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1. Introduction

This report presents the current design for (Cronus. the systerit being developed under the

D~istributed Operating Systemn I)esi gn and Implemtentation project sponsored by Homne Air 1)evelopment

Centier 1. It is intended as an overview of the system struct ure and as a synopsis of the current

vs'%S lm 5tlsub steI1 d('cotljloslt loll titit dlesign. A pre\~ V'uj. rcjport. ( rwtots A Dis.tr;iut d OpIcridinty *yse

kFunrtlonal Definition and 'Systern Concept, BUN Report No. 58$79, is intended as a companion t~o tite

current report, and the reader is assumed to be familiar with its contents.

The first three editions of this specification were produced ttnder the previous Contract: two as part

of interimt technical reports and the third as an independent document. These early revisions served to

formalize our notions of how a geographically distributed, heterogeneous system bu'ilt from interconnected

processing systems should be organized. Preliminary implement at ions of many system component, xere

proditced tticonfirm the viability of our approach. but little experience with compontent interactions ir

wAJ. ,se of the services by clients occured during that early period.

This and the previous edit ion reflect the fact thita miost . tw we originally describ.ed lias -nov.

been implemented and has been put t~o practical use: kertiel ftunctvt'n such as- interprocess ,omintunicariont

and initial versions of systemi services such as host manageieilt proce. ttrIli~Ch a .iS L~n

access control have been completed, have experienced substantial use and have becontie quite stable at tLhi

point. In a few areas, such as device support and user interfaces, we have not yet had substantiai
exprienre. In these areas, we have relied upon the services provided by the consttuent operatinp s"stemn'

of the hosts to provide functions such as, tape archival, terminal input and interactive command

execution. For these areas. thtis report briefly describes the extent of the current implemnent a! ott' arti

presents ideas about how, the service might be better supportcd after further developrtenz

This edition includes a new ser-ion discussing tools for distributed application deve!-prrtent From

ou~r exp~erience in building system ni Lnagers. we have inttroducedl tools to formalize and automate many'

aspects of the development process We now regularly ttse these took to produc, new applicatiotn

t'otttponent s.

In Sect ion 2. we brtefly re\ .%a few of the areas covered tn the IFunti onal D efintion. and extetnd

hemn to cover current. developm( it plans.

Section 3 presents an over% ww of the Cronus operattng system, stressintg the commron framnework

into which its components %ill lit and the functional decomposition of the systemn.

tThi work has been performed under RADC contracts F3O0602-t84-C-O171 and FOO~t-.12

-11
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Sections 4 through 13 present the design for the various system functions. An initial
implementation has been provided in most of these areas. Our experience in using these components
varies from the kernel and other system functions, which were provided early, to devices and user
interfaces, where our implementation is most limited. These sections will form the basis of a continuing
and evolving subsystem specification for the various components, throughout the life of the project.

The remaining sections describe the system environment. Section 14 describes the hardware that
supports the current Cronus implementation. Section 15 describes the functions required of an underlying
network. Section 16 describes how special capabilities common to local area networks, such a broadcast
messages service, are provided when the underlying network consists of multiple local area networks
connected by gateways or other networks. Section 17 describes the facilities of the generic computing
element.

0@
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2. C7ronus Project Overview

2.1. Project Objectives

The objective of the Cronus project is to develop a test bed for e-valuating distributed system
tvcliidlog). To do this Ae( are establislinii a proit pe ;(,al arE;, w01 %&,rk Ia-.vd lsrd~karv archi.' I ur"'.
atid building an operating system and software architectutre to organize arid control this distributed
s~ stem. The architecture is described in the Cronus Functional D~escription BB1N 5879., and is
summarized in Section 4. In addition to establishing a system architecture, the other major aspects of the
(ronus, project activities are:

I Select off-the-shelf hardware aiid software cornpornents as; a b~asis for an Advanced

D~evelopment Model (ADM) prototype configuration for the distributed systein test bed.

2, Designi the System.

:'Impktyicn a version of the basic systerii comporient s.

4 T.-.st and es aluate thle cimcvpl_ awid realizatioi, of the DOS In Lhe Ads aiced D~evelopimenit

M odel1.

The orientation we have chosen is both experIiental through construction of working system components,
7'4 "volutionary through pre-planned continuation rif design and development activities. 1

2.2. Points of Emnphasis

T~ 0-ronu.- (!(sign is intended to intro)dlce coherenre and oniforuiit% t0 3 SP( of otherwise0
ooiep~endent and disjoint computer svsemTs. T1-hi; grouping of machines, operating under the control of a
d,tributed operating system, is called a Cronu- '-luster The aim 1,; to provide for the cluster
-.otfi~r-afion as P whole, features comlparabl'. to tho:ut found in a modern certrahi7ed computer utility.
Thiere are varion- Asass of viewing this uniforoiit and roher-lice. ra-di pi va.\ a roh', In the C'ronus design.

From an end i.er'. point of \ -% th", 'rnns DOS prok-ides a single arcoti with controlled access
to all integrated systemn services in a manner which is independ~nt of thc site of the activity. From a

progra m ier .s point of view. Cronus supports a distributed programming paradigrti Which provides a

uniform interface and access path to the distributed systemn resoiurces-. and supports the initiation and

control of distributed computations More importantly, fromn both an end user's and programmer's

perspective. Cronus provides a common system framework for applications. This means that, otherwise
indeppendent computerized activities can he constructed so that they are more easily made to work
tug~et her, despite irniplementatilons which cross host and processor-type boundaries.

F-rom an operations and administrative perspective Cronus provides a logicall% centralized facility
for mionitorinig and co(nt rolling all of thep contnected systems. Functions such as account authorization,

user priority. and access control ran be applied system-wide rat her than individually to each host.

_3.



Report No. 5884 1BN Laboratories Inc.

In addition to coherence and uniformity, there are a number of other system design goals. These

are:

" Survivability and integrity of Cron us itself and of some of the applications that use Cronus;

" Scalability to accommodate both small and large configurations and to support incremental

grow I I

" Experimentation with resource management strategies that effect global performance;

" Component substitutability to allow easy use of alternate functionally equivalent hardware

and software support components; and

" Convenient operation and maintenance procedures.

2.3. The Cronus Hardware Architecture

2.3.1. System Environnient

The Cronus environment consists of several parts: a set of local area networks that provide the

communications substrate for a Cronus cluster, the set of hosts upon which the Cronus system operates,

and a mechanism for connecting a Cronus cluster to the Internet environment and to other Cronus

clusters.

Cronus enables a variety of constituent computer systems to operate in an integrated manner.

Cronus is distinguished from other distributed operating systems by one or more of the following

characteristics:

ICronus will most often run on a group of heterogeneous hosts. Cronus is oriented toward

quickly enabling developers to gain access to and exploit the unique qualities of resources in a
heterogeneous environment and providing a coherent model for such integrated heterogeneous

systems.

2. The Cronus distributed operating system software often runs a.s an adjunct to. rather than a

replacement for the hosts' primary operating systems. In these cases the original hosts

operating system runs largely unmodified. Also under development is a version of Cronus as a

base level operation system.

3. Hosts will be included in Cronus with varying degrees of system integration. Some support
limited subsets of the services defined by the Cronus environment.

4. The interconnection network is designed on a hierarchical model. A Cronus cluster includes a

set of hosts connected by a high-speed, low-latency local network. A set of Cronus clusters

may be connected over slower long-haul networks.

.4-
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The Cronus architecture provides a flexible environment for connecting hosts so that facilities
available on one host may be conveniently used from other hosts. It provides two alternative host
integration schemes. A host may implement the Cronus Interprocess Communication (IPC) mechanism
and have efficient communication and operations wit h the rest of the (ronus hosts; or it may access the
other Cronus hosts through a front end access machine, which is a simpler, less expensive option for
connection of a host, but which may be more limited from a flexibility and performance viewpoint.

2.3.2. Host Classes

(ronus hosts can be divided into four groups: mainframe hosts, Generic Computing Elements
(CCEs). workstations, and internet gateways.

The collection of mainframe hosts, each of which serves a number of users simultaneously, includes
a variety of machines with unrelated architectures. A mainframe host may be tightly integrated into the
system. both offering and using Cronus services and fully implementing Cronus interprocess
communication. Alternatively, they may be loosely integrated offering no services, possibly connecting
into Cron us through a,, access iiiacldine which prov id e, co iiim icat in w itl Ih e rest o f Cron us

GCEs are small, dedicated-function microproce.,,or based computers of a single architecture but
varying configuration. Each GCE provides a basic service. For exampl, a GCE cap. b( a file ma;,ager, a
terminal manager, an acccess machine or it might carry out a more cumplex systen function as an
authorization manager. Since all GCEs have the same architecture, they provide a replicated resouvr,
which, with the appropriate software, enhances the reliability of basic Cronus functions.

V'orkstations are powerful, dedicated computers which provide substantial computing power and
graphics capability at the disposal of a single user. They differ from mainframes in Lhat they supp,,rt a
single user. They differ from terminals in that they offer significant computational resources.

An internet gateway is a computer used to interface communication between multiple networks.
The (ronus gateway integrates the Cronus cluster into the collection of networks known as the ARPA
Internet and provides a base for su ,porting remote access and intercluster communication.

2.3.3. System Access

There are a variety of use access paths to Cronus. One is a connection hy niians of a Cronus
terminal concentrator. Users may gain access through the internet gateway from remote points. Cronus

also supports access through terminal access mechanisms on its mainframe hosts. These latter two access
paths provide the same interface to the user as the terminal concentrator. Access from a workstation
may be different than from a terminal, since the workstation defines the user interface. The user has
immediate access to the workstation's capabilities.

-5-
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2.3.4. Local Area Network

The set of hosts is connected by a local area network. The characteristics of the network play an
important role: in the design of Cronus applications, since they determine (he kinds of communication and
operations that are feasible across host components of Cronus.

TIe slect.ion of aii EI hernel for t lie local area network for i.i Advanced )fvel0pllent MOdJel has

been described in BBN Report 5086. This choice was motivated by criteria in the project's original
statement of work:

1. The network should be suitable to support a distributed operating system,

2. The network should be currently available and economical. Since the Advanced Development
Model will not be operated in a stressed environment, certain constraints applicable to a field-
deployable version were considerably relaxed.

The Ethernet was chosen for the local area network substrate for the following reasons:

" It is desirable, though not required, that the network be "high-speed". The Ethernet operates
at 10 MBits.

" Network interfaces to all or most of the computer systems in the DOS ADM should be
available

" The local network must provide a datagram-style service.

The Ethernet fulfills all three requirements and we believe is, at. the present time, the most cost-effective

network technology which does. In addition, the Ethernet provides broadcast and multicast capabilities
which, have been extensively exploited in the system design.

The raw Ethernet layer is not used directly. To achieve convenient substitutability of alternate
communication substrates, Cronus uses an abstraction of the Ethernet capabilities which is provided by a
Virt ual Local Net (VLN) software layer. described in Section 14.2. The VLN represents an enhancement

of the DOD standard IP protocol to provide for features common to local area communication. We
anticipate that future versions of Cronus will need to be built upon a different local network, such as the
Flexible Flexible Interconnect, which have reliability, communication security, and ruggedisation not

available in current commercial products. By designing the VLN layer and building Cronus upon it, it
should be easy to substitute any local network that provides the basic transport services required by
Cronus.

This design is being extended to include clusters connected by a heterogeneous network layer, as
when multiple Local Area Networks (LANs) are connected via gateways and the Arpanet. The features
provided by the LAN may be used directly for communications between components on the same LAN.
Features not supported by some of the networks in the network layer are provided by adding software to
the gateways or hosts on the networks. For example, a broadcast repeater is used to propagate broadcast
requests between interconnected LANs. Note that additional performance considerations may arise when
dealing with heterogeneous networks. In particular, the bandwidth for messages passing through a

-6-
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galewa% or over land lines is typically poorer than the bandwidth of connections between hosts connected

to the same local area network.

2.3.5. Typ~es of Hosts

(;CEs are implemented in the AI)M system by Multibus computers with aii M(%8(X)O processor.
large mnain memories, an Ethernet controller, and additional hardware (disks. RS-232 ports. etc) needed to
support specific functions. The -Multibus computers were chosen because

L. 'rhe are relat ivelN inexpensive, permitting low cost inicre'mental system growth.

2. The Multibus standard guarantee,, the ability to package individual WXEs in different ways
w ith components from a variety of vendors.

N; N ew processor and devices are expected -o evolve for the Muli ilus over time.

Vtilii, hosts pro\ ide thle prograiti develo pmti iiiad applica tilot exec ut ~i -ii ronii s for Cron us.

In the AD)M, this function is supported by ('70 UNIX systems. VAX-UNIX Systems and a VAX-VMS
S> torn UNIN was chosen due to the rich set of development tools already available for it. and the ease

of Jcevoloping new tools and applicat i-n . V A X running t he V'MS operating system % as chosen to
detionsl rate the handling of heterogeneous systems.

2.3.6. ('ronu- Clusters; and the Internet

The goal ofi he Cronus project is de\,elopmen! of a local a' net work -based] distributed operating
sy-lern 'The Cronius cluster operates in th, i.ernct eiivjroti,.wntt a,. a clas. B network. Cronus hosts

support the IDoI Internet Protocol (I1") for dlatagratit traffic. and. w here connections are required, the

) J~i~ oisio (X't olPr,.i ocol (TCI) .-

( 0 n u, cI in V is to ue t L, Iip. net (fvnvir n I' 11 Un1w \& %a Fii-t. accoss is prov ided to C;ronus

frrri points rIn the Internet external to the cluster. -econ~d. the Interyiet Supports commnuntcat ion between 0

One of the functions we w.ould normally install on a G;CE is the Cronus I~nternet Gateway, although it is currently

installed on a D)EC LSI- I I computer instead, because the standard Internet G;atew'ay implementation uses the LSI-I 1.
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2.3.7. The Advanced Developmnent Model

The Advanced Development Model (ADM) of Cronus is the first, instantiation of the Cronus
hardware and software. It is, as its name suggests, the develiment lestbed for Cronus. The ADM is
experimental and changes as. Cronus continues to be developed and a.s software is implemented, altered.
and improved.

The ADM is being asembled using many off-the-shelf commercial hardware and software
component building blocks. This reduces the cost of its components, permits the use of newly available
state-of-the-art hardware, and enables us to be more flexible in its design. The design is flexible, to

permit later substitution of more suitable hardware and software for deployable configurations.

L
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3. System Overview

A distributed operating systern manages the resources of a collect ion of connected computers and
defines functions and interfaces available to application programs oil system hols. Cronus provides
functions and interfaces similar to those found in any modern, interactive opei ting system (see the

'rollno I. unt'l onal I)eflinition anld S..sivl, (olctii R~epo<rt 'IMIN 5879'). Cronus functions, however, are

not limited in scope to a single host. Both the invocation of a function and its effects may cross host
boundaries. The distributed functions which Cronus supports are:

- generalized object management

- global name management

- authentication and access control

- process and user session management

. interprocess communication

* a distributed file systen

* input output processing

. system access

- user interface

. system monitoring and control

- tools.

In thi, sect Ion, we introduce th,. Cronus design and briefly discuss the major elements of the system

decolposit ion.

3.1. System C(oncept

The primary design goal fo, (ronus is to provide a uniformity and coherence to its system functions

throughout the cluster. Host-in, ,pendent. uniform access to data and services forin, t he cornerstone for

resource sharing. The design (if 'ronus is based on an abstract object model In t0 i:,model. we treat the
system as a collection of objects organized by type: files, processes. directories, and >,, forth. Only a

limited number of well-defined operations can be invoked on an object. and the only information that a
client can have about the structure or content of the object is obtained through these operations. The
system structure is defined by the objects which constitute the system. the operations on these objects.
and the responses which the objects give to the operations. The underlying structure of the system, which
is essentially hidden from the clients, consists of the primitives which deliver the operations to active
objects (processes), or to processes which are responsible for passive objects like files.

-9-
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The Cronus distributed operating system is built from a number of concurrently existing objects

called processes that reside on hosts which are part of the cluster. Some of them, called object managers,

play a special role in implementing other objects of the system. Other processes provide services and

specialized functions for the clients of the system. Still other processes run user programs. Processes

communicate with each other to form larger abstractions and build more complex objects. At the most

fundamental level, communication between processes is through messages sent over a local area network

col necl ing t he hosts of he clusi.er.

There are four interrelated parts to the Cronus system model:

A kernel which supports the basic elements of the object model: processes, communication

between objects, object addressing, and the relationship between objects and their manager

processes. This part of the system includes facilities for locating an object and controlling

access to it.

" A set of basic object types. along with the object managers which implement them. There are

two groups of basic object types. One group is fundamental to the dr, elopment of new object

managers in Cronus. This group of object types includes: processes; principals, which identify

system users: and symbolic iiaie directories. Another group of basic objectb i provided to

support various application domains and processing requirements. Initially for Cronus this

includes files and l'O devices.

" A paradigm for building and accessing new types of objects, which spells out the methods for

integrating new object managers.

" User interfaces and related utility programs to provide convenient access for both people and
programs to the system objects and services.

3.2. The Cronus Object Model

The object model provides a coherent and uniform framework for the system components of Cronus,

aud for application programs in a Cronus cluster. Since a distributed operating system is itself a

distributed application, the methodology used in its construction should apply equally well to the

construction of other distributed applications. The references JXerox 1981, Rentsch 1982) discuss the

object-oriented model of programming. The following are the key features of the object-oriented model

tha Cronus supports:

" Each Cronus object is a member of a well-defined class, which is called the type of the object.

The names of Cronus types begin with the string 'CT_'; a list of some of the more important

types may be found in Table 3.1.

" There is a set of operations (often called methods in the literature) defined for each Cronus

type. These define the only ways that an object can be examined or modified.

-10-
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" Every Cronus object has a unique identifier ('ID) naric. References to the object are

generally through its UID, which is a bitstring uniquely identifying the object over the entire

Cronus cluster. Cronus also has a symbolic catalog. mapping alphabetic names to UID's, to

provide convenient reference to objects.

" The primitive Invoke causes a named operation to be performed on a named object.

" There is a basic set of operat io0s (called ji.t'ric oI.ra i Io,) A hIch are dhli ned for all objects:

these operations promote a unity amnong the various object types of the system and constitutes

a limited form of inheritance of the operations defined for the basic type CT Object. These
operations include those which create and remove objects, and those which control access.

Each Cronus type then has its own operations, and may redefine operations which are known

to its parent class.

" An object has one or more parts that are visible t.o the outside world. These may include

data. an object descriptor, and an active (or process) component. All Cronus objects have at

least an object descriptor. v hich is the repository for such inforrmat ion as access rights.

Object Name See Sect tor1

CT Object 4.2

CT_ Host 5.2

CT Primal Process 5.3

CT Principal 7.5

CT Group 7.5

CT Authentication_ Data 7.5

CT Cronus Catalog 8.2
CT (atalog Entry 8.2.2

CT Directory 8.2.1
CT Symbolic Link - 8.2.3
CT External l,ink .2 4

(T ('OS Directory 8.5

cT" Cronus File 9.1

CT Primal File 9.2

CT Reliable File 9.3

CT COS File 9.4

CT Line Printer l0

Cronus Objects

Table 3.1

-Il-
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Fundamentally, the implementation of the Cronus system kernel consists of the implementationi of

the primitive Invoke. Each object is associated with an object manager, which knows all the internal

d tails of the construction and location of the object. When an operation is invoked on an object, the

('ronus kernel is responsible for delivering the operation to the appropriate object manager, which

performs the task requested in the operation, and. if appropriate, responds to the invoker.

"l'lhe operaljon switch iii t lie Cronu kernel supports koh ii InNowal IlOS of operat ions on objects and

message communication between processes. Since processes are system object.s with defined operations to
send and receive messages, the operation switch provides a host-independent interprocess communication

(HPC) facility for both the system implementation and application programs. Further details of the

object model and the design of the operation switch are described in Section 4.

Some of the attractiveness of a distributed architecture is the potential to exploit the redundancy

and configuration flexibility of the hardware architecture. Cronus supports a unified approach to these

attributes through its object orientation and by implementing a dynamic binding mechanism for routing

operation requests to the appropriate object. In general, the location of the objects will be maintained in

one of three ways. These are:

1. Primal Objects

These objects are forever bound to the host that created them. There is no simpler form of

Cronus object. An example would be a Primal File, which is permanently bound to its storage

site.

2. Migratory Objects

These objects may move from host to host as situations and configurations change. Standard

Cronus mechanisms locate the current site to complete an object access.

3. Structured and Replicated Objects

These objects have more internal structure than a single uniquely identified object. For

example. a replicated file would have a number of primal files as its constituent parts. The

I'11) would be recognized by manager processes on each of the sites for the more primitive

elements. Replicated objects are a key element in Cronus system survivability, since

aailability to the objects continues as long as a sufficient subset of the copies are available.

(ronus can be extended by adding new object. types to support new requirements or functions.

Certain features are required for eich object type including supporting the generic operations. In

addition, for a new type that is similar to an existing type. many operations and their implementation

ma% be inherited from the existing type, thus reducing the amount of work required to develop the new
t ype.

The object model and its associated system components define a number of system conventions such

as. integration with the monitoring and control software which may be adopted by subsystem designers,

on a case-by-ca-e basis. A subsystem designer can depend upon the existence of required features in other

system comlxnents. and is obligated to provide them in each new component. The Cronus system design 0

minimizes the number of required features for system entities, which, in turn, reduces the buy-in costs for

-12-
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new hosts and object types.

Maintaining the integrity of complex objects is the responsibility of the managers for the type. This

means that techniques can be tailored to the patterns of access to the object being maintained.

Since the generic operations include those which manage access permissions, uniform access control

is a Iasic part of Ihe (Cronu' object model. Tie object ialagers coiltrol av'S . o I li' ol Ycts t he

maintain through the use of access control lists (ACL). The operation switch reliably stamps the UID of
the invoking process on each of its messages, so the process making the request can be reliably identified.

The conventions for communication are based on the message structure library (MSL). A message
consists of key-value pairs. There are also conventions that provide simple transaction protocols, and
other features to support flexible message handling and processing. The MSL also standardizes the

representation of data types. which allows the common interpretation of data items across a Cronus
cluster. The MSL design is discussed in Section 6.

3.3. System Objects

To provide the initial operating capability, a number of basic system object types and their

managers exist to support the functions outlined in the Cronus Functional Definition IBBN 58791. They

include:

" Process objects and process managers that support the Cronus system and user programmable
processes. They may be linked together across the cluster, and connected through interprocess

communication to forn a user session.

" User identity objects and a permanent. user data base that support authentication and access
control.

" Directory objects and catalog managers that implement the global symbolic name space.

" File objects and file managers ihat provide a distributed filing system which can be used in

providing non-volatile storage for developing portable object managers, as well as for
satisfying application program data storage requirements.

" )evice objects and device managers that support the integration of i () devices into Cronus.

Much of the Cronus design has been decomposed into the subproblems of developing the Cronus
distributed object model and of designing the components which provide these basic system objects.

-13-
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3.4. Cronus Name Spaces and Catalogs

Cronus has two system-wide name spaces for referencing objects. The unique identifier (UID) for an
olject is the basic name. Unique identifiers are fixed-length, numeric quantities, intended for use by
programs but unsuitable for people to read, remember, and type. Tihe unique identifier has internal
structure which Cronus uses. but. is normally invisible to applications. It contains the name of object's
I "v aid tie imalm , of the host that geieraled it. h'le host name is useUl a% a hint for locating certain

objects which do not migrate.

The Cronus system also includes a global symbolic name space oriented toward human use.
Normally, the accessing agent would interact with the Cronus symbolic catalog manager to look up the
unique identifier for the object. After it obtains the UID. the accessing agent can then invoke operations
on the object.

3.4.1. Unique Identifliers

Although there i., no single ilentifiable cataog supporting the UID name space, tme notion of a

catalog for UlDs is a useful abstraction. This catalog will be referred to as the UID Table; in practice,

the functions that it supports are implemented by object managers for different object types by means of
UID-to-object-descriptor tables, which can be thought of as fragments of the UID Table. When a Cronus
object is assigned a UID a. itry is created in a UID table. This entry contains the information that the
manager needs to access the object.

The Cronus operation switch provides client processes with addressing based on the UID, so if a
client process has the UID, it can communicate with the object. The UID is a universal name that can be
used from any one of the hosts in the cluster to refer to the object, no matter where in the cluster it is
stored. Although it may not happen often in practice, objects may migrate from one host to another.
When an object is relocated in this fashion. its UID does not change. A replicated object also has a
single. unique identifier for client access to any of its images. Replicated objects may be developed out of
more primitive, non-replicated objects which are usually accessed directly only by the replicated object
manager

A Cronus unique identifier actually consists of a pair

[ UNO. Type .

where I'NO is an 80-bit unique number, and Type is a 16-bit value naming the type of the object. The
I'NO portion of the UID is uniquely associated with a particular object. All types are statically well-
known and manually assigned, in the current system. This can be adapted to support dynamic types at a
later time by using a portion of the 65,536 distinct types.

Each Cronus type has a generic name associated with it; this is a UID that has the type portion set
to the type of the object and UNO portion set to zero. Cronus generic names are used for a variety of
purposes. They act as class names in many of the places one would expect, particularly when an object is
being created. That is, the creation of an instance of a class is treated as an operation on the generic
name. In addition, the generic name is used when the system is interrogating the operation switch to find
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a manager for the type. Generic objects are also used when the operation applies to an unidentified

subset of objects, such as when all the objects of a particular type are searched to find ones with
particular characteristics.

The ,perat ion switch is responsible for identifying le process that manages objects of a particular
type. 1t does this by examining the type portion of the 1I L) name on which the operation has been

ink,.l rhese liatiagirs art, iivm-elves (Cronus proces. (Ibjects. whIich have lIll)s of type

("' Prinal Process and I'NOs selected when the process was created.

The facility that generates unique numbers may be regarded as existing continuously throughout the
life of a (ronus configuration, and is accessible to system and application processes. No two requests by
client processes for a UINe ever obtain the same IJNO. Hence the unique number generator is an example
of a ur'vable distributed program. The generator must be survivable, because Uil)s must be unique

over the lifetime of the cluster, and it must be distributed, because without it new objects canno be
created. so it cannot depend on any single host being up.

The I.NO consists of three fields: a HostNumber, a Hostlncarnation and a SequenceNumber. The
MI ..i Number is the Internet address of the host that generated the iNO. The SequenceNumber is

ol, relleiied for each request. The Ilostlncarnation is iicremoented if the SequenceNuiiber overflows its
ied. It is also incremented whenever a host is restarted. In order to assure that UNOs will never be
rereated if a host crashes, the Hostlncarnation is kept in stable storage, either on the host itself or on

se :re other host that supports stable storage ',, the old value will not be lost.

The INO size. SO bits. was derived from assumptions about the number of UNOs that could be
pf-nerated over the liftime of the Cronus implement at ion and the mean rate at which systems enter or

awi, lease a cluster. The current field sizes ill allow a mean generation rate of about 10,000 UNOs per

h,,st per second and a mean crash rate of once -very minutes for 100 years; these numbers are assumed
t be adequate for reasonable system activities.

3.4.2. Symbolic Names

'he principal design consideration f( r the symbolic name space is to make it easy for people to use.
\ames for Cronus objects are uniform and host independent Symbolic names are supported by a catalog
that provides a mappin between syrm)bolic niames arid the Ull). This name space is a tree, composed of
I .,., arid dirprted lah,,ed arcs I he base is e nod, call,-, tbe -oot, A complete symbolic name begins

Jillh the. piunrtiitin mark colon (). representing the root node, followed b. the names of the arcs,
,eparated b. colons. For examplh. :a:b:c is the symbolic name of an object. Nodes in the tree generally

r,,pre-pnt Cronus oFljerts Ahich hav, symbolic narns such as files and catalogs Nodes may also be

in bohr hnks to other ( atalog entries.

Not all (ronus objects have symbolic names, and those that do may have more than one. When an
,,ojiet is given a symbolic name. an entry is made in the Cronus Catalog, and when the name for an
oyort is removed, its entr,, is removed from the Cronus Catalog. The Cronus Catalog supports Enter,

L,,okup. and Remove operations. In addition, operations are provided to read and to modify the contents
of catalog entries.

-15-
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The catalog is distributed; different hosts manage different parts of the name space. The

implementation is logically integrated, however, so that any catalog manager process can be asked to

perform any of the catalog operations. Portion of the hierarchy may be selectively replicated to support

efficient or reliable access to different parts of the name space. The ('ronus catalog is described in detail

in Section 8.

3.5. The Cronus File System

The collection of all Cronus files constitutes the Cronus distributed file system. Within this file

system. Cronus supports several file types. The most basic file is a primal file, which is stored entirely

within a single host and is bound to that host throughout its lifetime. Other types of Cronus files are

built from primal files. A replicated (or multi-copy) file, which has multiple instances replicated across

('ronus hosts for increased availability or enhanced responsiveness, is constructed from several primal files.

Therefore. if a host contributes storage resources to (ronus. it must support primal files.

There is no single table that lists all file objects. Rather. each file manager owns all of the data for

Sthe file object.- it anageb. The Cronus object addressing facilitien make potsible a client interface itt

m hich knowledge of a UlD is sufficient to access the file regardless of its location. Clients may make file

placement decisions themselves if they wish. Otherwise, file placement is chosen automatically after

evaluating available files and file manager resources.

Ordinary read and write operations may be performed -r fic objects. The expected mode of access

to Cronus files is to transfer the file data as needed, much like conventional filesystem access to disk files.

Copies of Cronus files are made only to satisfy explicit user requests or to support other system

requirements. The design for the Cronus File System can 1c i"2,nd in Scrion 9.

1

3.6. Cronus Process Management

Primal prowesses are the simplest process entities. They are constructed from the process

abstraction that exists in the constituent host operating system. This simple form of process is used as a

* building block for the system implementation, minimizing integration costs for new Cronus host types.

Since primal processes cannot be loaded dynamically with user programs and lack flexible process control

functions,. they are tco inflexible t.o be used a- vehicles for general application , -ramming, but are used

as object managers and in other well-defined system roles.

Cronus processes have most of the features natural to the host on which they are built., and no

attempt is made to hide these features. An application builder has the choice of when to use locally-

supported features and when to use standardized Cronus features. To the extent that applications choose

to adopt Cronus process features. they will be better integrated with the other cluster processing

activities. On the other hand, the judicious use of local feaures will enhance the efficiency of the

act ivity. Cronus processes are described in Section 5.
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3.7. Device Integration

Special purpose devices, such as line printers and tape drive devices are important elements in a
system configuration. As Cronus objects, these devices are available ti the entire cluster through an
object manager. In sorie cases, more elaborate interfaces can provide an access path with specialized
features. For example, a line printer service, can be provided that supports spooling. I)evice integration

i' di"liussed it) Section 10.

3.8. User Identities and Access Control

Users are represented iv system objects, known as principals. A principal object contains data tha
describes the manner in which the user may use the system. This information supports operations such as

authentication and session initialization. The object manager for the principal objects and for other
access-related objects is called the Authentication Manager. The Authentication Manager component
services the entire cluster.

The purp, )r (Uronu- acce s coitrol is to prevent utiaul !!,.ried wrcS t ',, ('ris' ,ly -,r . T!. 1 .-

done uniforrtily l. associating an access control list (ACL) wit i each object. Access is then eithr gir-ntd
or denied based on the identity of the principal associated with the accessing agent and the contents of

the access control list for the object.

The operations of the Authorization Manager and the access control system are discussed in Section
7.

3.9. Process Support Library

The Process Support Library (I'SL) is a collection of functions, that may be bound into the load
image of a (ronus process.

IPSL routines are considered part of the Cronus system and are generallh ..upplied with the system
and triaintained by system prograTrimers. Thge PSL fills the following major roles: 0

1. It provides a convenient in -rface to Cronus operations.

2. It provides access to specie, Cronus features such as the facilities which generate (NOs and
structure messages. and to the elementary file system that underlies the primal file system. It

also provides a uniform interface to the interprocess communication facility. These features
are not normally accessed though the Operation Switch.

3. It provides COS interface and utility routines necessary to support the production of portable

programs. This includes format conversion routines and defines machine-dependent constants.
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3.10. Important Subsystems

Subsystems are components which use system-provided features to support user services. Two
IMportant subsystems in the initial implementation of the Cronus systems are the user interface and the
monitoring and control subsystem.

Tliv uiser may gain acce ss Io the systcni from dedicaeId terminal access concentrators, from one of

the shared hosts, or over the internet. The interactive processes which are controlled by the user interface
will be distributed across the cluster as required either by the application itself or under the direction of
the user. A discussion of the user interface may be found in Section 11.

The monitoring and control subsystem (MCS) makes it possible for an operator to monitor and
control the entire cluster configuration from a single console. The functions of the MCS include starting
or restarting parts of the Cronus configuration, monitoring its facilities and components, and collecting
error reports and statistics. The MCS monitors object managers and collects statistics based on a
functional decomposition across the Cronus configuration rather than a site-based decomposition. The
monitoring and control design is described in Section 12.

3.11. The Layering of Protocols in Cronus

The underlying support for the Cronus cluster architecture is a local area network. The Ethernet
standard has been selected for an inter-host transport medium within the initial Cronus configuration.
The Cronus design does not, however, depend directly on this, so later versions may use a different local
network. Furthermore, the design does use the DoD standard protocols at higher levels, and requires an
interface between them and the physical local network.

To accomplish these objectives, we have developed a Virtual Local Network based on DoD Internet
Protocol (IP) conventions and a representative set of local area network capabilities. The Virtual Local
network is an interhost message transport medium which is independent of the physical local network.

The Virt ual Local Network layer is described in section 14. It provides a primitive datagram
service. compatibility with Internet addressing, and independence from the details of the physical local
network. VLN datagrarns can be specifically addressed, broadcast, or multicast.
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4. Object Management

4.1. Introduction

In this section, we outline the Cronus object model and show how it is used to structure the kernel
,Ir  l i(e 0y,1 4'nI. °rli1  d1i5,( ,iSiI c(,islt, of the folhO)4 itig ehleii'ni :

" A short discussion of the object model in general, and of its relationship to Cronus objects.

" A general description of the basic objects that are included in the first implementations of
Cronus.

" The system primitives that Cronus uses to cause operations to take place on objects.

" The role of special processes, called object managers, in the implementation of objects.

" The mechanization of the Cronus primitives, and the role of the operation switch in this
mechanization.

" The definiition of y¢ereric operatiunb that are defined for all Cronu+ ubjectb.

" The structure of object managers.

In the course or this section, it will be necessary to refer to the characteristics of Cronus processes, and to
the methods of communicating between such processes. Those elements of process management and
interprocess communication which are needed for the understanding of the Cronus object model and for
the construction of object managers will be sketched in this section. while the details have been placed in
Sections 5 and 6.

4.2. General Object Model

There is a considerable and growing literature concerning object models and object-oriented
pr,)erannmling, and it is not our purpose to describe these methods in detail. On the other hand. the
.,,nceptual framework and terminology of object-oriented programming and system decomposition has not

full% stablized. and any system. like Cronus. that claims to use this methodology is actually selecting from
a range of ideas and applying them to a specific situation: in this case, to the design and implementation
of a distributed operating system.

The basic idea of object-oriented systems is that all interactions can. at some level, be described in
terni, of a set of defined opers'ions on objects. These methods are strongly associated with the
d,+"loprnent of the Smalltalk-80 system 'Goldberg 1983, but are also an outgrowth of work in the
manpuiation of data abstractions Liskov 1977 . 'Robinson 1977'. and recent developments in
programming languages. There are useful, brief introductions to the use of these methods in Jones 1978,
\\einreb 1991 and Rentch 1982
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At first glance, one might consider it enough to think of an object as an instance of a data
abstraction. If the internal structure of the data object is suitably hidden from the outside world and the
proper operations provided to manipulate the object, we can find out everything we need to know about it
and, equally important, nothing about how the object. is actually put together. This is a strong
application of the hiding principle of software engineering, combined with a set of methods to examine
and modify the part of the data object which is of interest to the outside world.

The object model is this and more, however. There are several extensions to this basic idea which
have been made in various systems. One of the most important is inheritance, which we will discuss
below. Another is the addition of objects which are more than instances of a data abstraction; for
example, in Cronus we have process objects as well as pure data objects.

In Cronus, all the objects which are alike in their structure and in the operations which they respond
to are members of a Cronus type (in other systems, this is often referred to as a class). Inheritance
describes a relationship between types. We can say that a particular type is a subtype S of some other
type T. In saying this. we are saying that an instance of the type S is like an instance of type T in some
important way. Usually this is described by noting that any operation which may be invoked on an
instance of T may also be invoked on an instance of S. This does not mean that exactly the same
proedure will be applied to exactly the same kind of entity. For example, all Cronus objects inherit the
properties of the basic Cronus object type CTObject. There are a set of operations defined on this
object, including Remove, which causes the object to go away. A very different procedure is used to
Remove a primal file object than the one which removes a user process. But there is some clear intuitive
feeling which we have of what Remove means if we think of primal files and user processes as objects.

It is worth noting that the inheritance relationship is rather different from the relationship which
one finds in composite objects. For example, the Authentication Manager supports the type CTGroup,
which is a composite object that is built out of principals (objects of type CTPrincipal, which is a
representation of a system user) and other objects of type CT Group. Groups are not subtypes of
principals, but are constructed from them. Some operations that can be invoked on a principal, such as
the ones which manipulate the group expansion list have no analogue in the definition of a group, and
make no sense if they are invoked on a group.

The following are the basic object types that constitute the initial implementation of Cronus:

('T_Object: This is the most basic type, and the generic operations that create and remove
objects and maintain the access control lists and object descriptors are defined for 0
objects of this type. In Cronus this is an entirely abstract form, and there are no
instances of objects of type CTObject.

CTlHost: The Cronus system is made up of a series of hosts which provide services for users.
This object has a process component that creates and manages the primal processes
that. in turn, actually perform the services and manage the other objects of the system.
The CT Host object is sometimes called the Primal Process Manager for the host,
because that is its most visible function. The CT _Host object is closely allied with the

operation switch, which is used to implement the invocation of operations on objects.

CT Primal File: The initial implementation of Cronus supports files which are bound to a

specific host. All ordinary user data is stored in objects of type CT PrimalFile. In
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addition, a number of other object types are constructed from primal files.

CTDirectory: The Cronus catalog is formed from a tree of objects of type CTDirectory. The

internal structure of each directory is.entirely hidden from the user by the Catalog

Manager.

CT Principal: A principal is time system's represeni.ati,,n of a user or a systen service which
requires access to some other service or object manager. The access control system
depends on identifying the objects of type CT Principal which are permitted to carry
out an activity.

There are a number of other object types which are associated with the Catalog Manager (such as
CT SymbolicLink) and with the Authentication Manager (such as CT Group), but the system could

function without them.

In object-oriented programming, a client invokes operations on an object, often called the receiver,
which is identified by a UID, ObjectUIRJ. The operation itself may be represented as a pair

< 0perationNanie, Parameters>

In Cronus the basic primitive which causes an operation to be invoked on an object is Invoke. This causes
Operation to take place on the object named by UID. The operation switch of the Cronus kernel provides
for delivering the request to a manager for the named object (see Section 4.5).

While the primitive Invoke is sufficient to support the system, the relatively large number of reply
messages suggest that there should be a more efficient method for answering a request . A second
message primitive, Send is provided for this purpose. When a message from a client is delivered, the
process UID for the client is included. The manager may then use Send to reply directly to the client.

In a distributed system. the client does not usually know which host has the object manager which

is responsible for a particular object. To allow objects to be dynamically located, there is a particular
operation. called Locate that is among the operations defined for every object in Cronus. When this
operation is invoked on the object I ID at a particular host Address, the object manager for that type will
reply if it manages that object .

If the client does not specif' the host when invoking the operation. the Cronus kernel performs the
required Locate operations to dei .rmine where to send the operation. These Locate operations are often
performed using the broadcast fa ilities of the VLN. The kernel or the client may cache locations of
specific objects and object manat -rs for increased efficiency. In addition, primal objects, which are bound
to the host which creates them, can be found quite easily host address portion of the UID contains the
address of the host which generated the UNO portion of the UID. For the current implementation, the

3'There are a few cases in Cronus where objects are identified by other means, for example, a specific catalog entry
may be identified by the symbolic name which is being manipulated. The argument presented is analogous. so it is
sufficient to consider the cases where the object actually has a UID.4If Invoke is aU that is available, the reply must be passed through the process manager for the process to which the
reply is directed. Send allows the reply to be routed directly to the client by the Cronus operation switch.
5ActuaUy, if the client wants the negative acknowledgement, it will also reply if it. doesn't manage the object.
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UNO is generated on the host that creates the object, and that also currently holds the object if it still

exists.

Subtype relationships are not a primitive concept in the implementation of Cronus. There is no

direct implementation of inheritance; there is, instead, a discipline which says that the manager of each

subtype must implement the inherited operations. In addition to simplify implementation of the inherited

olpera.ions (which is used for the generic operations), there are several slalic implementation techniques

that achieve inheritance. A manager may register several type values with the operation switch, and

implement some as subtypes of the others internally. Alternatively, one manager may invoke another

through the standard mechanisms.

4.3. Object Naming

The Cronus object model requires a mechanism for delivering messages addressed tc objects. This

mechanism, outlined briefly in Section 4.2 and described in detail in Section 4.5, is cafled the operation

switch. The operation switch, in turn, requires the client to identify the object which is being modified or

exasimied. The standard identifier for an object is its UID, which is a bit-string containing 96 bits. This

bit string consists of two components: a unique number (UNO) that is different for each object which has

ever existed in the cluster, and the Cronus type. It is useful to think of the UID as having four fields:

HostAddress: the 32-bit Internet address of the host which created the object. If the object is a

primal object, the HostAddress is also the actual address of the object, if it still exists.

IncarnationNumber a field containing an integer which is incremented whenever the host is

loaded or reset, or when the associated SequenceNumber field overflows.

SequenceNumber: a simple counter field which is used to assure the uniqueness of each UNO

that is used to name an object.

CronusType: the 16-bit integer specifying the-Cronus type of the object.

letween them, the IncarnationNumber and SequenceNumber fields contain 48 bits, but the subdivision of

this string may vary from host to host; for the hosts in the initial implementation, each field is 24 bits

long.

h should be observed that the object is actually identified uniquely by the UNO portion of the UID,

and that the Cronus type is added so the operation switch can find the object manager. In particular, it

is possible to think of an object , having more than one UID. consisting of the same UNO paired with

different types. The current system does not make any interesting use of this possibility. 0

There are also generic (or logical) names, which consist of a zero UNO and a type field specifying

the type of the generic name. Specific names are used for objects which can be created and destroyed,

and have private state information which is important to the accessor (e.g., a particular file). Generic

names are used for special purposes. For example, the client can find out if there is an object manager for

a particular type on a host by invoking Locate on generic name. Generic names are also used in

operations. like Create, in which there is no object name available; the generic names act like class objects
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in other object oriented systems like Smaltalk, or like the generic addressing facility in NSW's MSG.
which is used to address an instance of a service.

Operations applied to generic names may specify a particular host. The ReportS'tatus command can

be invoked in this way to request the status of the manager of the given type on the specified host. The
C'reate command, used this way. would create an instance of the given type on the specified host. When

Ihe honst is wot specified. Ilie managers may consult % it h each ot her awl u.se resource 11anagement ;silicy

parameters to determine where the operation should be performed or where a new object instance should
be placed.

Accessing agents interact with object managers using Cronus Interprocess Communication. The

client may initiate access by giving either the UID for the object or by giving its symbolic name. The

PSI, provides functions which will accept either name. If the accessing process has the UID of the object,
the PSL simply constructs a message that invokes an operation upon it. The operation switch delivers the

requested operation code. the UlID, and any other parameters to the appropriate object manager. The

object manager consults its fragment of the UID Table to access the object as necessary to perform the

requested operation. If. on the other hand. the accessing process does not have the UID, the PSL first
consults the Cronus catalog; then. when it knows the associated UID, it composes the message and sends

it o, itb way.

This means that we allow the symbolic catalog to be by-passed when an object is accessed, and the

accessing process knows the UID. This improves performance and enhances the flexibility of using
primitive objects to build complex objects, since the object manager for the complex object can use the

UlDs of its components directly. The cost of achieving these benefits is primarily one of increased
implementation complexity:

I Access control is performed in a decentralized fashion by all of the object managers.

2. Information about objects is distributed among object managers and catalog managers. Care,

must be taken to ensure that the information about an object is consistent, or if it is not, that
the system can operate properly.

4.4. Generic Operations On Objects

The generic operations are defined for all system objects. These operations fall into several groups:

Create and Remove: These bring an object into existence and destroy it. The operation Create
is invoked on the generic name for the object These operations must be defined for all
objects

Locate: If the object exists and is managed by the object manager which receives the message,
the manager replies that it knows about the object. This operation must be defined for

all objects.

ReadACL and Writ-A( L. These manipulate the access control list of the object. These
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operations must be defined for all objects which are separately access controlled. There

are a few objects whose access is controlled through another object. For example,

objects of type CT Catalog Entry are controlled through the permissions on the

containing object of type CT Directory.

ReadSysParms, WriteSysParms, ReadUserParms, WritellserParms: Every object has an
a-Sociale.dl oblject descriptor. The object (lescrilpt.or cntains various pieces of

information about the object that are made visible to the outside through these Read
operations, and may be modified by the Write operations. Access is controlled
separately for the User and Sys portions of the object descriptor.

ReportStatus: This operation is normally performed on a generic name associated with an object
type. For example, ReportStatus is invoked on the generic CTPrimal File to find out
how much space there is available on the associated file system.

For some operations, such as Create, the exact list of parameters and responses will vary from
owbject type to object type. Other operations, such as those which operate on the access control list,
perform in the same way for all object types. For details, see the appropriate sections of the Cronus
I Ner'., iianual, especially object(3), acli3). the descriptions of tie ulject below and in Section 3 of the
Cronus User's manual, and the descriptions of the PSI. routines in Section 2 of the Cronus User's Manual.

4.5. Object System Implementation

In order to describe the design of the operation switch and its role in message-oriented interprocess
communication, we must briefly introduce Cronus processes (the Cronus process is described in detail in
Section 5).

Cronus processes are constructed from constituent host processes (CHPs). The properties of a CltP
are defined by the machine architecture and the constituent host operating system (COS). The Cronus
process is constructed from one or more CHPs. with the addition of Cronus process features. The
simplest type of Cronus process is the primal process (PP). A primal process is a CHP which can invoke
o~perations on objects through the Cronus Interprocess Communication facility and can be controlled by
the Primal Process Manager. In addition, a primal process can use the Cronus primitive Receive to
receive messages sent through the Cronus IPC by either Invoke or Send.

The implementation of Receive employs CHP-specific synchronization facilities to build an
asynchronous Receive operation.

This section describes the framework of the object system implementation on Cronus hosts. Figure
4.1 illustrates the relevant components on a single host. The boxes in the figure represent abstract
mtodules of the implementation. and do not necessarily map one-to-one into CHPs or address spaces.
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In Figure 4.1. boxes 1-4 are Cronus process objects: box 5i is t he operation switch, which accepts

messages from and delivers messages t~o the Cronus processes on this ho.5t.; box 6 Is the 11) protocol

demultiplexing service;, and box 7 is thc Virtual Local Net-work layer.

The operation switch is table-driven. This table con? alins routing informial ionI hat t he opera? ion

switch uses to direct messages fromi process to process. .Thc sender and receiver may both be on a single

host, or the message service riay be involved in a host-to-host miessage transfer. Thie opera? ion switch

does not retain informvation about the messages, although it Innay gather statist nes and traiistoit t hemt to

the Monitoring and Control System (see Section 12).
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apliIieul it a sI Pec Ilic host a (I (Iress, a failIure of a n opeirat Iion iuocat I ull is fmiuI I kel I t, Ieo ( jit(e Io a tranisuil~

C1.rliiiiil1r;Iiu 1u0l1 fault,, % Jib iliI jprib[ulil % either thev iiet ~ork or I lie i artgi liue(t or luuutli, atre (lowlAi (see

C)i uu for it let ailed de'.crlutioii Jf Ilic If'(, iind these services).

TIhe Miv(wajtiiin sequence fo~r aim operpi loion is:

- Thle Crn gas IProcess Su Pjl~u;rI .Li rhrv (I'Sl,), whiachI is the coi pmieit. oif the system that

applears within the clienit rcess, formats a incssage which contains the name or the object,
the operation, its parameters, and ot her information which is needed by the system.

- Thie nilessilge, which is mrarked as an invoication orfLife operation, is handed to the local host's
iulperalili switchl. If llistAddress specifies the locral host, it processes the message itself;

ouf herwise, it forwards the mnessage to the specified] host. When no specific host is indicated the
(uleration switch will issue a Locate to find a mnanager for the specified type and route the

request,.0 one of the managers that reply. (These function,. are directly supported by the

Cironuis Interprocess Commnunication facility, which is described in detail in Section 6.)

*The receiving operation switch examines the Object hID, determines the type of the object,

anid hands it. to the ohylct manager for that type, if there is one. If the receiving manager
suppVorts resoiurce management, it may con~uilt with other managers, and choose the one best
suited to perform the request.. If t0- -! iager itself is best stilted to handle the message it will
do so without. any additional transA- ,)ns. Otherwise it will forward the request to the

selected manager, indi'cating ,a: .ne selected manager should perform the reqiAest without any
additional consultation.

" The object manager for the object type then performs the operation indicated by the operation
and its parameters.

" Although it is not necessary for an operation to follow a request-reply paradigm, most do. If a
reply is needed, the object manager prepares a message that is returned using the Send
primrnit ive.

Figure 2 illustrates the transmission of an operation from the invoking process, through the local
operation switchI, to thle remiote oileraiini switch, and finally to the receiving process. This section

------ 1 --- 2 ------- 3-----------

IInvoking I--I Local II Remote I --- >1 Receiving I
IProcess 0 S 0 S I I Process

Operation Switch Interfaces
Figure 4.2

describes the calls and the representation of data structures at the interfaces 1, 2, and 3.

.26-



DDN Laboratories Inc. Report No. 5884

When the client performs an Invoke primitive on the Cronus object, a message is generated that is
ultimately directed to a manager process and accepted by a Receive in that process. Information crosses
interfaces (1) and (3) by means of Cronus system calls, which are representations of the primitive
functions. niade by the invoking and receiving processes; these calls may be represented as:

I,voke(Targt Address,Object 1 lD,Olperation)

Receive(Source Address.SenderUID,ObjectUlD,Operation)

where the function parameter Operation includes both the intended operation and its parameters.

Interface (2) is peer-to-peer communication between operation switches, which is discussed in
greater detail in Section 6. Messages exchanged between operation switches are octet sequences. The
Operation parameter of the Invoke call is not interpreted by the operation switch, and is treated simply

as data to be moved. The message has several header fields that are visible to both operation switches:
these include the UID of the object being operated upon (ObjectUIl)) and of the client (ProcessUID).

Wheni the Invoke tiessage arrives at the target host, Ihe operation switch trie to ninap the type to a

manager process on the host. The table of possible destinations consists of a list of generic UIDs for
....dinar,, rmnager and specific UJDs for objects which are managed separately 7. The operation switch

first checks the ObjectUID against the list of specific UJDs, then the Type field against the list of generic
lIDs. If the mapping is not successful, the invocation is discarded, but will generate an exception reply.
If the mapping is successful, the message is transmitted to the manager process. The manager obtains the
information by initiating an ordinary Receive request; when the Receive completes, the SourceAddress,
InvokerUlD. ObjectUID and Operation have been made available to the manager process.

Alth,,gh one can reply by invoking the Send operation on the object ProcessUID, replies are
u',ially s-nt by means of the alternative Send primitive. This primitive hands messages addressed to a
specific process across interface (1). The operation switch then marks the message which it ships across
interface (2) as a Send message. The receiving operation switch then places the message on the queue for
the target proces-s. bypassing its object manager. The-mechanism for delivery, Receive, is independent of

the transmission mode of the original message.

GS

1
I'he tailing sequences for these functions have been modified for purposes of presentation clarity; see the Cronus

User's Manual send(2) and receive(2) for a description of the actual alling sequence.
7 Currentl.%. the oniy example of such a separately managed object is the virtual terminal in the user interface (see
Section II).
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4.6. Object Manager Structure

Object managers are asynchronous independent processes. They are asynchronous because the),

interleave the processing of messages. An object manager often invokes operations on other objects to

satisfy the requests it receives; it does not wait for the reply to such a request, but moves on to the next

request or reply from a previous operation. They are independent processes because they are daemon

frvcese which are stared by Like system (or its rim ,ai(oring and cotitrol sectio) or by allother daeiiion

process. They receive messages, originate requests to satisfy the client requests, and reply to the original

messages.

The asynchronous character of the object manager has a significant impact on its structure.

Managers receive messages which cause them to undertake actions. These actions may be of two types.

The first type occurs entirely within the manager's own address space (or within a single Cronus process

that tnay consist of more than one COS process), and is called a local action. The second type requires

the manager to perform one or more operations, called secondary requests, on objects that it does not

manage. It must be able to keep track of a number of these actions. On the other hand, the manager

cannot wait for the response from a secondary request before it accepts its own next request. The

processing that comprises the operation is divided into portions that are performed before and after the

secoiidary request is issued. When the manager issues the secondary requesL, it saves cuiiiponent.s of its

state that are needed to complete the processing when the reply arrives.

There are a number of common elements in the construction of object managers. Cronus manager

development tools assist in the development of managers by producing code for these parts of the

manager. The developer provides a simple specification of the type and its operations, from which the

code is automatically generated.

A manager normally consists of an initialization section and a main loop which is driven by

the arrival of requests through the Cronus interprocess communication facility. Since a

manager normally runs forever (until the system crashes), there may not be code for wrap-up.

The manager parses incoming messages, and dispatches on the message class, which takes on

the values Request, Reply, and InProgress. -

A neA Request message causes the manager to set up a control block for the operation.

A Reply message causes the manager to identify the control block associated with the message.

and to continue processing a required by that message.

In the case of a local action, the manager receiving the message will (normally) process the request

to completion and compose a reply to the originating process.

If a secondary request is necessary, the situation is similar to that found at the originator. A

request can be put into the form:

init ialPortion

Op(Obj) -> Reply

Post Processing
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That is, a secondary request is-basically some operation (Op) on an object (Obj) which generates a Reply.
Before we invoke this operation, we usually have some initialization beyond composing the miessage

(InitialPortion) and after we get the reply, we often need to do some PostProcessing.

The procedure that invokes the operation also creates a control block that. cont ains the information

required for reply processing. After it passes the invocation to the IPC mechanism, it returns without

ka itliig. The manager then processes the next 1P( rivssag,' (which may be a Heply from a s,condar)

request, or a new Request), if there is one available. Otherwise, it. goes to sleep until the next message

arrives (see Section 6). When a Reply for a secondary request arrives, the manager finds the control block

associated with it, and performs the reply function. When the reply processing returns normally, the

PostProcessing routine is invoked if the message is marked OK. and an alternate error-handling routine is

invoked if the message is marked NOT OK.

The independent character of the object manager principally effects the way errors are handled.

When a process is interactive, it makes some sense to report the error to the user. If an independent

process detects an error condition. it may be necessary to report the error t.o the client that issued the

request, to the monitoring and control station (MCS, see Section 12). or to both. In addition. Cronus

managers keep statistics on the kinds of errors which have been detpcrV and report them to the MCS
lieriodically.

A manager that encounters a failure during an operation, particularly when there are secondary

operations involved, must take steps to assure that the information which is retained across host crashes

(the permanent state of the system) and any internal status information (the temporary state of the

system) are correct and consistent. 0

-
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5. Process Management

5.1. Introduction

Processes are the active portion of any system. Each host and constituent operating system in a
('rnu, clus ter has a[ )easl ow3e nal ira) coincept oif Ihw prorr.s. Ni ire gen('rally, several different, kinds of

processes are present in each host, fulfilling different roles. In the absence of a distributed operating
system, the processes on two hosts are unrelated to each other. This section describes how Cronus
processes work and how they communicate with each other. In the following discussion, it is usually safe
to visualize a Cronus process as being built from a single Constituent Host Process (CHP) with the
addition of an object descriptor and some specialized facilities which make Cronus work. On the other
hand. the implementation might be quite different in reality. That is. a Cronus process might be made up
of several CHPs, or a CHP might include more than one Cronus process

If we wish to build a system of cooperating processes on a cluster of computers, and to use it as a
base for a distributed operating system, we must do the following:

S)efine a standard method for communicating among the processes. Cronus treats processes as
objects, and uses the standard Cronus IPC facility and the primitives Ineoke and Send for all
interprocess communication. All procedures developed for structuring and parsing messages
for operations on objects, such as those described in Section 6, may be used for manipulating
process objects as well.

" Establish mechanisms for creating and controlling processes on hosts of different sorts. Again,
since Cronus processes are objects, this reduces to the definition of the operations which may
validly be applied to the process objects.

" Provide a method for organizing the process objects to perform tasks. This is accomplished by
defining other objects which reflect the required organization. The collection of processes on a
host. for example, is represented by an object of type CT Host. which will be described
below.

The following Cronus types are discussed in this section:

* ('T Host: the organizing object for the primal processes associated with a physical host.

U (T Primal Process: the most fundamental type of process. Object managers are normally
constructed from processes of this type.

There is one object of type CT flost associated with each physical host, and it is the object manager of

the processes ,f type CT Primal Process on that host. It is responsible for starting up Cronus services.

which are also object managers for the basic system objects; it is also responsible for gathering the

"In fact. a Cronus process might even span hosts. In the current system design, al Cronus process are primal
processes: that is. they are bound to a single host. Later implementations may relax this restriction.
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information which the operation switch needs 1.o route messages to the other object managers and to

specific processes when the primitive SendToProcess is used.

Primal processes never migrate; once created, the process remains on the same host until it is

destroyed. The llostAddress in a UID for a primal process tells where the process is, so an operation

switch can tell exactly where to deliver a message addressed to it.

Every host participating in the system must support an object of type CT Host, which is also

referred to as a Primal Process Manager (PPM), and primal processes. In their minimal forms, the host

object and primal processes are relatively simple. This keeps the cost of integrating a host type into a

(Cronus cluster low for those minimally integrated hosts that can obtain system services from other hosts,

but do not provide system services.

A collection of primal processes which play a well-defined functional role within the system are

collectiviely called a Cronus serv'ce. For example, the Primal File managers form the Primal File

-ervice: the Primal. COS and other subtypes of CT File, form the Cronus File Service.

Cronus processes may. make use of some or all of the functions in the Process Support Library

IPSL). which pro ,ides high lev el interfaces to iiiany system fuiictions as well as general purpose utilities

for interfacing to and manipulating the Cronus environment. Portability is a major goal for the PSL, so

that it can be implemented readily in whole or in part on new host types. The PSL is discussed further in

Sect ion 5.4.

5.2. Objects of Type Host

The basic organizational elements of Cronus arc objects of type CT Host. These objects correspond

to the intuitive physical hosts that make up the Cronus cluster. A CT_ Host object consists of the the

Primal Process Manager for the host and the bask tabies which are used by the operation switch in

routing operation invocations. In some sense, itr is reasonable to think of the operation switch itself as a

part of ("Il Hos:. When a host joins the ',ronus- network, only the lowest level of network software is

funlioing: the Monitoring atid (Controi Sys en (See Section 12) engages in a dialogue with this primitive

hi,! element. and brings up the object ('T Host. The MCS is therefore the object manager for the

objects of type (.T Host.

The Primal Process Manager (PPM) component of a CT Host object implements operations

concerning primal processes as a class. The tables that identify the object managers and processes that

are on a particular host. and that therefore are used to implement the Cronus primitives Invoke and Send,

are maintained by the Register and Delete operations on the CT Host object

In addition to the generic operations, the following operations are defined on objects of type

CT Host:

(ron usRestart

ListService

ListProcess

Register
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Delete

The Cronus Restart operation is used to terminate all activity on the CT Host object. It removes

all active processes, including the process implementing the CT Host object itself. After a Cronus

IHestart. the host is in a state from which it may be bootstrapped.

The l,istSer, ice operation is used L.o find oul what kinds or service Lihe host is prepared to su pport,

and which ones are in fact being supported. The names of these services, which are called role 3
designators, are used to start primal processes that perform the service (see Section 5.3).

The ListProcess operation tells what processes are active and what roles they are playing; this is the

information which the operation switch has about processes active on this host. Whenever a process is
created or removed, the tables must be updated. These tables contain the following entries:

" generic names for objects paired with the specific UID of the Cronus process;

" specific UlI)s for process objects that will receive messages through Send and

. specific UIDs for those objects whose manager cannot be identified by reference to a generic

name (see Section 11).

The tables also contain any COS specific information needed to communicate with the process. They are

automatically updated for processes which are created by the CT_Host object itself, such as the object

managers. Processes created by other managers inform the CTHost of changes through the Register and
Delete operations.

5.3. The Operations on Objects of Type Primal Process

Objects of type CT Primal Process are among the most basic in Cronus. The three system

primitives (Invoke. Send, and Receive) are defined for-these objects. In addition, the generic operations
are defined. The particular characteristics of these operations, when invoked on primal process objects,

are described in detail in the Cronus User's Manual.

The Create operation takes a role designator as an argument, and starts a new primal process

performing this role. The role designator may be in one of the following forms:

1. A Cronus generic UID name for the service.

2. A Cronus symbolic service name. These are character strings containing the literal characters

of a logical name, for example "PrimalFile".

3. A host dependent role designator. These are arbitrary strings, which have meaning only to the

PPM on a specific host.

Role designators of kinds (1) and (2) are paired, and are registered with the Cronus systemn administrator
as the names of standard Cronus functional units. The allowable list of role designators of these kinds for
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a particular host object may be obtained by invoking the operation ListService on the object. These

primal processes are automatically registered, which makes the logical name known to the operation

switch on the host, so that the process can be generically addressed.

Designators of kind (3) provide for the activation of host-specific programs or devices. The host

dependent role designator might be a COS-dependent file that is executed as a result of the Create

olmration. Primal processes created with a host-depeiideni r'Ie designat or generally have no associated

logical name, and cannot be generically addressed.

The primal process will initialize its state entirely from non-volatile storage (local or remote disks).

A process may invoke any operations on itself as the target object. A process may send itself

messages, remove itself, or read or change its descriptor in the same way it performs these operations on

other objects.

The operations defined on primal processes provide process control functions. For example. Remove

is invoked to "destroy" or "kill" the process. It erases all record of the process state from the system and

frees any resources dedicated to the process.

A process which is removed is not notified of the operation. and has no opportunity to terminate

cleanly. Only the resources actually used to implement the process object are freed; resources held as a

result of the computational activity of the process (e.g., locks on remote files) are not freed. Some primal

processes may possess dedicated resources, and Remove disables the process, without releasing these

resourc es.

A reply will be generated to the invoker to indicate that the process has been removed. After

receiving the reply, the invoker knows that operations using the UID of the process will not succeed.

The process descriptor is the obj ct descriptor portion of the Cronus process. It is useful to think of

the process descriptor as a list of (ke: , value) pairs, in the sense of the MSL (See Section 6.2). Some of 0

the values implement process control For example, the pair (Key_ Priority,5) would indicate the

importance of a process relative to ,t her processes for rompeting resources. Some keys must be present in

the list ("required keys"). while oth,-rs are optional.

All process objects must res, ond to the required keys in a uniform way, If an object supports a

standard optional key. the proces must apply it in a uniform, system-wide manner. Additional, elective

key.s may be present. Their intf pretation is not specified by Cronus, but is the respinsibility of the

process and the other processes , ith which it interacts.

Currently, the required keys for Primal Processes are Key_ MyIJID, Key- MyAGS. and

Key IPCEnabled.

The value associated with Key MyUID is placed in the descriptor when the process is created, and

is never changed thereafter. It is the specific UID of the process, and has type CT Primal_ Process (or
CT _Program_ Carrier, in the case of program carrier objects).
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The value of KeyMyAGS is the access group set, used with access control lists to determine access

rights to objects at operation invocation time. The initialization and use of access control and

authentication data is discussed in detail in section 7.

The value of KeylPCEnabled controls communication through the operation switch. If the value

is true. the process can send and receive messages in the normal fashion. If it is false, the process may

lint send or receive messages, or invoke op~erat.ions ,i ('romlus ob-ct s. This feature can be used for

managing access to network resources.

Currently, the only optional key defined for a Primal Process is Key Priority, but others may be

defined later.

The generic operations on object descriptors permit a process to inspect or modify the descriptor of

another process. If several processes invoke these operations on another process at the same time, the

effect will be as if the operations were processed sequentially, i.e., they are atomic with respect to each

other.

Since the CT Host object is implemented by a Primal Process, these process control operations

app l to it. One of the operations, Remove, has a special meaning when applied to Lhe CT_ lost.

Hecause it is the manager of Primal Processes, removing the CT Host removes all Cronus processes on

the host. This forces a shutdown of the Cronus system on the host.

5.4. Process Support Library

The Process Support Library (PSL) is a basic part of the Cronus implementation. It contains a

large number of functions which can be used to construct Cronus object managers and user programs. All
Cronus programs are expected to use the PSL to perform the functions which it supports. The

distribution of responsibilities between the PSL and the Cronus kernel is often not defined, and may shift

fron implementation to implementation. Any program that bypasses the standard PSL interface, and

makes use of private information about this division is no longer insulated from modifications of the

detimitions of the objects, object managers and the kernel, and the use of such a program may produce
unexpected results in the future.

The following is a partial list of the kinds of functions which one may find in the PSL:

A set of standard interface routines for all operations on the basic Cronus objects. There are

two sets of interface routines: those which are designed for use with managers and other

asynchronous programs, and which do not wait for the response from an operation; and those
which are intended for use in interactive programs, which do wait for a reply if one is

expected.

Functions supporting composite activities, such as writing data on a file specified by a

symbolic name.
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"Functions supporting the 'construction of Cronus object managers. These include routines for

manipulating UIDs and UlD tables, for managing the processing requests and their responses
in asynchronous processes, for creating and modifying work-in-process and intentions lists.

" A standard error reporting facility for both asynchronou.s anld interact ive processes.

" Sublibraries for message composition, string manipulation, portable input /output operations,
511(1 device ilia iiageliiell

The PSL is described in detail in Section 2 of the Cronus User's Manual.

0

0
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6. Interproeess Conmunication and Messages

6.1. Overview

Cronus presents a set of facilities for the composition of messages and their transmission to provide
a sys(,tmatic C(Oiliiiifiicalill fiicilit aniong Cronu pr(kwesses. There are I hree parts to this

coin munication support:

• An interprocess communication (IPC) transport facility, based on the object model and
object-oriented addressing, provides Cronus primitives for uniform, host-independent

communication among processes. This facility, which was introduced in Section 4, is further
described in the current section. 0

" Conventions for passing data using Cronus canonical data types permit messages to be

composed without concern for the heterogeneity within a cluster.

* Protocols and conventions for constructing messages used in intercomponent interactions,

especially the invocation of operations and the replies.

The Message Structure Library (MSL) organizes these conventions and protocols by providing routines for

the composition and examination of messages.

The IPC mechanism of Cronus is built upon the primitive functions Invoke, Send, and Receive.

These primitives support the asynchronous communication of uninterpreted data octets among Cronus
processes, by means of the abstractions of sending to a process or invoking an operation on an object.

Messages, the entities communicated by the IPC, may be sent either reliably or with minimal effort.

In addition, notions of both a small message which can be carried by a single datagram on the underlying

transport mechanism, and a large message which may require an arbitrarily large number of datagrams O

are supported, although this distinction is hidden by the IPC library routines. Messages may be sent and

received all at once or in pieces. The size of the chunk of data manipulated is independently selected by
the sender and receiver. Large messages of indefinite size form the basis for interprocess stream

communication.

The Message Structure Library (MSL) is used to format messages, but is independent of the IPC.

It provides a mechanism for inserting and extracting typed, structured data into a message buffer in a

position- and machine-independent manner. Associated with the MSL are conventions, called the Object-

Operation Protocol, for the patterns of communication that arise in performing operations on Cronus

objects.

The IPC and message structure facilities, and their relationship, will be discussed in the following "t

sections.
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6.2. Messages in the IPC

The IPC facility supports two classes of messages: reliable messages and minimal effort messages.

A message sent reliably will be delivered to the receive queue of the addressed process
(or the manager of the addressed object on an Invoke) despite transient failures in the
C"oiiiiiinication substrate. A relialee riiesage, will I delivered at most once.

Minimal effort messages are transmitted with whatever reliability characteristics are
provided by the communications substrate. The IPC facility does not attempt to

provide a sending process with information regarding the disposition of the message.

In both cases, the message is protected by an end-to-end checksum, so if the message is delivered, the
content may be presumed to be correct.

The sending process may use minimum effort messages whenever it seems appropriate. The current

implementation uses them for all messages sent to a broadcast or multicast address.

Messages may also be categorized by length. A small iessage will fit into an IPC packet
throughout the cluster. The maximum size of a small message is implementation dependent, and in the

current system is about 1500 bytes. A large message may have a length set at the time the message is
initiated, or the length may be indefinite. Minimal effort messages are constrained to be small, while
reliable messages may be small or large.

A large message may be of any size. although they are generally larger than the small message limit.
and the PSL automatically selects a small message for messages below the limit and a large message for a
message above the limit

Messages of indeterminate length support Cronus streams, which are uni-directional data channels
between a source object (sender of th,' message) and sink object (receiver). Cronus streams are used to

interconnect processes with devices arid with other processes. Although data flow on the stream is
unidirectional, the implementation of a stream involves transmissions in both directions: from source to
sink containing data. and from the sink to source containing flow control and synchronization

information.

One objective for the IPC facility is to minimize the distinction between small and large messages.
In particular, the content and str lcture of the information contained in a message, and any information
about a message that is delivered to a recipient (e.g., size. source, etc.) is independent of its transmission
characteristics. The sender of a nessage indicates whether or not the message is to be transmitted

reliably, and its length. if it is of bounded length. The receiver need no( be concerned with these
characteristics of the message.
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6.3. Programming Interface

The programming interface for the IPC provides facilities needed to invoke operations on objects,

send messages to processes, and receive messages from clients. Many application programs will be written

in terms of higher level routines which may be found in the PSL. The interface described in this section is

primarily of interest to systems programmers who are developing and maintaining object managers and

IPSL routines.

The interface provides direct support for the Cronus primitives (Invoke, Send, and Receive), for the

full range of message types (reliable small, minimum effort small, and reliable large), and for various

buffering strategies that the sending or receiving process might wish to adopt.

When a process invokes an operation on a Cronus object, it uses the PSL function Invoke; when the

message is transferred by the Send primitive, the process uses the PSL function Send. In either case, the

process indicates the size of the message being sent, whether it is to be sent using reliable transmission,

and points to a buffer which contains the information which is currently available for transmission. The

buffer may contain the entire message or any portion thereof. The IPC accepts the information for

transmission, and returns a small integer, called the message handle. If there is more information to be

sent, a new buffer ib given to the SendMore function, along with the message handle. Finally, the

message is completed by applying the LastSent function to the message handle.

The operation switch on each Cronus host provides buffering for messages and synchronization

between Cronus processes. Buffering and synchronization are closely related, because buffering in an

intermediary influences the synchronization points between processes.

The sending functions accept the message if it can be queued somewhere within the IPC

mechanism. It can be in a host-dependent transport mechanism between the process and the operation

switch (see Figure 1), on the "receive queue" of a Cronus process (if it is an intrahost message), or on the
"network queue" of messages waiting to be transmitted (if it is an interhost message). If the message

cannot be queued immediately, it is refused by the IPC, and the sender is responsible for any required 0

recovery.

Even if the message is accepted, the IPC does not report that the message has been delivered or

that delivery can be assured. The only way the sender can be assured that a message has been received

by it is to wait for a reply from the intended recipient. Cronus managers respond with at least a

ReplyCode whenever an operation is invoked on an object. User processes should normally observe a

similar protocol. since lower level protocols cannot assure delivery of messages.

The receive queues are maintained in FIFO order; the network queue is a group of FIFO queues,

one per destination host or process. Entries on the receive queues are delivered to client processes to

satisfy Receive requests, and entries on the network queue are transmitted to remote operation switches, S

where they are placed on the proper receive queues.

When the receiving process is prepared to process new data, it executes the Receive or ReceiveMore

function. Each new message is started with Receive, and if the entire message is not available, or cannot

fit into the buffer that has been given to Receive, more of the data can be read with ReceiveMore. Both

functions return immediately with the data, if any, that is available.
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The buffering strategies in the two communicating processes may be different. The sending process
can. for example, send the entire mess&&y'. in one piece, and the receiving process may choose to receive it
a chunk at a time.

The IPC also provides functions which give the client control over the message queues, the basic
timeouts; which control error handling, and the processing of asynchronous events. These functions
include:

WaitForChange suspends the process until an interesting event occurs. Typically, this will be
the arrival of another message or more data for a message which has been partially received.
Other interesting events include timeouts and events which are unrelated to the IPC
mechanism
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- Abort.Message deletes a message from the queue without completing processing (either send or

receive).

- SetDefaultTimeout adjusts the standard timeout for the process.

- MsgQueueSize tells how many messages are waiting for processing, including any partially
received messages.

6.4. IPC Implementation

The implementation of the Cronus IPC can be described at two levels. There are some elements of it

which are generic; the structure of the implementation must support those facilities which clients expect
of it. These include the overall issues of buffering, synchronization, and reliability, for example. At the

second level, there are specific decisions about how the initial implementation will be constructed. Future

implementations of Cronus may choose to do things in a very different way. For example, the current
implementation uses the DoD standard connection protocol, TCP, to implement reliable message

transport. Future implementations may use a different reliable transport mechanism.

Cronus IPC supports three types of messages:

" small, minimum effort messages;

" small, reliable messages; and

* large, reliable messages.

Neither the protocols used nor the structural requirements of the implementation specify the division of

responsibility between the operation switch and the PSL for these various classes of message. In fact, the
division might be made differently in different hosts in the same cluster. The transport mechanisms used

in the current implementation are shown in Table 6.1.

Small, minimal effort messages are sent from Source Operation Switch to )estination Operation
Switch by means of IP datagrams using the standard User Datagram Protocol (UDP). Receipt of an

IP 'UDP datagram by the Destination Operation Switch is not acknowledged.

On receipt of a datagram, the Destination Operation Switch determines if the enclosed message
should go to a local object or process. If so, it places the message on the receive queue of the object

manager or process.

Cronus transmits small, reliable messages from Source Operation Switch to Destination Operation
Switch over a TCP connection. Although TCP provides services not required for small reliable messages

(e.g.. strong sequencing, reassembly), we find that the overhead they impose has not made the

performance of the IPC unacceptable. If this were the case, we would develop a reliable small message

protocol (RSMP). RSMP would perform the following services

-40-



1313N Laboratories le. Repoxrt No. 5884

TYPE OF MESSAGE TRANSPORT MECHANISM

Small, minimal. IP - Operation Switch <-> Operation Switch

effort

Small, reliable. TCP - Operation Switch <-> Operation Switch

Large. reliable. TCP - One connection per large message,

connection establishment initiated by
a. Operation Switch to Operation Switch

interaction, but connection may be in
the Operation Switch or the PSL, at the

discretion of the host implementation.

Message Transport Summary

Table 6.1

" Provide receipt acknowledgement.

" Provide for retransmission.

" Perform duplicate detection and elimination.

As with small minimal effort messages, upon receipt of a message the Destination Operation Switch
determines which local object manager or process should receive the message and places the message on
its receive queue.

Large messages are implemented through a TCP connection for each message. There is an
interaction between the source nd destination hosts to establish the TCP connection. When the message
has been transferred, the TCP innection is closed.

The following steps are used to establish a new TCP connection to carry a large message between
two processes:

I. The source host selects the port to be used for the TCP connection, and puts its end of the
connection into the listening state.
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2. The Source Operation Switch sends a StartLargeMessage message over the Operation Switch
to Operation Switch TCP connection. This message specifies the destination, the port for the
TCP connection, and perhaps the first part of the message.

3. The l)estination Operation Switch places the message on the receive queue of the object
manager or process.

.1. \'Wlien the destiiiation process executes a Receive and finds the first part of a large message,
any data sent along with it is delivered. The destination host selects a port for its end of the
TCIP connection, and uses the TCP port supplied within the StartLargeMessage message.

5. After the connection is established, the source host will use it to pass message data to the
destination host.

6. After the source process sends the last chunk of data in the large message, the TCP

connection will be closed.

This discussion does not specify whether the Operation Switches or the client processes are
responsible for managing the connection that carries the bulk of the message data, nor whether the
Operation Switches or client processes are responsible for actually using the TCP connection to send and
receive message data. These implementation decisions may be made differently for each host type.

6.5. Object Operation Protocol

The Operation Protocol (OP) is used by the PSL whenever operations are invoked on Cronus
objects. There are three basic message types in this protocol: Request, Reply, and InProgress. All of the

messages in the OP are marked as belonging to the operation protocol, and each is marked with its basic
type. Messages arising from one Request normally contain the same Cronus unique number called the
operation identifier. A Request message also contains the operation name and a Reply message contains a
standard reply code. These are the minimal contents of the messages; they also contain additional,
operation-specific information.

The simplest message protocol involves one Request message generated by a client, and one Reply
generated by an object manager in response.

We distinguish between a simple operation and a compound operation. A simple operation has a
single operation name and operation identifier. Any manager process, in the course of acting upon a
Request may invoke one or more new (simple) operations by sending Request messages. A compound
operation is the aggregate of all simple operations arising from or caused by the invocation of one simple
operation. Normally, all of the suboperations will complete before the initiating simple operation
completes. Each of the simple operations has its own operation identifier, so a process may invoke several
sub-operations in parallel.

Sometimes a manager cannot complete the processing required for an operation; for example, a
request for a catalog lookup may be satisfied only by the cooperation of catalog managers on two hosts.

The manager may then either:
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- perform as much processing it can, and send a Reply that is marked Incomplete; or

- elect to complete it using sub-operations, which follow the saire pattern as requests, and send

a Reply when the operation is complete.

If the manager chooses the first of these alternatives, it can often send the text of the message that the

cheni needs to send to the other inaitger as part of the Rleply. The (lient can complete the operation by

invoking another simple operation.

It is desirable for a Cronus process to be able to query the status of a compound operation. The

operation identifier of the original request is used as a global identifier for each suboperation. Since this

identifier is included in the Request messages of all simple operations it causes, the managers acting on

suboperal ions can respond to a status query keyed to the initiating identifier.

6.6. Message Structure

The priImar design goal for the Cronus message structure is the regularization of control traffic.

(ontrol traffic includes requests for operations to be performed on objects, replies generated by

operations, exception notices, and messages needed to coordinate distributed object managers. Control

r',.,:,sages art usually short (tens to hundreds of octets). Because performance is a major issue, messages
Ii1,,uld be compact, and efficiently composed and parsed.

A message structure can be evaluated in a number of ways. A discussion of evaluation criteria, and

d!, application of these criteria to a numb:r of well-known message structures may be found in IBBN
.-261 . As a result of that analysis, a standard Cronus message structure was formulated. It has the

following characteristics:

" Messages are self-describing, so the fields may be identified by name rather than by order.

This simplifies the parsing of messages, at the cost of transmitting the identifying information.

" The conveitions rely on!N ,n feature: J!a are avaidable in many pr(,gramming languages.

This improves the portability of the implementation, at the cost of increasing the cost of a

single implementation.

" The need to define new data types, which are treated in the same way as the pre-defined

types, is explicitly recognized. This is consistent with the general philosophy of Cronus design.

" Name and data type fields are compactly coded, and efficient programming interfaces are

provided, while the overhead of a general message format is held down. These all contribute

to good system performance.

The Message Structure Library (MSL) is a collection of functions that is part of the PSL; these

routines fall into three classes:
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- application interface functions,

- data translation functions, and

- structure manipulation functions.

The application interface procedures construct the message in an external representation, which is machine

independent, using the data translation and structure mtnipulation functions. This data structure can be
transmitted from one process to another, and subsequently parsed by MSL procedures at the receiving

process. A summary of the functions and a cross reference to detailed discussions of them may be found
in Cronus User's Manual, in the article MSL in section 2.

The Cronus external representation is based on key-value pairs, where the key is a conventional

name that is stored with each data value. The key indicates the meaning of the value. The value, in
turn. consists of a data type indicator and the actual data. Including the type indicator assures us that
we can move the data from one Cronus host to another. The internal representation of the data may

differ at the sending and receiving hosts, but it is always transmitted in a canonical form, along with its

type llerlihy 1982i. S

A canonical type is either an atomic or composite type. An atomic type, such as boolean or signed

16-bit integer, defines a set of primitive data values. A composite type, such as an array or record, has
substructure defined in terms of other canonical types.

Keys are coded as short (16-bit) integers, but values can vary in length from one octet to many

thousands, and are not restricted in form, and may be built from simple or composite data types.

Most IPC messages passed among managers or between processes and manageis use a high-level
protocol called the Operation Protocol (OP). OP is based on a set of well-known keys which are used
for handling operation invocations and responses. The definition and use of canonical types is described 0

in much more detail in BBN Interim Technical Report :#6 IBBN 61831.
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7. Authentication, Access Control, and Security

7.1. Introduction

The goals of the Authentication and Access Control facility are:

1. Prevention of unauthorized use of Cronus and unauthorized access to DOS maintained data
and serv ices.

2. Preservation of the integrity of the system and its components against intentional insertion of
unauthorized components.

3. Support for a uniform user view of access control to the resources and functions provided by

Cronus.

4. Survivable authentication functionality

The design of the access control and authentication facility assumes that systems in a Cronus cluster are
all in a single administrative domain. There are a three broad classes of hosts within the cluster:

- hosts dedicated entirely to Cronus system functions and not user programmable;

. hosts supporting user applications using tamper-proof multiple protection domains (trusted

multi-access hosts); and

- hosts supporting user applications without secure multiple protection domains (single-user

workstation hosts).

We assume all hosts supporting, dedicated Cronus functions and multiple user protection domains

are physically secure from tampering. Workstations may not be completely physically secure, but have at
least a tamper-proof component. A! minimum, this component is in the local network address insertion

and reception function. It could, however, be higher tip in the workstation system: in the virtual local

network internet addres! insertion and reception function; in the object system process-unique identifier

insertion and reception function; (.r even higher. In this sense, all user-programmable hosts support
multiple protection domains (user and system), although in the limiting case, the "system" domain may

simply be a piece of network interface hardware. Since we are not aware of an), workstation systems
meeting this requirement, we a ume future product packaging changes. There sevm io be two viable

positions to take regarding the ; isumptions on these changes.

I. Assume only an absolute minimum, that a single low level "address" can be protected.

2. Allow the set of protected functions to grow as needed to conveniently interface the
workstation in a manner as similar as possible to multi-access systems.

The extreme solution to the second approach could be an access machine for each workstration, although

other solutions are also possible. For our current work we will assume the second approach, planning only

for an arguably insecure implementation directly within the workstation.
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The network (cable) itself may also not be totally physically secure. While parts of it can be

expected to be secure (e.g. within a secure machine room), other parts can be expected to be exposed to

unauthorized connection.

7.2. The Cronus Access Control Concept

7.2.1. Decomposition of the Access Control Problem

The basis of access control in Cronus is the ability of Cronus to reliably dejiver the address of a

sender of a message (or invoker of an operation) to the receiver of the message. The Cronus

communication subsystem is implemented so that this is true. That is:

for IP and Virtual Local Network:

If the sender is within the Cronus cluster, the internet host address of the sender is

reliably delivered to the receiver. If the sender is not within the cluster, a non-cluster

internet host address is delivered to the receiver, which cain be interpreted by the receiver

as indication that the authenticity of the sender's address might be suspect.

for the Cronus IPCiobject system:

The UID of the sending or invoking process is reliably delivered to the recipient of the 0

message.

The recipient of a request can decide on the basis of the sender's identity whether or not to perform an

operation requested.

For this to be a useful basis for access control, a means for reliably associating some authorization

with senders' addresses and process UIDs is required.

One approach is to make static bindings between authorizations and addresses or UIDs. These

bindings would be "well-known", such that when a process receives a request from the process with

lID _ Y it knows that the process is acting under the Z Authority. This method is used in the
ARPANET TELNET and FTP protocols: users assume that the process for socket- one and three are

under the authority of the host. administration and can be trusted with their passwords. Static bindings

are too restrictive to be the sole mechanism in a system like Cronus, although a few static bindings are
required for the access control mechanism to work (see Section 7.6).

Dynamic binding is useful when authorities are not all known at system creation time, and when
processes are dynamically created. The system must not only support mechanisms to dynamically
establish the binding between a process and an authority, but, also to dynamically determine the binding
from some system entity in a trustworthy manner.
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Most Cronus activity is the result of requests initiated by users of the system. Human users are

represented by an abstraction called a "principal". If we extend the notion of a principal to include

elements of the system, such as object managers, all activity in the system can be thought of as initiated

by principals. System elements which are principals are called "system principals". Each Cronus

principal (human or system entity) has a unique identifier. Different system principals have different

authorities. For example the primal file manager and the printer service are Cronus system principals,

ieit.her of which need be authorized for all of the obyjects ;id , operations accessible to the other.

Access control can be thought of as consisting of the following steps:

1. Identification. Determine the identity of the principal that is requesting a particular

operation.

2. Authorization. Determine whether the principal has been authorized to perform the operation.

For example, when an object manager must decide whether to perform an operation. it must know the

id,-nt Ity of the principal that is requesting the operation (Identification) and the rights the principal may

have with respect to the operation (Authorization).

7.2.2. Authorization

Cronus uses access control lists to support authorization. The access control list (ACL), which is

part of the object descriptor, "protects" a particular action. In the simplest case, it is a list of the

principals who have authorization to perform the action. When a principal attempts an operation, the list

is checked for the principal- if the principal is Present the authority to perform the operation has been

verified and the operation may occur.

in Cronus this simple idea is extended in two ways:

I (;roup ider{ifters may appar on an A( I,, ar entire group of principals can be authorized as

a unit. or have its authorization revoked as a unit.

z. A set of rights is associated with each identifier on an ACL. A single list can selectively

control a principal's or a group's access to an object for which several operations are defined,

such as a file. Rights are abstract, bound to specific operations by the implementer.

An ACL is a list which contains elements of the form:

(id. rights)

!,..re "id" is either a principal (PID) or a group identifier (GiI)), and "rights" define the principal's or

gr,,up's authorization with respect to the object the ACL protects. The allowable rights for a particular

A( L are dependent upon the type of object being protected.
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Users log into Cronus as principals by supplying an appropriate name and corresponding password.

*A system component called the Authentication Manager maintains records of all principals and groups.
Collectively, these records form a User Data Base (UDB). At login time the Authentication Manager

expands the membership of a user-specified subset of the access control groups which he is a member.
This is a transitive closure computation on the specified list of group identifiers in the user's record. The
user's own id, PID, is added to the result of the expansion. The resulting set of principals is called the
access group set (ACS) for the process:9

AGS {PID} U Show Group Membership_ Expanded (GID)

for the default GIDs in the PID record.

The AGS is used in access control checks as follows. When an action protected by an ACL is

attempted, the ACL is compared with the principal's AGS. If an entry of the form:

(ID, (..., Right ... )

where

ID is in AGS, and

Right is required to perform the action

is found on the ACL, the principal's authorization is verified and the action may be performed.

During a session, a user may add and remove identities from the current AGS. To add a group

identity, the user must be a member of the added group. Updating the current AGS is accomplished via
operations invoked on the Authentication Manager, which causes the update of the current process AGS
list. These operations affect a single process however, the new AGS will be inherited by subsequently-
created children only.

7.2.3. Identification in Cronus

There are two related identification problems:

I. At the start of each session, the identity of the user must be established.

2. Processes must be able to ascertain the identity of the principal corresponding to the processes

with which they interact.

The solution to both problems lies in a set of mechanisms that bind processes with principal ids and group
identifiers. These mechanisms depend upon the ability of the communication system to deliver the t.ID

9The basic ideas associated with Access Group Sets have been adapted from similar work at Carnegie Mellon
U niversity in the Central File System project.
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of a sending process to the receiver of a message reliably.

It is useful to restate these problems into the following terms:

I. A binding must be established between a process and an AGS;

2. There mus lbe a means for a process P1 to determiie the biiiing beirweeii another process P)2
.and its AGS.

When a user approaches Cronus to start a session a process (PI) is allocated . P1 cannot be bound to U
(the user's principal identifier) until Cronus establishes the connection via password authentication.
Before that happens, P1 is bound to a well-known principal, "NotLoggedIn", which has minimal
authorization. One task of the login procedure is to change the binding of PI from NotLoggedIn to U.

The binding between a principal identity and a process is established by the Authenticate - As
operation. 'The user engages in an authentication dialogue with Cronus. supplying a name and password
which is checked against the UDB. If the authentication dialogue succeeds, the AGS for U is computed
and a binding is established between P1 and U. A record of the binding

P1, U, AGS

is maintained by the process manager for the authenticated process, to be used throughout the process
lifetime. The identity of the user has been established, completing problem 11.

Throughout the course of U!'s session, PI and other processes acting on behalf of U attempt actions
which require authorization verificatior by the processes that perform the actions. This is problem 12
(onsider a situation in which P1 has r'quested another process (SI) to perform some action (A) shown II.
Figure 1.

In order to perform an access ontrol check, SI needs to determine the binding of P1. The identity
of P] is known to SI because Pi's "I1) was delivered -along with the operation invocation that requests A
"I can obtain the binding of PI b, invoking the Authorization Binding Of operation:

Authorization Binding f(PI) -> I, AGS.

Authorization_ Binding Of cau -s a message to be sent from SI to the manager for process P1, which
returns the bindings for the pro !ss to Si.

The login sequence establishes a binding between user (U) and an "initial" process (PI). Bindings
are established for other processes created during a user session through inheritance. During a user
session, processes created by an authenticated process inherit both the principal identity and the current
AGS of the initiating process. Object managers attain their principal identities and access group sets as

10Cronus actually uses a more complex process structure to support a user session. However, the following discussion

is insensitive to these details, so we use this simple model in our explanation.
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part of the system initialization phase. 0

7.3. Access Control List Initialization

A common problem associated with Access Control List. mechanisms is the effort required for proper
explicit (manual) initialization. In practice, the ACL for a new object can often be automatically
predetermined based upon the type of the object, the creator, and the context in which the object is
created (primarily the directory in which it is subsequently catalogued). This is the premise upon which
the Cronus Initial Access Control List (IACL) mechanism is based.

A list of type-specific IACLs may be associated with selected Cronus objects, currently Principal
and Directory objects. The IACLs are manipulated using the standard ACL manipulation operations
(RleadACL, AddToACL, RemoveFromACL), distinguished by an optional key denoting the type with
which the IACL is to be associated. The IACL mechanism also supports the Cronus type hierarchy: the
IACI, associated with an ancestor in the type hierarchy will be used if a more specific IACL for the type

itself has not been specified.
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Cronus Create operations incorporate the following algorithm for initializing the ACL of newly-
created objects:

1. A list of "IACL hints" (tTIDs of objects potentially having IACLs associated with theum) are
searched in order for an IACL pertaining to the type of the object being created. The first one
found is used. These hints usually reference the Cronus directory where the object will
subsequently be catalogued.

2. If no IACL search is specified, or the hints fail to yield an appropriate IACL, the object for
the Principal invoking the operation is queried as if it were included at the end of the hints
list.

3. If an IACL is still not found, the invoking Principal is given all rights to the object.

There are user commands for setting up, examining and modifying the initial access control lists
rct ained with cronus objects.

7.4. Authentication Manager

The Authentication Manager defines and maintains two types of abstract Cronus objects:
CT Principal and CT Group. Like other system objects, the CT_Principal and CT_Group identifier

objects have symbolic names for convenient human access. Principals are symbolically named from a

private name space maintained by the Authentication Manager, which ensures their uniqueness across the
entire system. Symbolic group identifiers can be placed anywhere in the Cronus catalog, at the
convenience of the creating user.

Operations on objects of type CTPrincipal and of type CT Group are controlled by access control
lisf,. Bv cnvention. any legitimate principal can create a new CT Group object, but only
administratively authorized principals can create a new principal. When the system is initialized, it

contains at least one pre-defined principal, which is authorized to create other principals.

In the following sections we discuss the design of the objects and operations supported by the
V.,(hentication Manager. Section 7.8 discusses how to make the functions of the Authentication Manager
survivable.

7.5. Objects Related to Authorization

The object of type CT_ Authentication_ Data is the user data base consisting of the records for
s. stem users and for groups of principals %hich have been defined in the system.

The object of type CT_ Principal is the permanent data base entry that Cronus maintains for each
legitimate user. It is the repository for such user-specific data as default priority and other parameters
associated with resource management: default modes of behavior (e.g. default working directory); and
authorization data. It is expected that new kinds of data will be added to the principal objects from time
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to time.

A CT Principal object can be expected to contain the following data:

- Principal unique-identifier (PID)

- Symbolic name or principal

- Access control list

- Encrypted password

- Direct group memberships

* Direct group memberships to be expanded on Login

- Range of priority service authorized

- Default priority

- Name of default initial subsystem

* Name of hume directory for the principal ... (other user-specific data)

The priority data will be used in resource management functions. The default subsystem is the
program automatically invoked following login. A home directory is a directory assigned to the principal
that serves as the initial current directory for catalog accesses; in particular, it contains additional user
initialization data.

Groups (objects of type CTGroup) gather a number of identities for purposes of collectively
granting them rights to objects and operations. Any user can create a new group, and place any other
principal or group in it. This group can then be placed on an ACL. The access control list for the group

object controls modification of the group definition.

ACT Group object contains at least the following data:

- GID for the group

- Name of the group

- lDs of the groups of which the group is directly a member

- IDs of principals (PIDs) and groups (GIDs) that are direct members of the group

There are a few special group identifiers. One of these (group world) represents the set. of principal
identifiers without actually enumerating them anywhere. This group identifier is automatically appended
to every AGS computation. Another special group "Wheel" represents an access control override
capability used for system maintenance, implicitly receiving all rights to all Cronus objects. Admission to
this group is carefully controlled.
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A convention has been adopted which effectively supports wheel capability only for objects of a

specified type. A process whose principal ID matches the PID of the manager process is automatically

granted all rights to all objects managed by that manager. This is useful in handling peer managers. As

an example, all file managers are bound to a special file manager principal, and implicitly have all access

to all files managed by peer file managers.

7.6. Operations on Authorization Related Objects

The generic operations to create and remove objects, and to examine and modify the object

descriptor, ACL, and object status apply to instances of CT Principal and CT Group.

The following operation is used during login to establish the binding of the user to the principal

UID:

Authenticate As

The following operations allow processes to control the identities applicable to an authenticated

process. They effect'only a single process, which may be either the invoking process or another process

authenticated to the same principal.

EnableAccess Group

Disable_ Access-Group

The following operations maintain and interrogate the objects of type CT Principal:

Lookup_ Principal
Show Group Memberships

Add toDefault Group_ Expansion_ List

Delete_ from - Default _ Group Expansion List
Change Password

The rest of the data in the principal entry in the user data base is treated as part of the object

descriptor. The generic operation, which manipulate the object descriptor are used to examine and set

these fields.

The following operations ar used to inspect and maintain the group identifier objects:

Add to Group

Removefrom_Group
ShowGroupMembers
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The rest of the data in objects of type CTGroup is contained in the process descriptor and is

maintained using the generic operations defined on object descriptors.

The access control list of any object, including objects of type CT Group and CT Principal, can
be set using the generic operations on access control lists.

7.7. Operation of the Access Control Authorization Function

Cronus access control checks the current identity of the accessing agent against access control lists

maintained by the service provider. A process is authenticated in a way which binds the process UID to a

set of external identities defining the authorizations of the process. These identities, the AGS, are

available to any service-providing process. This section discusses the authorization function which is part
of the service provider.

In general, the access control steps within an object proceed as follows:

1. The request is parsed to determine the originating process UID and the operation/object

requested. The process_UID is trusted because it is added to the message by the operation

switch. Universal public privilege for the operation to all objects managed by the manager is

first checked, to see if the specific access check is needed.

2. A manager-based cache of process/object authorization pairs for the processUID is checked

for a valid current entry.

3. If there is no corresponding cache entry, the accessing agent's AGS is obtained. This data is

also cached but on a per-host basis by the AGS cache manager. If present on the host, this

cache manager provides a high performance interface to the Authentication BindingsOf

function. There is a broadcast-based protocol for alerting AGS cache managers to entries that

should be purged. If an AGS cache manager does not run on a host, managers execute the

Authentication _BindingsOf operation directly, and the AGS is not cached. IThe per host

AGS caching is not yet designed or implemented.I

4. The access control software computes a new process_ UID/object authorization entry using the

AGS and the access control list maintained with the protected object/operation. The

process _ID authorization entry is then put in the manager cache.

5. The process UID object authorization is used to verify permission. If authorized, the

operation is passed on to the operation code. If unauthorized, the request is rejected.

6 To allow for the enabling of new access groups, steps 3-5 are repeated in the event that cached

AGS fails.

The permission authorization function is accomplished by a set of routines and data structures that

we call the "gatekeeper" because of its role as protector of the objects/operations. Gatekeeper functions

can be invoked as part of the procedures for receipt of a message, or called directly from the host process.
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Access control can be applied to operations on the object set supported by the receiving manager

process, or on operations defined by the receiving service. There is a fixed maximum number of access
control rights maintained by the gatekeeper software (currently 32) for any object. These rights are

represented as positions in a bit vector associated with both the identity it authorizes (principal identifier
or group identifier) and the object it controls.

7.8. Host Registration

The lack of physical security for various parts of the system presents problems for the access control
subsystem. Since the network cable may be accessible to tampering, the network might be tapped. An
outsider could then inject or inspect packets under an assumed network address. A workstation might.

pose as the site of a trusted manager. We can use administrative authorization to alleviate these

problems.

Encryption of all local network traffic is a form of authorization. It can remove the threat of
lapping for either listening for or insertion of packets. Providing the host with the encryption/decryption

t i admiiutrative autliurization to participate in the Cronus clu.ter. If a host (an communicate at all,
it can be considered an authorized host. Because encryptlon/decryption is isolated in the communication
interface, it can be added transparently at, any time. While communication encryption can be thought of

as part of the Cronus design, it will not be part of the initial implementation.

Since workstations may be treated specially for some access control decisions, system configuration
registry could be the source of such identification. In addition, the undesirability of tightly controlling
responses to broadcast Locate operations, makes the registry useful in determining the authenticity of the

respondee. A configuration registry enumerates all of the authorized system hosts, and the system
services (Cronus functions) which they have been authorized to run.

One secure wa> to make the registry service available is to support it on one (or more) well-known
Cronus hosts (i.e. hosts at a well-known internet addresses, say host No. 1, ...). The configuration data

can then be obtained with an Invoke On Host to the well-known hosts using the logical name for the
service . The cluster configuration service would support the following functions:

Show _ Con fi guration_ Hosts

Set Configuration Hosts

Standard access controls apply, with Show _Configuration_Hosts being universally allowed, while

Set Configuration Hosts limited to a system administration group.

0

1tSince this function is often used to determine the veracity of responses to the Locate operations, it can not safely
use Locate to find out where configuration managers are running.
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7.9. Survivable Authorization Design

7.9.1. Objectives

The authentication function and evaluation of the current AGS are critical parts of the operation of

Cronus. These functions must be available at all times or Cronus cannot operate effectively. Our

obyctives in providing survivability in Aulhent icatioi are:

a. A Cronus user should, under reasonable failure patterns, always be able to gain access

to the system.

b. The current value of the process-AGS binding should be available whenever a process is

able to request services from object managers.

c. A less important but desirable objective is that a client be able to continue to perform

maintenance operations on the principal and group objects despite failures of hosts

supporting these functions.

To ineet objectives (a) and (c), we must replicate the Authentication function. To nieet objective (b), we

must maintain the bindings in a replicated fashion, or keep them close to the process to which they refer,

so that the bindings are available when the process makes requests of other Cronus managers.

7.9.2. Observations

The authentication function is a global DOS function supported on a GCE which is expected to be

up most of the time. Because these services are simple, the host hardware and software should be stable,
increasing its availability. Since the GCE is relatively inexpensive, it is also feasible to stock a spare.

The authentication function is based on maintaining two related types of objects. The data bases

which the Authentication Manager maintains to support the principal and group objects are not large.
The principal data base is estimated to be no larger than 1000 users, with an average entry having around

1000 bytes of data. The group data base might have 2000 entries, averaging 300 bytes of data. This is

lesF than 2 MBytes of data. and can easily be accommodated on a GCE.

The processing demand on Authentication managers is not expected to be large. Aside from initial

aut hentication and group expansion. which occurs typically once per user per session, other operations are
infrequent. New users and groups are occasionally created and the associated data bases occasionally

displayed and updated. A single GCE appears easily capable of handling anticipated processing requests.

Performance and size considerations do not seem to require more than a single GCE per cluster.

Survivability is the primary motivation for replicating the authentication manager. Our approach is to

maintain completely replicated data bases on two or more GCEs.

IP
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Of the operations performed by the Authentication Manager, the one of most concern for

survivability is Authenticate_ As, which is a read-only function. This is also true of a number of other

AM operations (Lookup Principal, Show Groups Expanded, etc.). Synchronization of multiple

authentication managers is not required to complete these operations.

Some AM operations do modify the authentication data (e.g. Create new principal, Modify User

P'arameters, etc.). These require synchrolnization among Authlentica ion Managers for consistency.

However, because these operations are relatively infrequent and have simple semantics, a simple approach

to synchronization which ignores maximizing concurrency will suffice. We designate a primary

Authentication Manager as a single point oi synchronization. This method is backed up by an alternate

procedure if the primary site is inaccessible. A complete description of our approach follows in the next

section.

In the current implementation. each process has a process manager on the same host. The process-

A(S bindings are maintained by the process manager in the process descriptors for these processes.

During host.outages when a manager is inaccessible, so too will be the process it manages. There is no

need to maintain the process-AGS binding any more reliably than we maintain the process reliability. As

some later point, we will address issues of process survivability. We can then naturally think in terms of

replication of process descriptor data (including the current AGS) a., part of the reliable process concept,

and need not address it separately.

7.9.3. Approach

Fully redundant copies of the authentication data bases are maintained at more than one Cronus

host. This means that, ignoring synchronization, an operation can be completed at any site which

maintains the data base. We expect that two operational authentication sites will provide sufficient

availability for most applications of Cronus.

A spare GCE could be integrat d into the system if one of the dedicated hosts needs to be taken

off-line for any extended period. Th s minimizes the time during which there may only be a single

Authentication site functioning. T' e new host integration protocol first invol% es transmission of all of the

existing objects. When the object - ransmission is complete, the new manager retrieves the change log and

incorporates any updates. The final step before assuming operational status is to coordinate with any on-

going activities.

Each operation on authenti :ation data objects is an independent transaction, so that there is no

linkage between any two operati ns. The operations either reference the identified objects (road

operations) or modify the ident.iiied objects (write operations). Read operations require no

synchronization or concurrency control between Authentication Managers. Any Read operation can be

handled by any available authentication manager. Some read operations have side effects which do

change the state of other system variables (e.g. Authenticate -As modifies the current process AGS in its

process descriptor) but these are idempotent operations so repeating them at distinct sites as part of error

recovery is not harmful.
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Write operations, on the other hand, require synchronization among the Authentication managers to
preserve the consistency of the data with respect to concurrent updates. To do this one AM is chosen as
the primary site. The designation of which AM is primary is found in the configuration data base for the
system. Clients as well as other AM processes can consult this data base to find the primary site. The

primary site remembers its role and will respond to broadcast request to identify itself in case the
configuration file is inaccessible.

All Write operations are initiated with the Primary AM, which serializes the modifications to the 4

database. The primary AM records the modification in a change log by appending a change record to a
multi-copy reliable file. After logging the request, it updates it own data base, and informs other
operational AMs of the change. If all AMs are running, the data bases are again synchronized after each
one incorporates the update. When an AM is restarted, it processes the change log to incorporate changes
made to the data base in its absence before it will accept new requests. Multi-copy files are used for
change logs to avoid single host failure reintegration dependencies.

This approach raises two issues:

a. What, if anything, should we do about read/write synchronization for read operations

that may be processed by a non-priniary AM while the corresponding object is -.

undergoing modification by the Primary AM?

b. What, if anything, should we do when a modification is requested and the primary AM

is inaccessible?

To answer question (a) we first observe that not only is the data changed infrequently, but much of it is
particular to a single Cronus user, and hence concurrent read and write access is quite unlikely.
Furthermore an old copy of just modified data is almost never harmful. The behavior is similar to a race
condition between independent accesses to a single copy data base. Thus our approach to Read/Write
synchronization is to do nothing.

There are many possible answers to question (bJ. One approach is to do nothing, and reject these
operations temporarily until the primary AM is brought back on-line. Since modifications to
authentication data are not critical to the operation of the system, the major effect of this is
inronvenienc, because we will need to repeat the operations at a later time. A simple mechanism which
avoids this uses the lcrk on the change log file as a tool for serializing updates from any of the available
AMs. In this scheme. when the primary AM is inaccessible, any AM can initiate the update if it can first
Ibck the changr log I then informs the other operational AMs of the change. When the primary comes
back, it integrates the changes it has missed before assuming primary update responsibility again.

*W
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8. Symbolic Naming

8.1. The (Cronus Symbolic Name Space

(ronus has a global symbolic name space with the following properties:

1. Cronus symbolic names are location independent.

* A name for an object is independent of its host.

* A name that refers to an object can be used regardless of the location from which 0

it is used.

2. (ronus symbolic names are uniform: common syntactic conventions apply to names for
different lypes of objects.

The symbolic name space is constructed upon a hierarchically structured tree. The tree contains

ndes and directed labeled arcs. There is a distinguished node called the "root". Each node has exactly

one arc pointing to it, and can be reached by traversing exactly one path of arcs from the root node.

Nodes in the tree represent Cronus objects which have symbolic names. Links provide an overlaid

structure based on symbolic pointers which provide a name space which is a network, so a node may be
reached by more than one path.

Non-terminal nodes (those from which arcs may originate) are called directories. Each labeled arc

",rresponds to a catalog entry. The label for an arc is called an "entry name".

The complete name of a node. which is the symbolic name for the object. is formed by
,,n,catenating the labols on the arcs travers-d on the path from the root node to the node in question,
-,n.ra- At h the character ":" In other words, the syntaYN for a complete name is:

whore "" and "v" are arc labek. the " bt }" brackets indicate optional presence. the ":" is a punctuation

riark t,, separate name components. and "{ s }" means zero or more occurrences of s.

It is also possible to name nodes relative to a directory. Such a relative name is formed by
crncatenating the labels on the arcs traversed on the path from the directory in question to the node.

'1h, syntax for a relative name is:

Sx : *y

("inventtonally users have a standard director) for relative path names. This is known as the user's

"1%orking directory"
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The most common types.of cataloged objects are the various kinds of files, but any other object may
be cataloged. Some conventions have been adopted; for example, there is a :printers directory which

contains the symbolic names for printers on the system. These conventions are not enforced by the

system, and any object may be entered into any directory (assuming appropriate authorizations) at the
convenience of the user.

There ar cerai n special obY'ct types which are used iM suppor of the catalog itself, including:

• Directories: A directory object (type CTDirectory) is a non-terminal node in the catalog tree.

- Symbolic Links: The catalog entry for a symbolic link (type CT Symbolic_ Link) identifies

another point in the symbolic name space called the link target. These objects are stored in
the catalog itself. Links are cataloged as terminal nodes in the name hierarchy tree. Links are

handled specially within the Lookup operation.

* External linkages: An external linkage (type CT _External - Link) is an object which
implements access to another name space. External linkages are cataloged as terminal nodes

in the name hierarchy tree. External linkages permit users to refer to non-Cronus objects
directly from the Cronus name space. For example, an external linkage might be used to give

a file directory on a Cronus application host a Cronus symbolic name.

For some object types it is useful to be able to think of a collection of the objects as a sequence of
"versions" or "revisions" of the same logical object. The Cronus Catalog implements a version feature for

catalog entries. The create catalog entry operation permits the same name to be entered into a directory

more than once. Each copy of the entry has a distinct version field and points to a different object.
How ever. all objects pointed to by different versions of the same entry name must be of the same type.

The first time a name is entered, the result will be version I of the object. Subsequent entries of the same
entry name will result in successively higher versions of the object. All of the catalog operations which

take a name parameter will allow the specification of a version number as well. 0

The catalog managers provide routines that can scan through the catalog and return catalog entries
for names that match a specified pattern.

14 The create catalog entry operation can be used tro simply establish a symbolic name for a Cronus
object of anN type except a symbolic link or external linkage object. These types of entries are inserted in

ihe catalog when they are created (since other objects need not be named, the creation of the object and

naming of the object are distinct operations). In a sense, these objects are special in that they must have

a symbolic name in addition to a UID.

4 Figure 8.1 shows a relatively simple symbolic name tree and Figure 8.2 shows part of the underlying 0
directory structure that, corresponds to the pa-t of the tree that contains the name :a:b:c.

When a lookup operation is invoked, the catalog manager interprets a complete Cronus symbolic
name by starting at the root directory. The UID of the root directory is well-known. The catalog

manager processes a name component by searching the current directory for a matching catalog entry. If
it finds a matching entry and there are no more name components, the lookup is complete and it returns
the catalog entry. If it finds a matching entry and there are more name components to interpret, the
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entry must be for a directory, symbolic link, or external linkage, or else the lookup ends in failure. If the
entry is a directory, the catalog manager continues the lookup by obtaining the UID for the directory
from the entry and then using it to interpret the next component.

Interpretation of a relative symbolic naine is handled in the same fashion, differing only in where

the lookup starts. For a relative name, the catalog iatiager starts its search at the starting directory
iaraielt, r of ie lookupj operat ion.

Symbolic links encountered during lookup are handled in a special manner. When a link is
encountered, a new name is formed by substituting the link target, which is a complete Cronus symbolic

name held in the catalog entry, for the portion of the symbolic name evaluated so far. The lookup

operation then resumes by interpreting this new name. Links can be thought of as macros which are
expanded during the lookup operation.

A parameter of the lookup operation controls whether links are to be expanded. If the parameter
specifies thai links are to be expanded, the substitution of link targets during the lookup operation occurs.

If the parameter is set to prevent links from being expanded, the lookup operation terminates when a link
is encountered. In this case, the lookup operation will be considered successful if the name has been
c,,,pleeb. ealuated. O(ther ise it will be considered a failure.

8.2. Structures Used in the Catalog

8.2.1. Directories

l)irectories are Cronus objects which contain lists of catalog entries. All operations on the catalog
or on catalog entries are invoked on directory objects. This includes the root directory which is special

,,III\ in thai its Ill) is well known. In general an operation on a catalog entry may be invoked on any

directory in the path name; specifying the relative entry path as a request parameter.

Since directries are (ronus o,jects they have many standard properties. Catalog Managers manage

direc(,ory objects and perfori all the generic object operations on type CT_ )irectory. In particular,

access control in the catalog is accomplished through the use of standard Cronus mechanisms on directory
)bjPcts Thus. a user may lookup a path name if he has the necessary rights on each directory component

in the name.

0
8.2.2. (atalog Entries

A catalog entry is not a Cronus object as it has no 'ID. It is object specific information associated
,ith a directory object and consists of the following fields:
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. Entry name and version number:

- UID for the object;

- A host hint for the object; and

- Type-dependent information.

Type-dependent information for objects of type CT Symbolic Link and CT External Link is discussed
below. For objects that are not part. of the Cronus catalog, everything that can be known about an object
is maintained by (or can be obtained from) the manager for the object. That is, no type-dependent
information is maintained in the catalog.

8.2.3. Symbolic Links

A symbolic link is a ma% be thought of a- a dummy object maintained by the catalog manager.
0 Altlugh it lia., a lID. operations may not invoked on a symbolic link. The UID is used only to

distinguish it from other catalug entries. A symbolic link consists of the same fields as any other catalog
entry: however the type-dependent information consists of the complete symbolic name for the link
target. The catalog manager uses this information when performing lookups.

8.2.4. External Linkages

An external linkage is much like a symbolic link. It is distinguishable from a standard catalog entry
b,, the type field in its UID - hich is set to CT External Link. The type-dependent information in the
external linkage specifies tht data about the external linkage. It a Cronus interpretable designator for
lwating the other name spar, and a symbolic name that is interpretable in that space.

8.3. Catalog Operations

8.3.1. Objects of Type Directory

Operations on the Crop ,is symolic catalog Lre performed on object of type CT Directory.
(Uurrentl. the following operations are defined for directories:

AddToACL

Create
CreateEntry

CreateExternalLink 0
CreateSym bolicLink

Dereplicate
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DumpLog
DumpObject
Loc ate
LokObject

Looku p

LookupWild
ModifyEntry
ReadSysParms

ReadUserParms

Remove

RemoveEntry
ReportStatus
SetLoggingLevel
UnlockObject
WriteSysParms
WriteUserParms

Most of these are generic operations which are inherited from parent object types CT Object and
CT IleplicaiedObjectL. See section 4 of the Croiius U1er's Manual for mre about inheritance. Oil,,
CreaieEntry, CreateEzternalLink, CreatSymbolicLink. Lookup, Lookup Wild, ModifyEntry, and
HemoveEntry are unique to the catalog. The remainder of this section describes these operations.

CreateEntry. CreateEzternalLink and CreateSyinbolicLink are used to create entries in a directory.
The second two actually create special entries: external linkages and symbolic links. If specified entry
already exists these operations create a new version of the entry. The version number may be specified,
but ordinarily the next highest version number is given to the new entry.

Lookup is used to look up a catalog entry given a path name. All the information associated with
the entry is returned. By default the highest version of the entry is returned, but the version number
maN be specified. LookupWild performs a catalog lookup using Cronus wild card conventions, and returns
a list of all the entries which match the specification.

.Modify~ritry changes an) of the parameters associated with a specific catalog entry. RemoveEntry
removes an entry. Once again, thi se operate on a single version if there are more than one present.
Default rules apply if no version number is specified.

8.3.2. Access Control In TI. ? Catalog

Access control is performed in the catalog by using the standard Cronus access control mechanisms
on objects of type CT Directory. When a user wants to perform an operation on the catalog he invokes
the operation on the appropriate directory. If the manager of that directory determines that the user has
the apropriate rights the operation is performed. If not the operation fails.
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The access control problem is slightly complicated by the fact that path names in Cronus can
reference several directories. If a request look up the path name ":animals:manmals:cat" is invoked on

the root, the catalog manager must traverse through the directories ': and ":animals" before it can look

up "cal" in the ":animals:mammals" directory. The catalog managers deal with this by doing Lookup

access control checks on each directory in the path.

h should hv noled Ihal access restrictions on a objnct's ( M.try iitformatioin is not related to access

restrictions on the object itself. The catalog is generally used to look up object UlDs so that operations
can be performed on those objects. Individual object managers perform their own access control on their

objects. Therefore, it is possible to be denied look up access on an object name but still have all rights to

manipulate the object itself, and it is possible to be denied all rights to an object for which one has look

up access to its name.

8.4. Catalog Inplementation

8.4.1. Introduction

The following implementation issues are discussed below:

1. the manner in which client processes interact with the catalog manager which implement the

catalog functions;

2. the use of Cronus data storage resources to implement the catalog data base; and

3. the distribution of the catalog data base among Cronus hosts;

8.4.2. Cronus (atalog Managers

There is a catalog manager process at each host that maintains part of the catalog. It is the object

manager for objecrs of types CT Directory, CT Symbolic Link. and CT External Linkage.

The catalog managers communicate with client, processes by means of the standard Cronus IPC

facility. Since the catalog hierarchy is distributed among Cronus hosts, different managers will have

direct access to different parts of the catalog. Some catalog operations can be accomplished by a single

catalog manager and some require the cooperation of two or more catalog managers.

For example. the Remove (directory) operation would normally be sent to the manager for the
specified directory, and only that manager is required. The Lookup operation may require catalog

managers on two hosts if the manager to which it is sent does not contain the subtree required to

interpret the entire symbolic name.

-66-



BDN Laboratories Inc. Report No. 5884

A client process will not, jn general, know which catalog manager is the best one to perform a given

operation. For this reason, a client can initiate a catalog operation with any catalog manager. If the

manager selected can perform the operation requested by itself, it will. If not, it will interact with other

managers as necessary to perform the operation.

8.4.3. Implementation of the Catalog Hierarchy

Directories are stored in an object database. The catalog manager maintains a UID table for the

objects it manages. Since the principal objects implemented by the catalog manager are directories, this

table is called the l)irectory UID Table. The Dfirectory UID Table maps the UlI)s for directories into

their object descriptors.

A directory contains zero or more catalog entries. The catalog entry for a (inferior) directory

contains the UID of that directory. To access a directory given its UID. the catalog manager uses the

Dtrectory UID Table to obtain the object descriptor for the directory.

8.4.4. Distribution of the Catalog

8.4.4.1. Principles Affecting Distribution

Among the considerations influencing catalog distribution are:

1. The catalog should not be stored at only one site.

This is a reliability consideration. The catalog should be distributed, and it should probably

be replicated in some fashion.

2. The entire catalog should be distributed across several sites.

This is a scalability consideration.

3. It should be possible to access the catalog entires for an object when the site that stores the

object is accessible.
0

This is a reliability consideration. Access to objects through the Vl1) name space has this
property since the information required to access an object. given its UID, is maintained by

object managers. Access to objects through the symbolic name space should also exhibit it.
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There are some further issues to consider associated with (2) and (4), and we discuss them in more
detail in the next two subsections. The discussion includes elements of the implementation of the reliable
system as well as the primal system, because these may impose constraints on the primal system design.

8.4.4.2. Dispersal Of The Catalog

This section examines the requirement that the catalog not be stored at a single site. The line of
reasoning followed is essentially that that lead to the design of the Elan hierarchy IBBN 37961.

Directories are the basic unit of distribution for the Cronus catalog. Directories are implemented by
Cronus as objects in an object database. The lookup operation follows the components of a symbolic
name through a number of different directories, one for each component in the name (assuming it does
not encounter a symbolic link). Unless there is a further restriction on the dispersal of the catalog, each
directory could be at a different site from the previous one.

SIt is desirable to limit the number of site" that must be visited in a lookup operation. Two useful
restrictions are to:

1. Require that the catalog structure for entire subtrees below a certain cut (the "dispersal cut")
through the catalog tree be stored within a single site. We call a subtree that is rooted at the
dispersal cut a "dispersal subtree".

2. Require that the catalog structure above the dispersal cut be stored within a single site. We
call the structure above the dispersal cut the "root portion" of the hierarchy.

Restriction I ensures that lookup operations within a subtree that is below the dispersal cut can be
confined to a single site. Restriction 2 ensures that the task of determining the site that stores a
particular dispersal subtree can be confined to the site-that stores the root portion of the hierarchy. As a
re',ul, lookuip operations require at most two catalog sites.

It is useful to add a third property to the dispersal of the catalog:

3. The root portion of the catalog hierarchy should be replicated. Furthermore, a good way to
replicate it is to maintain it at each site that maintains a part of the catalog (i.e. a dispersal
subtree). The reasons for doing this are:

.0

" To distribute the load resulting from lookup operations among several sites.

" To allow some lookup operations to be confined to a single site.
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- To increase the availability of the root portion of the hierarchy.

Figure 8.3 illustrates how a simple name hierarchy might be dispersed among several hosts according to

these three restrictions.

8.4.4.3. Replication of Catalog Information

The primary consideration for replicating catalog information is one of reliability. The objective is
to ensure that Cronus objects with symbolic names are accessible symbolically whenever the sites that

manage the objects are. This can be be insured by either mainting the catalog only on reliable service
hosts or providing some dynamic replication in the catalog. To provide the most generality some

capabilities should be present in the catalog managers to achieve the latter.

The problem of generalized replication in the catalog is similar to that of replicating many other

Cronus object types. Froii this perspective, full replication below the dispersal cut is a imatter of

replicating the approprate directory objects starting with the root. Replication of critical directories can

increase as necessary the availability of objects. This strategy reduces the catalog problem to an

administrative one of deciding which directories need to be replicated, how many duplicates should be

maintained and where each duplicate should be placed.

To control the replication of each individual directory entry would place an unnecessary burden on

the implementation since the overhead associated with maintaining site lists and other information for

each entry would be costly. Therefore, replication of the Cronus catalog is controlled at the directory

level--each directory may be replicated or not, and the list of sites where copies of the directory are placed

may be selected and modified. All copies are equivalent, none is considered primary, the manager

receiving a CreateEntry or RemoveEntry locks all copies of the directory, makes the change locally and

instructs managers for each of the c, pies to make the same change and then release the lock.

Lookup operations may be p, iormed by a manager reponsible for any copy of the directory. The
standard Cronus locate mechanist. , handle the location of a suit-able site since the lookup operation is

always invoked on a directory, id,.:itified by its UID. The manager N& ill attempt to resolve the pathname

as far a- possible. then pass the , 4uest to a manager responsible for a copy of the root of the unmatc: e ,'
pathname component. This oh, !ously means that replicatinp, each memtber of common pathname

components at the same sites w I yield faster performance, but this is not required.

8.4.4.3.1. Synchronization Among Catalog Managers

The catalog managers must synchronize among themselves whenever an entry in a replicated
directory is created or removed, and w.-never a host which has been temporarily inaccessible is being

reintegrated into the cluster. As with many other Cronus functions, automation of catalog replication is
implemented through cooperation among the managers for the object type. For efficiency, we implement 0

replication directly in the catalog managers, rather than building the catalog manager on a reliable
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storage mechanism such as replicated files. While the approach we discuss applies to the Cronus catalog,

it is also intended to be used as a base for more general replication services that might be applied to other
Cronus components in the future.

Clearly. some form of concurrency control is needed to prevent conflicts and inconsistencies.

Because changes to directories occur infrequently, we can prevent conflicts (simultaneous changes to the
saute enrN ), wit It little performance cost, 1)y lotking Ihe olpie, of I he a Ffctd directory while an) change

is being made, so that only one change can occur at any time.

We define the following basic operation replication control operations:

" Replicate existing directory

• l)ereplicate existing directory

" Modify existing directory (add deletejirnodify entry)

" Reintegrate host

In order to simplifN the design, we will restrict ourselves to these functions. Other variants, such as
create a new replicated director., can be implemented from these and the existing catalog operations in 10

the obvious manner.

Our approach to maintaining consistency in the replicated portion of the hierarchy will be to lock
the copies of a directory before modification and have the manager for the directory at one of the sites
coordinate the changes to all copies, including unlocking the copies after the change has been made. We
will discuss the management of updates in more detail later, when we discuss reintegration.

In Figure 4 we see a detailed represent at ion of the replication of the root, portion of the catalog
hierarchy on two hosts, A and B. Note that the directories above the dispersal cut are truly replicated,
having the same directory UIDs. The reader should remember that the contents of the replicated
directories are also replicated (e.g they have the same entries), and that they have location independent 0
semantics. That is. the entries consist of a symbolic name that is known globally (through the catalog)
ardt a UiD that is known globally (through the operatio)n s"itch). With this background, we can now go
on to discuss the operations in in,,re detail.

8.4.4.3.2. Replicate

The replicate function takes a specified non-replicated directory and replicates it at specified host.
sites. That is, a copy of the directory, with the same 111) as the original, and all the entries of the
original will be created by the Catalog Manager on each site specified To ensure consistency, existing
copies of the directory are locked during the update. Thus. only after the new directory is allocated and
its entries are complete is it made visible. Each copy of the directory includes a list identifying the sites
where copies reside. The operation is coordinated by the Catalog Manager of the directory which receives
the client's replicate request: this manager communicates directly with the Catalog Managers at the

affected sites to complete the operation.
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One issue raised by this method is whether the remote replications should be managed

synchronously (waiting for remote operation to complete) or asynchronously (telling the remote Catalog

Manager to start the operation and not waiting for completion). If the operation is synchronous, there

are obvious performance implications for comnpletion depending on how long the operation will take. For

a large configuration this could be a problem. A time-out will be required for those hosts that are down

or cannot respond. Asynchronous management means that it is hard for the originator to know when and

if the p (eralion wa.s c'ompleeled. It puls mhor' of a burden ,,n he reint egration procedure for making sure

the operation is carried out successfully. One possibility in the asynchronous case is for the target to

acknowledge start of the operation and not have the originator wait for completion.

The issue here is the definition of when an operation is complete. Strictly. an operation is complete

only when all sites maintaining copies have successfully completed an update. However, it may be

sufticient to consider an operation "complete" from the point of view of the initiator when it has been

successfully accepted by a catalog manager and the manager responsible for each copy has been locked.

Since the reintegration procedure will eventually cause the operation to be completed at all sites, relying

on it to make sure the operation is completed at all sites appears adequate. Thus, the initiator's

resptonsibility is to lock all sites with copies, start the operation at all sites with copies, and complete the

operation on the local host. Once the operation is successfully initiated and updated locally, we assume

t it ill be completed on all hosts eventually, either as a result, of the operatiun, or as a result of the

reintegration procedure if any of the sites crash before the operation is complete.

The only problem with this approach is if a site cannot complete the operation due to problems such

as lack of resources (e.g., no space to add new directories, etc.) In this rare case, the solution is to notif.

the operator of the resulting inconsistency through event logging of the monitoring and control system so

that the problem can be manually corrected. The reintegration procedure can still be used in these cases

to complete the operation at a later time, but presumably operator intervention will be required in some

instances to correct the cause of the prblem.

8.4.4.3.3. Dereplicate

The dereplirate function tak, ;, specified replicated directory and removes copies from identified
ts. The algorit hot is similar to plicate: first it locks the directorN copies at each site, then it removes

te rop from the ideatified site. moves the identified site from each site list, and unlocks the remaining

8.4.4.3.4. Modify

The modify replicated directory operations (add, delete, change) also proceed along the lines of

replicate/dereplicate, locking all copies of the directory, notifying all the remote Catalog Managers to

perform the operation, and unlocking the directories.

0
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8.4.4.3.5. Update

When a catalog manager returns to service after a temporary outage it scans the list of directories
for which it is responsible. For any that are replicated, the manager retrieves an up-to-date copy by
contacting an available site responsible for a copy of the directory.

Since our cluster is limited to a single local area ne(work, we have not yet had to address the
problem of reiniegrating catalogs after temporary partitioning. When partitioning occurs, independent
changes might occur to copies of a directory, with the result being that neither is clearly newer than
another. Strategies such as version vectors, applied to individual directory entries could be used to
resolve such conflicts in a future version of the catalog manager.

8.4.4.3.6. Administering the Dispersal Cut

User commands have been written which control replication of directories. A user may replicate or
dereplicate a directory by specifying the host where the new copy will be placed or from which a copy
Nbould le removed. Another user commantd support, migrating directories from one host to another by 0
replicating the directory to the new host and then removing the copy from its original location. Use of
these commands is regulated by Cronus access control to the replicate and dereplicate directory
operations. As with the directory operations they invoke, these commands may be applied to any
directory, regardless of where it appears in the hierarchy.

Earlier, we referred to two other functions which are important in the practical administration of
the replicated root portion of the Catalog Hierarchy. The first, move dispersal cut, can be thought of as a
compound replicate/dereplicate operation whose semantics are: given a directory in the hierarchy move
the dispersal cut to include it in the replicated portion by doing the appropriate replicate or dereplicate
operations on the intervening directories. Conceptually this can be thought of as traversing the hierarchy
and performing the individual replicate or dereplicate operations. Operationally, this function may be 0
qite dangerous. so access control is used to limit its use to system operators.

The ,ther function places a copy of the dispersal cut on a new host which will support cataloging
functions. In this case one of the Catalog Managers walks down the root portion of the hierarchy and
sends copies of each replicated directory to the new host. Since this is presumably done infrequently and

at a time before the new host is supporting users, performance and synchronization issues are not issues.

8.5. COS Directories

8.5.1. Characteristics

Many resources and functions of a host continue to be used directly after the host has been
integrated into a Cronus cluster. Also. many administrative tasks must be performed directly on the host.
For example. directories where sources for constituent system comnmands are maintained usually exist on

many machines in the cluster: users maintain directories and files containing mailboxes, sources,
d,,c,,rnents and other personal information; user accounts and access rights must be maintained for users
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who may log directly onto a particular host. One goal of Cronus is to provide remote access to these

resources, both to allow users to make use of Cronus development tools when manipulating these datasets
from any access point, and to allow users to integrate information front a variety hosts which otherwise
might require using cumbersome data transfer utilities. WNe also wish to support centralized

administration for hosts in a cluster.

Most of the information ihat is maintained direcl I b\ users and admtinist rat or, is slor((I iti the file

system by the Constituent Operating System (COS) running on the host. The data stored in each file
system can be integrated into the Cronus file system through COS directories and COS files. These object

types provide UID's which are mapped to actual native system directories and files: operations supported
for Cronus directories and files are mapped by managers for COS directories and files into native

operating system calls that create, read, modify and remove the native directory or file, as appropriate.
The subdirectories of a COS directory, and all files contained in the directory and its subdirectories are

automatically available by name. For example, consider that we create a COS directory for .'usr//cronus

on the host clxzr; this directory has subdirectories source and bin. It. we catalog the UID for the COS

directory as :cronus. we will be able to access the subdirectories by the names :cronus:source and
'crontums:bin. A file called client.c in .usr cronus, source can be referenced by the name
croutts:source:clientt.c.

Two steps are required t.o attach a ()S directory and its subtree to the Cronus catalog. The client
first invokes the COS directory create request. supplying the COS pathname of the desired director) and

,1irecting the request to the host. where the directory resides. The create request returns a Cronus UID
which the client should record in a Cronus catalog external link entry. The external link entry was
described in an earlier section, it allows the catalog manager to resolve the Cronus portion of the
pathname (in our example, the :cron-us:source component) and then forward the remaining portion to the

manager for the COS directory that the external link references (source. bin and source:client.c in our
Pxamtple). By using the lookup request, its variants, and status requests, programs such as list can display

the contents of COS directories just as they display the contents of Cronus catalog directories.

Currently. access to operations for creating and accessing COS directories and files are mediated by
the (ronus access control mechanisms. The policy that this approach provides limits creation of COS file
tinding-s to a selected administrative group for each host. We will soon improve the underlying

ine'hanisiu to enhance this policy, allowing Cronus users to administer bindings to directories they own on

con1st It uent hosts.

One inevttahle difference betw een cMIenVt i(,na! ('r tus direciories and COS directories arrises

because ('OS directorries can be manilpulated thro gh the onslituernt operating system without notice to

COS directorx manager responsible for thett. In particular. ('OS directories may be deleted or removed
without deleting or modifying the associated UID binding kept by the manager. Currently, the COS

directory manager detects when a directory has been deleted. deletes the associated binding and notifies
the client that the directory no longer exists. If the contents of the directory have been modified, those
changes will be be reflected in the results of operations invoked through Cronus. In the future, we may 0
encounter hosts where changes to the file cannot be detected in a timely fashion, and other strategies or

administrative guidelines may be necessary.
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9. Cronus File System

9.1. File System Overview

Cronus supports a number of different kinds of files, including:

- Primal files: The primal file is the most basic kind of Cronus file. Other kinds of Cronus files
are implemented from primal files. A primal file is stored entirely within a single host, and is
bound to the host.

- Reliable files: A reliable file is implemented by one or more primal files. Each primal file used
to implement a reliable file contains all of the file data. The reliability of these files derives
from the fact that the file is accessible as long as at least one of the primal files that
implement it is.

- COS files: The COS file represents a file which is already provided and maintained on a
particular host by its constituent operating system. The COS file manager allows such host
files to accessed through (ronus, allowing them to be updated and maintained from remote

.0 loc ations. 0

The initial Cronus implementation (the "primal system") supports only primal files, which are
implemented upon underlying single-host file systems. The next major Cronus release (the "reliable
system") will support reliable files. Later system releases may support dispersed files.

This section also describes a single host file system, called the Elementary File System, which will be
developed for each Cronus file host to serve as a common base of implementation support for Cronus file
managers.

Primal files are Cronus objects. They have unique identifiers (UIDs), and may be given symbolic
names. There is a Cronus object type CT Primal File.

9.2. Cronus Primal Files

9.2.1. Characteristics

Primal files cannot be moved from one host to another; the primal file system is partitioned among

hosts that store primal files. The HostNumber component of the UID for a primal file always specifies the
host on which the file is stored. A copy of a primal file can be created on another host, and the original
can be deleted. The copy is a different primal file with a different UII): it just happens to contain the
same data as the original file.

Like other Cronus objects, primal files are accessible to processes by means of the interprocess
communication and operation switch (Section 6). There is a Primal File Manager process on each host
that stores part of the primal file system. A client process accesses a primal file bN invoking an operation 0

)n the file, in which the 111) for the file and the operation to be performed on the file are specified.
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The Primal File Manager that maintains a primal file also defines a mapping between the UID for

the primal file and the information required to manage the file. The collection of information necessar)

to manage a primal file is called its descriptor. The file descriptor includes:

- i'll) of the creator;

SI)at e and time of creation;

. Date and time of last write;

. Access control list (ACL) for the file;

- Information necessary to find the file data on the storage media;

- Current size of the file;

• Other information (to be specified as needed)

Most of the operations provided by conventional file systems (create, read. write, etc.) are

implemented for Cronus primal files. The design is discussed in terms of the normal life cycle of a primal

file %hici includes:

1. The file is created.

2. Data in tlie file ma, be read or written by a client.

3. Information in the file descriptor may be read or written by a client.

4. The right to access the file may b. granted to or revoked from other users.

5. The file may be deleted.

File creation involves: the gen ration of a UID; the creation and initialization of a descriptor for

the file: and the binding of the UI) :nd the file descriptor in the Primal File UID Table. Until data is
writ tn into the file, the file is empi .When a primal tile is created by a Primal File Manager. it is

crvat,-d on that manager's host.

There is an issue regarding hether it should be necessary to open a primal file bfore reading or
writing file data. One reason fo open" and "close" is to provide for reader-wr>", ,ynchronizat lon:

another is optirnization of road rite operations. The disadvantage is that o',en .. ad,? corn lext . to

the Primal File Manager becau. it must maintain state information for ope,' d d A'-' the

problem of files opened which a - never explicitly closed (e.g.. because the cl i, cr" , "

Furthermore. if we require oper and close, additional operations must be invo,.d ,,. ' . .,on v.hen
the read or write is for a small armount of data.

The Primal File Manager supports access to files without open and provides an open 'close facilit.

for clients that need it. A read or write without open is called a "free read" or a "free write". The client

may then choose whether the additional overhead of opening and closing the file is worthwhile. For

example, if we wish to write a simple log message when a process is initiated, we would probably choose

the free write. If, on the other hand, we were copying a file, we would probably choose to open the files.

incurring the overhead of initiation once, and gaining further system support for synchroni7ation and data
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integrity. A client process may read or write data in a primal file (subject to authorization

considerations) without, opening it, unless another process has opened the file in such a way that free

reads and writes are forbidden.

Free reads and writes are synchronized in the sense that multiple reads and writes are serializable.

This means that the File Manager will, in effect, perform each read or write operation in its entirety

b ,Jfore, perforiting another operation.

When a file is opened, two parameters specify the access state requested. One specifies either Read

or ReadWrite access. The second specifies the type of reader-writer synchronization desired. There are

two types of synchronization supported: "frozen" which permits either N readers or a single writer; and

"thawed" which permits any number of simultaneous writers and readers. When a file is opened with

"thawed" access, readers of the file see updates riade by writers of the file. Opening a file with "thawed"

access prevents other processes from opening it "frozen". 0

Thus, the access states defined for a file are:

free:

frozen read open;

frozen readwrite open:

thawed open;

(free) read in progress;

(free) write in progress.

A file may be opened so long as the access state requested does not conflict with the current access 0

state of the file. Table 6.1 defines the compatibility of the access states with one another, and with read

and write operations invoked by a client without previously opening the file. An OK for an

(OPERATION, ACCESS STATE) entry in the table means that a client. process can perform the

operation on a file when the file is in the corresponding access state; a NO entry means that the operation

will fail when the file is in the corresponding state: a DELAY operation means that the operation will be

delayed until the operation in progress (and any others that may be queued) are completed.

The data in a primal file is a sequence of octets, numbered from 0 to N. The read operation

specifies the first octet to be read and the number of oct-ts to be read. The write operation specifies the

Octet position of the first octet to be written and N octets ,)f data to be written.

In order to support file system recovery, data that is written to a file that has been opened for

(ReadWrite, Frozen) access does not become part of the permantent file data until the file is closed. It is

possible to close a file opened for (Read Write. Frozen) access in a way ttat aborts writes made to the file

A hile it was open.

A fie is open to a process. The Primal File Manager provides an operation which returns a list of

the 7Ill)s for the processes, if any. that have a given file open. Another operation returns a list, of the

Ill)s for the files, if any, that a given process has open.
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ACCESS STATE
free frozen frozen thawed read in write in

OPERATION read readwrite progress progress

frozen
read OK OK NO NO OK DELAY
open

frozen

readwrite OK NO NO NO DELAY DELAY
open

thawed OK NO NO OK DELAY DELAY
open

free OK O NO OK OK DELAY
read

free OK NO NO OK I)ELAY I)ELAY
write

Access State Compatibility
Table 9.1

When a process is destroyed with files open. the files are closed and any writes to (ReadWrite.
Frozen) open files are aborted. The norinal -lose operation may only be invoked by the process that
opened the file. An alternate close operation can be used by other processes to close a file during cleanup.

A client can read the descriptor of a primal file. Some of the information in the file descriptor is
'hanged as a side effect of operations on the file. For example, when a file is written, the date and time
,f last write is changed There is other informoation that the client may wish to change explicitly.

Access to a primal file is controlled by its access control list (ACL). Access to a primal file may be
granted to other users by adding entries to the ACL. Similarly, access to a file may be revoked from a
user 1,v removing the corresponding entry from the ACL.

Some file system support the notion of Delete, UnDelete and Expunge operations. The current
design for the primal file system assumes that only Delete (called Remove) will be supported, but it is
relatively straightforward to modify the specification of Cronus primal files to accommodate a Delete.
Indelete. and Expunge model of file removal.
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9.2.2. Crash Recovery Properties

If a primal file operation is invoked, the Primal File Manager normally acknowledges the operation.
indicating the disposition of the operation (e.g., success, failure, and reason) and. depending upon the
operation, to return any data requested.

The I 'ri nal File Manager does not. acknowledge write requests un i the data has been written to
non-volatile storage. A client process can be sure that the data has been written when the
acknowledgement is received, even if the Primal File Manager or its host should crash shortly afterward.

Primal File write operations are atomic with respect to host crashes. That is, if the Primal File
Manager host should crash during a write operation. after the host and Primal File Manager have been
restarted and the Primal File Manager has performed its recovery procedures, the write operation will
have either occurred in its entirety or no part of it will have occurred. If the crash occurs after the data
has been safely written but before the acknowledgement has been sent, the acknowledgement will never
be generated.

This atomicit.% propertN is true for the Close-and-RetainWrites operation. That is. either none or all
(if tie write" made while the file wa. open will have been performed.

9.2.3. Operations for Objects of Type Primal File

In addition to the generic operations the following operations are supported for primal files:

Open
Close
Sync
Read 0
Write

Truncate
Append
Fileso)penBy

OpenStatusOf
('lose ProcessO pen File
(lose All ProcessO pen Files

The ()pen and Close operations provide an atomic transaction capability for a single primal file. At some
later point, we may define explicit BeginTransaction. EndTransaction. and AddToTransaction operations
which could be used to provide a capability for transactions that involve more than a single primal file. 1

In response to a Status operation, the Primal File Manager returns information about the status of
the primal files it manages. such a. the amount of free space, the amount of space used by existing files.
the number of files it manages, the number of files currently opened. etc. This information will be useful
to s.sten operations personnel as well as trO clients vho might use it when deciding where to create primal

files
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9.3. Reliable Files

9.3.1. Objectives

The principal motivation within Cronus for maintaining multiple copies of a file derives from

reliability considerations. The objective is to increase the probability that the file will be available for

access ai any given time by keeping copies (in Cronus we shall call Iheii images) of the file at a number

of hosts. Although any given host that stores the file may fail. so long as at least one of the hosts

maintaining an image is accessible, the file will be also.

Secondary benefits include performance improvements that may result from distributing the load

due to file access among the hosts that store the file and from the possibility thai client access to an

image of the file maintained on its own host will be more responsive than access to an image on a remote

host.

Increased file availability does not come for free. The cost is increased complexity in managing the

files. Most of the complexity is a consequence of the fact that Cronus works to ensure the mutual

consistency of the file images; when one image of the file changes. all others should be updated to reflect

(te change.

Furthermore, in the Cronus environment it is desirable to support concurrent access to files. For

example, Cronus supports a form of multiple readers / single writer concurrency control for primal files.

The same sort of concurrency control is provided for multi-image files.

Concurrency control requires that sites managing images of a file cooperate to synchronize client

access to the file. There is complexity -nd overhead associated with this cooperation. In addition, since

strong concurrency control mechanisms require the participation of more than one site, situations may

arise where an insufficient number of ' le image sites are accessible to perform the concurrency control.

Unless the system is willing to permit unsynchronized access to an accessible file image in such situations,

some of the reliability benefits of muai-image files will be lost. The danger of unsynchronized access is. of

course, that accessors may cause difi rent images of a file to become inconsistent.

The Cronus approach to con, rrency control for reliable files is based on the presumption that file

availabilit v is important enough ti..it it is permissible to risk the consistency of file images and to grant

access to file data when synchronization cannot be achieved. That is, when a choice must be made, file

availability or survivability is considered more important than mutual consistency of file images.

The approach to concurrei -y control is to try to achieve strong synchronizat ion l.rJ- to file access

in order to maintain the consist ncy of the file images. However, should the synchronization fail 'bcause

the file sites required to achieve it are inaccessible, the client will be informed and . ccess to the file will be

permitted only if the client gives explicit consent to continue.

This relaxed approach to concurrency control will be practical only if:

a. File access patterns are such that it is relatively unusual for multiple concurrent

updates to occur.

b. Hosts are reasonably reliable so that host failures that prevent strong synchonizalion
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are relatively, rare.

c. There is a simple and inexpensive way to detect inconsistent images of a file. We
believe that the Version Vector mechanism developed at U'CLA 'Parker 19831 is a good

one for this purpose.

l'xlperience with Cronus may show thai there are some applicatiotis which require more absolute
synchronization than this approach supports. If that proves to be the case, the support for reliable files
will be augmented to include a file type for which more positive synchronization is supported.

9.3.2. Reliable Files as Composite Objects

A reliable file is a Cronus object of type, CT Reliable File. A Cronus Reliable File (RF) is a
collection of one or more primal files, each of which represents an image of the reliable file. No two
images or a reliable file are stored at the same site.

The nuniber of ilages of a reliable file Inay change over the lifetime of the file, as n iay tine sites
which maintain the individual images. The desired number of images is called the cardinality of the file.
The actual number of file images may be different than the file cardinality. For example, when a file is
first created its cardinality will be greater than the number of images until all of the images are created.
Similarly, if the cardinality of a file is changed, it takes finite amount time for the number of images to
be adjusted. Thus, the cardinality is properly thought of as an objective.

A reliable file of cardinality - 1 is a migratory file. Although it has only a single image like a
primal file. unlike a primal file it may be moved from one host to another.

Each Reliable File Manager (RFM) maintains a UID table for the reliable files that it manages.
Vrnlike simpler objects, such as primal files, the management of reliable files requires the cooperation of
RFMs. Each RFM participates in the management of a collection of reliable files (the ones in its UID
table), but not all RFMs participate in the management of all reliable files.

)epending on the cardinality of a particular reliable file, a RFM may need to cooperate with 0
(cardinality . I (cardinality = 2), or more (cardinality > 2) other RFMs. For each reliable file it
manages. a RFM is directly responsible for carrying out the operations on a particular primal file that •

reprisens an image of the file. We shall sometimes refer to that image as the manager's image or as the
local (to the manager) image.

When a client invokes an operation on a file. the underlying interprocess communication facility
routes the operation to an RFM capable of performing it. Any interactions among RFMs that are S
required to perform the operation are transparent to the client process.

Acress to the primal files that comprise a reliable files is limited to HFMs. No other process may
directlN access a primal file used to implement a reliable file, even if the process has the UID for the
primal filei this is enforced by the Cronus access control mechanism.
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For Cronus, RFMs reside only on sites that also have primal files managers (PFMs). The manager's
image of the file is stored at the manager's site. RFMs, of course, access the file images through PFMs in
the normal fashion.

There is an issue regarding the relation of I{FMs to PI"Ms. TheN could be implemented either as
two completely separate managers which communicate bN means of interprocess communication or as a
singiv. combined imanager for ot h CT Prinal ['il1 and (T IHeliable File. The initial implementation
of reliable files will be accomplished by means of RFMs that are separate from the PFMs. Later
implementations may integrate the RFM functions into (some of) the PFMs.

In addition to the information maintained in descriptors for primal files, object descriptors for
reliable files contain the following information:

File Cardinality;
ID of primary site (see below);

Version vector for the local image of the file
(see below):

Version vector for the local image of the
(lescript)or (see beloA),

List of UlID's for the primal files that implement
images of the file.

9.3.3. Synchronization Considerations 0

In order to maintain the consistency of images of reliable files and the integrity of internal file data
(for primal as well as reliable files). Cronus must control and synchronize the manner in which clients

access the files.

0
The general Cronus approach to synchronization for reliable files can be characterized as a best

'ff,'rt approach consisting of the following steps:

1. try to synchronize access:

2. if synchronization cannot b achieved permit access if the client so desires: 

3. h~e prepared to detect and deal with inconsistencies that may result from
unsynchronized access later.

A specific concurrency control mechanism must be chosen. Although much has be written about 0
concurrency control and synchronization for multiple copy' file- and data bases, there is little practical
experience on which to base a choice. We have decided to use a simple mechanism for Cronus. Should
the mechanism prove to be inadequate (for example, becau it cannot, achieve synchronization often
enough. given the failure patterns observed in Cronus), it will be replaced with a more capable (and
complex) one.

-83-



Report No. 5884 DBN Laboratories Inc.

Synchronization will be accomplished by means of a primary/secondary image approach. Each
reliable file will have one primary image and one or more secondary images. All attempts to synchronize
access to a reliable file will require synchronization with the primary image. We refer to the manager of

the primary image as the primary manager for the file; managers of other images are called secondary
rmian agers.

W lell a client al.iceinpts to access file data in a way that requires syn ichroui]zaitioi, an ateipt will bc

made to synchronize with the primary image of the file. If the client's access attempt is initiated with the
manager for the primary image, synchronization occurs as for primal files. If the access attempt is
initiated with the manager for a secondary image of the file, the secondary manager interacts with the
primary manager to gain the appropriate kind of access (non-exclusive read, exclusive write).

RFMs use a locking discipline to support synchronization. This discipline works roughly as follows.
When an attempt to open a file for reading is handled by a secondary manager, the manager tries to set
its lock for the file to "reserved for reading". The attempt to set the lock fails if the file is already locked
for writing. Next, the manager interacts with the primary manager to try to set the primary manager's
lock for the file. If this succeeds, the secondary manager set, its lock to "locked for reading" and
proceeds with the open. If the primary has the file locked for writing, the secondary manager clears its

lock alld re|porti t lthe clieiit that the file is busy. hen tlie file is closed, botlh the local lock and the
primary manager's lock for the file are cleared. Attempts to open a file for writing are handled in an
analogous fashion.

The reliable file system supports the notion of free reads and writes. For a free read the
synchronization outlined in Table 9.2 is performed by the file manager which handles the client's read,
but no attempt to synchronize with the primary manager is made. Free write operations require
synchronization with the primary manager.

If sychronization for any operation fails because the primary manager cannot be reached, the
operat ion may proceed, but only with the explicit consent of the client, and, of course, at some risk. The
risk is that different images of the file may be undergoing unsynchronized access, and, as a result, the file

images may diverge into inconsistent states.

A client niay specify its intent with regard to unsynchronized access when it initiates a file operation

bmeans of an optional operation parameter. Alternatively, the client may choose not to spetify the

action to be taken when it invokes the operation, in which case, if synchronization cannot be achieved,
lie manager will ask whether it should proceed with or abort the operation.

Inconsistent images of a file can be detected by means of the version vector mechanism developed at
U('CLA. A version vector for a reliable file, RF, is a set of N ordered pairs, where N is the number of sites
at which RF is stored. A particular pair (Si. Vi) counts the number of times updates to RF were initiated
at Si. Thus, each time an update to RF originates at Si, Vi is incremented by one. The version vector is

part of the object descriptor for RF.

Two images of a reliable file are said to be consistent if the modification history of one is the same
as or is an initial subsequence of that of the other. It can be shown (hat two images are consistent if one
of tile vectors is at lea&st a s large as the other in every (Si, Vi) pair. The larger vector is said to dominate
the smaller, and the image corresponding to it represents a later, consistreit version of the image
corresponding to the smaller vector. If two vectors are such that neither dominates the other (that is,
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some pairs in one are larger than some pairs in the other and vice versa), then 'he corresponding file

images are inconsistent with one another.

Since the descriptor for a file may undergo modification independently of the file data, descriptors

for reliable files also have version vectors.

"i'le qu(estion of when %ersiot vectors for file images shoul de com ared atid what to do if the) are

not equal is discussed in Section 9.3.6.

9.3.4. Interactions Aniong Reliable File Managers

RFM's must interact with one another in order to maintain reliable files. For example, when a

reliable file is updated. the new file data must be transmitted to each site that has an image of the file.

Occasionally a RFM that must participate in such an interaction will be inaccessible. It is

important that when, if ever. such a RFM becomes accessible the interaction occur. It is the

re.f,,nnibilit. of the iiiitatig IUM t(o ensure that the interactiotn occur,. The niechanisin used by RFNI'

to do this is as follows:

Each RFM maintains a PendingActions data base which contains a record for each operation it was

unable to completely perform due to its inability to interact with other RFM's. Each such record

includes:

the UID of the reli 4jle file

a specification of the action required to complete

the operation:

a list of the sites at which the action must be

performed (for some actions, this list maN be empty)

Whenever the RFM is unable o complete an operation. it adds a record t.o the PendingActtons data

base to describe the actions necess -y to complete the operation. Subsequently, at regular intervals, the

1I"M scans the PendingActions d; a base and for each record, it attempts to perform the necessary

iteractions. If the RFM succeed in performing sonre-. hut not all, of the interaction,, it updates the

r,,rd \%hen all of the interact ns described by a r.' ,.rd are successfully perform the rcord is

removed froIm the data basp.

The actions that may be 'und in records in the PendingActi(,ns data ba.,e

a. Acquire sites i, store images of a file.

b. Update the descriptor for a file.

c. Update a file itself.
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When a RFM comes up for the first time, its PendingActions data base is empty. and if sites and

the network never failed the data base would remain empty.

The PendingActions data base should be stored in a reasonably reliable fashion. It is probably

adequate to store it as a primal file on the RFM's local site.

9.3.5. Operations on Reliable Files

The operations supported for primal files are also supported for reliable files. Three additional

operations are supported for reliable files. The Change Cardinality operation changes the cardinality of a

reliable file. The File_Sites operation produces a list of the sites that are thought. to be maintaining •

images of the file, with the primary file site distinguished. The Move _ Image To Site operation moves a

file image from one site to another (removing the image at the source site).

The design of reliable files is conveniently described in terms of the normal life cycle for a file,

which is much the same as that for a primal file. The principal exception is that the cardinality of the file

mia change. The life cycle includes:

a. The file is created.

b. Data in the file may be read by a client.

c. Data in the file may be written by a client.

d. Information in the file descriptor may be read by a client.

e. Information in the file descriptor may be written by a client.

f. The cardinality of the file may be changed.

g. The file may be deleted.

The following sections discuss these operations.

9.3.5.1. Creating Reliable Files

A reliable file must be created before data can be written into it, and until data is written into the 0

file. the file remains empty.

To create a reliable file, the client invokes the Create operation specifying the cardinality of the file

as a parameter. The RFM that receives the Create operation becomes the primary manager for the file.
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For the initial implementation of reliable files, clients may exercise control onl', over where primary
file images are maintained. If the Create operation is requested by means of InvokeOnHost, then the
RFM at that host becomes the primary manager; otherwise, the RFM selected by the interprocess
communication facility becomes the primary manager. Later implementations may provide means for

client processes (as well as for users through the user interface) to exercise control over the initial

placement of secondary images. After images are in place, the Move - Image To Site operation can be
used i move an image fromt one site to another.

When a RFM receives a Create operation, it:

a. Creates a (empty) primal file for the primary image of the reliable file, and obtains its
UID (UlD pf).

b. Allocates a UID (UID rf) for the reliable file, and makes an entry for it in its UID
table;

c. Creates and initializes a descriptor for the reliable file. The following descriptor fields

are initialized:

The cardinality;

The primary site;

The file version vector and descriptor version vector;
The list of UIDs for images is initialized to include UIDpf.

d. Returns UIDrf to the client, indicating that the Create succeeded.

Secondary images of the file are not created until the file is written the first time. (That is, after a free
write or after the file is opened, written into and closed).

When a reliable file is first written and whenever the file cardinality is increased, the RFM selects sites

to store images of the file. The acquisition of new sites involves three steps:

a. The selection of the new sites.

b. Obtaining commitments from the RFMs at the selected sites to st.ore images of the file.

c. Updating file descriptors at each of the file sites to reflect the new sites.

The RFM acquisition procedure is structured so that an RFM need not, as part of a single

acquisition attempt. acquire every site required to support a file's cardinality. An RFM can support
operations on a reliable file even if not all of the desired images of the file have been created. When an

RFM is unable to acquire all the sites necessary to achieve the desired file cardinality, it creates a record

in its PendingActions data base to ensure that the additional sites will be acquired.

-87-



Report No. 56884 BUN Laboratories Inc.

9.3.5.2. Reading Reliable Files

Reading a reliable file is similar to reading a primal file. File data may be read by mens of a free
read operation, or by opening the file prior to performing read operations. In either case the interprocess

communication facility delivers the operations to an RFM that manages the file.

There are several differences in dealing with reliable Files which are visible to a client. These include
the following:

a. The interaction between the RFM that receives the operation and the primary RFM for
the file in order to achieve synchronization is not visible to the client. However, should
the synchronization fail because the primary RFM is inaccessible, the client will be

informed and given an opportunity either to continue with the access or to abort it.

b. A client process can obtain a list of the sites that have images of a reliable file, and it

can choose which RFM to deal with to access the file. For example, it might choose the
primary RFM. or, if an RFMI happens to reside on the host it does, it might choose that

one.

c. After it opens a file, the client should continue to deal with the same RFM for
operations on the open file until it closes the file.

9.3.5.3. Writing Reliable Files

Writing a reliable file is similar to writing a primal file. The principal differences are essentially

those noted above for reading reliable files: the required synchronization may fail due to the

inaccessibility of the primary manager for the file, in which case the client must decide whether to

proceed at some risk or to abort the write; the client may choose the RFM with which it deals; and, after

it has opened a reliable file for writing, a client should deal with the same RFM for operations on the

open file until it closes the file.

File data must be updated after a free write or after a file opened for writing has been closed (if
writes have actually been made and are to be retained).

The RFM at which the writes are performed is responsible for distributing updates to the other file
images. It does this by interacting with the other RFMs sites in the following way:

a. It increments its (Site, Version) element of the file version vector.

b. It attempts to interact with each other RFM that manages an image of the file.

c. Should it fail to complete the image update with any RFM, it adds a record to the

PendingActions data base specifying the file and the RFMs it was unable to update.

The actual update procedure for a particular image involves several exchanges between the initiating

-88-



BB1N Laboratories Inc. Report No. 5884

RFM (iRFM) and the responding RFM (rRFM), and works roughly as follows:

a. iRFM does lnvokeOnHost(SiteOf(rRFM), UID.
Updatelmage, DVV, FVV):

where U) is the till) of the reliable file, l)VV is the version vector for the file
descriptor, and FVV Is lie version 'ctr for Ihw ile itself.

b. rRFM compares both DVV and FVV against the descriptor and file version vectors it
maintains for UID. Assuming that DVV and FVV dominate the corresponding version
vectors at rRFM, rRFM returns to iRFM a SendTheDesriptor message. (Section 9.3.6
discusses what happens if iRFM's version vectors are dominated by or are incompatible
with rRFM's.)

c. When iRFM receives the SendThel)escripb(r message, it sends the new value of the file

descriptor to rRFM in a IHerelsTheDescriptor message.

d. rRFM receives the file descriptor and updates its copy of the descriptor. It then returns
iRFM a SendTheFileUlpdate mes.age.

e. When iRFM receives the SendTheFileUpdate message, it, transmits the file update to
rRFM in a HerelsTheFilet) pdate message. Depending on the nature of the changes to
be made to the file image. the update may be transmitted by sending the entire file or
by sending only the changes that need to be made to the file to update it.

f. Finally, after it has stored the new file data in the primal file that holds its image of
the file, rRFM returns an UpdatelmageSucceeded message to iRFM.

9.3.5.4. Other Operations

This section describes the Change Cardinality and Move Image To Site operations. Both
operations require synchronization with the primary manager.

(hange (Cardinality is used to change the number of images the system tries to maintain for a
reliable file. An increase to the cardinality is accomplished by execution of the acquisition procedure
described in Section 9.3.5.1. Decreasing the cardinality is roughly the inverse of increasing it. The
performing manager selects a site or a set of sites which currently maintain images of the file and asks the
manager at each to agree to discard its image of the file. and to remove the file from its UID table. After
each agrees, the performing manager instructs each to discard the image and the remaining managers to
update their descriptors for the file.

Move_ Image ToSite moves a file image from one site to another, preserving the file cardinality.
The parameters of the operation are the file UID, the site of the image to move, and a new site to hold
the image. The operation involves creating an image of the file at the new site, discarding the image at
the old site, and updating the descriptors held by all managers of the file to reflect the change.
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9.3.6. Use of Version Vectors

Version vectors are used to detect inconsistent images of reliable files. In the current design, both
the descriptor for a file and the file itself are protected by version vectors.

Version vectors are compared in two situations:

a. When an image of a file is updated. The RFM initiating the image update supplies its
version vectors, and the responding RFM compares them with its own.

b. When an attempt is made to lock a file for read or write access. The secondary RFM
attempting to lock the file supplies the primary RFM with its version vectors and the
primary RFM does the comparison.

In each situation, both the descriptor version vector and the file data version vector are compared.
There are four possible outcomes for the comparison of version vectors:

ft. The supplied version vector is the samie as the local version vector.

b. The supplied version vector dominates the local version vector.

c. The supplied version vector is dominated by the local version vector.

d. The two version vectors are incompatible.

The actions taken for these outcomes depend upon whether image updating or file locking is taking place.

For updating, the version vectors are compared by the RFM whose image is about to be updated.
The various comparison outcomes and the actions to be taken for each are:

a. The supplied version vector is the samr as the local version vector. Since the updating
RFM increments its element of the -version vector prior to sending it for comparisoi. if
the R|Ms are behaving properly, this case should not occur. If it does, some RFM has
been misbehaving. The update should be deferred and the operations staff should be
alerted by means of a message to the Monitoring and Control System.

t,. The supplied version vector dominates the local version vector. This is the normal case,
since the local image is being updated. In this case, the image up 'a:.e should proceed.

c. The supplied version vector is dominated by the local version vector. In this case. the
local image is more recent than the one that is to replace it. The update should be
aborted, and the local version should be used to update the remote version.

d. The version vectors are incompatible. This detects an inconsistency. The update
should be deferred until human intervention can clear up the problem.

-. /0-
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In the locking situation, the version vectors are being compazed by the primary RFM for the file in

quest ion:

a. The supplied version vecto, is the same as the local version vector. This should be the

normal case. and locking can proceed.

b. The supplied version veci.lor dininiie'. Ili. local version vector. In this case, line

primary image is obsolete, and should be brought up to date. If the file is being locked
for writing, the locking should proceed, and the local image can be updated when the

file is closed. If the file is being locked for reading, there are two possibilities. Either.
the primary file image could be updated before proceeding with the locking, or the
locking could proceed and the file could be updated when the lock is cleared.

c. The supplied version vector is dominated by the local version vector. The secondary
image should be updated before proceeding. If the file is being locked for reading, then

the file image at the secondary site should be updated so that the client is given access

to the most current file data. If the file is being locked for writing, then the secondary
file image must be updated first to avoid incompatibility.

d. The version vectors are incompatible. If the file is being locked for reading. the locking
may proceed, but an attempt to signal a user or operator to resolve the incompatibility

should be made. If the file is being locked for writing, the client should be informed of
the incompatibility and given an opportunity to resolve it. The client may proceed
without resolving the incompatibility, in which case the write is treated as an

unsynchronized write.

9.4. COS Files

9.4.1. Characteristics

The motives for supporting COS tiles and directories were discussed in the (OS directory
description of the catalog section. Briefly, we wish to provide remote access to file resources to files and
directories maintained by the constituent operating systems so that the information they contain can be

manipulated and integrated by a user from any point in the cluster. This also allows many cluster host
ad m inistrat ive activities to be moved to a com mon lc at ion.

Catalog entries for COS files are usually introduced into the Cronus catalog by creating a link to the

('OS directory that contains the files. However, individual COS files may also be created by supplying a S
('OS pathname to the manager responsible for COS files on the intended host, and entering the UID

returned by the create request into the Cronus catalog. Thereafter. clients may open the COS file by
specifying its UID. retrieved from the COS director) or Cronus directory. as appropriate. Using the

descriptor returned by the open request, normal Cronus file operators may be performed. namely open.
read, write, and close. This allows Cronus file utilities, such as text editors, file copy utilities and

application programs to be indifferent to whether their targets are Cronus files or COS files. This enables

not only remote file editing or remote access to a mailbox, but also allows programmed. systematic update
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of these files to be performed, as might be done by a software distribution program which periodically

updiates copies of programs and program sources at a collection of cluster sites.

Currently. access to operations on both COS directories and ('OS files are mediated by the ('ronus

access control mechanisms. This approach limits creation of COS file bindings to a selected

administrative group for each host. We will soon improve the underlying mechanism to enhance this

I,-Ich. aliowing Cronus users to adinisi.er bindings t, liles I hey owii oni consi iluent hosts.

As with directories, COS files are inevitably different from Cronus files because COS files can be

manipulated through the constituent operating system without notifying the COS file manager responsible

for them. COS files may be deleted or removed without deleting or modifying the associated l)) to file

mapping kept by the manager. Currently, the COS file managers detects when a file has been deleted.
deletes the associated binding and notifies the client that the file no longer exists. If the contents of the

file have been modified, those changes will be generally be reflected in the results of operations invoked

through Cronus. In the future, we may encounter hosts where changes to the file cannot be detected in a

timely fashion, and other strategies or administrative guidelines may be necessary.

9.5. Elementary File System

9.5.1. Introduction

The Elementary File System (EFS) is an easily ported single host file system that serves as a

common base of implementation support for Cronus file managers on Cronus Generic Computing

Elements (GCEs) configured with disks, on the UNIX system, and on the VAX. The underlying
implementation of the EFS is constituent host dependent. but the interface presented to the Cronus File

Manger is uniform. As a result, portability of the File Manager is enhanced, and the cost of integration

of new hosts is reduced. The EFS was originally developed as a primitive file storage capability for the

(;CE mass storage devices. 0

The two principal design objectives of the FFS are:

Sufficient functional capabilit to support the ('ronus distributed file system.

0
2. Simplicity and efficiency.

The principal users of the EFS will be object managers. Client processes will seldom, if ever,

directly access files through the EFS. Therefore. only the most basic file operations need be

supported. More complex file functions can be supported by the object managers themselves.

Simple steps have been taken in the internal organization of the EFS to support effective crash

recovery and system restart procedures.

The Elementary File System will have the following characteristics:

The name space for EFS files is flat. Names for EFS files are called FilelDs, and they are

fixed length bit strings. FilelDs are not Cronus Ill)s A Filell) is unique on the EFS that

generated it, but it is not unique across all Cronus hosts The FFS is a (,rnus object in much
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the same way that the existing UNIX or VMiS file systeiiu, are ('ronus objects, but

2. A EFS file is no( a Cronus object.

3. File data is organized as a sequence of fixed length bloc kN. File io is sequential. and is block
oriented. The basic file i/o operations are:

ReadEFS~ieBlock(FileID, BlockNumber. Buffer), and
Write EFSFileIBlock (File]ID, BlockNumber, Buffer).

4. There are no open or close operations. No setup is necessary to read data fromr or write data

to an existing EFS file.

5. It is necessary to create a EFS file before writing data to it. This is accomplished by the

CreateEFSFile()

operation, which creates an empty EFS file and returns its Hillh).

6. EFS files are deleted by the

IDelete EF SFile (F ilel[D)

operation.

7. There is no arcss control for EFS files. Possession of the FlielD for a EFS file is sufficient to

access the file.

The EFS will normall-, be acce~sible only to Cronus Services. The primal file mianager is an
example of such a serv ice. These s,-vices provide controlled access to the objects anid operations that

he% imiplement, as, described in Se( ion 9.

)in addition to support ing t h local primal file na nager. thle EiS mnaY be operate(d on as an object t

pernit remlote access for mainteri nce and debugging purposes. There is a single arce!s cojitr(,! li'.t ( A(Tl.
associated with access to the oni EFS through the I VS File Nlan( !,r. Onl). a ver\ few prive'i.P Atl wil
be on the AC!.for a EFS. An ample of a principal which m~fiji k~e granted acce-s;t th, FF1S is the

~SstmMaintenance' principa

9.5.2. File Formats

The following description of the Elementary File System structure ass;umes that a disk can be
represented by a series of fixed length blocks. In the Cronus AI)M. the storage 'na% be.

a disk drive on a G;CE:0
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a disk device in a UNIX system; or

a contiguous file on the VAX/VMS.

The FS makes few demands on the underlying recording medium, and it is relatively easy to see that
most potential Constituent Operating Systems will provide a construct upon which the EFS can be built.

File disk blocks are self-identifying for reliability purposes. Each block includes a header that
contains the FilelD and the block number. The file header in each block contains a NextBiock pointer
which is the disk address of the next block, if any. in the file. The NextBlock pointer in the last block

contains a special value marking the end of file.

There is a Filell) Table which provides a mapping between Filel)s and the disk address of block 0 of

the file (see Figure 1). The FilelD Table is as a file with a well-known FilelD (FilelD = 1). Its block 0
will be stored at a known disk address (with an alternate copy stored at, another location to prevent loss

of data in case the primary block is bad). The Filell) Table is a hash table.

There is a FreeDiskBlock table which records the disk blocks that are available. The FreeDiskBlock
1 abl- i, a bit table stored in a file with a well-known FilelD (FilelD - 2). Its block 0 is stored at a known
disk address. When a file is deleted, its blocks are recorded in the FreeDiskBIock table, and the FilelD
field in tie headers of each of the blocks is cleared. As disk blocks are needed they are allocated using

the Freel)iskBiock table.

There are two types of EFS files, The type of the file is contained in the header of block 0. The
types of EFS files are (see Figure 2):

a. Short file.

This is a file, all of whose data will fit within block 0.

b. Normal file.

This is a file whose data will not fit within a single block.

A \ormal file may contain index blocks which allow random access to the file. By convention, the first of
these blocks is given block number -1, and contains:

i. A block index which holds the disk address of blocks I through N of the file; and

ii The disk addresses for two overflow blocks, named OverflowBiockl and OverflowBIock2. which
can be used to find the block index entries for blocks numbered greater than N.

If the file is 'ery large, not all of its index will fit into block -1.

OverflowBiocki is used as an index for blocks which store part of the block index which will not fit
in block -1. Specifically, if block -) can store indices for blocks I through N, if OverflowBIockl can store
M disk addresses as indices, and if each block il indexes can store P disk addresses, Overflowlqlockl can
provide access to indices for M*P additional blocks, numbered (N . J) through (N- M*P). The block
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index for the Normal file shown in Figure 2 overflows block -1 into ()verflowl3locki, and is small enough
that it. doesn't require OverfiowBlock2.

OverflowBlock2 provides an additional level of indirection for very large files. It contains an index
for blocks which are used in the same manner OverflowBlockI is. If OverflowlBlock2 can hold Q disk
addresses as indices, then it can provide access to indices for M*IP*Q blocks, numbered (N- M*P- 1)
I hrougli (N ,M*P I *PiQ).

By convention the BlockNumber for Overflowli1ockl is -2. Any index blocks referenced by
OverflowBIockl, as well as OverflowBIock2 (if present), and any index blocks it references directly or
indirectly are assigned BlockNumbers in a negative sequential fashion starting at -3 in the obvious
manner.

Some constituent hosts will have multiple disks (in the case of UNIX, these may actually, be disjoint
regions on a single physical disk, and in the case of VMS, they would be multiple contiguous files). Part
of the FilelD specifies the disk on which the file resides. The CreateEFSFile operation takes an optional
parameter which specifies a disk. If the parameter is supplied, block 0 and all subsequently created blocks
of the file are allocated on the specified disk. If the parameter is not supplied, block 0 and subsequent
blocks, are allocated on the disk the EFS sees fit.

9.5.3. Disk Salvaging

There is a BadDiskBIock table which holds the disk addresses of bad disk blocks. The BadDiskBlock
table is stored in a file with a well-known FilelD (Filell) - 3).

There is a EFS disk salvage operation which can reconstruct the Filell) table, the FreeDiskBIock file. 0
and the BadDiskBlock file, and rese, the NextBlock pointers in files.

The salvager may encounter fi! s with missing blocks. When it does, it will fill in any hole it
encounters with a newly allocated tiller block, linking the filler block into the file where the hole was. The
Filell) of the filler block will be i to the ID of the file. and its BlockNuiber Aill be set to a special
BlockNumber which identifies it is a filler block. The only di' va in a filler block will be the
Block Numbers of the previous -d next file blocks hic h con a i dij! Ifigher Ic'.: ,oftware can be use(
to recover the data in a file whi h contains filler blocks

As the salvage procedure encounters bad disk blocks, it records them in tli,, Badl):-ii If i1

encounters a bad block which is part of a file, the salvager will remove the blo,k frolr the lii, .,d 0
substitute a newly allocated replacement block by linking it with the other blocks of th. file in place (of
the bad block. The File][) of the replacement block will be set to the I1) of the file, and its BlockNumber
will be set. to a special BlockNumber which identifies it is a replacement block. The only data in the
replacement block will be the BlockNumber of the block it replaces. This wil make it possible for higher
level software to recover the data in other blocks of the file.
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10. Input/Output

10.1. Introduction

Devices. such as line printers, tape drives, or terminals are integrated into the Cronus systerd as
sill)lylpc of generalized objicts. These generalized (,Ij'-t s serve to cat agorize devices by t lie way in which

requests for the device are submitted and manipulated. This strategy provides a richer organizational
structure than the simple model of device independence offered by traditional single host operating
systems such as Unix, where most devices are abstracted to appear similar to either a sequential or
random access file. For example, the existing line printer driver is implemented as a subtype CT_ File so
that utilities which normally direct their output it) files may be directed to a line printer object; the data
written to tia printer will be queued and printed in order. An alternative strategy for a line printer
would be to view it as a queue, similar in operation to a directory; each entry would represent one queued
request. The queue could be listed, entries removed or their order rearranged.

To date, for devices other than line printers, we have generally used the constituent systems to
provide access to host peripherals. The remainder of this section presents some ideas on how devices
might be organized around a stream object; -Ae expect thal a-, our experience with integrating devices into
(ronus grows, many more strategies will be added to the list of approaches.

10.2. Operations on devices 0

Devices are objects of type CT Device, which is a subtype of type CT lOStream, and implements the
standard operations of that type:

O pen 12

Close1 2

IOLock
Read
Write

lOSt reamsOpenBy
OpenStat usOf
CloseProcessOpeniOStreams

(lose A llProcessOpenlOStreams

In addition to these operations, device objects also implement a number of special-purpose operations, for
example. a tape drive or a disk drive have a Seek operation to allow writing or reading to be done from a
particular position in the medium which the device uses] 3 . The details of individual device-object

12Open aid close are used for synchronization. They are also used to trigger those actions that many device
managers will wish to perform (e.g., hanging up a modem when the last process closes its output to the terminal,
issuing a form-feed when a process opens the lineprinter) when the device gets accessed.
n Other special operations individual device managers are likely to implement are: density and format control for tape
and disk drives; many devices may be turned off-line by software; printers will have page-length, page-width, and
font controls, and so on.
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14operations will be specified as actual devices are added to the CRONUS cluster

We anticipate a hierarchy of object types, breaking down into finer and finer distinctions. For

example. CT IOStream - CT Device > CT printer "- CT lineprinter .Just as there are several kinds

of I 'O-stream objects, there may be many kinds of lineprinter object, perhaps one for each kind of

lineprinter. or there may be page printers and graphics printers.

Device object managers also will commonly refuse a request for "frozen" access. In addition to the

exclusivity of access provided by frozen access, one also gains the ability.to cancel the writes which have

,een done to the object. This latter ability cannot be implemented on devices in any meaningful way, so

this form of access is not allowed by the device's manager One may open devices for exclusive access,
of course.

10.3. Implementation overview

For each device object on a host there is a manager for the device. )evice managers may manage

mulliple dev ice., (fur examnple, a host mnight have onl) one line-printer manager for all of its linepritLers,

or may have a single manager that manages both tape-drives and disk-drives16 ), or a manager may

manage a single device. Which of these approaches is taken will depend entirely on the implementation,

and is not v ithin the scope of this document. When started, the device manager registers the UIDs for its

devices with the operation switch on its host, so that the Cronus IPC mechanism delivers operations on

the device object appropriately.

10.3.1. The use of large messages for device I/O

We expect that most 1'0 devices will be done using a stream interface as supported by Cronus large 0

messages. in order to avoid passing all the 1/O messages through the operation switch. This
implementation is different from primal files, for example, because of the fundamentally different ways in

%%hii-h we expect the object managers to be implemented. For devices such as line-printers, terminals and
tape-drives, it seems realistic tio expect that there will be one manager process per physical device. Unlike

14T]'he description of the special operations on terminal devices is discussed in section 11. 0
WS'e might at some later date explore making some device managers clever enough to provide their own spooling, in

" hi I ase one would be able to do frozen writes with the ability to cancel the writes. Such cleverness would likely
lead to a number of special-purpose (spooling-oriented) operations, such as "perform output after a specific time",
et(. While it might seem that such cleverness is more appropriately placed in a program and not in a device
manager, for efficiency reasons one might desire to eliminate the middle-man. For example, a file to be spooled for
printing, the requesting process, and the printer manager may all reside on different machines. There is little point in
the data from the file to be passed through the network to the requesting program, then passed back through the
network to the printer manager when the data could go straight from the file to the printer m4nager in the first
place. Thus, a printer-object-manager may implement a "spool for printing" operation which takes the UID of the
file to be printed as a parameter. Probably the act of spooling itself should be treated as an object and given it's own
V'II). Suggested operations on spool-objects: Create (to get a ID for subsequent transactions); Remove (to cancel a
spooled action): TimeToBegin (to set the time for the spooled action to take place); as well as the usual printer-
oriented operations (header format, font, etc.).
IFExotic as this may sound, it is easy to imagine a single manager for DEC-Tape drives and disk drives, for example. S
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the primal file system, which is accessed by many processes at one time. an individual device is typically a
limited-access entity. Users typically require exclusive access to a device while they are using it. Thus
we expect a device manager to be able to maintain a stream connection to everyone who wants to talk to
its object. Very few constituent operating systems would permit a process to have %o many open network
connections supporting the message stream at, one time, so we expect I () from primal files to be
datagram-based, rather than connection based. In contrast, I/0 from devices may be connection-
ori'ilt,'. bypassinmg tihe operation switch for reasons of ellicienc'..

10.3.2. Reasonable defaults for unspecified options

In order to provide uniformity of access, the device managers assign reasonable defaults for their
device-specific parameters (e.g.. tape density) if the application program does not issue operations
specifically setting them. The goal here is to provide an access mode in which the application program

can remain largely unaware of the nature of the object receiving its output or providing its input.

10.3.3. Naming

Devices like any other Cronus objects have names in the globe Cronus symbolic namespace. These
names may appear anywhere in the name hierarchy. For example, line printer devices are cataloged in
the directory :cronus:printers. under names such as imaqen for an imagen laser printer and fifth floor for

a standard impact printer located on the fifth floor. The symbolic catalog name is used only as a
convenient means for accessing the device UID and plays no role in the way the Cronus system treats the
device.
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11. User Interface

11.1. Introduction

The Cronus user interface provides uniform, convenient access to the functions and services of the
('ronus distributed operating system and the subsystems which run under Cronus. User requests for
access to the functions and resources of the system are similar for all DOS components; that is, a request
to run a program is the same no matter where the user access point is in the cluster, and no matter where

the process that satisfies the request is run.

To date, we have supported Cronus access to users through a collection of commands implemented
under the constituent operating systems of workstations and service hosts. This section describes a user

interface which would be integral to the Cronus system, isolating the user from particular conventions of

the individual constituent hosts, and allowing users to better exploit the distributed nature of the

underlying DOS.

The user interface includes four major elements by which human users gain access and interact with
Cronus to perform tasks:

1. The terminal manager is responsible for the behavior of the terminal or other device by which

the user gains access to the system. Cronus supports a number of different terminal managers
for users who have a direct connection to the cluster or wh. access Cronus through the

Internet.

2. The session manager controls the user session from login to termination. It operates on the
authentication data base (through the Authentication Manager) to verify the user's principal

identity, and on the session record data base (through the Session Record Manager) to record
information about the session. It also creates parallel execution threads and allocates portions
of the terminal, under user control, to each thread.

3. The command language interpreter (CLI) receives requests from the user to create processes

and execute programs to perform the tasks.

4. The user programs or applications that actually perform the tasks run in program carriers (see
Section 5). The terminal manager, session manager, and the CLI cooperate in creating these
processes, loading them, passing parameters to them, and directing the input and output to

the places that the user has requested.

The design of the Cronus user interface has been influenced by the following considerations:
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• The user interface should. deal effectively with the distributed character of the operating

system.

• Variations in rluster configurations and in user requirements will likely lead to a number of

different user interfaces, and these interfaces will evolve. Therefore, the current

implementation should focus on the underlying structural concepts needed to support a variety
of presentation methods.

" The utility of Cronus depends on widespread accessibility. Therefore, the initial

implementation should support commonly available terminals instead of more powerful devices
which are now just becoming available.

" The user interface should support system reliability and error recovery from malfunctions

during a user session.

The consequences of these observations for the design of the user interface in a distributed system are

explored in the next section. The terminal manager, session manager, comman d language interpreter, and

the pattern of the cooperation among them and their use of other system objects are discussed in the

following sections.

11.2. Existing Interface Through COS

Access to Cronus is currently provided through commands implemented on each of the workstations
and service hosts serving as access points. Terminal access is provided directly to these hosts and also

through both the DARPA Internet and access points implemented on GCE processors. These components
form the terminal manager component described in the introduction.

After establishing a connection to a host, the user will login to the system and to Cronus to
establish a session. Under Unix. both registrations are performed by the same command: under other

systems. where the system connot be easily modified, the user must execute an additional command to

gain Cronus access control rights.

Thereafter, the command interpreter of the constituent host may be used to execute Cronus

commands. The processes which perform these commands operate with the same Cronus access rights as

the session. These access rights can also be changed, as needed, by executing appropriate commands.

Use is also made of window systems, available on the workstations, for presenting graphical
interfaces in the case of the monitoring and control system, and for presenting "forms" based interfaces

for general purpose command invocation tools.
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11.3. User Interface Design for a Distributed System

The Cronus user interface is a generalization and extension of user interfaces provided by other
computer systems. Since Cronus is a distributed operating system that integrates a collection of ot herwi.e
independent computer systems, the implementation of a function may be dispersed across the cluster.
The Cronus user interface is independent of the user interfaces for the (OSs.

The following are some of the design objectives for the user interface that have been influenced by
the distributed nature of Cronus:

1. Command invocation and program control should be uniform across the cluster.

2. Multiple parallel activities should be supported directly by the user interface.

3. The user should be able to start and control distributed activities.

4. System operation should be independent, of the location of the terminal manager, session
manager. CLI. and user processes.

5. The user interface should support detection and recovery fromn malfunctions affecting only
parts of a user's session.

6. The user should be able to issue commands directly to the COS.

First and foremost, Cronus itself provides for the uniform invocation of any command. The
command interpreter finds the command in the Cronus symbolic catalog and creates a process for it.
Because the symbolic name space is host independent, commands can be organized in any manner
convenient to the user; for example, all the programs used to carry out a particular task can be cataloged
in a private directory, even if some of them can only be executed on specific host types. The host is
normally selected by examining the type of the executable file for the command.

A Cronus cluster may have more than one host of a particular type, and different copies of reliable
files arce stored on different hosts. The interface allow. (but does not require) the user to communicate an
in enl ion t(o use a specific instance of any replicated resource.

A single user session may contain a number of independent tasks executing in parallel on different
hots. In such a session, the user can exploit the true parallelism which separate processing elements
provides and reduce the effects of communications delays by selecting the host on which a task executes.
Cronus provides device-independent mechanisms that support the use of a single terminal for controlling
parallel activities. The effectiveness of a particular terminal for this purpose is, of course, dependent on
the capabilities of that. device.

A programmer can develop multi-part applications in which the individual parts can execute on
different hosts. To the end user. the distribution of components can remain largely invisible, since the
program rter and Cronus can take care of the details of the distribution. In particular, a task may consist
of a multi-host pipeline of processes, in which a process running on one host can pass its output directly
to the input to a process running on another host.

-103-

, i il I I ll I I .



Report No. 5884 BBN Laboratories Inc.

The Cronus architecture provides several kinds of access point.. Although the user interface has
comparable components for each of these access points, the location and mode of interconnection among
the components will differ. The decomposition of function in the user interface permits flexible

distribution of these components.

On the other hand, the distribution of the components increases the cost of synchronization and

pro.ahility that a single host, failure will affect (fie user session. To re(duce synchronizat ion traflic, Cronus
does not maintain a centralized record of all elements in a user session. Rather, this data is distributed
among the managers responsible for the individual parts. This makes the interface somewhat tolerant of
failures and provides a basis for the design of a reliable user session.

The user interface facilitates direct access to COS functions through a user Telnet function, which
can access the COS command interpreter for the hosts of the cluster. Telnet is treated as a parallel
activity with other user activities; that is, it is a separate thread in the user session.

11.4. Overview of a User Session

A session begins when a user activates a terminal that is connected to Cronus and proceeds with a
system login. The session normally ends when the user logs out. During the session, the user interacts
with the system to run programs which interrogate and manipulate Cronus resources and to perform such
job specific functions as word processing or data base inquiry.

Users gain access to Cronus in one of following ways:

1. Terminal access controllers (TACs). A Cronus TAC is a terminal multiplexer connected
directly to the local area network. Cronus TACs are implemented in dedicated GCEs.

2. The Internet. The Cronus local network is connected to the Internet by means of an Internet 0

gateway. Users outside the cluster may access Cronus through the standard terminal handling
protocol (Telnet) which operates upon a lower leyel, reliable transport protocol (TCP).

3. Mainframe hosts. Cronus mainframe computers can have terminal ports that enable access to

Cronus.

4. Dedicated workstation computers. A workstation is a computer that is. at any given time,

dedicated to a single user. Workstation hosts have sufficient processing and storage resources

to support non-trivial application programs, such as editors and compilers, and to operate
17autondrnously for long periods of time

1
7 The Primal system wil not support workstations.
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The user interface has four principal modules: a terminal manager, a session manager, the session
record manager, and the command language interpreter.

When the user activates a terminal, the terminal manager connects the ,iser to a session manager.

There is a session manager for each active user. It has a limited set of comm'rvds for initiating and
manipulating sessions and session data. The login command, which initiates & new session, performs two
ln,.sic functions. First, it identilies the user, establishes the acces.s rights for the session, and gets the user

data needed for session initialization. Second, it creates a session and records it in a session record A
complete description of the session is distributed among a number of system components, but the session
record object records the existence of the session and certain other key items.

After the session manager has identified the user, it starts the initial subsystem specified in the
user's principal object. This can be either a general purpose command interpreter or a special purpose
application. The principal object may also request that the initial subsystem be run on a specific host.

The session manager maintains session data as part of its temporary state; that is, this information
does not survive if the session manager crashes. The session record manager, on the other hand,
maintains the basic information needed for session recovery in non-volatile storage.

The initial subsystem runs in the first processing thread in the session. The user may create more
threads, each of which consists of a varying number of processes organized into a hierarchy rooted at the
process created by the session agent. This program carrier is called the head process of the thread.

Often the head process is a command language interpreter (CLI). This is a program that interacts
with the user to receive commands, which it performs by creating and controlling processes. In the

following discussion, we assume that the head process of the current thread is the Cronus standard
command language interpreter, which is called cli.

The head process can execute a command that terminates the thread. The session agent may also

force the termination of a thread. The logout command terminates a user session. At the end of the •

session, the session record object is removed, and the terminal is free to support a new session.

Instead of executing logout. the user may detach from the session and re-attach to it later.

Processes in a detached session are no longer controlled by the session manager and from the terminal.
These processes will continue execution until they require terminal input or output, at which point they
will block, and wait until they are re-attached. When the user re-attaches to this session, the new session

manager and terminal takes over as the source of control and terminal input/output. The session
manager command resume causes the processes to continue. This procedure is also used in recovering a
session which has been detached by a host crash.

The user interface assigns the responsibilities for user session activities as follows: 4

The terminal manager encapsulates the physical terminal device. It handles the terminal
device, directs the keyboard input to the active process, receives the output from one or more

active processes, and manages the display (for video display units).
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" The session manager initiates user authentication, creates a thread, starts the initial
subsystem, creates and manages additional threads, attaches and detaches sessions, and assigns
terminals to processes.

" The command language interpreter reads and parses command line input, starts and controls
processes that run the commands, and controls assignment of standard input and output.

* The session record manager creates and maintains records for active and detached user
sessions.

In addition, other components of Cronus support the user session; of particular importance are the process
manager, the catalog manager, and the authentication manager.

11.5. Terminal Manager

The terminal manager is the process which is closest to the user. It provides the Cronus interface to
the physical device, through cooperation with the COS of the host to which the terminal is connected.
The terminal manager supports three broad classes of device:

" hardcopy terminals that are strictly line-at-time devices capable of producing upper and lower
case alphanumeric characters and the standard ASCII control character set;

" ASCII video terminals (often called CRT terminals or video display units) that support cursor
addressing on a display screen that is large enough to support, for example, a full-screen
editor; and

" advanced terminals (often called bit-mapped terminals) that contain a processing element and
enough memory to support multiple display areas and graphical output.

The primary focus of the primal system is on the ASCII video terminal because there are many of them
available today. Cronus supports the sharing of a single, physical terminal device among the parallel
acivities in a session. This terminal multiplexing will be most effective when an advanced terminal is
available, but will be possible in a limited fashion with the other terminal types.

The terminal manager encapsulates the physical terminal; the corresponding Cronus object is of
type CTPhysicalTerminal, which has a number of subtypes corresponding to the different kinds of
terminals. One or more objects (called Cronus terminals or simply terminals in the discussion below) of
type CT_ Terminal is associated with each physical terminal. This provides a mechanism for multiplexing
or sharing the physical terminal among a number of Cronus terminals. The Cronus terminal is the
input/output device for a process. Since terminals are Cronus objects, they have all of the usual
properties of objects, including host-independent access. In addition to the generic operations defined on
CTObject, the following operations are defined on objects of type CT Terminal:

Open
Close

Read
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Write

Activate
Deactiv ate

Programs ria. treat a Cronus object of type (1 Terminal lilke an ordinary terminal, since it has a
keyboard and a screen, although either or both of these may be inaci,e at any time. Each thread in a

s,,er sf-,smi. and I lie session manager itself, ha.s its o% it object of i .pl ('T ,, rm nial, which will sIII l, be

called the terminal in the discussion that follows. Within a thread, processes coordinate their access to

the terminal through the terminal manager.

If the physical terminal supports independent display areas (windows), the session agent maintains a
Sindow for star us displays. The rest of the physical display contains one or more regions, each of which

is used for the output of a single terminal. The physical keyboard can be associated with only one of the
terminals at any time: the thread that owns this terminal is the current interactive activity in the session.
The keyboard can be transferred to the session manager's terminal by a control character sequence. Once
Ihe session manager is in control, the user can execute commands to create new terminals, remove old
terminals. and change the current interactive terminal.

Output to any of the region-, currently displaed is iminediatel. visible. Input is directed only to
the current thread. Normally all input characters go to a single process. However, when one process
creates another process, it. may request certain (control) characters to be intercepted and sent to it; the
interrupt facility discussed in Section 11.8 is implemented using this facility.

Processes invoke Read and Write operations on the terminal to get input from the keyboard and
write to the display. These use large messages of indefinite length to provide a stream between the
terminal manager and the process. A process will have two messages associated with the keyboard; it
sends read requests on one of them, and receives the input on the other one. As keyboard input is
collected, it is used to fulfill any outstanding read operation. Since the terminal is shared among the
processes of the thread. characters are sent only in response to a read request. If there is no outstanding
request, the terminal buffers characters until it exhausts the space allocated for them.

When control of the keyboard is transferred from one process to another, the old process stops
issuing read requests. If the new process needs keyboard input, it establishes the two messages used for

She stream and begins issuing read requests of its own. The PSL routines for reading and writing take

care of the details of establishing the messages, so ordinary applications need not be concerned with them.
The Write streams are not controlled: simultaneous output from two processes in a thread may become
interleaved unless theN are coordinated by the application program logic.

Each terminal has mode settings which control its behavior. Among the most important are the
following:

I. Read activation termination character set: An input character from this set terminates the

current read request. The terminal manager stops sending characters after it transmits the
ones it has, including the termination character, until it receives another request.
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2. Echo control: Input echoing at the terminal manager may be either on or off. If it is on, it

may be performed immediately or deferred until the characters are used to satisfy a read

request.

"1. Buffering and local editing: Terminal input may b, buffered until an acti vat ion request

termination character is typed. If the input, is buffered, local editing functions are also

available. If the input is unbuffered, it is sent, as soon a.s it is accepted when a read request is

active; the application process then assumes the responsibility for edit ing functions.

4. Interrupt character handling: The user may set certain characters as interrupt characters; see

the discussion in Section 11.8.

11.6. Session Manager

The session manager creates and removes user session records, controls the allocation of the physical

terminal display, and creates and controls threads.

During a simple session, in which a user executes a series of commands sequentially. the session

agent is largely invisible to the user. The user may. however, wish to initiate and control parallel

activities Each collection of parallel activities is a thread. Session threads are objects of type

CT Thread. At any time during the session, the user can instruct the session agent to create additional
18

threads which operate in parallel with other existing threads . A thread can be used to support parallel

processing or to maintain the state of some activity while the user shifts attention to another activity.

The first process created in a thread is called the head process, and is usually a command language

interpreter. The default head process is an instance of the principal's initial subsystem, but the user may

select any program in the Cronus symbolic namespace.

A new thread is created whenever a Telnet connection is opened. with the Telnet process at its

head. The connection may be to any Internet host., either within or outside the cluster. For the

foreseeable future. Telnet paths to cluster hosts will be needed to support activities not yet incorporated

into (ronus. such as maintenance of the COS.

The following commands are supported directly by the session manager:

- Start a new session (login)

-Terminate a session (iogout)

- Attach session agent to an existing session (at-tach)

- Detach session agent from an existing session (detach)

- Initiate a parallel activity (create_ thread)

- Terminate a thread (killthread)

1'There is user-settable control key that activates the session manager so the user may invoke session manager
commands

-108-



BBN Laboratories Inc. Report No. 5884

- Create a Cronus terminal (make terminal)
- Remove a Cronus terminal (remove terminal)
- Map thread to region (map thread)
- Display threads (showthreads)
- Activate named thread (thread)
- Telnet to host (telnet)

11.7. Session Record Manager

The session record manager maintains the centrally accessible. non-volatile record of active Cronus
sessions in objects of type CT Session Hecord. A session record object contains the following data:

- Session UID

- Creating principal

- Time of Creation (for identification purposes)

- Lists of thread UIDs

- ACL

- Session agent ProcessUlD

A session record is created at the beginning of each Cronus ,ssion. During the session's lifetime, data is
added and removed by the session agent. The session record is used in recovery after a host or system
crash.

The session record can be accessed by other programs to report about an individual session or all
current sessions. In addition to the generic operations, the following operations are defined on objects of
type ('T Session Record.

- Read Public

- Head Private
- V, rite Session Record

- Lookup Principal

11.8. ('onsnand Language Interpreter

A user request usually consists of a command name plus one or more parameters or arguments.

There are three basic kinds of arguments for cli: names of objects from the Cronus catalog; control
parameters. called swtitches; and application-specific parameters. Switches may be associated with either
the command as a whole, modifying its behavior, or with one or more of the object names that appear on
the command line.
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If one thinks of the command as a series of words typed on a line. the command name is the first
word. The command name specifies the action to be performed; the actual name is often a simple English

&ord suggesting that action, for example, print. Cli interprets the command name as an entry in the

('rnus symbolic catalog: it expects the command nane to be the symbolic name of an object of type

CT Executable_ File. Either a complete or partial pathname rmay be entered on the command line. A

designated set of Cronus directories (called the search path) are used to resolve partial pathriames; the

iiri lial ch encountiered causes, h search to stop.

There is a small set of commands built into cli. These are used to control the command
interpreter's environment (such as the current working directory) and the execution sequence of

commands. Executable objects may be either process irrmages or files containing commands. The built-in

commands that control execution sequence are most often used in command files.

The executable object may be augmented by a syntax definition, so the command interpreter can

know the number and type of the arguments, default and legal values for the switches, and help

information for the command. Users may associate private syntax definitions with public commands.

Commands which have syntax definitions, either private or public, are called defined commands.

Coiimiand arguments are passed as part of the process descriptor of the new process. When the

command syntax definition is available, cli performs type and range checking on parameters, and

conversion from alphanumeric to internal representations for certain of types, including Cronus object

name and integer. Both forms are passed to the application process, since the character string form is of

use in some cases, for example in generating error messages.

The syntax definition facility is particularly valuable in a distributed environment for the following

reasons:

" The cost of remote command invocation is generally higher than it is in monoprocessor cases.

Parameter error checking reduces the frequency of execution failures caused by usage errors.

" If the command interpreter knows the names of some of the objects that the command is

operating on. it may be able to use object location as one criterion in its selection of a site for

cOMniand execution.

Many command arguments are cataloged objects. Cronus supports a working directory list, which is

an ordered collection of directories that are used in relative pathname searches for named objects. The

user may change this list at any time. The cli also supports partial name recognition. The user may press

a key to get a list of all matches for the partial name, using both the working directory list and the
standard wild-card facilities of the Cronus catalog, from which the actual name may be chosen. There is

also a deferred recognition key which allows the user to ask for the matching to be done, but not reported

interactively.

The help key can be used to display help information which is found in the syntax description of a

defined command.

-1 tO-

= i - sli l i l i a H~i= id l l i Hi " i - i - i l



BBN Laboratories Inc. Report No. 5884

The command interpreter, allows a user to provide a hos designator wk hen specifying an object

name. including the name of the command itself. For example.

edit text fileU(A CVAX

would invoke the editor on the copy of te2tfile stored on the Cronus \AX,

copy filel file2 ¢6GCE3

would make a copy of filel under the name filet' and store the new file on host GCE3, and

Radar(qCLXX other parameters

would select host CLXX to run the subsystem Radar.

Objects of various types may be cataloged in the Cronus symbolic name hierarchy without

restriction. Often. a user will wish to select objects of a specific type, so a standard switch is defined for

type designaton. As an example, a user would type

dir display file_ name. *'type- reliable file

to display the names of those objects in the current working directory list that match the wildcard pattern
file- name.* and are of type CTReliableFile.

Cli performs two kinds of initialization. First, internal variables are set from a profile data file,

which consists of lists of (name. value) pairs. This file can be maintained using edit key_ value. Second,
cli executes a profile command file.

After cli has collected and parsed a command, it creates a process. loads it with the executable
image and starts it. Normally the process uses the same terminal as the command interpreter does.
Therefore, cli releases control of the terminal to the user process, and waits for it to terminate before
collecting another command.

(b uses the process support for input and output redirection. The redirection is indicated by the
punctuation character , thus the command

dir display file name.* >newfile.lst

would place the result of the catalog lookup of file _name.* in the file newfile.lst. When cli redirects

output into a file whose name did not previously appear in the Cronus catalog, it creates a new primal

file. The user may use the standard switch (/type) to designate another type, for example. 4

dir display file name.* ,newfile.lst typer reliable file

will create a reliable file to receive the output.
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The user can specify that-two or more commands should be executed simultaneously and linked
together, linearly, in such a way that the output of the each command becomes the input to the next one.
We refer to the collection as a pipeline. Since the components of a pipeline may be on different hosts, the
user can dy namicallN construct multi-machine distributed commands.

11.9. User Processes

In most cases, actual work of an application is carried out by a user process that is created in
response to a command issued to rli. Application programs typically make extensive use of the PSL. In
this section. we discuss interrupts and user error reporting, both of which are supported by the PSL.

Sometimes a process needs to be terminated by an interrupt or signal. Cronus supports two forms of
interrupt: a hardkill, which terminates the process immediately without giving it the opportunity for
application-specific termination processing. and a softkill that gives the application process the
opportunity to terminate cleanly. In the event that programs do not respond to softkill requests, hardkill
can be imposed. Interrupts are usually invoked by typing a control sequence during a user session, but
ihe,, are also generated by a coninand.

Programs may choose to receive softkill signals. and use them for application-specific purposes
unrelated to process termination. (,/i will always receive the hardkill signal and remove the application
process.

Interrupts invoke the Stop operation on process objects. The exact implementation on a particular
host depends on the facilities of the COS that are available to the process manager.

The processes created by eli form a hierarchy of process objects, which may be decomposed into
sub-hierarchies of the thread object. Any subtree of the thread hierarchy' is called a process group. An
eintire thread is the largest process group. Process groups are managed by the program carrier manager in
the current implementation. Operations on process groups support convenient control and cleanup of
process subtrees.

Methods for reporting errors in Cronus are designed to support a vaxi,- ,f program structures and
execution environments. There are two basic program structures: 

" Asychronous processes, often called manager processe," because object managers &re of this
class; these processes receive messages from a number of sources and may not wait if they
issue requests to other managers to satisfy incoming requests. Error handling in manager
processes is discussed in Section 4.6.

" Synchronous processes. which process data that arrives in a more or less predictable fashion,
often from a terminal or a file. When these p,'ocesses send messages, they usually wait for a
reply.

We have identified the following execut ion environments:
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" Independent processes are asynchronous processes. particularly object mangers that are
daemon processes started by the Monitoring and System or by another daemon process.

" Interactive processes may be either synchronous or asychronous. In this environment. a
human user carries on a conversation with the process. 'xamples of processes in interactive
environments include the traditional applications of distril,ued systems: multi-host database
systems, office automation, and program development systems.

"I ipelined processes consist of two or more programs which might normally be run in an
interactive environment that are connected in such a way that the upstream process writes its
output on the input of the downstream process. A pipeline can span host boundaries.

" Background processes are generally interactive programs which are set into execution in such a
way that the data which normally comes from the user is found somewhere else (usually in a
file).

In th.e interactive case. where the error is reported directly to the user. we have a situation that is
similar to the one in an ordinary, centralized operating system. It can be seen that error handling is
similar in pipeline and background cases.

A program in an interactive environment will also report certain errors to the Monitoring and
Control System (MCS). These include errors caused by system resource limitations and some kinds of

access control violations.

Independent processes, including Cronus managers, report errors to the client which issued the
original request, and may also send a message to the MCS. In addition, Cronus managers keep statistics
on the kinds of errors which have been detected, and report, them to the MCS periodically.

The responsibility to terminate or continue processing belongs with the application or manager. so

PSL routines never take preemptive action, and never terminate the process. The PSL routine cannot
understand the situation well enough to exit properly, since the routine may be executed within an atomic 0
transaction. or within a composite action which has other work-in-progress entries (see Section 4.6).
Instead. it sets parameters describing the condition in an error block, and the application error handler
fields the error and processes it.

The standard error list may be found in the general Introduction to the Cronus User's Manual.
Each PSL routine page in Section 2 of the Cronus User's Manual lists the errors which may occur during 0
the execution of the the function. In most cases, an interactive process would perform any necessary
cleanup, and then use the standard error reporting routines.

Whenever an error is detected in processing a request from a client process. the error condition is
reported through the reply message. The error procedure uses the standard message structure, and certain !
assigned keys. When it is necessary to report an error to the MCS. the process uses a standard routine to
generate the message to the MCS.

0
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12. Monitoring and Control

12.1. System Capabilities

The Cronus Monitoring and Control System (MCS) provides the functionality of an operator's

C ii'ole. Fromi, any suitably controlled access point, the operalor can exarine the slatus of the cluster's

resources, invoke operations changing the state of the resources and resource management policy, and

view the effects of those operations. The operator can evaluate long term system reliability and

compliance with resource management policy by reviewing logs of status data kept by the MCS.
Resource managers may submit event messages to alert the MCS of irregular events. If an event requires
operator attention, the message will be displayed on the operator's console. Otherwise, the message will
be recorded and available for later review.

The Distributed Operating System (DOS), as viewed by the MCS, can be divided into three layers.
A( the bottom is the constituent resource layer consisting of processors, peripheral devices, network
substrate, gateways. Constituent Operating Systems (COS) and network protocol support. Above that is
the Cronus support layer, consisting of the Cronus kernel, Cronus Interprocess Communication
niechanili (IC) and the Cronus tervice. managing constituent resources. Finally, at the top,
distributed application programs are built from collections of processes and managers.

The MCS focuses on the needs of problem diagnosis and resource management. The
implementation emphasizes support of the Cronus layer, the managers, and the resources they provide.
Since the set of services is extensible, the MCS is designed to accommodate new services. The MCS forms
the basis for monitoring the application layer. The MCS also provides operator interface, configuration
management, data collection and process coordinations facilities that can be employed by other services.

The MCS provides some direct access to COS facilities, but such support is limited by our desire to
modify the constituent host software as little as possible. The operator can discover which hosts are up
and can cold start or halt the Cronus kernels. This requires support by the hosts of a non-Cronus
protocol for starting the Cronus kernel, possibly downloading the kernel image for diskless nodes. Once
Cronus is operating, the MCS communicates with managers that provide the interface to the constituent
resources. This hides the differences between the constituent resources and the implementation details of
lhe interface software from the MCS.

Failure of the MCS or its operator must not endanger essential DOS services, although the

performance of some Cronus services may degrade. Essential functions, such as manager restart and
resource management, are performed by cooperating managers. The MCS role is limited to adjusting

resource management policies, to improving the reliability of the Cronus services, and to providing a

diagnostic access point for the operator. The MCS itself is a distributed application program split into

separate managers. The components may be reliable and use replicated data when appropriate. The

operator station is not bound to any particular site, although certain information gathering functions are
most conveniently performed at one location and certain control functions are subject to access control.

The MCS supports automatic processing to enhance system reliability and regulation. It can
monitor a collection of values, detect particular conditions, and then perform a prescribed action, such as
restarting hosts and managers when they crash. Or. the MCS might alert the operator when 90, of the
disk soace managed by a particular manager had been allocated: the MCS can then automatical4y arrange
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for file creation requests to be routed to other managers. In this way, the MCS is used to etvaluate
experimental algorithms which will then be moved to the managers if they are effective or discarded if
they are not.

We are not initially concerned with issues of multiple clusters or ver) large clusters, although we are
sensitive to scalability. As the monitoring domain grows we expect to divide resources into overlapping
regions, %here resources whose behavior strongly in eract are in I le salne, region and r(sources whose
behavior is typically independent can be placed in different regions. A regional monitoring center will
them monitor each region and will exchange summary information with other monitoring centers when
more global information is needed. As we said, this is beyond the scope of the initial version.

12.2. Sample Scenarios

12.2.1. Problem Diagnosis

Most problems are reported by users when a command fails or behaves irregularly. The operator
mu i determie whether the coimii|nand is in fact ,,iisbelhaving and if so, %hat is causing the problem. This
is done by comparing the expected outcome of an operation with the actual outcome and trying to
discover the cause of any deviation.

For example, a user may report that he can't access a file that he normally uses. This problem can
occur if the user's privileges have been changed, if the file has been deleted, if the access control list to
some part of the file's pathname has changed, if the file manager or host where the file resides has

crashed, or if one of the directory managers that catalogs the file and its pathname has crashed.
Intermittent failures can occur when a manager, a host or the network is saturated. During development,
bugs can cause managers, hosts and the network software to enter states where they appear to be
available but do not respond to all requests.

The MCS must allow the operator to examine all these symptoms and possible effects from a single
console. The operator first tries to repeat the user's operation with the user's access rights. If that fails,
using special privileges, the operator checks to see if the file exists. If the file does exist, the operator
Must repeat the user's command and trace its execution through the system; this requires a little
undrstanding of how the system works. To lookup a file we first locate a catalog manager, then find the
till) of the file represented by the given name, the locate the file and finally open the file for reading or
writIng.

Each of the managers involved keeps a log of the operations it has performed. The amount of
detail kept in the logs can be varied by the operator. The MCS allows the operator to examine these logs
in order to trace the progress of the request. Using the logs the operator can determine which managers
processed the request and where the request either got lost or was rejected. The operator can then invoke
commands targeted to specific managers to further localize the problem.
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12.2.2. Resource Management

The operator uses the MCS to review the systerm's behavior and to evaluated how well the system
complies with chosen resource management policies. Most of these policies are %'aguel. described,
different applications require different, policies, and different policies conflict. Examples include balancing
resource consumption, minimizing average response time or ensuring priority access to resources by
priv ileged users.

The operator adjusts policy parameters, such as resource quotas, cache sizes and routing priorities to
affect the resource management decisions made by the system. The services combine these policy

parameters with measures of actual resource usage to decide as where to place new object instances and to
route requests for processing.

Polling intervals are automatically adjusted to ensure that the effects of the change will be properly
sampled. The operator then reviews the historical data to evaluate the effects of the change. Graphical
presentation is especially important for quickly identifying trends and resource distribution.

The resource management decision making process is not well understood. Our goal is to provide
ihe tieclanismt, and tools tt) handle experimentation, to prevent chronic saturation of parts of the system,

and to discover causes of chronic saturation when it does occur.

We identify three degrees of resource contention: none, moderate, and saturation. Each of these
situations require different handling. When there is an adequate supply of a resource and the resource is
fairly homogeneous in all its instances, we don't need to worry about resource management. We may
allocate any, available instance to satisfy a request. When contention begins to occur, we have to consider
where to allocate the initial instance of the resource. This decision involves considering the cost of the
resource, the cost of accessing the resource, and the cost of moving the resource later if a bad choice is
made. We expect that this can be done by the system. with the operator periodically adjusting
parameters that regulate the decisions. When the supply of a resource is nearly exhausted we need
operator intervention to correct the situation. Generally. eliminating the saturation will require either
increasing the supply of the resource by activating new processors or disks, eliminating some users of the
resource by stopping application programs, or rearranging the placement selected instances of the
resource. These decisions require an understanding of the intended use of the system and priorities among
ibe uses that the system cannot handle by itself.

12.2.3. Performance Evaluation

how much does it cost to create a file, measured as some combination of application waiting time.,
of processor and operating system time for the managers that are run to service the request and of
network use to request and coordinate the file creating? This is an important issue we need to improve
system performance and need to discover where the time or resources are being consumed. This

information can also he used when we have to charge system users in order to recover the cost of
constituent resources. but this is not a goal of the current system.
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The monitoring itself does not greatly increase the cost the normal operations. Also, in performance
evaluation, we are often combining heterogeneous measures of cost, such as time and space usage. to
produce a measurement of user satisfaction. This requires assigning relative values to each which maN or
may not reflect the actual user preferences. Also, in performance evaluation. it is not always clear what
low level events and constit uents are the major sources of the cost at higher levels.

This informliat ion can also be used Io guide resource Iiialag'tlllett decisions+ Using a miiodel of Ihe

cost of performing an operation, the system can make resource management decisions that it expects will
have acceptable costs in future decisions.

12.2.4. Experimentation

The MCS may also be used to monitor DOS experiments and the objects that may be introduced
into the system t~o implement that experiment. The MCS will be integrated with the manager
developments tools to simplify the cost of introducing monitoring to a new manager.

12.3. Structure of the MCS

The MCS performs configuration management, event logging and reporting, host availability
monitoring, and data collection, and provides an operator interface for data review and command input.
These functions are implemented by a collection of cooperating Cronus processes and probes into the
managers being monitored. The relationship among these components is displayed in Figure 12.1.

12.3.1. Configuration Management

The configuration manager provides a logically centralized service for controlling the placement of
r,,anavers. When a developer creates a new service, he also creates an associated service data object. The
,(.r% ,. data object lists the object types supported by the service and identifies the person or group
r,,spnl,'ible for maintaining software associated with the service.

Placement of managers that support the service is done by manipulating host data objects. For
each known host in the cluster, a host data object is created. Each host data object lists the services
running on the host it denotes. A manager may be assigned to run on a particular host by adding a

reference to the appropriate service data object to this service list.

The configuration objects are managed by a configuration manager. Access to the objects is
regulated by the standard Cronus mechanisms independently for the service and host data objects.
Customerily, developers will maintain the service data objects, and system operators will maintain the
host data objects.
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The Cronus kernels acquire the appropriate information by requesting it from the configuration

manager, either when the system is rebooted or when a client submits an update command to a kernel.

The request submitted by the kernel to the configuration manager identifies the kernel's host address: the

conliguratioin manager will then search for the appropriate host data objoct and construct the service list.

The service list will then be sent to the kernel is pieces, each small enough to fit into a small message to

minintize the amount of underlying supported needed by the kernels at cold start time. The kernel's

re ord ilie informiiation locally, on their host. in stable storage. and % ill uise the locall) stored informat ion

if the configuration manager is not available at a later time. Since the configuration manager may be

replicated for reliable operation, we do not expect this information to be needed very often, except when

restarting large portions of a cluster.

12.3.2. Event Logging and Reporting

Event reports are submitted to the MCS to describe irregular events. For example, Cronus kernels

report manager crashes and restarts and the host poller reports host crashes and automatic restarts. This

mechanism can also be used to report when a file manager runs out of space or when someone is trying to

log iii but ha,. repeatedl. entered the wrong pasword.

Event reports are handled by the combinat ion of an event manager and an event monitoring

program. The manager maintains objects that are determine how events are collected and filtered for

logging and display. The monitor program is used by the operator to review event reports as they arrive.

Additional monitor programs can be written to automatically correct problems when they are reported.

Event reports include a written description of the problem, intended for operators. A severity code

can be included to indicate whether the report is just for information or whether a problem arose, and if a

problem arose, whether it has been automatically corrected. The reports optionally include a numeric

code identifying the problem and the UII) of the object that was affected by the event. These values can

be used by automatic monitoring programs to determine what actions are needed to correct the problem.

Event reports also identify who is reporting the event, so that further information can be requested.

The event manager maintains two kinds of objects: event collectors and event filters. Event reports

are submitted to the collectors: the generic collector object is used for reporting system events, other

collectors may be created for use in services or in applications. Event filters determine how event reports 0
are handled. An operator attaches collectors to filters: events reported to any of the attached collectors

%ill be forwarded to the filter. An operator may also describe a filter to select which messages will be

accepted by the filter or which messages. Events which are accepted by the filter will be optionally

recorded in a log file.

The event monitoring program connects to a set of filters to monitor the event reports they accept.

Thereafter, whenever an event report is accepted by an event filter, a copy of the report will be forward

to each monitor that is connected to the filter. When the monitor receives the operator is alerted and the

message is displayed.
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12.3.3. Host Availability Monitoring

The availability of hosts and of Cronus on those hosts is monitored by a host poller manager. This
manager is responsible for determining which hosts are attached to Cronus, monitoring whether they are
available, and reporting any changes in availability to the operator. This manager does not monitor the
availability of managers for Cronus services--that is the responsibility of the Cronus kernel.

The host poller periodically updates its host list by broadcasting a request for all hosts to report
their status. A host poller object will be created for each newly detected host. This collection of objects
forms the host poller list. Each object records the status of the host it denotes and provides polling
parameters, such as polling period, that. the operator may adjust. Once a host is detected, it will be
remembered indefinitely, regardless of availability; only an operator can remove the poller object.

Using the host list, the host poller periodically checks to see if each host is still available by
individually asking the host's status. If a host fails to respond, the failure is reported to the system event
collector. After several failures, the host is assumed to be down, the poller discontinues polling of the
host. and reports the crash to the system event collector.

For host that support remote restart, the host puller can attempt to restart the host. This is
optional, controlled by the operator. The operator selects whether restart should be performed and which
of several procedures should be used to initial the restart. If restart has been selected, the poller will
make one attempt to restart the host; if it fails, the operator must correct the problem and initiate the
restart.

Monitoring of Cronus avail'ability is performed using Cronus IPC. A special "are you there?"
protocol is supported to allow the MCS to determine whether a host is available even when the associated
(ronus kernel is not responding.

l0
12.3.4. Status Data Collection

Status data dynamically describe system resources. These resources include active components such
as processors and the network, resources such as file space and line printers, and Cronus software
components, such as managers and application programs. The data monitored for resources describes
availability. location. load and access time. Averages. standard deviation and rates should also be
available Policy and resource management data is reported. Cost information for performance
evaluation is provided.

Managers report status data to the MCS in response to a poll request. This allows the MCS to
control the data collection process, varying the set of data collected and collection intervals depending
upon what the operator is examining and what the MCS is doing, and does not burden the managers with
the need for additional mechanism to ensure that the data is periodically reported. The MCS temporarily
increases the polling frequency for managers that are affected by a command invoked by the operator.
The polling interval may also be reduced when the MCS notices activity on a particular manager. Also,
the.operator may specify a fixed polling interval, or request an immediate poll of a particular manager. ,
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Much of the polling is performed by directly contacting the managers responsible for th'. object
whose status is to be retrieved. Broadcasting, by itself, is not adequate for issuing the poll requests since
delivery of broadcast messages. although likely, is cannot be guaranteed. This becomes a particular
problem when a host is heavily loaded, since it is then that we are most interested in it but it is most
likely to drop broadcast messages. Also, broadcasting does not allow us to regulate the sampling interval
for particular managers. Broadcasting will be limited to locating newly restarted hosts.

12.3.4.1. Status Reporting

The most commonly used status report request is report status. The managers for most services
support this request. The status data managers return varies from one service manager description,
resource description, health and availability information, traffic statistics, constituent resource
consumption and resource management parameters.

The report describes a manager by giving its type name and type code, process ID and host address.
Host managers will include a host name. Processes will not include the type information. Access rights
and other paraiteters of the prce-s., can be gotten with Lhe "get process paraumeters" request.

Each manager lists the resources it manages. A process manager would list the processes and their
names. A file manager would list file systems and for each give the capacity and amount currently being
used.

The fact that a manager replies, indicates that it is available. However, it may be currently
refusing a subset of the operations it customarily supports: this would be indicated in the report status
replyN. Also, some of its resources may be unavailable or partially allocated. For each resource, the total
capacilv and current consumption are listed. For example, the size of each file system and how much is
allocated to files and index blocks would be listed by the file manager. For IPC, the last time a message
was sent to and received from each host might be given. 0

Traffic statistics are given for the manager and for each resource. This includes the number of

,'perath1ns performed by the manager, such as I/O operations, file opens, and so on. For IPC, the number
of messages and octets sent to each host would be given.

The constituent resource consumption is given for the manager. each resource provided, and for
eaCh class of request services. This gives processor usage, process size, disk usage, I/() activity, how long
ago it was started, and any other relevant cost information needed for performance evaluation of the
manager. This is itemized for each resource managed. For example, the process manager would list how
much memory each process consumes, how much I/O and paging activity, how much CPU time it had
consumed, and how long it has been since it was started. In giving constituent resource information we
must remember to normalize figures to account for the heterogeneity of the hosts. Space on systems is
managed in a variety of units of size: bytes, blocks of 512 bytes, 1K bytes, 4K bytes and others. We
must be careful either to convert to known units or specify the units in all cases. Clocks are not,
necessarily synchronized so times must be relative to a particular host.

!
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Finally. the parameters used to make resource management decisions are given. Some of these are
constituent resource consumption values already mentioned. Others are policy parameters specified by
the operator or MCS to regulate the resource management behavior. Any decisions made by the manager,
such as deciding that all create requests should be refused, will also be indicated in the status message.

Following are specific examples of the kind of data reported. The actual information supplied in the
Iaw -L will I be driven 1y are needs as Cron us is developed. If tie message size becomes be t,(x5 large for a
single packet we will divide the data into multiple requests based on the kind of data. Also, we may
introduce commands to vary the amount of detail reported since complete detail is not always needed and
since most data is never examined by anyone.

The operation switch reports the following information for communication with each host foreign to
itself, and each manager local to its host:

- The foreign host name or local manager UID
- The number of bytes and messages sent and received
- The first and last time a message was sent or received.

The process manager reports:

- Process capacity

- Active manager count

- Active non-manager process count.

For each process the process manager reports:

- The Cronus process UID

- The local host process id
- The process name

- The object type if the process is a manager.
- The image used to load the process
- The time the process was created.

It will also report an) additional statistics, such as processor usage or paging activity, that can be
supplied by the COS running the process.

The primal file manager reports:

- The number of open files
- The number of disk accesses
- The time spent processing requests
- The total disk space managed
- The amount of disk space available. S
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The Fast files and COS files will supply the same fields, however some values may not be available
in particular implementations.

The directory manager reports:

- The dispersal cut pathname
- rhe numlber oF elris (' c , al,,ve and blow, lie dispersal cut

- The number of directory references each above and below the dispersal cut.

The authentication manager reports:

- The number of authentication requests processed
- The time spent processing requests
- The number of confirmed requests.

12.3.4.2. Data Archival

Archives can be stored either in the COS of the individual managers, or collected and stored by a
group of archive managers. We will initially collect the status data and store it in one place. This will
simplify data retrieval development when our major concerns are with host to specify which data items to
retrieve rather than how to find all the stored data files. If the network traffic required to support the
centralized log file is unacceptably high, we will store the logs with the individual managers and develop a

distributed retrieval mechanism.

Since the amount of data can grow indefinitely, methods for discarding obsolete data or retaining

onI a periodic sampling of data are required. Data may be archived on tape before deletion. We will
also require ke.> oriented retrieval methods. This can be accomplished by periodically copying the
rvcrded data and the associated keys into a data base management system.

12.3.4.3. Data Analysis

The analysis portion has two functions: combining the data from various sources to produce
summaries and discover trends; and monitoring the data to alert the operator when particular events
0c cur.
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12.3.5. Operator Interface

12.3.5.1. 'Windows and Menus

Three types of windows are used to display information to the operator: MCS status; resource
stat us and event reports. These are distinguished because the operator handles each kind of information
(ldirr(nllv. MCS statis i. use4lj onl% whent (anging view. or ivoki,,g comimans(lS. Resource stiatus is used

Io examine the status of the cluster and is used most frequently. Event reports should be displayed along

with either a visual or audible alert to attract the operator's attention. Event reports should be recorded
so the operator can view them in order or review previous reports.

Commands are typically invoked on an object of the status dis+play of an object by selecting the
object and then selecting the command from a menu that appears. This reduces the information the

operator must remember about command protocols and formats. Other menus allow the operator to
change MCS parameters.

12.3.5.2. Hierarchical Inforination Access

Data display is organized in a network of status views. The operator begins with views that

summarize the status of a service. For example, a summary of the file managers would show how much

space is being managed, how much of it is being used, how many requests have been serviced, how many
file managers are active, what is the mean time to failure of an average file manager, etc. From there the
operator can move to more detailed views. For example, a view giving the same information, but showing
the values for each participating manager, or showing what percentage of the resource each manager
handles or what percentage of the requests each manager services. Or the operator might choose between
views designed for reviewing resource management and views designed for evaluating system reliability.

Additional detail on any particular item can be displayed by selecting that item and invoking a display
command.

12.3.5.3. Graphical Presentation

There are three uses of graphics: quick recognition. trend projection and compaison. Distinctive
icons. distinguishing either the object or its function, are used to display objects or functions that the
operator will need to locate quickly. Diagrams show the relationship between objects, such as traffic flow.
Graphs allow the operator to evaluate average system behavior and project trends of future performance.
Charts simplify comparing performance. load and resource consumption in different parts of the system.
Values that have associated thresholds are displayed on gauges so the operator can quickly recognize when
the thresholds are being violated.

In addition. cues such as size, color and image reversal will be used to guide the operator in locating
important display objects. For examp' gauges whose thresholds are exceeded and switches for managers
that have crashed can be colored red . attract the operator's attention. Hosts and managers that are
reboo<ting and other situations where an important operation is in progress can be colored yellow.
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12.3.6. Control

The coordination and control functions of the MCS consists of a very low level module and a higher
Ievel module. The majority of the MCS uses the high level module. a (Cronus service that coniriiunicates
with its probes using Cronus IPC. The low level module uses only the lowest level of network protocol.

such as a user datagram protocol. This primitive low level can be relied upon when little of Cronus is
funtiing. It provides Oie functeions required io boolitra ('rotoj,. , examine aiid aller memorv oil

Cronus hosts and to do simple monitoring of the Cronus network.

Access control for the high level commands will be handled by the Cronus IPC. Access control for

the low level commands will be limited, initially requiring no more that a password to be submitted with
the request, or using an access control list of known physicall) secure hosts.

Control of the cluster is organized hierarchically. The ' ICS is directly responsible for the Cronus

kernels running on the hosts. The kernels then share responsilhility for their own reliability and the
reliability of the managers running on their host with the MCS. The MCS communicates directly with
the managers to get status data about the managers and the constituent resources they provide. The
M(S has essentially no direct communication with the resources provided by the managers except during
cl start. lien the managers are unavailable.

12.0.6.1. Cold Start and Forced Shutdown

We assume that when a host on the Cronus cluster is booted. it will automatically load the Cronus

kernel. The kernel will then notify the MCS through the system event collector. Hosts that do not store
the kernel image locally notify the host poller when they are restarted and then wait for a kernel image to
be downloaded. There may be a few hosts, due to physical limitations, which can neither start themselves

nor notify the poller of their presence. The host poller will maintain a static list of such hosts and
periodically poll for their presence, reinitializing them when appropriate. This allows the MCS tro
automaticalI. build a host list. When the kernel receives the restart command, it starts the primal
prcess manager. which, in turn, starts a selected set, (f managers. The operator can specify that i host is
self reslarting. in which case it does not await the restart command.

lestart of the MCS itself after a system crash should e automatic too. Manual restart requires
starting, the ('ronus kernel and managers on the hosts and then starting the MC'S component processes.

Tb" M('S then broadcasts requests to determine which hosts are available with Cronus kernels loaded.
The operator then has the option of letting the MCS bring up 'he cluster or of manually bringing up the

hosts one at a time.

The operator can a!so force a Cronus kernel to halt without using Cronus IPC. The routines

performing this command should also ensure than all managers on the host have been halted too. This is

noeded to restart hung kernels and sometimes to clear network problems. When possible, using the
command should produce a diagnostic dump of the kernel for use in debugging. Booting Cronus after a

forced shutdown requires a cold start, command from the MCS and possibly downloading a new kernel

image.
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12.3.6.2. Restart and Cronus Shutdown

The operator can invoke operations on the Cronus host manager to terminate the kernel. These
commands can either terminate the kernel permanent I. or terminate Just the managers and leave the
kernel waiting for a restart command from the MCS. The permanent shutdown requires reloading the
(ronus kernel before a restart command can be processed.

12.3.6.3. Creating and Removing Managers

Any manager can be started or stopped by sending a create or remove request to the process
manager of the selected node. A manager that has been removed will not be automatically restarted. We
assume that the action was deliberate, unlike crashes which are usually unintentional.

12.3.6.4. Resource Management Policy

The MCS can change policy parameters that influence resource management decisions. The major
effect of resource management it to choose the placement of new object instances and where resources will
be allocated to service particular requests. The values of these parameters will be reported in response to
the MCS polling requests.

12.3.6.5. Set Logging Level

The operator can vary the amount of detail that is recorded by managers in local event logs. This
command also varies the amount of detail send it event reports submitted to the MCS by the managers.

0
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13. Application Development Facilities

13.1. Introduction

Object-oriented programming simplifies the design and iuplementation of Cronus system
c(<lIJ ioneInis b ca)turilng the esseilial charac'erisiic- of a prt)hliI. and hidinig ('omiiplexity of its

implementation behind the operation interface. The Cronus Object Model is equally useful for systems
and applications programming in Cronus, and so it is anticipated that many Cronus application programs
will be constructed using the techniques that have been used for systems programming in Cronus. To
make programming easier for applications developers, software tools that aid and automate the
development of distributed applications have been developed.

This section describes the implementation of the current set of programming tools towards
simplifying the development of object managers by automating the implemn: tatifn of their common
parts. Many of the details of implementing a distributed application have beeji hidden by these tools,
allowing the application developer to concentrate on the implementation details specific to his problem,
and leave the difficult, aspects of distribution to the tools.

The features of the Cronus application development facilities are:

1. Asynchronous Request Processing: Object managers developed using these tools are able
to process multiple requests simultaneously. This capability is accomplished by using a non-
preemptive. coroutine-style task facility to share the manager process' computation among
concurrent request processing tasks. The developer need only be aware of the potentially re-
entrant nature of the operation processing routines to write them successfully for this
environment. The basic design and control flow within an operation processing routine need
not be changed t.o operate concurrently, however.

2. Uniform Dispatching to Operation Processing Code: The main body of an object
manager receives requests, determines which operation is being invoked, and dispatches to the
appropriat,- operation processing routine. The manager development tools generate the
operation dispatcher for a manager, including use of the tasking package to allow concurrent
operation processing.

3. Support for Heterogeneous Implementations: Operation p rameters are automatically
translated to and from the Cronus canonical data representations provided by the Message
Structure Library (MSL). The developer need only be concerned with the native internal
forms of data; the manager development tools take care of any conversions necessary for

transmitting data among heterogeneous Cronus implementations.

4. Management of Stored Object Descriptors: Nearly every type of object requires some
non-volatile storage to retain the object's descriptor. A package of routines for maintaining
the object descriptor is provided by the manager development tools.

5. Access Control: All operations are automatically checked for required access permissions
before they are allowed to be carried out, and no operation is allowed to proceed without

required access rights.
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6. Multiple Managers Per Process: Multiple object types may be managed by a single
manager process transparently; the dispatcher automatically routes requests to the appropriate
operation processing routines. Combining the support of different object types within a single
manager can result in improved performance, through techniques such as code and data
sharing.

7. Operation Processing Routines for Common Operations: The manager development
system provides a library of processing routines for operations inherited from types higher in
the type hierarchy. These standard operations need not be reimplemented by object

managers, since they are not dependent on type-specific information. Included in the set of
standard operations which apply to all Cronus objects are operations for creating, removing,
and locating objects, and operations for integration with the Cronus Access Control and

Monitoring and Control systems. This library of routines can often supply most of the
operations that a type supports, and only a few new operation processing routines need to be
written.

8. Client Interface Library for New Object Types: The manager development software
automatically generates interface subroutines that format operation invocation messages,
invoke the operations, and collect the results. These interface subroutines provide Cronus
client applications with a RPC-style interface to Cronus operations.

9. Interactive Operation Invocation: Operations defined in the type definition database can
be invoked directly by a user through interactive programs called auth and ui. These
programs automatically acquire the appropriate operation interface descriptions needed for
invoking operations on particular object types. These programs can be used directly by the
manager developer for debugging, and can also be used to support a user-level command when
invocation of a single operation maps into such a command.

10. Integrated Documentation Maintenance: A special annotation feature of the object
specification language provides a mechanism incorporating documentation describing the
operation interface and associated canonical types. Another program retrieves this
information to generate typeset manual articles for User's Manuals.

Each new object type is described using a non-pfocedural definition language called Conduit. A
special purpose object manager responsible for the type definition datalse interprets this language, and
stores object type descriptions in a database. Each object type definition is itself a Cronus object. Once
an object type description is stored in the database, this manager can generate program code which 0
implements large parts of the application object. manager automatically. This generated code when
compiled and linked with a collection of standard library routines and user supplied operation processing
routines, comprises a complete production version of the application object manager. In addition to the
object manager, the automatic code generator produces an operation interface for client programs.
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13.2. Object Type Definition

Designing a distributed application for Cronus consists of choosing object types and operations, and
detailing the interactions among client programs and objects, and between the objects themselves. Once
the overall design of the application has been completed, detailed design of the individual object types
and the operations that they respond to can begin. The application developer specifies the operation
proox'ol details of a new application object Iype. usilig (Condui.t .. \ Aisr program svids dili, i. defiflio 1(,
the type definition manager, where the new object type object is created and stored in the type definition
database maintained by the manager. A second user program and simple implementation definition
instruct the type definition manager to automatically generate code to implement most of the object
manager for the new type, as well as a client interface subroutine library, and optionally, documentation
for the new object type.

13.2.1. The Conduit Language

When a developer specifies a Cronus type using Conduit, he is specifying the behavior and
innplementatio , of a new class of Cronus object,,. The Croius object model provide. a jiechanisin fur a
type to inherit characteristics from another type similar but, less specific in its special properties. All
Cronus types are subtypes of some other type, from which they inherit characteristics. The inheritance
relationships among Cronus types define a type hierarchy. At the top of the type hierarchy is one type,
CT Object, that is not a subtype of any other type. This type defines characteristics that all objects
share.

Conduit provides for the inheritance of type definitions in support of the Cronus object model.
This means that only the portions of a type definition that are specific to the type being defined must be
included, and all other portions of the type definition may be inherited. Most sections of a type definition
are optional, since it is possible to inherit all the information for a section of the type definition.

A Conduit definition consists of several sections, which appear in a fixed order. The first section
includes information such as the type's position in the type hierarchy and the names of access rights that
apply to the type as a whole. Subsequent sections define data formats, parameter labels, error codes, and
operation parameters and access rights. Because the operations defined on the generic object for a type
may be different than those defined on the specific objects of the type. operations and access rights are

separately specified for generic and specific objects.

13.2.2. Elements of a Type Definition

An input file contains one or more type definitions, where each type definition consists of five
sections; the type declaration, the canonical type section, the error section, the key section, and the
operation section. Each section is composed of individual declarations of canonical types, errors, keys.
or operations. A semicolon is used at the end of each declaration to terminate it. and commas are used
between clauses of declarations as separators. Only the type declaration is required in a type definition;

all other sections are optional if the sections' declarations are inherited from a type's supertype.
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The complete syntax description for Conduit follows, to illustrate the kinds of definition
capabilities that the language has. The Cronus User's Manual, section 4, has a complete description of
the language and its use.

Syntax:

ty)e - nauie nuiber -

abbrev is <string>
Isubtype of <type-name>1

Irights are <name> J= <bit-number>,

Igeneric rights are <name> j= <bit-number> ...

I is primnalI
jis 'fullyj replicated!

'has no instances!

!annote < string> 1;

:variable! cantype - name,- <number>1

representation is <string> 1: record
<name>: array of; -. cantype-name>,

end <string> -

representation is <string>

i{ <name> I= <number>I, ... )I
jannote <string>]

key <name> I <number>1: array ofI <cantype-nam>

,annote <string> I;

error .name> number--

annote ( <string- );

generici operation - name -... <number>l ( <parameter>, <parameter>,

,returns ( .- parameter,. parameter>, ..

requires right-name... right-name>,

annote -,string -1;

optionall _ key-name'.: array of; cantype-name>

lannote -- string_.,

end type <type-name- ;

- I .'.o



BIN Laboratories Inc. Relxrt No. 5884

13.2.3. Conduit Processor Implementation

After writing a specification for a new object type, the programmer uses a Cronus command to enter
the new type definition into the protocol database. The command invokes an operation on the type
definition manager, which manages this database. The Conduit source code is sent unedited to the type
definition manager in a Cronus operation message, usually using the large message facility of Cronus 11)(1
The lype delfinition manager len anal zvs ithn new typv deinition using a language larer (',ist rucie,l

with the standard UNIX compiler generation tool, yacc. If there are errors in the syntax or semantics of
the type definition, these are indicated in the reply message to the invoking command.

After parsing the specification and converting it to an intermediate representation suitable for
storing in the protocol database, the manager enters the new type definition into the database and replies
wi.h a success completion code to the command. Type definitions are full-fledged Cronus objects,
including all operations (ie. access control. etc) inherited from the parent CT Object type. There are a
number of operations defined for type definition objects, and the application development tools access
type definition objects using standard Cronus techniques. Storing type definitions as objects has a number
of advantages including, making them globally accessable. access controlled, and replicated for reliability.

The protocol database itself is a standard object database, and type definitions are stored as large
canonical types in non-volatile storage. Each type definition object coiitains a link to its parent object
type in the type hierarchy, implementing type inheritance. All canonical type definitions, keys. errors.
and operations defined for a given type definition object are stored with that object in the object database
of the type definition manager.

13.2.4. Generating Application Code Automatically

The Genmgr command processes a non-procedural description of object manager implementation
details. by sending this description to the type definition manager in much the same way as Conduit 0
definitions are processed. Based on this description and the information already stored in the protocol
database by Conduit. Genmgr generates source code for the common parts of the manager. such as
message parsing, dispatching, access control. etc. The generated source code is then compiled. and linked
with both the user-written operation processing routines for handling operations specific to the Cronus
type. and the manager run-time libraries containing operation processing routines for operations shared
among a number of managers. The resulting executable image is the object manager for the new type.

The source code generated by Genmgr is portable to any system supporting Cronus and the C
programming language. To build the object manager for a host architecture which does not yet support
the manager. the programmer compiles the Genmgr output and the user-written processing routines
using a compiler for that host architecture, and links them with libraries available for that type of host.

The applications programmer is required to write the Conduit type description, the Geningr
implementation description, and the operation processing routines for operations specific to the type being
defined. The development tools do the rest of i.he work. supplying much of the code for the manager
customized to work with the user-supplied portions. In addition to components of the object manager for
the new type. the Genmgr progratm also proddces an interface library used by applications to invoke
operations on objects of the new type.
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13.3. (omponents of an Object Manager

An object manager consists of a framework of systems software providing the control structures and

standard capabilities of managers, and user-written oppratin j'rcorsing routines called by this control

structure to carry out the actual work of the manager. There are three types of systems software code

automatically generated by the application development tools. There are the underlying support,
ianagt'r cobntrol roujt lu , and t uilard obly'cl facilit'i.v.

13.3.1. The Tasking Package

Object managers must be capable of handling multiple requests simultaneously. If an object
manager could only handle a single request at a time, requests might be queued for long periods of time
awaiting the sequential processing of previous operations. even if such processing involved idle time while
suboperations completed. Performance would be seriously degraded. because managers would not be
making the best use of available computing resources.

I|for.unately. it ha.N been our experience that the .yuchronous independent proceszes with virtual
memory and preemptive scheduling offered by traditional operating sy).trns i too expensive in its
implementation to be of use in this instance. What is needed is a 'lightweight process' mechanism, which

provides very simple asynchronous processing with as little performance penalty as is possible. Such a
mechanism dispenses with independent virtual address spaces, preemptive scheduling, and a separation
between user and system code and data.

The Cronus Tasking Package is a portable suibroutine library which implements separate tasks,
independent threads of control within the same address space. Tasks may be created, suspended,

resumed. signalled, and destroyed. This asynchronous processing technique is at the foundation of our
object managers.

13.3.2. Work-In-Progress Lists

An object manager is a single process to the local operating system. IPC messages are queued for
the manager process as a whole, and replies to messages invoked by tasks within the manager must be

dispatched to the appropriate tasks. The work-in-progress list is an abstract data structure used to store
arbitrary task context., which are awaiting receipt, of a replv message. The appropriate task context will
be restored and the task run when a reply is received by the manager.
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13.3.3. Object Manager Control Flow

The control flow of an object manager is mediated entirely by the tasking package. The manager
consists of a main routine which initializes the tasking package and starts the three tasks which together
control the activity of the manager; the initialization, receive, and idle tasks. The main routine of an
object manager performs some global initialization, creates the three main tasks, and starts the tasking
package, relinquishing (ontroIl t) a nin-iprevitipl iv, round-robin sclhdlulr.

13.3.3.1. The Initialization Task

The initialization task is responsible for performing the type-specific initializations required for each
type managed by the object manager. These initializations are performed by user-written routines. The
initialization task calls each of these routines in turn. Type-specific initializations might include
consistency checks or crash recovery processing, set-up of initial processing conditions such as logging
levels, and synchronization of replicated objects with other copies of the objects stored elsewhere in
Cron us.

Because manager initialization is performed after the tasking package has been granted control,
initialization may consist of any type of processing, including invocation of operations on other objects in
the system.

13.3.3.2. The Receive Task

The receive task initiates and controls the scheduling of most of the activity of the manager by
dispatching incoming invocation and reply messages to tasks which process them asynchronously. This
task uses tables generated by the application development tools to process request messages, and (he
Work-In-Progress lists to process replies from suboperations invoked by other tasks within the maliager.

A new task is created by the receive task when a request message is received. This task then
converts the message itself from canonical to internal form, performs an access control check, retrieves
the requested object's instance variables from the object database, and then calls the appropriate user-
written operation processing routine to actually perform the operation. Any of these steps, including the
operation processing routine itself may invoke operations on other objects. When the subtask has invoked
an operation and is ready to wait for the reply, it calls a version of the Cronus ReceiveReply library
routine. This routine creates a Work-In-Progress entry for the task, including all task context which
needs to be saved for subsequent processing of the reply. This entry is entered into the Work-In-Progress
list, and then the task relinquishes control to the task scheduler. When a reply message is received by th'
receive task, it looks up the operation identifier for the reply in the Work-In-Progress list. places the
received message in a buffer supplied as part of the Work-In-Progress entry, and unblocks the task which
is waiting for this reply.
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13.3.3.3. The Idle Task

The idle task intervenes in the normal round-robin scheduling of the tasking package to implement
priority processing. Because the idle task actually runs at. a higher priority than any other task, it is
guaranteed to get control after every task switch within the manager. It checks to be sure that the task
being resumed by the receive task is in fact the highest priority task ready to run. If it is, this task is
resumed, otherwise higher prioriiy tas;ks are resuried irst. Pririt, is deteriiiiwd by a parameter of the

process bindings of the process which initially invoked an operation.

13.3.4. Standard Operation Processing Routines

Operation processing routines for the operations which a manager inherits from type CTObject are

contained in a subroutine library. These routines, perform a large number of useful operations, including:

- responding to object location requests

1 Maintaining access control parameters for the object

- setting and querying user and system parameters

- implementing generic monitoring and control operations

* providing for type-independent backup, restore, replication, and migration of objects

- implementing dynamic type description operations

Many object types are implemented almost entirely from these supplied operation processing routines, and
require only a few additional operations to implement their entire function.

13.4. Client Program Interface

In addition to the object manager, the application development tools also automatically generate a
subroutine library providing a client interface for new operations defined as part of an application's object
types. These routines provide an interface which resembles a remote procedure call for each operation.
The client program passes operation parameters to the library routine, which constructs the request
message, invokes the operation, receives and parses the reply. and returns reply data and status using
familiar programming techniques. Client program developers may use these interface routines just as
they would use any standard run-time library. The distributed nature of the processing is effectively

hidden behind the subroutine interface to these routines.
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13.5. Other Support Features

13.5.1. Documentation Generation

As part of the Conduit specification for a new object type. the application developer miay include

annotations for most of the definicion clauses. A documientat ion generation too) t hen takes these
annioal Ions, loget li(r % it diI ie 4o\erailI s ruijuire andl leliniP Jn of Ie idbjert I N p. and g('lI(ratcN' a
conmmand file targetted to the troff typesetter language available on UNIX systemis. This commitand file
produces a typeset article suitable for inclusion in the Cronus User's Manual. Other typesetting

languages and formats could be easily supported as well.

13.5.2. Table-Driven User Interface Programs

The application development tools include two 'universal' user interface programs capable of
constructing request messages for any operation known to the type definition manager's protocol
database. These two programs, called anth and iii, can be used by application developers for testing and
evaluating iiew application object ilianagers. They call also be u.sed for building siniple coiiiaiids to

invoke operations. using the local operating system's command interpreter to run command scripts that

call then].
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14. Advanced Development Model Hardware

The Advanced Development model of the (ronus distributed operating system currently has access
to several large mainframe computers, and has exclusive access to several minicomputers, workstations.
GCEs, and a gateway. The minicomputers are a mixture of Digital Equipment Corporation VAX 11 '750
anId 11N C70s cvimluiers tle workstations ar( SI'N sysler: the ( C.s are Multibu. computlers with
M68000 central processors; and the gateway is a DEC LSI-11 based computer.

The mainframe systems are used for development support and peripheral device support. The
systems are mainly VAX 1I /780 and 11/785 systems which provide timesharing support to the division at
BBN. These hosts also run Cronus. concurrent with the timesharing load, to support access to files, disks
and other and peripheral devices.

The VAX 11 /750, to which we have exclusive access, provides a VMS-based software development
environment. Its purpose in the ADM is to provide a limited integration host. Since it is a large well-
supported system, it contains its own development environment, and we also use it as a source of
computer power for general tasks, both to off-load the other systems and to test real usage of the Cronus
heterogeneou host environment. The VAX i configured to reflect its usage ab a sftware development
machine.

The C70 computers are configured as general development machines. The first, C70-1. is the site of
the majority of the development work since it supports both the C70 development tools and those of the
GCEs. We will rent time on a second C70, C70-2, which will be used to exercise Cronus support for
reliable redundant hosts, and to test scalability. Both C70s will run UNIX version 7 as released by BBN
Computer Corporation and modified by the Cronus project.

The SUN workstations are each configured with at least 2 Mbytes of memory and 120 Mbytes of
disk. Both systems run UNIX and support a window oriented user interface. Some systems also supports
color monitors.

The Cronus sysLem has several GCEs. configured for a variety of tasks. Their configurations will
vary over time, as we perform different experiments on the network, and as we make board substitutions
to make one GCE perform functions of another which is temporarily out of service. The configuration

table for the GCEs should be regarded as only a typical set of GCE configurations.

The Cronus gateway is implemented on an DEC LSI-l I computer. This would normally be a task
for a GCE; however, standard internet gateways are currently implemented on LSI-ll. and adoption of
the l.SI- II gateway allows us to obtain an off-the-shelf implementation. The next generation of internet
gateways is expected to he built on M68000 computers. and at. that time we will probably move the
gateway to a GCE.
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VAX 11-785 12 Mbytes main memory
1773 Mbytes of disk

1600/6250 BPI tape drive
Ethernet Interface

llerkeleNy Unix 1.2 ()iwrili ig S&'leici

VAX 11-780 6 Mbytes main memory

811 Mbytes of disk
Ethernet, Interface
Berkeley Unix 4.2 Operating Systemn

VAX 11-7-50 1 Mbytes main memory
1 160 Mbyte Winchester disk

Magnetic tape drive. I 6MX bpi. 40J ips

MD] high speed synchronous serial interface
3COM Ethernet. Interface

VMIS Operatig Sy~temi

ILVAX-11 5 Mbytes main memory

1 '380 Mbyte Winchester disk

Ethernet, Interface

C70-1 I Mbytes main storage
2 80 Mbyte removable disk drives

Magnetic Tape Drive, 800/1600 bpi, 125 ips (Cipher)
Arpanet 1822 LHDH interface

Ethernet interface (using Interlan protocol module)

C70-2 1/2 Mbytes main storage
2 160 Mbyte removable disk drives
Arpanet 1822 LIII)1 interface
Et hernet interface (using Interlan protocol module)

Software Development Hosts0

Table 14.)
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SUN 100 2 Mbytes main storage

I 80 Mbyte Winchester disk

15" b/w BitMap display

UNIX operating system

SUN 12(0 2 Mbytes main storage

1 120 Mbyte Winchester disk
19" b/w BitMap display

UNIX operating system

SU.N 120 2 Mbytes main storage
1 130 Mbyte Winchester disk

19" b/w BitMap display

19" color BitMap display
UNIX operating system

SUN /160 4 Mbytet, imaii storage

1 380 Mbyte Winchester disk
19" high resolution color BitMap display

UNIX operating system

Workstations

Table 14.2
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'MassCornp M68010 processor with IMbyte main memnory

168 Mbyte "Wincliester disk

E~thernet Interface

Forw ard Tec hnology M068000) pro.-.stol wAtih 2-56 Kblvlivs liior)

Micro-Memnory 256 Kb~yt~e inemory board

8-line RS-232 serial interface
3COM Ethernet Interface

8-slot Multibus backplane

Forward Tec hnology M68000K processor withI 256 txhvtes rtwumiorv

Micro-Memory 256 Kbyte memory board
8-line RS-2902 serial in terrace

3COM Ethernet Interface
8-slot Multibus backplane

Generic ( ~iiiputilng Elemnimt-, -- Ty pical (Joifiguratiunt,
Table 14.3

Gateway LS]J11/03 processor card
64 Kbyte memory card
DLV IIJ 4 line terminal card

MRVIW ROM card (bootstrap)

ACC 1822 interface with DI)A

Interlan N12010 QIIUS Ethernet controller
1313N FNVI I Fibernet interface

MDI3 backplane and pow er-supply.

Gateway Con!figuration

Table 1.1.4
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15. Virtual Local Network

15.1. Purpose and Scope

The Cronus Virtual Local Network (VLN) provides interhost message transport in the Cronus
I)isa.ribuled Operating Systemnl. The V LN client interface is available oii every Cronus host. Client
processes can send and receive messages using specific, broadcast, or multicast addressing.

The VLN stands in place of a direct interface to the physical local network (PLN). This additional
level of abstraction is defined to meet two major system objectives:

" Compatibility. The VLN is compatible with the Internet Protocol (IP) and with higher-level
protocols, such as the Transmission Control Protocol (TCP), based on IP.

" Substitutability. Cronus software built above the VLN is dependent only upon the VLN
interface and not its implementation. It is possible to substitute one physical local network
for another provided that the VLN interface specification is satisfied.

This description assumes the reader is familiar with the concepts and terminology of the DARPA
Internet Program; reference !NIC 19821 is a compilation of the important protocol specifications and other
documents. Documents in !NIC 19821 of special significance here are Postel 1981a1 and Postel 1981b1.

The Advanced Development Model ADM will be connected to the ARPANET, and it is important
that the ADM conform to the standard and conventions of the DARPA internet community. In addition,
a large body of software has evolved, and continues to evolve, in the internet community. For example,
protocol compatibility permits Cronus to assimilate existing software components providing electronic
mail. remote terminal access, and file transfer.

The substitutability goal reflects the belief that different instances of Cronus will use different
physical local networks. Substitution may be desirable for reasons of cost, performance, or other
properties of the physical local network such as mechanical and electrical ruggedness.

Figure 1 shows the position of the VLN in the lowest layers of the Cronus protocol hierarchy. The
VLN interface specification leaves programming details of the interface and host-dependent issues
unspecified. The precise representation of the VLN data structures and operations will vary from
machine to machine, but the functional capabilities of the interface are the same regardless of the host.

The % LN is completely compatible with the Internet, Protocol as defined in Postel 19lb,. No
changes or extensions to IP are required to implement If' above the VLN. 0

110.
- I1
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'.S

T r- -- -- -- - -- -- --- - - -

Transmission User I .
IControl Datagram
Protocol I Protocol I
---------------------------------- I

Internet Protocol
(IP)

----------------------------------
Virtual Local Network

(VLN) -

------ --------------------- I
Physical Local Network
(PLN. e.g. Ethernet)

Cronus Protocol Layering 0

Figure 15.1

15.2. The VLN-to-Client Interface

The VLN layer provides a datagram transport service among hosts in a Cronus cluster, and between

these hosts and other hosts in the IARPA internet. The hosts belonging to a cluster are attached to the

same physical local network. Communication with hosts outside the cluster is achieved through internet

gateways, shown in ligure 2, con: ,cted to the cluster. The VLN routes datagrams to a gateway if they

are addressed to hosts outside the cluster, and delivers incoming datagrams to the appropriate VLN host.

A VLN is a network in the internet, and thus has an internet network number19 .

0

19The network numbers for the PLN acid VLN may be the same or different. If the numbers are different, the
gateways are somewhat more complex. Elither approach is consistent with the internet model.
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to internet

network X

Ihostil IgtWYAI Ihost2l Ihost3l

Ihost4I Ihost5l Igtwy13l Ihost6I

to internet
network Y

A Virtual Local Network Cluster
Figure 15.2

The VLN interface will have one client process on each host, normally the host's IP implementation.
The \'LN performs no intiltipkexing/ demulliplexing function.

The structure or messages which pass through the VLN is identical to the structure of internet
datagrams. The VLN definition assumes that there is a well-defined -epresentation for internet datagrams
on any host supporting the VLN interface. The argument name ttDatagrojnt in the VLN operation

0 definitions below refers to this well-defined but host-dependent datagram representation.

The VLN guarantees that a datagram of 576 or fewer octets can be transferred between any two
VLN clients. Although larger dlatagrams may be transferred between some client pairs, clients should
avoid sending datagrams exceeding 576 octets unless there is clear need t.o do so. The sender must be

0 certain that all hosts involved can process the oversized datagrams., 1

The internal representation of an VLN datagram is not included in the specification, and may be
chosen -for implementation convenience or efficiency.
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Although the structure of internet and VLN datagrams is identical, the VLN-to-client interface

places its own interpretation on internet header fields, and differs from the IP-to-client interface in

significant respects:

1. The VLN layer uses only the Source Address, Destination Address, Total Length, and Header

Checksum fields in the internet datagram; other fields are accurately transmitted from the

sending to the receiving client.

2. Internet datagram fragmentation and reassembly is not performed in the VLN layer, nor does
the VLN layer implement any aspect of internet datagram option processing.

3. At the VLN interface, a special interpretation is placed upon the Destination Address in the

internet header, which allows VLN broadcast and multicast addresses to be encoded in the

internet address structure.

4. With high probability, duplicate delivery of datagrams sent between hosts on the same VLN

does not occur.

5. Between two VLN clients S and R in the same Cronus cluster, the sequence of datagrams

received by R is a subsequence of the sequence sent by S to R: a stronger sequencing property

holds for broadcast and multicast addressing.

In the DARPA internet, an internet address is defined to be a 32-bit quantity that is partitioned into

two fields, a network number and a local address. VLN addresses share this basic structure, but it attaches

special meaning to the local address field of a VLN address.

Each network is assigned a class (A, B, or C), and a netw'ork number. The partitioning of the 32-

bit internet address into network number and local address fields as a function of the class of the network

is shown in Table 15.1.

Width of Width of
Network Number Local Address

Class A 7 bits 24 bits

Class B 14 bits 16 bits

Class C 21 bits 8 bits

Internet Address Formats
Table 15.1

The bits not included in the network number or local address fields encode the network class. e.g., a 3 bit

prefix of I10 designates a class C address (see .Postel 198 Ia').
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The interpretation of the local address field is the responsibility of the network. For example, in the
ARPANET the local address refers to a specific physical host. VLN addresses, in contrast, may refer to
all hosts (broadcast) or groups of hosts (multicast) in a Cronus dluster, as well as specific hosts inside or
outside of the cluster. Specific, broadcast, and multicast addresses are all encoded in the VLN local
address field 20 The meaning of the local address field of a VLN address is defined in Table 15.2.

Address Modes VLN Local Address Values

Specific Host 0 to 1,023

Multicast 1,024 to 65,534

Broadcast 65,535

VLN Local Address Modes
Table 15.2

0|

In order to represent the full range of specific, broadcast, and multicast addresses in the local address

field, a VLN network should be either class A or class B.

The VLN does not attempt to guarantee reliable delivery of datagrams, nor does it provide negative
acknowledgements of damaged or discarded datagrams. It does guarantee that received datagrams are

accurate representations of transmitted datagram's.

The VLN guarantees that datagrams will not replicate during transmission, so each intended
21receiver, a given datagram given to the VLN by higher levels is received once or not at all

Between two VLN clients S and R in the same cluster, the sequence of datagrams received by R is a
subsequence of the sequence sent by S to R. that is datagrams are received in order, possibly with

ornissions. A stronger sequencing property holds for broadcast and multicast transmissions. If receivers
RI and R2 both receive broadcast or niulticast datagrams DI and D2, either they both receive DI before
D2. or they both receive D2 before DL.

While a VLN could be implemented on a long-haul or virtual-circuit-oriented PLN. these networks
are generally ill-suited to the task. The ARPANET. for example, does not support broadcast or multicast
addressing modes, nor does it provide the VLN sequencing guarantees. If the ARPANET were the base
for a VLN implementation. broadcast, and multicast, would have to be constructed from specific

addressing. and a network-wide synchronization mechanism would be required to implement the

guarantees. Although the compatibility and substitutability benefits might still be achieved, the

2The ability of hosts outside a Cronus cluster to transmit datagramfis with VLN broadcast or multicast destination
addresses into the cluster miy be restricted by the cluster gateway(s). for reasons of system security.21. protocol operating above the \LN layer (e.g.. TCI') may employ a retransmission strategy the VLN layer does

nothing to filter duplicates arising in this way.
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implementation would be costly, and performance poor.

A good implementation base for a Cronus VLN would be a high-bandwidth local network with all or
most of these characteristics:

1. The ability to encapsulate a VLN datagram in a single PLN datagram.

2. An efficient broadcast addressing mode.

3, Natural resistance to datagram replication during transmission.

4. Sequencing guarantees like those of the VLN interface.

5. A strong error-detecting code (datagram checksum).

Good candidates include Ethernet. the Flexible Intraconnect, and Pronet, among others.

15.3. A VLN Inipleixientation Based on Ethernet

The Ethernet local network specification is the result of a collaborative effort by Digital Equipment
Corp., Intel Corp.. and Xerox Corp. The Version 1.0 specification IDEC 19801 was released in September
1980. Useful background information on the Ethernet internet model is supplied in IDalal 19811.

The addresses of specific Ethernet hosts are arbitrary 48-bit quantities, not under the control of the
DOS. The VLN implementation must map VLN addresses to specific Ethernet addresses. The mapping
can not be maintained manually in each VLN host, because manual procedures are too cumbersome and
error-prone for a local network with many hosts, each of which may join and leave the network
frequently. A protocol is described below which allows a host to construct the mapping dynamically,
beginning only with knowledge of its own VLN and Ethernet host addresses.

An internet datagram is encapsulated in an Ethernet frame by placing the internet datagram in the

Ethernet frame data field, and setting the Ethernet type field to "l)ol) IP", as shown in Figure 15.3.

The Ethernet octet ordering is required to be consistent with the IP octet ordering. If IP(i) and
IP(j) are internet datagram octets and i<j, and EF(k) and EF(I) are the Ethernet frame octets which
represent IP(i) and IP(j) once encapsulated, then k< I. Bit orderings within octets must also be
consistent.

Each VLN component maintains a virtual-to-physical address map (the VPMap) which translates a
32-bit specific VLN host address to a 48-bit Ethernet address. The VPMap data structure and tjI
operations on it will implemented using hashing techniques. 0

Each host controller has an Ethernet host address (EMA) to which it responds. The EHA is
determined by Xerox and the controller manufacturer. In addition, the VLN assigns a multicast-host
address (MBA) to each host. This multicast address is constructed from the local host portion of the

internet address. 0
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0 l2 3
0 1234567890 123456789012345678901

Destination Address I

I Destination Address (contd.) [ Source Address

Source Address (contd.)

Type ("DoD IP") I

lVersioni IHL IType of Servicel

Total Length I Identification

IFlagsI Fragment Offset I Time to Live l Protocol I
+-+ -+-+-+---+ --+ --' -1 - -+-- +-4 - - 1-- - - --- --- - --- ,-+ -

Header Checksum I Source Address I

Source Address (contd.) I Destination Address I
+- - - + -+-+-+-+-+- -+++--+-+--.. -.+-.i+-+-- +-- --

Destination Address (contd.) I

-- -- ----- 1---- -..----- +--+-- -- I-- I--

I I

Data I
+-+- +-+-+-+-+-+-+-+-4+-*-+-_++-+-+-+-+-+-+-+-+-+-++---+-+-+

Frame Check Sequence I0

An Encapsulated Internet Datagram
Table 15.3
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and I ransoilits it withouiit de*Ily. The4 Source' Address inI tIlE-'AEherne. framie is the ElIIA oif Lhe setiirg
Itiist.. Tihe I-Itlliertiet Ikst inat kit Adldress is foinied fromt the (Iesitifajon VLN address in the dalagrarti
;111 ,l i i',er:

- the' PllA of thle dest-initioll htost, if Lte senlding host knows it, or

- the NI II A formted frorn ie host nu mber inl the( dest in aioil V I add ress, as described above, if
Owe sending host. does not. kinow time EII A correspondiiig toj (lie host rnirmbe-.

Whna VLN coin Ie'It receives an Ethernet fraine with type "J) If"',P it decapsulat cs Lte
ilt ernet. (Jatagrart actd delivers It. Lo ItLS client. If the framei was adJdre'ssed to the EllA of the receiving
host, no further action is taken. If the frame was addressed Low the MIHA of the receiving host, the VLN
component broadcasts an update for the VPMaps of the other hosts. The other hosts can then use the
EllA of this host for future traffic. If the MHA is represented as a sequence of octets in hexadecimal, it
hasi the form:

A BC DE F

O9-00-08-O-hh-hh

A is the first octet transmitted, and F the last. The two octets E and F contain the host local address:

E F

OOOOO0hh hhhhhhhh

NISI LSB

The type field of the Ethernet frame containing the update is "Cronus VLN"I, and the format of the
data octets in the frame is:

0 12 3
0 1 234 58678 90 1 234 56 78 90 12 34 56 78 90 1

I Subtype ("Mapping Update ) I Host VLN Address

I Host VLN Address (contd.)

When a local VLN component receives an Ethernet frame with type "Cronus VLN"I and subtype
"Niapping Update", it performs a StoreVPPair operation using the Ethernet Source Address field aind Lte
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host VLN address sent as frame data.

A VLN datagram will be transmitted in broadcast mode if the specifies the VLN broadcast address

(local address = 65,535, decimal) as the destination. The receiving VLN component merely decapsulates

and delivers the VLN datagram.

The implernentaLion or intulticast addressing is lilore comqplex. Iach host defines the number of

multicast addresses which can be simultaneously "attended" (listened to). This number is a function of
the particular Ethernet controller hardware and of the resources that the host dedicates to multicast
processing. The VLN protocol permits a host to attend any number of multicast addresses, from 0 to

64,511 (the entire VLN multicast address space), independent of the controller in use.

It is possible to implement the VLN multicast mode using only the Ethernet broadcast mechanism.

Every VLN host would receive and process every VLN multicast, discarding uninteresting datagrams.
More efficient operation is possible if some Ethernet multicast addresses are used, and if the Ethernet

controller has multicast recognition which automatically discard misaddressed frames.

There is no standard for multicast recognition. The 3COM Model 3C400 controller performs no

multicas, address recognition. It passes all niulticast frantes to the host for further processing. The Intel

Model iSBC 550 controller permits the host to register a maximum of 8 multicast addresses with the
controller, and the Interlan Model NMIO controller permits a maximum of 63 registered addresses.

A VLN-wide constant, Multicast_Registered, is equal to the smallest number of Ethernet multicast

addresses that can be simultaneously attended by all hosts in the VLN. A network composed of hosts
with the Intel and Interlan controllers mentioned above, for example, would have Multicast_ Registered

equal to 7 22; a network composed only of hosts with 3COM Model 3C400 controllers would have

Multicast Registered equal to 64,511, since the controller itself does not restrict the number of Ethernet
23multicast addresses to which a host may attend

A mapping is defined which translates the VLN multicast address to an Ethernet multicast address.

The first Multicast Registered VLN multicast addresses are assumed to be attended by each host. The
local address portion of the internet address of a VLN multicast channel is a decimal integer M in the
range 1.024 to 65.534.

1. (M - 1,023) <-= Multicast Registered. In this case, the Ethernet multicast address is

09-00-08-00- mm-mm

2. (M - 1.023) > Multicast Registered. The Ethernet broadcast address is used. A VLN
component which attends VLN multicast addresses in this range must receive all broadcast

frames, and select those with VLN destination address corresponding to the attended multicast 0

--Multi Registered is 7, rather than 8. because one multicast slot in the t ontroller is reserved for the host's NIHA.
For the Cronus Advanced Development Model, Multicast Registered is currently defined to be 60.
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address.

Delivered datagrams are accurate copies of transmitted datagrams because VLN components do not,

deliver datagrams with invalid Frame Check Sequences. A 32-bit CRC error-detecting code is applied to

Ethernet frames.

Datagram duplication does not occur because the VLN layer does not perform retransmissions, the

primary source of duplicates in other networks. Ethernet controllers do perform retransmission as a result

of collisions on the channel, but the collision enforcement mechanism or "jam" assures that no controller

receives a valid frame if a collision occurs.

The sequencing guarantees hold because mutually exclusive access to the transmission medium

defines a total ordering on Ethernet transmissions, and because a VIN component buffers all datagrams in

FIFO order.

15.4. VLN Operations

There are seven functions defined at the VLN interface. An implementation of the VLN interface

has wide latitude in the presentation of these operations to the client; for example, the functions may or

may not return error codes.

The functions are to occur synchronously or asynchronously with respect to the client's

computation. We expect that the ResetVLNlnterface, MyVLNAddress, SendVLNDatagram,

PurgeMAddresses, AttendMAddress, and IgnoreMAddress operations will be synchronous with respect to

the client. ReceiveVLNDatagram will usually be asynchronous; that is, the client initiates the operation,

continues to compute, and at some later time is notified that a datagram is available.

Reset VLNlnterface()

The VLN for this host is resel. For the Ethernet implementation, the operation

(learVPMap is performed, and a frame of i, pe "Cronus VLN" and subtype "Mapping

Update" is broadcast. This operation does not affect the set of attended VLN multicast

addresses.

MyVLNAddress()

Returns the VL , address of this host.

Send VL N Datagram ( Datagram)

When this operation completes, the VLN layer has copied the Datagram. The

transmitting process cannot assume that the message has been delivered when

SendVLNDatagram completes.

ReceiveVLNDatagram[)at agram) S
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When this operation completes, Datagram is a representation of a VLN datagram which

has not previously received.

PurgeMAddresses()

When this operation completes, no VLN multicast addresses are registered with the

local lN comploie, rt.

AttendMA ddress(MAddress)

If this operation returns True then MAddress, which must be a VLN multicast address,

is registered as an alias for this host, and messages addressed to MAddress by VLN
clients will be delivered to the client on this host.

IgnoreM Address(MAddress)

When this operation completes, MAddress is not registered as a multicast address for

the client on this host.

Whenever a Cronus host comes up, ResetVLNinterface and PurgeMAddresses are performed on the
VLN. A VLN component may depend upon state information obtained dynamically from other hosts,
and there is a possibility that incorrect information might enter a component's state tables. A cautious

VLN client could call ResetVLNlnterface periodically to force the VLN component to reconstruct the
tables.

A VLN component will limit the number of multicast addresses to which it will simultaneously
attend; if the client attempts to register more addresses than this, AttendMAddress will return False with

no other effect.

The VLN layer does not guarantee buffering for datagrams at either the sending or receiving host(s).
It does guarantee that a SendVLNDatagram function performed by a VLN client will eventually 0
complete: this implies that datagrams may be lost if buffering is insufficient and receiving clients are too
slow.

-
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16. Broadcast Repeater

This section presents the problem of multi-network broadcasting and our motivation for solving this
problem. We discuss different solutions to extending a broadcast, domain and why we chose the one that
has been implemented. In addition, there is information on the implementation itself and some notes on
its perforlance.

16.1. The Probleni

Communication in Cronus is built upon the TCP and l)P protocols. The broadcast facilities
offered by the Local Area Network (LAN) are used for dynamically locating managers and resources on
other hosts and collecting status information from a collection of managers. However, broadcasts are not
available when the clients of one LAN wish to access resources of another LAN using the DARPA
Internet: broadcasted packets are only received by hosts-on the physical network on which the packet
was broadcast. As a result, if no additional support is provided clients can only use resources connected
tu the client's LAN.

Since the range of a Cronus cluster is not intended to be limited t.o the boundaries of a single LAN,
we have extended our broadcasting domain to include hosts on distant LANs in order to experiment with
clusters that span several physical networks. Cronus predominantly uses broadcasting to communicate
with a subset of the hosts that actually receive the broadcasted message. A multicast mechanism would
be more appropriate, but is unavailable in our network implementations, so we chose broadcast for the
initial implementation of Cronus utilities.

16.2. Our Solution

The technique we implemented to experiment with the multi-network broadcasting problem can be
described as a broadcast repeater. A broadcast repeater is a mechanism which transparently relays
broadcast packets from one LAN to another, and may also forward broadcast packets to hosts on a
network which doesn't support broadcasting at the link-level. This mechanism provides flexibility while
still taking advantage of the convenience of LAN broadcasts. 0

Our broadcast repeater is a process on a network host, which listens for broadcast packets. These
packets are picked up and retransmitted, using a simple repeater-to-repeater protocol, to one or more
repeaters that are connected to distant LANs. The repeater on the receiving end will rebroadcast the
packet on its LAN, retaining the original packet's source address. The broadcast repeater can be made
very intelligent in its selection of messages to be forwarded. We currently have the repeater forward only
broadcast messages sent using the I1DP ports used by Cronus, but messages may be selected using any
field in the UDP or IP headers, or all IP-level broadcast messages may be forwarded.

oS
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16.3. Alternatives to the Broadcast Repeater

We explored a few alternatives before deciding on our technique to forward broadcast rmes ages.

One of these methods was to put additional functions into the Internet gateways. Gateways could listen

at the link-level for broadcast packets and relay the packets to one or more gateways on distant LANs.

These gateways could then transmit the same packet onto their networks using the local network's link-

level broadcas t capalhilit., if ,oe is available. All gateways Iart cipai Ing in this schicine would have to

maintain tables of all other gateways which are to receive broadcasts. If the recipient gateway was

serving a network without a capacity to broadcast it could forward the messages directly to one or more

designated hosts on its network but, again, it would require that tables be kept in the gateway. Putting

this sort of function into gateways was rejected for a number of reasons:

* it would require extensions to the gateway control protocol to allow updating the lists

gateways would have to maintain;

* since not all messages (e.g., LAN address-resolution messages) need be forwarded, the need to

control forwarding should be under the control of higher levels of the protocol than may be

available to the gateways;

0 * Cronus could be put into environments where the gateways may be provided by alternative
vendors who may not implement broadcast propagation;

* as a part of the underlying network, gateways are likely to be controlled by a different agency

from that controlling the configuration of a Cronus system, adding bureaucratic complexity to

reconfiguration.

Another idea which was rejected was to put broadcast functionality into the Cronus kernel. The

Cronus kernel is a process which runs on each host participating in Cronus, and has the task of routing all

messages passed between Cronus processes. The Cronus kernel is the only program in the Cronus system
which directly uses broadcast capability (other parts of Cronus communicate using mechanisms provided

by the kernel). We could either entirely remove the Cronus kernel's dependence on-broadcast, or add a 0

mechanism for emulating broadcast using serially-transmitted messages when the underlying network

does not provide a broadcast facility itself. Either solution requires all Cronus kernel processes to know

the addresses of all other participaitis in a Cronus system. % hich we view as an undesirable limit on

configuration flexibility. Also, this solution would be Cronus-specific, while the broadcast-repeater

solution is applicable to other broadcast-based protocols.

16.4. Implementation

The broadcast repeater is implemented as two separate processes - the forwarder and the repeater.

The forwarder process waits for broadcast 'DP packets to come across its local network which match one

or more specific port numbers (or destination addresses). When such a packet is found, it is encapsulated

in a forwarder-repeater message sent to a repeater process on a foreign network. The repeater then relays

the forwarded packet onto its LAN using that network's link-level broadcast address in the packet's

destination field, but preserving the source address from the original packet.
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When the forwarder process starts for the first time it reads a configuration file. This file specifies

the addresses of repeater processes, and selects which packets should be forwarded to each repeater

process (different repeaters may select different sets of UDP packets). The forwarder attempts to

establish a TCP connection to each repeater listed in the configuration file. If a TCP link to a repeater
fails, the forwarder will periodically retry connecting to it. Non-repeater hosts may also be listed in the
configuration file. For these hosts the forwarder will simply replace the destination broadcast address in

the I )lW packet with the host'\ address andi selnd ihis new dai agrao directly Io the non-repeater host.

If a repeater and a forwarder co-exist on the same LAN a problem may arise if the forwarder picks
up packets which have been rebroadcast by the repeater. As a precaution against rebroadcast of

forwarded packets (feedback or ringing), the forwarder does not connect to any repeaters listed in its
configuration file which are on the same network as the forwarder itself. Also, to avoid a broadcast loop

involving two LANs, each with a forwarder talking to a repeater on the other LAN, forwarders do not

forward packets whose source address is not on the forwarder's LAN.

16.5. Experience

To date, the broadcast repeater has been implemented on the VAX running 4.2 BSD UNIX
operating system with BBN's networking software and has proven to work quite well. Our current
configuration includes two Ethernets which are physically separated by two other LANs. The broadcast

repeater has successfully extended our broadcast domain to include both Ethernets even though messages
between the two networks must pass through at least two gateways. We were forced to add a special
capability to the BN TCP/IP implementation which allows privileged processes to send out IP packets
with another host's source address.

The repeater imposes a fair amount of overhead on the shared hosts that currently support it due to

the necessity of waking the forwarder process on all UDP packets which arrive at the host, since the
decision to reject a packet is made by user-level software, rather than in the network protocol drivers.
One solution t, this problem would be to implement the packet filtering in the system kernel (leaving the

configuration management and rebroadcast mechanism in user code) as has been done by StanfordCMt'

in a I NIX packet filter they have developed. As an alternative we are planning to rehost the
implementation of the repeater funiction to a G(E. Such a machine is better suited to the task since

scheduling overhead is much less than it is on a multi-user timesharing system.
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