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ABSTRACT

The progress on a three-year effort to examine approximate reliability

- evaluation techniques for fault tolerant control and sensor systems is

described. The motivation for the work is provided by the fact that the

reliability models for these systems tend to be finite state semi-Markov

models with large dimension that evolve relatively slowly in time due to the

rare occurrence rate of component failures. The transient behavior of these

models is of interest because the steady state behavior is trivial and not

of practical importance. The evaluation of the transient behavior of such

models, however, is intractable even for relatively simple system

architectures because of the widely varying rates at which events occur in

the model.

The research effort concentrates on generating useful limit theorems

that approximate the behavior of these models asymptotically well as the

• small component failure rates become vanishingly small. Using the work of

Korolyuk as a starting point, such limit theorems are generated for both

continuous and discrete time models that are representative of fault

tolerant system behavior. In particular, the limit theorems of Korolyuk are

expanded to cover models where the classes of the decomposed models include

trapping states when the small parameter vanishes and to cover models where

the holding times are not necessarily scaled by the small parameter.

Furthermore, the sufficient conditions for these theorems are expressed in

terms of properties of the unperturbed version of the model that are

brelatively easy to check and do not involve generating steady state limits

of transition operators.

The application of these limit theorems to some selected fault tolerant

system models for which analytical results can be generated symbolically is
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also described. This motivates further work in an effort to expand the

applicability of the limit theorem results to the broadest possible class of

models that can result from the analysis of fault tolerant systems.

Preliminary results from this effort are described.
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I. INTRODUCTION

1.1 Motivation and Discussion of Problem

Reliability and availability have become two of the prime

considerations in the design of control systems for a diverse group of

applications that includes flight control systems for both aircraft and

spacecraft. Considerable effort is now being devoted to the design of

highly reliable control system components and to the design of fault-

tolerant processors for online control computations. Despite the success of
U

some of these efforts, the extremely high reliability goals that are

becoming commonplace in the Air Force and elsewhere can often be met only by

designing control systems with built-in component redundancy. The

combination of a redundant system architecture and a redundancy management

(RM) algorithm constitutes a fault-tolerant system design.

Predicting the performance of these designs is an important and

* difficult problem. The performance is judged by such quantities as the

reliability, the availability, or some other probabilistic quantity such as

the average measurement accuracy or average regulation error. Calculating

these quantities is an important problem because they represent the criteria

by which the system design is judged. Such calculations are difficult

because fault-tolerant systems are subject to random events, such as

failures and RM decisions, that change the nature of operation of the system

and therefore affect the values of the performance quantities.

Several papers and theses have introduced the concept of modelling the

random behavior of a fault-tolerant system by generalized finite-state

Markov models [1-3, 17-18]. The states in these models characterize the

status of the system in terms of the number of components that are

operating, the number of these that are failed, and the status of the RM
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decisions. The transition behavior among these states must then be derived

from the probabilistic behavior of component failures and of the RM
I-I

decisions (including errors such as false alarms and missed alarms). Once
LI

this characterization is complete, the resulting Markov model (or, more

generally, semi-Markov model) can be used to derive the statistics of any

relevant quantity that is dependent upon the status of the system. Among

these are the reliability and availability of the system, but the statistics

of other quantities such as the time to first passage of a particular system

status or a performance measure dependent on the system state history can

also be calculated.

Despite their obvious utility for fault-tolerant system performance

analysis, these models suffer from one serious drawback that has

considerably limited their use. That drawback is that they tend to be

computationally intractable even for relatively simple fault-tolerant system

* architectures. This intractability is the result of a number of factors:

1. The number of states in the reliability model can be large,

particularly for complex systems comprising many components.

Essentially, there are as many states in the model as there are

distinct combinations of failed and unfailed components and RM decision

statuses for which the system remains operative. Even the exploitation

of symmetry and similarities in component behavior to reduce the model

order can still leave a very large number of states in the final model.

2. The transient behavior of the model, not the steady state behavior, is

of primary interest. Because the components are subject to failure,

the steady state condition for all fault-tolerant systems lacking

online repair capability is complete system failure. Even when the

recovery of failed or fail-indicated components is possible, a steady

6



state condition for the reliability model may not become established

until the elapsed time is greater than the useful lifetime of the

system (see comment 4 below). In either case, the transient behavior

of the model is of interest and steady state analysis techniques do not

apply. This is particularly unfortunate when the model is semi-Markov

in nature because the transient analysis of such processes requires the

evaluation of convolution quantities (integrals or sums, respectively,

for continuous or discrete time models) that require massive amounts of

computer memory and computation time.

3. The time horizons of interest are often very long in absolute terms,

though they still remain short relative to the time required for the

reliability model process to reach steady state. Typically, a fault-

tolerant system will be used for operating intervals that are a

significant fraction of the expected lifetime of its most failure-prone

* components. This fraction seldom approaches unity because the

redundancy level of the failure-prone components required to satisfy

reasonable specifications on the system reliability would drive the

price of the system high enough to justify the use of fewer, more

reliable (and therefore more expensive) components. On the other hand,

extremely short operating times would yield a probability of failure

for any component that is so low that the extra investment in fault-

tolerance would not be justified by the small increase in reliability.

In light of Item 2 above then, the transient behavior of a Markovian

process must be examined over time horizons on the order of the mean

time to failure of the most failure-prone component. Given the current

emphasis on the manufacture of highly reliable components, these time

horizons can be extremely long.

7
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4. A time scale separation tends to exist between the component failure

process and the RM decision process. Failures tend to occur only

- rarely and therefore tend to have large time durations between them.

RM decisions, however, must occur quickly following a failure and tend

to occur very rapidly relative to failure events. This means that the

Markovian model of the behavior of the system status exhibits "fast"

modes and "slow" modes. This time scale separation provides the

motivation for the behavioral decomposition methods that have been

investigated by us and by other researchers in the field.

The goal of this research project is to develop a method that generates

approximate solutions to the generalized Markov process models that

characterize fault-tolerant system behavior without the use of excessive

computer memory or computation time. The behavioral decomposition alluded

to in Comment 4 above provides the basis for the approach. However, the

* nature of fault-tolerant system models is such that extensions to existing

theory have been necessary in order to exploit the decomposition approach.

These extensions and the numerical verification of their validity are the

primary results obtained from the work reported here.

1.2 Previous and Related Work

A number of researchers have addressed various aspects of the problem

of approximating the behavior of finite state Markov processes with weak

interactions between groups of states. In the particular context of fault-

tolerant systems, a number of papers by Trivedi and coworkers have examined

the use of Markov models for evaluating the reliability of fault-tolerant

data processing systems [e.g., 1-3]. Techniques have been developed for

decomposing these models along the lines of the behavioral decomposition

8



strategy discussed above. However, data processing systems have the unique

property that all of the signals associated with the system are binary and

- therefore are rarely affected by noise. As a result, the fault detection

system rarely indicates falsely that a fault is present when there is no

fault. The model decomposition procedures examined in [1-3] implicitly rely

on this fact because the model is always assumed to take the form of a low-

order, slow process induced by the component failure process upon which is

superimposed a fast process representing the "fault handling" by the RM

* logic following a fault. This structure is valid only if "fault handling"

occurs only following failures. This rules out the possibility of false

failure indications in the absence of failures.

Although many of the techniques developed in [1-3] are very powerful

and easy to use, the limitation just discussed renders them inapplicable to

fault-tolerant systems where false failure indications are likely. This

includes essentially all fault-tolerant sensing and control systems because

these systems are affected by noise and dynamic error sources that make

false failure indications a major concern.

In the general area of Markov processes with weak interactions, one

notable recent work is the article by Coderch [4]. This paper is derived

from [5], which contains an extensive description of previous work in the

area. Much of the work preceding [4] applied only to limited classes of

finite state Markov processes and, in particular, was not applicable to

semi-Markov processes or to processes with purely transient states. In [4],

a method is described by which continuous time, finite state, weakly coupled

Markov processes without transient states can be decomposed into transition

operators that are valid for increasingly longer time scales. The result is

a sequence of operators that describe the transition behavior of the process

b



at each time scale such that the multiple time scale solution for the

process behavior converges to the actual process behavior asymptotically as

the small parameter representing the weak interactions converges to zero.

Unfortunately, the method does not apply to semi-Markov processes and it has

not been extended to apply to discrete time processes. Furthermore, the

method requires the solution of very complex linear algebra problems, such

as the description of nullspaces of operators, in the generation of the

operators that are valid at each time scale.

H Another recent effort extended the results of [4] to finite state

Markov processes evolving in both discrete and continuous time that include

special types of transient states (called "nonsplitting transient states" in

[7]). Some preliminary results of this effort are described in [6].

Further results are described in [7]. It should be noted that the results

in [6], like those in the previously cited references, are applicable only

* to Markov processes. Some results on semi-Markov processes are included in

[7], but the results are again limited to processes that contain only

nonsplitting transient states. This rules out many of the models that

represent fault tolerant systems because these models consist almost

entirely of transient states (all but the trivial total system failure

trapping states), many of which are not "nonsplitting."

It should also be noted that the methods of [6] and [7], like those in

[4,5], generate a description of the behavior of the process in sequentially

longer time scales. It is frequently the case in fault-tolerant system

analysis that the behavior of interest occurs only in the first time scale.

This observation, combined with the difficulty that the methods of [6] and

[71 have in dealing with transient states and semi-Markov processes,
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suggests that an alternative method for dealing with these processes is of

interest.

-"Much of the work reported here is an extension of the work reported by

Korolyuk, et. al. [8,9]. These results apply to finite state semi-Markov

processes with weak interactions. The continuous time case is treated in

[8] and the discrete time case in [9]. The key result of [8,9', which will

hereafter be referred to as Korolyuk's limit theorem, is the following:

Theorem: Given a perturbed finite-state semi-Markov process z (t)

whose transition operator elements P ij(t) have the following

dependence on e:

L ij(t) - (pij - eqij)hij(t/e) if i,jeEk

0 - eq ijhij (t/e) if ieEk, j/Ek

with E pij - 1 and where pij and q.. are of order 1 and where the
jEk 13

set of classes {Ek )k is disjoint and exhaustive. If the Markov

chains defined by the p.j's within a single class Ek represent an

ergodic Markov process with stationary state probability distribution

O i(k)) for each k (lk<m), then:

im Prob (sojourn time from class E to class E <t)

- 1kr (1 - ek t)

where: "kr - i(k )  q..].[ (k) Z qij]'l

jeE c J icE k . ijEicEk  jr i k jeEk
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Ak - [ (k) Z ].[ Z f(k) Z p ]i)E 7i J kqijiEk i jE Pijril

k eEk joEEk i4Ek jCE k

1i - Z P.. ij

and where T.. is the mean holding time for the holding time density
1j

hij(t).

* Proof: For the discrete time case, the proof appears in [9]. The

corresponding proof for the continuous time case appears in [8].

The conditions and consequences of Korolyuk's limit theorem can be

summarized in words as follows. The interactions between the states of the

original semi-Markov process are weak in the sense that the transition

behavior depends upon a small parameter e such that when e is zero the

process decomposes into noncommunicating classes of states. The original

process will be referred to hereafter as the perturbed process while the

process that is derived from it by setting e to zero will be called the

unperturbed process. The form of the transition behavior assumed for the

perturbed process is such that the transition probabilities of its imbedded

Markov process within a class are independent of c while the interclass

imbedded Markov process transition probabilities are all at least first

order in e. Also, it is assumed that the holding time densities associated

with all transitions for the perturbed process become compressed near the

origin as e becomes small. Finally, it is assumed that the decomposed

classes of the unperturbed process are all ergodic. When all of these

conditions are satisfied, the interclass behavior of the perturbed process

over time horizons on the order of t/e can be approximated by a reduced

12



order Markov process in this "slow" time scale. This process is called the

enlarged Markov process. The approximate behavior of the original perturbedK__
process can then be derived by expanding the enlarged process probabilities

of occupying each class with the stationary distribution of probability

within each class of the unperturbed process that results from the

ergodicity of these classes. The parameters of the enlarged Markov process

are expressed in terms of the decomposed transition probabilities of the

perturbed process and the mean holding times associated with the holding

time distributions.

This result is very powerful for approximating the behavior of semi-

Markov processes that satisfy all of the conditions. Unfortunately, most

,* models of fault-tolerant system behavior do not satisfy these conditions.

This provides the motivation for most of the work on this project.

* 1.3 Research Goals

The research goals for the project can be summarized as follows:

1. Extend the results of [8,9], if possible, by carefully reviewing the

proofs included there and recognizing points where the restrictive

assumptions can be relaxed.

2. Extend the results of [8,9] to perturbed semi-Markov models evolving in

continuous time where the holding time densities do not depend directly

upon the small interaction parameter e but rather on a small time

scaling parameter.

3. Conduct investigations on several continuous time models, including

some with nonergodic classes. Attempt to identify theoretical results

regarding such models.

13



4. Develop results similar to [8,91 as extended by the two previous goals

for discrete time semi-Markov models of fault tolerant systems.

5. Develop a means for generating the exact solution to both continuous

and discrete time models of simple fault-tolerant systems for the

purpose of comparison with the results generated by the approximate

technique.

The next section of this report will discuss the progress made on these

goals during the project.

' 1
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II. PROGRESS SUMMARY

In this section, the work of the past three years is summarized and is

related to the goals discussed above. The work will be summarized here in

approximately the order in which it was accomplished. Numerous references

are made to [10], which is the S.M. thesis of Siu-Kwong Chu that was

completed under the support of this grant. This thesis was included as

Appendix A of [12). A draft version of a paper [13] that was derived from

this thesis is included as Appendix A of this report. References are also

made to [14] and [15], which are the S.M. thesis of Norman Wereley and a

paper adapted from it, respectively. The paper [15] is included as Appendix

B of this report. The thesis is available from the authors. It was sent to

AFOSR previously under separate cover.

2.1 Attempts to Extend Korolyuk's Results

Fault-tolerant system models tend to have two characteristics that

violate the conditions imposed on the semi-Markov processes examined in

[8,9]. One is that the holding time densities do not compress as the small

parameter representing the weak interclass interactions is made smaller.

The reason for this is that the holding time densities for fault-tolerant

system models are determined by the probability mass functions of the time

needed for various sequential fault diagnosis tests to reach decisions. The

behavior of the fault diagnosis tests typically occurs in the "fast" time

scale, but it is not altered by changes in the failure rate of the

components, which is usually the source of the small interaction parameter

in these models. This situation is illustrated clearly by the model derived

in Chapter 3 of [10], which is the 9-state model referred to in [11]. None

15



of the holding time densities for this model display the explicit dependence

on the scaled time t/e that [8,9] assume (see Appendix C of [10]).

-- The other manner in which fault-tolerant system models often violate

the conditions assumed in [8,9] is with respect to the ergodicity of the

classes when e-0. Many fault-tolerant systems include RM logic that shuts

off a component permanently once it has been diagnosed as failed. If this

diagnosis is the result of a false alarm, the corresponding system status

state involves no failures and hence tends to be in the same class upon

* •decomposition of the model as other no-failure states such as the state

where no failures and no RM decisions have yet taken place. This means that

these classes include "splitting" transient states, and the results of [7]

are not applicable. Also, the false alarm state is a trapping state for

this class when the failure probability (and hence e) is set to zero.

Therefore, this class of the unperturbed process is nonergodic. This tends

to be true of many of the classes of states associated with models of fault-

tolerant system behavior when irreversible RM logic is used by the system.

A major part of the early research on the project was devoted to

extensive study of the results in [8,9] to determine whether they could be

directly extended. In [11], it was noted that the ergodicity of the classes

is actually a stronger condition than what is sufficient for the proofs

presented in [8,9] to hold. In particular, the following Proposition was

put forward:

Proposition: The results of Korolyuk's limit theorem hold if the

transition operator Pk of each class k of the unperturbed process is

such that either of the following is true:

16



(1) Pk is the transition operator for an ergodic Markov process

with unique stationary state probability distribution i (k)

or

-l
(2) The inverse operator [I - Pk + 7rk] exists.

In these statements, Pk and irk are defined as follows:

Pk - transition probability operator for the imbedded Markov

* process governing transitions within class k of the unperturbed

process,

and

rk lim Pk if this limit exists
k n-k

1 nnlira Z P k otherwise, if this exists.

Proof: The proof of this Proposition is imbedded in the proof

presented in [9] of Korolyuk's limit theorem. In [9], Korolyuk assumes the

classes of the unperturbed process are ergodic, which guarantees the

existence of the inverse operator. However, it is only the existence of the

inverse operator that is required in the proof.

The conclusion that can be drawn from this Proposition is that the

results of [8,9] are valid when the weaker sufficient condition represented

by (2) in the Proposition is satisfied by each class in the model. This is

a considerable generalization of Korolyuk's results. The unperturbed

process derived from many fault-tolerant system models satisfy this weakened

sufficient condition. In fact, a result will be stated and proven in a

later section that generalizc3 Korolyuk's limit theorem to all perturbed

17



semi-Markov processes that have a corresponding unperturbed process with a

particular property. This property is possessed by all perturbed semi-

I Markov models, and therefore all semi-Markov fault tolerant system models,

that have unperturbed model classes that are aperiodic and contain no more

than one trapping state. Such models also satisfy the weakened sufficient

condition of this section.

Despite the considerable generality that the weakened sufficient

condition implies, several problems still exist in applying the results to

* models of fault tolerant system behavior. The first problem is the

nondependence of the holding time densities on the small parameter e. This

will be discussed in the next section.

The other problem is that models for fault tolerant system behavior are

rarely specified in the standard form for semi-Markov models. The standard

form for each of the transition operator elements for a semi-Markov process

is the product of an imbedded Markov process transition probability and a

holding time density. For most fault tolerant systems, the transition

operator elements are derived directly and therefore do not take this

product form, although the decomposition with respect to e is clear. The

imbedded Markov process transition probabilities can be determined in these

cases only by integrating (or summing) the operator element histories with

an infinite upper limit. The weakened sufficient condition requires only

the calculation of the "fast" imbedded Markov process transition

probabilities pi, so the calculation typically converges rather quickly.

However, the subsequent calculation of rk for each of the classes can be

difficult, especially if the Cesaro limit form must be used. This latter

calculation, if it is done numerically, also amplifies any error that may

18



have been present in Pk' Finally, to check the weakened sufficient

condition, it is necessary to find the determinant of the operator I-Pk + k m

This may be extremely difficult numerically.

Because some of the calculations leading to a check of the weakened

sufficient condition are subject to error, we chose to continue our research

to develop other conditions that could be checked under which the results of

Korolyuk's limit theorem hold. These will be discussed later in this

report.

2.2 Time-scaling of Continuous Time Models

Our research then turned toward circumventing the problem that the

holding time densities for fault tolerant system models are not dependent on

the small parameter e representing the weak interactions, as is required by

Korolyuk's limit theorem. The approach, which ;as first described in [12],

is to introduce a second small parameter that represents time scaling into

the model. In this section, we summarize the results of that work.

When the time axis over which a semi-Markov model of fault-tolerant

system behavior evolves is scaled by a small parameter 6, the holding time

densities in the model take the form that is required for the application of

Korolyuk's limit theorem provided the parameter 6 is proportional to e.

This idea is explained rigorously in section 2.2.1 of [10] and in Section

2.2 of [13]. After introducing this time scaling, it is possible to

rederive the results that are of interest for asymptotic approximations to

the behavior of these semi-Markov models.

Let E be the state space of a finite state semi-Markov process that

evolves in continuous time t. Suppose that the process is observed with

respect to the scaled time t/6. Suppose further that the transition

19



operator of the process is such that its (i,j) element representing

transitions from state i to state j has the form:

Pi (t') - pij Fij(t'/6) i,j e E

where t' represents scaled time and where the imbedded Markov process

probabilities pij take the form:

p(k) (k)
ij qij ij Ek

* Pij

q (k) i Ek, j /Ek

Here it is assumed that the state space E decomposes into weakly interacting
_(k)

classes {El, E2 .... En. It is also assumed that the p(k for each E sum
21 ... 1 nijK

to unity, hence when e-0 the classes E. become noninteracting and each

pdescribes a valid semi-Markov process.

Now let r(i) be the sojourn time (in scaled time) of the process inNow et kr

class Ek when it begins from state iEk and transits to class Er with r~k.

i)(i) Tei h _(k)

Let k(i)(s) denote the characteristic function of rkr. Then, if the (

for each k represent the transition probabilities of an ergodic Markov
(i)

chain, the Okr (s) are independent of the superscript i and take the form:

(k) Z (k)
i ij

Okr (s )  - (k)

RE k . k) _(k))

I e ( s aij P + e qiE k  jE k fJ2

20



Pkr Ak/a s

Ak/a+

where the r (k) are the stationary probabilities of the ergodic semi-Markovi

process associated with class Ek, the aij are the mean holding times

associated with the Fij (t) in the original time scale, a is 6/, and Pkr and

Ak are parameters defined in [10, sec. 2.2.2] and in [13, sec. 2.2]. Note

that this expression takes the form of the characteristic function of a

Markov process transition operator with imbedded transition probability Pkr

and transition rate time constant Ak/a. Thus, the interclass transitions

are Markovian in scaled time.

This result is derived in [10, sec. 2.2.2] and in sec. 2.2 of [13].

The result expressed above makes possible the analysis of continuous

time semi-Markov models of fault tolerant system behavior provided the model
U

has ergodic classes (note the underlined condition above). Many fault

tolerant system models violate this condition, as was discussed above.

However, many fault-tolerant systems that do not employ irreversible fault

isolation logic do produce models with ergodic classes. Therefore, this

result is a positive step toward analysis of models for these types of

systems. Furthermore, as the discussion of the preceding section has shown,

models that satisfy the weakened sufficient condition can also be

approximated by these results, including all models with unperturbed

processes that are aperiodic and contain no more than one trapping state.

The manner in which the result above can be used for approximate

analyses is as follows. Suppose a model for a fault tolerant system has

been constructed and one is interested in calculating the state
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probabilities for the model at some relatively large value of time t in

order to assess the reliability (or some other status-related property) of

the system. Suppose further that the model satisfies the conditions stated

above. Then the approximate class occupancy probabilities at the desired

time can be calculated by scaling time appropriately, constructing the

enlarged Markov process that approximately governs interclass behavior from

the result above and solving this relatively easy, reduced order Markov

process problem. It is assumed here that the initial condition is known for

the state probabilities and therefore also for the class occupancy

probabilities. The results should then be rescaled back to the original

time scale. Finally, the approximate state probabilities can be evaluated

by weighting the stationary probability distribution associated with each

class when e-0 by the appropriate approximate class occupancy probability.

To illustrate the approximate evaluation procedure, a model for a

generic fault tolerant system was constructed and solved using both "brute

force" numerical convolution techniques and the approximate technique

described above. The system consisted of three components where at least

one unfailed component must be available for the system to remain operating.

It was assumed that the failure diagnosis algorithm used sequential tests in

combination with logic that is described in detail in sec. 3.1 of [10]. The

tests were assumed to have second order Erlang distributions for their times

to decision. The logic included the possibility of recovering components

that have previously been diagnosed as failed, thereby leading to a model

that has ergodic unperturbed process classes. The complete model isb
described in secs. 3.3 through 3.5 and Appendix C of [10]. The model has 9

states which decompose into three classes when the small failure rate is set

to zero.

2
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The exact state probability histories are obtained numerically and are

described in chapter 4 of [10]. It should be noted that a very large amount

- of computational effort was required to generate these exact solutions. The

approximate model is also constructed and solved in chapter 4 of [10]. The

approximate solutions were obtained from a relatively short FORTRAN program.

They could have been generated using just a hand calculator. Only when

complete time histories were desired was it absolutely necessary to resort

to the use of a computer. Upon comparison of the results, one finds that

* the largest error in the evaluation of any of the state probabilities by the

approximate method for this example is less than 1% of the value obtained by

numerical means (which itself is subject to a small amount of error) for

times greater than the longest mean holding time of the sequential tests,

where the assumed mean time between failures is 3 orders of magnitude longer

than this.

These results are very encouraging, but they are not sufficient to

conclude that the approximate technique always works so well. In order to

further investigate the properties of the approximate technique with the

time scaling included, a number of four-state semi-Markov models were

examined. These models were chosen to reflect various characteristics that

larger fault tolerant system models tend to possess. By keeping the

dimension at 4, however, it is possible to generate the true behavior of the

model with relative ease whereas models of larger dimension are extremely

difficult to solve exactly (recall the comments above regarding the nine-

state model). Even four-state models are difficult enough to solve,

however, that symbolic manipulation was necessary to generate the exact

solutions. This is true despite the fact that none of the holding time
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densities in the models were assumed to be any more complex than second

order Erlang.

-- The five cases of four-state models that were examined are discussed in

detail in chapter 5 of [10]. Two of these cases are included in [13]. The

approximate method produced very accurate results in every case that was

examined. The comparison between the results was almost always exact to 4

decimal places except in the very early time periods before the startup

transient of the process has decayed.

* One of the cases of four-state models that was examined was a model

that did not have ergodic unperturbed process classes (Case IV of [10] or

Case 2 of [13]). Because these examples are artificially constructed, it is

relatively easy to check the weakened sufficient condition that was

discussed in the previous section. A brief calculation shows that it is

satisfied, therefore the results of Korolyuk's limit theorem hold for this

model as well as the other cases that were examined. This makes the

accuracy of the results obtained by the approximate method not surprising.

As was discussed at the end of the preceding section, however, we still

desire a means for determining whether the results of Korolyuk's limit

theorem hold without calculating the operator 7rk for each class of the

unperturbed model. The next section discusses our work along these lines.

L

2.3 Relaxation of Ergodicit¥ Condicion

Many fault tolerant systems yield generalized Markovian models of their

behavior that decompose into classes that satisfy all of the conditions for

applying the approximate technique except the condition that the classes of

the unperturbed process must be ergodic. This is typically the result of

24

j



irreversible logic structures in the RM algorithm for the system such that

diagnostic decisions alone can permanently eliminate a component from use.

- However, in the analysis of four-state models discussed above, it was

noted that excellent results were obtained when the approximate method was

applied to a case where the unperturbed process generated by the model did

not possess ergodic classes. As was noted above, this is not surprising

because the inverse operator discussed in section 2.1 exists for each of the

classes in this case. As we also noted above, however, we desire a simpler

* •method for checking whether the results of Korolyuk's limit theorem are

valid than computing the determinant of each of the operators l-Pk + k '

After careful examination of the underlying reasons that the results of

Korolyuk's limit theorem hold for cases where the unperturbed process does

not possess ergodic classes, we developed the following theorem:

Theorem 1: Let a semi-Markov process depend upon e such that it can be

decomposed and time scaled in the manner described in section 2.2.

Suppose in addition that the imbedded Mar1 -- process transition operator

Pk associated with the kth cl~ss of the unperturbed process satisfies:

n Z P k re e ... el

where e is some constant vector whose elements are nonnegative and sum

to unity. Suppose this is true for each k (with different e in each

case, in general). Then the interclass trinsition behavior of the

perturbed process approaches the same enlarged Markov process behavior

that was described in section 2.2 as e approaches zero.
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Proof: The proof of this theorem appears in chapter 6 of [10] and section

3 of [13].

The sufficient condition of Theorem 1 is weaker than the ergodicity of

the classes that was required by Korolyuk. Furthermore, the sufficient

conditions of Theorem 1 are more easily checked than the weakened sufficient

condition that was discussed in section 2.1 because the determinant of the

operator I-Pk+Irk need not be computed. Note, however, that the Cesaro limit

operator w k must be computed to check the conditions of Theorem 1. This is

still undesirable from a practical computational standpoint.

The analysis leading to Theorem 1 led us to consider the specific

situations in which the conditions of the theorem are satisfied. This

investigation led to the following refinement:

Theorem 2: Let a semi-Markov process depend on e such that it can be

I decomposed into classes and time scaled as prescribed in section 2.2.

The transition operator Pk of the imbedded Markov process associated

with the kth  class of the unperturbed process will satisfy the

conditions of Theorem 1 if:

1. The kth class is ergodic, or

2. Pk has one and only one eigenvalue of unity.

Proof: The proof of this theorem also appears in chapter 6 of [101 and

section 3 of [13].

Theorem 2 provides a more restrictive but more easily checked

sufficient condition than Theorem I because the Cesaro limit is no longer

necessary.
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It should be emphasized that Theorems I and 2 still represent only

sufficient conditions for the approximate technique to yield an accurate

-- approximation to the behavior of the perturbed process as the small

parameter e becomes small. In other words, there may exist perturbed semi-

Markov models that do not satisfy the conditions stated in Theorem 1 or

Theorem 2 whose behavior can still be approximated well by the approximate

method.

Some examples of model structures that do and do not satisfy the

* sufficient conditions of Theorem I or 2 are presented in chapter 6 of [10]

and at the end of section 3 of [13]. One example in particular that does

not satisfy the conditions includes a class in its unperturbed process model

that contains multiple trapping states. We shall discuss this situation

later in section 2.6.

2.4 Discrete Time Models

All of the results described so far in this report have applied to

continuous time models of fault tolerant system behavior. However, the RM

algorithms for fault tolerant systems are usually implemented on a digital

computer with a significant time interval between successive applications of

the diagnosis tests. Therefore, fault tolerant system models are often

purely discrete time in nature.

During the course of the project, parallel efforts were made to derive

results for perturbed discrete time semi-Markov processes that mimic those

discussed above for continuous time processes. This section and the paper

[15] reports on these efforts.

Much of the work that has been accomplished during the project for

discrete time models has related to the adaptation of Korolyuk's limit
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theorem for semi-Markov processes [8] to semi-Markov chains. In addition, a

limit theorem with time scaling for semi-Markov chains was also developed.

-- The theorem statements will be summarized below.

An important result that will be referred to in the statement of both

theorems is the following:

LEMMA 3: Let P(k)- ] represent an imbedded Markov chain operator of

a semi-Markov chain Ek. Consider the system of equations below:

*(i) ()-E 0(j () ( k) _
kr (z) k kr (z)ijJ £ Ek

The solution of this system of equations is independent of the

superscript, that is:

r(m) -(i)(m) for all icE4kr~ m  "kr i k

if and only if the imbedded Markov chain transition operator P(k) has at

* most a single unit magnitude eigenvalue.

Proof: This lemma is proved in [14].

Thus, any ergodic imbedded Markov chain operator (for which all

eigenvalues have less than unit magnitude) will satisfy Lemma 3. In

addition, any monodesmic imbedded Markov chain operator (one that has only

one trapping or absorbing state, and hence a single unit magnitude

eigenvalue) will also satisfy Lemma 3. This assertion is similar to Theorem

2 of section 2.3 for continuous time models.

We shall now state a theorem that describes how a semi-Markov chain

which is dependent on a small parameter e can be approximately described by

a Markov chain. This theorem is derived based on the results for semi-

Markov processes in [81. The semi-Markov chains here are assumed to depend

on a small parameter e such that the state space can be decomposed into
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disjoint classes of states where the probabilities of departure from each

class tend to zero along with c. In addition, the total sojourn in each

-class is assumed to have a non-degenerate distribution in the limit as C

0.

THEOREM 4: A Limit Theorem for Semi-Markov Chains

Let the set E of states of the semi-Markov chain be expressible as a

union of disjoint classes

Ne
E - Z Ek  k e M - (1,2 .... Ne

k-i

Let (i) be the sojourn of the semi-Markov chain in class Ek when it

starts from state icE k and moves to class Er. The following two sets

of conditions are assumed to hold:

1. The elements of the core matrix seauence (gi(m)li,jeE) specifying

• the semi-Markov chain depend as follows on the small parameter e:

9Cj(m) - PC h O)gi Pi hij

where h. (0) - 0. The p may be expanded in a Taylor series
.j ij

about e - 0. Retaining only linear terms in e in explicit form:

_ (k) q (k) + . + 0(e); ij E

e qk) + ".. + 0(e); i e E ; j X E
ij k' kE

where 0(c) represents terms such that l O - 0.

C- -0

The imbedded Markov chain obeys the usual Markov chain properties:

Z _(k) - 1; and (k) f [0,1];

jE kij ij
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for all i~j e E k and for all k e M

and

-2. The imbedded Markov chain defined by the transition probability

(k)

distributions (k)]e k e)

Then:

lim Pr(7-yk )- k 1 -exp(-Akt/T)]

where:

E (k) ( kr)

E Xr (k) q(k)
ieE ki i

Z ir(k) a(k)
iCE ki i

Here:

(r k) q (k)

JeE k i

a(k) (k)-a. - E p.. -f..
jeE r 1 I

7 ij Z m h ij(m)
m-0

Proof: The proof of this theorem appears in (14] and comprises most of

section 2 of [15].
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Although the above theorem is useful, it is not directly applicable to

most fault tolerant system models for two reasons: (1) the imbedded Markov

chains for such models are usually non-ergodic (as has been stated on

numerous occasions in this report already), and (2) the holding time density

functions are usually not dependent on m/e but only on m. Hence, two

necessary adjustments must be made in the above theorem. The first of these

is to determine what conditions must be satisfied by the imbedded Markov

chain in order for the results to be valid. This leads to Lemma 3, which

U has already been stated. The second of these adjustments is to incorporate

time scaling into Theorem 4 in a manner analogous to the time-scaled limit

theorem of section 2.2. The following theorem results from this

consideration:

THEOREM 5: A Limit Theorem With Time Scaling for Semi-Markov Chains

Let the set E of states of a semi-Markov process be expressible as a

union of disjoint classes

Ne
E - Z Ek  k e M (- 1,2 .... N

e )

k-l

Let .y(i) be the sojourn of the semi-Markov chain in class Ek when it
kr

starts from state icEk and moves to class E r . Let the following two

sets of conditions hold for the semi-Markov chain:

1. The elements of the core matrix seguence (gij(m)Ii,jcE) specifying

the semi-Markov chain depend as follows on the small parameter 5:

gij () - pj hij()
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where h ij (0) - 0. Thep may be expanded in a Taylor series

about e - 0 as:

k)- ( ) (k) + ... + 0( f); i ,j E

- qk) + ".. + 0(c); i e Ek ; j Ek

The imbedded Markov chain obeys the usual Markov chain properties:

E Ppk) - l; and Pk) f [0,1] for all ij e Ek and all k e M
je Ek

and

2. The imbedded Markov chains defined by the transition probability

•(k)
matrices (pij Ii,jeEk , kcM) have at most a single unit magnitude

eigenvalue (hence, ergodic or monodesmic) with stationary

distribution (ir( IicE keM).

Then:

lim Pr(7kr : t) - 1kr [1 - exp(-Akt/aT)]
C-0

k q rk) , and a (k), were all defined in Theorem 4 and

Proof: This theorem is proved in [14]. The steps in the proof are

nearly identical to those of the proof of Theorem 4.

Once these results had been derived, we turned our attention to

demonstrating these results on some models for fault tolerant systems that

were simple enough to yield analytical results but still illustrative of the

behavior of fault tolerant system models discussed in the preceding

sections. The next section summarizes these efforts.
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2.5 ADlication of Discrete Time Results

The results of Theorem 5 were applied to three realistic examples of

- fault tolerant systems for which semi-Markov chain reliability models can be

derived. Two rather simple fault tolerant systems were considered. The

first of these systems is a single component monitoring system (SCMS). A

single non-essential component is monitored by a sequential test to indicate

any detected faults for the information of the pilot. This produces a 3-

state semi-Markov reliability model that can be decomposed into two classes.

* The nature of these classes depends upon the assumptions that are made

regarding the monitoring strategy. The second system that was considered is

a single-component dual redundant (SCDR) system. This system consists of

[ two identical components operating in parallel with a RM strategy to detect

and identify failures and to select the appropriate component for use.

Under a particular set of assumptions regarding the RM strategy, the model

for the SCDR has eight states and three non-ergodic classes.

The results for these two systems will be summarized below.

2.5.1 SCMS with Continuous Monitoring (SCMS-I)

The results for the SCMS-I model are summarized in sections 5.1 and 5.2

of [15], which is also attached to this report as an Appendix. It should be

noted that the reliability model for SCMS-I is simple enough to be solved

analytically by z-transform methods. Therefore, an exact analytical answer

is available with which to compare the results generated by the

approximation implied by Theorem 5. Most reliability models do not have

this property, however the SCMS-I system was chosen for examination in part

because of this property.

I-
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The basic assumptions made in constructing the reliability model for

SCMS-I were that a sequential monitoring test is continuously applied to the

component and that this test has second order hypergeometrically distributed

times to decision under both normal and failed conditions. The second order

hypergeometric assumption makes possible the analytical solution discussed

in the preceding paragraph. Furthermore, the second order hypergeometric

distribution is a reasonable approximation to the decision time distribution

that is observed in practice for sequential monitoring tests. It should

K also be noted that in the construction of the SCMS-I model, it is assumed

that a value is known for the probability of an eventual false alarm

decision when no failure is present. In practice, this probability would

probably not be known and the elements of the core matrix would have to be

constructed directly from the probability of a false alarm decision as a

function of the elapsed time, which could be found by simulating the

* monitoring test with no failure present.

Section 5.1 of [15] shows how the model is decomposed and how the

approximate results are calculated. The section concludes with the

approximate expression for the state occupancy probabilities that are valid

for large values of t:

^e -eA1t/T "A1t/T A 1t/T
-[ (l-Pfa) e fa e -e

where e is the (small) failure probability during each time step, T is the

time step, and A1 is determined in terms of the parameters of the decision

time distributions and other model quantities and represents the interclass

transition rate.
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As section 5.2 of [15] shows, the results produced by the approximation

are very accurate after an initial transient period that is a small fraction

of the mean time between failures of the components (which is essentially

proportional to l/e). For the numerical values of the parameters that were

e

selected, the error in each of the elements of fe is less than 5% after

1/500 of the MTBF has elapsed. Section 5.2 of [15] also shows that values

of e up to approximately 0.001 produce good agreement between the

approximation and the exact answer. Finally, it is shown in Section 5.2 of

[15] that the class probability predicted by the enlarged Markov process is

a first order approximation in e to the exact answer for this example and

that the approximation also includes the dominant second order term,

although other second order terms are not accounted for.

The excellent results for SCMS-I are not surprising because the

reliability model for this system obeys the conditions for Korolyuk's

* original limit theorem "Tith one exception, namely the condition requiring

that the holding 5me distributions compress as the small parameter c

vanishes. The classes of the decomposed model are ergodic in this case, so

only time scaling need be used to generate the excellent results that were

obtained.

2.5.2 SCMS with Abbreviated Monitoring (SCMS-II)

If the sequential test that is used for monitoring in the SCMS is

terminated upon its first indication of a failure, then the resulting

reliability model is slightly different from the SCMS-I model. In

particular, one of the two classes of the decomposed unperturbed model is

nonergodic. This model is described in section 5.3 of [15]. The same

assumptions regarding the decision time distributions and the existence of a
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value for the eventual false alarm probability are made as in the SCMS-I

model. After executing the steps of decomposing the model and calculating

the parameters of the approximating Markov process, the result for ir is:

^e _F -t/T -t/T- 0, et , - e ]

The SCMS-II model can also be solved analytically using the same z-transform

procedure that was used for SCMS-I.

As section 5.4 of [15] points out, the errors in the approximation to

X2 and 7r3 are extremely small (<0.01%) for all values of t. However, the

error in the approximation to r is always 100% because the approximation is

exactly zero. This results from the stationary distribution that yields the

value of zero for r 1

Analytically comparing the class probability results generated by the

approximation and the analytical solution shows that the SCMS-II class

probabilities are accurate through the dominant second order term in e.

This is the same result that was observed for the SCMS-I model.

2.5.3 SCDR System

The SCDR system is the simplest redundant system that can be

constructed. It was chosen for analysis in the hope that exact results

could be obtained for it by the same method that was applied to the SCMS

systems discussed above. The SCDR system was assumed to have an independent

sequential test monitoring each of the components where the tests are both

reset once either of them has reached a no-failure decision (which is

commonly done in practice to minimize the number of false alarms). Also, it
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was assumed that the system can survive for short periods of time (in this

case, one RM time interval) while using a failed component, but not for

- extended periods of time. The RM strategy is to use one of the components

(designated the primary component) until its test indicates that it is

failed, then switch to the other (backup) component unless it is also

indicated as failed, in which case use of the primary component continues

despite the failure indication. Both monitoring tests are discontinued once

a failure indication by either has occurred.

* The details of the analysis of the SCDR system are presented in [14].,

In this report, the results will be briefly summarized.

If the usual techniques are used for constructing the semi-Markov

reliability model for the SCDR system, the result is a six-state system

referred to as the SCDR-ASL model in [14]. This model does not decompose in

the manner required for application of the limit theorems discussed in the

preceding section. The reason for this is that the standard reliability

model construction technique designates a single aggregated state as the

system loss state. The SCDR system with the RM strategy outlined above has

several routes by which system loss can occur following the first failure.

Some of these routes (like repeated missed detections of the failed

component) occur in the "fast" time scale associated with the RM decisions.

At least one (the occurrence of a second failure following correct

reconfiguration) occurs in the "slow" time scale and therefore contributes a

transition probability that is proportional to the small parameter e. The

result is that the aggregated system loss state communicates by both fast

and slow transitions with states in a single class. This violates the

conditions necessary to decompose the model properly.
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This difficulty is rather easily overcome. By decomposing the

aggregated system loss state into three states with each reflecting a

- particular route to system loss, an eight-state model referred to in [14] as

the SCDR-TS model is produced. This model decomposes into three classes in

the manner prescribed by the conditions of the limit theorems. However, one

of these classes includes two distinct trapping states. This violates the

sufficient conditions for both of the discrete time limit theorems stated in

the preceding section. This means that the results of these theorems do not

necessarily apply to this model.

Recall that a weakened sufficient condition for the application of

Korolyuk's limit theorem was discussed in section 2.1. Let us check this

condition for this model. Referring to the description of the SCDR model in

[14], we find that the imbedded Markov process transition probability matrix

for Class 2 is:

U

Pfa(PM)  0 (1-Pfa )P m  (1-P fa)(1-Pm  PfaPm
0 (1-Pfa)Pm+ Pfa(1-PM )  0 (1-Pfa)(1-Pm  P faPm

P2 0 0 l-Pfa Pm 0 PfaPm

0 0 0 1 0
0 0 0 0 1

where Pfa is the eventual probability of a false failure indication by one

of the tests, P is the probability of an eventual missed detection by one

of the tests, and the two tests are assumed to be identical. In practice,

of course, Pfa and Pm would not necessarily be known explicitly but rather

would be implicit in the statistical description of the decision behavior of

the tests. For this analysis, however, let us assume that these values are

b known.

38



Despite the presence of several zero values in P2' it is quite

difficult to obtain an analytical solution for the steady state operator lim
-k

P in terms of the variables P and P Doing so requires z-transform

2 fa M,

analysis that includes factoring a fifth order polynomial symbolically.

However, when numerical values are substituted for Pfa and Pm, it is

relatively easy to find the limiting transition operator and thence to check

for the existence of the inverse of the operator I-P2+r2. In particular,U

when P fa-0.05 and Pm-0.1, we find that the determinant of I-P 2+r 2 is 0.0049.

Therefore, the relaxed sufficient condition is satisfied and Korolyuk's

limit theorem results apply. However, for these values (and for several

other sets of reasonable values that were tried), the condition number of I-

P2+i2 is quite large (nearly 500 for the values cited above, much larger for

* smaller values of the eventual transition probabilities). This implies that

numerical errors are likely in evaluating some of the quantities that are

used to describe the enlarged Markov process that approximates the

interclass behavior of the perturbed process.

Another problem with this model is that a unique stationary

distribution for Class 2 of the unperturbed process does not exist in

general. For instance, for the values cited above for Pfa and Pm it is

known only that the stationary distribution of the unperturbed process in

Class 2 is a linear combination of the distributions [0 0 0 1 0] and [0 0 0

0 1] where the weights in the linear combination depend upon the initial

condition for this unperturbed process. This means that the enlarged

process cannot be expanded in terms of a stationary distribution to

approximate the distribution of the original unperturbed process.
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The fact that the SCDR-TS model could not be analyzed using the

approximate technique motivated us to pursue further the problem of models

- with multiple trapping states in the classes of the unperturbed model. The

results of that effort are reported in the next section.

Returning to the analysis of the SCDR system, it is possible to

construct a reliability model for this system that satisfies the sufficient

conditions for Theorem 5 of the preceding section. This is accomplished in

section 4.4 of [14] and produces the model referred to there as SCDR-I.

* Unfortunately, the construction of SCDR-I involves the merging of two of the

states in the SCDR-TS model where one of these states represents a working

system and the other represents a failed system. Therefore, although the

SCDR-I model possesses the mathematical properties that are necessary for

the approximate reliability evaluation technique to be applied to it, the

results are of questionable value because they cannot be used to generate

the system reliability. Nevertheless, the analysis of the SCDR-I model was

carried out in an effort to expand our insight on the use of the approximate

technique.

Under the assumption that the times to decision for each of the

monitoring tests of the SCDR system are distributed according to a second

order hypergeometric distribution, the results of approximate analysis of

the SCDR-I model are described in [14]. The numerical results indicate

excellent approximation to the behavior of the perturbed model by the

enlarged process even for relatively large values of e (on the order of

.05). Furthermore, it is shown in [14] that the approximate technique

applied to the SCDR-I model yields values for the class occupancy

probabilities that agree to first order with the exact answer and also

include the dominant second order term in the exact answer. This is
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significant because it is the same as the results obtained for the SCMS

models discussed above despite major differences between the SCMS models and

- SCDR-I.

The SCDR-I model is sufficiently complicated that the powerful symbolic

- manipulation language MACSYMA could not generate analytical solutions for

the individual state occupancy probabilities, even when the variables in the

system were replaced by numerical values. Only the class occupancy

probabilities could be found analytically. Thus, all of the numerical

i4 U results discussed in [14] for the SCDR-I model are limited to class

occupancy results. The difficulty encountered in generating an exact

solution to the reliability model for a system as simple as the SCDR system

with very simple holding time assumptions (second order hypergeometric) puts
L

added focus on two critical aspects of this research. First, the need for

approximate techniques is clearly apparent when even the simple SCDR system

cannot be analyzed by exact techniques. Second, the fact that exact

solutions for simple systems cannot be derived motivates research on

techniques, perhaps computationally intensive techniques, for generating the

baseline solutions with which approximate results will be compared to

determine the validity of the approximations.

2.6 Extension to Models with Multiple TraRping States in the Classes

The SCDR-TS model and some of the continuous time models that do not

satisfy the conditions of Theorem 2 in section 2.3 illustrate a type of

model for which the results discussed to this point are not applicable.

These models include multiple trapping states in some of the classes of the

decomposed unperturbed model. When this occurs, the transition operator Pk

for some of the classes can have multiple eigenvalues of unity and the
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Cesaro limit defined in the sufficient conditions of the theorems does not

in general have the necessary form.

In the fault tolerant system context, these types of models occur when

the results of RM decisions without additional failures can yield system

configurations with widely different performance interpretations. For

instance, in the case of the SCDR system, a detected failure results in a

working system while a false alarm combined with failure of the other

component results in a failed system. Both of the states representing these

situations are in the same class of the model and, because the RM tests are

terminated upon any failure indicaltion, are trapping states for this class

when the failure rate is set to zero.

In this section, we will present an approach that extends the limit

theorem results of the previous sections to this case. The results are

preliminary because this work had just begun shortly before the termination

* of the grant. We limit the discussion here to continuous time models.

Discrete time models remain to be investigated.

Suppose that a continuous time perturbed semi-Markov model is obtained

for the behavior of a fault tolerant system such that it decomposes into

classes and can be time-scaled as in section 2.2. Suppose also that at

least one of the classes, say Er, yields an unperturbed imbedded Markov

process transition operator Pr that corresponds to a process that has

transient states, labelled Sl, s2, and so on, and multiple trapping sets,

where a trapping set can consist either of a single state or a closed

communicating class of recurrent states. The procedure for applying the

results of the time-scaled limit theorem to this case is as follows.
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I.

Let the trapping sets in Er be labelled R1 , R , and so on and let S be

the set of transient states in E. For each state s. e S, calculate the
m1

probability that a transition is eventually made to trapping set R. for eachJ

j. This can be accomplished using only the information provided by Pr as

follows.

Define an initial condition on the unperturbed process whereby the

probability of occupying state si is unity. The unperturbed imbedded Markov

process transition operator Pr can then be used to calculate the probability

Ps.r. that each of the trapping sets is the one eventually occupied when the

process starts in state si by successively operating on this initial

condition until the probability that any of the states in S is occupied

vanishes and then adding together the probabilities of occupying the states

* th
within that trapping set when steady state is reached. Since the r class

contains only a subset of the states of the overall model, the dimension of

Pr can be small enough that the problem of finding the steady state trapping

set probabilities can be solved by transform methods.

Once these probabilities are determined, we decompose class r into as

L many subdivisions as there are trapping sets. Each of these subdivisions

becomes a new class in the modified decomposed model. Let these classes be

labelled Er Er and so forth. As before, let r(i) be the sojourn timel r 2 krj

from state i e Ek to class E with E e E # E and 1 (i)
krr. r k e kr ()b t

characteristic function. Suppose that Pk has the Cesaro limit property that

was the condition for Theorem 1 of section 2.3 (and recall that Theorem 2
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showed that ergodicity of Ek or the existence of one and only one eigenvalue

of unity for Pk were sufficient for this property). We then have that, in

scaled (i.e. slow) time, as e approaches zero:

kr (S) d (S) + Z Psr. ks(s)
Jrk i s 1J k

Ak +Zp Ak
-kr +. sr j Pksi A+
Pkrj Ak + s iAk + s

where the summation is over all i for which si e S, dkr (s) is the direct

transition limiting sojourn characteristic function, and ksi (s) is the

limiting sojourn characteristic function from class k to state s. e S. The

parameters and Ak in the second line are determined in exactly• praetes Pksik

the same fashion as the parameters Pkr and Ak in the continuous extension of

Korolyuk's limit theorem stated in section 2.3 above. Note that this result

is independent of the starting state in class k, i.e. the result is

independent of the superscript.

This result implies that an enlarged Markov process can be defined that

approximates the transition behavior of the perturbed process among the

trapping sets of the classes in scaled time. As before, the approximate

state occupancy probabilities can then be found by expanding the class

probabilities using the steady state distribution of the unperturbed process

within each class, if the steady state distribution exists.
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The proof of this result is still incomplete. However, it will be

outlined here.

There are essentially three steps to the proof. The first is to show

that the characteristic equatio of the sojourn from any state in Ek to anyk

state in S has the form k A + s Next is to show that the sojourn from
.k

any state in Ek directly (i.e. without occupying any of the states in S in

the process) to any state in Er. also has this form with s. replaced by rj.

Finally, we must show that the linear combination of these terms in the

final result produces the characteristic function of the sojourn from any

Sstate in Ek to any state in Er . The proof outline will describe how this
r.

can be done when S comprises only one state. The extension to multiple

transient states is straightforward, but had not been completed at this

* writing.

Since S and E are subsets of E , the first two steps in the proof are
.3

already complete by applying the results of Theorem 1 in section 2.3. This
(i efndksaovrndwt (i)

leaves only the third step. With r(i) defined as above and with kr

representing the analogous sojourn for transitions directly from states in

Ek to states in Er. we have that when S is the only transient state in Er.
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Pr{(r(i)k < t) - E Pr(i-n, 6& n + ?(n) <

r nekEk j

+ z Pr(i-n, 6i 5 t)
neE inn E
r.J

+ z E Pr(i-n, 6 in + r(n) + SI t)
neE leE in kS s

k r.
J

+ E Pr~i-S, 6*is + 6 s 5 t)

leE
rj

A-

where i-n represents that the next transition is from i to n, [in is the

holding time for the transition i-n within class Ek measured in the "fast"
Uk

time scale (so that 6 in is this holding time measured in scaled time where

the small parameter 6 represents the time scaling from "fast" time to the

scaled or "slow" time), and 8nl is the holding time for transitions from

state n to state 1 within class E expressed in "fast" time units (hence
rj

multiplication by 6 scales this to the "slow" time scale). Proceeding as in

[8], this expression can be written in terms of the transition operator for

the perturbed process as:
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Pr(r) t) E Pr( < t-u (u)
kr. - - k0 kr. in

+ E P (t)
ne in

r.

M

+ E It -U pr~S(i < t-u-z) dP.n(r) ]dP l(u)

k r

+ E I' Prf6S 1 : t-u) dPEs(u)
leE

r.

Taking the Laplace transform of the entire expression and using the

properties assumed for the perturbed process, we have:
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kr (S z (n)d (S) [( k)_ e q qk)] [1-6a. + 0(C)]kr eE) kr in in ins

+ ~ q qk)
neE i

r.

+ (k)_~ e q ()j - a. s + o(6)]

S1 qS][1 Si +o()

(k)
+ qiS PSr.

* where:

~Sr. - Z (r)

*By moving all of the terms of order one or higher in e and 6 to the right

hand side of the expression for the characteristic function and moving all

of the zero order terms to the left, upon taking the limit as c and 6 go to

zero we get:

kr. - in ~kr. (s) + PSr. OkS(s ]-0
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The assumption that class Ek has a unique Cesaro limit sense solution for

the steady state distribution of the unperturbed process within class Ek

(i) (i~d(i)

implies that the characteristic functions Okr (s), 0ki. (s), and 0kS (s) are
j J

all independent of i. This yields:

(s k) 4d ()(s)
krj ( n Pin ins) + PSr kS

for which the solution is obviously:

() d (s) + P 0(s)

4kr.i s  " 4kr. PSr. kSJ J

This essentially completes the proof for the case of a single transient

state S in class E We are hoping to extend this proof technique to the

case of multiple transient states in Er*

b
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III. SUMMARY OF SIGNIFICANT FINDINGS AND FUTURE WORK

3.1 Summary of Significant Findings

The limit theorems derived as the result of the research described

above extend the enlarged Markov process approximation to all of the model

structures that have been observed by the authors in constructing semi-

*Markov models for fault tolerant control system behavior. This is of great

practical significance because of the tremendous reduction in computational

overhead that is realized by using the approximation relative to solving the

bmode' exactly.

The key results of the research are the limit theorems cited above.

These include the extension of Korolyuk's limit theorem to time-scaled

models that do not decompose into ergodic classes (Theorems 1 and 2 of

section 2.3) and the discrete time version of these theorems, Theorem 5 of

section 2.4. The final key result is the one stated in section 2.6

regarding continuous time models that decompose into classes that have

multiple trapping sets. Because fault tolerant system behavior often

involves situations where RM decisions alone (without failures) can lead to

more than one outcome, multiple trapping sets within a class are a common

occurrence in models of this behavior. Therefore, this latter result is

crucial to extending the approximation to essentially all of the fault

tolerant system models that one might encounter for evaluation.

Another key finding results from the error analysis described in

section 2.5. It was found that for the two models considered (the single

component monitoring system and the single component dual redundant system)

b

50



the class probabilities predicted by the approximation agree with the exact

solution to first order in the small parameter e and also through the

dominant second order term. This implies that the error in this

approximation is not just second order but in some sense "small" second

order for these two cases. We hasten to add that there is no indication

that this result is true in general, but it is rather interesting that it is

true for two widely different simple cases.

In summary, the research conducted under this grant has laid the

U mathematical groundwork for the practical computation of approximate

reliability predictions for a wide range of fault tolerant systems with

random dynamics that can be modelled by semi-Markov processes. This is

significant because such models are too complex to be solved exactly even

with today's extremely powerful computers. The approximate method applies

to all discrete or continuous time models of fault tolerant systems that the

authors have encountered with one exception: discrete time models with

multiple trapping sets in the decomposed classes. It is believed that this

single exception can be eliminated (see below).

The availability of this practical reliability evaluation tool can have

profound impact on the practice of designing fault tolerant systems that are

subject to random RM decision errors as well as random component failures.

Informed design decision$ can now be made based upon quantitative system

performance results that were too difficult to compute before this methcd

was developed. The ease with which results can be computed also makes

possible iterative design schemes that use a performance measure calculated

by this technique as the design criterion.
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3.2 Proposed Future Work

* A proposal has been submitted to AFOSR to continue the funding of this

research. The proposed research includes two tasks that follow directly

from the research reported here. One of these is to extend the limit

theorems to discrete time models with multiple trapping sets in the classes

in order to eliminate the major exception cited above. This should be a

straightforward task. The other is to apply the approxinate technique to

* more sophisticated models than those that have been examined so far. As

part of this task, an effort will be undertaken to generate exact results

for these complex cases with which to compare the approximate results in

I order to verify the accuracy of the approximation. Some innovative

computational methods on extremely high throughput machines may be required

to do this. In addition, another task involves the examination of

approximating quantities other than the system reliability and state

occupancy probabilities with the approximate method.
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Abstract

Problems associated with evaluating state probability vector of large state

space models of fault-tolerant systems are explained. Korolyuk's Limit

Theorem on semi-Markov processes leads to a solution to these problems by

approximating an aggregated version of the original semi-Markov process by a

reduced order Markov chain. The Theorem is modified and extended to apply to

fault-tolerant system models in a slow time scale. The approximate technique

is then completed by expanding the approximate Markov chain states

probabilities with the limiting probability vector that apply to each

decoupled aggregate class of states of the original semi-Markov process. The

approximate technique is demonstrated on a couple of 4-state models that mimic
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the class-to-class transition structure of typical fault-tolerant system

models. The results show that accurate approximation is achieved for these

examples after a short transient period. In addition, the ergodicity

sufficient condition imposed on the classes of the original, decoupled

semi-Markov process by Korolyuk's theorem is relaxed. As a result,

fault-tolerant system models with certain types of non-ergodic classes can

also be treated by the approximate technique.

Keywords:

Semi-Markov Process

Fault-Tolerant System

Enlarged Process
U

Reliability Evaluation

Approximate Solution

Transient Analysis
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1 INTRODJUCTION

1.1 Background

A fault-tolerant system is a system designed with redundant capacity to

perform its function. That is, it can do its job using more than one

configuration of its components, e.g. sensors, actuators and information

processing components. The on-line detection and isolation of failed

components and the subsequent reconfiguration of the system's operating

architecture is performed by the system's Redundancy Management (RM) scheme.

The fault-tolerant design approach enhances system reliability and

performance. There are many application areas where ultra-high system

reliability is necessary or desirable. One such area is the control of
U

nuclear power plants where the consequences of improper control system

behavior may be serious indeed. There are space missions for which the

desired operational lifetime of the spacecraft is many years during which time

many component failures are probable. The air traffic control system and

many military systems are also subject to very high reliability requirements.

There is also a desire for increased reliability in computerized banking

systems, chemical process control systems, medical monitoring systems,

transportation systems, and many more.

Growing attention is being given to the design of components for long life,

to quality control during manufacture, and testing and maintenance policies

which enhance reliable system operation. Despite these efforts to improve

the reliability of individual components, the resulting system reliability is

still often inadequate for some reliability requirements. As a result, there
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is increasing interest in fault-tolerant system designs which allow

components to fail but still provide a means for the system to continue to

function.

The growing use of fault-tolerant system designs has in turn spurred

interest in methods for assessing the reliability and performance of such

systems. The traditional methods of reliability evaluation are based on

combinatorial analysis of combinations of component failures amd these

analyses seldom account for the probabilistic nature of the outcomes cf the

on-line monitoring tests that are used to detect and identify failures and to

reconfigure the system . In addition, classical reliability analysis produces

as its sole result the probability that the system will maintain its

integrity over the duration of its operating time. No information is
U

provided on the performance of the system during the transient period of the

mission.

Since classical reliability analysis fails to quantify fault-tolerant system

time behavior, other alternatives must be considered. Naturally. Monte Carlo

simulation is one option. However, for the systems we are interested in,

complex and with low component failure rate, a huge number of simulations is

required to generate statistically significant results, and it is often

prohibitively costly.

The use of Markov chain theory2 '3 has shown promise as a means for evaluating

the performance of fault-tolerant systems that employ Fault Detection and

Isolation (FDI) tests of the single sample variety, i.e.. the information

that is used for FDI is gathered and discarded at each time sample. Methods

have been proposed to deal with the problems associate with large Markvo chain
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4
models, aggregation/disaggregation technique by Takahashi , decomposition

technique proposed by Courtois5 and aggregation technique by Bobbio6 . In

addition to the problem of large state space, these efforts also consider the

issue of stiffness, i.e. the simultaneous presence of transition rate of

different orders of magnitude in the model. The former two techniques are for

solving the steady state probability vector and only the latter is for

transient analysis of large stiff Markvo chains. However, single sample FDI

tests generally have a relatively high likelihood of decision errors,

particularly in noisy signal environments. In such situations, the FDI tests

are usually based on several samples of the monitoring data at each time

sample, e.g. moving window tests and sequential tests7*8 9 . Such tests are not

memoryless. Therefore, Markov chain analysis does not apply to systems

* employing these types of tests.

Some effort 8 ' 10 has been made to analyze such systems and it appears that

generalized Markovian (or semi-Markov 11.12) modeling methods are applicable to

some systems of this type. Semi-Markov processes are very similar to Markov

chains, but have an extra degree of freedom that makes them well-suited for

capturing the random delay behavior of RM decisions for nonmemoryless FDI

tests. However, a problem with this reliability evaluation method is that

the large number of states in the model causes the computation of results to

involve excessive amounts of computer storage and computation time. The

reason for this is that standard time-invariant semi-Markov theory requires

the solution of a matrix convolution integral equation to find the interval

transition probability matrix.w
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For complex systems with a large number of states in their model (for
13

example, model for a dual-redundant engine controller examined has 30 states

and flight control system models will have many more), it becomes intractable

to obtain a solution either analytically or numerically. More specifically,

consider a discrete time semi-Markov model with state probability vector W(k),

at time step k. If r(O) is known, then 3:(k) can be expressed as,

* r(k) = 1(0) 7)k)
where J(k) is recursively generated12 by.

k

)(k) = >W(k) + - [P 0 H(m)] P(k-m) , P(O)=I (2)

It can be seen that a convolution sum is involved. This implies that for a

system with N states, approximately 2k0 2 values must be stored in order to

compute J(k) and hence r(k). For N = 20 and k = 100,000, as might be thep
case for a simple flight control system operating with RM updates at a rate of

50Hz for 35 minutes, the storage required is approximately 80x10 6 values or

640 megabytes of storage for accurate single precision state probability

distribution calculations. The number of floating point multiplications

12required for calculating 1(100.000) is approximately 7x10 . The same problem
arises for continuous time models. Several authors14'15'16'17 have developed

algorithms for transient analysis of special semi-Markov process. They allow

the aggregates of fast states to constitute a semi-Markov or a more general

stochastic process and Trivedi et al. extend Stiffler's approach to allow for

slow transition out of fast states. However, these attempts in the area of

reliability analysis were tailored to particular system structures and provide

no analytical approximate solution in term of parameters of kernel elements of

the large and stiff semi-Markov process.
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PW This paper discuss an aggregation approximation technique explicitly intended

to aggregate states so that the resulting system is small state space and the

transitions between aggergate states approximated by Markov chain. The

technique proposed in this paper can be applied to stiff semi-Markov models of

fault-tolerant systems. Generally speaking, the states of the model each

represent a different system operating configuration in terms of number of

working components, components in use and failure monitoring status and states

are aggregated according to the number of working components but with

different RM configuration. The algorithm proceeds by first establishing the

Markvoian behavior between aggregates of states of a semi-Markov process. The

resulting Markov chain is then analyzed by a standard analytical or numerical

technique. Approximate solution is completed by expanding the total

probability in each aggregate of states by the stationary probability vector

in that aggregate of states.

The rest of the paper is organized as follows. Section 2 derives how the

aggregates of states of a semi-Markov process can be approximated by a Markov

chain. Section 3 relaxes the sufficient condition imposed on the aggregates of

states by the Theorem, The approximate technique is then demonstrated with

two numerical examples in Section 4.

b. 2 THEORY OF APPROXIMATE ACGREGATE TEQIIQUE

2.1 Introduction

Assuming stiff semi-Markov models of fault-tolerant systems of interest have

transition kernel elements of the following form (generally they are, see
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9-state model of a three components redundant fault-tolerant system in the

18
literature 1 )

Pi (t) =P 6. F. (t) i'j C E; (3)
ij iii E

(k) (k) i* E Ek

p.j 6qJ ~

(k) 
(4)

ij =  
i Ek , j C Ek

where 1i E Ek. I <l k m.
j k

where a is small parameter associates with failure rate of components, and we

can aggregate the model into classes of states E., l im, that is there is noI

transition across each aggregate of states when a tends to zero. It was

shown1 9 that state i probability can be approximated as:

(k) e.iit - 7 kr (rt) (5)

where r (k ) is the stationary probability of state i in class Ek and rk(t) is

the probability of kth aggregate of states. So we have an approximate solution

if we can find the probability of aggregates of states, since stationary

probability in each class can be evaluated by standard semi-Markov theory.

2.2 Korolyuk's Limit Theorem for Semi-Markov Processes

Litratre20 ' 21
Literatures describe sufficient conditions under which a perturbed

semi-Markov process can be approximated by a Markov chain. There are

essentially two conditions. First, the kernel of the semi-Markov process must

depend on a small positive parameter E in such a way that the state space

of the semi-Markov process E can be split into disjoint classes of states
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E= 1 Ek , such that the probabilities of departure from each class and of

the sojourn time in a given state both tend to zero with e. The total sojourn

time in each class is assumed to have a nondegenerate distribution in the

limit as e - 0. When e--O, the resulting process will be referred to as the

non-perturbed semi-Markov process while the original process will be referred

to as the perturbed semi-Markov process. This condition can be expressed by

the following equations,

P. .(t) = P6 F.(t/6) ij C E; (6)iiJi ij

I (k) - k (k) . j E (

Pij =  (k) iE E"lj iCk' J k

where (k) = 1 iEEk 1. k nm.ij

jE k

where pij is the eventual transition probability of the original process from

state i to state j and Fij(t/e) is the Cumulative Distribution Function (CDF)

of the holding time for transitions from state i to state j.

Second, the Markov chains defined by the transition probabilities p(k)
Pij

(i.jEEk, lkm) , must be ergodic with stationary probabilities 7ri). (iEE k'

lk~m). When these conditions are satisfied by a perturbed semi-Markov

process, then its behavior can be approximated by a Markov chain. More

specifically, if T(i) is the sojourn of the semi-Markov process in class Ekrk

when it begins from state iEEk and moves to class E r , then the Theorem shows
that the cumulative distribution function Of T ( i ) approaches an exponentialkr

function as a becomes vanishingly small:

lir Pr( i) kr< t } ( I- e-Ak t
6-4 0 = kr) 8



10

As can be seen from the above equation, the dependence on i disappears on the

right hand side of the equation. That is, each state in class Ek has the same

asymptotic exponential holding time density function for transitions to class

E r . Therefore, all the states in class Ek can be merged together and the

aggregated model has the characteristics of a Markov chain.

In a sophisticated fault-tolerant system there is Built-In Test Equipment

(BITE) included in the RM system in order to recover a working component that

is incorrectly detected as failed and isolated, so a component that was

previously isolated as failed by the RM can be brought back on line. For this

kind of system, the imbedded Markov chain within each class is usually

ergodic. Then the ergodic condition is satisfied. Moreover, by comparing the

fault-tolerant system model decribed by Eq.(3)-(4) and the semi-Markov model

decribed by Eq.(6), our system model of interest satify all the conditions

imposed by the Theorem except the condition defined by Eq.6. Usually, this

condition is not satisfied by a fault-tolerant system model. The reason for

this is as follows: If e is small, i.e. the Mean Time To Fatlure (MTTF) of

the components is large, say hundreds of hours, then the holding time of the

transition, particularly those within a class, is determined only by the

noise in the signals and the threshold set by the FDI test designer. So, as

the failure rate tends to zero, the RM decision delay will not be affected by

the failure rate. Therefore, the transition kernel of a fault-tolerant system

model will not take on the form implied by Eq.(6)

2.3 Derivation of #kr(s) of a Time-Scaled Perturbed Semi-Narkov Process

However, instead of viewing the semi-Markov process holding time from state i
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- to state J depend on the parameter e. we could view the holding times are

being in a different time scale compared to the aggregated model class to

class transition holding times. The constant relating the two time scale is

the small parameter e. So Eq.(6) will represent the semi-Markov process in a

different time scale compared with the Markov chain of the aggregates of state

and the time scale could be relaxed to any small parameter 6.m
P.j(t) = pi F (t/6) (9)

With the properties of the semi-Markov process already stated in last section,

we could proceed with the derivation of parameters for the Markov chain of the

aggregated model.

Let 6Ci j denote the sojourn of the semi-Markov process in state i, with the

CDF Fij(t) , while 56 be binary indicators of transition from state i to theij iistat M ota ~ rstate j.sothat E 6  }=p. Then. the random quantities Ti) can be obtained
.J* SO kr

by using the expression for total probability
P( T i) tt kP{ 6 T ( j )  t}

kr jt}i= l' 5f'ij kr

+1 5j=1, 5('. C t } (10)
r

Hence

P{ Tr t } k= ft P (J) t-u I dP (u) + Pi(t)1)kr kr J

Using the Laplace transform.
(i) -s(i)

#kr (s) E{ e kr } (12)

p = f e-s t dP j(t) (13)

then, Eq.(10) becomes,

#(i) = ()0)(s) p 6j(s) + plj(s) (14)
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- Combining the Laplace transform of Eq.(7) and Eq.(9)

( (k) _ e(k) ) (I - 6sa.. + 0(5)} i.j 6 E (15)e ilj lj k

pij(s) = k ) + 0(6) i E Ek, j f E
Jij k

Substituting these expressions in Eq.(14), it becomes,

00() (k) () ( k) + (k), 0 ()s)kr)cs j p ij . kr <C 6ij ij +  ij y kr

+ r qk) + 0(a 6) (16)

r
Passing to the limit as e and 6 -. 0, the functions {)(s) are found to

satisfy the system of equations,

kr ij kr

JEE k

m It follows from this and the assumption that the imbedded Markov chain defined

by the transition probabilities p(k) i, j C Ek ) is ergodic, that the

solution22 of system Eq.(17) is independent of the superscript, i.e. for all i

c Ek , o )(s)=O (S). Multiplying Eq.(16) by the stationary probabilities
kr k

(k) and summing over all i 6 Ek , then cancelling e, the following isN i

obtained,

(k (s aj P(k) + ( k) 0 ()=
. 6 ii ij ij kr

iEEk 1 jE k

ikrM(k) 
j q_k)

r
(.1)

On passing to the limit as F-O, noting that all the 0k (s) have the limit

function 0kr(s), we obtain:

ik (k) q(k)

= kr ]E qk) (19)
( E s a +_( k))

rM J( k s ij ij i

t =. k M i -j



Table 1: State definitions and class decompositions for SCMS-I,II

[ State [ State Definition IClassj

1 Component is working 1

2 Component has a false alarm I

3 System loss - component failed 2

•2
CLASS l

--\ .... -A.CLASS 2

Figure 1: Semi-Markov transition diagram for SCMS-I

5.1 SCMS with continuous monitoring

Table 1 enumerates and defines the states of a semi-Markov chain reliability model of the

SCMS-I. The dashed line in the table distinguishes the class decomposition of the model:

class 1 contains states 1 and 2, class 2 contains only state 3.

The semi-Markov transition diagram for the SCMS-I is presented in Figure 1. Two

aspects of this diagram should be noted. Given that the chain has entered a state, the lines

directed out of that state represent transitions after the chain has remained in that state for

a period of time, namely, the holding time. Secondly, the dashed lines represent transitions

whose transition PMFs are proportional to c. Thus, a dashed line represents the condition

that no such transition occurs when e = 0. This is a convenient way of depicting the class

decomposition of a serni-Markov chain reliability model.

13
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aggregated model can be approximated by a Markov chain. The parameters of

this process are given by Eq. (2l)-(27).

Note that the approximate Markov chain evolves in a longer time scale, i.e.

1/6 times that of the original process. For instance, if 6=1/3600 and if the

original semi-Markov model evolves in seconds then the approximate enlarged

Markov process will evolve in hours.

One of the sufficient conditions in the derivation in this section for the

enlarged process is that all the disjoint classes must be ergodic when e--O.

This condition is usually not satisfied by all fault-tolerant system models.I-
However, relaxation of this condition is discussed in the next section

3 RELAXATION OF ERGODICITY CONDITION

The second sufficient condition stated in the last section for the approximate

Markov chain to be non-trivial is that the imbedded Markov chain of the

non-pel Lurbed process within each class must be ergodic. However, this

condition can be relaxed and Korolyuk's Theorem can be modified as follows.

Theorem 1. If a semi-Markov process depends on a small parameter

e such that its state space can be partitioned according to

Eq (7) and is time-scaled according to Eq.(6) and additionally if

th transition probability operators Pk for the imbedded Markov

chain of the k-th class of the non-perturbed semi-Markov process

satisfy:

n

lim P 1 T (28)
n -# am =1
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where e is column vector with sum of its elements equals to I.

Then the aggregated semi-Markov process can be approximated by

the Markov chain defined by Eq.(20).

Proof. The proof follows an identical line of reasoning to the

proof in section 2 until the point where the functions 00) (s)kr

are shown to satisfy the system Eq.(17). The system equation can

be rewritten in linear equation vector form:

#kr( s ) = Pk kr(s)T 
(29)

Premultiplying the above equation by the operator Pk and using

Eq.(29) on the result gives:

2kr T (30)

3 By successively premultiplying the system of equations and

replacing the left hand side by k and averaging an infinite

number of these equations
n

rlim 1 1, (31
kr (s)  n n k ]kr, (31)

I--1

Since the operator Pk defined by p(k) satisfies Eq.(28), then, by
Iii

linear equation theory, the solution of the system of equations

in Eq.(31) is a vector with all its elements being the same, that

is for all iEE . ()(S) ).

The remainder of the proof that the aggregated model is Markovian

and the derivation of parameters of the approximate Markov chain

will be exactly the same as that of the remainder of the proof in

section 2.



16

This extended Theorem is a relaxation of the ergodicity sufficient condition

stated earlier in Chapter 2 imposed on the semi-Markov process to be

approximated.

It is of interest to find conditions under which Eq.(3.1) is satisfied. Along

these lines, the following theorem is established:
U

Theorem 2 If the imbedded Markov chain which is defined by the

transition operator Pk of the k-th class of the non-perturbed

semi-Markov process is (1) ergodic, or (2) is non-ergodic with

one and only one eigenvalue of unity, then the operator Pk

satisfies Eq.(27).

Proof. (1) By ergodic theorem,

lim = [IT e]T (32)
1- k k --

and.

n r n
-i = i + P (33)n co n k n -o n n-r k

1=1 1=1 l=r+l

where r is finite but large such that,

P rz T (34)

Therefore, Eq.(33) can be reduced to

lim I1 ~P~ limw+ ()
n P k n wn-r P l(5

n~n1=1 l=r+l

By Eq.(34) it follows:

n

li Te . (36)n -*con k

which proves the Theorem for this case.
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I = (2) The operator Pk can be put in Jordan form by the following

transformation:

Pk = T Ak T (37)

I -- where T is a square invertible matrix with columns made up of the

right eigenvectors (or generalized right eigenvectors) of the

operator Pk* By a proper ordering. Ak has the form:
xl Ix

X2
0

A k
X p (38)

o I J

where { 1 ... Xp } are the unit magnitude eigenvalues and J is a

Jordan form matrix containing all the eigenvalues of less than

unit magnitude on its main diagonal. (This form is known to exist

for a stochastic matrix Pk because the unit magnitude eigenvalues

must have a full set of linearly independant eigenvectors. )

Therefore:

n n 1
n - n Pk n - n T k T -

1;1 1=1

' n

Trlim 1 A1  (39T n - n A k T
1=1
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[ - Since Ak has one and only one eigenvalue of one:

n
-+ diagonal matrix with a single non-zero

1=1

element of unity on its main diagonal

(40)

bcselim 1 1 i 11because - 0 and lim 1 0. =0 Becausen n n rlln n = 1 k

is a stochastic matrix, the right eigenvector appearing in the

column of T corresponding to the unit eigenvalue is a column

vector with all its elements equals to i, i.e. nf]. Therefore:
n

Ti A' (41)
T n-+c n Ak -

1=1

Therefore:
n

T lim 1 A 1 1 -n .,i n Ak =T 00 n- -- ]

= e e--e IT (42)

That is,

lim P= T Ak T 1  g t ...-eT (43)
n -O

which completes the proof.

As an illustration of the implication of the sufficient condition stated in

the Theorem 2. valid and invalid examples of state transition structures are

shown in Figure 1. Note that one of the invalid examples in Figure lb has 2

eigenvalues of one because 2 trapping sets of states are present in single

class.

As a result of the Theorems above, the state probability values for
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fault-tolerant system models with non-ergodic classes that satisfy the

condition stated in Eq.(28) will be approximated well by the approximate

technique developed in this paper. Note that there may exist fault-tolerant

system models that can also be treated by the approximation technique even

when the conditions are violated because the Theorem is a sufficient but not

necessary condition.

r
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I to and from Ei. EiCE and idj

UE

IIi to and from E., E iCE and i~dj

UE

I I.,

to and from E i . EEiE and ' j

E

I I I I I

to and from E., E.EE and iij
1 1

Figure la: Valid non-ergodic classes
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I- s

I -I I 3

to and from E., E.EE and idj1 1

Figure 1b: Invalid non-ergodic class

U

4. TESTS OF APPROXI(ATE TEOIIQUE WITH 4-STATE MOLES

In this section, we use 4-state models to demonstrate the use of the

approximate technique with relaxed ergodicity condition developed in the

preceding sections. Four-state models are the dimensionally smallest models

that can be aggregated and can include class-to-class behavior. The

approximate technique has also been successfully applied to a 9-state model18,

but the computation required to generate the numerical exact solution in such

case starts very costly.

Two cases will be considered here. In case 1, there are two ergodic classes

where the second class is a trapping class. The next example, Case 2, consists
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of two non-ergodic classes where class 2 is a trapping class.

4. 1 Case 1

The schematic state transition diagram for the semi-Markov process is shown

in Figure 2.

U

2class I

I I

C 3 class 2

Figure 2: State transition diagram for Case 1

The process can be decomposed into two classes, namely class 1 and class 2,

when e=O. Class 1 comprises states 1 and 2 and class 2 comprises states 3 and

4. The transition from class I to class 2 is through the small eventual

transition probability e from states 1 and 2 to states 3 and 4. However, state

3 and state 4 cannot transit back to any of the states in class 1, hence
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- class 2 is a trapping class. The governing transition kernel matrix is given

by the following:

0 (1-6e)X2 e X2 2eX2te -Xt 4eX2 te- 2t

(O.3-7a)Xe -X1 t (O.7-2e)X2eX 2t 6eX2 te- It 3eX 2 te-X 2
t

2 t2 -N t

ot) 00 O te I O6N2te 21 *2

(44)

-6lwhere X 1-0.2, X 2 -0.1, a=2.5xlO "  all units are in sec

It is assumed that the initial condition on the state probability vector is,

![O) = [ 0 0 0 (45)

One point about this model should be emphasized. That is that the holding

time density functions for the transitions from states in class 1 to states in

class 2 and those within class 2 are 2nd order Erlang PDFs. These are

non-exponential holding time density functions. Therefore, this is a

semi-Markov model.

4.1.1 Stationary probability distribution of the non-perturbed semi-Markov

process

By setting e-O and dropping all the holding time density functions in the

transition kernel matrix, the transition probability matrix of the
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non-perturbed Markov chain is found to be

0 I 0 0

0.3 0.7 0 0

P 0 0 0.4 0.6 (46)

0 0 0.5 0.5

Note that each class of the nonperturbed process is ergodic for this case.By

raising the single step transition probability matrix successively to higher

powers, the stationary interval transition probability matrix is found.

The stationary probability vectors of the non-perturbed imbedded Markov chain

in class 1 and 2. respectively, are:

_(1) = [ 0.2308 0.7692 ] (47)

) = [ 0.4545 0.5455 ] (48)

The mean waiting times for the states in class 1 are,

1
T=P 2 p = 10 (49)

2
1 1

T 2  P2 1 X + P2 2 X2  8.5 (50)
1 2

Therefore the mean waiting time for class 1 is

T = i = 8.8462 (51)

Hence, the stationary probabilities in class 1 are

Tl( I T = 0.2609 
(52)

TM2

T2
) = - = 0.7391 (53)2 = -
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- or in vector form,

I = [ 0.2609 0.7391 ] (54)

The mean waiting times for the states in class 2 are:

2 2
T + - 16(55)3 = P33 -X + P3 4 - 16

12
2 2

Therefore the meaning waiting time of the process in class 2 is,

T = T- lM i = 15.4545 (57)

2

Hence, the stationary probabilities in class 2 are,
iiTT

-() = _ ---0.4705 (58)
3-

M4 4
( = = 0.5295 (59)
4 T

or in vector form,

M (2) 0.4705 0.5295 J (60)

4.1.2 Approximate Markov chain

In both of the cases in this section, the time scale factor 6 is assumed to

equal e for evaluating the approximate Markov chain. The Laplace transform of

the kernel element for transition from aggregated "state" 1 to aggregated

"state" 2 is given by Eq.(20) with parameter defined by Eq.(21)-(27).

From the transition kernel matrix in Eq.(44).

q(1) =6 (61)
1

q(2 = 7+2 = 9 (62)



26

Substituting all the numerical quantities in Eq.(23):

0.2308x6 + O.7692x9
AI= 0.2308x10 + 0.76992x8.5 = 0.9391 (63)

Obviously from the structure of the class to class transitions,

P12 = 1 (64)

Therefore,

0.9391
012 ( s ) = s + 0.9391 (65)

or in the scaled time domain,
" -0.9391 t'

#12(t .) = 0.9391 e (66)

Since there are only two classes and class 2 cannot transit to class 1, the

approximate probability in class 2 is given in scaled time by,

t.

7Te(t') = j 12 (r) dT

e -0.9391 t' (7
= 1 - e 9 9  

'(67)

and the approximate probability in class 1 in scaled time is,

7re(t) = 1 -e(t)

-0.9391 t'= e (68)

Converting to the original time scale by using 6=2.5x10,-6  this becomes

e t) e-0.9391 x 2.5x0 t (69)

7e (t) =1 -e-0.9391 x 2.54i0 - 6 t (012() = -70

4.1.3 Exact solution of the original semi-Markov process

In order to determine the accuracy of the approximate results above, it is

necessary to generate the exact solution to the original semi-Markov model.

The exact solution will be calculated analytically by using the Laplace

I i l I i "e ... .NEW
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transform technique as in Eq.(ll.5.6) 12 . Although there are only four states

in the model to be solved, the manipulation will require the use of a powerful

symbolic manipulation program called MACSYMA.

- Two of the elements of the interval transition probability matrix are obtained

by this procedure as follows:

-6
7 w1(t) = 0.030115 [ e - 2 " 3 5XlO t - e-0.22999815 t

-6+ 0.230749 e-2.35xl0 t -.e-0.22999815 t

+ 5.384780x10-7 t e-0 .1 t + 0.538474 e-0 .1 t

+-. 2.833533x0 -5 e (71)

r2 (t) = 0.939775 [ e - 2 3 5 4x0 - 6 t - e-0.22 9 9 9 8 15 t ]

+ 0.538533 [ e- 2 . 3 5x 0 - 6 t - e-0.229998 15 t

*-7 -0.1 t -0.1 t- 5.769362x10 t e t 0.538483 e

- 5.000000x10- 5 e 0 2 t (72)

The total probability in class 1 is given by:

PE (t) = 7r(t) + r 2 (t) (73).

4.1.4 Comparison of results

The approximate and exact total probabilities in class 1 at different time
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points are compared in Table 1.

Table 1
Comparison of approximate and exact probability in class I

t/sec. approximate class exact class

probability 7r7et) probability P (t)
E

U 1 0.99999 1.00000

5 0.99999 1.00000

10 0.99998 0.99999

50 0.99988 0.99990

100 0.99977 0.99978

500 0.99883 0.99884

1 1000 0.99765 0.99767

5000 0.98833 0.98834

10000 0.97680 0.97697

The results indicate that errors in the aproximation occur only at the fifth

decimal place up to t=l0000 sec. with the maximum relative percentage error

occuring at t=1000 sec. with a value of only 0.0002%. This shows that the

class probability is well approximated by the approximate Markov chain.

After the class probability results have been compared, the transient

normalized probability vector within class 1. as shown in Table 2. is compared

with the stationary probability vector of the non-perturbed semi-Markov

process in that class which is given in Eq.(54).
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Table 2

Normalized probability distribution in class 1

L

t/sec. state 1 state 2

1 0.9075 0.0925

5 0.6510 0.3490

10 0.4791 0.5209

40 0.2707 0.7293

100 0.2609 0.7391

200 0.2609 0.7391

It is easy to see that there is no error up to 4 decimal places between the

stationary normalized probability vector and stationary probability vector

after a transient period of 100 seconds. This implies that the original

semi-Markov process solution is approximated to within 0.0002% error by the

approximate solution after a transient period of 100 seconds at the beginning

of the mission. The transient period is about 12 times the minimum mean

waiting time among the states of the non-perturbed process in class I and

0.025% of the MTTF.

4.2 Case 2

For some fault-tolerant system semi-Markov models, there may be trapping
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states among some classes of states. Under these circumstances, the imbedded

Narkov chain of those classes will be non-ergodic. In order to demonstrate the

relaxed approximate technique, in this example, a model with two non-ergodic

classes is created where each class consists of two states. The state

transition diagram is shown in Figure 2 and the process is governed by the

transition kernel matrix in Eq.(74)

(0.5 e)X1e- t (0.5-5 )X2e- 2t
t  4 X4e-e4t

)0 (l-9E)X 2e -Xt 6eX3e-"3t 3e X4e-X4t

0 0 0.4X3e-3 t  0.6X4e-Nt

0 0 0 X eX4t04

(74)

where X1--0.2. X2--0.1, X3 --0.4. X4 --0.5, e=2.5xlO
- . (all units are in sec-)

2 class I

I ,/\ /
/ / / I
/\

3: class 2

Figure 3: State transition diagram for Case 2
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4.2.1 Stationary probability distrubution of the non-perturbed semi-Markov

process

By decomposing the transition kernel matrix, the transition probability

matrix of the non-perturbed imbedded Markov chain is as follows:

0.5 0.5 0 0

0 1 0 0

P 0 0 0.4 0.6 (75)

0 0 0 1

By raising the transition probability matrix to successively higher powers

until stationarity is established, the stationary probability vector of the

non-perturbed imbedded Markov chain in classes 1 and 2 are found to be:

(1 ) = 0 (76)

1] = o (77)

Hence, the stationary probability vectors of the non-perturbed semi-Markov

process are,

1) 0 1) (78)

1r(2)=E0 1) (79)

4.2.2 Approximate Markov chain

The Laplace transform of the transition kernel for transition from aggregated

"state" 1 to "state" 2 is again given by Eq.(20). From the transition kernel

matrix in Eq.(73).

q(11) = q l) = 9 (80)
(1  =q 22

TO ) = T 09(81)
2 P22
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- Substituting the above quantities and Eq.(78) into Eq.(23) gives
Oxq(1) + 9

OXT (1) + 10

From the structure of the model,

p12  1 (83)

So, the transition kernel element for transitions from aggregated "state" 1 to

2 in the new time scale is,

0.9
#12(s ) = s + 0.9 (84)

or, in the scaled time domain,

#12(t=) = 0.9 e- 0 .9 t, (85)

Because there are only two classes, therefore:

e -0.9 tT1 (t') = e "(86)

r2 (t') - 1 - e-. 9 t (87)

In the original time scale, this becomes

re t) e -0.9 x 2.5xi0 -6 t (88)

e t) 1 e-0.9 x 2.5x10 - 6 t (89)

This completes the derivation of the approximate results for this model.

Clearly, it is rather trivial to expand the class probabilities by the

stationary probabilities in each class. The results are

71(t) - 0 (90)

7 2(t) z 7r7(t) (91)

1r3 (t) - 0 (92)

74(t ) - er(t) (93)

7r2
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== 4.2.3 Exact solution of the original semi-Markov process

Exact solutions in closed form of the state probabilities in class 1 were

evaluated with the help of MACSYMA similar to that of Case 1. The results for

this model are:

-2 -1.00000x10 - t

T 1 (t) = 1.0039x0
5 e 9 .99Xl- t - 1.0033840

5 e

.01-l -5.0xlc10 -

+ 3.33334x0 -6 e t + 7.50000410 -6 e

- 5.6449xlO-9  (94)

T 2 (t) = 1.54588x10
- 12 e-5.0001410-12 t [6.493864016 cosh(4.99991x10-12t)

-16 -12 5 -9.99999x1072 t- 6.49373x10 sinh(4.99991xlO1 t)] - 1.00382x10 e

-6 -4-1 -7 -5.0x101 I 4- 1.24998x10 e-4 .0xlO - t - 5.62498x10 e - .47474x40

I (95)

The total probability of occupying class 1 is then wI(t)+r 2 (2) and the

normalized probabilities in this class aare simply ir1 and r2 normalized by

their sum.

4.2.4 Comparison of results

The total probability of occupying class 1 obtained from the approximate

Markov chain and from the analytical solution of the original semi-Markov

process are compared in Table 3. The exact and approximate solutions listed in

the table agree to four decimal places, except after one million seconds have

elapsed where the error occurs in the fourth decimal place.

The exact normalized transient probability vector within class 1 is shown in

Table 4. It can be seen from these results that the stationary normalized

probability vector agrees with the stationary probability vector of the
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non-perturbed semi-Markov process in class 1. The approximate state

probabilities converges to the exact solution within 0.0003 absolute error

after t=lO0 seconds.

This example, which consists of two non-ergodic classes, shows that the

original process aggregated transient probability vector is well approximated

by the approximate Markov chain. Furthermore, the normalized probability

vector in class 1 converges to the stationary probability vector of the

non-perturbed process after a brief transient period. Notice that this example

demonstrates the relaxation of the ergodicity condition described in section

3.

Table 3

Compaarison of approximate and exact probability in class 1

t/sec. approximate class 1 exact class 1

probability T1 (t) probability Tl(t)

10 0.99997 0.99998

100 0.99976 0.99978

200 0.99954 0.99955

500 0.99886 0.99888

1000 0.99774 0.99775

5000 0.98880 0.98881

10000 0.97773 0.97775

1000000 0.10527 0.10540
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Tab e 4I-
Normalized probability distribution in class 1

t/sec. state I state 2

10 0.55183 0.44817

100 0.00027 0.99973

200 0.00000 1.00000

500 0.00000 1.00000

5 CNCLUSIONS AND CONTRIBUTIONS

The approximate technique presented in this paper can be used to quantify the

performance )f those fault-tolerant systems with component failure rates small

relative to the fault detection and isolation decision rates. This paper has

shown that the approximate technique can be a practical tool to simplify the

quantification of large complex fault-tolerant system performance and might

also be an efficient tool in the synthesis of such system designs.

The particular contributions of this paper can be summarized as follows:

I. Korolyuk's limit Theorem was extended by generalizing the form that

the transition kernel elements may take. In particular, they may

depend through the holding time distribution on a time scale factor 6

in addition to depending on the small parameter e that divides the

state space of the system into classes.
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2. An approximate technique based on this extended Theorem was then

presented, by which the state probability vector of a fault-tolerant

system semi-Markov model can be approximated by expanding a reduced

order Markov chain state probabilities by the stationary probability

vectors of the non-perturbed processes within the disjoint classes.

The direct benefit if this approximate technique is a large reduction
U

of hte computational cost of generationg results for large models.

Therefore, models of large complex fault-tolerant systems become

tractable.

3. An extended theorem with the relaxation of the ergodicity condition

stated in Korolyuk's original work was also presented and proved in

section xx. As a result, the approximate technique can be applied to
U

a wider scope of fault-tolerant system models, including those with

certain types of non-ergodic classes. One of the examples in section

4 demonstrated the use of this relaxed condition.
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Abstract

A property observed in high reliability fault tolerant control systems in the relatively

rare occurrence of component failures compared to the frequent occurrence of redun-

dancy management decision events. This property leads to a temporal decomposition

of the semi-Markov chain reliability model into two time scales: a slow time scale for

failure events, a fast time scale for FDI events. Conditions are described under which a

perturbed semi-Markov chain can be approximated by an enlarged Markov process, the

parameters of which are derived from the parameters of the semi-Markov chain.

1 Introduction

A typical fault-tolerant control system (FTCS) is composed of many highly reliable re-

dundant components including sensors, actuators, power supplies and computers. These

components are networked in a hierarchical architecture, and their use is governed by a

redundancy management (RM) policy. Failure detection and isolation (FDI) logic is imple-

mented to indicate to the RM system which components are no longer safely usable.

, , , - i i ~ ~~~I m - i iU l iin nl f



i

It has been demonstrated [1,2] that the reliability and availability of an FTCS can

- be computed using a finite-state generalized Markov (that is, Markov or semi-Markov)

reliability model. These calculations are often difficult or impossible to accomplish by

classical combinatorial methods due to time-ordered event sequences that are a consequence

of the RM policy and FDI logic. If sequential tests are used to detect failures [3], then a

semi-Markov chain reliability model must be used to predict the system reliability.

Many methods exist for the simplified analysis of the steady state behavior of generalized

Markov chain models. However, generalized Markov chains model of FTCS invariably

contain one or more trapping states that represent system loss. Thus, the steady state

behavior is of no interest because the steady state condition will certainly be system loss.

It is the transient behavior of these models that is of interest.

A generalized Markov chain is characterized by a discrete set of states and an arbitrary

distribution of the holding or sojourn time for each transition. The semi-Markov chain

specializes to a Markov chain when the holding times are geometrically distributed and

identically distributed for all transitions exiting a particular state.

The result that must be routinely computed in analyzing the reliability model is the

interval transition probability, Oij (n), which is the probability that the model occupies state

j at time n given that it entered state i at the initial time. For FTCS, the states represent

a complete characterization of the condition of the system. Thus, if all of the Oj,(n) that

correspond to system loss configurations for j can be computed for n corresponding to

the finite duration of the mission, then the probability of an unsuccessful mission can be

computed.

Once the interval transition probabilities have been determined for a particular time

n, the probability of occupying each state can be determined if the initial state occupancy

probabilities are known. Let i(n) be the state probability distribution at time m. If ir(O)

is known, then

m(n) = 1(O)O(n) (1)

In the context of the FTCS, the first state is routinely chosen to represent the situation where

all components are working. Usually, the system occupies the first state with probability

one at the initial time.
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The interval transition probabilities are generated by the semi-Markov chain recursion

formula [4]:

0(n) = >W(n) + G(n)9(n - in); IC: (0) = I (2)

Taking z-transforms of both sides of (2) and solving for 9(z):

-(z) = I- G(z)]->W(z) (3)

The z-transform of the state occupancy probability distribution is

.(z) = 1(0)[I - G(z)]- 1>W(z) (4)

which follows directly from (2). The inverse matrix of [ - G(z)] always exists for a semi-

Markov chain. The inverse transform of either f(z) or 9(z) can be found using standard

partial fraction expansion techniques. However, for all but the simplest of situations, trans-

form methods are useless in a practical sense.

In practice, the interval transition probability matrix is nearly always found by per-

forming the semi-Markov recursion numerically. For a model with N states, computation

* of 4(n) requires storage of 2nN2 values because both 0(n) and G(n) must be stored for

all times prior to and including time n. A reliability model for a typical inertial navigation

system might have twenty states, a sampling period of 200ms, and a two hour mission time.

This would require storage of 2.88 x 107 single precision values and require 230 megabytes of

storage. Moreover, the number of floating point multiplications required to compute 1(n)

from j:(0) is about n2 N2 - which is 2.59 x 1011 for the example described above. Thus, the

computational burden and memory requirements are tremendous even for a simple system.

The problem to be addressed in this paper is to substantially reduce the computational

burden while preserving the accuracy of reliability and availability calculations.

One possible means for doing this is direct Monte Carlo techniques. If a sufficient

number of Monte Carlo simulations are made of system operations to account correctly for

all possible random events that bear on the reliability calculation, then any aspect of system

performance can be evaluated. To obtain meaningful results for high reliability systems

with events that occur with probabilities as low as 1 x 10- 9 (typical of the probability of a

component failure over a single time step), over one billion simulations must be performed.

3



This task is as formidable as evaluating the semi-Markov chain recursion for large values of

.- the time index. Consequently, reliability calculations via direct Monte Carlo methods also

have prohibitive computational costs.

Lewis suggested in [5,6] that a modified Monte Carlo approach be used for high reliability

systems. Again, failure events are assumed to be extremely rare relative to other events

that occur in the system. Thus, the vast majority of simulations will be those for which

no failures occur. Lewis assumes that all events have exponentially distributed times of

occurrence and can be modeled by a Markov chain. It is possible to sample the failure

*I distributions before a simulation is initiated to determine if any failures will occur during

the mission. If all failures occur after the mission has been completed (which is usually

the case), then a normal simulation results. If a failure occurs during the mission, then

the complete simulation must be performed including FDI decisions, decision errors, and

repairs. However, this approach does not apply to semi-Markov chains because FDI events

arising from a sequential FDI test are not exponentially distributed. In these cases, a

complete simulation must always be run and no benefits are derived from the modified

* technique.

Another approach that exploits the rare occurrence of failure events is suggested by

Trivedi in [7,8]. The model is based upon a time-scale decomposition of the system into vir-

tually disjoint fault-occurrence and fault handling submodels. The fault-handling submod-

els represent aggregated states and the failure occurrence submodels dictate the behavior

between these aggregated states. The reliability of the system predicted by the aggregated

model is then computed using Markov or Monte Carlo techniques. However, the only fault-

handling events that are accounted for are detections and missed detections following actual

faults. A common FDI event that cannot be treated by these hybrid models is the false

alarm, which occurs in the absence of a fault. Therefore, this approach is limited to systems

where false alarms cannot occur.

In this paper, the relatively rare occurrence of component failures relative to RM decision

events will be exploited in the development of an approximate method for evaluating semi-

Markov chain reliability models of fault tolerant control systems.
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2 A Limit Theorem for Semi-Markov Chains

Theorem 1 describes how a perturbed semi-Markov chain, which is dependent on a small

parameter e in a certain way, can be described asymptotically by an enlarged Markov process

as e -- 0. This theorem is an extension of the results for discrete parameter semi-Markov

processes stated in [9].

The semi-Markov chain depends on a small parameter e such that the entire state

space of the semi-Markov chain can be decomposed into disjoint classes of states where the

* probabilities of departure from each class tend to zero with e. Also, the total sojourn in each

class is assumed to have a non-degenerate distribution in the limit as e --+ 0. (When c = 0,

the chain will be referred to as the unperturbed semi-Markov chain while the e-dependent

chain will be referred to as the perturbed semi-Markov chain.)

Theorem 1 (Limit Theorem for Seml-Markov Chains) Let the set E of states of the

semi-Markov chain be expressible as a union of disjoint classes:
NO

E=ZEI, kEM =-{l,2,...,N 6}.(5
k=1

Let r( ) be the sojourn of the semi-Markov chain in class EA when it starts from state

i E Ek and moves to class E, where r $ k. If the following two conditions hold for the

semi-Markov chain E:

1. The elements of the core matrix sequence {gf.(n) I i,j r E} specifying the semi-

Markov chain depend as follows on the small parameter e:

5g,(n) = pi- hi () (6)

where < hj (0) = 0. The p j can be ezpanded in a Taylor series about c=O. Retaining terms

that are linear in e:

Ali I () - (cq) +,0(e) if i,jEE(

f qi) + 0(c) if i E EA: and j 1 Ek

The embedded Markov chain for c=O obeys the usual Markov chain properties:

p•9 = 1 n [0, 1;V k EM (8)
jEEI

5



2. The embedded Markov chain, defined by the matrices {p) I i, j E Ek V k E M} are er-

godic wvith stationary distributions {,)i C- E, Vk E MI.

Then:

Jun Pr {4.. :5t} = -Ij, -exp [4kt]J}9

where:

IfE k) (10)

Ak iE4 W(k) k) (11)

Here: 
ZcE rl~

(kr) _(k)_ 9,, (12)

JEE,
qi,) =-i ) (13)

NYk (14)

1: n i (n)(15)
U n=Q.

PROOF: Let cfii denote the integer valued sojourn of the semi-Markov chain in state

i with next transition to state j with the holding time distribution <hi.(n/e) while the ,.

are the transition indicators from state i to state j. The probability distribution of the

random quantities r{ ) can be expressed in terms of total probability as

Pr (i) < n} = = ;fi j Pr{j ( big!T+; Pr{8,', 1; eqij : n}1 (16)

Defining the interval transition CDF as'

SO(')= (n{) =P <-} (17)

then

55() - g r(m) <3')(n - m) + y <g,(n) (18)
jEET n -=O f t dEe

Taking z-transforms of both sides yields:

-0(k) E 9 1 Wg S (z ) (z) + ( gij(Z).19

6
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The z-transforms of the gj(z) must be evaluated to first order in e. From (6) and the

definition of the z-transform [10]:

" 0g,'j (z) = pjjEh (20)
n=O ()

Note that p'j has been moved in front of the summation sign because it does not depend

on time. Let m = n/E and expand z - m in a Taylor series about E=0. Then:
00

gf,(z) = p, E (1 - emlogz} hj(m) + O(e) (21)
* m=o

where O(E) represents terms such that in the limit as e - 0, the quantity O(E)/E approaches

zero. Noting that:

hji,(n) = 1 (22)
n0O

~n h(n) = ri.(23)
t=0
o=O

and substituting pi, from (7) and combining terms of O(e) yields:U

g!. {1 -,JF jlog z} -Eq$)0(E) if i,j E (24)Sy(Z (k) +OCE,) + 0(E) if i E Et and j" E(

Incorporating these results into (19) and placing all terms proportional to e on the RHS:

!S O ) = -e 5 OU) {qE) p~)iF,1logZ
JEE& JEE&

+ })+ o(c (25)

Now, passing to the limit as E -- 0, the RHS vanishes and the -< ,(z) are found to satisfy

the system of equations below:

-<( (Z) - E P, ()(Z) - 0 (28)
YEEi,

Let Pk = represent the embedded Markov chain operator in class E4 of the unper-

turbed semi-Markov chain E. The system of equations in (26) can be expressed as:

= pk<-()T_ (27)
-7r -

7



After successive premultiplication by Ph, and taking the limit as n - oo:

< (z)t -{lim Pk} <4,kt(z)T (28)

Under Condition 2, the ergodic theorem for Markov chains [11] implies that:

lim P~k= Po
I k (29)

mk) I

so that the solution to (27) is independent of the superscript:

-j0)(z)= -r(z) V i E k, V k E M (30)

Now, (25) is of the form f(z) = g(z, c), that is, the LHS is not a function of e and

is therefore constant with respect to e. However, as e -+0, the RHS approaches zero so

that the LHS must be zero for all values of e. Canceling e from the result, multiplying

by the stationary probabilities of the unperturbed semi-Markov chain in class k, 7r0k), and

* summing over i E Et yields:

iEEA iE . Z if jE r,

On passing again to the limit as c -- 0, noting that all of the <50('(z) have the limit

function < k,(z), and solving for < 0kr(z), the z-transform of the class-to-class transition

PMF becomes:
1

4Okr(z) = 7, AA + (32)log z + Ah

The mapping from the z domain to the a domain (Laplace) is given by s = (log z)/T. Divid-

ing top and bottom by the sampling period T, and applying the transformation concludes

the proof. 03

In summary, Theorem 1 describes the conditions under which a perturbed semi-Markov

chain can be approximated by an enlarged Markov process that evolves in the slow time-

scale, and also states how the parameters of the Markov process are determined from the

bparameters of the semi-Markov chain. In the context of FTCS, the fast time scale behavior

within a class would represent FDI decision and RM events while the slower class-to--class

8



behavior would represent the occurrence of failures. The class-to-class interval transition

CDF -O.,(t) that results is a continuous time envelope of the behavior between the classes.

This interpretation is intuitively satisfying since failures are invariably assumed to have

exponentially distributed times of occurrence over continuous time.

However, two problems occur in the application of Theorem 1 to FTCS models: (1) the

embedded Markov chains for each class of the unperturbed model are rarely ergodic, and

(2) the holding time PMFs are usually functions of n, not n/e, that is, the holding times are

typically not on the order of the mean time to a component failure. The requirement that the

* embedded Markov chains of the unperturbed classes be ergodic is important in producing

(26) and guarantees the existence of the stationary probabilities { X k ) I i E EV k E M}.

The ergodicity condition can be relaxed in much the same way as was done in [121 for

semi-Markov processes. This will be accomplished in Lemma 2 and Lemma 3. The second

problem can be mitigated by introducing time-scaling into Theorem 1, as will be done in

Theorem 4.

• 3 Relaxation of the Ergodicity Condition

Lemma 2 discusses how the existence of the Caesaro limit of the embedded Markov chain

operator leads to a relaxation of the ergodicity condition.

Lemma 2 Consider a 8emi-Markov chain state space E that can be ezpressed as a 8um of

disjoint classes according to (5) and (7). Let Pk = [p!)] represent the embedded Markov

chain operator for class Ek. The solution of (26) is independent of the superscript (and the

resldts of Theorem 1 hold), if the Cae8aro limit eZists:

lim 1 Pi = k - (33)n--oo n lt k

PROOF: The system of equations in (26) can be expressed in matrix form as is done

in (27). Successively premultiplying both sides by Pk, and averaging an infinite number of

these terms:

!-<-,6.(z)T = lim -_ pZ<_0A,(z)T (34)
n-o n 

(41=1

9



Because the operator P, satisfies the Caesaro limit from (33), the solution of (26) is inde-

- pendent of the superscript. 03

The relaxation due to Lemma 2 demonstrates that the ergodicity condition of Theorem

1 was sufficient, but not necessary. Thus, the conditions under which the Caesaro limit

exists should be determined in hopes of finding a necessary condition.

Lemma 3 Consider a semi-Markov chain state space E that can be expresaed as a sum of

dijoint classes according to (5) and (7). LetP. = p ent

chain operator of the unperturbed chain for class Eh. If the embedded Markov chain rep-

resented by the operator Ph is: 1) ergodic, or 2) non-ergodic with one and only one unit

eigenvalue, then the Caeaaro limit in (34) exist.

Proof: The proof of this lemma is essentially similar to that in [12]. For details of this

I- proof, see [13]. 0

4 Limit Theorem with Time Scaling

* In FTCS with small single step component failure probabilities, the holding time PMFs

associated with the core matrix sequence elements do not depend on c but only on the

FDI decision delay. If a semi-Markov chain is observed in another time scale that is 1/6

times that of the original time scale, then the PMF hiq(n) will be affected but the eventual

transition probabilities, p4, will remain the same because they characterize the transition

probability from state i to state j regardless of when the transition takes place. However,

the holding time PMFs in the new time scale are not obtained by simply changing the

argument of hj(.) from n to n/6. This is because the summation of hli(n/5) for all non-

negative values of the time index would not be unity and so would not yield a proper holding

time function. The CDF <hi.(n) associated with the PMF hiy(n) must be determined and

the argument of the CDF replaced by n/b. The new PMF h,(n) observed in the new

time scale would have moat of its probability mass close to the origin. The statistics of the

process in the new time scale will depend on the small parameter 6 - the time scaling factor.

Theorem 4 (LImit Theorem With Time Scaling) Let the set E of states of the semi-

Markov chain be ezpressible as a sum of disjoint classes as in (5). Let r(') be the sojourn

10



of the semi-Markov chain in clasa E when it starts from state i E Ek and moves to clas

E, for r 6 k. If the following two conditions hold for the semi-Markov chain E:

1. The elements of the core matrix sequence {gf(n) I i,j E E} specifying the semi-

Markov chain depend as follows on the small parameters 6 and e:

-g, j (n , (n) (35)

Here, 5h,%(.) is the transition CDF of the semi- Markov chain in the original time scale and

<h~i(O) = 0. The pei can be expanded in a Taylor series about E=O as in (7). The embedded

* Markot chain obeys the usual Markov chain properties described in (8).

2. The embedded Markot' chains defined by the matrices 1{p9 ij E EVk E M} are

ergodic or non-ergodic with one and only one unit eigenvalue with the stationary probabilities

(in the Caesaro limit sense) { rk) I i E EVk E M}.

Then:

lim Pr {rk, _ t'} = ,, 1-exp [.-- ] } (36)

where the parameters of the enlarged Markot process were defined in Theorem 1 and a = /ce.

PROOF: The proof of this theorem is essentially identical to that of Theorem 1. For

details of this proof, see [13]. 0l

It should be noted that an explicit analytical expression of the core matrix sequence,

G'(n), is not required to expand the eventual transition probabilities of the perturbed

semi-Markov chain, Ply in a Taylor series about e=0. The eventual transition probabilities

may be evaluated numerically, which is what would be done in practice. This is fortunate

because the direct form of the core matrix is not always available [3]. In many cases, the

decision time PMFs are tabulated numerically and no functional form is available.

Also, the time scale decomposition of the semi-Markov chain is crucial to the use of this

technique. A simple way of characterizing each class is as follows: the first class contains

states for which no failures have occurred, the second class contains states for which a single

failure has occurred, the third class contains states for which two failures have occurred, etc.

These classes arise by setting e=O and observing which groups of states of the unperturbed

semi-Markov chain do not communicate.
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Finally, estimates of the original semi-Markov chain state probabilities can be recovered

i from the enlarged Markov process. The asymptotic behavior of the unperturbed semi-

Markov chains in each class are the stationary probabilities (or Caesaro limit probabilities)

for that class. The class-to-class behavior is determined by the enlarged process. The

approximate state probabilities in each class are:

I ="(n 1k() (37)

where the approximate class probabilities of the enlarged process are found from its interval

i transition probability matrix.

5 Performance Evaluation of the SCMS

L_ Two simple semi-Markov reliability models of a single component monitoring system (SCMS)

will be developed. The SCMS uses a sequential FDI test to monitor the status (failed or

working) of a single component. The two models will differ in monitoring policy. The first

example, SCMS-I, models an FDI test that operates continuously over the entire mission
duration. The second example, SCMS-Il, models an FDI test that is discontinued after the

first failure indication (namely, abbreviated monitoring).

In this section, the performance of the SCMS will be evaluated through application of

the approximate method to a semi-Markov model. The procedure follows: (1) semi-Markov

transition diagrams are constructed describing all of the random events that can take place,

(2) the direct form of the core matrix sequence is derived, (3) the core matrix is placed in

standard form, (4) the performance is evaluated through application of Theorem 4.

In addition, z-transforms will be used to determine an analytical expression for the

state and class occupancy probabilities, g:(n) and je(n) respectively. The results of the z-

transform analysis will be used to evaluate the accuracy of the approximate method. This

is possible here because the models are relatively simple. In more general cases, this would

not be practical.

12
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Table 1: State definitions and class decompositions for SCMS-I,II

- I ~~State JState DefinitionCls

1 Component is working 1

2 Component has a false alarm 1

3 System loss - component failed 2

U
/ CLASS i

CLASS 2

Figure 1: Semi-Markov transition diagram for SCMS-I

5.1 SCMS with continuous monitoring

Table 1 enumerates and defines the states of a semi-Markov chain reliability model of the

SCMS-I. The dashed line in the table distinguishes the class decomposition of the model:

class 1 contains states 1 and 2, class 2 contains only state 3.

The semi-Markov transition diagram for the SCMS-I is presented in Figure 1. Two

aspects of this diagram should be noted. Given that the chain has entered a state, the lines

directed out of that state represent transitions after the chain has remained in that state for

a period of time, namely, the holding time. Secondly, the dashed lines represent transitions

whose transition PMFs are proportional to e. Thus, a dashed line represents the condition

that no such transition occurs when E = 0. This is a convenient way of depicting the class

decomposition of a semi-Markov chain reliability model.

13



A complete statistical description of the sequential test used in the FDI process requires

-, knowledge of the conditional PMFs of the time to decision of the test. The following two

functions are required:

fDO (n) PMF of time to a decision that no failure is present when no failure is present.

fD)(n) PMF of time to a failure indication when no failure is presen (false alarm).

In these PMFs, the fault monitoring event at time n must be conditioned on the failure

events that take place prior to and including time n - 1. Thus, it is assumed that there is

a delay of at least a single time step between when a failure takes place and when it can be

detected.

Another necessary function is the sum of all probabilities of all possible test outcomes

- nominal decision, failure indication, and decision not yet available - at a given time n.

Itcan be specified in terms of the decision time PMFs as:

n-I
n>1 j,6k)+f (38)

k=I

Note that Qo(n) is defined only for positive values of the time index n and is defined to be

zero for n = 0. Thus, one of the necessary criteria for a permissible holding time PMF is

maintained - there is no probability mass at the initial time.

The core matrix sequence, G'(n), for SCMS-I can be expressed in matrix form as:

(1 - e)If(n) (I - )"ffO(,) e(1 - C)"-IQo(n)

,'(n) = [(1 C)nf (n) (1 - e)"lf(n) E(i - E)"-IQo(n) (39)

0 0 6(n- 1)

Any reasonable PMF may be used for the decision time PMFs. However, a closed form

solution for K(n) is desired. A simple but realistic choice for the decision time PMFs is the

hypergeometric PMF [131. This PMF is a good approximation to the holding time behavior

J of many sequential tests, as demonstrated by Table 6.6 of [3]. Choosing an appropriate

eventual transition probability yields the hypergeometric decision time PMFs below:

Bnn)(1 a)(1-b) (40)f ( -b A• =- (1 - Pf.) (a - b)

DO D A = P.(-c)(l-d) (41)1 (c- d)
14
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where 0 < b < a < 1 and 0 < d < c < 1. The parameter P 4 is the eventual false alarm

probability of the sequential test. The core matrix can now be expressed in terms of these

PMFs.

A z-transform analysis of the semi-Markov recursion formula using the above core matrix

sequence yields the state occupancy probability vector _(n):
= (1 - p.) R- + c(l-d) (1-c)d

r1(n) f - (cR)n - p- 4 (c - " (dR)] (42)
c d) ( -d3

92(n) = Pf. Rn - P.c( - d) (cR) + p '- C (dR)n (43)

=(n) = 1- R' (44)

and the class occupancy probability vector *_(n):

. i'(n) = [(1- e) n , 1- (I- E)']  (45)

Availability of these analytical results permits comparisons to be made with the approximate

results that exploit the clas decomposition to be described below. It should be emphasized

* again that the existence of analytical is rare, and occurs only because the system is very

simple.

In order to derive the enlarged Markov process for this model, G'(n) must be placed

in standard form. For an in-class transition, the decomposition is obtained from the first

two terms of the Taylor series expansion of the eventual transition probability about E = 0.

In addition, the mean waiting times, fii, must be derived. For an out- of-class transition,

the decomposition is obtained by dividing the eventual transition probability by e and then

taking the zeroth order term in the Taylor series expansion about e = 0.

Consider an in-class transition from state 1 to state 1. First, the eventual transition

probability is found:

ell = A ( aR) (1bR) (46)

The decomposition for the transition is:

(1 -ab) (4T)
(1 -a) -b) (4)

15



To satisfy the requirements for a permissible holding time function, the holding time func-

- tion for this transition must be expressed as:

hu(n)= (1 - aR)(1 - bR) {(aR)M - (bR)'} (48)
(a - b)R

-- From (15), the mean holding time can be found:

(1 - abR 2)  49)

(1 -aR)(1 - bR)

Thus, all of the parameters required to place this in-class transition PMF in standard form

have been derived.

A second type of core matrix element that must be placed in standard form i2 one

corresponding to an out-of-class transition such as a transition from state 1 to state 3.

First, the eventual transition probability must be found.
P31 4e1 - PA) (1 - abR) + e (1 - cdR)

(1 -- aR) ( - bR) EI"( 1 - cR)(i - dR) (50)

The sole parameter required for the approximation technique from this eventual transition

I probability is found from:

3 [!ps1,1 I -a)-l- )b) (- cd) (1
Cs = = (I - ) (- + PfGTl -- c)(1- d) (1

The eventual transition probabilities of each row of G'(n) sum to unity. Thus, this is a

proper semi-Markov chain [4].

The next step in the procedure is to determine the eventual transition probability matrix

of the unperturbed semi-Markov chain. This is found by setting e = 0 and ignoring all time

varying terms in the core matrix:

1 - Pf PI. 0

P I- . o 0 (52)
0 0 1

By raising P to successively higher powers, the stationary interval transition probability

matrix is found to be identical to (52). The embedded stationary probability distribution

in partitioned form is thus:

M=[1-f. PI. 1i] (53)

16



With knowledge of this and of the mean holding times for transitions from state i to j,

rij, it is possible to determine the stationary probability distribution of the unperturbed

semi-Markov chain, .(k). This probability distribution is needed to approximate the state

probability distribution of the original perturbed semi-Markov chain.

From semi-Markov theory, the stationary probability distribution for each unperturbed

class Ek is given by
k  ') = (54)

where r(h) is the mean waiting time of the chain in class Ek:

U7 = ( (55)

iEEi

was determined above, and is the mean holding time in state i:

* 7(k) = Z ) f (k) (6N i(56)
jEE&

where fi, is determined from the limit of Fii, defined in (15), as e -. 0.

The stationary probability distribution of the unperturbed semi-Markov chain will now

be determined. The mean holding times of the unperturbed semi-Markov chain in the first

class are:
(I.) _ (1 -ab)

2 (1a)(1- 
(57)

(I1- cd)
21 ) 22 (1 -c)(1 -d) (58)

The mean holding time in class 1 starting from state i is thus

f'M -(1 - P, (1 - ab) (1 - cd)
I (1-)(I -( b) +- P' (1 c)(- d) (59)

Similarly, P(') -,r1). The mean waiting time of the semi-Markov chain in class 1 is:

iEEi

Hence, for this situation (but not in general): x = j:M"

The time scale factor 6 is set equal to c for convenience. It should be noted that 6 must

be of the same order as c, but not necessarily equal.

17



All parameters required to describe the enlarged Markov process have now been stated.

=e The parameters of the approximate class-to-class interval transition CDF can be found as

described in Theorem 4: -721 = 1, A, = qis])/aj. So, the class-to-class interval transition

CDF expressed in the slow time scale is:

=1(0 1 - exp (61)

To return to the original time scale, let t= - 6t, and recall that 5 was chosen to be equal

to e in this case. The rows of the interval transition probability matrix of the enlarged

process must sum to unity. Since the semi-Markov chain is always in state 1 at the initial

time, the enlarged process is always in class 1 at the initial time. Hence, approximate class

occupancy probabilities can be stated directly from the first row of the interval transition

probability matrix since je(t) = 20(0)-54(t):

VO t= [exp{ ~~ I I -exp{~~} (62)

By expanding the approximate Markov process in terms of the stationary probabilities

of the unperturbed semi-Markov chain as in (48), approximate expressions for the state

occupancy probabilities of the original process can be stated as follows:

(1-_v)ep IA~ P "I A 1t 1 -exp (63)

(t) PI-14. exp fa exp IT

The approximate expressions above will be compared to the analytical expressions de-

rived using z-transform techniques.

5.2 Discussion of Results for SCMS-I

This section examines sources of error associated with the approximate technique for a

specific set of system parameters: a=0.95, b=0.94, c=0.89, d=0.88 and Pf.=0.05. This set

of parameters implies a time to detection in the absence of a failure of 16 time steps (3.2

seconds), and a time to a nominal decision in the absence of a failure of 36 time steps (7.2

seconds) for a sample period of 200 milliseconds.

The relative error (in percent), A, = I i(n) - ii (n) I /x7r(n) will be used to compare the

approximate and the analytical state occupancy probabilities.

18



The approximate state probability time histories, i(n), are compared to those obtained

analytically, 7(n), in Figure 2 for each of the three states. These results are for e=0.00005,

implying an MTBF of 20,000 time steps (4000 seconds or just over at. hour). In this figure,

the state probabilities are propagated for a period of one component MTBF. Time is

normalized by the MTBF.

The largest error occurs early, especially in the first class. This is due to the fact that

the normalized state probabilities in class 1 have not converged to the class 1 stationary

probabilities of the unperturbed semi-Markov chain. For example, at the tenth time step

the normalized probabilities in class I are

i(')(10) = [0.9817, 0.0183]. (64)

These differ substantially from the class 1 stationary probabilities of the unperturbed semi-

Markov chain:
MM = [0.9500, 0.0500]. (65)

The approximate method accurately estimates the state probabilities when the nor-

malized probabilities have converged to the stationary probabilities in each class. This

occurs as early as time step 200, and the relative errors for states 1 and 2 have dropped to

Al = A 2 = 8.62 x 10-4%, which indicates that the estimate is closely tracking the exact

solution. Until time step 200, use of the approximate method is not valid resulting in large

relative errors in the state probabilities.

Another source of error is due to non-zero value of e since Theorem 4 describes 54(t)

in the limit as e - 0. Obviously, the e chosen in Figure 2 was ".small enough" because the

state probabilities were estimated adequately. Figure 3 examines the class 2 (or state 3)

probability at 100%, 50% and 25% of an MTBF for a range of values of e. The relative

error decreases markedly with decreasing c for all three choices of mission time. For large

c, (c > .01), the "slow" time scale represented by failure events and the "fast" time scale

represented by fault monitoring events are nearly indistinguishable from each other resulting

in poor estimates of the state probabilities. In contrast, for small e, (c < .001) the two time

scales are distinct. For c=0.00005, the time to a decision is about 36 seconds and the

MTBF is 4000 seconds, or, the "slow" time scale is approximately 100 times slower than
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the fast time scale. Therefore, to obtain accurate estimates of the sta te probabilities, it

is imperative that the fast and slow time scales be distinctly separated in terms of their

mean holding times. A possible rule of thumb is suggested by these results for determining

whether the time scales are distinct. That is, compute the holding time of the slowest FDI

event. For the approximation to be valid, the MTBF of the fastest failure should be at

least 100 times longer than this calculated FDI holding time.

The analytical and approximate solutions of the class 2 probability can also be compared

by expanding each in a Taylor series about e = 0. If the two are the same to first order in

c then the estimate is a first order perturbation solution. If they differ, this would suggest

that an alternative estimate could be derived. Expanding 7r(n) and *2(n) Taylor series

about e=0:
7r(n) = - (n 2 _ ,)c + o(e2) (66)

( - , - 1 {2 - 2n ai()} e2 + o(C 2 ) (67)

To first order in c:

r;(n) n) = ne + 0(c) (68)

21



I-

"/ CLASS I
CLASS 2

Figure 4: Semi-Markov transition diagram for SCMS-fi

So, the approximation developed in Theorem 4 produces a first order perturbation

solution in e for this model. Therefore, the error between the analytical and approximate

class 2 probabilities begins with the order e2 terms. Note that the dominant second order

term (n2e2) is also the same. It can be shown [13] that the error is due to a difference in

a second order term with a small coefficient, namely a term that is proportional to elapsed

time. Although this observation is strongly model dependent, it may also be true for other

models as well.

5.3 The SCMS with abbreviated monitoring

A second method of fault monitoring is to deploy a sequential test that monitors the status

of a component until a failure is indicated, at which point the sequential test is discontinued.

An SCMS of this type will be denoted by SCMS-II.

The states for the semi-Markov model of the SCMS-I are enumerated in Table 1. The

semi-Markov transition diagram of the SCMS-I1 is depicted in Figure 4. The class decom-

position of the SCMS-II is similar to SCMS-I. However, in this case, the embedded Markov

chain in class 1 is non-ergodic.

The direct form of the core matrix sequence can be developed in the same manner as for
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the SCMS-I. A notable difference is in the transition probabilities out of state 2. Because

the fault monitoring test is discontinued upon a failure indication, only failure events causeb=

such transitions. A reset of state 2 occurs when no failure occurs. A transition from state 2

to state 3 occurs only if a failure takes place. Assuming geometrically distributed failures,

L. the core matrix can be stated:

G'(n)(n (1-e)nf(n) 6( En-1Q) 1([(1 -, )"f,(n,) (1 - ,e).fo(,.) e(1 - ,e)"-Qo(,,,)
G'(n)- 0 (1- )S(n - 1) e6(n - 1) (9

o0 6(n- 1)

As for the SCMS-I, M(n) can be found using z-transforms. The state probability time

histories could not be obtained, however, because the partial fraction expansions could only

be done numerically. These results are decribed fully in Appendix B of t131. However, the

class probabilities were found and are stated below:

X"(n) = [(1 - e)" , 1 - (1 - E)n] (70)

Again, these analytical expressions for _(n) and a(n) will be compared to the approximate

results derived using the approximate technique in the next section.

To generate the approximate solutions, the core matrix must be placed in standard form.

However, all of the required quantities are known based on the manipulations performed for

the SCMS-I. The eventual transition probability matrix of the unperturbed semi-Markov

chain is obtained by setting e = 0 and ignoring the holding time PMFs:

[I-,. P 4  01
P 0 1 0 (71)

0 1 0

By raising this matrix to successively higher powers, the stationary interval transition prob-

ability matrix can be found, and the embedded stationary probability distribution in par-

titioned form is:

EM= [01 1] (72)

Because of the model structure, it is clear that the stationary probabilities for each class of

the unperturbed semi-Markov chain are: x = a-M. For this analysis, the time scale factor
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6 is again set equal to e. Finally, 121 = 1, and Al = 1, so that the approximate expressions

for the clans probabilities can be found:

T T

- By expanding the enlarged Markov process in terms of the stationary probabilities of the

unperturbed semi-Markov chain, approximate expressions for the state occupancy proba-

bilities of the original process can be stated:

fr(t) PS 1x( - exp(- ) (74)

5.4 Discussion of results for SCMS-II

The approximate state probability time histories, j(n), are compared to those obtained

a analytically, 1(n), in Figure 5 for each of the three states. These results are for the same

parameter set as SCMS-I. The largest absolute errors occur in estimating state 1 and do

not attenuate until 50% of an MTBF has passed. The approximation estimates the state 1

probability to be zero because the class 1 embedded Markov chain is non-ergodic and yields

zero for the stationary state 1 probability. The estimated state probabilities in states 2 and

3 are very accurate with relative errors of less than 0.01% for all time steps.

The relative error in state 1 is 100% at all times because the normalized probabilities

in class 1 cannot converge to the stationary probabilities of the unperturbed semi-Markov

chain. This is because the state 1 probability will never be exactly zero. For example, at

the tenth time step in class I the normalized state probabilities are

M')( 1 0) = [0.981175, 0.014111], (75)

and the unperturbed stationary probabilities are:

) [0, 1]. (76)

The approximate method requires that the normalized probabilities converge to the sta-

tionary probabilities for each class in order to obtain accurate state probability estimates.

The other source of error is due to non-zero c. In Figure 5, the value of e was small

enough to provide accurate results because the state 2 and 3 probabilities were estimated
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* Figure 6: Sensitivity to e for 'SOMS-lI. The relative error is plotted versus the single-step

probability, e, for mission times of 1 MTBF, 0.5 x MTBF, and 0.25 x MTBF.

adequately. Figure 6 presents the class 2 (or state 3) occupancy probability for mission

times of 100%, 50% and 25% of an MTB. for a range of values of e corresponding to a

component MTBF ranging from 4 seconds to 5555 hours. As was the case for the SCMS-I,

the relative error decreases markedly with decreasing e for the three choices of mission time.

This reiterates the observation that the fast and slow time scales must be distinct in terms

of their mean holding times in order to obtain accurate estimates of the state probabilities.

This analysis also demonstrates the usefulness of the rule of thumb suggested earlier.

The Taylor series expansions for the analytical and approximate class 2 probability will

again be compared. Expanding the class 2 occupancy probability in a Taylor series about

c = 0 yields

ir(n) = .e - .(n2 - n)e 2 + o(d 2 ) (77)

*(n) = e- n 2 2 + o(C 2) (78)~2~J 2

* To first order, 7r2(n) and Aj(n) are identical. This proves that the approximate method 4
produces a first order perturbation solution in c for this model. The two expressions begin

to differ starting with the e2 terms, but the dominant second order term (n 2 e2 ) is the same.
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Hence, the error can be expressed as:

= 2 + O(2) (79)

which is second order in c and proportional to time, which emphasizes the asymptotic

nature of the approximation. Again, this observation is model dependent. However, the

same behavior was found for the SCMS-I.

6 The SCDR System Model

The single-component dual-redundant (SCDR) system consists of two identical components,

a primary and a backup, operating in parallel. An independent sequential test monitors

the status of each component. The reliability of this system was evaluated using the ap-

proximate technique in [13]. However, in the interest of brevity and clarity, the interested

reader is referred to [13].

* 7 Conclusions

A primary contribution of this work is the extension of Korolyuk's limit theorem for semi-

Markov processes to semi- Markov chains in Theorem 1, which describes the conditions

under which a perturbed semi-Markov chain can be approximated by an enlarged Markov

process. Moreover, Theorem 1 describes how the parameters of the enlarged Markov process

are derived from the parameters of the semi-Markov chain:

Two problems arise in applying Theorem 1 to fault tolerant control system (FTCS)

models. First, the non-perturbed embedded Markov chains in each class are usually non-

ergodic. This was required in Theorem 1, but was relaxed to the existence of the Caesaro

limit probabilities in Lemma 2. These were found to exist in Lemma 3 if the embedded
I' Markov chain was either ergodic, or non-ergodic with one and only one unity eigenvalue.

Second, the transition PMFs are typically not functions of the perturbation parameter e.

This problem was mitigated by introducing the concept of time scaling in Theorem 4. The

form of the transition PMFs was generalized to include those common to FTCS reliability

models. This generalization included a dependence on a time scaling factor 6 and on a
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small parameter e that determined the state space partitioning of the original semi-Markov

chain.

Use of the approximate technique was demonstrated by two simple examples. Accu-

rate estimates of the state probabilities were determined for situations where e was "small

enough" and where the normalized probabilities in each class had converged to the station-

ary probabilities of the non-perturbed semi-Markov chain. In the two examples presented,

the approximate technique yielded a first order perturbation solution in e to the analytically

obtained clas probabilities.

The approximation error was found to be insignificant if the slow and fast time scales

were distinct. Finally, a rule of thumb was suggested by the error analysis: the slow and

fast time scales are distinct if the MTBF of the fastest failure is 1000 times longer than the

Is mean decision time of the slowest FDI event.
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