
P7 -4I RADC-TR-88-1 32, Vol III (of four)
~ Final Technical Report

June 1066

j ~CRONUS, A DISTRIBUTED OPERATING
_SYSTEM: Interim Technical Report No. 5

BBN Laboratories incorporated

R. Schantz, K. Schroder, M. Barrow, G. Bono, M. Dean, R. Gurwitz, K Lebowitz and
R. Sands

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

DTICELCT
OCT 3 11988A

ROME AIR DEVELOPMENT CENTER
Air Force Systems Command-
Griffiss, AFB, NY 13441-5700

This report has been reviewed by the RADC Public Affairs Division (PA)

and is releasable to the National Technical Information Service (NTIS). At

NTIS it will be releasable to the general public, including foreign nations.

RADC-TR-88-132, Volume III (of four) has been reviewed and is approved
for publication.

/i

APPROVED: '*"

THOMAS F. LAWRENCE
Project Engineer 1/2l

APPROVED:

RAYMOND P. URTZ, JR.
. Technical Director

Directorate of Command & Control

FOR THE COMMER.~

.. .. - - : - - - - .- -- I . i

- JOHN A. RITZ
----.. Directorate of Plans and Programs

UF

If your address has changed or if you wish- to be removed from the RADC
mailing list, or if the addressee is no longer employed by your organization, -
-please notify RADC (COTD) Criffiss AFB NY 13441-5700. This will assist us
",in maintaining a current mailing list. *

.- . -.

Do not return copies of this report unless contractual obligations or notices . -

on a specific doucment require that it be returned.

tCLASSIFIED

SECURITY :LASSIFICA':ON OF 'I4WS RAGE

I Form Aoproved
REPORT DOCUMENTATION PAGE OMB No. 0704-0188

ia. REPORT SECURITY CLASSIFICATION lb. RESTRICTIVE MARKINGS

U(NCASSTFYED N/A
*..SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTIONIAVAILABILITY OF REPORT
__/__Approved for public release;

2b. OECLASSIFICATIONIOOWNGRAOING SCHEDULE distribution unlinited.
NIA_____________________

4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)

Report No. 5991 RADC-TR-88-132, Volume III (of four)

6.. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION

BEN Laboratories Incorporated Rome Air Development Center (CaD)

6c. ADDRESS (City, Stare. and ZIPCode) 7b. ADDRESS (City, State. and ZIP Code)

10 oulton Street Griffiss AFB NY 13441-5700

Cambridge MA 02238

Ba. NAME OF FUNDING iSPONSORING Sb. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION If apica 30602-84--017

Rome Air Development Center CamrD'

8& ADDRESS (City, Stae. and ZIP Code) 10. SOURCE OF FUNDING NUMBERS

Griffiss AFB NY 13441-5700 PROGRAM PROJECT TASK jWORK UNIT
ELEMENT NO. NO. NO ACCESSION NO.

63728F 2530 01 26
11. TITLE (Inaude Secunty Ciamfication)

CRONUS, A DISTRIBUTED OPERATlNG SySTEK: Interim Technical Report No. 5

12. PERSONAL AUTHOR(S) &. Schantz, K. Scbroder, M. Barrow, G. Bono, M. Dean,

R. Gurwitz, K. Lebowitz and R. Sands
13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Year, Month D.av iS. PAGE COUNT

Final I FROM OCt 84 TO Jan 86 June 1988 66
16. SUPPLEMENTARY NOTATION

N/A

17. COSATI CODES 18. SUBJECT TERMS (Conau on revene if neceary and idemtfy by block number)

FIELD GROUP SUB-GROUP Distributed Operating System, Heterogeneous Distributed

12 07 System, Tnteroperability, System 'Monitoring & Control,
Survivable Application

19. ABSTRACT (Continue on reve, if neury and identify by block number)

This is the final report for the second contract phase for development of the Cronus Project
Cronus is the name given to the distributed operating system (DOS) and system architecture
for distributed application development environment being designed and implemented by BBN
Laboratories for the Air Force Rome Air Development Center (RADC). The project was begun
in 1981. The Cronus distributed operating system is intended to promote resource sharing
among interconnected comptter systems and manage the collection of resources which are
shared. Its major purpose is to provide a coherent and integrated system based on clusters
of interconnected heterogeneous computers to support the development and use of distributed
applications. Distributed applications range from simple programs that merely require
convenient reference to remote data, to collections of complex subsystems tailored to take
advantage of a distributed architecture. One of the main contributions of Cronus is a
unifying architecture and model for developing these distributed applications, as well as
support for a number of system-provided functions which are common to many application hver)

20. DISTRIBUTIONI AVAILABILITY OF ABSTRACT |21. ABSTRACT SECURITY CLASSIFICATION

M "UNCLASSIFIEOIUNLIMITED (SAM . RPRT O TIC USERS UNCLASSIFIED

2,j NAMF OF RESPONSiaLE INDIVIDUAL 22b. TELEPHONE (Include Area Code) 22€ OFFICE SYMBOL

Thomas F. Lawrence (315)330-2158 RADC (COTD)

00 Form 1473. JUN 86 Prevows editions are obsolete. SECURITY CLASSIFICATION OF THIS PAGE

UNCLASSIFIED

Block 19 CCont'd)

This report consists of four volumes:

Vol I - CRONUS, A DISTRIBUTED OPERATING SYSTLEM: Revised System/Subsystem
Specification

Vol II - CRONUS, A DISTRIBUTED OPERATING SYSTEM: Functional Definition and
System Concept

Vol III CRONUS, A DISTRIBUTED OPERATINGC SYSTEM: Interim Technical Report No. 5

Vol IV - CRONUS, A DISTRIBUTED OPERATING SYSTEM: CRONUS DOS Implementation

UNCLASSIFIED

Lr

BBN Laboratories Inc. Report No. 5991

Table of Contents

1. Introduction 1
1.1 Project Overview 1
1.2 Organization of this Report 1

2. Integration of New System Hardware 2
(2.1 VAX-UNIX 2

2.2 SUN Workstation Integration and Use 3

3. Resource Management 4

4. Survivability Enhancements and Reconfiguration Support 5

5. Distributed Application Development Support 5
5.1 Development of New Types 6
5.2 Software Distribution Manager 6
5.3 Integration of Editors, Compilers and other Tools 7
5.4 Distributed Access to Constituent Operating System File Systems 8

6. RADC Cluster Support 8

7. Cluster Maintenance 8

8. Constituent Operating System Integration Guidelines 9

9. Papers and Technical Articles 9
9.1 SOSP Papers 9
9.2 Broadcast Repeater RFC 10

INSPEO

Anuession For

NTIS GRA&I
DTIC TAB El
u.. unc ed E
jL ri ication

-AV3Li'".t'2 :ity Codos1 'y

mv~ "it 11 -, If | i

'Dist2J/'t

BBN Laboratories Inc. Report No. 5991

Appendices

Appendix A: The Architecture of the Cronus Distributed Operating System

Appendix B: Programming Support in the Cronus Distributed Operating System

Appendix C: RFC 947: Multi-network Broadcasting within the Internet

0

0

0

*1_-

0L

BBN Laboratories Inc. Report No. 5991

1. Introduction

This report is an interim technical report for the Cronus Distributed Operating System
Implementation project. It covers the period between October 1984 and May 1985.

1.1. Project Overview

The objective of this project is to extend the current Cronus Distributed Operating System
(DOS) implementation*, completing the basic functionality for supporting distributed system
demonstration software; to extend the testbed environment with additional hosts and tools to
support the development and evaluaon of Air Force applications; and to begin to establish a second
testbed cluster on-site at RADC. The overall function of the DOS is to integrate the various data
processing subsystems into a coherent, responsive and reliable system which supports development of
distributed command and control applications. The development work for this contract is broken
down into the following areas:

Area SOW Item

VAX-UNIX Integration 4.1.1.2.1
SUN Workstation Integration and Use 4.1.1.2.2
Resource Management 4.1.2
Survivability 4.1.3
Reconfiguration Support 4.1.3.2
Tool Integration 4.1.4.1
Application Development Support 4.1.4.2
RADC Cluster Support 4.1.5
Cluster Maintenance 4.1.6

In addition to the development work, a report on how new hosts and their resources are
integrated into a Cronus cluster will be written (SOW 4.1.1.2.3). A demonstration of the system and
its capabilities will be presented at the end of the contract period (SOW 4.1.8).

1.2. Organization of this Report

The following sections describe the progress that has been made so far on each item in the
statement of work. In the appendices, we include recently written papers that describe, in detail,
aspects of the work done on the Cronus system architecture, on language support for distributed
application development, and on network support for Cronus.

*For a description of previous Cronus development, see CRONUS, A Distributed Operating System: Phase I
Final Report, R. Schantz, ei al. BBN Report No 5885, January 1985.

-

Report No. 5991 BBN Laboratories Inc.

2. Integration of New System Hardware

Under the previous Cronus development effort we established an initial demonstration
environment. It consisted of three types of hosts: 68000 Multibus microprocessor systems running
the CMOS operating system as Generic Computing Elements (GCEs), and two types of utility hosts,
BBNCC C70 running UNIX and DEC VAX 11/750 running VMS. The GCEs are small dedicated-
function computers of a single architecture but varying configurations. They provide specific
Cronus services, such as file managers and terminal access points. The utility hosts provide the
program development and application execution environment for Cronus. Most of our development
activities were centered on C70 Unix because of its rich set of development tools and the ease of
developing new software afforded by the UNIX environment.

We have added support for VAX-UNIX and the SUN Workstation. The VAX-UNIX represents

an evolution of the existing Cronus UNIX support to a new hardware base. The SUN Workstation
represents a new class of Cronus host which was described in the Cronus hardware architecture but
not previously supported.

2.1. VAX-UNIX

VAX-UNIX is presently supported on both the VAX 11/750 and 11/785. The hardware base
for these implementations are currently owned and operated by the BBN Computer Systems Division
to supply timesharing support for the company. The larger of the machines, the 11/785, typically
supports 40-50 users. Cronus applications run concurrently with non-Cronus timesharing workload
on these hosts.

The VAX supports a large virtual address space under the Berkeley 4.2BSD release of UNIX.
The operating system for the C70, our other UNIX based utility host, does not support virtual
memory and is based on the earlier Version 7 Unix from Bell Laboratories. In addition to virtual
memory support, the 4.2BSD provides many new features and languages, and improved interprocess
communication nd I/O facilities, and better overall performance.

The VAX-UNIX system serves to replace the C70 as a hardware base for future DOS and
related application development. The VAX family of computers is widely accepted, with a large
installed hardware base, which increases the likelyhood of finding existing machines to integrate
into Cronus.

The VAX-UNIX systems support the Cronus operation switch, all managers, including the file
and catalog manager, all the application development tools and all Cronus user commands. We have
also made modifications to speed development of Unix based utilities for accessing Cronus files. We
have modified the standard C compiler libraries so that file 1/O routines will invoke the appropriate
Cronus operations whenever a Cronus file name is given. This has allowed us to simply recompile
many UNIX file utilities, such as cp, cat, grep, and diff, and the text editors emacs and v to produce
versions that access both Unix and Cronus files. In some cases, minor modifications were required to
the source programs.

-2-

..-n nj r r~rr~vrm ~in m~ mm d /IIII u nn i i i m0

BBN Laboratories Inc. Report No. 5991

2.2. SUN Workstation Integration and Use

The SUN Workstation is a 68000 Multibus system based on the SUN microprocessor board
developed at Stanford University. It includes a high-resolution raster graphics display with a mouse
input device and a window based user interface. The system supports virtual memory under a
version of Berkeley 4.2BSD UNIX, essentially the same as the VAX-UNIX described above. The SUN
is representative f the trend toward powerful, single-user computers with high performance
graphics capabilities that maie feasible man-machine interfaces of significantly higher quality than
those possible on time-shared mainframe computers communicating with terminals over slow, bit-
serial links.

We have installed two Sun Model 120 Workstations, each with a 130 megabyte Winchester
disk drive and 2 megabytes of primary memory. These systems offer enough power for use as

workstations or for use as utility hosts for program development by 2-3 users performing typical
development tasks. The workstations support the Cronus operation switch, all managers, including
the file and catalog manager, all the application development tools and all Cronus user commands.
The sources for these Cronus programs are essentially identical to the sources used for the VAX

system.

We are also developing a workstation based Monitoring and Control System (MCS) for the
Cronus cluster. Beyond the major focus on issues of monitoring and control for a distributed system,
we are exploring the use of graphics facilities supported by the workstation as an operator interface.
An MCS system consists of three parts: the MCS operator interface, the data collector and the event
reporting system.

The first version of the user interface is based on the BBN Graphics Editor, a subsystem
previously developed by BBN to serve as an environment for constructing graphical interfaces.
Based on object-oriented programming techniques and implemented on the Sun workstation, the
Graphics Editor permits the interactive composition of graphical diagrams, or views. These diagrams
are dynamic control panels that can be connected to data sources and sinks and used to graphically
control and display the state information. Using this system we have produced views that
summarize cluster host status, the status of each of the services, and the status of the managers for

each service.

The data collector collects and monitors status information about the managers and the objects
they manage. The collector periodically invokes the report status request to retrieve the
information from the managers. This information can be recorded for later review. The values can
be displayed using the operator interface, either for a particular point in time or to view the trend
over a period of time, Values can be monitored so that the operator will be warned when a
particular value crosses an operator specified threshold.

The event reporting system is used to alert the operator when irregular events occur. For
example, when a manager is restarted it submits an event report to inform the MCS. These event
messages are displayed on the MCS console and can also be recorded for later review.

-

-3-

Report No. 5991 BBN Laboratories Inc.

3. Resource Management

As a distributed system architecture, Cronus faces a number of resource management issues not
present in non-distributed architectures. In this phase of development we have focused on the
binding of a request from a client to a particular resource manager for those resources which are
available redundantly. Redundancy comes in two forms: replicated objects and replicated managers.
In both cases the selection of an object manager to provide the given service is an important resource
management decision.

The general approach to resource management in Cronus is to individually control the
management of the classes of objects which make up the system. This approach extends resource
management concepts to the abstract resources developed by applications. In addition to this system
resource management, application and system interface code can, if they desire, control resource
management decisions to incorporate larger purviews such as implementing a policy which tries to
optimize the use of collections of different objects types used in a specific context.

We have implemented mechanisms that allow resource management at two levels: by the
client submitting the request and by the collection of managers responsible for a each type. The

client may collect status information about the available managers using the report status request
and then direct the invocation of an operation to a particular manager. The client specifies in the
request that the operation must be performed by the specified manager;, no resource management
decisions will be made by the manager itself in this case. If the operation cannot be performed by
the selected manager it will refuse the request and the client must choose a different manager to
continue. Normally, requests do not identify a particular instance and the type managers make
resource management decisions. The managers collect status information from their peers using the
report status request and then forward the client request to the manager best suited to perform the
operation. The manager to which the message is forwarded will process the request and reply
directly to the client that originally issued the request.

To experiment with resource management and to test the mechanisms, we have modified the
primal file manager to implement a resource management policy for creating new files. The
mechanisms work as follows. An initial request to create a new file is routed at random to any
available file manager based on response to a locate operation. When a primal iiie manager receives
a file create request it checks the local space usage and processor load. If either of these parameters
exceeds operator selected thresholds, the file manager will not process the request itself. Instead,
using status collected from the other managers it will choose the one it considers to be best suited to
perform the operation. It then forwards the request, along with the appropriate access control
rights, to the selected manager for processing. The policy parameters that guide the selection can be
set by the operator through the MCS operator interface or by users invoking simple commands
ovailable elsewhere in the cluster.

-9

-4-

BBN Laboratories Inc. Report No. 5991

4. Survivability Enhancements and Reconfiguration Support

A primary goal of the Cronus architecture is survivability in the face of system component
failures. In the C 2 environment it is especially important to provide continuous availability of key

applications despite system failures. There are two aspects of survivability which the Cronus
architecture addresses: the availability of the system and its services over a relatively long period of

time and the survivability of the applications which it runs. Application survivability is dependent

not only on sustaining the application itself and the abstractions it presents to its users, but also on
sustaining the resources on which it depends for its computational support- The object oriented

approach taken in Cronus gives us an appropriate general approach to these problems. The objects
and functions needed to sustain a computation must be made survivable.

Our approach is to support replication and reconfiguration through the manager development
tools provided for application development support. In this way we can use common techniques for

both system and application objects, and make these techniques conveniently available to application
developers. We will be exp-rimenting with multiple and customized approaches to replication
support via the manager development tools. Managers developed with the tools use access routines

to a standard object database. These library routines perform the coordination and duplication
needed to update all the copies of an object maintained by the managers of that type. When a
manager is restarted, initialization routines communicate with other managers of the same type to
update the new manager's database, which may have fallen out of date while it was unavailable.

Using these tools, we have implemented a replicated authentication manager. This was done

both to experiment with the use of the tools and because replication of the authentication function
is fundamental to system survivability. We are currently running two instances of the
authentication manager. When both are running, they share the load of login requests. When one

goes down, the remaining one handles all the requests and updates the other when it returns to

service. We will be applying the survivability mechanisms to other system objects in the near

future.

5. Distributed Application Development Support

We feel that the object metaphor may be extended into the application domain. That is, one

develops a new application by first defining the types of objects involved and then the operation _

protocols they follow. Cronus has been designed to support a commonality of structure between

system and application components, including the use of common mechanisms, particularly those
designed to aid distribution, resource allocation, and reliability, and common development tools. In
this section we describe our initial steps toward developing a distributed application development

environment.

-5-

Report No. 5991 BBN Laboratories Inc.

5.1. Development of New Types

So far, increasing support for more easily adding new types has involved work in two areas
making the system aware of the new type, and providing support for the automated development of
a skeletal manager. We maintain a type database that stores a specification for each type and the
operations that may be invoked on each type. In addition, we support tools which given a
specification of the types implemented by a manager, provide the skeleton code for the manager.
This skeletal code provides request dispatching, multi-tasking support, access control, resource
allocation and replication. For each operation the code supports access control and unpacks the
message into a suitable data structure, checking to make sure all required parameters have been
provided. The tools also implement generic operations such as locate and access control list
modifications. A subroutine library provides the underlying support and provides a database for
storing the objects maintained by the manager. Only implementation of the individual operations is
left to the developer. The developer can override or replace the code provided by the tools when
necessary. To complement the convenient development of the type manager, we also support
automatically generating synchronous client interface subroutines for invoking each operation.

5.2. Software Distribution Manager

Software distribution in a distributed development environment, though seemingly simple,
often becomes an extremely complicated, time consuming, and error-prone task. We believe much of
this is due to the volume of data required to describe the distribution requirements in terms of
"(Aile,site)" pairs, as is often done by developers. Our most important desire was to provide a simple
abstract model to the user and to limit the amount of information the user has to understand and
manipulate. Our approach is to group files with identical distribution requirements into packages.
Each package lists the files it contains and the sites to which those fies are to be distributed. This
representation is more natural to the developer of large applications, since such a user will normally
think in terms of collections of files composing a distributed application or subsystem, and this
representation provides a much more concise description of the distribution requirements than
listing the "(.ie,stte)* pairs.

We felt that the distribution process should be controlled by a logically-centralized manager
process, rather than independently from a variety of client programs. This has the benefit of
limiting knowledge of the implementation of packages to one program, and of minimizing the
interface requirements at the user access point since the user need only be able to invoke a single
Cronus operation.

Similarly, we wanted to minimize the amount of software required at each site-bearing host.
The current implementation requires only one instance of the controlling part of the software
distribution manager for the entire network, although more may be employed for load balancing
and to provide survivable functionality. The addition of a new site bearing host only requires the
development of Constituent Operating System (COS) Interface Manager on the new host, a service
normally provided anyway.

-6-

BBN Laboratories Inc. Report No. 5991

We also felt that, for the initial version, it was important to keep the system conceptually
simple, particularly with respect to assuring and verifying consistency between sites. This led to
the notion that developers should explicitly distribute updates after they are confident that the files
are internally consistent, in contrast to using a daemon process that regularly looks for changes at
the designated primary site and distributes updates, when appropriate, to ensure that all instances
are continually consistent.

Finally, we thought it important to provide adequate access controls. For example,
maintenance of the lists of files and sites are independently access controlled to reflect the differing
roles of software developers who modify the implementations and system administrators who
determine the ultimate location of services.

To ease the implementation, and provide a test vehicle for earlier work, we decided to
implement our solution exclusively using Cronus facilities. The Software Distribution Manager
was constructed using the manager development tools, and invokes operations on other managers
using the automatically-generated program support library subroutines. The manager is not
dependent on the contents and semantics of the files in a package. They may be source files,
language processor header files, shell scripts, or, when distributed between hosts of the same type,
binary executable and library files.

5.3. Integration of Editors, Compilers and other Tools

Cronus is both a base operating system for supporting distributed applications and an
environment for developing these applications. One important aspect of supporting software
development in a distributed environment is a distributed file system. A distributed file system is
useful only to the extent that there are tools which can utilize the distributed file system. An
initial step toward making Cronus more useful for software development is to provide a set of
development tools which utilize Cronus functionality. Such tools include editors, compilers and
linkers.

At the outset, we have chosen to adapt existing tools to the Cronus environment whenever
possible, rather than developing tools specifically tailored for the Cronus environment to gain
immediate functionality To reduce the effort required to adapt existing tools, we have modified the
subroutine libraries for the VMS, C70 Unix and Vax Unix systems. These atrap" libraries invoke
Cronus operations whenever a file name specifies a Cronus file. Otherwise, they behave as they did
before modification: performing the operations on VMS or UNIX files.

The VAX-UNIX trap library was developed during the first part of this contract and has been
used to produce several UNIX based file utilities as mentioned in an earlier section. We plan to
convert the SUN libraries in the same way when sources become available. These library routines
intercept file operations and invoke Cronus operations whenever a Cronus file is specified. Otherwise
the routines act as they did before modification.

-7-

Report No. 5991 BBN Laboratories Inc.

5.4. Distributed Access to Constituent Operating System File Systems

Through Cronus, it is also desirable to gain remote, distributed access to directories and files
maintained by a Constituent Operation System (COS). This allows remote access to mailboxes,
bulletin boards, on-line manuals and other data that are common to several systems but normally
required either duplicates to appear on all the systems or require the client to connect to the system
where the data is stored. We have implemented a manager, called the COS Interface Manager,
which provides access to directories and files stored on the COS. Registering a COS file or directory
with this manager returns a Cronus Unique Identifier (UID) that can be later used to manipulate it
remotely as a Cronus object. The UID of the COS file or directory is commonly stored in the Cronus
catalog, providing a global symbolic name for it. In many cases, Cronus users need not be aware of
whether a particular catalog entry refers to a Cronus primal file or a COS file. Thus, the Cronus
utilities, such as display and Idir, work with COS files and directories as they do for Cronus objects.
The COS Interface manager is a step in the gradual evolution between completely independent host
systems and a completely integrated distributed system.

6. RADC Cluster Support

An important part of demonstrating the applicability of Cronus in the C 2 environment,
evaluating its capabilities, and successfully transferring DOS technology is the installation and
operation of a Cronus DOS cluster at RADC. Doing this will provide valuable experience in
transporting Cronus to another environment and seeing how well it can be operated and used by a
different user community. The Cronus cluster at RADC will be gatewayed to the DARPA Internet
so that it can be accessed remotely from the cluster at BBN. This will allow both remote operation
and monitoring of the RADC cluster and experimentation with inter-cluster operations in the
Cronus DOS.

We have been assisting RADC with the selection of the hardware configuration for the Cronus
cluster. We have already submitted specifications for the hardware configuration. In order to
facilitate installation and operation of the RADC cluster, our major guideline in the selection has
been compatibility with the BBN cluster, at least in terms of the types of machines and operating
systems supported and the underlying local network. We are preparing a cluster installation report
that details how to install Cronus once the cluster hardware has been installed.

7. Cluster Maintenance

In addition to general maintenance and bug fixing we have made several improvements to
Cronus to upgrade its operational capabilities and performance. These enhancements include the
following.

We have begun work to extend the implementation of Cronus to span multiple physical
networks. A broadcast repeater allows managers to locate objects and other managers that are
connected to other networks. This works by propagating broadcast requests between two local
networks via the internet See Appendix C for a more detailed discussion of the issues to consider

-8-

BBN Laboratories Inc. Report No. 5991

when building a broadcast repeater and for a description of the architecture of the repeater we have
built.

Large messages are now supported and use a mechanism that exploit the length of the message
to reduce overhead. Rather than sending large messages as a sequence of small messages, each routed
through the Cronus kernels of both the client and server, the Cronus kernels and program support
library routines establish a direct TCP connection between the client and server. The message is
then transmitted across this connection without the need for either kernel to be involved further.
See Cronus System/Subsystem SpedcJlcatlon*, section 6.4: "IPC Implementation" for additional
details.

We have also reduced the amount of time spent locating managers for a particular type and for
an instance of a particular object. The Cronus kernel now maintains an object address cache where
it records the results of locate requests. Since most clients, once they have referenced a particular
type or object, will make additional references to that type or object, the additional locate requests
can be satisfied from the contents of the cache. This eliminates the delays and traffic that would
arise from exchanging network messages to satisfy the addition locate requests. Support in the
program support library ensures that the cache will be updated if its contents have become invalid
because an object has been moved to a manager has become unavailable. In such cases, the locate
request will be issued and the cache will be updated to reflect the new location.

S. Constituent Operating System Integration Guidelines

Integrating new hosts into Cronus is one of the long term objectives for the system. Having
already performed a number or such integration tasks we have begun to prepare a document
describing the host capabilities that are necessary or desirable for participation in the Cronus
environment.

9. Papers and Technical Articles

9.1. SOSP Papers

Two papers, included as Appendix A and Appendix B, have been submitted to the review
committee for the December 1985, Symposium on Operating System Principles. The first of these,
The Architecture of the Cronus Distributed Operating System, describes the overall architecture of
Cronus and details the design of key components of the system. The second paper, Programming
Support in the Cronus Distributed Operating System, presents our approach to the problem of
distributed application development, describes the features of Cronus that support this development,
and illustrates how Cronus facilitates development using a Cronus object manager as an example.

*Cronus System/Subsystem Specification, R. Schantz, et al. BBN Report 8554, Revision 1.4, June 1984.

0

-9-

0

Report No. 5991 BBN Laboratories Inc.

9.2. Broadcast Repeater RFC

The paper included as Appendix C has been distributed as an Arpanet RFC 947. It describes
the extension of a network's broadcast domain to include more than one physical network through
the use of a broadcast packet repeater.

-10-

-j

Appendix A

The Architecture of the Cronus Distributed Operating Systemn

Richard E. Schauntz
Robert H. Thomas

Girome Bono

BBN Laboratories
10 Mloulton Street

Cambridge. Massachusetts (1210*8

DOS-89

Table of Contents

Appendix A
1. Introduction ... 1

2. Project Overview ... 2
2.1. Strategic Assumptions.. 2
2.2. Objectives... 2
2.3. System Environment .. 3

3. System Architecture... 5
3.1. Objects and Operations in Cronus .. 74
3.2. Object Location and Message Routing... 9
3.3. Message Passing Core.. 9
3.4. Access Control in Cronus... 10
3.5. The Cronus Symbolic Catalog ... 12
3.6. Host and application integration... 13

4. System Implementation ... 14
4.1. Testbed Configuration ... 14
4.2. Implementing Cronus System Components .. 14
4.3. Network Support .. 15
4.4. Related Work.. 16

A-i -

DOS-89

The Architecture of the
Cronus Distributed Operating System

1. Introduction

The Cronus distributed operating system is intended to promote and manage resource sharing

among interconnected computer systems. Its major purpose is to provide a coherent and integrated
system based on clusters of interconnected heterogeneous computers which supports the development and

use of distributed applications. Distributed applications range from simple programs that merely require

convenient reference to remote data, to collections of complex subsystems tailored to take advantage of a

distributed architecture. Among the main contributions of Cronus is a unifying architecture and model
for organizing these distributed applications, and tools for their development in the form of system

functions which are common to many applications. The Cronus system is itself an example of this type
of organization and uses the support mechanisms in its implementation.

Cronus is a third-generation distributed operating system. Our earliest experiences with first-
generation distributed systems IRSEXEC, SBS, 5SOSP' provided insight into the issues of network-based

interprocess communication, message passing systems., and distributed operating system functionality in a
homogeneous environment. Our second-generation distributed system NSW, NSWL, White7 gave further

experience in the areas of heterogeneous system components. functional specialization, language-oriented

approaches toward distributed systems. and many aspects of supporting the operational use of distributed
computing systems.

In 1981 we began work on Cronus. Our immediate aim was to capitalize on our previous experience

and bring it up to date to include experiences of other related projects, significant advances in both
hardware and software technology, and the changing scope of the problems being considered appropriate
for distributed system architectures. Since we had only a vague notion of any intended applications,

flexibility to adapt to a wide variety of potential uses was important. The idea was that if it was
relatively "easy" to build distributed applications, people would find ways to utilize this capability.
Almost four years later. the diversity of potential uses for Cronus seems to have partially validated that

approach. We have had a version of Cronus running in our laboratory for over a year. providing system
integration and various system services on a variety of hardware and operating system bases.

This paper describes the overall architecture of Cronus. and details the design of key components of
the system. A companion paper Gurwitz describes a continuation of this work in the areas associated

with programming Cronus applications. Other papers in progress will cover the design and
implementation of various functional and support areas in depth.

A-I

I
DOS-89

2. Project Overview

2.1. Strategic Assumptions

The orientation of the Cronus system is derived from a number of key observations based on
previous experience. Like Watson !Watson), we believe that one of the reasons there are so few
significant distributed applications is that to date, development of distributed systems has required the
application developer to spend too much attention on the details associated not only with networks and
communication but also with heterogeneity, synchronization, etc. Further, each application developer
needs to solve problems such as naming and access control, which are common to most distributed
applications, for each new application context. If application developers are provided with "off-the-shelf"
solutions to these common problems, more distributed systems are likely to emerge.

The second observation is that what people are looking for from distributed systems is multi-
dimensional and encompasses a large problem area. There does not seem to be a single most important
aspect. Rather, there are collections of problems and desireable system properties that all seem to suggest
a distributed system architecture as a solution. This observation led us to stress a comprehensive system
architecture under which we could preplan to address many aspects of distributed system technology
simultaneously.

The third observation is that the system developed must evolve. This evolution is likely to take a
number of forms. One form is evolution of the design, since the problem is too large to be addressed all
at once. Another form of evolution is recognition that parts of the system design and implementation will
be reconsidered and possibly redone as the hardware, underlying system support, applications and system
concepts change over time. Experience has also shown that it is difficult to displace ingrained patterns of
user behavior with even the best of new technology. A more prudent approach seems to be to
accommodate current functionality side by side with evolving new functions.

A fourth observation is that building a distributed operating system in a heterogeneous environment
is an exercise in handling complexity. Therefore, the structuring of the overall system into manageable
units is an important issue.

2.2. Objectives

With these basic assumptions as background, we set out a number of specific design and

implementation objectives for Cronus. The primary objective was to establish a comprehensive
distributed system architecture and design for integrating a collection of different computer systems into a
coherent and uniform computing facility which serves as a base for developing distributed applications.
With:n this facility the system would provide uniform, coherent mechanisms for various functions

A-2
_ S

DOS-89

including communication, access control, naming, and data storage and retrieval. Furthermore. this
computing facility should exhibit the following properties:

o survivability of system functions

o scalability of system resources

o global management of system resources

o ability to substitute system (hardware) components for each other

o convenient operation of the collection of systems.

The approach to developing Cronus has been to establish a general framework for addressing these

objectives, and then to elaborate the design in each of these areas. We believe that many of the

properties desired for the Cronus functions are also desirable for applications, and that an "open" system

model, where applications can be constructed using the same mechanisms that support the system is a

good approach. Cronus development is a continuing activity. The effort to date has concentrated on

developing an extensible distributed system architecture, establishing an initial Cronus hardware testbed
facility, designing and implementing a model for host-independent access to system resources, and

establishing systemwide uniformity in a variety of DOS functional areas. We have also begun to address

issues of survivability, resource management, and monitoring, and control In a companion effort :Berets

we are performing test and evaluation of the current system by developing a collection of interrelated.

multihost applications. In this paper we are reporting those aspects of Cronus that have achieved a

degree of stability from everyday use in our laboratory testbed.

2.3. System Environment

Cronus operates in an environment made up of interconnected computer communication networks

Postel'. This internet environment includes both geographically distributed networks, which span tens to

thousands of miles. and local area networks, which span A'stances of up to a mile or two. From an

architectural point of view, it is useful to think of this environment as being composed of clusters of host

computers. where the hosts within a cluster are localized and are typically under a single administration.

A cluster may include hosts on several networks, and several clusters may exist on the same _-

network. Performance considerations will generally lead to clusters that consist of hosts on a single local

area network or on a few local networks interconnected by means of high-performance gateways.

Therefore. although a cluster is a logical rather than a physical concept, it is our feeling that they will

tend to be aligned with local area networ'..s.

A- 3

= wmw~tNm iwmmmmlnmli~l ai

DOS-89

Cronus currently operates in a cluster defined by one or more local area networks. Extensions to
multi-cluster architectures are currently being designed. The principal elements in a Cronus cluster
include:

1. A set of hosts upon which Cronus operates.

2. One or more high-performance local area networks which support communication among hosts
within a Cronus cluster.

3. An internet gateway which makes the cluster part of the large internet environment by supporting
communication between cluster hosts and hosts external to the cluster.

The Cronus host set is a heterogeneous collection of hosts which can be divided according to function into

three broad classes:

1. Hosts dedicated to providing Cronus functions.

The functions the hosts provide include data storage, user authentication, catalog
management. device control, and terminal access. The hosts which support these functions
are called 'Generic Computing Elements (GCEs). GCEs are inexpensive, dedicated-function

computers of a single architecture but varying configuration. Each GCE provides one or
more basic Cronus functions. Because they are dedicated to Cronus, it is possible to
control and optimize the performance and reliability of the Cronus services supported on
GCEs. In particular. Cronus can be the native operating system on GCE hosts.

2. Utility and application hosts.

These hosts support some Cronus functions which may also be supported by GCEs. but
their primary role is to support user applications. The utility and application hosts include a
variety of machines with differing architectures. They are often mainframe hosts which may
serve a number of users simultaneously. The software necessary to integrate them into

Cronus runs as an adjunct to rather than a replacement for the hosts' primary constituent
operating system (COS), since this software generally is or supports software that - -

determines why the host is part of the configuration in the first place. Hosts can be
included in Cronus with varying degrees of system integration, with some directly
supporting only limited subsets of the services defined by the Cronus environment. Included
in this category are various general-purpose utility hosts supporting commonly accessible
services such as database management or high-speed multiprocessor architectures. _ _

3. Single user workstations.

Workstations are powerful, dedicated computers which provide substantial computing power
and graphics capability to a single user. They are used both to provide user access to Cronus

0

A-4

DOS-89

and for their ability to run applications. They differ from application hosts in that they
support a single user and from terminals in that they offer significant computational

resources.

3. System Architecture

The basic system organizing principal underlying Cronus is an abstract object model [Jones. Almes.
With this model all system activity can be thought of as operations on objects organized into classes

called types. Entities such as processes or directories are examples of Cronus types. Each object is under
the direct control of a manager process on some host in the Cronus cluster. The resources of the system

are cast as types, with manager processes resident on each host in the cluster which supports instances of

that type. A type manager on a Cronus host manages all objects of that type which reside on the host.
The collection of managers for a given type collectively manage the resource represented by that type for

Cronus.

The underlying structure of Cronus. which is largely hidden from client processes, consists of the
primitives and mechanisms for delivering operations invoked by clients to the appropriate manager for an

object. and delivering the results, if any, of operations back to the invoking client. Location transparency

and dynamic binding are two important characteristics of the network orientation of Cronus that are
reflected in its object model. Support for location transparency permits operation invocation to be
completely independent of the sites of the client and the object being accessed. A given object can be

accessed in precisely the same manner from any point in the system. The dynamic binding of client
requests to appropriate object managers supports maximum flexibility afforded by the network context.
Some objects can migrate to serve as the basis for reconfiguring the system, while others are replicated to

support survivability. The approach to scalability is through integrating additional hosts and managers
for a resource type. Global resource management is achieved through the cooperation of the managers for

a given resource. System monitoring and control functions are achieved by monitoring and controlling

the behavior of the various object managers. Supporting these attributes through the object model means
that we can easily tailor solutions to the particular resource type.

There are three interrelated parts to the Cronus software architecture:

1. The Cronus kernel, which supports the basic elements of the object model.

2. A group of basic object types, along with the object managers which implement them.

3. User interface and utility programs. 0

A-5 _0

DOS-89

Every host integrated into Cronus must support a kernel. The Cronus system kernel includes a

object-based message passing facility, supporting the invocation of operations on objects. The kernel
itself provides the notions of host objects for monitoring and control purposes, and the process objects for

supporting Cronus managers and application programs. A Cronus library provides a standardized
interface for invoking operations on objects, including conversion to and from a standard data exchange

format for interprocessor communication (masking the heterogeneity within the cluster). Other basic
object types and managers used as building blocks supporting Cronus application software include:

o User identity objects, called principals, and objects which are collections of principals, called
groups, used to support user authentication and the Cronus access control mechanism.

These objects are managed by an authentication manager.

0 Directory objects and directory managers that implement a global symbolic name facility
used to catalog other Cronus objects.

o File objects and file managers that support a distributed filing system.

o Device objects and device managers that support the integration of I/O devices into Cronus.

User interface and utility software run as applications to support user command interfaces and to aid in
operating the system. Because object access is host-independent, application software can be run with the

same results on any host in the cluster that supports that type of program.

Cronus is based on the idea that the user sees essentially no difference between "system" services

and "application" services. The Cronus object model provides an extensibility mechanism to support
application development. It includes a set of rules for building and accessing new types of objects, which
spell out the methods for integrating new object managers. Cronus treats all types uniformly. in accord
with its object model. Application programmers can use the object model for the standard access paths it

provides to existing objects and functions, or they can use Cronus facilities to create new objects and new
type managers. The Diamond :Diamond' multi-media message system is an example of an application
which has successfully applied the Cronus distributed application paradigm in its design and

implementation.

A basic Crbnus system is augmented by the resources which are available on the variety of
constituent systems which populate a given cluster. At the heart of the Cronus concept is the availability
of its functions to all Cronus applications through host transparent invocation. A Cronus configuration
consists of a collection of hosts, each of which supports some of the resources uf the system with access to
the other resources made available through operations invoked on them.

A

A- 6

p 0

DOS-89

S.1. Objects and Operations in Cronus

The definition of an object in Cronus is tailored to the distributed nature of the system. Special

emphasis is placed on allowing efficient access to objects without detailed information about their current

physical location.

All Cronus objects have several components:

1. A Unique Identifier (UID). A UID is a fixed-length structured bit string guaranteed

to be unique over the lifetime of the system. It serves as a global low-level name for
a particular object, used to reference the object from anywhere in the system. It
consists of a unique number or UNO and an Object Type field. The UNO guarantees

uniqueness and incorporates the host upon which the object was created. The type
serves to classify the object. Although ultimately all references to objects are

through UIDs, Cronus implements a symbolic name space through its distributed

catalog function which provides a mapping between user-defined symbolic names and

object UIDs to facilitate user references to objects.

2. A Set of Operations. Processes may perform operations on an object by sending

request messages to the object's manager. An object manager is a process or set of

processes responsible for maintaining and manipulating an object. By convention, all

managers are responsible for performing several common operations on their objects
to support various systemwide functions such as access control, resource monitoring

etc. Managers also perform any number of object-specific operations.

3. An Object Descriptor. This is data associated with the object. It is maintained by
the object's manager. It consists of several required fields and any number of object-

specific fields. Some of the generic operations are defined for accessing object

descriptors. Cronus achieves a consistent system model largely from the uniform

integration and handling of these object attributes and from the common operations
which apply to all objects.

A process may declare itself a manager of one or more object types. A service is typically supported

by a set of functionally equivalent and cooperating manager processes distributed on various hosts of the

system.

A useful property of type managers is that they may be accessed by simply knowing the object type

that they are responsible for. A special UID called the generic UID for the given type is provided to

make such access possible. Generic UIDs are used for creating new objects and for initiating status probes

to monitor the service represented by the type using. Generic UIDs for object addressing effectively

provides a way to multicast communication with the collection of managers supporting the type.

A-7

DOS-89

Every Cronus object has a UID. Each object manager maintains a record of UIDs for objects it
manages in a UID Table. When a manager creates an object it creates an entry for the new object in its
UID Table. Each manager's UID Table defines a part of the UID name space. The entire Cronus UID
name space is defined by the union of the UID tables of a.1 the object managers. Thus, there is no single
identifiable catalog of UIDs supporting the UID name space. Rather, the Cronus UID name space is
implemented in a distributed fashion, with each object manager responsible for implementing part of it.

A key element of the object model is the Cronus kernel, which supports communication between
client and object manager processes. The kernel is message-oriented, and it supports object-oriented
addressing. The message routing portion of the kernel is often referred to as the operation switch. When
an operation is invoked on an object, the operation switch delivers the operation (in a message) to the
appropriate object manager. Messages corresponding to operations are sent as messages addresssed to the
objects. The object addressed is the operand, and the message data contains the operation and any
additional parameters necessary to specify the operation. When the manager for the object reccives the
message, it performs the operation requested. Responses are sent as messages from object managers to
requesting client processes.

A consideration unique to the distributed environment is the location of resources. It is often
impossible to gua-antee the avetilability of certain hosts in a configuration; yet it is desirable to use them
when they are available. Also, useage patterns vary with time and increased load. *Cronus provides

support for these specialized problems by defining objects which may be moved from one host to another.
or which may be replicated on several different hosts, and by supporting a dynamic binding procedure for

accessing these objects.

When invoking an operation a process need not specify the host where the addressed object resides.
1 To deliver the message, the kernel must determine the appropriate host using the object UID. In

general, three somewhat different classes of objects are accessed through the kernel. These are:

I. Primal Objects

These are forever bound to the host that created them.

2. Migratory Objects

These are objects that may move from host to host as situations and configurations change.

3. Replicated and Structured Objects

These are objects which have more internal structure than a single "atomic" object. An

'However. provision is made for a program or user through his command interface to optionally specify a particular
host for the object or operation.

A-8

DOS-89

example is a reliable (replicated) file which has a number of identical primal files as its
constituent parts.

3.2. Object Location and Message Routing

Primal objects are the simplest kind of object. The kernel routes an invoke on a primal object by

using the host of origin from the object's UID, and delivering the message to the appropriate manager

process on that host. Migratory objects may move from one host to another. The object managers are

responsible for much of the mechanism necessary to support migrating objects. They implement. by

convention, manager-to-manager protocols for moving objects, and forwarding for misdirected messages to
previously migrated objects. The operation switch binds invocations to migratable objects by first

broadcasting a Locate request to all potential managers of an object. Locate is one of the common

operations implemented for all objects in the system. The correct manager, if it is available, answers the

request, and the message is delivered to it. As an optimization, the current locations of recently accessed

non-primal objects is ciched. A Locate operation on the generic type-UID is used to find an available

manager for that type.

Replicated objects are the most complex. A replicated object is maintained simulataneously by a

number of manager processes on different hosts. Its manager processes keep copies of the object data.
which they synchronize by means of manager-to-manager comunication. Mech- isms for synchronizing

replicated objects may vary for different object types. Invocation binding is handled in the same way as

for migratory objects. except that any of the available managers of a replicated object may answer locate

requests. Currently the first one to respond is chosen for the operation invocation, although other

algorithms covid be used to promote load sharing or enhance reliability.

3.3. Message Passing Core

Process-to-process messages form the basis of all Cronus operations. A Cronus operation in the

simplest case consists of a request message from a client to an object. and a reply message from the

manager of the object sent back to the client. A complex operation may involve many subrequests to

various managers and replies to each of the requests. Still other more complex patterns which involve

message forwarding are also supported.

A-9

DOS-89

The primitive operations available to Cronus processes are Send Invoke . and Receive . Send is
used to send a message directly to a process. Invoke is used to perform an operation on an object. An
Invoke is delivered to the manager of a given object, based on its type. Receive is used to obtain the next
message. There is a subtle distinction between the Invoke and Send primitives. The client need not know
the specific identity of a manager to direct a request to it using Invoke. The target of an Invoke is the
object UID. It is the IPC mechanism that routes the message to the object's manager. Although
processes are themselves objects, for efficiency Send operations invoked on process objects (usually
responses to invocation requests) are routed directly to the addressed process, not the process manager.
Additionally, the separation of the Invoke operation from the Receive that often follows it allows for
complex asynchronous operations and optimizations involving parallel execution. In particular, managers
often Invoke sub-operations while they are simultaneously being available to start new operations. ;See
Gurwitz for more details i.

3.4. Access Control in Cronus

All client access to Cronus objects is subject to access control. The goals of the access control
mechanisms are: to prevent unauthorized use of Cronus and Cronus objects: to preserve the integrity of
the system; and to provide users a uniform view of access control for all Cronus resources, services and
objects.

The basis of access control in Cronus is the ability of the Cronus kernel to reliably deliver the
identity of the invoker of an operation to the receiver of the message. The recipient can then decide on
the basis of the sending client's identity whether or not to perform the operation requested on the
particular Cronus object. For this to be a useful basis for access control there must be a means for
reliably associating authorizations with clients. Mechanisms are required to establish bindings between
client processes and authorities, and for object managers to determine the authority bindings for client
proce sses.

Ultimately, most activity within Cronus is the result of requests initiated by users. Users are
represented internally to Cronus by objects of the basic type "principal". The authority bindings are.
therefore, a correspondence between client processes and principals. System elements, such as object
managers. also execute under the authority of a principal.

To control access, the identity and authority of the principal associated with the client process that
requests an operation is checked prior to performing the operation. Access control in Cronus involves two
things: determining the identity of the principal requesting the operation (identification authentication):
and determining whether the principal has been authorized to perform an operation on the particular

_

A-I10

DOS-89

object (authorization verification). 4

Cronus uses access control lists to support authorization verification. In its simplest form, an access

control list (ACL) is a list of principals that serves to limit access to an object for a particular action to

those principals on the list. This simple idea is extended in two ways:

1. The UID for a group of principals may appear on an ACL IGrapevine!. This makes it possible to

authorize a group of principals rather than authorizing each individually. (Like principal.

group is a basic Cronus type.)

2. A set of rights is associated with each UID on an ACL. There is a right associated with each

operation defined for the object. Each right in the set represents authorization to perform

one or more particular operations. This makes it possible for an ACL to selectively control

access to an object on a per-operation basis, and for the rights to be customized for each

new type.

When a user attempts to start a Cronus session, a process is allocated for him. The authority-

binding for that process cannot be established until the user demonstrates that he is an authorized user.

The login operation involves an authentication dialogue between the user and Cronus through which the

user supplies a name (of a principal) and a password (for that principal object). The login operation is

implemented by the authentication manager who manages principal objects. The authentication manager
currently runs on a single host in the cluster. We are in the process of making principals replicated
objects for survivability. If the name and password are valid, the set of groups to which the user belongs
is computed from a list of group UIDs maintained as part of the named principal object. Since groups

can contain groups, this is a transitive closure computation 'Robertson!. The user's principal UID is

combined with the result of the computation to form a set called the access group set (AGS). The AGS

is then bound to the authenticating process through its process manager. This ensures the availability of

the AGS binding whenever the process is able to initiate operations. Processes subsequently created by

an authenticated process inherit the AGS of the creating process.

To perform an access control check for an operation on an object, the manager for the object first

determines the AGS binding for the client process. The identity of the client process is known to the

manager because its UID is delivered by the Cronus Operation Switch along with the message that

requests the operation. The manager obtains the AGS of the client by invoking the BindingOf operation

on the client process object. After obtaining the AGS, the manager can perform the access control check

by comparing the AGS with entries on the ACL. When new objects are created. they are given an access

control list which may be initialized under client control through type specific initial access control lists

which are stored with directory and principal objects. An initial access control list can be set based on

where the object is cataloged or who is creating the object. There are generic operations and associated

user commands which apply uniformly to all objects for manipulating access control lists.

A-II

DOS-89

3.5. The Cronus Symbolic Catalog

Cronus supports two systemwide name spaces for referencing objects. At a relatively low level there
is the name space of object UIDs supported by the Cronus kernel and object managers. At a higher level
there is a symbolic name space for Cronus objects. The Cronus catalog supports the symbolic name space.
The catalog provides a mapping between the symbolic names that people use to refer to objects and the
UIDs that are required to actually access the objects.

Within Cronus access to an object is initiated in one of two ways:

1. Directly through the UID name space.

The accessing client process has the UID of the desired object and invokes an operation
upon it. The operation switch delivers the requested operation to the appropriate object

manager. The object manager consults its fragment of the UID Table to access the object
as necessary to perform the requested operation.

2. Through the symbolic name space.

The accessing process has a symbolic name for the object. In this case, the catalog is
searched for a catalog entry for the name, using a name lookup operation. If an entry is - --

found, the UID for the named object can be obtained from it and used to access the object

as in (1) above.

An object may have zero, one, or more symbolic names. When an object is given a symbolic name,

an entry for the name is made in the catalog, and when the name for an object is removed, its entry is
removed from the catalog. Symbolic names are location-independent that is, a name for an object is
independent of its host location within Cronus, and a name that refers to an object may be used
regardless of the location within Cronus from which the reference occurs.

The symbolic name space is structured hierarchically as a tree, much like the UNIX and Multics file
name hierarchies. In Cronus any object may be given a symbolic name. For example, principals and
groups have symbolic names which are managed by the Cronus Catalog. Leaf nodes in the name space
tree represent Cronus objects which have symbolic names, and non-terminal nodes correspond to
directories. Directories are objects which taken together form the catalog.

The Cronus Catalog is implemented in a distributed fashion by a collection of catalog managers on
several Cronus hosts. A directory is a collection of catalog entries. The unit of dispersal across the

collection of catalog managers is the directory.

A-12

LS

DOS-89

In general to interpret a symbolic name, the lookup operation follows a path through the name

space tree. With no restrictions on the dispersal of the catalog that path could pass through many

different directory sites. It is desirable for performance and reliability reasons to limit the number of sites

" that are involved in a lookup operation. Two useful restrictions on the dispersal of the catalog JELAN'

are to require that:

1. The catalog structure for entire subtrees below a certain cut (the "dispersal cut") through the
catalog tree be stored within a single site. A subtree that is rooted at the dispersal cut is

called a "dispersal subtree".

2. The catalog structure above the dispersal cut be replicated on all catalog hosts. The structure

above the dispersal cut is called the "root portion" of the hierarchy.

The effect of these restrictions is that any lookup operations require at most two catalog sites.

We replicate the root portion of the catalog hierarchy to increase its availability and distribute its

load. We maintain a copy at each catalog site, making each functionally equivalent for operations on the

root portion, and allowing many lookup operations to be completed at a single site.

To ensure that an object is accessible symbolically whenever the site that stores the object is

accessible, we maintain a secondary symbolic access path to objects. The secondary access path is

supported by maintaining copies of catalog entries at each object-managing host for objects managed at

that host. In situations when appropriate parts of the catalog are unavailable, the secondary symbolic

access path is be used.

- A catalog manager currently runs on all application hosts in the Cronus testbed.

3.6. Host and application integration.

When a new application host is integrated into Cronus there are a range of integration possibilities which

have different cost-versus-degree of integration trade-offs. When a host is integrated with minimal effort.
little more than a communication path between the host and the rest of Cronus will be present. The host

will be able to obtain Cronus services through the communication path, but its own resources may be

inaccessible to external processes. Further effort can be devoted to integrate the host more fully into

Cronus by supporting local instances of current functions or by developing new ones. Here, the object

model allows sufficient flexibility to apply transparent remote access to existing host resources or to

fabricate new application resources. In particular, very high level objects, which require most or all of a
host's resources to support, can be defined for hosts which do only one thing particularly well, or are

otherwise hard to modify.

A-13

i I Ir~ i I - "I1 | 11 |

DOS-89

The granularity of objects is an important issue in an environment where communication costs are

significant. Processing seems to be the least expensive computing resource and will probably remain so.

Controlled communication is relatively expensive. An important aspect of our system design is the ability
to incorporate processing in the interface to all data storage components. An object manager represents a

placeholder for arbitrary, user-specifiable pretransmission processing on the data it manages. By sending
the request for processing to the data instead of moving the data to the accessing site for processing we

can take advantage of the processing-versus-communication cost tradeoffs. In some environments.
selecting an appropriate high-level abstract resource and tailoring its abstract operations to minimize
reliance on high-bandwidth communication represents a complementary approach to optimizing

communication support for achieving acceptable performance.

4. System Implementation

4.1. Testbed Configuration

The current Cronus testbed configuration consists of about 15 hosts, including BBN C70 minicomputers
running a version 7 UNIX derivative, a DEC VAXes running VMS, and 4.2 BSD, SUN workstations
running 4.2BSD UNIX, and Motorola 68000 microprocessor systems as GCE's interconnected by a 10MB

Ethernet. Other VAXes (running 4.2BSD and VMS) on a second Ethernet connected to the first via an
ARPA standard gateway are also integrated into our cluster. Each of these systems supports a Cronus

kernel and an individually configurable complement of Cronus object managers from among file, directory
and authentication managers. Each of the application and workstation hosts can serve as Cronus access

points. A variety of resources specific to the application hosts have been easily integrated into the Cronus

environment, and are in daily use by project staff. A number of new Cronus applications are in the

design stages now.

4.2. Implementing Cronus System Components

Demonstrating that Cronus could operate on a set of heterogenous architectures and systems was
critical among the implementation goals. There were two conflicting issues in planning the
implementation for our testbed hosts. On one hand we wanted an efficient implementation. Ideally.

initiating an invocation would be as efficient as a system call in a conventional system. On the other

hand. because we needed to provide implementations for a number of different hosts and anticipate many
more. we wanted the implementation to be as independent of any particular system context.

A-14

DOS-e9

To minimize the time and implementation effort we emphasized code portability over efficiency for

at least the first version. On application hosts most of the Cronus kernel is implemented outside the COS
kernel to maximize its portability. The major issue we faced in installing a Cronus kernel on an
application host, side by side with its COS is establishing communication between clients and the

operation switch. It is conceptually easy but in practice difficult to put the Cronus kernel directly inside
the COS kernel. Instead, we utilize an available local host IPC mechanism to support client-kernel

communication. For example, on some UNIX systems we use an intra-host datagrarn service, while on

VMS we use mailboxes. These interfaces can be upgraded in the future, but with significant cost.
Current performance levels are adequate and do not warrant such steps at this time. To the contrary, we
have reaped enormous benefit from the ability to produce new versions of the kernel quickly, easily, and

frequently. A native implementation of the Cronus mechanisms, such as on the GCE, is not dependent

on local host IPC.

We chose C as implementation language for the initial Cronus components because of its

availability and standardization. We antcipate application code to be developed in a variety of
languages. The original version of the Authentication Manager was written in Pascal.

A great deal of portability has been achieved. Most managers and application programs port ater
only recompilation from a single set of sources. The kernel is the most host-dependent component, but it

too is approximately 85% source code compatible on all the systems.

4.3. Network Support

Message passing in a network environment is fundamental to Cronus. To achievethe ability to
substitute components in the network. Cronus accesses the local network capabilities indirectly, through an

interface called the Virtual Local Network (VLN). The VLN embodies an abstraction of local network
capabilities. It is based on the network-independent IP datagram standard !DOD! augmented with
broadcast and multicast capabilities. The current Cronus development cluster uses an Ethernet. By
implementing Cronus using the VLN interface, it is possible to replace the Ethernet easily with any local
network that provides the basic transport services. Cronus has already been ported to a Pronet Ring

network base with only network device drivers needing recoding.

Messages may be sent either reliably or with minimal effort. Normally, messages are passed between
hosts using a reliable transmission protocol. Reliable messages involve positive communicatioi level

acknowledgement and retransmission. Messages which are passed for informational purposes often don't

need guaranteed delivery. Minimal-effort messages avoid the overhead of these features. The Cronus
implementation is based on the standard DoD transport protocols IP and TCP. IP is used to send

minimal effort datagrams. All broadcast messages are minimal effort. The current implementation of
reliable message transmission uses a full duplex reliable TCP connection between peer operation switches
for transporting Cronus operation invocations and replies. These connections can remain open indefinitely 0
while there is communication between the hosts. To avoid problems with scalability and a dynamically

A-15

DOS-S9

changing host environment, these connections can be activated and deactivated at any time by either

side.

Cronus messages can be of arbitrary size. [Rashid' To avoid burdening the operation switches with

buffering large amounts of data and avoid the extra operation switch overhead for each data segment,

large messages are transported over a direct process-to-process TCP connection. The distinction between

small and large messages is hidden from client processes by Cronus library routines. Messages may be

sent and received all at once or in pieces. The size of he chunk of data manipulated is independently

selected by the sender and receiver. Large messages of indefinite size form the basis for interprocess

stream communication.

The Cronus implementation is based on a layered architecture. This provides the opportunity to

use only a subset of Cronus for a specific or limited application, and to replace individual parts of the

implementation easily with alternative but equivalent implementations, should the need arise for

optimization purposes.

Cronus makes extensive use of broadcast facilities provided by its communication base to locate

object managers and objects dynamically. It is often true that a selected collection of hosts to be

integrated into a Cronus system is not limited to a single LAN. In order to extend Cronus utilities across

several local area nets and allow hosts which are not on a LAN to participate fully in Cronus, it is

necessary to extend the broadcast mechanism beyond the local area network. Since Cronus uses IP

internet addressing, regular (i.e. non-broadcast) messages can already traverse multiple networks without

special handling.

To support multinetwork broadcast (and multicast) services we have implemented a broadcast

repeater which listens for broadcast messages on its LAN, and forwards the packets to other LANs. The

broadcast repeater system serves as a transparent medium for relaying broadcast packets from one LAN
to another, and also for forwarding broadcast packets to off-LAN hosts. Only one repeater system is

needed per network. The broadcast repeater system can selectively forward broadcast traffic according to

a variety of fields in the message to control the volume.

4.4. Related Work

Related work and a summary of a number of future directions for the Cronus effort, are discussed in a

companion paper IGurwitzl.

A-16

-mmmmmmmmmmmlm mmm/mml~m Il Illsl~aI~mmrrra " - _ - =

DOS-89

Acknowledgements

This work has been supported by the Rome Air Development Center, under contracts F30602-81-C-0132
and F30602-84-C-0171. We would especially like to thank Tom Lawrence and Dick Metzger of RADC for
their support and encouragement. It was only through the effort of a large number of people past and
present that we have brought the Cronus concept to its current state. These people are too numerous to
mention. However, two people no longer associated with the project, William MacGregor, who was part
of the original Cronus design team, and Steve Toner, who was a key member of the original
implementation team were especially instrumental in getting Cronus off the ground. Finally, we would
like to acknowledge the many people from a variety of organizations who contributed to our learning
experiences with NSW, and DARPA, which supported much of the earlier distributed operating system
work that led to Cronus.

A

A-i 7

DOS-89

References

I5SOSPI B. Cosell, P. Johnson, 1. Malman, R. Schantz, J. Sussman, R. Thomas, and D. Walden, "An
Operating System for Computer Resource Sharing," Proc. Fifth Symposium on Operating
Systems Principles, Operating Systems Review, vol. 9, no. 5, November 1975.

jAccent] R. Rashid and G. Robertson, "Accent: A communication oriented network operating system
kernel," Proc. Eighth Symposium on Operating Systems Principles, Dec. 1981.

Almes& G. Almes, A. Black, E. Lazowska, and J. Noe, "The Eden system: A technical review," IEEE
Trans. on Software Engineering, vol. SE-Il, no. 1, Jan. 1985, pp. 43-59.

IDiamond] R. Thomas, H. Forsdick, T. Crowley, G. Robertson, R. Schaaf, R. Tomlinson, and V. Travers,
"Diamond: A Multimedia Message System Built Upon a Distributed Architecture," submitted
for publication.

IELANI R. Thomas, R. Schantz, H. Forsdick, "Network Operating Systems, RADC Technical Report
TR-78-117, May 1978.

iGrapevine'A. Birrell, R. Levin, R. Needham, M. Schroeder, "Grapevine: An Exercise in Distributed
Computing". CACM, Vol. 25, Number 4, April 1982.

'Gurwitz' R. Gurwitz, M. Dean and R. Schantz, "Programming Support in the Cronus Distributed
Operating System," in process.

Jones A. Jones. "The object model: A conceptual tool for structuring software," in Lecture Notes in
Computer Science, Vol. 60. Berlin: Springer-Verlag, 1978.

INSW' H. Forsdick. R. Schantz, and R. Thomas, "Operating Systems for Computer Networks,"
Computer, January 1978.

'NSWI, R. Schantz, R. Thomas. "A Technical Overview of the National Software Works", RADC
Technical Report TR-83-80, March 1983.

postel J. Postel, "Internet Control Message protocol - DARPA Internet Program Program Protocol
Specfication," RFC 792 Los Angeles: USC/Informational Sciences Institute, Sept. 1981.

'Robertson"G. Robertson, "The CFS File System," CMU Technical Report, 1982.

IRSEXEC R.H. Thomas, "A Resource Sharing Executive for the ARPANET", AFIPS Conference
Proceedings, vol. 42, June 1973.

:SBS~j E. Akkoganlu, A. Bernstein, and R. Schantz, "Interprocess Communication Facilities for
Network Operating Systems," Computer, June 1974.

A-18

i0

DOS-89

fWatson] R. W. Watson, "Distributed System Architecture Model," in Lecture Notes in Computer
Science, Vol. 105. Berlin: Springer-Verlag, 1980.

-Whitei J. White "A High Level Framework for Network-Based Resource Sharing", Proc. AFIPS

Conference, Vol. 45, 1976.

A-19

I

DOS-90

Appendix B

Robert F. Gurwitz

Michael A. Dean
Richard E. Sehantz

BBN Laboratories Incorporated
10 Moulton Street

Cambridge, Massachusetts 02238

ABSTRACT

Technology has made the development of distributed applications more attractive. We
need a software environment and tools that wll support the development of these
applications. The Cronus Distributed Operating System provides both, through its object
orientation and through provision of tools to aid in the software development proceu. We
describe our approach to the problem of distributed application development, describe the
features of Cronus that support this development, and illustrate how Cronus facilitates
development using a Cronus object manager as an ezarnple.

_ _ _ _ _ _ _ _

Cronus development has been supported by the Rome Air Development Center, under contracts F30602-81-C-0132
and F30602-84-C-0171.

0

DOS-9O

Programming Support in the
Cronus Distributed Operating System

ABSTRACT

Technology has made the development of dutributed applicatiou more attractive. We
need a .oftuare enronment and toolo that vill support the development of these
applications. The Cronus Distributed Operating System provides both, through its object
orientation and through provison of tools to aid in the software development proceu. We
describe our approach to the problem of distributed application development, describe the
features of Cronus that support tho developrent, and illustrate how Cronus facilitates
development using a Cronus object manager as an ezarrmle.

1. Introduction

Technology has made the development of distributed applications more attractive, with the
proliferation of high-speed local area networks and relatively low-cost personal computers and
workstations. These applications may range from simple programs that merely require convenient
reference to remote data, to collections of complex algorithms tailored to take advantage of a distributed
architecture. A fundamental problem in the development of these applications is complexity, making
them difficult to design and implement. Complexity in distributed systems manifests itself in several
ways, including the number of components involved, their patterns of communication, and the fact that
they may need to be implemented on heterogeneous machines. In the Cronus Distributed Operating
System we have attempted to solve these problems in three ways: by adopting a uniform and consistent
programming model based on objects, by helping to automate parts of the software development process,
and by providing a set of tools to aid in the development of distributed applications. This paper describes
these approaches in detail and illustrates how they can be applied to solving the problems of designing
and implementing distributed applications by presenting the development of a Cronus object manager as
an example.

Cronus is a full-feature distributed operating system that interconnects clusters of heterogeneous
computers on high-speed local area networks. Its goals are to provide traditional operating system
functionality in a distributed computing environment and to serve as a base for developing distributed
applications. Some of the characteristic properties of Cronus include survivability of functions, scalability
and global management of resources, the ability to substitute components for each other, and convenient
operation. The overall system ar.- tecture and communication support are described in a companion
paper ISchantz].

The remainder of this paper is organized as follows: section 2 discusses in more detail the issues
involved in supporting the design and implementation of distributed applications and our approaches to
the problem; section 3 describes the features of Cronus that support distributed application development
and section 4 gives a specific example of building a simple but representative distributed application.
Concluding sections relate our experience with Cronus to date, contrast our approaches with those of
related efforts, and outline future plans.

B-i

_

DOS-90

2. Approaches to Distributed Applications Design

2.1. Object Model

The foundation of Cronus is the object model IJones]. It provides the framework for both the
system itself and for application subsystems. System resources (processes, files, devices, etc.) are viewed as
abstract objects under the control of a manager process on some host in the Cronus cluster. Every object
is an instance of some abstract type, which defines the operations that may be invoked on it. All

operations on an object (hence all access to objects) are implemented through the object manager. All the
details of the operation's implementation are determined by its manager. To deal with operations where
no existiug object is involved, such as create, Cronus also has the notion of generic objects. Generic
objects are roughly equivalent to classes in Smalltalk [Goldberg], the exception being that not all objects
of a particular Cronus type are necessarily managed by the same process. Multiple managers of a given
object type commonly reside on different hosts in a cluster. This forms the basis of support for global
management of resources in Cronus; through manager to manager communication and cooperation.
Binding of a manager to an object for a particular operation is accomplished dynamically, through an
object location mechanism. Operations on objects may include parameters and may return results.

The object model forms the basis for:

* Communication. All Cronus interprocess communication (IPC) is cast in the form of
operation invocations and replies. Invocations may be synchronous (waiting for a reply) or
asynchronous, and may have one or many targets (using broadcast or multicast). Cronus IPC
is built on a set of message-passing primitives and standard protocols for services such as
reliable data transport.

" Location transparency. The manager for a referenced object may be located anywhere in the
cluster, and will be found in a uniform manner by the communications primitives. Cronus
objects are named by numeric unique identifiers that are valid anywhere and may have
symbolic names associated with them through a distributed hierarchical catalog.

0 Uniformity and conference. Cronus applications use the same mechanisms as "system"
components. Applicationis in Cronus may be structured as clients that use application-defined
objects and managers. Managers themselves may use the services of other managers of
diferent object types. Managers of the same object type may also cooperate to support more
complex abstract types (for example, file managers on different hosts may interact to
implement replication through a replicated file object).

* Access control and authentication. Access control is provided by the managers on a per-
operation basis. Since managers provide the only access to objects, through operations, the
object model provides a natural way of introducing access control.

Note that the object model, in Cronus, is a superset of the traditional client/server process model.
The client/server model often implies stateless transactions, or if state is maintained, it is kept on a per-
connection or per-process basis. Objects provide a convenient mechanism for r, aining and managing any
state information (called instance variables) that exists beyond the lifetime of an individual connection
between a client and a server. Similarly, communication in Cronus is a superset of the Remote Procedure

B-2

DOS-9

Call (RPC) style of communication. While operation invocation and replies can be cast as synchronous
procedure calls, they are not limited to RPC semantics. For example, Cronus IPC supports asynchronous
invocations and one-to-many semantics, as well as the one-to-one semantics of RPC.

The object model attacks the complexity problem by providing a framework in which to structure
new applications. Probably the most important feature in this framework is that types and operations
can be viewed at the appropriate level of abstraction, unconstrained by data representations or other
implementation details. Objects will generally correspond directly to real world entities whose behavior is
reasonably well understood. Design at this level then becomes primarily a mapping process.

It is also very important that the implementation of an object is completely encapsulated by its
managers, providing a clean separation between specification and implementation. This makes it easy for
implementations to change as development progresses, requirements change, or new resources become
available. In particular, it is very easy to build a simple Cronus manager around an existing non-
distributed resource (such as a special device or database), thereby opening access for a network of users.

In Cronus, a distributed application consists of both clients and managers. The same support
mechanisms that the object model provides for building managers also apply to client processes. In fact,
the distinction between clients and managers is not great, since managers may interact with other
managers as clients. We can then structure complex, distributed applications by combining clients and
managers that can themselves be, conceptually, relatively simple.

2.2. Other Issues

Several other aspects of distributed applications development add to their complexity but are not
directly addressed by the object model. These include programming language support, portability, and
the ability to develop applications for heterogeneous computers which may have different internal data
representations.

Many efforts to develop distributed systems have concentrated only on homogeneous environments
'LeBlanc,. Cronus supports heterogeneity directly by providing extensible standard encodements for
different data types and structures, a layer of protocol in the Cronus IPC for exchanging encoded data in
messages, and a set of library routines for manipulating encoded messages.

Cronus is designed to be independent of any specific programming language, though most of our
development has been done in C. This approach is in contrast to other projects, such as Argus [Liskov)
and Eden lAlmesi, which have taken a more specifically language-centered approach to distributed
systems development. The features of Cronus are accessed through subroutine library calls and
automatically generated code stubs. Support for multiple languages and simple interfaces to Cronus
facilities provide the developer with a familiar and comfortable environment. In large, complex
applications, different subparts may be more naturally implemented using different "specialized"
languages and hardware architectures (e.g., LISP machines, Fortran, array processors, multi-processors,
supercomputers, etc.).

B-3

DOS-90

Cronus has been designed for portability, to allow easy integration of new hosts. A Cronus
implementation consists of a kernel which implements the low level message passing communication
support and object-oriented IPC mechanisms; a set of "system" object managers, which provides basic
operating system functionality, such as files, access to I/O devices, etc; and a set of support tools to assist
in the creation of both clients and new object managers, including library routines for manipulating
encoded messages and for general programming tasks like queue management, string manipulation,

.encryption, cacheing, etc. Thus, to implement Cronus on a new host, one need only port the kernel and
the support library. Since all of these components are written in a higher level language (C) and facilities
for handling heterogeneity are included, porting Cronus to new machines is fairly easy. In fact, the
approach we have taken in implementing Cronus initially has been to run it as a client of the host's
native, or constituent, operating system, though varying degrees of integration are possible. The only
requirement for doing this is that the constituent operating system have support for multiple processes
and low level network transport facilities (e.g., TCP/IP).

In summary, Cronus provides support for distributed applications through its use of the object
model as a tool for functional decomposition and through the resulting client/manager model of
interaction. It provides easy-to-use tools and customizable components that can be used to structure new
applications. Its support for heterogeneity and multiple languages all help to reduce the complexity of
this task. In the following sections, we will show how these approaches relate to the design and 0
implementation of distributed applications.

3. Implementation Support Layers

The Cronus kernel consists of support for the object model through the object-oriented interprocess
communication facility and provision of processes for implementing Cronus object managers. The Cronus
IPC can be viewed as a layered system of protocols, including link, network, and transport layers
implemented with standard protocols (Ethernet, IP, UDP, and TCP are currently used, other protocols of
similar functionality could be easily substituted). Above these low-level communications layers are
Cronus-specific components that support standard data exchange formats for supporting heterogeneity
and a standardized interface for invoking operations on objects.

IPC in Cronus is built on process-to-process messages that form the basis for all Cronus operations.
In its simplest form, a Cronus operation consists of a request message sent from a client to an object. and
a reply message from the manager of the object sent back to the client. More complex operations may
involve several request/reply interactions among various managers. The primitive operations are send,
invoke, and receive. Send and receive are used to exchange messages between processes. Invoke is used to
perform an operation on an object. An invoke is delivered directly to the manager of a given object. For
more details on the architecture and implementation of Cronus IPC, see ISchantzi.

The message encodement layer is independent of the Cronus IPC and provides a canonical
representation for data exchanged by applications anywhere in the Cronus cluster. Message data is
encoded as a list of key/type/value triples. A key is associated with each value to reference it. Encoding
and decoding procedures for each data type depend on the local host's internal data representation.
External representations are defined for many common data types (e.g., integers and character strings)
and aggregates (arrays and structures). The mechanism is extensible to create user-defined or system-

B-4

A!-

DOS-90

specific data types. For example, Cronus unique identifiers and access control lists are represented by new
data types. Message data is order-independent; the only requirement is that the keys be unique. The
order-independent design allows messages to be modified and resent without data reformatting. The
programmer's interface to this layer is implemented as a set of library routines for message manipulation,

known as the Message Structure Library (MSL).

At the highest level, Cronus defines a set of standards for sending requests and replies between
clients and object managers. These standards allow interactions between clients and managers to be
structured as either synchronous or asynchronous. This layer, called the Operation Protocol (OP),

provides transaction identification, request, reply, and in-progress control and status messages.

As part of Cronus's support for developing object managers, there are also a set of standards for
implementing an object manager. These include common object operations (create, remove, etc.), which
support system-wide functions. For example, each manager is required to implement the report status
operation and return some abstract notion of status of the resource it manages. This status report is used
by a Monitoring and Control Subsystem to provide overall system monitoring of such statistics as
processor load, file capacity, etc. Other common operations include those to manipulate access control

lists. In addition, a tasking package is provided to allow managers to process requests asynchronously.
This is important, since managers may call on other managers for services in the course of performing an
operation and one manager may need to suspend processing of a request until a reply is received from the
other manager. During this time, it is necessary to allow other client requests to be processed.

This set of standards for implementing Cronus object managers is an important part of Cronus
applications support. First, since developing application-defined objects is central to the Cronus
philosophy of design, aids to the construction of new managers are a necessary tool for the programmer.
The standards for manager implementation form an interface between the "system" and the application-
one that can be crucial to the resulting form of the application code and one that has an significant effect
on performance. Second, as the standards for new manager construction become better defined, there are
opportunities for automating the generation of the common parts of new managers, hence reducing the
complexity and tedium of the task of coding them. We believe that automated manager development is a
useful new technique for distributed applications development; we will describe this approach in more
detail in the next section.

4. Building Applications

The task of developing Cronus applications consists of implementing clients which access existing
managers, and usually includes building one or more managers of application-specific objects. The
principal goal of automating the development of managers is to reduce the amount of code that the
developer must write which is not directly related to the application. The developer is then freed to
implement only those operations that pertain to his objects; all existing system services are easily
accessible without additional programming. The automated development technique also produces
subroutine-style interfaces for invoking operations on objects that can be used by clients.

B-5

-

DOS-go

Cronus object managers have a common framework that includes the overall control structure and
handling of parameter and reply messages. Our approach is to take non-procedural specifications of object

types and their operations (a message protocol) and to use a program to generate the internal data
structures, message parsing routines, and interfaces to the Cronus run-time environment. The application
developer provides the domain-specific operation processing routines that perform the actual function of
the manager. The generated code can be thought of as the glue between the developer's routines and
Cronus run-time support.

The automatically generated code includes facilities for operation-specific message parsing and
argument validation, conversion of arguments and instance variables to internal data formats that are
easy to manipulate, and the subroutine-style interface encapsulating operation invocations for clients.
These subroutine calls provide client access to the object managers through a simple, procedural interface

The run-time support includes facilities for request dispatching, access control checks, concurrent
servicing of multiple requests, and long-term storage management of object instance variables on disk.
This provides much of the overall control structure for the manager and assists the developer in managing
frequently performed tasks that can be hard to implement. For example, maintaining instance variables
is difficult in practice, due to the complexities of format conversion and secondary storage management.

The manager generation process is implemented in two phases. The first parses object type and
operation descriptions and stores them in an intermediate form in the protocol database. This database is
used by several back-end code generators in the second phase, which actually produces the code. The
output of the second phase includes the manager and client components described above.

4.1. Example: Software Distribution Manager

Throughout this section, we will refer to the Cronus Software Distribution Manager as an example.
This manager was built to assist in maintaining our system code, which currently runs in five different
constituent operating system environments on about 15 machines. A package consists of a collection of
source or executable files to be maintained at a collection of sites. One of these sites is designated
primary; updates applied to the file copies there will be propagated to those at other sites by the distribute
operation.

Though simple, we believe this example to be representative of potential applications in several
ways. First, the package (representing an individual software component) is an abstract entity at an
appropriate level to be dealt with by the user. Implementation details for the abstraction are hidden
within the manager, which totally controls coordination of the software distribution process. Second, each
object has a complex (variable length, multi-component) data structure associated with it. The
management of such data structures should be aided by the run-time support. Finally, the manager will
almost certainly evolve to incorporate additional facets of the software distribution process. It should be
easy to incorporate new operations and changes to existing ones into the manager.

B-6

0

DOS-9o

4.2. Protocol Specification

The first and most important step in the manager development process is the specification of the
message protocols for the new object types. This totally defines the interface visible to clients. The
specification is then processed by a program that parses it and stores it in an intermediate form for use in
the code generation phase. A (slightly) abbreviated definition for the Cronus type Package is given in

type Package
subtype of Object
rights are modifyfiles, modifysites, distribute;

generic operation Create (
KeyDescription: ASC;
KeyPrimary Host: EHOST;
KeyPrimary Directory: ASC;
optional Key IACLHints: array of EUID)

returns (Key ObjectUID: ELID)
requires create;

operation AddFile (KeyFileName: ASC)
requires modifyfiles;

operation RemoveFile (Key_FileName: ASC)
requires modifyfiles;

operation Distribute 0
returns (KeyNumberFilesUpdated: U161)
requires distribute;

variable cantype PKGVARIABLE
representation is PkgVariable:
record

description: ASC;
primarycopy: SITEDATA;
files: array of ASC;
sites: array of SITEDATA;

end PKGVARIABLE;

end type Package;
Figure 1. -

The specification can be divided into three parts. First is the definition of the type, Package. Its
parent in the type hierarchy, from which it inherits operations and access control information, is specified
(subtype of...). In this case, the Package type's parent is Object, the root of the hierarchy, where
operations common to all Cronus objects are defined. These include the basic create and remove
operations, as well as those used to support generic services, such as monitoring and control and access

B-7

DOS-90

control. Children in the hierarchy are also free to augment and redefine the features they inherit. Also
included in the type definition are the object's application-specific abstract access control rights (rights

are...) which are later bound to specific operations. Rights are also inherited from the parent type.

The second component of the specification is the definition of the operations that implement the
object type (operation...). Each operation may take arguments and is assumed to return a reply message
(returns...). For those operations where no reply is specified, a successful reply is sent by default when
the operation completes. The argument and reply messages are all specified in terms of keys and data
types defined by the message structuring layer. Also included are the access rights required for the
performance of the operation (requires...).

The third part of the specification is the definition of a new canonical data type that represents the
instance variables, or retained state, of the object that the manager must maintain (variable
cantype...). The new data type can be used for exchange between hosts over the network, and provides
a convenient format for storage and transmission of a complex data structure as a linear sequence of
bytes.

/

4.3. Operation Scenario

Once the protocols have been defined and processed, a program is run to generate the manager code
from the intermediate form produced in the specification phase. Its outputs include tables to drive the
dispatching/tasking mechanism, functions to parse and validate messages, type conversion routines, and
client subroutine interfaces for operation invocation. This section traces the processing of an operation,
from the client's invocation through the manager's reply.

When a client invokes an operation on an object, the named object is located and the invoke
message is sent to its manager by the Cronus kernel. This message includes the type, operation code, and
any arguments to the operation. The manager receives the message and creates a new task to service it.
It then verifies the operation code from the message and, assuming the operation code is legitimate,
retrieves a descriptor for the object from its private store (the object database). Not finding the descriptor
means that the object does not exist, and an error reply is returned to the client. The descriptor includes
the object's access control list as well as application-dependent data.

An access contrpl check is then made. Assuming access is allowed, the operation arguments are
converted into an internal representation by an automatically generated parsing routine that is specific to
the operation. This representation is dependent upon the language chosen to implement the processing
routines. The C structure for the arguments to the Create operation defined above is given in Figure 2,
which shows the arguments in their internal representation and flags for the presence of optional
arguments and the dimensionality of arrays. The parsing routines also verify the presence of required
arguments, and perform type checking.

If the parse is successful, processing of the operation begins. A buffer for the reply message is
allocated, and the operation processing routine is called. This is the first time the application developer's
code is executed. The actual amount of code written by the implementor to process an operation may be
quite small. The complete code to implement the RemoveFile operation for the Package object is given in

B-8

7I

DOS-2O

struct argpkgCreate
{

/* argmen. */

char *Description;

HOSTNUM PrimaryHost;
char *PrimaryDirectory;
UID *IACLHints;

struct

BOOL IACLHints;
} specified; /* optional argument flags */

struct
{

int IACLHints;
I dimensions; /* array dimesionality/

pkgRemoveFile (request, args)

struct RequestParms *request; /* generic header, object descriptor */

struct argpkgRemoveFile *args; /* operation arguments */
{

--YkgVariable *pkgdes;
int i, j;

pkgdes = (PkgVariable *)
getvardata (PKGVARIABLE, request->rp_objdes); /* get instance variables */

for (i - 0; i < pkgdes->nfiles; i++)

if (scmp (args->FileName, pkgdes->fileslil) == 0)
{

for (j = i-1; j < pkgdes->nfiles: j--,-) /' delete entry "/

pkgdes->filesj-1I) = pkgdes- >files j;
pkgdes->nfiles-;)]

putvardata (PKGVARIABLE, request->rp_objdes, pkgdes); /* update inhtance variables

Figure 3.

There are several observations to make about the software distribution manager example. First, the
definition of the object type is at a high level. Here, we consider such issues as abstract access rights,
operation arguments and replies, key names, and canonical data types. The details of the internal data
structure definitions, message formats, and the control structure of the manager are all generated

B-9

m I m - mm milm ml mm i 81 ammm l 7i I I

DOS-90

automatically. Second, many of the run-time details, such as operation validation, access control checks,
data conversion, type checking, task dispatching, and error handling, are also done automatically by the

run-time support. Third, and most important, the actual amount of code written by the application
developer is small and concentrates almost exclusively on accomplishing the specific task to be performed

by the manager. Thus, the programmer is free to concentrate on his problem, rather than on the details

of Cronus.

4.4. Implementation

As described above, automated manager generation consists of parsing the type specification and
producing the code. In addition to the manager and client code, the process results in tables for a

command level operation invoking tool which has proved extremely useful for debugging and for the

implementation of simple commands. Documentation suitable for user manuals is also generated in the
form of the message protocol specification (similar to Figure 1, but in a slightly cleaner format for ease of

understanding). Annotations may also be added to the protocol database to be generated as part of the

specification documentation [Sandsi.

The generated code includes five files: the dispatch tables for the operations, the parse routines for
the operation arguments, a header file that contains the arguments' internal structure definition (as in

Figure 2), the conversion routines for any canonical types that have been defined, and the client

subroutine interfaces for operation invocations. The programmer then supplies the specific operation

processing routines (as in Figure 3). To produce the manager, the first four files are compiled and linked

together with this supplied code.

Note that the programmer must know the naming conventions for the generated data structures
that are referred to in his code. Alternatively, a preprocessor could be used to translate operation

invocations in the client code to the proper Cronus run-time calls. This would have two disadvantages.

First, a new preprocessor would have to be supplied for each programming language. Second, the

specification would have to be re-processed with any change in the operation processing routines. This

could be time-consuming for complex specifications.

5. Conclusion

5.1. Experience

Cronus has been in limited operational use at BBN for a year. It has been used to support its own

software development. The BBN configuration consists of 15 hosts, including DEC VAXes running both

4.2BSD UNIX and VMS constituent operating systems, SUN Workstations, BBNCC C70 UNIX systems,

and several single-function Motorola 68000 microprocessor systems, called Generic Computing Elements

(used as file servers, authentication servers, and terminal access controllers). An additional cluster is

planned for installation in the near future at the Rome Air Development Center.

B-10

14

DOS-go

All of our current software is written in C, though some earlier implementation was done in Pascal.
We do not anticipate major problems in porting it to new languages (including retargeting of the manager
code generator). Most of our software is portable to all five of our current execution environments. We
have found it easy to relocate services as new machines and operating systems are integrated* into a
Cronus cluster.

A number of Cronus managers have been built to date. Initial development has centered on
managers which provide standard operating system services as building blocks for applications, including
several types of file managers, the catalog manager, process manager, and authentication manager. The
automated development software has been available for about five months. During this time it has been
used to build the authentication manager, the constituent operating system interface manager (which
allows constituent host files and directories to be manipulated as Cronus objects), the logging component
of the monitoring and control subsystem, and the software distribution manager. We plan to convert
other managers to use it in the near future.

The first application of the automated development technique was a rewrite of the authentication
manager. The new manager consists of about 1500 lines of programmer-specified C code, plus 1000 lines
of generated code and about 500 lines of library code implementing the common operations. Its
predecessor consisted of about 6500 lines of hand-coded Pascal. Currently, the processing of the
specification takes about one minute of elapsed time on a VAX 11/780 for the authentication manager,
which is typical. The code generation phase takes about 1.5 minutes. It is worth noting that the new
manager was done by one person in about two weeks, compared to several months for the original. The
new authentication manager has been in production use ever since and exhibits performance similar to the
original manager implementation.

5.2. Related Work

The object model has been successfully employed in a number of systems, most notably Smalltalk
!Goldberg] and Hydra jWulfj. We think the structure imposed (and opportunities for software leverage
thereby afforded) makes it easier to design and develop distributed applications than in systems based on
unconstrained communications between processes, such as the V Kernel !Cheriton]. We also think the
abstraction capabilities provided make it superior to a simple distributed filesystem approach, such as
Locus Walker', for many applications.

With respect to software production, our facilities are most likely to be contrasted with language-
based systems such as Argus [Liskov] and Eden jAlmes], and RPC-based approaches such as Cedar
'Birrell]. None of these have dealt with issues of heterogeneity (of hardware or software environments),
which is a cornerstone of the Cronus approach. We also feel that preserving as much as possible of the -
programmer's existing environment leads to faster development and greater integration of existing

resources.

-

DOS-90

5.3. Future Plans

We are pursuing new Cronus development in several areas. These include continuing to evolve and

apply our automated production technique to new managers and applications areas: investigating
strategies for resource management, survivability through resource replication, and transaction

management; and integrating new architectures, such as multiprocessors and symbolic processors. Our
-efforts in supporting Cronus for operational use include installation of additional clusters at other sites,

and work in performance measurement and enhancement. Finally, we believe that the best way to

evaluate and evolve a system is to use it. This process is taking place through both our own use of
Cronus for continued software development and its use in building command and control applications

lBeretsj.

Acknowledgments

We wish to acknowledge the ideas and energy of our colleagues at BBN Laboratories and elsewhere
who contributed to the design and irnp nentation of Cronus; in particular, for the applications support

aspects we thank Dr. William MacGrego, Robert Walsh, Richard Sands, and Dr. Benjamin Woznick. We
also acknowledge our sponsors at the Rome Air Development Center, Thomas Lawrence and Richard

Metsger, who provided support and assistance for the development of Cronus.

Referenc es

lAlmes! G. Almes, A. Black, E. Laszowska, and J. Noe, "The Eden system: A technical review," IEEE
Trans. on Software Engineering, vol. SE-1i, no. 1, Jan. 1985, pp. 43-59.

[Berets' J. Berets, R. Mucci, and R. Schantz, "Cronus: A Testbed for Developing Distributed

Systems," in process.

IBirrell. A. Birrell and B. Nelson, "Implementing remote procedure calls," ACM Trans. on Computer

Systems, vol. 2, no. 1, Feb. 1984, pp. 39-59.

Cheritonj D. Cheriton and W. Zwaenepoel, "The distributed V kernel and its performance for diskless
workstations." Proc. 9th Sympotium on Operating Systems Principles, ACM. Oct. 1983. pp.

129-140.

[Goldberg] A. Goldberg and D. Robson, SmaLitalk-80: The Language and its Implementation. Reading,
MA: Addison-Wesley, 1983.

IJonesi A. Jones, "The object model: A conceptual tool for structuring software," in Lecture Notes in

Computer Science, Vol. 60. Berlin: Springer-Verlag, 1978.

!LeBlanc' T. LeBlanc, R. Gerber, and R. Cook. "The StarMod distributed programming kernel,"
Software Practice and Experience, vol. 14, no. 12, Dec. 1984, pp. 1123-1139.

!Liskov" B. Liskov, "On linguistic support for distributed programs," IEEE Trans. on Software

B-12

DOS-90

Engineering, vol. SE-8, May 1982, pp. 203-210.

!Sands. R. Sands, ed., "The Cronus User's Manual," BBN Technical Report.

ISchantz] R. Schantz, R. Thomas, G. Bono, "The Architecture and Implementation of the Cronus
Distributed Operating System," in process.

[Walker] B. Walker, G. Popek, R. English, C. Kline, and G. Theil, "The LOCUS distributed operating
system," in Proc. 9th Symposium on Operating Systers Principles, ACM, Oct. 1983, pp. 49-69.

,Wulf! W. Wulf, E. Cohen, W. Corwin, A. Jones, R. Levin, C. Pierson, and F. Pollack, "HYDRA:
The kernel of a multiprocessor operating system," Comm. ACM, vol. 17, no. 6, June 1974, pp.
337-345.

B

0

B-13

_ i

Report No. 5991 BBN Laboratories Inc.

Appendix C

RFC 947: Multi-network Broadcasting within the Internet

0

A9i

Network Working Group Ken Lebowitz
Request for Comments: 947 David Mankins

BBN Laboratories

Multi-network Broadcasting within the Internet

1. Status of this Memo

This RFC describes the extension of a network's broadcast domain to
include more than one physical network through the use of a broadcast
packet repeater.

The following paper will present the problem of multi-network
broadcasting and our motivation for solving this problem which is in
the context of developing a distributed operating system. We discuss
different solutions to extending a broadcast domain and why we chose
the one that has been implemented. In addition, there is information
on the implementation itself and some notes on its performance.

It is hoped that the ideas presented here will help people in the
Internet who have applications which make use of broadcasting and
have come up against the limitation of only being able to broadcast
within a single network.

The information presented here is accurate as of the date of
publication but specific details, particularly those regarding our
implementation, may change in the future. Distribution of this memo
is unlimited.

2. The Problem

Communication between hosts on separate networks has been addressed
largely through the use of Internet protocols and gateways. One
aspect of internetwork communication that hasn't been solved in the
Internet is extending.broadcasting to encompass two or more networks.
Broadcasting is an efficient way to send information to many hosts
while only having to transmit a single packet. Many of the current
local area network (LAN) architectures directly support a broadcast
mechanism. Unfortunately, this broadcast mechanism has a shortcoming
when it is used in networking environments which include multiple
LANs connected by gateways such as in the DARPA Internet. This
shortcoming is that broadcasted packets are only received by hosts on
the physical network on which the packet was broadcast. As a result,
any application which takes advantage of LAN broadcasting can only
broadcast to those hosts on its physical network.

We took advantage of broadcasting in developing the Cronus
Distributed Operating System 11]. Cronus provides services and
communication to processes distributed among a variety of different

Lebowitz & Mankins [Page 1]

C-1

RFC 947
Multi-network Broadcasting within the Internet

types of computer systems. Cronus is built around logical clusters
of hosts connected to one or more high-speed LANs. Communication in
Cronus is built upon the TCP and UDP protocols. Cronus makes use of
broadcasting for dynamically locating resources on other hosts and
collecting status information from a collection of servers. Since
Cronus's broadcast capabilities are not intended to be limited to the
boundaries of a single T.AN. we needed to find some way to extend our
broadcasting domain to include hosts on distant LANs in order to
experiment with clusters that span several physical networks. Cronus
predominantly uses broadcasting to communicate with a subset of the
hosts that actually receive the broadcasted message. A mu'ticast
mechanism would be more appropriate, but was unavailable in some of
our network implementations, so we chose broadcast for the initial W
implementation of Cronus utilities.

3. Our Solution

The technique we chose to experiment with the multi-network
broadcasting problem can be described as a *broadcast repeaterb. A
broadcast repeater is a mechanism which transparently relays
broadcast packets from one LAN to another, and may also forward7
broadcast packets to hosts on a network which doesn't support
broadcasting at the link-level. This mechanism provides flexibility
while still taking advantage of the convenience of LAN broadcasts.

Our broadcast repeater is a process on a network host which listens
for broadcast.packets. These packets are picked up and
retransmitted, using a simple repeater-to-repeater protocol, to one
or more repeaters that are connected to distant LANs. The repeater
on the receiving end will rebroadcast the packet on its LAN,
retaining the original packet's source address. The broadcast
repeater can be made very intelligent in its selection of messages to
be forwarded. We currently have the repeater forward only broadcast
messages sent using the UDP ports used by Cronus, but messages may be
selected using any field in the UDP or IP headers, or all IP-level
broadcast messages may be forwarded.

4. Alternatives to the Broadcast Repeater

We explored a few alternatives before deciding on our technique to
forward broadcast messages. One of these methods was to put
additional functions into the Internet gateways. Gateways could
listen at the link-level for broadcast packets and relay the packets
to one or more gateways on distant LANs. These gateways could then
transmit the same packet onto their networks using the local
network's link-level broadcast capability, if one is available. All
gateways participating in this scheme would have to maintain tables

Lebowitz & Mankins [Page 2]

C-2

RFC 947
Multi-network Broadcasting within the Internet

of all other gateways which are to receive broadcasts. If the
recipient gateway was serving a network without a capacity to
broadcast it could forward the messages directly to one or more
designated hosts on its network but, again, it would require that
tables be kept in the gateway. Putting this sort of function into
gateways was rejected for a number of reasons: (a) it would require
extensions to the gateway control protocol to allow updating the
lists gateways would have to maintain, (b) since not all messages
(e.g., LAN address- resolution messages) need be forwarded, the need
to control forwarding should be under the control of higher levels of
the protocol than may be available to the gateways, (c) Cronus could
be put into environments where the gateways may be provided by
alternative vendors who may not implement broadcast propagation, (d)
as a part of the underlying network, qateways are likely to be
controlled by a different aqency from that controlling the
configuration of a Cronus system, adding bureaucratic complexity to
reconfiguration.

Another idea which was rejected was to put broadcast functionality
into the Cronus kernel. The Cronus kernel is a process which runs on
each host participating in Cronus, and has the task of routing all
messages passed between Cronus processes. The Cronus kernel is the
only program in the Cronus system which directly uses broadcast
capability (other parts of Cronus communicate using mechanisms
provided by the kernel). We could either entirely remove the Cronus
kernel's dependence on broadcast, or add a mechanism for emulating
broadcast using serially-transmitted messages when the underlying
network does not provide a broadcast facility itself. Either
solution requires all Cronus kernel processes to know the addresses
of all other participants in a Cronus system, which we view as an
undesirable limit on configuration flexibility. Also, this solution
would be Cronus-specific, while the broadcast-repeater solution is
applicable to other broadcast-based protocols.

5. Implementation

The broadcast repeater is implemented as two separate processes - the
forwarder and the repeater. The forwarder process waits for
broadcast UDP packets to come across its local network which match
one or more specific port numbers (or destination addresses). When
such a packet is found, it is encapsulated in a forwarder-repeater
message sent to a repeater process on a foreign network. The
repeater then relays the forwarded packet onto its LAN using that
network's link-level broadcast address in the packet's destination
field, but preserving the source address from the original packet.

When the forwarder process starts for the first time it reads a

Lebowitz & Mankins [Page 3]

c-3

RFC 947
Multi-network Broadcasting within the Internet

configuration file. This file specifies the addresses of repeater
processes, and selects which packets should be forwarded to each
repeater process (different Lepeaters may select different sets of
UDP packets). The forwarder attempts to establish a TCP connection
to each repeater listed in the configuration file Tf a TCP link to
a repeater fails, the forwarder will periodically retry connecting to
it. Non-repeater hosts may also be listed in the configuration file.
For these hosts the forwarder will simply replace the destination
broadcast address in the UDP packet with the host's address and send
this new datagram directly to the non-repeater host.

If a repeater and a forwarder co-exist on the same LAN a oroblem may
arise if the forwarder picks up packets which have been rebroadcast
by the repeater. As a precaution against rebroadcast of forwarded
packets ("feedback" or 'ringing"), the forwarder does not connect to
any repeaters listed in its configuration file which are on the same
network as the forwarder itself. Also, to avoid a broadcast loop
involving two LANs, each with a forwarder talking to a repeater on
the other LAN, forwarders do not forward packets whose source address
is not on the forwarder's LAN.

6. Experience

To date, the broadcast repeater has been implemented on the VAX
running 4.2 BSD UNIX operating system with BBN's networking software
and has proven to work quite well for our purposes. Our current
configuration includes two Ethernets which are physically separated
by two other LANs. For the past few months the broadcast repeater
has successfully extended our broadcast domain to include both
Ethernets even though messages between the two networks must pass
through at least two gateways. We were forced to add a special
capability to the BBN TCP/IP implementation which allows privileged
processes to send out IP packets with another host's source address.

The repeater imposes a fair amount of overhead on the shared hosts
that currently support it due to the necessity of waking the
forwarder process on all UDP packets which arrive at the host, since
the decision to reject a packet is made by user-level software,
rather than in the network protocol drivers. One solution to this
problem would be to implement the packet filtering in the system
kernel (leaving the configuration management and rebroadcast
mechanism in user code) as has been done by Stanford/CMU in a UNIX
packet filter they have developed. As an alternative we are planning
to rehost the implementation of the repeater function as a
specialized network service provided by a microcomputer based

Lebowitz & Mankins [Page 41

C-4

RFC 947
Multi-network Broadcasting within the Internet

real-time system which is already part of our Cronus configuration.
Such a machine is better suited to the task since scheduling overhead
is much less for them than it is on a multi-user timesharing system.

7. Reference

(1] *Cronus, A Distributed Operating System: Phase 1 Final Report",
R. Schantz, R. Thomas, R. Gurwitz, G. Bono, M. Dean,
K. Lebowitz, K. Schroder, M. Barrow and R. Sands, Technical
Report No. 5885, Bolt Beranek and Newman, Inc., January 1985.
The Cronus project is supported by the Rome Air Development
Center.

8. Editors Note

Also see RFCs 919 and 940 on this topic.

Lebowitz &Mankins [Page 5]

C-5

MISSION

of

Rome Air Development Center

RADC plans and executes research, development, test and

selected acquisition programs in support of Command, Control,

Communications and Intelligence (C31) activities. Technical and

engineering support within areas of competence is provided to

ESD Program Offices (POs) and other ESD elements to
perform effective acquisition of C3 ! systems. The areas of

technical competence include communications, command and

control, battle management information processing, surveillance

sensors, intelligence data collection and handling, solid state

sciences, electromagnetics, and propagation, and electronic

reliability/maintainability and compatibilitq.

1t

