed in C (extended for use in a parallel processing

environment), although Lisp and Fortran (both extended forms) are also available. Programs are

written using a cross-compiler and other software development tools on a front-end machine (a N
DEC VAX or a Sun Workstation, both running 4.2BSD UNIX). The typical development cycle

consists of editing, compiling, and linking a program on the UNIX front-end, and downloading,

running, and debugging the program on the Butterfly system. A source language debugger for the

C language is available that runs on the front-end allowing cross-network debugging of programs

running on the Butterfly system.

The Butterfly is one of the Defense Advanced Research Projects Agency's (DARPA's) three

Strategic Defense Initiative (SDI) machines. The other two are the WARP at Carnegie Mellon

University and the Connection Machine at Thinking Machines Corporation.

XU
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Figure 3-2. A 16 input - 16 output Butterfly Switch.
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Figure 3-3. A packet in transit through a Butterfly Switch.

Burroughs Scientific Processor (BSP)

The following information on the BSP is based on [Hwang 1987], [Kozdrowicki Theis 1984], and

[Kuck Stokes 1984].

The BSP was a commercial attempt made by the Burroughs Corporation beyond the llliac-IV in
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order to meet the increasing demand of large-scale scientific and engineering computers. The BSP

is an SIMD machine with 16 processing elements driven synchronously by a single instruction

stream. The BSP uses a crossbar network. With a peak speed of 50 MFLOPS, the BSP was

designed to perform large-scale computations in the fields of numerical weather prediction, nuclear

energy, seismic processing, structure analysis, and econometric modeling. The BSP is not a

stand-alone computer - it is a back-end processor attached to a host machine.

Celerity 6000

The following information is based on [Stafford 1987].

The Celerity 6000 is a vector computer manufactured by Celerity. Celerity describes the 6000 as

a system for supercomputing at the department level. It is built upon Celerity's RISC (Reduced

Instruction Set Computer) architecture, and it contains a vector processor for processing huge

arrays at high speeds. The 6000 can be configured with up to 4 processors and over one gigabyte

of memory.

The 6000 supports automatic vectorization of Fortran programs through a preprocessor. The

preprocessor takes sequential Fortran77 code and automatically generates code containing directives

for the Celerity vector processor. The resulting code is run through the Celerity compiler producing

object code which takes full advantage of the vector coprocessor, which has eight 1024-element

vector registers.

Connection Machine

The following information on the Connection Machine is based on [Hillis 1987], [Hyde 1987], and

[TMC 1987].

The Connection Machine (CM) is a massively parallel processor manufactured by Thinking

Machines Corporation. The CM-1 model consists of 16,384 1-bit processing elements (PEs) with 4

Kbits of memory per processor. The CM-2 model can be configured with 65,536 1-bit PEs and 64

Kbits of memory per processor. Two independent interconnection networks are used, a

2-dimensional mesh and a hypercube. That is, groups of 16 PEs are connected in a 4 x 4 mesh,
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and these groups are connected to each other via a hypercube network. A Connection Machine

costs between $1 and $6 million.

The programmer interacts with the Connection Machine through a host computer. The

processors of the Connection Machine are connected with the host. Programs for the Connection

Machine are surprisingly similar to conventional programs. The main difference is that many

operations normally carried out by repetitive loops are replaced by single operations corresponding

to the simultaneous operation of many processors in the Connection Machine. The routing

hardware automatically establishes the necessary communication paths.

The CM-i must be programmed in PARIS (PARallel Instruction Set), an assembly language, or

*Lisp, an extension of Common Lisp. The CM-2 will be able to be programmed in C++ as well. A

Fortran 8x compiler is under development.

The Connection Machine is one of the Defense Advanced Research Projects Agency's

(DARPA's) three Strategic Defense Initiative (SDI) machines. The other two are the WARP at

Carnegie Mellon University and the Butterfly at Bolt, Beranek, and Newman, Incorporated (BBN).

Convex C-1

The following information is based on [Datapro 1987].

The Convex C- I is a minisupercomputer manufactured by Convex Computer Corporation. Two

models are manufactured, the C-1 XL and the C-1 XP. The C-1 XL is a replacement for the

original C-I with about the same power, but for less money. It has a peak performance of 60 MIPS

and 40 MFLOPS and is available in a variety of configurations at an entry-level price of

approximately $350,000. It can be configured with up to 64 megabytes of memory. The C-1 XP is

a higher performance system featuring up to I gigabyte of main memory and is modeled after the

Cray X-MP series. A basic C-1 XP system costs approximately $475,000.

The C-1 systems operate under Convex Unix, based on 4.2BSD. Convex provides an automatic

vectorizing Fortran compiler as well as a vectorizing C compiler. Plans for a vectorizing Ada

compiler are underway.

Up to 240 C-1 XL and C-I XP processors may be linked together in parallel through an 80
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megabit-per-second fiber optic or coaxial cable data path called the Convex Extended

Supercomputing Interconnect (CXSI). Convex claims that this interconnection allows for file

sharing, job distribution, and load balancing. Each processor in such a multiprocessor

configuration retains a complete system with its own CPU, local memory, 1/0 subsystem, and its

own copy of the Convex Unix operating system.

Cray-i

The Cray-i is a vector supercomputer manufactured by Cray Research, Incorporated. It is

classified as a register-to-register vector computer. It has 128 instructions in its instruction set, 4

Kbytes memory per vector register, 32 Mbytes of main memory, and 12 unifunction pipes for

vector, scalar, floating point, and fixed point operations. The Cray-1 has a peak speed of 160

MFLOPS. It is programmed using Cray Fortran (CFI) with automatic vectorization. Compatible

front-end host machines include IBM, CDC, and Univac mainframes. [Tutorial 1984]

Cray-2 and Cray-2S

The following information is based on [Cray 1987].

The Cray-2 and Cray-2S series of computer systems are vector supercomputers manufactured

by Cray Research, Incorporated. The various models are as follows:

Mode # Processors Memory Size (million 64-bit words) C L(Millilon
Cray-2/4-256 4 256 $15.5
Cray-2/4-128 4 128 $14.5
Cray-2/2-128 2 128 $12

Cray-2S/4-128 4 128 $17.5
Cray-2S/2-128 2 128 $15.5
Cray-2Si2-64 2 64 $12

These vector supercomputers have a peak speed in the range of 120 MFLOPS to 2 GFLOPS. Cray

Research provides two automatic vectorizing Fortran compilers: CFT2 (Cray Fortran Compiler

%A
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version 2) and CF177 (Cray Fortran compiler that fully compiles with the ANSI 1978 standard). In

addition, Cray is developing an automatic vectorizing C compiler and a Pascal compiler which

automatically vectorizes for loops.

The Cray-2 and Cray-2S machines run under the UNIX Cray Operating System (UNICOS),

based on AT&T's UNIX System V operating system. The main difference between the Cray-2 and

Cray-2S is that the Cray-2 uses DRAM (dynamic RAM) common memory while the Cray-2S uses

faster SRAM (Static RAM) common memory. The Cray-2S also has faster raw chip speed and

reduced memory contention.

Cray supercomputers can operate under two modes of operation. Multitasking allows two or

more parts of a program (tasks) to be executed in parallel sharing a common memory space.

Multiple processors may also operate independently and simultaneously on separate jobs for greater

system throughput or may be applied in any combination to operate jointly on a single job for better

program turnaround time.

Cray X-MP

The following information is based on [Cray 1987].

The Cray X-MP series of computer systems are vector supercomputers manufactured by Cray

Research, Incorporated. The various models are as follows:

Model # Processors Memory Size (million 64-bit words) Cs million
Cray X-MP/416 4 16 $16 1
Cray X-MP/48 4 8 $14
Cray X-MP/44 4 4 $12
Cray X-MP/216 2 16 $10.5
Cray X-MP/28 2 8 $9
Cray X-MP/24 2 4 $7.5
Cray X-MPt22 2 2 $6
Cray X-MP/l16 1 16 $8.5

Cray X-MP/18 1 8 $7
Cray X-MP/14 1 4 $5.5
Cray X-MP/I14SE 1 4 $2.5
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To summarize, the Cray X-MP/4 can be configured with 4,8, or 16 million 64-bit words of shared

memory, the Cray X-MP/2 can be configured with 2,4, 8, or 16 million 64-bit words of shared

memory, the Cray X-MP1 is a single high-performance CPU which can be configured with 4, 8,

or 16 million 64-bit words of shared memory, and the Cray X-MP/14SE combines a single Cray

X-MP CPU with 4 million 64-bit words of static MOS memory (specially packaged and priced to

serve both first-time supercomputer users and dedicated project requirements in large-scale

computational environments). As an example, the Cray X-MP/4 has a peak speed of 840

MFLOPS.

Cray Research provides two automatic vectorizing Fortran compilers for the X-MP series: CFT

(Cray Fortran Compiler) and CFT77. Both compilers fully meet the ANSI 78 standard. In addition,

Cray also offers a vectorizing C compiler and a vectorizing ISO level 1 Pascal compiler. A variety

of operating systems are available. COS (Cray Operating System) manages high-speed data

transfers between the Cray X-MP and peripherals. UNICOS (UNIX COS), based on AT&T's

UNIX System V operating system, is available as a stand-alone operating system or as a guest

operating system running concurrently with COS. The Cray TimeSharing System (CTSS) is also

available (see the section on the SCS-40 for more information on CTSS).

Cray supercomputers can operate under two modes of operation. Multitasking allows two or

more parts of a program (tasks) to be executed in parallel sharing a common memory space.

Multiple processors may also operate independently and simultaneously on separate jobs for greater

system throughput or may be applied in any combination to operate jointly on a single job for better

program turnaround time.

Cyber 205

The Cyber 205 is a vector supercomputer manufactured by Control Data Corporation. It is

classified as a memory-to-memory architecture and has 32 megabytes of main memory and up to 4

vector processors with 6 pipes in each separate string unit and scalar unit. The Cyber 205 has a

peak speed of 800 MFLOPS. It is programmed using Cyber 200 Fortran with automatic

vectorization. [Tutorial 1984]

TM
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Cyberplus

The following information is based on [Hwang 19871.

The Cyberplus is a distributed memory, MIMD computer manufactured by Control Data

Corporation. The Cyberplus uses a multi-ring structure for packet-switched message passing

among processors (see Figure 3-4). The configuration consists of a maximum of four ring groups

with 16 Cyberplus processors (accelerators) per group. Each group has two rings: the 16-bit

system ring provides communications between the Cyberplus processors and the host Cyber

processor, and the 16-bit application ring provides direct communications among the Cyberplus

processors themselves. This ring structure can carry 2n data packets simultaneously in the ring

which links n processors. Besides the dual rings, an additional memory ring can be added to

provide direct memory-to-memory communication among Cyberplus processors and between a

Cyber processor 64-bit memory and a Cyberplus processor 64-bit memory.

ap li atnginr g
PE1 1 PE 2. PE16

memory ring

Figure 3-4. Interprocessor communication structure in the CDC Cyberplus parallel processing system.

Distributed Array Processor (DAP)

The following information on the DAP is based on [Baillie 1986], [Hwang Briggs 1984] and [Uhr

1984].

The DAP was designed by International Computer Limited (ICL) in England. The DAP is an

SIMD mesh computer which can be constructed in groups of 16 1-bit processing elements (PEs) in

- 1. '
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various sizes, such as 32 x 32, 64 x 64, 128 x 128, and 256 x 256. Each PE is linked to its four

nearest neighbors: north, south, east and west. Each PE has 4000 bits of local memory. The DAP

was developed for numerical problem solving.

Programs for the DAP consist of two parts: a serial part written in Fortran 77 which executes on

the host, and a parallel part written in a matrix and vector extension of Fortran IV called DAP

Fortran. The two parts of the program communicate through Fortran common blocks.

ELXSI System 6400

The System 6400 is a tightly-coupled, bus-oriented, shared-memory MIMD computer

manufactured by ELXSI, a subsidiary of Trilogy, Limited. It can be configured with up to 12

processing elements. The System 6400 employs a message based operating system called Embos.SI

A number of programming languages are supported including Fortran, C, Pascal, and COBOL.

The cost of a fully configured 12-processor system is approximately $3 million. [Frenkel 1986]

[Hays 1986] [Olson 1985]

Encore Multimax

The Encore Multimax is a shared memory, MIMD computer manufactured by Encore Computer

Corporation. The Multimax can be configured with 2 to 20 processors and from 4 to 128

megabytes of memory. Processors are connected by a 100 Mbytes/second Nanobus, so named

because it is one foot long - approximately the distance traveled by light in one nanosecond. The
Sq

Multimax's operating system is UMAX, a UNIX-based operating system. Programming languages

C and Fortran 77 are provided. Encore claims that Parallel Ada will be available soon. The

Multimax costs under $1 million. [Encore 1987] [Moore Nassi O'Neil Siewiorek 1986]

ETA10

The following information is based on [Emmen 1987], [ETA 1987] and [Hwang 1987].

The ETA10 is a shared-memory multiprocessor supercomputer extended from the Cyber 205. It

is manufactured by ETA Systems, Inc., a subsidiary of Control Data Corporation. Figure 3-5
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shows the system components of the ETA' 0 . The ETA'0 can have up to 8 processing elements

(PEs), each with 32 Mbyte of memory, and up to 18 1/0 processors under the coordination of a

service processor. The shared memory can hold from 64 upto 2,000 Mbyte. The communication

buffer is used for fast transfer of information among central processors and I/O units. The ETA'0

has a peak performance of 10 billion calculations per second. Prices vary from $996,000 for the

slowest model (ETA'0 -P) to $8.9 million for the fastest model (ETA'0 -G).

The ETA System V operating system is UNIX compatible. The C compiler is non-vectorizing,

but the Fortran compiler does include automatic vectorization and supports Fortran 8x notation.

A simulator, called the ETA'0 Multiprocessing Simulator, has been developed for the ETAI0 on

the CDC Cyber 205. This tool executes applications written in Fortran that are structured for

multiprocessing. The Simulator introduces structures for parallel processing that match the

architecture of the ETA' 0 system. Users can experiment with ideas of parallel processing, including

manipulating the global shared memory, synchronizing on semaphores, and moving data between

the private memories of the individual processors. The Simulator generates a history that tracks all

changes of state for tasks, semaphores, and processors.

Bseffec

unit1

~Shared

Memory

Figure 3-5. ETA system components.
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FACOM Vector Processor Systems

The following information is based on [Miura Uchida 1984].

The FACOM Vector Processor System is a vector supercomputer manufactured by Fujitsu

Limited in Kawasaki, Japan. Two models are manufactured, the VP-100 and the VP-200. These

machines employ multiple pipeline units which can operate concurrently. Peak speeds of the

VP- 100 and VP-200 are 267 MFLOPS and 533 MFLOPS, respectively.

The FACOM Vector Processor System (Figure 3-6) consists of a scalar unit, a vector unit, and a

main storage unit. The main storage unit has a maximum capacity of 256 megabytes for the VP-200

and 128 megabytes for the VP-100. The scalar unit fetches and decodes all instructions. There are

277 instructions, 195 of which are scalar instructions and 82 of which are vector instructions.

Scalar instructions are executed in the scalar unit, while vector instructions are issued to the vector

unit.

The vector unit mainly consists of six functional pipeline units, vector registers, and mask

registers. The functional pipeline units are: add/logical pipe, multiply pipe, divide pipe, mask pipe,

and two load/store pipes. The first three are used for arithmetic operations and any two can operate

concurrently.

Fujitsu has developed the Fortran77/VP vectorizing compiler for the FACOM Vector Processor

System. This compiler vectorizes not only the simple do loops but also vectorizes nested do loops.

It also detects and separates recurrences.

FLEX/32

The FLEX/32 is an MIM) shared memory multiprocessor manufactured by Flexible Corporation.

The FLEX/32 is configured with 20 processors. The machine has ten local buses, each of which

connects two processors. These local buses are connected together and to shared memory by a

common bus. [Fatoohi Grosch 1987] ItI
GEC Rectangular Image and Data processor (GRID)

The GRID is an SIMD computer with 4096 (64 x 64 array) bit-serial processing elements (PEs),

Y.6
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each with 8 Kbits of local memory and connections to all eight neighboring PEs (Figure 3-7). In

addition, GRID contains a scalar processor to deal with serial code. GRID is programmed in a

parallel extension of C called GRID-extended C. GRID is hosted by a minicomputer running the

UNIX operating system. [Baillie 1986] [Tucker 1986]

Registers

Vector DVector
RegitersmultplyUnit

Main
Storage Dvd

I S Scalar" Storage FLPR Executon Ui
tUnit

Figure 3-6. FACOM Vector Processor System Model Diagram

64
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Figure 3-7. (a) 8-connectivity (b) GRID interconnection network -
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Heterogeneous Element Processor (HEP)

The following information is based on [Frenkel 1986], [Hwang 1987] and [Smith 1984].

The HEP computer system is an MIMD computer that was manufactured by Denelcor, Inc. until

Denelcor went bankrupt in 1986. (Only six $7 million HEP machines were sold.) The processing

elements (PEs) in the HEP were pipelined to support many concurrent processes, with each

pipeline segment responsible for a different phase of instruction interpretation. Each processor had

its own program memory, general purpose registers, and functional units. A number of these

processors were connected to shared data memory modules by means of a very high speed

pipelined packet switching network. The HEP was programmed in HEP Fortran, an extension to

Fortran which allowed the programmer to write explicit parallel algorithms.

The HEP-1 model consisted of 16 processors and up to 128 memory modules that were

connected via a pipelined packet switching network. Parallelism was exploited at the process level

within each processor. The system allowed 50 user processes to be concurrently created in each

processor. Fifty instruction streams were allowed per processor, with a maximum of 50 * 16 = 800

user instruction streams in the entire HEP system.

IBM GF11

The following information is based on [Beetem Denneau Weingarten 1985], [Foulser Schreiber

1987] and [Hwang 1987].

GF1 1 is a parallel computer currently under construction at the IBM T.J. Watson Research

Center. GF1 1 is a modified SIMD computer designed specifically for the numerical solutions of

problems in quantum chromodynamics. Peak speed for the GF11 is 11 GFLOPS.

Figure 3-8 illustrates the block diagram for GF1 1. The machine consists of 576 floating-point

processors (512 + 64 spare processors to be enabled if a primary processor fails). The processors

are interconnected by a three stage full Benes network called the Memphis switch. This switch is a

non-blocking switch capable of realizing configurations incorporating any permutation of the

processors and instantaneous reconfiguration. Each stage of the Memphis switch consists of 24

24-input crossbar switches. The middle stage is connected to the outer stages by perfect shuffle
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fixed interconnections. By suitable configurations of the crossbars it is possible to realize any

permutation of the 576 inputs. For example, this switch allows the GF1 1 to be organized into any

of a number of different topologies, such as a rectangular mesh of any dimension and size, any

torus, a hexagonal mesh, or some irregular organization matching perfectly with a special problem.

The Central Controller has several functions: (1) storage and broadcast of GF 11 instruction

streams, (2) address relocation and remap, (3) communication with the Host CPU, and (4) status

and error checking.

576 processing elements Memphis Switch

576 - 576 permutation network

S576. 576

address, data, control, status
switch control .

*Central Control Hs

Figure 3-8. The IBM GF1 1.

[fliac IV

The following information is based on [Welch 1984].

The Illiac IV is a 64 processor SIMD, mesh-connected computer (the processing elements are

arranged as an 8 x 8 array). The Illiac IV was designed specifically for integrating partial

differential equations encountered in problems such as numerical weather forecasting, fluid
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dynamics, and nuclear effects data processing, where a high degree of connectivity between

neighboring processors is required in order to efficiently process a finite difference lattice. A single

control unit (CU) controls the 64 processing elements (PEs) and breaks down the instructions to

the point where a microcode sequence is generated to execute the instruction in the PEs. Two kinds

of instructions exist and are executed separately and independently, those executed in the CU, and

those executed in the PEs. The PE microcode sequence is bussed to all PEs simultaneously.

Figure 3-9 gives a block diagram of the flliac IV architecture and the control unit. Each PE is

basically a four register arithmetic unit with an A register and a B register to hold operands, an S

register for temporary storage, and an R register used to transfer information among the PEs in the

routing operation. The 64-bit R register of every PE is wired to the R register of four other PEs so

that PEi connects to PEi+1, PEi t, PEi48 , and PEi-8 . The routing operation acts as if the 64 R

registers were a 4096 register with an end around shift capability. A route 1 right command causes

every R register to be shifted 64 bits to the right. The connection to PE48 allows rapid movement

of data over a longer distance.

Intel iPSC Hypercube System

The following information is based on [Intel 1987].

The iPSC (Intel Personal SuperComputer) is an MIMD, distributed memory, message passing

hypercube computer manufactured by Intel Scientific Computers. The iPSC consists of two major

functional elements, as shown in Figure 3-10: the cube and the host (or cube manager). The cube

can be configured with 32, 64, or 128 nodes, based on the Intel 80286 chip. Nodes can be

configured with either 0.5 megabytes or 4.5 megabytes of local memory. The nodes are connected

by high-speed communication channels in a hypercube topology. The host is a microcomputer

which is linked to each node over a global Ethernet communication channel.

Each node has a copy of the node operating system. The node operating system provides the

application programmer with the necessary set of software services for dynamically loading ....

programs, managing multiple processes, and delivering variable length messages between

processes. Languages offered on the iPSC include C, Fortran and Lisp.
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Intel also manufactures the iPSC2, the SugarCube and the VX system. The Intel iPSC2

hypercube system allows for each node to have up to 16 megabytes of local memory and is based

on the Intel 80386 chip. In addition, node<-->node communications and hostE-*node

communications have been improved in the iPSC2. The Intel SugarCube system is a low-cost

eight-processor entry level hypercube. The iPSC-VX system is a large-scale parallel computer

manufactured by Intel, which can be configured with up to 64 vector processing nodes with a

combined peak performance of 424 MFLOPS.

PE, PE2  PE3  PE4  ... PEi ... PE6

(a) M 4 .. M . 6

I ~ InstructionsI

Contrl UnI Control Unit

Pin Local

Ahead Memory

InstrctionControl Unit
Instruction

Micro codle
Gjenerator

To the PEs

Figure 3-9. Block diagrams of (a) the Ifliac IV and (b) the Iliac IV control unit.
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IP-I

The IP-I is a parallel processing minicomputer manufactured by International Parallel Machines,

Incorporated. The IP-1 consists of 9 processors (1 master processor and 8 slave processors) and

uses a crossbar network. The IP-1 runs the Runix operating system, an operating system which

International Parallel Machines claims is the only known Unix look-alike that supports true parallel

processing. [IP-1 1987]

Cube

F 3 T c32-node 32computational .: ]:

T o f n9computational], [r M

[Palumboi 197]

esanHost.

S e Mm c e computational ur e fs

[ computationall:, :[
| unit 3

Figure 310. The iPSC hypercube can be configured with 32, 64, or 128 nodes.

Massively Parallel Processor (MPP)

The following information is based on [Batcher 1984], [Gilmore 1986], [Loral MPP 1983], and

[Palumbo 1987].

The Massively Parallel Processor (MPP) is a distributed memory, message passing, SIMID

computer with 16,384 1-bit processing elements (PEs) arranged as a 128 x 128 mesh (square

array). Each PE in the 128 x 128 mesh communicates with its four nearest neighbors: north, south, '

east, and west.

Since the MPP is a 2-dimensional mesh connected computer, the four edges of the processing

arrmy must be specially handled. The MPP provides a software configurable method for changing

the topology of these edge PEs. For the top and bottom row of PEs, two configurations are

r ill 'Jil 11 11 1111 111IL M II
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possible. The elements in the top row and the respective elements in the bottom row can either be

(1) not connected, or (2) connected. The left and right edge of the processing array can have four

configurations. They can be either (1) not connected, (2) left and right elements in the same row

connected (cylindrical), (3) left elements connected to right elements in the previous row (linear

chain), or (4) left elements connected to right elements in the previous row and last element in last

row connected to first element in first row (linear loop).

The major components of the MPP, as shown in Figure 3-11, are the array unit, the array

control unit, the program and data management unit, the staging memories, and the host computer.

The array unit processes arrays of data at high speed and is controlled by the array control unit,

which also performs scalar arithmetic. Users control the MPP from terminals on a front-end

computer (host). The program and data management unit controls the overall flow of data and

programs through the system and handles certain ancillary tasks such as program development and

diagnostics. The staging memories buffer and reorder data between the array unit, program and

data management unit, and host computer.

The MPP is designed to process satellite imagery at high rates. It has a peak speed of 6.5 billion

8-bit integer additions per second and 470 million 32-bit floating point additions per second. Both

MPP-Pascal (Parallel Pascal designed by Anthony Reeves) and Parallel Fortran-77 programming

languages are provided. The MPP costs between $2 and $4 million and is manufactured by Loral

Systems Group, a division of the Loral Corporation.

I -- ] ~~Staging MemoryIL_ I-'

I ~128-bit 4P ,, I 128-bit I"

input - V IuArray o tIinterace Uni Iimterfce I

[ ~~Program and Data Array, Control Unit ,..- Host ComputerI

Figure 3-11. MPP System Block Diagram
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NCUBE/ten

The following information is based on [NCUBE 1987].

The NCUBE/ten is a family of MIMD, distributed memory, message passing hypercube

computers manufactured by NCUBE Corporation. The 'ten' stands for 10-cube; that is, there are

210 = 1024 nodes in the largest configuration (see hypercube network in Section 2-1). The smallest

configuration has 16 processors. Cost for an NCUBE hypercube ranges from $10,000 to $1.5

million.

Extended versions of Fortran07, C and assembly language are available for programming the

NCUBE hypercube. These languages are extended with communication facilities for parallel

processing. The host computer runs a UNIX-like operating system called AXIS. AXIS can allocate

subsets of the hypercube to multiple users. It provides for loading, running, communicating with

and debugging programs in the hypercube nodes. A simple operating system nucleus called Vertex

runs on each of the nodes. Vertex automatically routes messages through optimal paths to their

destination.

NCUBE Corporation also manufactures the NCUBE/four family of parallel computers and the

NCUBE/seven family of parallel computers. The NCUBE/four is an entry-level system with 4

processors. The NCUBE/seven is designed for the office environment. It is compact and can be

configured with 16 to 128 processors.

SCS-40

The following information is based on [Anderson Grimes Riebman Simon 1987], [McClain 1987].

The SCS-40 is a Cray compatible system designed by Scientific Computer Systems Corporation

(SCS). At $60,000, the SCS-40 is far less expensive than the Cray X-MP, the particular Cray it

was modeled after, and it performs at 24% to 30% (44 MFLOPS) of the X-MP's speed. The

SCS-40 supports concurrent scalar and vector processing.

The operating system for the SCS-40 is the Cray TimeSharing System (CTSS). CTSS is a

UNIX-like interactive operating system, augmented by supercomputer-oriented features. It is a

modular operating system centered on a small set of kernel services which control the system

0.. . .N
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resources. CTSS addresses many supercomputer-related issues that conventional operating systems

do not. First, CTSS makes efficient use of system resources, and provides tools for better user

productivity. For example, CTSS' resource management facilities are explicitly designed for

efficient use by multiple users. These facilities allow the user to control the priorities of his/her

programs, and the system manager to track and allocate resources. Second, CTSS takes care of file

security for the user. Files are, by default, accessible only to the creator of the files. File protections

may only be changed by the creator. Third, CTSS understands parallel processing and vector

operations, and operates at a very small overhead percentage rate.

SCS provides its own version of the Fortran programming language. SCS Fortran is a full

ANSI-77 standard compiler with vectorization capabilities and optimized run-time libraries. It

generates very efficient code using vectorization techniques designed to make use of the vector

facilities of the SCS-40.

Sequent Balance and Symmetry Series

The following information is based on [Sequent 1986] and [Sequent 1987].

The Balance and Symmetry Series of parallel computer systems is manufactured by Sequent

Computer Systems, Incorporated. These systems are configurable general-purpose,

shared-memory, MIMD computers that support simultaneous execution of parallel programs and

existing sequential applications. Two models are manufactured in each Series: B8 and B21 in the

Balance Series and S27 and S81 in the Symmetry Series. Model B8 can be configured with 2 to 12

processors, model B21 can be configured with 2 to 30 processors, and models S27 and S81 can

each be configured with 2 to 30 processors. Processors are connected on a global, synchronous

system bus. The Balance Series has a peak speed of 21 MIPS for the 30 processor model, and the

Symmetry Series has a peak speed of 80 MIPS.

Each system runs the DYNIX operating system. DYNIX is an enhanced UNIX operating

system which supports 4.2BSD and System V applications simultaneously. Programming

languages C, Fortran, Pascal and Ada are supported. Sequent also provides a parallel version of the
UNIX dbx debugger, called Pdbx. Pdbx is specifically designed for debugging multiprocess

WS Nto I0- 0
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parallel applications.

System 14

The following information is based on [Ametek 1987] and [Tucker 1986].

The System 14 is a distributed memory, message passing MIMD hypercube computer

manufactured by Ametek, Incorporated. It can be configured with between 16 and 256 processors

(groupings of 16-node modules), each with up to 256 megabytes of local memory. The System 14

can achieve a peak speed of 12 - 200 MIPS and 0.8 - 12 MFLOPS (16 - 256 nodes). Compatible

host computers include the DEC VAX and MicroVAX II computers. Ametek provides the C

programming language. The Ametek XOS operating system provides for task creation and

termination within the network, coordination and control of internode message passing, memory

buffer management, and error detection and notification.

Ametek provides a number of software tools to simplify programming and to enable debugging

of programs on the host machine. A simulator allows program development on the host computer

and frees the System 14 for actual computation. It provides full support for operating system calls,

user-selectable debugging features, and playback of a simulator run to reproduce an error. It runs in

a completely asynchronous mode to model true performance of a program on physical hardware.

A debugger, called Mpdbx, provides multi-process debugging capabilities in simulator runs. It

offers the same breakpoint, trace, and debugging features for concurrent programs that Unix source

code level debugger dbx provides for serial computers.

User interfaces allow the programmer to simultaneously develop programs for both the

simulator and the System 14 hardware without having to maintain two independent sets of files.

Two modes are available to the user. simulator mode and hardware (node) mode. This capability

provides a directory structure and commands which enable the user to easily change between these

two modes and to compile and link programs with the same commands for the simulator and the

hardware.

N~~~ ~ ~ ~ _d ,W' NNN
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SX-2 Series

The following information is based on [Supercomputing 1987a].

The SX-2 Series are vector supercomputers manufactured by Honeywell-NEC Supercomputers,

Incorporated. The SX-2 supports both vector and scalar processing and has a single processor peak

performance rate of 1.3 GFLOPS. A RISC-like architecture is used to speed up performance of the

scalar unit in the arithmetic processor for those parts of a scientific program that are not

vectorizable. The SX-2 has a shared memory with a maximum capacity of 256 Mbytes. The SX-2

is classified as a register-to-register architecture and has 4 sets of vector pipes, each with 4 vector

arithmetic units enabling a maximum of 16 parallel vector operations to be performed. The SX

family consists of the SX-2-100 (formerly the SX-lE), the SX-2-200 (formerly the SX-1) and the

SX-2-400 (formerly the SX-2).

The Fortran 77/SX compiler is an automatic vectorizing compiler with some features not offered

on other supercomputers. For example, Fortran 77/SX can handle do loops containing if

statements and loops containing vector subscripts.

T Series

The following information is based on [FPS 1986], [FPS 1987] and [Frenkel 1986].

The T Series is a highly parallel scientific computer manufactured by Floating Point Systems,

Incorporated. It consists of multiple processors linked together as a hypercube, where each

processor has multiple communication channels, a control processor, and a powerful vector

processing unit. The highest configuration of the T Series is the T/40000 which has a maximum of

16,384 processing elements.

T Series programs are written in Fortran 77, C, or Occam (see Section 4-6). The T Series uses a

standard micro VAX Ultrix operating system.
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3-2 Research Computers

Cedar System

The following information is based on [Hwang 1987] and [Kuck Davidson Lawrie Saneh 1986].

Cedar is a research parallel processor being developed at the Center for Supercomputing Research

and Development at the University of Illinois, Urbana-Champaign. As shown in Figure 3-12a,

Cedar consists of multiple clusters with a globally shared memory. Each cluster is a slightly

modified Alliant FX/8 minisupercomputer with a UNIX operating system, eight floating-point

processors, fast interprocessor synchronization and vector instructions. (Figure 3-12b illustrates a

Cedar cluster.) The Cedar system employs a shuffle network based on 8 x 8 crossbar switches.

The main objective of the Cedar project is to demonstrate that parallel processing can deliver high

performance across a wide range of applications.

The operating system being developed for Cedar is called Xylem [Emrath 1985] and is based on

the 4.2 version of AT&T Bell Laboratories' UNIX operating system. One of the main purposes of

Xylem is to provide multiprocessing primitives needed by the Cedar compiler. Cedar Fortran is a

superset of Fortran 8x, with extensions that provide access to specific features of the Cedar

hardware and operating system. A translator is available that accepts Fortran77 as input and

produces Cedar Fortran as its output.

Cellular Logic Image Processor (CLIP4)

CLIP4 is an SIMD computer designed and built at University College London. It consists of a

96x96 array of 1-bit processors. Each processor is linked to either the six or eight nearest

neighbors. CLEP4 was developed for image processing applications. [Tucker 1986] [Tutorial 1984]

[Uhr 1984]
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Figure 3-12a. (a) The Cedar System (b) A Cedar Cluster.
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C.mmp and Cm*

The following information is based on [Arvind lannucci 1984], [Charlesworth Gustafson 1986],

[Tutorial 1981], and [Tutorial 1984].

C.mmp and Cm* are two multiprocessors developed at Carnegie-Mellon University. C.mmp is a

tightly-coupled multiprocessor built on a base of PDP- 11 minicomputers connected into a single

global memory through a high-speed crossbar switch. Sixteen processors run asynchronously, and

can use local memory without interfering with global memory. Interprocessor communication is

facilitated by the shared memory and a cross-processor interrupt scheme. Synchronization is

performed at several levels due to the recognized need to keep the overhead of this operation very

low.

Cm* is the successor to the C.mmp computer. It is a bus-connected system made up of 50

processors. The main difference between the two architectures is that Cm* uses a kind of

hierarchical network to interconnect a number of microprocessors, each with its own memory, and

Cm* uses packet switching instead of circuit switching in the communication network.

Content Addressable Array Parallel Processor (CAAPP)

The following information is based on [Levitan Weems Hanson Riseman 1987].

The CAAPP is a 512 x 512 square grid array of 1-bit serial processors intended to perform

low-level image processing tasks. It is similar to the Loral MPP, but with an architecture that is

especially oriented towards associative processing with global summary feedback mechanisms. The

processing elements are linked through a four way (north, south, east, and west) communications

grid. Each processor contains 192 bits of memory.

The CAAPP is one of the three different, closely coupled parallel processors making up the

UMass Image Understanding Architecture at the University of Massachusetts in Amherst,

Massachusetts.

Cosmic Cube

The Cosmic Cube is a demonstration 6-dimensional hypercube developed at the California Institute
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of Technology (Caltech) by Dr. Geoffrey Seitz. The nodes operate at 0.05 MFLOPS and are based

on the Intel 80286 chip. [Charlesworth Gustafson 1986]

DADO

The following information is based on [Stolfo Miranker 1984].

DADO is a large-scale tree-structured parallel machine designed to support the rapid execution of

expert systems, as well as multiple, independent systems. The DADO2 prototype, designed at

Columbia University, consists of 1023 processing elements (PEs). A full-scale production version

of the DADO machine would comprise on the order of a hundred thousand PEs, each containing its

own processor, about 16K bytes of local random access memory, and a specialized I/O switch. The

PEs are connected to form a complete binary tree (Figure 3-13).

Each PE within the DADO machine is capable of executing in either SIMD mode or MIMD mode,

defined as follows. In SIMD mode, the PE executes instructions broadcast by some ancestor PE

within the tree. In MIMD mode, each PE executes instructions stored in its local RAM,

independently of the other PEs. A single, conventional coprocessor, adjacent to the root of the

DADO tree, controls the operation of the entire ensemble of PEs.

!level 1
level 2

level 4

Figure 3-13. A complete binary ee of height 4.

Data-Driven Machine (DDM)

DDM is a dynamic dataflow machine developed by A.L. Davis at the University of Utah. DDM1 is

operational and is used for the development of graphical programming languages and to study some I
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of the basic issues of dataflow. [Tutorial 1984] [Srini 1986]

Dennis Machine

The Dennis Machine is a static dataflow architecture developed at MIT. It is programmed using

VAL (Value Algorithmic Language). The Dennis Machine was designed for calculations in weather

modeling. [Tutorial 1984] [Srini 1986]

Homogeneous Multiprocessor

The Homogeneous Multiprocessor is a tightly coupled MIMD architecture composed of k (k > 3)

processing elements (PEs), k memory modules, k + 1 interbus switches isolating the PEs from

each other and the H-network which is a fast local area network used for point-to-point and

broadcast mode communications. Each PE has its own local memory module and accesses it via its

local bus. The local buses are separated by intervening switches, which provide each PE with the

ability to access the memory modules of either one of its two immediate neighbors by requesting

the appropriate switch to close. The Homogeneous Multiprocessor system is currently under

implementation at the Electrical Engineering Department, Concordia University. [Dimopoulos Li

Wong Dantu Atwood 1987]

Manchester Machine

The Manchester Machine is an experimental dynamic dataflow computer constructed at the

University of Manchester in England. The dataflow graphs executed by the machine are generated

by a compiler from the high-level language Lapse. Lapse is based on a single assignment rule and

has the syntax of Pascal. Lapse treats an array as a unit - an assignment to the whole array is done

by a single statement. A prototype of the Machine with a single statement pipeline is working at the

University of Manchester. [Dennis 1979] [Srini 1986]

NON-VON

The following information is based on Hilyer Shaw Nigam 1986].
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NON-VON is a massively parallel non-von Neumann supercomputer, portions of which are

being constructed at Columbia University. Figure 3-14 illustrates the top-level organization of the

NON-VON machine. In a typical configuration, NON-VON would be connected to a host machine,

a general purpose computer serving as a front end device for interactions with the user. NON-VON

has two principle components called the primary processing subsystem and the secondary

processing subsystem.

The primary processing subsystem is organized as a binary tree consisting of a large number of

small processing elements (SPEs). Each SPE contains an 8 bit ALU, a very small RAM, and

communication connections to three neighboring SPEs, the SPE's parent, left child, and right

child. Each SPE is also capable of communicating with two additional SPEs (in two clock cycles),

the SPE's left neighbor and right neighbor, which are the predecessor and successor of the SPE in

an inorder traversal of the primary processing subsystem tree, respectively. SPEs operate

synchronously; they receive instructions that are broadcast to them from higher up in the primary

processing subsystem tree.

Within the top five to ten levels of the primary processing system, each SPE is connected to a

large processing element (LPE). Each LPE is a general purpose microcomputer that can be

configured to embody up to a few megabytes of RAM. The LPEs may execute locally stored

programs independently and asynchronously. In particular, LPEs at the roots of several subtrees of

the primary processing subsystem (possibly at different levels) may broadcast separate instruction

streams to the SPEs below them, giving NON-VON the capability for multiple-SIMD execution

(see in Section 1-7). The LPEs are connected via a log-stage interconnection network. The exact

network has not been decided, but it will be in the butterfly/omega/banyan family and certain

configurations based on crossbar switches.

The secondary processing subsystem incorporates between 32 and 256 disk drives, each

connected via an intelligent head unit to an LPE in the primary processing system. This provides a

very high bandwidth interconnection between these two subsystems. In additio to reading and

writing data from disks, intelligent head units perform certai,. computationally simple operations,

passing results to the associated LPEs.
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A prototype primary subsystem containing a single LPE and 8191 SPEs is under construction.

This machine will be connected to a VAX 11/750, which will serve as a host. 4

[__ __ Large Processing Elements Network

to host

-'I,

S?

Leaf Mesh Connections

0 Large processing element

Small processing element

0 Disk head and Intelligent head unit

Figure 3-14. Organization of the NON-VON machine.

PASM (PArtionable SIMD/MIMD)

The following information is based on [Casavant Dietz Schwederski Sheu Siegel 1987], [Chu Delp

Siegel 1987] and [Siegel Schwederski Kuehn DavisIV 1987].

PASM (pIartitionable SIMD/MIMD) is a large-scale dynamically reconfigurable

multimicroprocessor system. It is a special-purpose system designed to exploit the parallelism of

image understanding tasks, but it can also be applied to related areas such as speech understanding

and biomedical signal processing. PASM is meant to be a research tool for experimenting with

parallel processing.
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According to the references given above, a 30 processor prototype of the PASM parallel

processing system is near completion at Purdue University. The prototype contains 16 processing

elements in the computational engine which may be configured as up to four SIMD clusters of four

processors each, a set of independent MIMD processor groups, or any combination of these

SIMD/MIMD configurations.

A block diagram overview of PASM is given in Figure 3-15. The parallel computation unit

(Figure 3-16) contains N = 2" processors, N memory modules, and an interconnection network.

(PASM is being designed for N = 1024. A prototype of the PASM system exists for N = 16.) The

processors are microprocessors that perform the actual SIMD and MIMD computations. The

memory modules are used by the processors for data storage in SIMD mode and both data and

instruction storage in MIMD mode. A memory module is connected to each processor to form a

processor-memory pair called a processing element (PE). Each PE can operate in both the SIMD or

MIMD modes of parallelism. A pair of memory units is used for each memory module to allow data

to be moved between one memory unit and secondary storage (the memory storage system) while

the processor operates on data in the other memory unit. The interconnection network provides a

means of communication among the PEs. A generalized cube multistage interconnection network is

used in PASM.

The Micro Controllers (MCs) (Figure 3-17) are a set of microprocessors that act as the control

units for the PEs in SIMD mode and orchestrate the activities of the PEs in MIMD mode. There are

Q = 2q MCs, numbered from 0 to Q-1. Each MC controls N/Q PEs.

/ System
Control Unit-M . V,

Sy ste m  / M icro C o ntro ll e rs  Storage

Memoargeen

Strg Parallel

S steComputational Unit

Figure X-1S. A block diagram overview of PASM.
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Processing Element 0
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Processing Element N-1 o

Interconnection Network

Figure 3-16. PASM Parallel Computation Unit.

The control storage contains the programs for the micro controllers. It consists of a secondary

storage device and a microprocessor for managing the file system on the device. The control

storage acts as a file server by responding to requests to load programs into the micro controller

memory unit.

The memory storage system (Figure 3-18) provides secondary storage space for the parallel

computation unit for the data files in SIMD mode and for their data and program files in MIMD

mode.

The memory management system controls the transfer of files between the memory storage

system and the PEs. It is composed of a separate set of microprocessors dedicated to performing

tasks in a distributed fashion. This distributed processing approach is chosen to provide the

0
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memory management system with a large amount of processing power at low cost.

To storage control unit
and control storage

PCU PE 0 Micro Controller
• Mirolxocessor 0MemoCollry 0 ___

PCU PE NQ Meoy0B-CUPMicro Controller o
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PCU PE 1 Micro Controller

*Micro Controller

PCU1, JE 21 -Micro Controller

MirpoesrQ1 Micro Controler Mem..._1

CC 4 Memory Q-1B /
PCU PE N-Q1/

00

PCU = Parallel Computation Unit

Figure 3-17. PASM Micro Controllers.

The system control unit is responsible for the overall coordination of the activities of the other

components of PASM. The types of tasks the system control unit performs include program

development support, job scheduling (choosing a machine partition for a user job), and

coordination of the loading of the PE memory modules from their memory management system

with the loading of the micro controller memory modules from control storage.
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The PASM operating system (PASMOS) is distributed among all of the PASM CPUs and is

logically divided into two layers: the local kernel layer and the PASMOS (PASM operating system)

level. A local kernel is resident on all CPU boards and is responsible for local memory

management, local scheduling and synchronization, local I/O device control, local file operations,

and reliable communication with other CPUs. PASMOS is a collection of operating system routines

distributed among the PASM components. For example, the PASMOS routines for choosing the

partition on which a job is to be run exist only in the system control unit. On the other hand,

PASMOS routines for handling file load/unload requests from the PEs exist on the micro

controllers, the processors of the memory management system, and on the memory storage units.

Shared resources and activities that involve the control of multiple CPUs are the domain of

PASMOS. The PASMOS routines use the facilities of the local kernels to perform their functions.

User programs make calls to operating system functions in both layers.

A prototype for PASM-2 is under development at the Supercomputing Research Center in

Lanham, Maryland.

Research Parallel Processor Prototype (RP3)

The following information is based on [Hwang 1987] and [Pfister Brantley George Harvey

Leinfelder McAuliffe Melton Norton Weiss 1986].

The RP3 project is being undertaken by the IBM Watson Research Center in conjunction with

the NYU Ultracomputer project. This experimental project aims at investigating the hardware and

software aspects of highly parallel computations. The RP3 is an MIMI system consisting of 512-N

processors with a RISC architecture and a fast interconnection network. Figure 3-19 illustrates the

floor plan of the RP3.

The RP3 can be configured as a shared memory system or a message passing system with

localized memories or as mixtures of these two paradigms chosen at run-time. In addition, the,%

system can be partitioned into completely independent submachines by controlling the degree of

memory interleaving.

The RP3 system will run a modified version of BSD 4.2 UNIX operating system.

S
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Programming languages on RP3 will initially include C, Fortran, and possibly Pascal.

64
PEs

64 64
PEs PEs

Figure 3-19. The IBM RP3 achitetue.

Tagged Token Dataflow architecture (TTD)

The following information is based on [Ghosal Bhuyan 1987] and [Srini 1986].

The tagged token dataflow architecture is a dynamic tagged token dataflow system developed at

MIT. The TTD is programmed using the high-level language ID (Irvine Dataflow language). A

program graph is generated by a compiler from ID. A host processor loads the program graphs

with initial data into the processing elements (PEs) using a scheduler.

The TID, as shown in Figure 3-20, consists of several physical domains interconnected via an

interconnection network. A physical domain consists of a single processing element (PE), a

memory controller, and a memory module. The memory controller consists of a complex hardware

module which controls the random access memory associated with it. All the memory controllers I
are interconnected via a single shared bus. The memory in each PE of the dataflow architecture is

used to store the dataflow graph as well as for storing structures like arrays and records. The

memory in each PE is shared. This allows the memory in each PE to be accessed by other

.- ". ' t-'',' ,e , ' , "," r,,€ , , . , ." " . , - ., ., . ,- - - -,r ..- ,c .- ., . .- - • S
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processors via the shared bus. Further, the shared bus is used to perform all I/O activities.

[Srini 1986] states that an emulation architecture has been in progress using Symbolics

Corporation's Lisp machines at MIT. The emulation facility supports 32 PEs and a switch network

capable of emulating a variety of interconnection networks. In addition, a variation of the

architecture, called SIGMA-i, is under construction. SIGMA-I supports 256 PEs organized as

clusters. Each cluster has an 8x8 crossbar for interconnecting 8 PEs. The clusters are

interconnected by a multistage packet switching network using 4x4 switch elements.

SInterconnection NetworkS ......................... .........
PE, PE2  . PEn

Physical
Physi-' l- i....... ............................. i

Domain ,

A shared bus

MC = Memory Controller

Figure 3-20. MIT Tagged Token Dataflow (TMD) architecture.

Texas Reconfigurable Array Computer (TRAC)

The following information is based on [Deshpande Jenevein Lipovski 1985]

The Texas Reconfigurable Array Computer is an experimental array computer at the University

of Texas at Austin. It is expected to be a testbed for parallel algorithms and also a prototype for

future general-purpose high-performance computers. TRAC uses a banyan interconnection

network, a two-sided, multistage network with processors at the apex end and memories or

input/output devices at the base. U
Some of the goals of TRAC include the following. TRAC must have an organization to

accomodate a large number of processors. It must provide for different modes of communication

between the processing units. It must be capable of SISD, SIMD, and MIM)D modes of execution.

dV
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The system should be dynamically reconfigurable between tasks to support these modes of

execution and to maximize the use of system resources. The system organization should be flexible

enough to be able to mold the architecture to the algorithm, not the algorithm to the architecture, as

has been the case in the past.

Ultracomputer

The Ultracomputer is a shared-memory MIMD computer composed of 4096 autonomous

processing elements (PEs). It was developed at New York University. The Ultracomputer employs

a message switching network with the geometry of an Omega network. [Gottlieb 1987] [Gottlieb

Grishman Kruskal McAuliffe Rudolph Snir 1984]

Warp Computer

The following information on the Warp computer is based on [Annaratone Arnould Cohn Gross

Kung Lam Menzilcioglu Sarocky Senko Webb 1987], [Annaratone Arnould Gross Kung Lam

Menzilcioglu Webb 1987], [Annaratone Bitz Clune Kung Lam Maulik Ribas Tseng Webb 1987],

and [Bruegge Chang Cohn Gross Lam Lieu Noaman Yam 1987].

The Warp computer is a systolic array computer of linearly connected cells, each of which is a

programmable processor capable of performing 10 MFLOPS. A typical Warp array includes 10

cells. The Warp machine is integrated as an attached processor to a general-purpose host running

the UNIX operating system. Programs for Warp are written in a high-level language called W2,

which is supported by an optimizing compiler.

There are three major components in the Warp system, as shown in Figure 3-21: the Warp

processor array, the interface unit, and the host. The Warp processor array performs

computation-intensive routines such as low-level vision routines or matrix operations. The interface

unit handles I/O between the array and the host and can generate addresses and control signals for

the Warp processor array. The host supplies data to and receives results from the array. Data flow

through the array on two communication channels, X and Y.-0

The WARP machine is one of the Defense Advanced Research Projects Agency's (DARPA's)
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three Strategic Defense Initiative (SDI) mtchines. The other two are the Connection Machine at

Thinking Machines Corporation and the Butterfly at Bolt, Beranek, and Newman, Incorporated

(BBN).

Warp Prcer AUray

Figure 3-21. Warp System Overview.
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CHAPTER 4

LANGUAGES/COMPILERS

Introduction

Due to the fact that Fortran is so widely used in scientific computing, all vendors seem to provide a

Fortran-based language for programming their parallel computers. These Fortran extensions are

usually based on the underlying hardware and by the capabilities that the vendor feels appropriate

for the user, thus leading to varying extensions from one vendor's machine to that of another. Most

vendors also provide some extension of the programming language C, and Ada is starting to

become available, at least on shared memory machines.

In this chapter, we discuss the various approaches to high-level language development for

parallel computers and compare parallel computer languages with conventional serial languages.

Software libraries and dataflow computer languages are discussed briefly. Typical vectorization

rules which are enforced by automatic vectorizing compilers are discussed. Finally, we give a brief

description of a variety of parallel computer languages.

THE CONTENTS OF THIS CHAPTER MAY CHANGE WLIT THE NEXT EDITION OF

*THIS DOCUMENT, DUE TO BE RELEASED IN LATE 1988.

4-1 Language Development Approaches for Parallel Computers

In general, there have been three approaches in developing languages for parallel computers,

namely, the compiler approach, the language extension approach, and the new language approach.

I0
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The Compiler Approach

Although it is preferable to have vector constructs in high-level languages, most programs written

for pipelined vector computers are written in sequential languages. A vectorizing compiler's

function is to compile a program written in a sequential language while attempting to extract

inherent parallelism and generate vector instructions whenever possible. [Quinn 1987] These

compilers include a vectorization phase wV'ere Fortran do loops are internally transformed into

vector assignment statements. To give the programmer control over what is vectorized and how,

these compilers all accept some form of vectorization commands supplic- i via comment statements.

[Padua Guama Lawrie 1987]

The compiler approach is advantageous for several reasons. First, programmers have the ability

to write and debug new code for parallel algorithms in the same style used for sequential

algorithms. Second, programmers are able to program supercomputers using familiar languages

and are insulated from most of the machine details associated with a choice of efficient parallel

implementations. Third, the use of an established sequential language allows the migration of

previously written (sequential) applications to parallel computers. [Casavant Dietz Schwederski

Sheu Siegel 1987] Last, and probably the main advantage of using standard sequential languages,

is portability. Programs, even if they were not written for vector computers, can often be efficiently

run on a new vector computer either without change or with the addition of a few compiler

directives with vectorization commands for the new machine. [Padua Guarna Lawrie 1987]

There are also several disadvantages to the compiler approach. One disadvantage is that all of the

inherent parallelisms of a program are not always detected by the compiler. A programmer cannot

code a sequential algorithm in any form and expect to have the vectorizing compiler generate a

compiled program that takes full advantage of the power of the computer. (On the other hand, this

is true for standard serial programming languages, even with the use of optimizing compilers.)

Even though vectorizing compilers are becoming quite sophisticated, the programmer must know

something about the underlying architecture. [Quinn 1987] The programmer must assist the

compiler by recoding loops to trick it into recognizing them as vector operations. [Allen Kennedy

1982] A second disadvantage is that this kind of language forces the programmer to code parallel

~ - o
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algorithms in sequential form. [Perrott Zarea-Aliabadi 1986]

The Language Extensions Approach

Sequential languages can be extended with architecture-oriented constructs to support parallel

programming. These languages are designed to exploit the maximum computing power of the

specific hardware architecture to be used. [Ina Kamiya Mikami 19851

Since the extensions to the languages are machine oriented, they are implemented efficiently. On

the other hand, machine dependence implies poor portability. Therefore, when target machines are

changed, users may have to recode the parallel algorithm in another extended language. [Hwang

1987] Also, while the syntax of such languages enables the generation of object code best matched

to the underlying architecture, it also forces the programmer to have to know the underlying

architecture, making program development more difficult. [Ina Kamiya Mikami 1985]

The New Languages Approach

With the new languages approach, new concurrent languages are developed for supporting parallel

processing. Occam is an example of such a language. These new languages contain various

application-oriented parallel constructs. None of these new languages has been universally accepted

in commercial supercomputers. [Hwang 1987]

4-2 A Comparison of Approaches

[SRC 1986b] provides a comparison of the three aforementioned language approaches to

conventional (serial) programming languages. This comparison is based on the following criteria:

(1) ease of writing code, (2) ease of debugging, (3) ease of modification/maintenance, (4)

portability, and (5) attainable efficiency. For this comparison, we recategorize the three language

approaches into two categories as follows. The language extensions approach and the new

languages approach are both placed in the explicitly parallel languages category, and the compiler

approach is placed in the non-explicitly parallel languages category.

Non-explicitly parallel languages come in three general varieties: (1) languages with unrestricted

0
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side-effects (i.e., conventional sequential languages with whatever parallelism-detection-inhibiting,

side-effect-creating constructs they contain in their standard forms), (2) languages with reduced or

eliminated side-effects (i.e., functional languages such as Lisp and applicative languages such as

BLAZE) in which parallelism detection is relatively simple, and (3) languages with annotated

side-effects (i.e., "refined" languages such as refined C and refined Fortran) in which annotation of

data-access rights greatly increases the ability to parallelize the code.

Figure 4-1 shows how [SRC !986b] compares serial programming languages to explicitly and

non-explicitly programming languages.

Explicitly Parallel Non-Explicitly Parallel
Languages Languages

Writing code (apart from the question of In languages with unrestricted side-

Ease of designing parallel algorithms) is a effects or annotated side-effects, coding
writing code greater intellectual challenge than is as natural as in conventional languageswritingcodentgreacodeIn languages with restricted side-effects,

writing sequential code. coding is somewhat less natural.

Code may be subject to inadvertantly Except in languages with restricted or
Ease of introduced deadlocks and races (updates eliminated side-effects, debugging isdebugging to shared variables are not sequential in purely conventional Debugging methodsshared memory systems) which render purel cnei d inetodsit extremely difficult to debug, and tools can be carried directly over.

Ease of Modification and maintenance by other Code modification and maintenance
modification/ than the original programmer is prone involve the same effort as for sequentialmaintenance to deadlocks and races. languages.

Portability is not the concern of the
W If a new target architecture is very programmer. It is the concern of the

Portability different from the original target, compiler-writer who writes a new back-
porting can require rewriting. end for each drastically different

architecture.
Since architecture-dependence is Optimized speed-up is usually not

Attainable typically far greater for parallel machines readily obtainable, but quite reasonable
efficienc than for sequential machines, greater speed-up is available to a much wider

ency intellectual effort is required to attain comunit
I efficient execution. usercommunity.

Figure 4-1. A comparison of sequential languages to explicitly and non-explicitly parallel languages.

4-3 Libraries

A popular way to aid parallel computer programmers is to provide them with libraries. That is, a
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variety of computational blocks of algorithms highly suited for the hardware architecture are

designed and then provided to the programmer as a library. For example, the programmer can use

the library by means of Fortran call statements. Examples include Scientific Subroutine Library

(SSL) II/VP from Fujitsu, EISPACK from Intel Scientific Comprters, CRAYPACK from BCS

Company, APMATH from Floating Point Systems, Ltd. and MATRIX/HAP from Hitachi. Some

libraries only cover fundamental functions such as matrix or vector operations, while others cover

an extensive scope of applications including fast Fourier transforms, sorting, linear equations,

algebraic eigenvalue problems and differential equations. The only apparent problem with these

libraries is that the programmer may have to adjust his/her program to the library interfaces. [Ina

Kamiya Mikami 1985]

4-4 Automatic Vectorizing Compilers

The following information is based on [Bossavit Meyer 1981], [Padua Guarna Lawrie 1987],

[Padua Wolfe 19861, and [Soil 1986].

In order to be vectorizable by an automatic vectorizing compiler, a program must satisy certain

conditions. Five basic conditions appear as necessary and sufficient in most vector computers (not

including machine peculiarities):

(1) Repetitive series of operations. Counter loops with the number of executions known at the ,

outset (e.g., for loops in Pascal and do loops in Fortran) are the only sequences amenable to

vectorization. Since not all loops are do loops, the programmer must recode those which are

not do loops in the form of a do loop in order for it to be vectorizable by the compiler.

(2) Primitive operations only. A vector loop can only contain assignments and numerical or

boolean operations (some slight extensions do exist). Inhibitors vary from machine to machine,

but usually include subroutine calls, I/O statements, conditional statements (if/then), goto

statements and other loops.
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(3) Regularity. In order to be vectorizable, a for loop must involve only array elements whose

indices follow a strictly defined pattern, thus allowing them to be fetched in advance for vector

operations.

(4) No backward dependence. Let a loop with i as a counter contain the following array element

assignment

a[fo(t)] +-- op(b, [f,(i)], b2[f2(ff)] .... , bin[fri)])

where square brackets are used for array elements, op is some numerical or logical operation,

the f's are linear functions, and all arrays are considered as one-dimensional.

This assignment has a backward dependency if and only for some k (1 < k < m) bk is a, and

for some pair of values p, q, in the range of i, the following holds:

p < q andfk(p) =fo(q).

In other words, the computation of a[f0 (q)] will use the value of another element of a, which

was fetched for updating in some previous iteration. For example, the assignment

a[i] + a[i- 1] + 1

introduces a backward dependency.
This rule is necessary because the vector interpretation of such a computation would use the old

value of the array element, not the new one as in the standard (sequential) interpretation of the

loop.

(5) No cross dependency. Suppose a loop contains the following assignments:

Z~t: RR:SR:6IRR l0
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affo(i)] <-- op(...)

c[g0(O] 4- op'(..., a[g(i)], ...)

They induce a cross dependency if and only if for some pair of values p, q in the range of i, the

following holds:

gj(p) = fo(q)

with Iq -pi < 64 (where 64 is chosen as an example; 64 is the length of the vector registers on

the Cray-i).

For example, the following statements in a loop on i will cause a cross dependency:

a[i] -- 1;

c[i] -a[i + 1].

This rule is necessary due to the limited size of the instruction buffers. Long loops may have to

be split into several shorter ones in order to be vectorized (e.g., by slices of 64 on the Cray).

This would mean that the two assignments might end up in two different loops, thus changing

the semantics of the program.

4-5 Dataflow Computer Languages

The following information is based on [Ackerman 1979] and [Haynes Lau Siewiorek Mizell 1982].

Dataflow machines demand high-level languages since graphs, their machine language, are not

an appropriate programming medium. Graphs are error-prone and hard to manipulate. Three

high-level language classes have been considered by dataflow researchers as follows:
I-

(1) Imperative class. This class includes languages such as Pascal, Fortran, and Ada, which

change the value of variables via assignment statements. For example, the Texas Instruments

group considered the use of a modified ASC Fortran compiler for their dataflow machine
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[Jensen 1980]. Compiler techniques for the translation of imperative hiih-level languages into

dataflow graphic languages have been studied at Iowa State University [Allan Oldehoeft 1979].

(2) Functional class. This class includes languages resembling Lisp. Scientists at the University of

Utah have done research on this class [Keller Jayaraman Rose Lindstrom 1980].

(3) Dataflow languages. This class of languages is designed with dataflow machines in mind.

Examples include Id [Arvind Gostelow Plouffe 1978] [Arvind Thomas 1980], LAU [Conte

Hifdi Syre 1980], and VAL [Ackerman Dennis 1979]. The syntax of dataf"low languages is

similar to that of imperative languages. For example, all dataflow languages include if and loop

statements. On the other hand, their semantics are basically that of functional languages.

As discussed above (and in Section 1-13), the machine level program of a dataflow computer is

represented in the form of a graph with pointers between nodes, the pointers representing both the

flow of data and the sequencing constraints. Each instruction is kept in a hardware device (an

extremely simple processor) that is capable of "firing" or executing an instruction when all of the

necessary data values have arrived, and sending the result to the processors that hold destination

instructions. Hence, the programming language for a dataflow computer must satisfy the following

criteria:

(1) It must be possible to deduce the data dependencies of the program operations.

(2) The sequencing constraints must always be exactly the same as the data dependencies, so

that the instruction firing rule can be based simply on the availability of data.

The corresponding properties of a language which make it possible to meet these criteria are locality

of effect (i.e., instructions do not have unnecessary far-reaching data dependencies) and freedom

from side effects.
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4-6 A Sampling of Parallel Computer Languages

This section discusses a variety of programming languages which have been designed for

programming parallel computers. Programming languages which have automatic vectorizing

compiler counterparts are not discussed because they are similar to each other in that they all

enforce some set of rules of vectorization on the programmer. That is, vector computers are

typically programmed using some Fortran-based language with an associated automatic vectorizing

compiler which takes advantage of the particular underlying architecture. Section 4-4 already

discussed the typical rules of vectorization enforced by these automatic vectorizing compilers. It

would be redundant to list the vectorization rules of all the vectorizing compilers which have been

developed for vector computers.

Actus II

The following information is based on [Perrott Lyttle Dhillon 1987].

Actus II is a Pascal-based parallel language designed for programming processor arrays. Actus H

is a refinement of Actus [Perrott 1979] [Perrott Crookes Milligan 1983]. It was designed

specifically for those processor arrays which offer a grid of processing elements to perform the

computation.

Actus II is currently being implemented on the ICL Distributed Array Processor (DAP), an SIMD

mesh-connected computer with 4096 processing elements (64 x 64). Until the implementation of

Actus II, the only language available on the ICL-DAP was DAP-Fortran, the syntax of which

reflects the architecture. Unlike DAP-Fortran, Actus II allows the expression of a parallel algorithm

independent of the number of processing elements, thus enhancing program portability.

The extensions made to standard Pascal include data definitions and language constructs to

0 facilitate parallel processing. Figure 4-2 illustrates some of the features of Actus II. The Actus II

compiler is constructed to be as independent as possible of the underlying architecture while at the

same time producing efficient object code. It has been organized so as to facilitate implementation

on different processor arrays.

rI
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BLAZE

The following information is based on [Koelbel Mehrotra van Rosendale 1987] and [Mehrotra van

Rosendale 1987].

BLAZE is a block-structured scientific parallel programming language with a Pascal-like syntax

designed to simplify the task of programming multiprocessor parallel architectures. It contains

extensive array manipulation facilities. Control flow in BLAZE is entirely sequential with the

exception of the forall statement. A central goal in the design of BLAZE is portability across a

broad range of parallel architectures (both SIMD and MIMD).

A Sampling of the Features of Actus II For example:
var

Parallel Arrays: To introduce parallelism into var
into an array declaration, one or two pairs of ParallelArray: array [1 :n] of integer,
parallel dots (:) are used in place of the usual This declaration defines a one-dimen-
sequential dots sional parallel array of n elements, all

the elements of which can be accessed
simultaneously.

Index Sets allow simultaneous access to all or index
selective elements of a parallel variable. Range: 1:20;

In the examples to the right, "Range" defines a IndexSet: integer,
constant index set representing the parallel range
1:20, and "IndexSet" defines an index set which given the declaration
can take on any values allowed by the type var
integer. A: array [1:50] ofinteger,

A[Range] will access the first 20
elements of the array simultaneously.

Parallel Statements: In order to facilitate the var
construction-of parallel algorithms for processor A: array [1:25, 1:100] of integer,
arrays, program structures assignment, if, case, index
whiIe procedure and function abstractions allow RowIndex: 1:25;
the manipulation of two dimensions of ColumnIndex: 1:100;
parallelism. The statement

A[RowIndex, ColumnIndex] := 1;
assigns the value 1 to all 2500 elements
of array A simultaneously

Figure 4-2. Sample features of Actus H.

Z •
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Concurrent Pascal

The following information is based on [Brinch Hansen 1975].
'(Although Concurrent Pascal is not a language designed for programming parallel computers, it

has been included here to distinguish it from Parallel Pascal, which people often confuse as being

the same as Concurrent Pascal.)

Concurrent Pascal was developed specifically for the structured programming of computer

operating systems. Concurrent Pascal extends the sequential programming language Pascal with

concurrent programming tools called processes and monitors.

A process consists of three items: (1) a private data structure, (2) a sequential program that can

operate on the data, and (3) the process' access rights, which indicate the shared data it can operate

on. A process cannot operate on the private data of another process, but concurrent processes can

share certain data structures (e.g., a disk buffer).

A disk buffer is a data structure shared by two concurrent processes. A process should only use

a disk buffer to send and receive data. Misuse of a shared data structure through either a

programming mistake or tricky programming should be detected by a compiler. A monitor is a

language construct which allows a programmer to tell a compiler how a shared data structure is to

be used by all processes. With this knowledge, a monitor is able to synchronize concurrent

processes, transmit data between them, and control the order in which competing processes use

shared, physical resources. A monitor consists of four items: (1) a shared data structure, (2)

monitor procedures (all operations that processes can perform on it), (3) an initial operation that

will be executed when its data structure is created, and (4) access rights.

Extended Ada

[Cline Siegel 1985] presents a minimal set of features which make Ada suitable for use with SIMD

type architectures. Machine independent constructs are proposed the make the language specified

very general. The intent was not to propose a language for a particular architecture, but rather one

which is of use in the specification of problems for many different architectures. The language is

intended to be applicable to a variety of both SIMD architectures and SIMD algorithms. The

vI!
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intention of Ada to be portable, readable, and widely applicable is also the intent of the parallel

language discussed.

Fortran 8x

The following information is based on [Metcalf 1987].

The Fortran standardization committee, X3J3, has been working on the next Fortran standard,

Fortran 8x, since 1979. Fortran 8x was originally supposed to be completed by 1982, but current

projected development completion is 1989. The new standard will then finally be changed from its

working name Fortran 8x to Fortran 88 (cheating just a little).

Fortran 8x will incorporate powerful array processing features and derived-data types, allowing

users to access vector processor hardware using a conventional notation, and to define and

manipulate objects of their own design. Of course, some features will be also be removed from the

language. Otherwise, the language will get too large and contain many overlapping and redundant

items.

A few new features included in Fortran 8x are as follows. The new source form allows free

form source input, without regard to columns. Comments may be in-line, following an exclamation

mark (!), and lines which are to be continued bear a trailing ampersand (&). The character set is

extended to include the full ASCII set, including lower-case letters. The underscore character is

accepted as part of a name, which may contain up to 31 characters. An alternative set of relational

operators is introduced, namely, < for .LT., > for .GT., <= for .LE., >= for .GE., == for

.EQ., and <> for .NE.. The case construct has been added, which allows the execution of one

block of code, selected from several, depending on the value of an integer, logical, or character

expression. The most important new aspects of Fortran 8x are the array processing features. The

operations, assignments and intrinsic functions are extended to apply to whole arrays on an

element-by-element basis, provided that when more than one array is involved they are the same
shape. Fortran 8x also provides four separate mechanisms for accessing storage dynamically.

About 100 intrinsic procedures are defined, many intended for use in conjunction with arrays for

the purposes of reduction (e.g., sum), inquiry (e.g., rank), construction (e.g., spread),
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manipulation (e.g., transpose), and location (e.g., maxloc). User-defined data types will be

allowed in Fortran 8x.

Glypnir

The following information is based on [Welch 1984].

Glypnir is an Algol-based block structured language designed for programming the Iliac IV.

The mesh interconnection network between the PEs in the Illiac IV is embodied in Glypnir to

exploit the machine capability. Glypnir is block structured in that it allows a single statement to be

replaced with a block of statements delimited by begin and end.

In Glypnir, vectors are arrays of memory elements that must be declared. For example, the

declaration PE REAL VECTOR A[1 0] declares A to be a real vector (for a processing element's

use) with 10 rows of 64 words per row. The declaration CU REAL VECTOR B[1 0] declares B to

be a real vector (for the lliac IV control unit's use) with 10 rows of 1 word per row.

Assignment statements transfer values from one memory location to another. For example, in

the general assignment statement X := [R]Y + Z, R is the routing index and may be a general

arithmetic expression whose result is a positive or negative integer, where positive values specify a

right- and negative a left-routing procedure. The quantity Y + Z is computed in the enabled PE R to

the right (or left if negative) of the PE currently being addressed. The result Y + Z is then routed

back to the addresses PE.

Multi-Pascal

Multi-Pascal is an extension of Pascal with the addition of new features for creating concurrent

processes and for process communication, using either shared memory or communication

channels. Multi-Pascal has three types of primitives for creating concurrent processes: the $

operator, cobegin/coend and forall. The $ operator may appear at the beginning of any statement

and causes that whole statement to become a detached parallel process running concurrently with its

creator. Cobegin/coend is used to surround a list of statements causing each individual statement

in the list to become a concurrent process. Unlike the $ operator, cobegin/coend makes the

C , IM , II, I.
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originating program wait until all the processes terminate before it can continue. The forall

instruction is a parallel form of a normal for loop, and is used for highly parallel vector or array

operations. [Lester Guthrie 1987]

Occam

The following information is based on [Hull 1987], [Wayman 1986] and [Whitby-Strevens 1985].

Occam is a programming language designed by Inmos Limited to support software development

on the Inmos transputer. The transputer is a microprocessor which has been uniquely designed to

function as a component processor in a network or array of multiple processors. Together, the

Inmos transputer and the occam programming language provide a method for designing and

implementing systems made up of communicating processes. Occam's notation is based on

Hoare's Communicating Sequential Processes (CSP) [Hoare 1978].

The basic unit of an occam program is the process. Occam enables a multi-transputer system to

be described as a collection of processes that operate concurrently and communicate using message

passing via named channels. Three primitive processes are used to build occam programs:

1. variable := expression assign expression to variable N-r

2. channel! expression output expression to channel

3. channel ? variable input from channel to variable

These primitive processes are combined to form constructs. Each construct is introduced by a

keyword, followed by a list of the component processes:

SEQuential components executed one after the other
PARallel components executed together

ALTernative component first ready is executed

A construct is itself a process, and may be used as a component of another construct. Conventional \., J
Y -=\

sequential programs can be expressed with variables and assignments, combined in sequential

constructs. if and while constructs are also provided.

NV
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Concurrent programs can be expressed with channels, inputs and outputs, which are combined

in parallel and alternative constructs. Each occam channel provides a communication path between

two concurrent constructs. Communication is synchronized and takes place when both the inputting

process and the outputting process are ready. The data to be output is then copied from the

outputting process to the inputting process, and both processes continue.

Parallel Pascal

The following information is based on [Reeves 1984].

Parallel Pascal extends the sequential programming language Pascal with a convenient syntax

for specifying array operations. Parallel Pascal was originally designed as a high-level

programming language for NASA's Massively Parallel Processor (MPP), which was constructed

by Loral Systems (formerly Goodyear Aerospace). The MPP is an SIMD mesh-connected

computer with 16,384 processing elements (the MPP is discussed in more detail in Section 3-1).

Parallel Pascal is particularly suitable for the SIMD class of computers, but Anthony Reeves

(designer of Parallel Pascal) recently started looking into implementing Parallel Pascal on the FPS

T-Series hypercube (an MIMD machine) [Reeves Bergmark 1987].

Parallel Pascal provides three fundamental classes of operations on array data as primitives of

the language: (1) data reduction operations, (2) data permutation operations, and (3) data broadcast

operations. Parallel Pascal defines a parallel control statement called the where statement. This

statement is similar to an if statement, but with an array control variable. Parallel Pascal also

provides a method of accessing the individual bits of array data elements. Figure 4-3 illustrates

some of these features.

ParMod

The following information is based on [Eichholz 1987].

ParMod is an extension of the programming language Pascal designed to take advantage of the

concept of modules, a concept which has proven to be essential in the field of software

engineering. The main principle of ParMod is PARallel execution of MODules. ParMod is designed
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to make use of concurrency. Therefore, the hardware system which is to run a ParMod program

should contain several autonomous, communicating computational units.

A ParMod program consists of several modules which are executed in parallel. Communication

between modules is only performed by calling global procedures. No variables may be common to

different modules, but tasks within modules may use common variables which are declared locally

in that module. ParMod provides parallelism within a module as well as parallelism between

modules.

PFP (Parallel Fortran Prototype)

IBM developed PFP as part of a joint study between IBM and the Cornell National Supercomputer

Facility (CNSF). PFP is an extension to VS Fortran which allows for parallel execution at both the

do loop level and the subroutine or task level. In addition to the user-specified constructs, there is a

facility for automatic parallelism. There is no need to choose between use of parallel or vector

execution with PFP - the user can take advantage of both in order to decrease the turnaround time

of engineering/scientific computations. [Forefronts 1988]

Refined Languages

[Dietz Klappholz 19851 present a methodology which permits any conventional, sequential

language (e.g., C, Fortran, Ada, Pascal or PL/1) to be modified so that

(1) Users can write high-level language code which differs from conventional code only in that
data access rights are more precisely specified

(2) Compilers, using well-known flow-analysis techniques, can generate consistently good, highly

parallel, race-free code for virtually any machine architecture.

The resulting language is called a refined language (e.g., Refined C or Refined Fortran). The goal

of this methodology is to provide a more general way of expressing algorithms for parallel

computers without imposing a different programming style.
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The transition from a conventional sequential language to a refined language is as follows.

Remove from the conventional language any constructs which support the explicit specification of

parallel execution and interprocess communication and synchronization. This is done in order to

remove the possibility of writing a race condition. Next replace any remaining constructs which

deter a flow-analyzing compiler from being able to produce highly-parallel code with modified

versions which do not inhibit analysis, yet provide nearly all of the expressive power of the

constructs they are replacing.

Vector C

Vector C is a superset of conventional C which has been designed and implemented on the

Cyber 205. The syntax of Vector C allows for the easy, natural expression of vector algorithms in a

direct manner. The extensions made to conventional C include vector data types, vector

expressions, vector operators and/or keywords and built-in functions. Figure 4-4 illustrates some

of these extensions. [Li Schwetman 1985]

VECTRAN

VECTRAN was developed within IBM in the early 1970's as an experimental language extension

to Fortran to study and facilitate the introduction of vector/array and parallel processing algorithms

in scientific and engineering application programs. Since its publication in 1975, VECTRAN has

been used as a functional model for development of several vector/array extensions to Fortran

including the new proposals by the American National Standards Institute X3J3 Committee for the

future ANSI Fortran standard, Fortran 8x. [Paul 19841
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A Samplina of the Features of Parallel Pascal For Example
Parallel expressions: All conventional var a, b, c: array [ ..20] of integer;,
expressions are extended to array data types.

The statement
a :b + c +5;

is valid and is equivalent to
FOR i *-1 TO 20 DO

a[i] +- b[i] + c[i] + 5;

Reduction functions: Array reduction var
operations are achieved with a set of standard a: array [ L.. 1, 1..5] o finteger,
functions: sum, prod, all, any, max, and min. b: array [L..10] of integer,

The first argument of each function is the array c: integer,

to be reduced and the following narguments b := sum(a, 2); sum the rows of a
specify which dimensions are to be reduced.
(Functions "all" and "any" reduce arrays with c := max(b, 1); find the max value of b

boolean operators AND and OR, respectively.)

Permutation and Distribution Functions: var
shift(array, S1, S2, ... , Sn): ab: array [L..5, 0..9] of integer;,
end-off shift data within "array" by the amount c,d: array [0..9] o finteger;,
specified for each dimension and shift zeros in at
the edges of "array" the statement

rotate(array, S1, S2, ... , Sn): c := rotate(d, 3);
circularly rotate data within "array" by the is equivalent to
amount specified for each dimension FOR i -0 TO 9 DO

c[i] - d[(i + 3) mod 10];
transpose(array, D1, D2):
transpose two dimensions of "array" the statement

a := b + expand(c, 1, L..5);
expand(array, dim, range): is equivalent to
increase the rank of "array" by one by repeating FOR i +-1 TO 5 DO
the contents of "array" along a new dimension a[i,] 4- b[i,] + c
as specified by the second parameter

Con ditional Execution: vara, b, c: array [L..10] of integer,
where array-expression do the expressionstatement whereion
otherwise where a< ,_

statement c := b
otherwise

This control structure allows the programmer to c := a;
operate on a subset of the elements of an array. is functionally equivalent to

FOR i +-1 TO 10 DO
IF a[i] < b[i] THEN

c[i] 4- b[i]
ELSE

c[i] 4 a[i]

Figure 4-3. Sample features of Parallel Pascal.

!~
,,~ -1
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A Sampling of the Features of Vector C: For example:

Implicit Vector Data Types: Vectors are declared as float va[1001;
in the conventional C array declarations. In the examples,
va is a floating vector of length 100, vb is an integer matrix int vb[10][20];
of size lOx 20, and vc is a character vector of length 50.~~char vc[50]; t

Explicit Vector Data Types: A vector is explicitly
declared using the vector (a new keyword) storage class, vector float v[100], m[10][10];
In the examples, v and m are vector arrays (i.e., vectors
which are supposed to be processed by the vector float a[100], b[10][10];
processor), and a and b are sequential arrays (i.e., they
are supposed to be processed by the scalar processor).

Vector References: The examples illustrate only a few m[*][i] the ith column of matrix m

of the ways to reference vectors. m[*][*] the entire matrix m

v[i:f] a (sub)vector consisting of
elements v[i] through v[fI

v[0#4] initial # length (i.e., v[0],
v[l], v[2], v[31)

Vector Expressions: A vector expression is an va[0#n] = vb[3#n] + c
expression which contains at least one vector reference.
For the example, the declarations are as follows: which is equivalent to

intva[100],vb[100]; FORif-OTO n- I DO

va[i] +- vb[3 + i] + c

Vector Operators: "@+" is the reduction operator for Vector sum:

vector sum. "@<"is the reduction operator for vector sum = @+ va[0#100];
minimum, which is equivalent to

sum - 1;
FOR i +-1 TO 99 DO

sum +- sum + va[i]

Vector Minimum:
min = @< va[l: 100];

which is equivalent to

min+- va[1];
FORi-- 2TOn- 1 DO

if va[i] < min then
min +- va[i]

Figure 4-4. Sample features of Vector C.

- .s i .,1, ;6
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CHAPTER 5

COMMUNICATION/SYNCHRONIZATION

Introduction

The information in this chapter is based on [Howe Moxon 1987], [Hwang Briggs 1984], [Karp

1987], [Quinn 1987] and [Sonnenschein 1986].

In order for processes to work together, they must have the ability to communicate and

synchronize. Processes communicate either through shared variables (in shared memory systems)

or through message passing (in distributed memory systems).

Communication typically leads to requirements for synchronization. There are two uses of

synchronization: (1) to constrain the ordering of events and (2) to control interference. An example

of the first kind of synchronization is a mechanism which pi-events a process in a pipelined parallel

algorithm from writing into a full buffer or from reading from an empty buffer. An example of the

second kind of synchronization is the use of a lock statement to prevent a process from accessing

the value of a variable while another process is updating it. The lock statement is discussed in more

detail in Section 5-2.

5-1 Communication and Synchronization in Distributed Memory Systems

Message passing is a form of communication, since a process receiving a message is receiving data

from another process. Message passing is also a form of synchronization, since a message can be

received only after it has been sent. (Note that due to the current state of algorithm development, it
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is typically the case that for distributed memory, message passing systems, there is at most one

process per processor.)

Two functions most important to distributed memory, message passing systems are send and

receive. Send is used to send a message from one process to another. Two forms of send are (1) an

unblocked or asynchronous send, which continues processing immediately after dispatching the

message, and (2) a blocked or synchronous send, which waits to make sure the message has

arrived (but not necessarily been read into the local memory of the recipient) before continuing.

Typical arguments in a send statement include the message length, the message itself, the label of

the destination processor, and the identity of the destination processor (if more than one process

exists per processor). Other arguments often used include the message type being sent, routing

information, and a flag to indicate whether or not to wait for an acknowledgement.

A blocked send is typically used when unreliable communications exist. For example, if the

processors do not maintain message queues, a message will not be sent until the previous message

has been received. A blocked send is used to avoid overwriting previous messages or message

queues. A blocked send must be used if it is important that all messages be sent in a particular order

(although this does not always guarantee that receiving processors receive messages in the order

they were sent).

A receive is used to read a message sent from another processor. Receives can also be blocked

or unblocked. The arguments in a receive statement typically include the message length, the

message itself, and the sending processor's label. Other arguments often used include the type of

message to be received and an indication of whether or not to send an acknowledgement.

A blocked receive is typically used when an algorithm requires a specific piece of data from

another processor. The receiver then waits for the data to arrive. Unblocked receives are typically

used in two ways. The most common use is to implement a global receive, in which a processor

needs to receive messages on several input ports but the order is irrelevant. The other use is for

asynchronous input. Here, the program continually checks the input port for a message. Depending

on whether a message does or does not exist, a different task is done.

The programmer must be careful to avoid deadlock when programming message passing

I J,
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systems. For example, when blocked receives are used, two processors might end up waiting for

data from each other. If the programmer is not careful to match up sends and receives, problems

will occur. For example, if processor p is waiting to receive a message (in blocked mode), but no

processor sends a message to processor p, then it is suspended "forever."

5-2 Communication and Synchronization in Shared Memory Systems

Shared memory systems require an entirely different style of programming than distributed memory

systems. There are several modes of operation, each requiring a different set of language

extensions. Since data is shared, synchronization is needed to prevent out-of-sequence access to

memory.

Atomic Operations

Atomic operations are operations which perform tasks with no possibility of interruption. They

support multiprocess access to shared memory and are the building blocks for many essential

multiprocessing synchronization mechanisms, such as locks, semaphores, and monitors (to be

discussed). The most common situation requiring atomic operations is an attempt by two

concurrent processes to change data in the same memory location. If process A reads memory

location M after process B reads memory location M, but before process B writes the new value to

memory location M, inaccuracies may occur if this situation was not accounted for in the algorithm.

Atomic operations ensure that the reads and writes occur in proper sequence.

Serial Sections versus Critical Sections

A serial section is a section of code which is to be executed by one processor and skipped by all

others. A critical section is a section of code which gets executed by all processors one at a time;

that is, critical sections are parts of code in a set of processes that can not be executed in parallel.

Figure 5-1 gives a procedure called SumValues (written in pseudo-code) which uses both a serial

section and a critical section. This procedure is part of a program in which the main program

distributes an array of values among the N processors of a parallel computer. Then SumValues is
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called once for each processor with the processor's array of values and the number of values in the

processor's array. Variable Values is declared as an array of real numbers. Variable NumValues is

declared as an integer. Variable Sum is a global variable, defined in the main program, as a real

number. Global variable Sum could have been initialized in the main program, but we wanted to

illustrate a serial section to the reader.

PROCEDURE SumValues(Values, NumValues);

VAR
Index: INTEGER;
LocalSum: REAL;

BEGIN
SERIAL SECTION

Sum + 0.0 (Sum is a global variable.)
END SERIAL SECTION;
LocalSum +- 0.0;
FOR Index -- 1 TO NumValues

LocalSum .- LocalSum + Values[Index];
CRITICAL SECTION

Sum +- Sum + LocalSum
END CRITICAL SECTION

END

Figure S-1. N processes call procedure SumValues with a different array of values (Values) and the
number of values in their array (NumValues). Procedure SumValues sums up the values in Values
into a local variable LocalSum and then adds that particular value to the global variable Sum. Since
Sum is a global variable, we could get wrong results if all processors were allowed to initialize the
variable, so we use a serial section. In particular, suppose the N processes are not synchronized when
SumValues is called. Then if the serial section were removed, some process would initialize Sum to
zero and start updating its value before other processes do the same thing, wiping out the previous
partial sum and producing an incorrect solution. We need the critical section in the loop because Sum
is a global variable. For example, if processor 1 and processor 2 each fetch the old value, add their
respective contributions, and store the new value, the program will produce an incorrect result. The
critical section guarantees that only one processor can update the global variable Sum at any instant.

Mutual Exclusion and Condition Synchronization

Two types of synchronization are commonly employed when using shared variables: mutual

exclusion and condition synchronization. In systems with multiple concurrent processes, the
presence of resources such as unit record peripherals and tape drives which must not be used
simultaneously by several processes (if program operation is to be correct) introduces the

requirement for exclusive access to these devices. This requirement may also be imposed on shared

I¢q



EEENEENIIIIIIIII i 

W 1 YVUM1FWJ VW WW _W

COMMUNICATION/SYNCHRONIZATION 107

objects such as a data segment during updating. Processes desiring exclusive access to a resource

may compete for it. Mutual exclusion is the exclusiveness of access between processes.

Another situation occurs in a set of cooperating processes when a shared data object is in a state

that is inappropriate for executing a given operation. Any process which attempts such an operation

should be delayed until the state of the data object changes to the desired value as a result of other

processes being executed. This type of synchronization is sometimes called condition

synchronization.

Locks, Semaphores and Monitors

The locklunlock mechanism is used to prevent out-of-sequence access to memory. For example, it

can be used to ensure atomicity of the assignment statement Sum -Sum + LocalSum from

Figure 5-1, as follows:

Lock(Sum)

Sum -- Sum + LocalSum

Unlock(Sum)

As explained above in the section on critical sections, such a mechanism is necessary for the

following reason. If one process read the current value of Sum and performed the addition,

resulting in a new value for Sum, but did not store this new result until after another process read

the value of Sum, then the final answer would be incorrect. The assignment statement above is an

example of a critical section.

Semaphores are used to ensure the mutual exclusion of access to shared resources by processes.

E. W. Dijkstra invented the two operations wait and signal, which can be shared by many

processes. The wait and signal operations are called primitives and are assumed indivisible. They

operate on a special common variable called a semaphore, which indicates the number of processes

attempting to use the critical section:

var s: semaphore;

where semaphore is defined over the nonnegative integers. Then the primitive wait(s) acts to

I -k
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acquire permission to enter a critical section. The signal(s) primitive records the termination of a

critical section. Figure 5-2 illustrates the use of a semaphore to implement mutual exclusion

(discussed previously in this section).

Monitors are another concept to avoid conflicts when shared resources are used. All accesses

must be done using special procedures. Specifically, a monitor consists of three items: (1) variables

representing the state of some resource, (2) procedures that implement operations on that resource,

and (3) initialization code. The initialization code initializes the values of variables before any

procedure in the monitor is called. Monitor procedures look just like ordinary procedures in a

programming language except the execution of procedures in the same module are guaranteed to be

mutually exclusive. Thus, monitors are a structured way of implementing mutual exclusion.

wait(s): s 4-s - 1;
IFs < 0THEN

BEGIN
Block the process executing the wait(s) and put it in a

FIFO queue associated with the semaphore s.
Resume the highest priority ready-to-run process.
END

signal(s): s 4-- s + 1;
IFs5 0THEN

BEGIN
If an inactive process associated with semaphore s

exists, then wake up the highest priority blocked
process associated with s and put it in a ready list.

END

Figure 5-2. Using a semaphore to implement mutual exclusion.

Fork/join and Single Program, Multiple Data (SPMD) Programming Styles

Two common programming styles used in shared memory systems are the fork-join style and the

single program, multiple data (SPMD) style. In the SPMD style of programming, each processor is

given the same program to run, but different code is executed depending on the data in shared

memory or the processor id. The SPMD style of programming is also used in distributed memory

systems.

In the fork-join style, a process uses the fork statement to start a new process while it continues

executing, thus "forking" a single process into two processes. The invoking process can

. , " . ,
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synchronize with termination of the forked process by executing the join statement. That is, when

the join statement is encountered by the invoking process, it must wait until the invoked process

terminates before it can continue executing. For example, in Figure 5-3, a single process executes

program main until the fork statement is encountered, at which time the execution of main

continues and execution of new begins. If the process executing main reaches the join statement

before the process executing program new, then the first process suspends execution. This process

may continue execution of the statements after the join statement when the second process

terminates execution of program new.

PROGRAM main; PROGRAM new;

fork new; ...

join new; ...
... end;

Figure 5-3. Illustration of fork and join.

SPMD Programming Constructs

In the fork-join style of programming, the join statement itself is the means for synchronization.

However, additional constructs are required for the SPMD style. One such construct is a barrier.

A barrier is a point in the code where all processors must wait for the last processor to arrive. If

the programmer is not careful, a processor could branch around a barrier, causing all of the other

processors to wait "forever."

A second synchronization construct for SPMD programming is the wait until construct. Here,

each processor continually checks a location in shared memory to see if some particular condition is

met. The wait until construct is more flexible than the barrier in that processors can wait from

different parts of a program for the condition to be met.

Figure 5-4 gives a code segment which uses both barrier and wait until constructs. This code

segment (written in pseudo-code) illustrates the SPMD coding style on a shared memory system

with N processors. Each processor executes the code asynchronously. Variable Values is declared
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as an array of real numbers. Global variable Sum is declared as a real. Global variable Synch is

declared as an integer. Variables ProcessorlD, StartingIndex, and NumValues are declared as

integers.

IF (ProcessorID = 0) THEN
read data of known size into array Values;
Sum +- 0.0; (Sum is a global variable.)
Synch 4- 1; (Synch is a global variable.)

ENDIF

Calculate StartingIndex (of the array) and NwnValues according
to N, the number of processes, and ProcessorlD, the actual
identification number of the process, so that the proper portion
of array Values may be sent to procedure SumValues below.

WAIT UNTIL (Synch * 0)
CALL SumValues(Values(Startinglndex), NumValues);

BARRIER
IF (ProcessorID = 0) THEN Print out Sum.

Figure 5-4. This code segment is an example of the SPMD coding style for a shared-memory
system. Procedure SumValues is identical to the procedure in Figure 5-1. All processors but
number 0 skip the code that reads the data. We use the wait until construct to synchronize the
processors. Each processor continually checks global variable Synch until it takes on a different
value from 0. While they are waiting for Synch to be set, all processors compute their own
copies of the local variables StartingIndex and NumValues. Once Synch = 1, the waiting
processors call SumValues. Next, we synchronize with a barrier to prevent processor 0 from
writing Sum until all processors have finished adding their contributions. As soon as the last
processor reaches the barrier, they all continue processing.

A third SPMD synchronization construct is the parallel do construct. Due to the relatively

small expense of sharing data in shared memory systems, programmers often parallelize their code

at the do loop level. That is, each processor is given a different iteration subset of the do loop

(providing all iterations are independent). Two implementations of this distribution have been

proposed, namely, the self-scheduled parallel do statement and the prescheduled parallel do

statement. A self-scheduled parallel do works by giving the first value of the loop index to the

first processor to arrive, the second index to the second processor to arrive, and so forth. When a

processor completes the loop, another loop index is assigned to it, thus providing automatic load

balancing. A prescheduled parallel do works by partitioning the loop ahead of time. Each

- X
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processor is allocated a set of loop indices, regardless of the time it takes each to finish.
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CHAPTER 6

DESIGN OF ALGORITHMS

Introduction

The information in this chapter is based on [Karp 1987] and [Quinn 1987].

There are at least three ways to design a parallel algorithm to solve a problem: (1) one can detect

and exploit any inherent parallelism in an existing sequential algorithm, (2) one can invent a new

parallel algorithm, or (3) one can adapt another parallel algorithm that solves a similar problem.

Each method has its place. Unless you are the very first person taking a look at a problem,

someone else will more than likely have designed a sequential algorithm to solve it, so you may

want to take advantage of that person's work rather than "reinvent the wheel." It may be possible to

transform the sequential algorithm into parallel form, but it is not wise to blindly do so because a

parallel algorithm made from a sequential algorithm having no obvious parallelization usually

exhibits poor speedup. In many cases, the architecture itself demands that a new approach be taken,

so one might be better off starting from scratch or exploring related parallel algorithms for the same

area or related architecture.

Insight plays an important role to the parallel algorithm designer. If a well-known sequential

algorithm already exists, the designer may wish to use this sequential algorithm as a starting point

for writing the parallel version. The designer will have to apply some external knowledge of the

problem in order to break it up if the sequential algorithm is not particularly parallelizable. For

example, consider the simple problem of summing n integer values, for n > 0. A sequential
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algorithm may look something like the following:

BEGIN

Sum +- AFirstindex

FOR Index +- SecondIndex TO Lastndex DO

Sum +- Sum + Aindex
ENDFOR

END

For n =4, the additions would be done in the following order.

((A 1 + A 2) + A 3) + A4

The parallel algorithm designer would have to ask himself/herself whether this is an inherently

sequential process. Examining the way the parentheses are grouped, it seems that A1 and A2 must

be summed before adding A3 to the subtotal, and only after this subtotal is made can A4 be added.

However, we have some external knowledge .hat addition is an associative operation and,

therefore, addition can be done in parallel. The expression can be rewritten as follows:

(A1 +A 2) + (A3 +A4 )

Seeing the expression in this form makes it clear that A1 and A2 may be added at the same time as

A3 and A4 are added; that is, in parallel.

6-1 Designing Algorithms for SIMD Computers

Recall from Chapter 1 that the n processing elements (PEs) of an SIMD computer execute the same

instruction at the same same time on the contents of their ow. ocal memory. A control unit stores

the program and broadcasts instructions to all n PEs simultaneously. The PEs are linked via some

interconnection network.

Since the PEs of an SIMD computer perform operations in lockstep, the algorithm designer

need not worry about synchronizing the processors. The designer does, however, have to be

concerned with minimizing the amount of communication because communication costs can be

.%% e . %.^ .0
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expensive.

We now give three algorithms for summing n values on the SIMD model with (1) a hypercube

interconnection network, (2) a perfect-shuffle interconnection network, and (3) a mesh

interconnection network. A double arrow (4=) in an algorithm represents the communication of data

from one node to a neighboring node. A single arrow (--) represents an assignment operator.

Finding the Sum of n Values on the SIMD Hypercube Model

The following algorithm finds the sum of n values on an SIMD computer with a hypercube

interconnection network. An explanation of the algorithm follows the code.

0. BEGIN

1. FOR Iteration 4- log(n) - 1 DOWNTO 0 DO

2. ActiveNodes 4- 2 terali n

3. FOR ALL PNodd, ab' where 0 < NodeLabel < ActiveNodes DO

4. ReceivedValueNod~a.L 4= ValueAtNodeNot l + Adi.Noes

5. ValueAtNodeNMdLabt +- ValueAtNodeN,.Lab, + ReceivedValueNd, abL

6. ENDFOR

7. ENDFOR

8. END

Explanation. Line 1 sets up a for loop to iterate log(n) times, where n is the number of processors.

Notice that the n processors are labeled 0, ..., n - 1 with log(n) bits each. The for all loop in line 3

activates specific processors to execute the statements before the matching endfor in parallel, in

lockstep fashion. Line 2 initializes ActiveNodes, which indicates how many processors will be

active in the for all loop. Recall that the double arrow (4=) represents the communication of data

from one node to a neighboring node. Thus line 4 represents the communication of the value at

node NodeLabel + ActiveNodes to node NodeLabel. Figure 6-1 illustrates this algorithm for n = 0

16.

--
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Finding the Sum of n Values on the SIMD Shuffle-Exchange Model

The following algorithm finds the sum of n values on an SIMD computer with a shuffle-exchange

interconnection network. An explanation of the algorithm follows the code.

0. BEGIN

1. FOR Iteration +- 1 TO log(n) do

2. FOR ALL PNodd.abeP where 0: NodeLabel < n do

3. PerfectShuffle(PartialSumsNoddbd)

4. CopyNo, abe4 -- PartialSUwsN Iabe-

5. Exchange(CpyoNOt,,)

6. PartialSumNoddau -- PartialSwnsNoddab,1 + CopyNddaJm

7. ENDFOR

8. ENDFOR

9. END

Explanation. Line 1 sets up a for loop to iterate log(n) times, where n is the number of processors.

The for all loop in line 2 activates specific processors to execute the statements before the matching

endfor in parallel, in lockstep fashion. The PerfectShuffle operation used in line 3 and the

Exchange operation used in line 5 are illustrated in Figure 6-2. Within the for all loop, the partial

sums are perfectly shuffled, a copy of these shuffled partial sums is made, the exchange operation

is carried out on the copy, and each "shuffled" partial sum is added to its corresponding

"exchanged" partial sum. See Figures 6-3 and 6-4 for a trace of this algorithm and an illustration of

the trace for n = 16, respectively.

,. .. '€ 5 k , Z. .,.. 2 , , ¢ v . ,'e. - ,,-., , ?.? , -.2, .,, , .;,-. , , , . w¢w
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Perfect Shuffle Exchange

217 T 1 46

L7 T 17

577 75 5-7 11 "6-9 6- 6 -9 -
77- -14 7 -3-9 '

12 "8 -9" 12 8 10

13 1-0 31 13 1"8-,
14 3"" -3" 14 3 .-

15 43 3 1" 15 431"

before b ." after

Figure 6-2. Operations shuffle and exchange.
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Iteration 1 Iteration 2 Iteration 3 Iteration 4
excase g xchag cxcang exc go
copy CO py COPY copy

initial shuffled of Shuffled Of shuffle of shuffled of
values initial shuffled partial partial shuffled partial partial shuffled pralpartial shuffled final

- values values SamsB sums values So=lh sums values sum sums values sum

o 3 3 13 16 16 19 35 35 34 69 69 41. 110

1 4 13 3

2 17 4 2 6 19 16

3 6 2 4

4 11 17 -5 12 6 3 9 34 35
5 -7 -5 17

6 -9 6 -14 -8 3 6

7 -3 -14 6

8 13 11 1 8 19 12 22 34 9 32 41 41 69
9 2 8 11

10 -5 -7 10 3 22 12

11 -14 10 -7

12 8 -9 131 22 -8 40 32 32 9
13 10 31 -9

1431 -3 43 40 40 -8
15 43 43 -3 1

Figure 6-3. A trace of the SLM shuffle-exchange algorithm which sums n values. Here, n =16.

The solid horizontal line midway down the table is a reference point to help the reader follow the ace.
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0 3 16 35 6910

1 4

2 176 0o 0

-7 0

9 2 0
10 -5 0 0o

Initial Iteration 1 Iteration 2 Iteration 3 Iteration 4
Values

Figure 6.4. An ifustration of the SIMD shuffle-exchange algorithm trace from Figure 6-3.
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Finding the Sum of n Values on the SIMD Mesh Model

The following algorithm finds the sum of n values on an SIMD computer with a mesh

inteionnection network. An explanation of the algorithm follows the code.

0. BEGIN

1. FOR Column -- NumberOjCols -1 DOWNTO 1 DO

2. FOR ALL PRow, Colwn, where 1 < Row < NumberOfRows DO

3. ReceivedValueRo., Colm - ValueAtNodeRoW, C,,, ,,

4. ValueAtNodeRow, Cot n - ValueAtNodeR. Colnn + ReceivedValueRo,, Coun

5. ENDFOR

6. ENDFOR

7. FOR Row +- NumberOfRows - 1 DOWNTO 1 DO

8. FOR ALL PRw, I DO

9. ReceivedValueRow. 1 4 ValueAtNodeRow+I, 1

10. ValueAtNodeRow, 1 ' " ValueAtNodeRow, 1 + ReceivedValueRow, 1

11. ENDFOR

12. ENDFOR

13. END

Explanarion. Line 1 sets up a for loop to iterate NumberOfCols - 1 times (we assume the number of

rows equals the number of columns, and n = number of nodes = (number of rows)2). The for all

loop in line 2 activates specific columns of processors to execute the statements before the matching

endfor in parallel, in lockstep fashion. The following is repeated NumberOfCols - 1 times:

every node in some specified column simultaneously sends its value west, these values are then

simultaneously added to the values at the nodes they were sent to. The for all loop in line 8

activates specific nodes in column 1 to execute the statements before the matching endfor in

parallel, in lockstep. This time, values are sent north. The final sum ends up in node, ,. Figure

6-5 gives an illustration of the algorithm for n = 16.
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Proesor Labels Initial Values After First Iteration

After Second Iteration After Third Iteration After Fourth Iteration

After Fifth Iteration After Sixth Iteration

Figure 6-5. A trace of the SIMD mesh algorithm which finds the sum of n values. Here, n =16.

Note that rows and columns are numbered starting from 1, not 0.
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6-2 Designing Algorithms for MIMD Computers

Recall from Chapter 1 that an MIMI computer typically consists of n processing elements (PEs), n

memory modules, and an interconnection network. Each of the PEs stores and executes its own

program and fetches its own data on which to operate. The interconnection network provides

communications among the processors and memory modules. MIMI machines can be organized as

shared memory or distributed memory machines.

The goal of the designer of algorithms for MIMD computers is the same as that of SIMD

computers: given a problem with a certain amount of inherent parallelism and a number of

processors, find an algorithm that best utilizes these processors to solve the problem as quickly as

possible.

Classifying MIMD Algorithms

MM algorithms can be divided into three categories: (1) pipelined algorithms, (2) partitioned

algorithms, and (3) relaxed algorithms. A pipelined algorithm is an ordered set of stages in which

the output of one stage is the input to the next stage. The input to the algorithm is the first stage's

input and the output of the last stage is the output of the algorithm. All stages must produce results

at the same rate, or else the slowest stage will become a bottleneck. An example of a pipelined

MIMD algorithm is a parallel compiler with individual stages - scanning, parsing, code generation,

and code optimization - assigned to a set of processors.

In a partitioned algorithm, processors share a computation. A problem is divided into a number

of subproblems to be solved by individual processors. Through synchronization among the

processors, the solutions of the subproblems are combined to form the problem solution.

Partitioned algorithms are sometimes called synchronized algorithms for this reason. Figure 6-6

illustrates a partitioned algorithm to find the sum of n values on the MIMD model with a hypercube

interconnection. An explanation of this algorithm is as follows: The host computer executes a

different program than the nodes. The host's program distributes the array of values to be summed

among the nodes; a different part of the array is sent to each of the nodes labeled 0 to n - 1 using the

send function (see Section 4-1). Next, the host executes a receive and waits for the final sum to
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arrive. The node program does the following. Each node receives its set of values from the host

and sums them up. These n partial sums are then combined into the final sum as follows. In a loop

starting with the highest dimension, each node in dimension d sends its partial sum to its

neighboring node in dimension d - 1. Each node in dimension d - I receives a partial sum from its

neighboring node in dimension d and adds the received partial sum to its own. Eventually, node 0

will contain the final sum. Node 0 sends this sum to the host computer.

Notice that the partitioned algorithm of Figure 6-6 resembles the SIMD hypercube algorithm of

Figure 6-1, the main difference being that the processors in the MIMD computer operate

asynchronously while the processors in the SIMD computer operate synchronously. Figure 6-6

may be misleading in this respect: the combine phase has three stages, each stage marked by arrows

showing flow of data. Although the arrows make it look like the data is being sent at the same time,

this is not the case. For example, in the first stage of the combine phase, node 4 is sending data to

node 0, node 5 is sending - o node 1, node 6 is sending data to node 2, and node 7 is sending

data to node 3 asynch -,- .4sly. These four activities are not occurring in lock step.

Partitioned algorithms can be further sudivided into prescheduled and self-scheduled algorithms.

In a prescheduled algorithm, each process is allocated its share of the computation at compile time.

In a self-scheduled algorithm, the work is not assigned to the process until run time. A global list of

work to be done is kept, and when a process is without work, another task is removed from the

list. Processes schedule themselves as the program executes.

In a relaxed algorithm, no process synchronization exists. In other words, no processor ever

has to wait for another processor to provide data. Instead, processors work with the most recently

available data. Sometimes these algorithms are called asynchronous algorithms.

Note that these three methods of algorithm design for MIMD computers are not mutually

exclusive. Often, an algorithm is designed with features from all three types. For example, at the

highest level, an algorithm may be divided into stages forming a pipeline. One or more of these

stages may be parallelized further through partitioning, while other stages may be parallelized

through relaxation.

|0
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The host sends each node its set 4 6 8,10

of values to be summed (the host
has adirect communication lik 3411,-7

HOST to all nodes in the hypercube). '0 -,142 314

5 7
1 3l,-3

17,60 3-.

Each node sums its own values:
15 18

70 4 617 4

231 3-12

Combine Phase:

46 4 6 4 6

22 22 44110
0 20 2 0 2

5 7 5 7 5 7

410362 661 3g1o

Each node in the third Each node in the second Node 1 sends its partial
dimension sends its dimension sends its sum to node 0.
partial sum to its partial sum to its Node 0 receives the
neighboring node in neighboring node in the partial sum from node 1
the second dimension. first dimension. and adds it to its own.
Each node in the second Each node in the first (Node 0 sends the final
dimension receives the dimension receives the sum to the host.)
partial sum from the partial sum from the
third dimension and adds second dimension andit to its own. adds it to its own.

Figure 6-6. A partitioned algorithm to find the sum of n values on the MIMD hypercube model.
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Finding the Sum of n Values on a Shared Memory, MIMD Computer

The following algorithm finds the sum of n values on a shared memory, MIMD computer using the

lock/unlock synchronization mechanism (discussed in Chapter 5). An explanation of the algorithm

follows the code.

0. BEGIN

1. GlobalSwn +- 0

2. FOR ALL PNetab,1' where 0 < NodeLabel < NumNodes DO

3. LocalSum - 0

4. FOR Label +- NodeLabel TO NumValues STEP NumNodes DO

5. LocalSum +- LocalSwn + Vaii:etab1

6. ENDFOR

7. Lock(GlobalSurn)

8. GlobalSum 4- GlobalSum + LocalSum

9. Unlock(GlobalSum)

10. ENDFOR

11. END

Explanation. There are p processors labeled P0 , P 1 ... Pp-, and n variables labeled Valueo ,

Value,, ... , Value,._, stored in global memory containing the values to be added. A global variable

called GlobalSwn is used to store the total surn. Each processor has two local variables: (1) Label,

which is used as the for loop index in line 4 and acts as a variable subscript, and (2) LocalSum.

which contains the processor's partial sum. The for all loop in line 2 activates processors to

asynchronously execute the statements before the matching endfor in line 10 (once all

processors reach the endfor, a single processor resumes execution with the next statement after the

endfor). Inside the for all loop, each processor initializes its local sum variable, LocalSum, to 0.

Then each processor enters the for loop in lines 4 through 6 which sums up the processor's values

into LocalSum. Lines 7 ,srough 9 implement a critical section: Line 7 locks the global variable
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GlobalSum so that only the node locking the variable can read from it or write to it. A variable can

be lockd by one processor at a time and only the process that locks the variable may unlock it.
Line 8 alters the value of GlobalSum (i.e., the processor which locked GlobalSum adds its local

sum, LocalSum, to GlobalSum) and line 9 unlocks the variable. To give the reader a better

understanding of this algorithm, Figure 6-7 shows a trace for n = 16.
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Initial Configuration of Global Memory

Valueo 3 Value4 El Value. 1 Value 1 2 W]

Globalfum Value1 P 7]Vle ~ Vle Value1 3E1

Value, 17 Value E Valuq 0E Value.4 31

ValUe3 E]Value7 [f Value, 14 Value _______
Processor 0 Global Memory

the for loop goes fromO0 to 16 by 4:
LocalSum = LocalSum + Valueo LocalSum GlobalSum
LoDcalSum = LocalSum + Value4 3
LocalSum = LocalSum + Value 8 LJLF3X
LocalSum = LocalSumn + Value 12

GlobalSuni = GlobalSum + LocalSum

Processor 1 Global Memory

the for loop goes from 1 to 16 by4: Lclu lblu
LocalSum = LocalSuni + Value Ioa~mGlblu
LocalSum = LocalS ur + ValUe5
LocalSum = LocaSum + Value9q
LcaSum = LocalSum, + Value13

GlobalSum = GlobalSum + LocalSum

Processor 2 Global Memory

the for loop goes from 2 to 16 by 4: Loaw lSa~r
LocalSum = LocalSum + Value2 Glblw
LocalSum = LocalSuni + Value6[iiJL T.fi17
LocalSum = LocalSum + Value 10
LocalSum = LocalSum + Value 14

GlobalSumn = GlobalSum + LocalSum

Processor 3 Global Memory

the for loop goes from 3 to 16 by 4:
LocalSum = LocalSum + Value3  LocalSum GlobalSum
LocalSurn = LocalS un + Value 7
LocalSum = LocalSum + Valuei 1 E
LocalSuni = LocalSumn + Value1 5

GlobalSum = GlobalSum + LocalSumJ

Figure 6-7. A trace of the ID shared memory algorithm which sums n values.
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CHAPTER 7

OPERATING SYSTEMS

Introduction

The information in this chapter is based on [Hwang Briggs 1984], [Trakhtengerts Shuraits 1982]

and [Russell Waterman 1987].

In this section, we discuss operating system issues for parallel computers. A classification of

parallel computer operating systems is given first. We then discuss the familiar UNIX operating

system as a basis for parallel computer operating systems, and we discuss a new operating system

called Mach.

THE CONTENTS OF THIS CHAPTER MAY CHANGE WITH THE NEXT EDITION OF

THIS DOCUMENT, DUE TO BE RELEASED IN LATE 1988.

7-1 Requirements for Parallel Computer Operating Systems

The operating system requirements of a parallel computer are quite similar to the operating system

requirements of a large computer system utilizing multiprogramming (a multiprogramming

operating system allows more than one program to be in some state of execution at the same time).

However, when multiple processors must work simultaneously and the operating system must

support multiple asynchronous tasks which execute concurrently, the operating system is more

complex.

The usual functional requirements of an operating system for a multiprogrammed computer

include resource allocation and management schemes, memory and dataset protection, prevention

I %"
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of system deadlocks, and abnormal process termination (exception handling). In addition to these

capabilities, parallel computer operating systems also require techniques for efficient utilization of

resources, and, thus, must provide I/O and processor load-balancing schemes. They must also be

capable of providing system reconfiguration schemes to support graceful degradation in the event

of a failure.

7-2 Classification of Parallel Computer Operating Systems

There are basically three organizations that have been utilized in the design of operating systems for

parallel computers: (1) master-slave configuration, (2) separate supervisor for each processor, a- 4

(3) floating supervisor control. In the master-slave configuration, one processor, called the master,

maintains the status of all processors in the system and apportions the work to all the slave

processors. In the separate supervisor system, a separate kernel (the basic subset of an operating

system) runs in each processor, and each processor services its own needs. The floating supervisor

control scheme treats all the processors as well as other resources as an anonymous pool of

resources. The floating supervisor control scheme is the most difficult and the most flexible mode

of operation. The supervisor routine floats from one processor to another, although several of the

processors may be executing supervisory service routines simultaneously.

[Hwang Briggs 1984] provides a table of the major characteristics, advantages, and

disadvantages of the above three types of operating systems for parallel computers. This table is

illustrated in Figure 7-1.

7-3 UNIX and Mach Operating Systems

The idea of adapting an existing operating system for parallel computer use is a natural one. Thus,

the majority of commercial and university endeavors have chosen either to build upon a version of

the UNIX operating system or to expand upon a new operating system called Mach, which is

introduced below.
S
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UNIX Operating System

Ever since Brian W. Kernighan and Dennis M. Ritchie wrote UNIX 18 years ago, designers have

continually adapted it to new, more powerful computer architectures. UNIX is especially popular in

academic settings and research laboratories. It is no surprise then that the majority of non-von

Neumann computers use a UNIX-based operating system. Many computer scientists and engineers

are familiar with UNIX, and therefore, they are pleased when vendors provide UNIX-based

operating systems for their new parallel computers.

UNIX was originally written as a portable, general-purpose, time-sharing operating system, and

it was developed to run on a single processor. Therefore, when a UNIX-based operating system is

implemented for a parallel computer with the goal of maintaining some degree of UNIX

compatibility, many challenges arise. For example, the operating system must distinguish between

implementations with shared memories or distributed memories, any number of communication

(interconnection) networks, and message passing or shared-memory programming styles.

To meet these challenges, many companies and universities have written their own parallel

processing operating systems, each very different, but each based on the original UNIX

philosophies.

Mach Operating System

The University of California at Berkeley eventually added many enhancements to the original BSD

UNIX under sponsorship of the Defense Advanced Research Projects Agency (DARPA). Although

many of these enhancements were in response to emerging distributed processing needs, the

operating system did not really address multiple-processor-specific issues. Instead, the kernel

ended up being far more complicated than the original version. Deciding it was necessary to return
04

to simplicity, DARPA recently funded researchers at Carnegie-Mellon University to undertake the

development of a new operating system called Mach.

Mach provides many new features specifically aimed at parallel processing systems. It supports

four basic programmer-visible abstractions: port, task, thread, and message (discussed below).

Mach provides large, sparselV populated demand-paged address spaces (a mechanisin for retrieving

-_I
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data on demand), an interprocessor communications facility based on message passing, and a

remote procedure call capability for interfacing with tasks written in C, Lisp, Ada, and Pascal.

Mach supports the goal of running one operating system on many different classes of machines in a

variety of configurations, all with a consistent user interface.

The first of the four fundamental abstractions supported by Mach is a port. A Mach port is

simply a queue for messages that is protected by the kernel. All traffic within Mach makes

references to ports as read or write destinations, using the primitives send and receive.

The second and third abstractions arise from separating the traditional notion of a process into

two subconcepts. Tasks contain the resources associated with a process (e.g., the address space,

file descriptors, and port-access capabilities). They do not perform computations themselves, but

serve as a framework in which threads can operate. A thread is the control unit most basic to CPU

utilization, containing the minimal processing state associated with a computation: a program

counter, a stack pointer, and other hardware register state information.

A Mach task may contain multiple threads, but each thread is associated with exactly one task.

Since each thread may access all of its associated task's resources, including shared memory, the

Mach design naturally supports parallel-programming techniques.

A message consists of a fixed-length header and a typed collection of data objects used in

communications between threads. Messages come in all sizes and may contain port-access

capabilities in addition to data. Operations on objects other than messages are performed by sending

messages to ports that are designed to represent them. By implementing message passing as well as

shared-memory techniques, Mach overcomes many of the UNIX limitations.
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Master-slave Separate supervisor Floating-supervisor
operating system in each processor operating system

The executive routine is always • Each processor services its • The "master" floats from one
executed in the same processor. own needs. In effect, each processor to another, although
If the slave needs service that processor (supervisor) has its several of the processors may
must be provided by the super- own set of I/O equipment, be executing supervisor service
visor, then it must request that files, etc. routines at the same time.
service and wait until the current
program on the master process is • It is necessary for some of the * This type of system can attain
interrupted and the supervisor is supervisory code to be reentrant better load balancing over all
dispatched. The supervisor and or replicated to provide separate types of resources.
the routines that it uses do not copies for each processor.
have to be reentrant (as opposed • Conflicts on service requests
to replicated) since there is • Each processor (actually each are resolved by priorities that
only one processor using them. supervisor) has its own set of can be set statically or under

private tables, although some dynamic control.
• Having a single processor exe- tables must be common to the
cuting the supervisor simplifies entire system, and that creates • Most of the supervisory code
the table conflict and lock-out table access control problems. must be reentrant (as opposed
problem for control tables. The to replicated) since several
overall system is comparatively • The separate supervisor processors can execute the
inflexible. This type of system operating system is as sensitive same service routine at the
requires comparatively simple as is the master-slave system; same time.
software and hardware. however, the restart of an

individual processor that has • Table access conflicts and
* The entire system is subject to failed will probably be quite table lock-out delays can
catastrophic failures that require difficult, occur, but there is no way to
operator intervention to restart avoid this with multiple
when the processor designated • Because of the point supervisors; the important
as the master has a failure or irre- immediately above, the point is that they must be
coverable error, reconfiguration of I/O usually controlled in such a way that

requires manual intervention system integrity is protected.
*Idle time on the slave system and possibly manual switching.

can build up and become quite
appreciable if the master cannot
execute the dispatching routines
fast enough to keep the slave(s)
busy.

MID This type of operating system
is most effective for special
applications where the work
load is well defined or for asym-
metrical systems in which the
slaves have less capability than
the master process.

Figure 7-1. Operating system configurations for a parallel computer. (Reentrant code is
non-self-modifying code. If code is reentrant, then it never changes during execution. Thus two or
more processes can execute the same code at the same time.)
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CHAPTER 8

SOFTWARE TOOLS

Introduction

In this chapter, we outline an ideal parallel programming environment, in which users are aided

with system tools and visual aids for program trace, resource mapping, and analysis of data

structures. Then we provide a sampling of actual software tools available for parallel computers.

THE CONTENTS OF THIS CHAPTER MAY CHANGE WITH THE NEXT EDITION OF

THIS DOCUMENT, DUE TO BE RELEASED IN LATE 1988.

8-1 Programming Environments

The following information is based on [Hwang 1987].

A programming environment is a collection of tools that can be used to develop software. New

issues in programming environment design have arisen with the advent of parallel architectures.

Three key issues which must be addressed are (1) What information is going to be collected? (2)

How is the information recorded and displayed? and (3) What mechanisms should be provided to

alter execution of a program? The performance of all functional units should be able to be

.enitored by the programmer.

A programmer's ability to understand what is going on with his/her parallel program is greatly

5improved when all of the traditional views of a program are available to be instantly viewed on the

screen. These traditional program views include the program listing, data type schema, the symbolI table, the flow graph, the execution stack, and I/O dialogue.
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The hardware of an ideal programming environment for parallel algorithms designers consists of

a parallel computer coupled to a high resolution, color display, a mouse, a keyboard, and a

videodisk recorder and player. The software contains support for the color graphics plus associated

support for windowing. There must be software for manipulating the videodisk, both for recording

and playback. An ideal programming environment should also be user friendly.

8-2 Actual Software Tools

We now discuss a variety of software tools which have been designed for parallel computers.

These include debuggers, performance monitors, software directories, and programming

environments. While there are probably hundreds of tools available for today's parallel computers,

we have provided a select number of typifying examples.

A Knowledge-Based Parallelization Tool

[Brandes Sommer 1987] describes a parallelization tool which supports the development of

software for parallel computers by helping users interactively by detecting 'bottlenecks' in the

computation and by suggesting and making transformations which increase the potential of

parallelism. The tool can be used for most high level languages (also parallel ones) as well as for

many different kinds of parallel hardware (unspecified in [Brandes Sommer 1987]). In addition,

this parallelization tool already supports software development - it is embedded in a modem

programming environment where all tools are integrated (the specific environment is not given a

name in [Brandes Sommer 1987], but the reference [Nagl 1985] is given).

Belvedere

Belvedere is a "pattern-oriented" debugger designed to investigate the animation and manipulation

of interprocess communication patterns for nonshared-memory, message passing architectures.

Belvedere is a trace-based, post-mortem debugger. It provides animations of program behavior

both in terms of primitive simulator events and in terms of abstract events from user-defined

perspectives. Belvedere assists only with parallel programming errors; it does not provide any aid

p - 1',Zj
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in detecting errors in the sequential sections of code. [Hough Cuny 1987]

Cray Directory of Supercomputer Applications Software

The following information is based on [Supercomputer 1987].

The Cray Directory of Supercomputer Applications Software is published by Cray Research,

Inc., and it is updated every six months. The January 1987 issue contained on the order of 400

software entries. Two-thirds of the entries are vendor supplied and supported, and one-third come

from universities and public domain suppliers.

Each Directory entry represents sofware that runs on a Cray supercomputer and is available to

the requester. An entry consists of a description of the software and information about how to

obtain the software, as well as find out more about it. The software listed satisifies computational

needs in many science and engineering categories, as well as applications in finance and

transportation industries.

The Cray Directory of Supercomputer Applications Software is available to Cray customers,

potential customers, and organizations or individuals that provide services to the same. Additional

information can be obtained from Trudy Sprague, Applications Information Analyst, Cray

Research, Inc., 1333 Northland Drive, Mendota Heights, Minnesota 55120.

Faust

Faust is a software engineering environment for scientific computing being developed at the Center

for Supercomputing Research and Development in Illinois that is targeted at integrating several

software development tools through a common window-based interface. For example, a user

wanting to develop an application at the source-code level may bring up a textual window and enter

Fortran source using a conventional text editor, as illustrated in Figure 8-1a. If the user would

rather see the application at a higher level, an "unzoom" function can be invoked to bring up the

corresponding subroutine interconnection graph as illustrated in Figure 8-lb. Faust can

automatically create the subroutine call graph (if it does not already exist) from source code.

However, if desired, the user may do the original editing at the graphic level of abstraction and
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associate source code for each "block" as the implementation proceeds. Faust also supports other

levels of detail including process graphs that represent parallelism as well as data dependence

graphs for aiding interactive restructuring. [Padua Guarna Lawrie 1987]

PROGRAM MAIN
CALLA
DOI= 1, 30

(a) CALL B
ENDDO
CALL C
END

N
(b)

Figure 8-1. (a) simple application being examined at the source code leveL
(b) same application at the subroutine interconnect level.

Instant Replay
The following information is based on [Padua Guarna Lawrie 1987].

The most challenging aspect of parallel debugging is the timing conflicts introduced by

interacting, independently running processors. The series of states through which a serial program
passes is not time dependent and is therefore repeatable, providing the opportunity for an unlimited

number of reruns in order to localize run-time anomalies. On the other hand, the set of statesIthrough which a parallel program passes is dynamic (i.e. changing) and very sensitive to the speed

at which each processor is progressing. For this reason, program errors may surface infrequently.

Instant Replay, developed at the University of Rochester, is a debugging environment targeted 0

79
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at helping users debug parallel programs on the BBN Butterfly (Section 3-1). Instant Replay

attacks the repeatability problem by regulating and recording access to shared data objects. By

introducing some small run-time overheads, Instant Replay attaches aging information to all shared

objects and records revision numbers as these objects are updated and diseminated. In addition to

recording this revision information, the run-time system has the ability to "replay" the application

while insuring the same access sequences to shared objects. This gives the programmer the

capability to perform the cyclic rerunning necessary to do incremental debugging on a parallel

machine.

Monit

Monit is a performance monitoring tool for parallel programs. To date, it has been used with a new

parallel programming language called PPL [Schwetman 1986]. PPL is a superset of C; it has

features which allow users to easily write parallel programs which are realized as concurrently

executing processes. PPL programs currently execute on a Sequent multiprocessor system. A

* performance monitoring facility within PPL creates a file of interesting events during program

execution. Monit, an interactive program for a SUN-3 workstation, processes this event file to

produce statistical summaries and time-based bar graphs, thereby giving the user new insight into

the performance characteristics and behavior of the program. [Kerola Schwetman 1987]

Parafrase and Parafrase I

The following information is based on [CSRD 1987].

Parafrase is a program restructuring tool which performs source-level transformations on

Fortran code, with the object of producing code that takes advantage of the parallelism available in

various computer architectures. Parafrase is capable of restructuring Fortran programs in a vector

or in a parallel form suitable for execution in pipeline/array and parallel computers respectively.

Although the output of Parafrase is not executable, it is useful in analyzing and evaluating parallal

programs. In addition, Parafrase can be used to estimate the performance of the resulting code on

the target machine. It provides measurements for each program analyzed that help in the estimation

IIIQ I6 5 1 11-1;
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of the expected speedup due to restructuring as well as a number of other performance indices.

Parafrase 11 is being developed as a more powerful restructuring compiler that will produce

executable code. It will be a multilanguage compiler allowing restructuring of both Fortran and C.

In addition, Parafrase II will have the ability to perform overhead analysis and do prescheduling.

This research and development effort is going on at the Center for Supercomputing Research and

Development.

Parallel Fortran Converter (PFC)

PFC translates sequential programs written in Fortran to Fortran 8x, the Fortran standard proposed

by the Fortran standards committee, which contains explicit vector operations. An advantage of

PFC over the automatic vectorizing compiler scheme is that, since the translation from Fortran to

Fortran 8x is done only once or twice, the translator need not be as efficient as a vectorizing stage

embedded in a compiler must be. Instead, the translator can attempt substantially more ambitious

program transformations. A second advantage is that if the translation fails to discover a potential

vector operation in some critical program region, the programmer can correct the problem directly

in the Fortran 8x version rather than trying to recode the input so that the translator will recognize

it. This is particularly important since there are some loops which, because of the underlying

structure of the problem being solved, can be directly converted to vector form without error, even

though the inherently sequential semantics of Fortran makes them difficult or impossible for a

translator to convert. Such loops are often easy to recode as explicit vector statements in Fortran

8x. [Allen Kennedy 1982]

PARSE (PARallel Software Environment)

The following information is based on [Casavant Dietz Schwederski Sheu Siegel 1987].

PARSE is being designed to be a software environment for reconfigurable non-shared memory

parallel machines. It consists of an integrated collection of language interfaces, as well as

debugging and analysis tools. Providing a choice of language interfaces is important because it

gives the programmer the opportunity to select the most appropriate or natural specification of a

10 1 O'er. Ib
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solution to a problem, thus best utilizing the programmer's time. PARSE is being designed with the

hopes of improving the productivity of programmers of parallel systems, where productivity is

characterized by three factors: (1) reducing the development time of parallel software, (2)

improving the performance and efficiency of parallel software, and (3) improving the reliability of

parallel software.

One tool which is always used in program development under PARSE is XPC (explicitly

parallel C) - every program is eventually expressed as XPC code. The XPC language is a

high-level language being designed to directly specify, in as clean and portable a way as possible,

algorithms using (1) explicitly parallel control, (2) data allocated to local memories, and (3)

program-controlled machine reconfiguration (subdivisions of groups of processors and

SIMD/MIMD mode selection).

PARSE is being developed by the designers of the PASM parallel processing system (Section

3-2). Since one of the goals of PASM is to be a research tool for studying SIMD/MIMD

parallelism, and one of the goals of PARSE is to be portable for a class of machines, the XPC

language itself will not be PASM-specific, but PASM-specific extensions to XPC will be available

to users in much the same way that assembly language programs can be accessed from C code.

PARSE will provide a tool called XPAT (explicitly parallel algorithm analysis tool) that permits

analysis of algorithms which are specified in a form which can then be semi-automatically

transformed into XPC code. The analysis provided has three uses: (1) to allow the user to debug

interprocess communication and synchronization aspects of asynchronous computations without

requiring instrumentation of the target hardware environment, (2) to support analysis of efficiency

of algorithms to permit the user to make intelligent modifications to improve the use of system

resources, and (3) to evaluate the performance of an algorithm itself.

PARSE will also provide software tools to perform automatic parallelization of sequential code.

Pdbx

Pdbx, developed by Sequent Computer Systems, Incorporated, is an enhanced version of dbx

[UNIX 19841 that supports debugging of multiple process applications on Sequent's sharedIl
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memory multiprocessor machine (Section 3-1). In addition to the functionality of dbx, Pdbx

supports the debugging of multiple UNIX processes. Supported are such features as breakpoints

for one or more processes, independent examination and tracing of individual processz , and the

use of multiple terminals or "windows" for monitoring multiple processes. While Pdbx provides no

facilities to control the repeatability of a parallel program, it does extend the functions of a

traditional serial symbolic debugger to provide some tools for probing the execution of parallel

programs. [Padua Guarna Lawrie 1987] [Sequent 1986] [Sequent 1987]

PISCES

The following information is based on [Pratt 1985] and [Pratt 1987].

PISCES (Parallel Implementation of Scientific Computing EnvironmentS) is an environment for

programming parallel machines. It has been designed with the main goal of being able to be

implemented reasonably efficiently on a variety of MIM) parallel computers. The primary target for

the programming parts of the environment are scientific and engineering applications. The PISCES

environments are based on Fortran 77 and UNIX as the underlying sequential language and

operating system, respectively.

Dr. Terrence Pratt (designer of PISCES) is currently working on the second version of

PISCES, called PISCES 2. PISCES 2 is implemented on the Flexible FLEX/32, a twenty

processor machine with both shared and local memory. PISCES 1 was implemented in 1984 on a

VAX under UNIX. Parallelism was simulated using UNIX processes. Plans for PISCES 3 are

underway. PISCES 3 will be implemented on a hypercube machine and will emphasize parallel I/O

and data base access.

SCHEDULE

The following information is based on [Dongarra Sorensen 1987].

SCHEDULE is a package of routines that provide an interface between Fortran programs and a

parallel machine. The Fortran routines communicate with shared variables. The programmer

defines the dependency relations between the routines (via SCHEDULE calls), and then
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SCHEDULE maps 'he program onto the available hardware in an appropriate way for parallel

execution.

SCHEDULE is designed to be a portable environment for developing parallel Fortran programs.

Programmers familiar with Fortran can get help from SCHEDULE in implementing a parallel

algorithm in a manner that will lend itself to transporting the resulting program across a variety of

parallel machines. Existing Fortran subroutines can be called through SCHEDULE, without

modification, thus allowing users access to a wide body of existing library software in a parallel

setting. Machine intrinsics are invoked within the SCHEDULE package. While a great deal of

effort may be required by the designers of SCHEDULE to move it from one machine to another,

SCHEDULE users are relieved of the burden of modifying each code he/she wishes to transport

from one machine to another.

The designers of SCHEDULE regard it as a temporary solution to one of the primary software

problems. SCHEDULE's purpose is to allow the immediate exploitation of existing hardware.

They believe that the real hope for a solution lies with new programming languages or perhaps with

the 'right' extension to Fortran.

Versions of SCHEDULE are running successfully on the VAX 11/780, Alliant FX/8, and

Cray-2 computers. That is, the same user code executes without modification on all three machines.

The only modifications made are some minor modifications to SCHEDULE.

SeeCube

SeeCube is a system which monitors and evaluates parallel program execution on an NCUBE

hypercube system (Section 3-1). SeeCube is not an interactive monitor. It records information

about the execution of a parallel program, and then provides a graphical color display of this

information in playback mode. [Cybenko 1986]
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CHAPTER 9

SOFTWARE LIFECYCLE

Introduction

Many variations of the software lifecycle for serial machines can be found in the literature. They all

consist of essentially the sarn, phases as follows (based on [Conte Dunsmore Shen 1986]):

(1) Feasibility of the project. A decision has to be made as to the realizability of the project.

(2) Requirements and specifications. A complete specification of the required functions and I
performance characteristics of the system should be produced in this phase. Resource needs

and preliminary budget estimates should be addressed as well.

(3) Product design. The overall system configuration, the implementation language, major

modules and their interfaces, data structures, and a testing plan should be specified in this

phase.

(4) Detailed design. A more detailed module specification should be produced in this phase,

including their expected size, the necessary communication among modules, algorithms to be

used, and internal data structures. A plan for testing the modules should be specified as well.

(5) Programming/coding. An implementation of the modules in the chosen language(s) should
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be produced in this phase. Unit testing should be performed.

(6) System integration. The integrated modules should be subjected to extensive testing to

ensure that all functional requirements are met.

(7) Installation/acceptance. The product is delivered to the user organization for final

acceptance tests within the operational environment for which it is intended. Documentation

and user manuals are delivered and training is conducted.

(8) Maintenance and Modifications. Additional discovered errors are corrected, changes in

code and manuals are made, new functions are added, and old functions are deleted.

(9) Obsolescence. A decision is made that the program is no longer needed or usable.

In addition, each phase of the software lifecycle should be culminated by a verification and

validation of activity whose objective is to eliminate as many problems as possible in the products

of that phase, and consequently reduce the cost of maintenance, which currently accounts for

70-80% of system costs. Furthermore, one should remember that tests are not proofs of

correctness, and they should never be performed by the people that wrote a particular module.

The above software lifecycle can be applied to parallel machines with minor modifications.

These modifications take the form of new software development issues that have arisen with the

advent of parallel computers.

9-1 Software Development Issues for Parallel Computers

The primary references for the material in this section are [Howe Moxon 1987], [Szymanski

Mueller-Wichards 1987] and [Welch 1984], except as noted.

It is intrinsically more difficult to develop software for parallel computers than for serial-am

machines. In addition to the usual challenges, the software engineer must consider communication

0
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overhead and synchronization problems. He/she must be concerned with problem decomposition,

the problem of allocating code to the various processors, a task which can be done reliably only

after the software has been developed, resulting in costly post-development tuning. Memory

contention problems are encountered in which different processors attempt to simultaneously access

memory. Depending on which processor gets to a memory location first, the outcome of the

program may vary, possibly invalidating the output of the program.

Many dialects of conventional sequential languages have been developed, as well as new parallel

languages. This has led to a portability problem. In addition, different communication primitives

are used on different parallel computers, leading to major software incompatibilities.

The parallel algorithm designer is faced with the problems of having to recognize the realizable

parallelism inherent in the problem, having to define the problem data structure for maximum

parallel data manipulation, and having to order the sequence of operations for maximum parallel

functional operation. Parallel software designers must know both the strengths and weaknesses of

their parallel processor to effectively capitalize on its full potential. He/she is most often times

burdened with the need to understand the underlying architecture in order to exploit its potential

power.

Different levels of parallelism are exhibited in programs. Some have many small inner loops of

instructions that interact, while some have large outer loops with completely independent iterations.

The software engineer's main objective in dividing up work among processors is to select a level of

parallelism that closely matches that of the target computer system. A commonly used measure of

parallelism is granularity. Recall from Section 1-8 that the granularity of a program indicates how

much computing each processor can do independently in relation to the time it must spend

exchanging information with other processors. It is often desirable to match the granularity of a

program with that of a machine's.

In fine-grained applications, few instructions are executed between communication steps. The

ratio of computation to communication is low. On the other hand, coarse-grained applications can

be divided up into long independent computing sequences with little interaction between

processors. The ratio of computation to communication in coarse-grained applications is high.
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There is a big problem with the volume of material that may be produced during program

execution. Supercomputer applications use enormous amounts of computation. Consequently, the

answers produced in typical supercomputer applications may also be huge ("answer" is defined as

the information needed to understand the computed solution, not the total set of numerical results

computed). [Rice 1987] illustrates this point with three applications, two real ones from 1983 and

1985 and a hypothetical one from 1995.

1983 Application: The high-speed impact of two steel cubes into a block of aluminum.

This problem is eight-dimensional, with three space variables, time, and four dependent variables

(temperature, pressure, the density of steel, and the density of aluminum). The computation used

30 minutes of Cray 1 computer time to cover 2.5 microseconds of real time. This represents

roughly 150 billion instructions (12-nanosecond cycle time), including roughly 18 billion arithmetic

operations (10 MFLOPS). The answer can be represented by data on a 100 x 80 x 80 special grid

for 150 time steps; each of the 96 million grid points has four values (64 bits long). The answer

requires only 4.5% of the numbers computed. Effective color plots were used for presenting

information about the results. The size of the answer is 3 gigabytes, which is close to the entire

disk space on many large-scale systems.

1985 Application: Accretion of material into a black hole (two-dimensional model).

This computation demonstrates the evolution of a black hole over a period of millions of years.

Axial symmetry is assumed in order to reduce the problem to a feasible size. The answer consists

of 1.25 billion numbers (10 gigabytes). Color movies are discussed as a means of viewing the
results. A good-quality movie would require considerably more computation and produce a

considerably larger answer than the original computation which provides only moderate resolution

in time and space. Modest resolution, slow motion requires 250 Kbytes/sec, while high resolution,

normal motion requires roughly 20 Mbytes/sec. [Rice 19871 estimates that a three-dimensional

black hole model giving comparable accuracy would have about 1.5 terabytes in the answer, thus

producing a 100-hour movie with normal motion and modest resolution.

-RN N. -
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1995 Application: Tank battle simulation.

This hypothetical application focuses on the weapon systems, the targeting systems, the armor, and

the defensive systems of six tanks. Special events such as a shell hit, laser strike, or mine

explosion are computationally analyzed in intense detail. The physics of one of these special events

is followed at the level of the shell explosion, shell case fragmentation, and attempted penetration of

the armor by blast pressure and heat. Other aspects, such as the mechanics of the tanks or terrain,

are simulated at a much coarser level. The computation requires one hour of real time or 2

mega-giga instructions (2 nanosecond cycle, 1000 processors) and 700 MFLOPS (200 teraFLOPS

machine). The size of the answer is estimated to be about 1 million megawords or 8 terabytes. The

answer would be shown, in full, as a color movie with normal motion and high resolution and a

duration of about 100-120 hours.

Once the answer has been computed and resides in the supercomputer system, how- long will it

take to move the answer to the user's location? Peak and effective transfer rates of various facilities

are as follows:

EW.U& Peak Rate (bits/se Effective Rate (bits/sec)
Telephone 300 300
2,400-baud line 2,400 2,400

9,600-baud line 9,600 9,600

ARPAnet 57K 20K
Bus on VAX 11/780 IM 160K

Ethernet 10M 1.5M

CDCLCN 50M 3M

Cyber 205 channel 200M looM

Using the effective transfer rates and the size of the answers, the results look like the following:
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Telephone 3 yr 9 yr 6 millennia
9,600-baud line 1 mo 3 mo 2 centuries

ARPAnet 2 wk 7 wk 1 century
VAX 11/780 2 days 6 days 7 yr

Ethernet 5 hr 15 hr 16 mo

Cyber 205 channel 4 min 13 min 1 wk

Run time 30min I hr I hr

Systems separating the user from the supercomputer by two ethernets and a VAX are obviously

completely unable to provide reasonable supercomputer service by most people's standards. You

will not find too many scientists with the patience to wait a week to see the results of a 30-minute

computation. To make matters worse, existing programming environments are so grossly

inadequate for today's supercomputers that once the answer is available "locally," the user has

neither a place to put it nor adequate means to review it.

9-2 Product Design Phase

The information in this section is mainly based on [Howe Moxon 1987].

Due to the wide variety of modes of parallelism available (e.g., MIMD, SIMD, vector, and

dataflow), the various programming methods associated with each mode of parallelism, and the

different interconnection networks used (e.g., mesh, hypercube, bus, pyramid, and crossbar), it is

necessary to decide on a particular mode of parallelism before any detailed design of the system is

performed. Three important ideas to base this choice on are: (I) the granularity of an application vs.

the granularity of a machine, (2) a shared memory form of communication vs. a message passing

form of communication, and (3) the programming languages available.

The granularity of the problem must be well-matched to the architecture in order to exploit the

machine's potential power. A system made up of a small number of powerful processors joined by

relatively slow communication links is more suitable for coarse-grained applications. A system

made up of many simple (in terms of computational power and local memory) processors that

communicate relatively fast is more suitable for fine-grained applications. How well the software

I I I w I I I, - P .I .I ,-
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approach matches a parallel hardware architecture will affect program development time, the degree

of parallelism achieved, and the amount of effort required to maintain the program.

After selecting the proper granularity, the next step is to choose between message passing

communications and shared-memory communications, used in distributed memory systems and

shared memory systems, respectively. In shared-memory communications, data written by one

processor can be read by all other processors in the system. In message passing communications,

data is generated by a source processor and delivered to a destination processor. Of the two

interprocessor communication methods, message passing is more restrictive since each message

must go to a specified recipient. A processor in a shared-memory system need only write a piece of

data into a shared location, and then any processor that needs the data can read it.

An important part of choosing a parallel computer is the selection of programming languages
available to implement the system in. For example, it may turn out that the computer which seems

to be the closest match for the given application in terms of granularity and memory type provides

an assembly language as the only language for programming the computer, but the intention was to

implement the system in a high-level language. It is important to decide early on in the software

lifecycle whether the language(s) offered on possible target architectures are suitable.

9-3 Detailed Design Phase

The information in this section is based mainly on [Miller Stout 1987].

Good software engineering methodologies dictate the use of abstract data types (ADTs) for

developing cost-effective serial systems. An ADT consists of an abstract data structure (e.g., list,

tree, stack, etc.) together with a set of basic operations to be performed on the data structure (e.g.,

find, insert, push, etc.). The advantage in designing systems in terms of ADTs is that it allows the

system to be designed with the essential properties of the data type in mind, but without worrying

about implementation constraints and details of the specific machine.

[Miller Stout 1987] introduces a parallel analogue of ADTs, referred to as abstract data

movement operations (ADMOs). Parallel algorithms can be expressed in terms of fundamental data

movement operations without worrying about their implementation or the specific interconnection

.... M L+
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of the processors. ADMOs might include operations such as sorting data, routing data,

compressing data, and multiple searching.

If a distributed memory machine is chosen as the target architecture, then ADMOs play an

important role in the detailed design phase. For fine-grained distributed memory machines (such as

the Massively Parallel Processor, a 128 x 128 mesh connected computer discussed in Section 3-1),

the physical interconnection topology of the processors will determine the data structure. Thus,

efficient operations (i.e., ADMOs) are required to manipulate the data by exploiting the

interconnection network. In the event that the problem did not map well to the interconnection

topology of the architecture, the software engineer would have to write special data movement

operations to simulate other structures. (However, this should not be the case if the architecture

was chosen before the detailed design phase as proposed earlier.) In medium- and coarse-grained

distributed memory machines (such as the Intel iPSC, a hypercube with up to 128 processors

discussed in Section 3-1), data structures are important at the "local" level and ADMOs are

important at the "global" level. For example, Figure 6-6 illustrates a hypercube algorithm to sum n

integers. The program that is stored in each PE uses data structures (e.g., the list of integers to be

summed), and the combine phase of the algorithm uses abstract data movement operations (e.g.,

the routing of data from node 0 to all others, known as a broadcast operation, and the routing of

data from all nodes to node 0, known as a report operation).

If a shared memory machine is chosen as the target architecture, then the software engineer must

deal with "tricky" data structure management. For example, memory locations must be locked

before they are read from or written to in order to avoid incorrect solutions to problems. If PE i

attempts to write to memory location m at the same time PEj attempts to read from memory location

m, then depending on which PE gets there first, PEj will have a different value. Shared memory

machines are coarse-grained machines by limitations of current technology.

While the idea of ADMOs is to produce one solution on a family of machines, it is important to

realize that currently the design phases produce one solution on one machine; hence, portability

problems exist. Automatic vectorizing compilers currently represent the closest programming

technique which offers some sort of portability. Programs are written in conventional sequential
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languages, and the compiler attempts to extract inherent parallelism wherever possible. This

process is not quite as simple as it sounds. The software engineer must modify his/her program so

that the compiler will recognize certain structures as being vectorizable, and, of course, each

vectorizing compiler is different. ADMOs seem to be the only reasonable way to develop efficient

architecture-independent parallel algorithms. However, it has been difficult enough over the years

to try and convince programmers of the advantages of using ADTs on serial machines, therefore,

we can expect an extremely long acceptance period for ADMOs from the time the concept is first

recognized as a possible solution to the portability problem.

9-4 Programming/Coding Phase

The information in this Section is based mainly on [Kuck Davidson Lawrie Sameh 1986] and

[Karp 1987].

The software engineer faces new problems in the programming/coding phase of the software

lifecycle. First, useful debugging tools are rarely provided for parallel machines. Second, some

distributed memory machines do not allow for any I/O from the PEs, making debugging a

nightmare. Third, parallel computers are so fast and they produce so much data, that it is

impossible to view all of the data in realtime.

Debugging the execution of a parallel computation can be particularly difficult without effective

system aids because the logic of the program may be very complex, and the execution may be

nondeterministic in that independent operations may be executed in a different order on different

runs, exposing bugs in ways that are not always reproducible. In general, programs are more

difficult to debug on shared memory systems than distributed memory (message passing) machines

because an error usually involves picking up wrong data from a global variable. The processor that

picked up the wrong data will continue computing with the bad data, thus producing an erroneous

final result. The programmer has no clue as to where the error occurred. Debugging is easier on

message passing machines because errors normally cause the system to stop at the point where the

error occurred. Regardless of the type of target parallel computer chosen, it is wise to use a

simulator to debug programs before getting on the real thing.

IN ...
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9-5 Maintenance Phase

Automatic vectorizing techniques may increase the cost of the maintenance phase of the software

lifecycle. Writing code in such a way as to trick the compiler into recognizing structures as being

vectorizable goes against all good software engineering techniques and methodologies. Systems

may be invalidated the minute a programmer starts shuffling the code around for the automatic

vectorizing compiler's sake.

Some of these code systems have been around for a decade or more on three or more

generations of hardware, and they have been written in multiple languages. Given the size,

complexity, and lifetime involved, it is imperative that all available techniques be utilized to ensure

the maintainability of these systems. The software engineer must keep current in such areas as

structured design, top-down design, configuration control, "goto-less" programming, and so on.

[Rodrigue Giroux Pratt 19841
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CHAPTER 10

SUPERCOMPUTER RESEARCH CENTERS

Introduction

This chapter discusses various supercomputer research centers which develop research

parallel-processor systems and/or make commercial supercomputers available to scientists.

THE CONTENTS OF THIS CHAPTER MAY CHANGE WITH THE NEXT EDITION OF

THIS DOCUMENT, DUE TO BE RELEASED IN LATE 1988.

10-1 The National Science Foundation's Role in Supercomputing

The following information is based on [Bloch 1987] and [Brandt 1987].

A few years ago, the National Science Foundation (NSF) stated that its most important goal was

to educate tomorrow's scientists and engineers about supercomputers. Today (1987), the NSF

supports six supercomputer research centers in the United States. In addition, a growing national

network has been established that will connect the centers with all of the major universities and the

researchers with each other.

The names and locations of the six NSF-supported supercomputer centers are (I) the San Diego

Supercomputer Center (SDSC) in La Jolla, California, (2) the National Center for Atmospheric

Research (NCAR) in Boulder, Colorado, (3) the National Center for Supercomputer Applications

(NCSA) on the campus of the University of Illinois in Champaign-Urbana, (4) the Pittsburgh

Supercomputer Center (PSC) in Pittsburgh, Pennsylvania, (5) the Center for Theory and

Simulation on the campus of Cornell University in Ithaca, New York, and (6) the John von
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Newnann Cente'r (JVNC) near Princeton, New Jersey. Each center is equipped with state-of-the-art

supercomputing equipment and a staff to operate and maintain it, as well as to provide user

services. Regular in-house training classes are conducted in each center for new users, and

intensive two to four week supercomputer workshops are offered each summer for several hundred

students.

The NSF announced a new initiative to establish university-based "science and technology

centers." The main goal of a center will be to exploit opportunities in science where the complexity

of the research problems or the resources needed to solve these problems require the advantages of

scale, duration, or facilities that can be provided only by the center mode of research. Funding for

the first center is expected to be available in fiscal year 1988.

We will now discuss briefly each one of the NSF-supported supercomputer centers.

The San Diego Supercomputer Center (SDSC)

The following information is based on [Hobson 1987], [Maisel 1987], [Pfeiffer 1985] and [SIAM

1987].

The San Diego Supercomputer Center features a Cray X-MP/48 supercomputer with four

processors and an SCS-40 computer (Section 3-1) with one processor. A Cray Y-MP/832 (8

processors, 32 million words of memory) is planned to be installed in 1989. (The Y-MP is the

newest line of supercomputers manufactured by Cray Research, Incorporated. The Y-MP is still in

the design phases.) The Y-MP will most likely be preceded by an interim machine in 1988. The

Center received funding for $100 million over five years, plus an additional $100 million in cost

sharing by consortium members, vendors, industrial participants and the State of California.

The scientific staff at SDSC includes doctoral level physicists, chemists, biologists,

mathematicians, engineers, and computer scientists. These scientists's job is to evaluate, convert,

install, optimize and develop software for users in their respective disciplines, with the goal of

making the broadest and best possible use of the computing resources at SDSC. Users of SDSC

carry out research in biology and chemistry, mathematics and computer science, engineering,

geophysics, and physics.
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The SDSC has been conducting an educational effort to bring new users up to speed as part of

the mission to make supercomputing available to academic researchers. Two-day introductory

workshops are given each month, and a two-week summer institute was held in August 1987.

Approximately 4000 people are on the mailing list for the center's newsletter titled Gather/Scatter.

More information may be obtained from Wayne Pfeiffer, San Diego Supercomputer Center, GA

Technologies Inc., P.O. Box 85608, San Diego, CA 92138.

The National Center for Atmospheric Research (NCAR)

The National Center for Atmospheric Research did not respond to information requests on the

Center, and there is no literature ci:rrently available on the Center in any journals or conference

proceedings.

The National Center for Supercomputing Applications (NCSA)

The following information is based on [NCSA 1987], [SIAM 1987] and [Wilhelmson 1985].

The National Center for Supercomputing Applications was established in February 1985 with a

five-year grant from the National Science Foundation. It serves the national research community by

offering a comprehensive computing system and opportunities for training and interaction within an

interdisciplinary research environment. NCSA features a Cray X-MP/48 supercomputer with four

processors and 8 million words of memory.

The Interdisciplinary Research Center (IRC) of NCSA, located on the campus of the University

of illinois, allows supercomputer users to come together to learn, experiment, and exchange ideas

about new research and new computational techniques. Scientists, engineers, and scholars from

many disciplines interact with the NCSA staff of research scientists, computer professionals,

graphic specialists, and user consultants. The IRC offers state-of-the-art, networked workstations

for interactive work on the Cray X-MP and for other research purposes such as analyzing results,

processing graphical images, and preparing reports and publications.

Although consultants are available to provide guidance in optimizing code and to direct

researchers to vectorized algorithms, it is the responsibility of every user to optimize programs for
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execution on the Cray X-MP. The consulting staff provides short courses for users of the NCSA

facilities on such topics as the basic system, vectorization, debugging, mathematical software, and

using the Cray in a workstation environment.

An Industrial Supercomputing Program has been established within the NCSA. This program is

designed to expand the benefits of NCSA's interdisciplinary research effort to include researchers

from a select group of corporations. Designated employees from participating corporations receive

training tailored to their needs, access to state-of-the-art workstations and appropriate software, and

technical staff consulting and support. Corporations make a three year commitment to the Program

at an annual fee of $1 million.

A Scientific Visualization Program has been designed to provide scientists with the ability to

produce videotapes and films of research results, to playback 50-second segments of a simulation

in real-time, and to interact and explore data. This program is based on an Alliant FX/8

minisupercomputer with eight processors, 128 megabytes of memory, and a Fortran compiler

which automatically vectorizes code and can run programs across multiprocessors down to the loop

level, thus permitting the faster processing of data. Attached to the FX/8 are two Raster techology

frame buffers that are used for the display of color images at two times the normal television

resolution. Connected to these frame buffers on a video pipeline is an Abekas A62, a digital video

storage device used to play back images exceeding real time.

One of the major goals of the NCSA is to take the best of today's technology and integrate it to

support supercomputer users. Towards this goal, the NCSA has successfully developed an

integrated workstation environment on the Apple Macintosh Plus microcomputer for the Cray

X-MP. Workstation functionality includes good terminal emulation and communication with the

Cray X-MP, manipulation of information as text or graphics, and easy transfer of research data

between the Cray X-MP and application programs on the Macintosh.

More information may be obtained from the NCSA Visitors Program, University of Illinois,

152 Computing Applications Building, 605 East Springfield Avenue, Champaign, IL 61820 or call

G (217) 244-0074.
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The Pittsburgh Supercomputing Center

The Pittsburgh Supercomputing Center's mission is to provide state-of-the-art computing resources

to the national scientific and engineering research communities in a reliable and convenient way, to

educate researchers about the benefits of supercomputing, and to introduce industrial users to the

benefits of supercomputing. The Center features a Cray X-MP/48 supercomputer with four

processors intended particularly for engineering and scientific research, and an Alliant FX/8.

[SIAM 1987] More information on the Center may be obtained from Dr. Georgette H. Demes,

(202) 357-9776.

The Center for Theory and Simulation in Science and Engineering

The Cornell Theory Center (CTC) was established to provide supercomputing resources for

researchers nationwide. The center provides computing resources consisting of an IBM 3090-600E

(a powerful four-processor mainframe) with six vector facilities and five attached scientific

computers from Floating Point Systems, several workstations, drafting plotters and printers. New

and experienced remote users of the CTC can receive training at the Cornell campus on a quarterly

basis. Local users can attend training workshops throughout the spring and fall semesters.

Workshops provide lectures and demonstrations for CTC system features, and hands-on sessions

with consulting and pre-planned exercises ensure that students gain real experience. Workshops are

also given on such special topics as vectorization and parallelization. [Brown Siegel 1985] [Cornell

1987] [SIAM 1987]

More information may be obtained from the Executive Director, Center for Theory and

Simulation in Science and Engineering, Cornell University, Ithaca, NY 14853.

The John von Neumann Center for Scientific Computing

The John von Neumann Center for Scientific Computing is located near Princeton. It is being

developed to provide state-of-the-art computing and communications to university, government,

and industrial researchers. The center features two Cyber 205s and an ETA10 supercomputer.

[Orszag 1985] [SIAM 1987]
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More information may be obtained from Brendan McNamara, Executive Vice President, John

von Neumann Center, P.O. Box 3717, Princeton, NJ 08540.

10-2 Supercomputing at Florida State University

The information in this section is based on [Lannutti 1985] and [SCRI 1986].

The Supercomputer Computations Research Institute (SCRI) is located on the Florida State

University campus in Tallahassee, Florida. The SCRI's goal is to provide scientists in a variety of

fields with the means of exploiting supercomputers as effective tools in their research. It features a

CDC Cyber 205 with 2 vector pipelines and an ETA10 supercomputer with four processors. The

SCRI is funded by Federal, State, University and industry agencies.

Research, consultant and support staff are available by phone, electronic mail and personal visit.

This staff can provide assistance in code conversion and optimization, algorithm selection, and

specific content area applications. A sequence of workshops is offered for new users and are I
offered several times a year. A series of weekly seminars is presented on advanced topics in

supercomputer applications. Conferences, summer schools and workshops in a variety of related

areas are conducted periodically.

10-3 Supercomputing at the University of Illinois at Urbana-Champaign

We already discussed the NSF-supported NCSA in Section 10-1, which is located on the

University of Illinois campus. The Center for Supercomputing Research and Development

(CSRD), established in late 1984, is also located on the University of Illinois at Urbana-Champaign

campus. Researchers at the CSRD are building the Cedar system, a prototype shared-memory

multiprocessor that consists of clusters of eight processors. The Cedar system will be used to

explore parallel processing performance, develop software to exploit shared-memory parallel

processors effecti-vely, and provide high performance over a wide range of applications. Software

projects include the developnent of a UNIX-based multiprocessor operating system called Xylem,

the development of the Parafrase restructuring compiler which will be able to transform serial as

well as parallel Fortran constructs to exploit the system, dealing with both vector and

the eveopmnt f th Paafrse estuctuingcomile whih wll e ale o trnsfrm eryl a
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multiprocessing parallelism, and the development of parallel algorithms for engineering and

scientific applications. In addition, a supercomputer programming environment called Faust is

being developed and consists of an editor, interactive optimizing compiler, parallel debugger and

performance analyzer/monitor, each of which uses a common graphics-based user interface.

[CSRD 1986] [Lelick 1985]

10-4 Supercomputing at the Supercomputing Research Center (SRC)

The Supercomputing Research Center (SRC), established in November 1984, is located in

Lanham, Maryland. The SRC is funded by the National Security Agency (NSA). It carries out

research and development on national security programs as well as unclassified research in parallel

processing algorithms and systems. Conferences and workshops are given yearly. [Schneck 1985]

10-5 Supercomputing at the Advanced Computing Research Facility (ACRF)

The following information is based on [USA 1987].

The Advanced Computing Research Facility (ACRF) is an Argonne National Laboratory which

currently houses seven multiprocessors available to scientists to experiment with innovative

machines and to develop software tools for state-of-the-art computers. The ACRF was established

in 1984, and it was initially equipped with two multiprocessors: the Denelcor Heterogeneous

Processor (HEP) and a locally built system with eight processing units. Since then, the ACRF has

installed five new commercial ,nultir r-ocessors, four of which are mentioned in [USA 1987]: (1) an

Alliant FX/8 system with 8 vector processors sharing 32 Mbytes of memory, (2) an Encore

Multimax system with 20 processors sharing 20 Mbytes of memory, (3) a Sequent Balance 21000

system with 24 processors sharing 16 Mbytes of memory, and (4) an Intel iPSC four-dimensional

hypercube system.

These five machines will be used to address a variety of questions in parallel processing,

including (1) What architectures are best suited for a specific application? (2) How can

computations be organized to exploit the full potential of a machine? and (3) Can we develop

transportable algorithms without sacrificing performance? Argonne scientists are conducting
'p
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research in advanced computing that simultaneously emphasizes new algorithms, new

architectures, and improved computing environments in order to answer these questions.

Research on these multiprocessors is not limited to Argonne scientists. An extensive visitors'

program is provided, and classes on advanced computing are frequently given. A summer institute

is being planned for graduate and postdoctoral students, as well as a workshop on performance

evaluation of parallel computers and programs. Scientists at other research institutes are encouraged

to use the computers.

10-6 Supercomputing at the University of Calgary in Western Canada

The following information is based on [Nunns 1987].

A Control Data Cyber 205 supercomputer was installed on the University of Calgary campus

(Alberta, Canada) in late January 1985. It now serves academic researchers, commercial clients,

and nonprofit users across Canada. Funding for the supercomputer project at the University of

Calgary included $12 million for the Cyber 205 and $5 million to be used over five years for

software, maintenance, and user services. Grants of supercomputer time are allocated to any person

or corporation, for potentially commercially viable research and development purposes.

The department of SuperComputing Services (SCS) was established at the University of

Calgary in order to provide all necessary user services. The SCS staff consists of highly trained

people in the areas of engineering, geography, geology, mathematics, meteorology, physics, and

computer science. These scientists are available for user consultation, running benchmarks, or

assisting with the analysis of applications programs. Experienced applications analysts give user

courses in usage of the Cyber 205, as well as vector programming in Fortran and C.

A variety of manuals and other forms of documentation are produced and distributed by the

SCS. In addition, the SCS publishes a quarterly publication titled Super*C Newsletter. This

publication introduces new hardware and software options, outlines applicable conferences and

courses, and details projects in which users are involved.
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10-7 Supercomputing at the California Institute of Technology (Caltech)

The California Institute of Technology (Caltech) does a great deal of research in parallel processing.

Dr. Geoffrey C. Fox is well known as the designer of the Cosmic Cube, the first working

hypercube. Six scientists from Caltech recently published the book Solving Problems on

Concurrent Processors, which describes the concurrent implementation of a number of algorithms

widely used in scientific computing. A package called The Software Supplement has been

developed and consists of (1) a hypercube simulator which runs under the UNIX, ULfRIX, VMS,

and PC XENIX operating systems, (2) a set of 20 application programs in both C and Fortran

which run on the simulator and illustrate the concurrent algorithms described in Solving Problems

on Concurrent Processors, and (3) a book containing a description of the simulator, source code

for each of the application programs, and explanatory notes. A videotape course based on the book

"Solving Problems on Concurrent Processors" has been developed. [Caltech 1987]

10-8 Supercomputing at the University of Virginia

The Institute for Parallel Computing, located at the University of Virginia, Charlottesville, was

established in 1987. One of the two primary issues it will focus on is programming environments

for parallel architectures. The PISCES II programming environment (Section 8-2), developed by

Dr. Terrence Pratt, will be ported to a 64-node hypercube in the near future. The primary funding

for the institute is provided by the Joint Tactical Fusion Office and the Jet Propulsion Laboratory.

[SIAM 1987]

10-9 Super Advantage

Super Advantage is a program set up by the Houston Area Research Center (HARC) in

*Woodlands, Texas which allows people to access an SX-2-400 (Section 3-1) supercomputer "for a

fraction of what you'd expect to pay for normal time-sharing." Members of Super Advantage are

entitled to (1) 10 hours SX2 CPU time per month, (2) 10 man/days training in HARC short

courses, (3) unlimited extended memory use, (4) 1 membership on the policy board, (5) 500

Mbytes permanent storage, (6) MicroVAX II configuration with Ultrix and sofware development

%-....,\
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tools, and (7) three days on-site training. More information may be obtained from the Computer

Systems Applications and Research Center, Houston Area Research Center, 10077 Grogans Mill

Road, Suite 550, Woodlands, Texas 77380 or call (713) 363-7981. [Supercomputing 1987a]

0
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CHAPTER 11

RELEVANT RESEARCH TOPICS

Introduction

During the Summers of 1985 and 1986, the Supercomputing Research Center (SRC) (Section

10-4) held two workshops, one on supercomputing and one on parallel algorithms and

architectures, respectively. Top scientists from around the world were invited to these workshops

for the sole purpose of discussing the state of parallel computing from both a hardware and a

software point of view. The final products were two reports written by the invited research

scientists on what areas should be researched by the SRC over the five years to come.

The information in this chapter is based on [SRCa 1986] and [SRCb 1986]. (The Summer 1985

workshop's report was not completed until February of 1986, and the Summer 1986 workshop's

report was written up by December of 1986, hence the references are both dated 1986.) .A

11-1 Standardized Classification Structure

A standardized classification structure should be developed for parallel algorithms. This structure

will allow researchers to predict what class of algorithms will best match a given architecture. A

proper mapping between the architecture classes and algorithm classes will guide the direction of

future supercomputer design and selection.

One particular project which requires a better understanding of which sets of programs execute

efficiently on which class of architectures is an architecture compiler. Such a software tool would

allow specification of an application algorithm at a high level and would produce a detailed
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description at a much lower level of an architecture on which that algorithm would execute

efficiently.

Generalized software monitors directed toward understanding performance across systems are

also important. These will help to understand why classes of applications perform more efficiently

on some architectures than on others.

11-2 Public Library of Developed Algorithms U
A public library of developed algorithms should be constructed. This library will allow researchers 6

to avoid repeating work, to collect and disseminate state-of-the-art knowledge, and to help teach

algorithms. Specific features of such a library include the following:

(1) The library should contain fundamental algorithms of general use, represented in a single

standard notation (if possible) that may well contain a pictoral component. This notation will be

important in its own right, since it represents a step toward standardization, and can be used by

automatic tools for program transformation.

(2) Each algorithm in the library should be classified, cross-referenced to related algorithms, and

include a history of its implementations and their behavior.

(3) Access to the library should be public, computer-based, and supported by a professional team

of librarians.

Recall that Cray Research, Inc. publishes the Cray Directory of Supercomputer Applications

Software (Section 8-2). It is not known at this time if this directory adheres to the specifications

given above.

11-3 Theory of Complexitye7

A theory of complexity based on realistic models of computation should be developed. This theory
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will allow researchers to avoid searching for impossible algorithms and to discover the limits of

parallelism. This theory should give researchers an understanding of the tradeoffs among memory,

computation, communications, I/O, and the accuracy of results.

11-4 Programming Environments

Because of the inordinate amount of time otherwise needed to understand and effectively use

parallel computers, good, flexible, integrated programming environments are needed. Such

environments will assist in and automate the following tasks of problem solving:

application/problem definition -+ algorithm -+ high-level code -4 execution --+ analysis of results.

Research in this area should be directed toward creating, sustaining, and improving upon an

effective problem-solving environment which will transfer the burden of auxiliary tasks and

bookkeeping to our software tools.

Note that quite a few parallel programming environments are already under development,

including Faust, PARSE, PISCES, and SCHEDULE (all discussed in Section 8-2).

11-5 Programming Languages

New programming languages that express all levels of parallelism and concurrency and their

translation to selected target architectures are needed. Languages for representing parallel

algorithms should be researched from a number of perspectives. Ideally, a language should be

suited for programming and expressing parallel constructs. Moreover, notational constructs should

be developed to express specific notions of computation as implemented and executed on target

families of parallel machines. The expression of parallelism should not introduce superfluous

barriers and critical sections, as might be encountered in a naive parallelization of standard serial

code. Constructs should be developed to represent probability and indeterminacy along with the

more standard flow controls to model real processes and capture actual performance. Abstract data ,

types and their equivalents (abstract data movement operations (ADMOs) as discussed in Section

9-3), as they evolve in parallel settings, ought to be readily accessible in such a high level S

representation.
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11-6 A Vocabulary and Notation for Parallelism

An insufficient vocabulary currently exists with which to describe parallelism, either in algorithms

or architectures. What cannot be described clearly cannot be understood clearly. A vocabulary and

notation for parallelism which is robust and complete and shows promise of being extensible to

include new machines and new technologies is needed.

11-7 Software Support for Parallel Programming U
It is generally acknowledged that the debugging of parallel programs is significantly more difficult

than debugging sequential programs. Software debugging tools need to be developed to help the

programmer. Both compile-time and run-time tools are needed. Compile-time offers the best

opportunity to detect as many errors as possible. Compile-time error detection is very difficult in

languages like Fortran with aliasing and side effects. In addition, the quantity of information

produced is enormous and hard to manage. Sufficient declarations added to the code by the user I
may make this whole problem more manageable. A compile-time debugger should warn the

programmer about actual or potential errors. Interactive use of a compile-time debugger may enable

the programmer to skip much of the analysis information and look only at the relevant part. A

graphical interface will be essential.

A simulator of the parallel system capable of providing reproducible results is needed. Some

kinds of run-time errors can be uncovered using simulations. For debugging on the actual parallel

system it is not clear what features will be necessary beyond extensions to sequential debuggers for

both small and large number of processors. In shared memory systems where updates to shared

variables are not sequential (i.e., race conditions exist), a tracing mechanism that determines the

order in which tasks update a shared variable will be critically needed to detect these potential

problems.
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CHAPTER 12

JOURNALS AND BOOKS

Introduction

This chapter gives lists of journals and books related to parallel processing. These lists are by no

means complete, but they may guide the reader to further information.

THE CONTENTS OF THIS CHAPTER MAY CHANGE WITH THE NEXT EDITION OF (
THIS DOCUMENT, DUE TO BE RELEASED IN LATE 1988.

12-1 Journals

The following journals are either completely dedicated to the field of parallel

processing/supercomputing or periodically provide related articles. Wherever possible, descriptions

of each journal are given along with subscription fees and an address to write to.

Complex Systems

This journal brings together a broad range of research on all aspects of the theory and applications

of complex systems. It publishes summaries of completed research projects, full-length articles,

and notes reporting specific results. Individual subscriptions are $65 for six issues. Subscription

orders should be sent to Complex Systems Publications, Inc., P.O. Box 6149, Champaign, IL
61821-8149.
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IEEE Computer

This journal is published by the Computer Society of the Institute of Electrical and Electronics

Engineers (IEEE). An annual subscription is included in society member dues.

Computer Architecture News

This journal is published by the Association of Computing Machinery Special Interest Group on

Computer Architectures (ACM SIGARCH). Subscriptions costs $20 a year for members of the

ACM and $34 for non-members.

The Computer Journal

This journal is published by The British Computer Society, Cambridge University Press.

Subscriptions cost $275 for six issues.

Computer Languages

This journal is published by Pergamon Journals Limited. Subscriptions cost $157 for individuals

and $615 for institutions.

Computing Surveys

This journal is published by the Association of Computing Machinery (ACM), New York.

IEEE Software

This journal is published by the Institute of Electrical and Electronics Engineers (IEEE).

Subscriptions cost $16 in addition to any IEEE group or society dues and $25 for members of other

technical organizations.

IEEE Transactions on Computers

This journal is published by the Institute of Electrical and Electronics Engineers (IEEE). Write to

IEEE Headquarters, 345 East 37th Street, New York, NY 10017 for more information.

010
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International Journal of Parallel Programming

This journal addresses programming challenges by parallel computing systems, including linguistic

foundations, implementation techniques, software engineering aspects, and performance studies.

The cost for individual subscribers is $60 for six issues. Subscription orders should be sent to

Plenum Publishing Corporation, 233 Spring Street, New York, NY 10013.

The International Journal of Supercomputer Applications

This journal contains articles on supercomputer applications software for a wide variety of areas,

including aerospace engineering, astrophysics, cryptographic analysis, pharmacuetical research,

and molecular biology. The journal is published quarterly and costs $50 per individual.

Subscription orders should be sent to MIT Press Journals, 55 Hayward St., Cambridge, MA

02142.

Journal of Parallel and Distributed Computing

This journal contains original research papers, as well as critical reviews on the design, evaluation,

and practices of advanced computing systems. It is directed to researchers, engineers, educators,

managers, programmers, and users of computers who have particular interest in parallel processing

and distributed computing. The current subscription fee is $119 for six issues. Subscription orders

should be sent to Academic Press, Inc., Journal Promotion Dept., 1250 Sixth Avenue, San Diego,

CA 92101.

The Journal of Supercomputing

This journal contains articles on technology, architecture and systems, algorithms, languages,

performance methods, and applications. The journal costs $49.50 for individuals ($125 for

institutions) and is published quarterly. Write to Kluwer Academic Publishers, P.O. Box 358,

Accord Station, Hingham, MA 02018-9990.
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New Generation Computing

This journal is an international journal on fifth generation computers. It is published by Ohmsha,

Limited in Japan. A one year subscription costs $264.

Parallel Computing

This journal is an international journal containing articles on the theory and use of parallel computer

systems. It features original research work, tutorial and review articles, and accounts of practical

experience with parallel computers. Subscriptions for 1987 were $225.75 for six issues.

Subscription orders should be sent to Elsevier Science Publishers Co. Inc., Journal Information

Center, 52 Vanderbilt Avenue, New York, NY 10017.

SIAM Journal on Computing

Subscription fees for nonmembers is $116. Subscription fees for SIAM members are substantially

less, however. Write to SIAM, 1400 Architects Building, 117 South 17th Street, Philadelphia, PA

19103-5052 for information about becoming a member of SIAM.

SIAM Journal on Scientific and Statistical Computing

This journal contains articles on numerical, statistical, and non-numerical techniques for solving

scientific and statistical problems on computers. Emphasis is on the implementation of such

techniques with computer languages, adaptive approaches, interactive graphics, data management

facilities, new computer architectures, and special-purpose hardware. The journal is published

bimonthly and costs $A102. Subscription orders should be sent to Cus-.,.zner Service, SIAM, 1400

Architects Building, 117 South

Supercomputer

This journal focuses on supercomputing, especially in the Netherlands, with emphasis on the

practical aspects of supercomputing Subscriptions cost roughly $75 and can be obtained from

Supercomputer, P.O. Box 4613, 1009 AP Amsterdam, the Netherlands. ,
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SuperComputing

This magazine is designed for both those who use supercomputers as problem-solving tools and

those who are exploring the potential of supercomputers. It includes discussions of supercomputer

evaluation and articles about specific industry advances in technology. Subscriptions are free and

can be obtained from SuperComputing, 510 S. Mathilda Avenue, Suite 4419, Sunnyvale, CA

94086.

12-2 Books

The following is a list of books related to parallel processing. Obviously, there are hundreds of

books on the subject, but we only list a few here.

Algorithm-Structured Computer Arrays and Networks: Architectures and Processes for images,

percepts, models, information

Leonard Uhr. Academic Press, 1984.

Computer Architecture and Parallel Processing

Kai Hwang and Fay6 A. Briggs. McGraw-Hill, 1984.

Designing Efficient Algorithms for Parallel Computers

Michael J. Quinn. McGraw-Hill, 1987.

Parallel Algorithms for Regular Architectures

Russ Miller and Quentin F. Stout. The MIT Press, Cambridge, MA., 1988.

Solving Problems on Concurrent Processors
G. C. Fox, M. A. Johnson, G. A. Lyzenga, S. W. Otto, J. K. Salmon, and D. W. Walker.

Prentice-Hall, 1987(8).
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