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The clectron photon transport code ITS has many applications in the physics and
medical industries. The code was originally intented for use in determining particle
transport in thick materials. The code breaks down for very thin targets because the
multiple scattering approximation used to determine the electron deflection angles for
thin steps is inadequate. A method of correction has been developed by Tom Jordan
and Joseph Mack which combines a small angle approximation theory to the multiple
scattering and an explicit large angle treatment based on a Poisson distribution. This
method has been validated against several experiments with great success. The multiple
scattering theory of Moliere has also been incorporated into a correction scheme and
shows good agreement with experimental data.
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1. INTRODUCTION

Particle transport dates back to the days of Lord Rutherford when the scattering of
electrons through thin foils changed our view of the nature of matter. Today particle
transport through matter is itself an industry. From determining the radiation damage
effects on satellites in space to calculating the energy spectrum of medical x-ray ma-
chines, particle scattering is an important part of the science industry. In the past only
rigorous experimention provided scattering information for the scientist. Today with the
aid of high speed computers and a better understanding of the various particle inter-
actions, computational results can be easily obtained. Computer programs which model
the transport of particles through matter were developed around 1968. M. Berger and
S. Seltzer at the National Bureau of Standards developed the first general electron and
photon transport code called ETRAN. From 1970 to 1981 eleven codes based on the
ETRAN model were developed, and in 1984 eight of these codes were combined into
single code package called the Integrated Tiger Series (ITS). The eight codes differ in
dimensional geometry and two of the codes include transport in macroscopic electric and
magnetic fields [Ref. 1: p. 6].

Electron and photon transport computer codes such as ETRAN were originally de-
veloped to study the manner in which radiation scatters through thick materials.
Quantities such as energy deposition and angular deflection are calculated using various
Monte Carlo schemes. Such schemes are based on condensed case histories. that is. a
particle’s energy, direction. and position are calculated at discrete intervals rather than
continuously as the particle traverses the medium. Probability distribution functions
based on this interval are then used to determine the state of the particle after each step.
This scheme has been very successful in the study of thick target particle transport.
Recently, these transport codes have been applied to very thin foils for transition radi-
ation research. Discrepancies in the angular distribution of the transmitted electrons
resulted which indicate an apparent break-down in the code calculation of the multiple
scattering.

The multiple scattering distribution is based on a substep size which is calculated
from the particles radiation length and the target material density. Berger [Ref. 2: p. 143]
has pointed out three advantages for small step sizes, two of which affect the angular
distribution of the particles. If the step size is small, the majority of the scattering is
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done within the material and boundary eflects need only be calculated in the partial
substep at the escaping edge. The scattering in the partial substep will have a small
impact on the total angular deflection so that crude approximations to the multiple
scattering can be used for this region. The net angular deflection within a substep is so
minimal that multiple scattering theories with this restriction are applicable. For thick
materials where the number of collisions is large, these assumptions are valid. The ma-
jority of the scattering is done within the boundary of the material and the overall dis-
tribution is calculated in this region. The number of collisions in the final substep is so
small that their contribution to the overall angular distribution is minimal. However, for
very thin materials, where the thickness is less than the substep size, the entire scattering
distribution is determined from the crude approximation.

The number of collisions presents another problem in the calculation cof the angle
deflection. Small angle approximate muitiple scattering theories ignore the large angle
calculation because if the number of collisions is large the majority of the scattering will
be small angle scattering. For very thin materials the number of collisions can be so
small that an occasional large angle scatter can make a large contribution to the overall
angle distribution. It is therefore necessary to develop the large angle scattering dis-
tribution along with the small angle profile.

The Integrated Tiger Series of coupled photon and electron transport codes «118)
were originally developed for thick material transport. When the ITS code for cvlindni-
cal geometry (CYLTRAN) wus used for very thin free standing foils, the angular dis-
tribution of the transmitted clectrons had broader Gaussian forms then that ol the
available experimental data. The nced for a correction to the multiple scattering dis-
tribution for very thin materials existed, and scveral methods of solution were consid-
ered.

The best method of correction would be an explicit treatment of the scattering bascd
on the scrcened Rutherford cross section whereby each electron collision deflection angle
is calculated as the particle is stepped through the material. Although this method
would give very accurate results the time inefliciency makes it impractical for computer
programing. Any other treatment would require a theory of multiple scattering to de-
termine the angular distribution. The five principle works on the subject are by Williams
[Ref. 3). Goudsmit-Saunderson [Ref. 4], Moliere {Ref. 5]. Synder-Scott [Rel. 6}, and
Lewis [Ref. 7). The theorics at a glance seem as diverse as the random processes
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themselves; however, in the limit of small angles they are essentially the same. A brief
history of the evolution of these theories will serve to amplifv this point.

When charged particles are incident on a slab, the distribution of the scattered par-
ticles is described by the well-known Boltzman integro-differential equation. Bothe [Ref.
8: p. 11) showed that in the limit of small angles, this equation transforms into a
Fokker-Planck tvpe diffcrential equation. Although his own theory of multiple scatter-
ing was flawed with inexact boundary conditions and approximations, the Bothe-
Fokker-Planck general form for the distribution would become the standard form for all
small angle approximation theories which would follow.

Williams was the first to utilize the Fokker-Planck equation successfully. Although
his expression for the angular deflection showed agreement with the experimental data
of the time, his theory would be overshadowed by the historic Goudsmit-Suunderson
theors which was published onc vear later.  The Goudsnut-Saunderson theory waus an
exact treatment based on a Legendre polynominal expansion and was vahd for all angles.
The theory was evact except for the assumption of equal path lengths.

Almost a dewade followed before another theory of muduple scattening was pub-
lished, and that was the theory of Moliere. Mohere used small angle approxunations to
tran<form the standard transport equation into a form which resembled diflusion. He
then expanded the resulting expression in terms of an iteration constant to evaluate the
distribution. The Moliere theory showed great igreement with experimiental Jata, es-
peaially for thin matenals, and is the standard theoretical comparison for all scattering
evperiments todav.  Another smuil angle app:ronimauon shortly followed by Synder-
Scott which effectively derived the Mohere integral equation {rom a standard ditlusion
cquation. A vear later Lewis showed that the integro-difterential equation for smull
angles conformed to the Sinder-Scott expression.  Finally Nigam. Saunderson. and Ya-
You Wu [Refl. 9: p. 1092] showed the equivalence of the Molicre and the Goudsmit-
Saunderson theor) in the limit of small angles.

In the present paper, we are concerned with scattering in very thin materials, where
the scattering angles are small. Therefore the small angle approximation theories of
Williams and Moliere are appropriate. Even with the best possible multiple scatiering
theory, the question of large angle deflections still remains. With very thin materials the
number of collisions is so small that the occasional large angle scatter makes a signif-

icant contribution and cannot be ignored.
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A method of solution has been developed by Thomas Jordan and Joseph Mack
which combines the small angle theory of Williams and an explicit treatment of the large
angle scattering. Chapter two will outline the theories of Williams, Goudsmit-
Saunderson. and Moliere. Chapters three and four will describe the multiple scattering
algorithm in the existing ITS code CYLTRAN and the correction scheme by Jordan-

Mack.
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1. THEORY
A. WILLIAMS

The particle scattering tlleo;'}' by EJ. Williams was the first theory to properly use
the Fokker-Planck equation. As pointed out by Bothe [Ref. 8: p. 164] a particular sol-
ution to the Fokker-Planck equation for multiple scattering has a Gaussian form.
Williams states the same relation with reference to the general theory of errors. The
difference between Bothe and Williams is that Williams limited the scattering angle to a
finite value. In addition Williams set the cosine of the scattering angle equal to unity,
whereas Bothe kept the cosine term in his solution of the scattering cross section.

To determine the multiple scattering distribution function Williams defined a limit-
ing angle ¢, such that on the average the particle would deflect once through an angic
greater than ¢, while traversing the material. This can be written by setting the number

of collisions in the back region equal to unity:

J'Pu,‘nddml (3.1
@)

where P(@) is the collision cross section. Since virtually all the scattering is done at an
angle less then ¢, an approximation to the total distribution can be found by considering
the deflections in this region. Williams showed that from the gencral theery of crrors.
the probability of scattering into an angle 2, . of a particie due to collisions which are less

than ¢, can be represented by a Gaussian of the forn:

p 2\ en| 22 -
W(x,) day = i exp -E‘— dx, (3.2)
i

where @i is the arithemetic mean value of x, and is given by:

&y
cH --;}f ) (3.3)
0
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This general form of the theory is a good approximation to the multiple scattering:
however, when Williams derived it he used the unscreened Rutherford cross section with
the small angle approximations 2sin!26 ~ @ , and cos !28 ~ 1 which resulted in:

dnN1Z%6* )

P(p) = MCFES (3.4)

where N is the number of scattering atoms, t is the thickness of the scatterer. Z is the
charge of the particle, M is the mass of the particle, § = (v/c). and ¢ = (\—IT[_K?)". In
addition, he further modified 32 by an approximation to take into account the screening
of the atomic electrons. To graph his distribution Williams defined a unit of angle which
would become the "natural” angle for several papers on multiple scattering. The angle
is given by:

,_
2
o

Nt

Originally. Williams was concerned with thick targets, fast particles. and unit charges.
In his second paper he modified 3i 1o avoid second-order approsimations he used in the
original derivation. This modification extended his theory to thinner targets (0.01 ¢m).

B. GOUDSMIT-SAUNDERSON

The multiple scattering theory of Goudsmut-Saunderson 1s often guoted as an “ey-
act” theory and in the development of the most gencral form of the theery no assumyp-
tions or appronimations are used. However, in the derivation of the collision cross
section an assumption of small angles and equal path lengths is asserted such that the
resulting distribution is a small angle approximation. The theory is founded in the basic
Legendre polynomial property that the average value of any polvnomial after n events
is equal to the average value of the polynomuals after one event to the n* power:

< Pl cos0) >, = < P,( cos 0,1 >, (361

where # is the final scattered angle after several collisions. and @, is the scattered angle
after one collision. The total average of any Legendre polvnomial can be written as:

‘od
~3
~——

G = E"'(n) < Py(cos8,) >0 (
n=G



The scattering distribution is then given by summing all these averages per unit solid
angle:

) === > 21+ 1)GP( cos 0) (3.8)

The collision probability can be represented by a Poisson distribution which has func-
tional dependence on the total collision cross section p , and the thickness of the
scatterer t:

c-( n

n

V) = 0= et Nt (3.9)
This expression would be exact if the true path length were equal to the foil thickness,
and for small deflections this assumption is quite valid.

The evaluation of the Goudsmit-Saunderson theory has been developed extensively
by Spenser [Ref. 10] and Berger [Ref. 2: p. 207]. The Goudsmit-Saunderson multiple
scattering distribution is given by Berger as

-~

Agstw) = zu + ':i)exp [ - J"G‘,{s'; ds']!’,( Cos v1) 2.1
imt ¢

The expansion coetlicients G are given by

(ii-l:.\'j‘al(ijil = P{cos 0); sin 0 a0 (3.1h
D

where o1¢) is the screencd Rutherlord cross section which has the form:

1,4
o18) = =it , 312
PVl =cos @+ 2y)°
n='ey; a1y

The constant yx? is Moliere's screening angle and is given by equation (3.21). To solve
equation (3.10), recursion relations are developed so that a large number of exparnsion
coefTicients can be calculated. Berger [Rel. 2: p. 213] shows that a convenient form of
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the distribution for random sampling can be found by replacing the Legendre -
polynomials P{ cos w) by the relation:

H{ cos w)=J~l Pfx) dx (3.14
cos w
with the recursion relations:
Hy=1-cosw (3.13)
H, = '3(1 = cos’w) (3.16)
I+ =0Cl=1)coswH_,~(I-2)H,_, 122 (3.17)

This method of solution to the Goudsmit-Saunderson theory is used in the 118 code
system for the multiple scattering within the material.

C. MOLIERE

Moiicre takes a diflerent approach in that he explicitly starts his theory with the
assumption that all scattering angles are small. such that the standard transport
equation reduces to an eaxpression which resembles diflusion in a plane:

—Ic‘%’l = —.\}Iti.ctjc(z;; dy + .\'jj((ir.l)n‘/\ dN\ KRR
where a1 y) is the differential scattering cross section. N is the number of scattering atoms
per e’ 0, = — 4 is a vector representing the direction of the electron before the last
scatter, N = 7, do; 2z . and f10.1) is the scattering angular distribution. A [ourier
(Besseh transformation which is given in great detail in Bethe's paper produces the an-
gular distribution function of the form:

SO, nm J‘xq dnJ(n8) x exp [ -.\'ljxa(l)z dyil = Jnpt] RARE
0 0

where J,(#0) and J 5 ) are bessel functions of the zeroth order. Moliere takes the theory
a step further by transforming his equation into an expression which depends on two
angles y? and 72




The transformed Moliere multiple scattering distribution function then takes the fol-
lowing form:

N6 db = /. ds f x}- dyJ (/) exp [ Lyl =b + In tay)] (3.20a)
0
.8
L= (3.200)
67.( 2
b = In( Te ) (3.20¢)
y=xn (3.20d)

The first angle is the screening angle, 3. which describes the scattering atom and is
derived from the specific form of the given scattering law:

2.2 L
- ‘,",-( ) 73 y - 7 2
y = 1134370 %= [ 3.2
Ya [ o :l[ (555 % 137) ] [' 13+3 "’[ 135 ” 3.20)

In Moliere's original paper, he uscd the Thomas-Jernu potential for the single scattering

law. Since this form does not contain the Born approximation only elastic collisions
against the Coulomb field of the nucleus was considered.  Fano {Ref. 11: p. 117} showed
that the correction due to the inclastic collision with atomic electrons consisted of re-
placing Z° by Z(Z+ 1) and adding an additional term to Moliere’s constant b:

b= Inl %— F o (Z+ 17 I (016027 T(1 + 3.33Z6% )] - o (3.2
T
where ¢ is an integral over an incohierent scattering function whose value is about -3.0.
Berger [Ref. 2: p. 207, extrapolates this constant [or several materials which are shown
in Figure 1 on page 10.

The second angle is a unit probability angle. y2. which is a mcasure of the foil
thickness and states that the total probability of a single scatter at an angle greater than
1. is equal to one.
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This "natural” unit of angle was first determined by Williams in his theory of multiple
scattering. The unit probability angle is given as:

AaN1e* Z2(Z + 1):2 .
y= (3.23)

vy

To solve the transformed equation Moliere then defines an iteration constant B, and
expands the integral in terms of a power series in 1:8,:

B,, = b + InB,, (3.29)
N10)0 d6 = & L&) + B, 'S (&) + B S (5 + .. ] (3.2
where
=t (2.20)
¢B,

Moliere’s theory is valid for small angles less than thirty degrees [Rel. 12: p. 1230]. His
theory ciun be extended to larger angles by the introduction of a multiplication factor.
sin /6, into the overall angular function as suggested by Bethe [Ref. 12: p. 1263}
The first order approximation to the Moliere angular distribution with the correction
just mentioned has the following form:

/. e
, fan A o -
f or:\/ ~6 ¢ 1B, (3.27)

This represents the Gaussian term for multiple scattering. Higher order terms are
somewhat more diflicult to calculate and impractical to program. Bethe indicates that
when the scattering is less than two degrees, the second term £, represents a ten percent
correction to the Gaussian first term. [Ref. 12: p. 1260]

Since we are concerned with only very thin distances where the scattering is mostly

in the forward direction the first term will represent a good approximation to the multi-
ple scattering.
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HI. ITS (CYLTRAN)

The ITS code CYLTRAN is the transport code for cylindrical geometry. A com-
plete description of the code system is provided in Appendix B. CYLTRAN uses two
methods for determining the multiple scattering distribution of the electrons. When the
scattering is done within the material, and within a full substep interval, a subroutine
named “MULT" is called to calculate the scattered angle of the electron. Subroutine
MULT uses the Goudsmit-Saunderson theory to determine the scattering distribution.
For scattering in the final partial substep at the escaping edge of the material, a sub-
routine named "ANGLE" is called. ANGLE uses a crude approximation to the multiple
scattering which is described in detail in Appendix C. Both methods hinge around the
substep size which depends on the scattering material. The substep size is calculated by
the equation:

DRA NGE

Deperep = SUSUB) (4.1)

where D,y is the mean {ree path of the incident electron (g cm?), ISUB is the number
of substeps per interval, and p is the material densitv. The scattered angle of the incident
electron is then calculated after each substep from the Goudsmit-Saunderson distrib-
ution. In a cross section generating program XGEN, the average cosines based on the
same substep size given in the equation above, are calculated and stored in an output
file. CLYTRAN reads in these stored cosine averages. In a subroutine named MULT
the angle distribution is formed using up to 240 Legendre polynominals with the cosine
averages. Scattered angles are then drawn from the distribution for each incident
electron after each substep. This process works fine until the final substep at the mate-
rial boundary where the distance from the last full substep to the escaping edge is less
than the substep size. In this region the cosine averages calculated by XGEN are no
longer valid and the Gou Ismit-Saunderson distribution can not be used. To determine
the scattering angle distribution a crude approximation to the multiple scattering is used.
The approximation is made in a subroutine called ANGLE. ANGLE is called whenever
the distance from the last full substep to the escaping edge is less than the substep size.

12
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The crude approximation is based on Williams” Gaussian expression:

2 1—-cosd
S8)oc exp(-gg—>~exp[( 205 )] (4.2)

m
where o is calculated from the relation:

SHD

a=(l—-<cosf>) D..,
substep

(4.3)
The average cosines are given by the program XGEYXN, and SHD is the distance from the
last full substep to the escaping edge. For thick foils this approximation is reasonable
because it has very little effect on the total distribution which is calculated from several
Goudsmit-Saunderson calculations within the material. For very thin foils where the
thickness is less then the step size, the entire angular distribution is determined by this
crude approximation. It is therefore necessary to develop a better approximation to the
multiple scattering in the final partial substep.

13
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1V. THE JORDAN-MACK CORRECTION

A correction to the multiple scattering distribution which uses the Williams small
angle approximation theoryv and an explicit treatment of large angle scattering has been
developed by Thomas Jordan and Joseph Mack. The major difference between the
Jordan and Williams solution is that Jordan uses the Goudsmit-Saunderson expression
for the screened Rutherford cross section whereas Willlams used the original Rutherford
cross section. The Goudsmit-Saunderson expression is given by:

2’72 sin 0 40

do = > (5.1
PV (1 —cos 8+ 1963)° )

where 6} is Moliere’s screening angle y2. The mean square angle for single scattering is
then defined by integrating the average angle over the cross section in the forward re-
gion:

wi=Nt| 6 do (3.2)

where 8, is defined as the maximum angle such that the probability of a scatter greater
than @, is exactly one. Zerby and Keller [Ref. 13: p. 202] state the same rclation in their
discussion of Moliere's theory, where they assert that the scattering angle must be re-
stricted to exclude large angles for which Moliere’s theorv breaks down. To accomplish
this, they suggest choosing an angle 0, such that on the average onc large scatter will
occur in an angle larger than 8, . This method was first derived by Williams almost 27
vears earlier. The small angle approximation is then assumed in the form:

6% = 2(1 — cos 6) (3.3)
and the resulting mean square angle is given by:
2 . [é g
w' =2Nt| (1 —cos8)ds (3.4

0
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Equation (3.4) can casily be integrated into the following form:
w' = rlra—Inyg—11 (5.3)

where y2<=y/(1 —u.,+n), po=cos @, , and n = 1260} = 2y} . See Appendix B [or the
complete proof. The term (1 — u + y) can be found from the condition that one scatter
will occur in the back region:

‘r do =1 (3.6)
2

and upon integration it yields:

With the mean square angle completely determined. the Gaussian form of the distrib-

ution is known:

-t

Joce 2 3.8y
To extend this relation to larger angles the multiplication factor | sin 8;6 as suggested
by Bethe [Ref. 12: p. 1263] for Moliere’s theory can also be incorporated into the previ-
ous equation so that the final distribution function has the forn:

2

't.

find = -
\V m(; € o (5.9)

FH8)or

For a given electron scatter through a material distance t, the small angle deflection can
be determined from the distribution function F(8) : however. the large angle deflection
must also be determined. To accomplish this, a Poisson distribution function is con-
structed whereby each term represents the probability of a large angle scatter:

p == (3.10)
where m is the probability of a single event. Since the expected number of collisions in

the back region, (6 > 6,) has been set to unity, the probability of a single event is equal
to one, (i.e. m=1). A random number can then be drawn and the probability of each

15
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individual large angle scatter subtracted from it until the remaining probability is less
than or equal to zero. For each large angle scatter an explicit random angle determi-
nation is done based on the collision cross section. The Poisson distribution can only
be used when the scattering probability is small and constant as in the case of very thin
foils. 1f the foil is too thick or the energy of the incident electron is too small, then the
probability of large angle scattering will increase and Poisson statistics will not properly
described the distribution.

Thus the multiple scattering has becn decoupled into small and large angle scatter-
ing. This technique hinges around the angle parameter 6, , the maximum angle for
which one large scatter will occur at an angle greater than ,. In the case of ultra thin
foils or very high energy electrons it may not be possible to have a large angle scatter.
In this case cos 6,, turns out to be greater than one! Therefore it is necessary to calculate
the angle deflection by the explicit Poisson treatment for all collisions within a step size.
For this case the probability of a single event m is equal to the total collision cross sec-

tion integrated over all angles:

n = .\‘1_[" da (311
0
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V. RESULTS

The Moliere and Jordan-Mack correction schemes were programed into the ITS
code CYLTRAN by inscrting a call statement in subroutine ANGLE. This statement
calls a new subroutine ANGDET (ANGIle DETermine) which contains the correction
schemes. When the distance from the last full substep to the escaping edge is less than
the substep size, ANGLE is called by the main program and ANGDET is called by
ANGLE. The fortran source code for both corrections is given in Appendix C, along
with the existing ANGLE subroutine code. The input parameters to CYLTRAN for
each run where similar to the example input file given in Appendix B. The number of
histories for cach run was 100,00, The statistics for each run were calculated based on
ten batches.

The problem of validating and comparing the existing CYLTRAN code with the two
correction schemes was ditficult due to the lack of sullicient experimental data for scat-
tering throuyh very thin foiis. Originally only the historic results of 1lanson {Ref. 14:
p- 63d] were considered. In this expeniment Hanson used a IN.00 mg cm?
(9.67 x /.10 ‘cm) gold foil with 15.77 MeV clectrons. Figure 2 on page 18 shows the
CLYTRAN solution along with the Hanson data.  The substep size for 1577 MV
clectrons i gold 1s 32.08 mg ¢’ {1.71 x 10 “eml so that the Hanson foil is smalier then
the interval substep. Therefore, the entire distribution is calculated in the subroutine
ANGLE by the crude appronimation. From Figure 2 on page 18 it is shown that this
approsimation gives o much wider Gaussian width then the experimental data.
Figure 3 on page 19 and Figure 4 on page 20 show the corresponding Jordan- Mack and
Moliere methods of correction with the Hanson data.  Both correction micthods show
an overall improvement in the angular distribution. It is of no consequence that the two
solutions give similar results because they both consist of small angle approximate
Gaussian forms. 1t will be shown later that there are regions where these methods of
correction give different results.

The next step wus to compare these two correction methods with experimental data
of different encrgies and materials. Only two other experiments for very thin foils could
be found, and they were the papers of Kagevama and Mozlev. [Ref. 13: p. 348 and. 16
p. 647] The Kagevama experiment was for 1.66 MeV electrons through both copper and
lead foils. For this experiment, the low speed of the clectrons eflectively increased the

17
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number of collisions and a broader Gaussian distribution resulted. The foil thicknesses
were 6.3 mg cn’ (7.08 x 10-%cm) and 6.2 mg cny? (3.40 x 10-¢cm) respectfullv. The cor-
responding substep sizes were 14.67 mgceny (1.6dx 10-*cm) and 896 mg cny
(7.86 x 10-4cm).  Therefore, the copper foil is thicker then the substep size and is scg-
mented into three substeps. In the first two full substeps, the multiple scattering dis-
tribution is calculated by the Goudsmit-Saunderson theory. The third substep is less
than the substep size so that the deflection angles are calculated by the approximation
in the subroutine ANGLE. On the other hand, the thickness of the lead foil is less then
the substep size so that only the ANGLE subroutine is used for the scattering distrib-
ution. Figure § on page 22 shows the CYLTRAN solution for the copper case, and
again the distribution is much broader than the experimental data. The Jordan-Mack
method (Figure 6 on page 23), does not show exact agreement as in the Hanson case:
however, it does show an overall correction. For this case, the Moliere modcl
(Figure 7 on page 24) showed the closest agreement to the data.

The lead foil solutions, (Figure § on page 25 thru Figure 10 on page 27) show the
same trend. The CYLTRAN solution is always broader then the experimental data and
for low energics, the Molicre method is better than the Jordan-Mack technigue.

On the other end of the energy spectrum, the Mozleyv experiment was at a much
higher energy, 600 MeV. and consisted of scattering through very thin aluminum foils
{2.44 mg cm?, 9.0 x 10-*cm).  For this case the substep size is equal to 3.99 g em?
(1.48 x 10-icm) | so that the foil thickness is much less than the the substep size. At such
high energies (600 MeV), the scattering is in the forward direction and not much greater
than 0.02 degrees. This makes it very difficult to resolve the scattering and tallv the
electrons into such small angle bins. Therefore the curves appear crude. Even with
double precision, only a bin width of 0.025 degrees was allowed belore floating point
underflow errors resulted. In spite of these computational problems, the general trends
in the solutions can still be seen. In Figure 11 on page 28§ the CLYTRAN solution is
given for this case, and the poor agreement to experimental data is clearly shown. The
Jordan-Mack solution (Figure 12 on page 29) shows great agreement with the data and
is superior to the Moliere case (Figure 13 on page 30).

With the JM solution verified over a range of energies and materials. the rescarch
effort appeared to be winding down, until something unexpected resulted! When the half
width values for several gold foil thickness calculations were plotted for both the
CYLTRAN and the JM solutions, a periodic “saw-tooth” pattern resulted (Figure 14
on page 32). Only when the periodicity was determined to be the substep size did this
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pattern make sense. In the original 1TS code, the angular distribution within a full
substep is calculated by the Goudsmit-Saunderson theory. If the distance between the
last full substep and the cscaping edge is less than the substep length, the subroutine
ANGLE is called to calculated the distribution for the region using the crude approxi-
mation. As shown in the theory section, this approximation is dependent on the dis-
tance between the last substep boundary and the escaping cdge. The larger this distance
is, the larger the error in the approximation will be. However, if the foil thickness is
exactly equal to the substep size, or a multiple of this size, the entire distribution will
be calculated by the Goudsmit-Saunderson theory and the subroutine ANGLE will
never be called. The effect is such that the error from the approximation grows until the
distance between the last substep and the edge is equal to a substep and then the sol-
ution “corrects” itsclf by a Goudsmit-Saunderson calculation.  With this explanation, a
better understanding of the subroutine ANGLE is given. For the existing ITS material
interface approaimation there is a strong dependence on the foil thickness. On the other
hand. the Jordan-Muack method shows very little dependence on this distance parameter
SHD. For very thick foils the crror of approximation at the escaping edge is a small
fraction of the total Jistribution which has alrcady been established by the multiple
substep GS calculations within the material. A semi-log plot shows this graphically
(Figure 15 on page 33y

An interesting result of the Jordan-Mack solution is the apparent cvaluation of
Moliere's iteration A.. Upon comparison of the two ferms of the Gaussian distribution,

(cquations (3.27) and (5.9, a Jordan-Mack constant can be formed and is given by
£ .
B, = ':—hl('?)—l
m = /4 L

Comparisons of B. and B._ are shown in Figure 16 on page 34 and ligure 17 on page
35 In Figure 10 the energy is held constant at 15.77 MeV, while the foil thickness is
varied from 10 micrens to one mcter. This figure shows the region where the Jordan-
Mack solution and the Moliere theory give similar results. At around ecight centimeters
B. becomes constant whereas B, still incrcases. Since the thickness of the final partial
substep is usually much less than a centimeter this region is of little concern. Figure 17
on page 35 however docs contain an important result. In Figure 17 on page 23§, the foil
thickness is held constant and the incident electron energy is varied from one clectron
volt to several MeV. Again there is a region where the two theories are similar. At

around 0.5 MeV the two iterative constants level ofl, but for energics less than this, the
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two curves diverge. Recall that this iterative constant B is a measure of the Gaussian
width of the scattered distribution. Since B is in the denominator of the exponential,
when B increases the width of the distribution increases. Physically, when the incident
electron energies arc low the number of collisions should increase and the Gaussian
width of the distribution should increase. Therefore the value of B should increase as
the energy decreases. The Jordan-Mack solution appears to brcak down at energies less
than 0.5 MeV. To investigate this problem a “stand-alone” fortran program named
JORDAN was utilized. JORDAN is simply a bin tally program which uses the
Jordan-Mack correction scheme to form the cumulative distribution function from
which the incident electron angle deflections are drawn. In addition to the standard
transmitted electron distribution, program JORDAN gives the distributions of both the
small and large angle scattering. The program is given in Appendix D. With the
“stand-alone” program several problem runs could be quickly conducted at many difler-
ent energies. The results of these runs are given in graphical form in Appendix E. For
the small angle distribution a discontinuity developed at energies less than 0.5 McV at
an angle of 103 degrees. At 0.01 MeV this discontinutity grows into a major peak. In
this case the small angle distribution has been extended far bevond it's region of validity.
We must remember that small angle approximations were used in the developement of
the distribution equations.

The large angle distributions for the related energies show the same patiern. For
energies less than 0.5 MeV the discontinutity at 105 degrees becomes large. One expla-
nation is that the large angle scattering in the Jordan-Mack correction is based on a
Possion distribution which requires the probability of a single event to be very small.
As the energy decreases. the number of large angle scatters becomes large and Poisson
statistics arc not applicable.




Vl. REMARKS

This study looks only at the angular distribution of the transmitted electrons. Al-
though the energy deposition for very thin foils is small, this aspect of the code and the
correction should be investigated. Another of area of interest which needs elaboration
is the apparent discontinuity in the small and large angle distributions at energies below
0.5 MeV. The problem occurs at 105 degrees and is not Z dependent (Sec Appendix E).
Finally, all the comparisons for this study were calculated using ITS version 2.0. An
updated version 2.1 has recently been installed at the Naval Post Graduate School. Trial
runs have shown the same problems in regard to very thin foils. Version 2.1 contains a
correction to the Landau Straggling Algorithm and doesn’t eflect the subroutine AN-
GLE. [Ref. 17)
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VII. CONCLUSIONS

The existing CLYTRAN code approximation for the multiple scattering in very thin
materials is inadequate when the thickness of the foil is less then three substep intervals.
The Jordan-Mack correction shows an improvement over a wide range of energies and
materials. The Jordan-Mack scheme does however break down for very thin materials
when the energy of the incident electron beam is less than 0.5 MeV. For moderate en-
ergies the Jordan-Mack method gives better results then the Moliere first term approxi-
mation. Of course if more Moliere terms were used this difference would be minor. In
addition, is was shown that although the large angle scattering distribution makes a
small contribution, it should not be ignored for moderate energies. Future versions of
the ITS code system should include a correction to the multiple scattering for very thin
materials.  Finally, the range of apphcability must be determined and documented with
the linal version.
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APPENDIX A. ITS OVERVIEW

The Integrated Tiger Series of Electron Photon Transport codes (1TS) is the most widely
used particle transport code in the world. The code package was developed to incorpo-
rate eight individual codes which were developed over the period from 1968 to 1981.
All the codes are based on the original ETRAN model developed by M. Berger and S.
Seltzer. The ITS code system consists of four primary code packages (Ref. 1: p. 9]:

XDATA: The electron and photon cross section data file.
XGEN: The cross section generation program.
ITS: The Monte Carlo program file.

UPEML: A machine portable update emulator.

The heart of the ITS is the program library file 1TS, which contains the eight Monte
Carlo programs plus system directives for the CRAY, IBM, VAX. and CDC operating
svstems. The update emulator programy UPEML creates the various Monte Carlo codes
for a given svstem with any corrections to those codes that mayv be desired. The output
fortran source code from UPEML is then compiled and stored as an executable module.
Program XGEN gencrates the problem specific cross section data tape using file
NDATA for referenced inputs and a user defined input file. The Monte Carlo codes
then rcad in the cross section tape and process the user defined problem.

One of the eight ITS codes is CYLTRAN, which simulates the transport of particle
trajectories through a three-dimensional multimaterial cvlinder. For this project only the
CYLTRAN code was required. As an ITS user the foilowing steps were required to

execute an ITS run
1. Create the specific ITS code CYLTRAN with the required correction schemes.

2. Generate a cross section tape based on the diflerent type of materials contained in

the cvlindrical geometry of a problem.

3. Create an input file which list all the input parameters required to calculate desired

outputs.
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4. Submit the input file and the generated cross section tape to the ITS Monte Catlo
codes to execute a run.

Table 1 is a sample input file to gencrate the cross section tape for the materials in a
c¢ylindrical geometry. Each material line represents a diflerent medium in the cylinder.
Percentages of each material in a compound and its density must be specified. Single
element lines such as Cu, has its density stored in ITS and is automatically used for the
simulation when needed.

Table 1. SAMPLE INPUT FILE TO CREATE A CROSS SECTION TAPE 3

Energy 14.0

Material Cu

TITLE 1
16 MeV Cross Section for Au foil

Once a cross section tape is generated. an input file with the parameters design for
a particular simulation must be created. Table 2 on page 41 is a sample input file to
exccute an ITS run. The keyvwords at the beginning of each line are relatively seli-
explanatory. However, a few keywords and their numerical parameters require some i
explanation to fully understand their importance. These few kevwords and their expla- N

nation are listed [Ref. 1: pp. 21-23]:

Geometry This kexword sets up the cylindrical geometry of the problem into input i
zones, where in this case there are seven input zones. Each line of numerical

parameters following the keyword describes the dimensions of each zone.

Electron/Photon-Escape This kevword tallies the number of incident electrons and
photons that escapes the cvlindrical gcometry, either latterally or transmit-
ted through.

NBINE tallies the escaped electron photons in specified energy bins.

NBINT tallies them in angular bins.

S



Electron/Photon-Flux This kevword tallies the energy deposition of electrons and
photons in the subzones described in the kevword geometry.

Histories This kexword represents the rumber of primary particle histories 10 foliow
as it transport through each medium in the cvlinder.

Table 2. SAMPLE OF AN INPUT FILE TO EXECUTE ITS

Echo |
TITLE

Mat:Au 18.67 Mg/em2 His: 100000 E = 15.77MeV
Electrons
Energy 79.0
Cutolfs .1 .1
Position 0.0 (.0 0,0
Direction 0.0 0.0
Geometry |

0.000 0.00096684 0.00 10.000 1 0 1 1

Electron-Escape

051. 152 2.

Histories 100000

4]




APPENDIX B. JORDAN-MACK EQUATIONS

The Jordan-Mack correction to the multiple scattering for very thin foils is based
on a Williams Gaussian distribution. To determine the mean square angle, the screened
Rutherford cross section with Moliere’s screening angle are combined and integrated
over the forward region:

OM
w'=N J 6* do (B.1)
0
Po 4 ) o
b > 2 ™ l bt S
oy ALZl_SZcos®) e (B.2)
pvc (l—cos@+y)y

where # = ':6; is one half the value of Moliere's screening angle and the small angle
approximation of 6 = 2(1 — cos #) has been used. The constants in this integral form
the Moliere unit probability angle. and with the substitutions u = cos 0 au,, = cos 0,,. this
equation simplifies into a form which is easy to integrate:

“".'
3 I -
W =—y -—-—“—- du (B.3)
. U=p+ay
Il"
2 2 1 Ul
w'=— - d B.d)
X(f [“-H'ﬂ (l-u+'l)2] g (
1
2 2 i
w =—-Xc[ln(!7)—ln(l—un,+i])—l—_m+l] (8.4)
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This expression can further be simplified by the introduction of the constant y:

2 " B.A
7.d= l - /"m + N ( '-)
Wl == yi-1] (B.6)

which is the form given in the theory section. To evaluate the "argument” (1 — u, + ),
the condition of one scatter occurring in the back region is imposed in the following
form:

j" do=1 (B.7)
0’"
-1
.2 1
— LZZ. ——-———‘, dﬂ = l (B.S)
CJ (l=p+y)y
Hm
2 1 1
-_— { - -— = .q
zX‘l:Z-i-n l—#m+l1] ! (B9)
Rearranging vields:
1

(85.101

“ _um-”)= [

2 1 ]
—
7 2+
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APPENDIX C. FORTRAN SUBROUTINES

A. ANGLE SUBROUTINE

In the existing ITS code CYLTRAN, the multiple scattering distribution near the
escaping boundary is calculated in a subroutine called ANGLE. As described in the
theory section, this subroutine uses a Williams-type Gaussian approximation. In a
subroutine called XINPUT, the GS average cosines with the corresponding D ranges are
read from the cross section tape and stored in the variable names COSAV and DRG.
In the subroutine XPREP the variable name COSAYV is transformed into a proportion-
ality constant by the following code:

DRGS(N,J)
COSAV(N,J)

DRG(N,J)/ISUB
{ CONE-COSAV(N,J))/DRGS(N,J)XPREP

where ISUB is the number of substeps and CONE is the constant one. Since the D
ranges are in units of Mg cn? this proportionality constant is then multiplied by the
density in a subroutine called PREP so that the COSAV values are ready for the AN-
GLE subroutine. The crude approximation is done in only nine lines of code. When the
proporticnality terms COSAV are multiplied by the distance to the edge boundary,
SHD. the resulting term represents an approximation to the average cosine of the de-
flection angle for that specific distance:

ALF = COSAV(NT,MT)*SHD

RA = RAN(IRAN)
IF (RA .LT. C1lEM2) THEN

ARG = MAX(-C88,-CTWO/ALF)

EX = EXP(ARG)

COM = CONE+ALF*LOG(RA*(CONE-EX)+EX)
ELSE

COM = CONE+ALF*LOG(RA)
ENDIF

The constants CONE, CTWO, CI1EM?2, and C88 are the values 1.0, 2.0, 0.002, and 8§8.0
respectively.
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permit fully legible seproducton

The expression for the cosine of the deflected angle COM 1s derived from the Williams
Gaussian expression which is formed into a CDT” and from which a random value is

e = ——

Jdrawn:
b 21 ~ cos 6)
\pP| —— |=exp| - —————— (C.1
e\p[ 6 :} e\p[ 2(l—c050,,,)] (C.1)
I & [ (a=coiw \ 1
w[-glelsg] e
B. ANGDET SUBROUTINE (JORDAN-MACK METHOD)
For the Jordan-Mack correction scheme a subroutine called ANGDET was devel- 1
oped to be called from the ITS subroutine ANGLE. All the previous coding just de-
scribed for the crude approximation was deleted by the following code: ]

*DELETE ANGLE . XX-XX

The call stutement is then placed in the subroutine ANGLE with the patch subroutine
ANGDET placed at the end of ANGLE:

*INSERT ANGLE. ©9
COMNON/TEMP/JSUB  LMAT(INUT) , HPAIR, NTAX(15) ,NTAB,WT(INEM, INT),
IATW(INEM, INNT ) JZECINEM, INMT) |
*INSERT ANGLE. 120 ‘

Cevecvscacncncnanccncnmcnvennnnn I
C ANGLE DETERMINATION PATCH C
Cevccvecananceccananaccccncanan

CALL ANGDET(COX,SHD,T,RHO(MT),ZE(1,NT),ATW(1,kKT)) R
C
R e END CF PATCH-=<---- c

»INSERT ANGLE. 190

SUBROUTINE ANGDET(CO!,SHD,E,RHC,Z,A)

DOUBLE PRECISION CO,STH,CTH,SPH,CPH,LTA,FST, HST,AST,
1 BST,XMP,P1,THE2,TARG,SARG,THE ,ROT, PEXP,ALXMNP, POFN
DOUBLE PRECISION R,RXN,RF,RARG,ARG,COSMAX,POF,POFZ,XTON
DOUBLE FRECISION DSEEL,I1RAN

COMIION /VAXRAN/ IRAN

DINENSION ROT(3,3),R(3,3),RX(3,3)

DATA PI,RZERC,EMZERO,ALPHA,AVA/3. 1415926536D00,0. 281751
1,0.511,137.0371,0.6025/

RAN(DSEED )=GGUBFS(DSEED)

Initialization of the Constants:

ET=E/EMZERO + 1.
B21= 1. /(ET*ET)
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B2= 1.-B21

23= Z¥%, 333333

ETA = .5%(B21/B2)*(23/(. 885%ALPHA) )¥**2

1 %(1.13 + 3.76%(2/ALPHA)"*2/B2)

FST = 2.%PI*RZERQ*¥2 *Z7#(2Z+1) *B21/(B2*B2)
1 *(AVA/A)*SHD*RHO

Determination of the Integral Values:

HST = 1.+ETA

AST = 1. /(HST+1.0)

RARG = 1. /FST + 1. /(2.4ETA)
ARG = 1. /RARG

COSMAX = HST - ARG

COSMAX is the maximum angle such that one large angle scatter will

144

occur in the back region.

IF (COSMAX.LT.1.) GOTO 10

When COSMAX is greater than one, a large angle scatter is not

po

10

1000

1002

ssible so that an explicit angle determination must be carried out.

COSMAX = 1.0

BST 1. /JETA -AST
XMP = FST*BST

coM = 1,

STH = 0.

GOTO 1002

When a large angle scatter is possible, the small angle portion
is determined first using the Jordan-Mack small angle
approximation equation:

XMP = 1.

BST = 1. /FST

Pl = FST**(DLOG(ARG/ETA)-1. + ETA*RARG)
THE2= 2 * P1

TARG = 1. -DEXP(-PI*PI/THE2)

The multiplication term SQRT(SIN(THETA)/THETA) as suggested by
Bethe is samplied using a rejection technique:

SARG = 1. <-TARG**RAN(IRAN)

THE = DSQRT( -THE2*DLOG( SARG))

STH = DSIN(THE)

REJECT = 1.

IF (THE.GT. 1l.E~6) REJECT=DSQRT(STH/THE)
IF (RAN(IRAN).GT.REJECT) GOTC 1000

COM=DCOS(THE)
Initialization of arrays for the large angle portion:

ROT(1,1)
ROT(2,1)

coM
0.




2030
2040
2050

2060
2070

ROT(3,1) = -STH
ROT(1,2) = 0.
ROT(2,2) = 1.
ROT(3,2) = 0.
ROT(1,3) = STH
ROT(2,3) = 0.
ROT(3,3) = COM
PEXP = -XMP

ALXMP = DLOG(XMP)

A random value is drawn from which the probability of each large
angle scatter will be subtracted. If this random value is less
than the the possion distributed value for one deflection, no
large angle scattering will develope:

POFN = RAN(IRAN)
XTON = 0,
POFZ = DEXP(PEXP+XTON)

IF(POFN. LE. POFZ) GQTO 7777
The random walk on the possion distribution is then carried out:
POFN = POFN - PQFZ

DO 2000 N=1,500
RF=RAN(IRAN)

CPH = DMIN1(COSMAX,DMAX1(-1.DO00,HST-1.D0OO/(AST+BST*RF))})
SPH = DSQRT(1. -CPH*CPH)

THE = PI*(2.*RAN(IRAN) -1.)
CTH = DCOS(THE)

STH = DSIN(THE)

R(1,1) = CFH*CTH

R(2,1) = CPH*STH

R(3,1) = -SPH

R(1,2) = -STH

R(2,2) = CTH

R(3,2) = 0.

R(1,3) = SFH*CTH

R(2,3) = SPH*STH

R(3,3) = CPH

DO 2050 I=1,3
DO 2040 J=1,3
RX(J,I) = 0.
DO 2030 K=1,3
RX(J,I)=RX(J,I)+ROT(J,K)*R(K,I)
CONTINUE
CONTINUE
CONTINUE
DO 2070 I=1,3
DO 2060 J=1,3
ROT(J,I) = RX(J,I)
CONTINUE
CONTINUE
COM = ROT(3,3)

The probability of another large angle scatter is then calculated:
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XTON = XTON + ALXMP =~-ALOG(FLOAT(N))
POF = DEXP(PEXP+XTON)

POFN = POFN - POF

IF (POFN.LE.O0.) GOTO 7777

2000 CONTINUE
7777 RETURN
END

C. ANGDET SUBROUTINE (MOLIERE METHOD)

The Moliere approximation was programed into CYLTRAN in a similar mannor.
The same delete and inserts for the subroutine ANGLE that were used for the Jordan-
Mack method were used for the Moliere update.

*INSERT ANGLE. 190
SUBROUTINE ANGDET(COM,SHD,E,RHO,Z,A)
DOUBLE PRECISION COM,STH,CTH,SPH,CPH,ETA,FST,HST,AST,

1 BST,XMP,P1,THE2,TARG,SARG,THE,ROT,PEXP,ALXMP,POFN
DOUBLE PRECISION R,RX,RF,RARG,ARG,COSMAX,POF,POFZ,XTON
DOUBLE PRECISION DSEED,IRAN,C1,C2,BK,B,REJECT
DOUBLE PRECISION CF,C3,A1,A2,A3
DOUBLE PRECISION ALPHA,B2,Z
COMMON /VAXRAN/ IRAN
DATA PI,RZERO,EMZERO,ALPHA,AVA/3.1415926536D00,0. 281751

1,0.511,137.0371,0. 6025/

RAN(DSEED)=GGUBFS(DSEED)

Initialization of the constants:

ET=E/EMZERO + 1.

B21= 1. /(ET*ET)

B2= 1.-B21

Z3= Z*¥%, 333333

ETA = .5%(B21/B2)*(23/(. 885*ALPHA) )**2

1 #(1.13 + 3.76%(Z/ALPHA)**2/B2)

FST = 2. %PI*RZERQ**2 *Z%*(Z+1) *B21/(B2%*B2)
1 #(AVA/A)*SHD*RHO

Evaluation of the integral values:

HST = 1.+ETA
AST = 1. /(HST+1.0)

RARG = 1. /FST + 1./(2.+ETA)
ARG = 1. /RARG

COSMAX = HST - ARG

BST = 1. /FST

Evaluation of Moliere constants:
IF (Z.EQ. 13.D00) CF=-5.2D00

IF (Z.EQ. 29.D00) CF=-5.6D00
IF (2.EQ.79.D00) CF=-6.2D00
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444

445
446

1000

IF (2.EQ.82.D00) CF=-6.3D00

C2=6*FST/(7*ETA)

C1=DLOG(C2)

Al=1, 0D0OO

A2=0. 160D00

A3=3. 33D00
C3=(DLOG(A2*23%23%(A1+A3%((2/ALPHA)**2/B2)))-CF)/(Z+Al)

An alternate Jordan-Mack small angle approximation is done if
the value of the constant Cl is less than one. This was done
because Moliere's iterative equation diverges when Cl is less
than 1.0.

IF (C1.GT.1.0D00) THEN
BK=1. 01D00
B=BK
BK=DLOG(B)+C1+C3
IF (ABS(BK-B).GT. 1.0D=-4) GOTO 444
THE2=2. ODOO*FST*B
GOTO 446
ENDIF

THE2=2*FS8T*(DLOG(ARG/ETA)-1. ODOO+ETA*RARG)
TARG = 1.0D00 -DEXP(-PI*PI/THEZ)

Again the multiplication factor is incorporated into the
distribution:

SARG = 1.0D00 -TARG*RAN(IRAN)

THE = DSQRT( -THE2*DLOG(SARG))

STH = DSIN(THE)

REJECT = 1.0D0O

IF (THE.GT.1.E-6) REJECT=DSQRT(STH/THE)
IF (RAN(IRAN).GT.REJECT) GOTO 1000
COM=DCOS(THE)

RETURN

END
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APPENDIX D.
PROGRAM JORDAN

FORTRAN SUBROUTINE JORDAN

DOUBLE PRECISION COM
DOUBLE PRECISION IRAN,DSEED
COMMON /VXRAN/ IRAN

COMMON /DANS/

1 NDAN1,

NDAN2,

NDAN3, NDAN4, NDANM

DIMENSION DEG(100),CEG(100),HIS(99),FLX(99)
RANNO(DSEED)=GGUBFS(DSEED)
IRAN=63939
NDAN1=0

NDAN2=

0

NDAN3=0
NDAN4=0
NDANM=0

NCNT=0

OPEN (50,FILE='JINPUT',STATUS='0LD')
OPEN (70,FILE='XY29')
1 FORMAT(/,/,/)

WRITE
WRITE
WRITE
WRITE
WRITE
WRITE
WRITE
WRITE

WRITE ( Ty
READ(*,%) NOPT

(*,1)
(%,%)

READ (50,%)
READ (50,%)
READ (50,*) E,SHD,RHO,Z,A
READ (50,%)
READ (50,%) NUMHIS,NUMBIN
READ (50,%)

RHOP=RHO*1000
WRITE (70,%)
WRITE (70,%)
WRITE (70,%)
WRITE (70,44) RHOP
44 FORMAT(FS. 2,'G/CM2
$ODEL: '

,11)

NZERO=0

NTWO=2
NFQUR=
NCNE=1
NTHR=3
WRITE (70,%)
WRITE (70,%)
WRITE (70,%)

4

1
A
t
1
t

1

JORDANS PROGRAM'

OPTIONS: 4. MODEL4 (SMALL AND LARGE)'
5. MODELS (MOLIERE)'
6. MODEL6 (LARGE ONLY)'
7. MODEL7 (SMALL ONLY)'

ENTER: '

Z,E,NUMHIS,NOPT

C U MATZ: ' UFs. 2,

WRITE (70,%) NONE,NONE,NZERO,NZEROD
WRITE (70,%) NONE,NZERO,NTWO,NZERO
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WRITE (70,%)
WRITE (70,%)
WRITE (70,%)
WRITE (70,*) NTHR,NONE,NONE,NONE
WRITE (70,'(A8)') ' JORDAN'
NUMBIP=NUMBIN-1
WRITE (70,%) NUMBIP
WRITE (70,%)
IF (NUMBIN.LE.Q) GOTO 9999
READ (50,%*) (DEG(I),I=1,NUMBIN),DEG(NUMBIN+1)
DO 1010 I=1,NUMBIN
CEG(1)=COS(DEG(I)*3. 1415926536/180. )
HIS(I)=0.0
FLX(1)=0.0
1010 CONTINUE
DO 2000 N=1,NUMHIS
IF (NOPT.EQ.4) THEN
CALL ANGDT&(COM,SHD,E,RHO,Z,A)
ELSE IF (NOPT.EQ.5) THEN
CALL ANGDT5(COM, SHD,E,RHO,Z,A)
ELSE IF (NOPT.EQ.6) THEN
CALL ANGDT6(COM,SHD,E,RHO,Z,4A)
ELSE IF (NOPT.EQ.7) THEN
CALL ANGDT7(COM,SHD,E,RHO,Z,A)
ENDIF
DO 1020 I=1,NUMBIN
IF (COM.GE.CEG(I+1)) GOTO 1030

1020 CONTINUE
I=NUMBIN
1030 HIS(I)=HIS(I)+1.0

IF(HIS(I).GT. HHAX) THEN
HMAX=HIS(1I)
ENDIF
2000 CONTINUE
XHIS=NUMHIS
DO 2010 I=1,NUMBIN
IF (HIS(I).LE.C.) GOQTQ 2010
ERR=100. *SQRT((XHIS-HIS(I))/((XHIS~1. )*HIS(I1)))
DEGREE=(DEG( I )+DEG(I1+1))/2. 0
IF (I.EQ.1) THEN
DEGMIN=DEGREE
ENDIF
NER=ERR
NCNT=NCNT+1
WRITE (70,%) DEGREE,HIS(I),NER
2010 CONTINUE
WRITE (70,%*) DEGMIN,DEGREE
WRITE (70,%) NZERO,HMAX
WRITE ( 70 s ot ) ' FedeTetdedele e LOOPS  INF O roevededeviesedrsiede '
WRITE (70,%*) NDAN1
WRITE (70,%) NDAN2
WRITE (70,%) NDAN3
WRITE (70,%) NDAN4
WRITE (70,%*) NDANM
9999 STOP
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END ........
SUBROUTINE ANGDT4(COM,SHD,E,RHO,Z,A)
DOUBLE PREC1SION GOM,STH,CTH,SPH,CPH,ETA,FST,HST,AST,
1 BST,XMP,P1,THEZ2,TARG, SARG,THE ,ROT, PEXP,ALXMP, POFN
DOUBLE PRECISION R,RX,RF,RARG,ARG,COSMAX,POF,POFZ,XTON
DOUBLE PRECISION DSEED,IRAN
COMMON /VXRAN/ IRAN
COMMON /DANS/
1 NDAN1, NDAN2, NDAN3, NDAN4, NDANM
DIMENSION ROT(3,3),R(3,3),RX(3,3)
RANNO(DSEED )=GGUBFS( DSEED)
DATA PI,RZERO,EMZERO,ALPHA,AVA/3. 1415926536D00,0. 281751
1,0.511,137.0371,0. 6025/
ET=E/EMZERO + 1.
B21= 1. /(ET*ET)
B2= 1.-B21
23= Z¥¥, 333333
ETA = . 5%(B21/B2)%(Z3/(. 885*ALPHA) )#*2
1 %(1.13 + 3.76%(Z/ALPHA)*¥2/B2)
FST = 2.*PI*RZERO*%2 #%Z%(Z+1) *B21/(B2*B2)
1 *(AVA/A)*SHD*RHO
HST = 1.+ETA
AST = 1. /(HST+1.0)
RARG = 1./FST + 1./(2.+ETA)
ARG = 1. /RARG
COSMAX = HST - ARG
NDAN1=NDAN1+1
144 IF (COSHMAX.LT.1.) GOTO 10
NDANZ=NDAN2+1

COSHAX = 1.0
BST = 1. /ETA -AST
XMP = FST*BST
cod = 1.
STH = 0.
GOTO 1002
10 XMP = 1.
NDAN3=NDAN3+1 -
BST = 1. /FST
P1 = FST*(DLOG(ARG/ETA)-1. + ETA*RARG)
THE2 = 2.*P1
TARG = 1. -DEXP(-PI**P1/THE2)

1000 SARG = 1. -TARG*RANNO( IRAN)
THE = DSQRT( -THE2*DLOG( SARG))
STH = DSIN(THE)
REJECT = 1.
IF (THE.GT.1.E-6) REJECT=DSQRT(STH/THE)
IF (RANNO( IRAN).GT.REJECT) GOTO 1000
COM=DCOS(THE )

1002 ROT(1,1) = COM
ROT(2,1) = 0.
ROT(3,1) = -STH
ROT(1,2) = 0.
ROT(2,2) = 1.
ROT(3,2) = 0.
ROT(1,3) = STH

n




2030
2040
2050

2060
2070

2000
7777

ROT(2,3) = 0.
ROT(3,3) = COM
PEXP = -XMP
ALXMP = DLOG(XMF)
POFN = RANNO(IRAN)
XTON = 0.
POFZ = DEXP(PEXP+XTON)
IF(POFN. LE. POFZ) GOTO 7777
NDAN4=NDAN&4+1
POFN = POFN - POFZ
DO 2000 N=1,500

IF (N.GT.NDANM) THEN

NDANM=N :
ENDIF
=RANNO( IRAN)

CPH = DMIN1(COSMAX,DMAX1(-1.D00,HST-1.D00/(AST+BST*RF)))

SPH = DSQRT(1. -CPH*CPH)
THE = PI*(2.*RANNO(IRAN) -1.)
CTH = DCOS(THE)

STH = DSIN(THE)

R(1,1) = CPH*CTH

R(2,1) = CPH*STH

R(3,1) = -SPH

R(1,2) = -STH

R(2,2) = CTH

K(3,2) = 0.

R(1,3) = SPH*CTH

R(2,3) = SPH*STH

R(3,3) = CPH

DO 2050 I=1,3
DO 2040 J=1,3
RX(J,I) =

RX(
CONTINUE
CONTINUE
CONTINUE
DO 2070 I=1
DO 2060 J=1
ROT(J,
CONTINUE
CONTINUE
COM = ROT(3,3)
XTON = XTON + ALXMP -ALOG(FLOAT(N))
POF = DEXP(PEXP+XTON)
POFN = POFN - POF .
IF (POFN.LE.0.) GOTO 7777
CONTINUE
RETURN
END

RX(J,I)+ROT(J,K)*R(K,I)

)3
'3
I) = RX(J,I)
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SUBROUTINE ANGDTS5(COM,SHD,E,RHO,Z,A)

DOUBLE PRECISION COM,STH,CTH,SPH,CPH,ETA,FST,HST,AST,
1 BST,XMP,P1,THE2,TARG, SARG, THE ,ROT,PEXP,ALXMP,POFN
DOUBLE PRECISION R,RX,RF,RARG,ARG,COSMAX,POF,POFZ,XTON
DOUBLE PRECISION DSEED,IRAN,C1,C2,BK,B,REJECT
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445

446
1000
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DOUBLE PRECISION CF,C3,A1,A2,A3
DOUBLE PRECISION ALPHA,B2,2Z
COMMON /VXRAN/ IRAN
COMMON /DANS/
1 NDAN1, NDAN2, NDAN3, NDAN4, NDANM
DATA PI,RZERO,EMZERO,ALPHA,AVA/3.1415926536D090,0. 281751
1,0.511,137.0371,0. 6025/
RANNO(DSEED)=GGUBFS(DSEED)
ET=E/EMZERO + 1.
B21= 1. /(ET*ET)
B2= 1.-B21
Z3= Z¥%¥%, 333333
ETA = .5%(B21/B2)*(Z3/(.885*ALPHA) )¥¥*2
1 #(1.13 + 3.76%(Z2/ALPHA)*¥*2/B2)
FST = 2, *PI*RZERQ**2 *Z¥*(Z+1) *B21/(B2*B2)
1 *(AVA/A)*SHD*RHO
HST = 1.+ETA
AST = 1. /(HST+1.0)
RARG = 1. /FST + 1./(2.+ETA)
ARG = 1. /RARG
COSMAX = HST - ARG
NDAN1=NDAN1+1
BST = 1. /FST
CF=-6. 2D00
C2=6*FST/(7*ETA)
C1=DLOG(C2)
Al=1.0D00
A2=0. 160D00
A3=3.33D00
C3=(DLOG(A2*Z3*Z3*( A1+A3*((Z/ALPHA)**2/B2)))~CF)/(Z+Al)
IF (C1.GT.1.0D00) THEN
BK=1. 01iD00
B=BK
BK=DLOG(B)+C1+C3
IF (ABS(BK-B).GT.1.0D-4) GOTO 444
THE2=2. ODOO*FST*B
GOTO 446
ENDIF
THE2=2%FST*(DLOG(ARG/ETA)-1. ODOO+ETA*RARG)
NDAN2=NDAN2+1
TARG = 1.0D00 -DEXP(-PI*PI/THEE2)
SARG = 1.0D00 -TARG*RANNO(IRAN)
THE = DSQRT(~THE2*DLOG(SARG))
STH = DSIN(THE)
REJECT = 1.0D00
IF (THE.GT.1.E-6) REJECT=DSQRT(STH/THE)
IF (RANNO(IRAN).GT.REJECT) GOTO 1000
COM=DCOS(THE)
RETURN
END

SUBROUTINE ANGDT6(COM,SHD,E,RHO,Z,A)

DOUBLE PRECISION COM,STH,CTH,SPH,CPH,ETA,FST,HST,AST,
1 BST,XMP,P1,THE2,TARG,SARG,THE ,ROT,PEXP,ALXMP , POFN
DOUBLE PRECISION R,RX,RF,RARG,ARG,COSMAX,POF,POFZ,XTON
DOUBLE PRECISION IRAN,DSEED

VO NN
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COMMON /VXRAN/ IRAN
COMMON /DANS/
1 NDAN1, NDAN2, NDAN3, NDAN4, NDANM
DIMENSION ROT(3,3),R(3,3),RX(3,3)
DATA PI,RZERO,EMZERO,ALPHA,AVA/3.1415926536D00,0. 281751
1,0.511,137.0371,0. 6025/
RANNO( DSEED )=GGUBFS(DSEED)
ET=E/EMZERO + 1.
B21= 1. /(ET¥ET)
B2= 1.-B21
Z3= Z%%, 333333
ETA = .5%(B21/B2)*(Z23/(. 885*ALPHA) )*+¥2
1 %(1.13 + 3.76%(Z/ALPHA)*%2/B2)
FST = 2, *PI*RZERO**2 #*Z%(2+1) *B21/(B2*B2)
1 *( AVA/A)*SHD*RHO
HST = 1.+ETA
AST = 1. /(HST+1.0)
RARG = 1./FST + 1./(2.+ETA)
ARG = 1. /RARG
COSMAX = HST - ARG
NDAN1=NDAN1+1
IF (COSMAX.LT.1.) GOTO 10
NDAN2=NDAN2+1
COM = 1.0
GOTO 7777
XNP = 1.
NDAN3=NDAN3+1
BST = 1. /FST
COM=1. 0
STH=0. 0
ROT(1,1)
ROT(2,1)
ROT(3,1)
ROT(1,2)
ROT(2,2)
ROT(3,2)
ROT(1,3)
ROT(2,3)
ROT(3,3)
PEXP = -XMP
ALXMP = DLOG(XMP)
POFN = RANNO( IRAN)
XTON = 0.
POFZ = DEXP(PEXP+XTON)
IF(POFN. LE. POFZ) GOTO 7777
NDAN4=NDANG&+1
POFN = POFN - POFZ
NDANM=0
DO 2000 N=1,500
RF=RANNO( IRAN)
CPH = DMIN1(COSMAX,DMAX1(-1.D00,HST~1. D00/(AST+BST*RF)))
SPH = DSQRT(1. -CPH*CPH)
THE = PI*(2.*RANNO(IRAN) -1.)
CTH = DCOS(THE)
STH = DSIN(THE)
R(1,1) = CPH*CTH

coM
0

~STH
0.
1.
0.
STH

LI I I O

0.
CoM

n
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2030
2040
2050

2060
2070

2000
7777

R(2,1) = CPH*STH
R(3,1) = -SPH
R(1,2) = -STH
R(2,2) = CTH
R(3,2) = 0.
R(1,3) = SPH*CTH
R(2,3) = SPH*STH
R(3,3) = CPH

DO 2050 I=1,3
DO 2040 J=1,3

RX(J,I) = O.
DO 2030 K=1,3
RX(J,1)=RX(J,I)+ROT(J,K)*R(K,I)
CONTINUE
CONTINUE
CONTINUE
DO 2070 I=1,3
DO 2060 J=1,3
ROT(J,1) = RX(J,I)
CONTINUE
CONTINUE
COM = ROT(3,3)
XTON = XTON + ALXMP -ALOG(FLOAT(N))
POF = DEXP( PEXP+XTON)
POFN = POFN - POF
IF (POFN.LE.0.) GOTO 7777
CONTINUE
RETURN
END
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SUBROUTINE ANGDT7(COM,SHD,E,RHO,Z,A)

DOUBLE PRECISION COM,STH,CTH, SPH,CPH,ETA,FST, HST, AST,
1 BST,XMP,PI,THEZ,TARG,SARG,THE,ROT,PEXP,ALXMP,POFN
DOUBLE PRECISION R,RX,RF,RARG,ARG,COSMAX, POF , POFZ , XTON
DOUBLE PRECISION IRAN,DSEED

COMMON /VXRAN/ IRAN

CO!MON /DANS/

1 NDAN1,  NDAN2, NDAN3, NDAN4, NDANM

DIMENSION ROT(3,3),R(3,3),RX(3,3)

DATA PI,RZERO.EHZERO,ALPHA,AVA/3.1415926536000,0.281751
1,0.511,137.0371,0. 6025/

RANNO(DSEED)=GGUBFS(DSEED)

ET=E/EMZERO + 1.

B21= 1. /(ET*ET)

B2= 1, -B21

Z3= 27" 333333

ETA = - 5%(B21/B2)*(Z3/(. 885*ALPHA) )**2

1 #(1.13 + 3.76%(Z/ALPHA)*%*2/B2)

FST = 2. *PI*RZERQ™*2 *Zk(Z+1) *B21/(B2*B2)

1 *(AVA/A)*SHD*RHO

HST = 1, 4ETA

AST = 1, /(HST+1.0)

RARG = 1. /FST + 1. /(2.+ETA)

ARG = 1. /RARG

COSMAX = HST - ARG

NDAN1=NDAN1+1
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IF (COSMAX.LT.1.) GOTO 10
NDAN2=NDAN2+1

COSMAX = 1.0

BST = 1. /ETA -AST

XMP = FST™BST

CoM = 1.

STH = 0.

GOTO 7777

XMP = 1.

NDAN3=NDAN3+1

BST = 1. /FST

Pl = FST*(DLOG(ARG/ETA)-1. + ETA*RARG)
THE2 = 2. %P}

TARG = 1. -DEXP(-PI*PI/THE2)

SARG = 1. -TARG*RANNO( IRAN)

THE = DSQRT( -THE2*DLOG( SARG))

STH = DSIN(THE)

REJECT = 1.

IF (THE.GT. 1.E-6) REJECT=DSQRT( STH/THE)
IF (RANNO(IRAN).GT.REJECT) GOTO 1000
COM=DCOS(THE)

RETURN

END
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APPENDIX E. LARGE AND SMALL ANGLE SCATTERING
DISTRIBUTIONS

Since the Jordan-Mack correction scheme decouples the multiple scattering into
large and small angle scattering, it seemed natural to plot the contribution of each sep-
arately. The FORTRAN program JORDAN was used to calculate the small and large
angle scattering distributions. JORDAN is only a number tally calculation and involves
only the columb scattering. Pair production, absorption, secondary production, and
other particle interactions are not calculated. For very thin foils these effects are minor.
The input parameters to JORDAN were for the case of the Hanson gold foil, (18.67 mg
cmi®’). The energy of the incident electrons was increased from 0.01 Mcv to 10.0 Mev.
The number of histories was 100,000 for all JORDAN runs. T@igures 18 thru 24 show
the small angle distributions for this cuse. Figures 25 thru 34 show the large angle dis-
tributions. Note the large discontinuity in the small angle distributions are at 103 de-

grees. When the energy is greater than 0.3 MeV this discontinuity becomes very minor.
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Figure 18,

Small Angle Spectrum for 0.01 MeV:

The input parumeters were for
a 18.66 mg cm? gold foil with 0.01 MeV incident electrons.
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Figure 19.  Small Angle Spectrum for 0.10 MeV:  The uiput parameters were the

same as Figure 18 on page 39 except the incident electron energy was
0.10 MeV.
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Figure 20. Small Angle Spectrum for 0.25 MeV:  The input parameters were the

same as Figure 18 on page 39 except the incident electron energy was
og
.23 MeV,
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Figure 21.  Small Angle Spectrum for 0.35 MeV:  The input parameters were the

same as Figure 1§ on page 59 except the incident electron epergy was
0.35 MeV.
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Figure 22. Small Angle Spectrum for 0.50 MeV: The input parameters were the

same as Figure 1§ on page 59 except the incident clectron energy was
0.50 MeV,
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Figure 23.  Small Angle Spectrum for 1.00 MeV:  The input parameters were the
same as Figure 18 on page 39 except the incident electron energy was
1.00 MecV.

-




4.0

=
o
©
Q
e
2
(=4
o<
™ ©
e
[~ <
o
-
e
T x - o
Q Q o o o o Q
! & & 2 S @ °
Dix 8|90,/ HS /4aquIny

Figure 24.  Small Angle Spectrum for 10.0 MeV:  The input purameters were the
same as Figure 18 on page 39 except the incident electron energy was
10.0 MeV.
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Figure 25,  Large Angle Spectrum for 0.U1 MeV: The input parameters were for
a 18.66 mg cn? gold foil with 0.01 MeV incident electrons.
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Figure 26.  Large Angle Spectrum for 0,02 MeV: The input parameters were the
same as Figure 25 on page 66 except the incident electron energy was
0.02 MeV.
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Figure 27,

Large Angle Spectrum for 0.05 NeV:
0.05 MeV.
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The input parameters were the
same as Figure 235 on page 66 except the incident electron encrgy was




|
1 [
100.0 25.0 150.0 175.0

Angle (Deg)

T
75.0

0.0

©
~N

D= 9[INLID /HS/43GWINN

3.0
1.0-

Q
+

0.0

Figure 28.  Large Angle Spectrum for 0.07 MeV: The input parameters were the

same as Figure 25 on page 66 except the incident electron encrgy was
0.07 MeV.
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Figure 29.  Large Angle Spectrum for 0.10 MeV: The input parameters were the

same as Figure 23 on page 66 except the incident electron energy was
0.10 MeV.
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Figure 31.

Large Angle Spectrum for 0.35 MeV: The input parameters were the

same as Figure 25 on page 66 except the incident electron energy was
0.35 MeV.
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Large Angle Spectrum for 1.00 MeV:  The input parameters were the
same as Figure 25 on page €6 except the incident electron energy was
1.00 MeV.
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Large Angle Spectrum for 10.0 MeV: The input parameters were the
same as Figure 25 on page 66 except the incident electron energy was
10.0 MeV.
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