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ABSTRACT

The electron photon transport code ITS has many applications in the physics and

medical industries. The code was originally intented for use in determining particle

transport in thick materials. The code breaks down for very thin targets because the

multiple scattering approximation used to determine the electron deflection angles for

thin steps is inadequate. A method of correction has been developed by Torn Jordan

and Joseph lack which combines a small angle approximation theory to the multiple

scattering and an explicit large angle treatment based on a Poisson distribution. This

method has been validated against several experiments with great success. The multiple

scattering theory of M oliere has also been incorporated into a correction scheme and

shows good agreement with experimental data.
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I. INTRODUCTION

Particle transport dates back to the days of Lord Rutherford when the scattering of
electrons through thin foils changed our view of the nature of matter. Today particle
transport through matter is itself an industry. From determining the radiation damage

effects on satellites in space to calculating the energy spectrum of medical x-ray ma-
chines, particle scattering is an important part of the science industry. In the past only
rigorous experimention provided scattering information for the scientist. Today with the
aid of high speed computers and a better understanding of the various particle inter-
actions. computational results can be easily obtained. Computer programs which model
the transport of particles through matter were developed around 1968. M. Berger and

S. Seltzer at the National Bureau of Standards developed the first general electron and
photon transport code called ETRANN. From 1970 to 1981 eleven codes based on the
ETRAN model were developed, and in 1984 eight of these codes were combined into
single code package called the Integrated Tiger Series (ITS). The eight codes differ in
dimensional geometry and two of the codes include transport in macroscopic electric and

magnetic fields [Ref. 1: p. 61.
Electron and photon transport computer codes such as ETRA-N were originally de-

veloped to study the manner in which radiation scatters through thick materials.
Quantities such as energy deposition and angular deflection are calculated using various

Monte Carlo schemes. Such schemes are based on condensed case histories, that is. a
particle's energy, direction, and position are calculated at discrete intervals rather than

continuously as the particle traverses the medium. Probability distribution functions
based on this interval are then used to determine the state of the particle after each step.

This scheme has been very successful in the study of thick target particle transport.
Recently, these transport codes have been applied to very thin foils lor transition radi-
ation research. Discrepancies in the angular distribution of the transmitted electrons

resulted which indicate an apparent break-down in the code calculation of the multiple

scatterin2.
The multiple scattering distribution is based on a substep size which is calculated

from the particles radiation length and the target material density. Berger [Ref 2: p. 143]

has pointed out three advantages for small step sizes, two of which affect the angular
distribution of the particles. If the step size is small, the majority of the scattering is
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done within the material and boundary effects need only be calculated in the partial

substep at the escaping edge. The scattering in the partial substep will have a small

impact on the total angular deflection so that crude approximations to the multiple

scattering can be used for this region. The net angular deflection within a substep is so

minimal that multiple scattering theories with this restriction are applicable. For thick

materials where the number of collisions is large, these assumptions are valid. The ma.

jority of the scattering is done within the boundary of the material and the overall dis-

tribution is calculated in this region. The number of collisions in the final substep is so

small that their contribution to the overall angular distribution is minimal. However, for

very thin materials, where the thickness is less than the substep size, the entire scattering
distribution is determined from the crude approximation.

The number of collisions presents another problem in the calculation ef the angle
deflection. Small angle approximate multiple scattering theories ignore the large anglc

calculation because if the number of collisions is large the majority of the scattering will

be small angle scattering. For very thin materials the number of collisions can be so

small that an occasional large angle scatter can make a large contribution to the overall

angle distribution. It is therefore necessary to develop the large angle scattering di,-

tribution along with the small angle profile.

The Integrated Tiger Series of coupled photon and electron transport codes Ms1

were originally developed for thick material transport. When the ITS code for cylindii-

cal geometry (CYLTRAN) was used for very thin free standing foils, the angular dis-

tribution of the transmitted electrons had broader Gaussian forms then that o1 the

available experimental data. The need for a correction to the multiple scattering dis.

tribution for very thin materials existed, and several methods of solution were consid-

ered.

The best method of correction would be an explicit treatment of the scattering based

on the screened Rutherford cross section whereby each electron collision deflection angle

is calculated as the particle is stepped through the material. Although this method

would give very accurate results the time inefficiency makes it impractical for computer

programing. Any other treatment would require a theory of multiple scattering to de-

termine the angular distribution. The five principle works on the subject are by Williams

IRef. 31. Goudsmit-Saunderson IRef. 41, Moliere IRef. 51. Synder-Scott IRef. 61, and
Lewis IRef. 7j. The theories at a glance seem as diverse as the random processes

2



themselves: however, in the limit of small angles they are essentially the same. A brief

history of the evolution of these theories will serve to amplify this point.

When charged particles are incident on a slab, tie distribution of the scattered par-

ticles is described by the well-known Boltzman integro-differential equation. Bothe [Ref.
8: p. I) showed that in the limit of small angles, this equation transforms into a

Fokker-Planck type differential equation. Although his own theory of multiple scatter.

ing was flawed with inexact boundary conditions and approximations, the Bothe-

Fokker-Planck general form for the distribution would become the standard form for all

small angle approximation theories which would follow.

Williams was the fist to utilize the Fokker-Planck equation successfully. Although

his expression for the angular deflection showed agreement with the experimental data

of the time. his theory would e overshadowed by the historic Goudsmit-S.Junderson

theory which was published one year lacer. 1he Goudsnut-Saundrson theor %%as al

exact treatment based on a Legendre polynominal expansion and was %ald for all ingles.
1 he theor, was exact except for the assumption of equal path lengths.

Almost a deade loliowed before another theory of nwltiple scatri|%g \at pub-

llied. and that %%as the theor, of Moliere. Moliere used small 'ingle approimation' to

tranrorm the t:andard transport equation into a form which resembled d,!Yicsin. lic

then exandeJ the re,-ulting expression in ternis of an iteration .ot,1-ant to c¢ aluat the

distribution. ltic Molhere theory showed great agreement with cxpurmental da~a. c,-

prctall. for thin material,, and is the standard theoretical comparison for all sLatter'ij,

experiments today. Another small angle app:oxmation shortly followed b\ Syndcr-
Scott %shich clliccti\ei. derivcd the Molhere integral equation fIrom a standard dillusio;)

equation. A .%ear later Lewis showed that the iniegro-dillerencial equation for small

angle-. conformed to the Sxnder-Scott expression. Finally Nigam. Saunderson. and Ya-

You Wu Ref. 9: p. 10921 showed the equivalence of the Moliere and the Goudsmit-

Saunderson theory in the limit of small angles.

In the present paper, we are concerned with scattering in very thin material. %%here
the scattering angles are small. Therefore the small angle approximation theories of

Williams and Moliere are appropriate. Esen with the best possible multiple scattering

theory, the question of large angle deflections still remains. With very thin materials the

number of collisions is so small that the occasional large angle scatter makes a signil-

leant contribution and cannot be ignored.

3
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A method of solution has been developed by Thomas Jordan and Joseph Mack

which combines the small angle theory of Williams and an explicit treatment of the large

angle scattering. Chapter two will outline the theories of Williams, Goudsmit-

Saunderson. and Moliere. Chapters three and four will describe the multiple scattering

algorithm in the existing ITS code CYLTRAN and the correction scheme by Jordan-

Mack.



11. THEORY

A. WILLIAMS

The particle scattering theory by E.J. Williams was the first theory to properly use

the Fokker-Planck equation. As pointed out by Bothe [Ref. 8: p. 1641 a particular sol-

ution to the Fokker-Planck equation for multiple scattering has a Gaussian form.

Williams states the same relation with reference to the general theory of errors. The

difference between Bothe and Williams is that Williams limited the scattering angle to a

finite value. In addition Williams set the cosine of the scattering angle equal to unity,

whereas Bothe kept the cosine term in his solution of the scatteriig cross section.

To determine the multiple scattering distribution function Williams delined a limit-

ing angle 4, such that on the average the particle would deflect once through ,1 anIgle

greater than 0, while traversing the material. This can be written by setting the number

of collisions in the back region equal to unity:

where P(O) is the colliion cross section. Since virtually all the scattering is done at an

angle less then h, an approximation to the total distribution can be found by considering

the deflections in this region. Williams showed that from the general theory of errors.

the probability of scattering into an angle 2, . of a particle due to collisions whih are less

than 0, can be represented by a Gaussian of the Corm:

PI2) 3, C\r2 d(. x)

where 5' is the arithemetic mean value of a, and is given by:

f 5



This general Form of the theory is a good approximation to the multiple scatterin:

however, when Williams derived it he used the unscreened Rutherlord cross section with

the small angle approximations 2sinYO -; 0 , and cos !20 .- I which resulted in:

P M = 4 l2.tZ 2.ea  (3.4)

where N is the number of scattering atoms, t is the thickness of the scatterer. Z is the

charge of the particle, N1 is the mass of the particle, #l = (v/c). and = (, I - J- )-1. In

addition, he further modified F, by an approximation to take into account the screening

of the atomic electrons. To graph his distribution Williams defined a unit of angle which

would become the "natural" angle for several papers on multiple scattering. The angle

is given by:

-2 = .V 7c 2

Originally. Wiliiams was concerned %%ith thick targets. fist particles, and unit charges.

In his second paper he modified 5, to avoid second-order approxmations he used in the

original derivation. This modification extended his theory to thinner targets (0.01 cimn.

B. GOUDSMIT-SAUNDERSON

The multiple scattering theory of Goudsniit-Saunderson is often quoted as an "e-

act theory and in the deelopment of the most general form of the thecry no assump-

tions or approximations are used. Iloweer. in the derivation of the collision crw ,

section an assumption of small angles and equal path lengths is asserted such thit the

resulting distribution is a small angle approximation. The theory is founded in the basi-

Lcgendre polynomial property that the average value of any polynomial after n events

is equal to the average value of the pol.noinials after one e'cnt to the iv pover:

< P, cos01 -< P( cos 0> .ol

where 0 is the final scattered angle after several collisions, and 0, is the szattered angle

after one collision. The total average of any Legendre polynomial can be written as:

G ,. If'(".) < P,( Cos 0;)>, 37

6
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The scattering distribution is then given by summing all these averages per unit solid

angle:

(21) = IZ2 I+ cos 0) (3.9)

The collision probability can be represented by a Poisson distribution which has func-

tional dependence on the total collision cross section p . and the thickness of the

scatterer t:

U n) v- _ 4,t (3.9)

This expression would be exact if the true path length were equal to the foil thickness,

and for small deflections this assumption is quite valid.

The evaluation of the Goudsrnit-Saunderson theory has been developed extensivelv

by Spenser [Re. 11 and Berger (Ref. 2: p. 2071. The Goudsmit-Saundcrson muhiple

scattering distribution is given b% Berger as

.- IG~le\) f 1 G.4sexps - PClosvo m.:.u

lhe expansion coceliients G are cixcn by:

(i - 2:-.\' v(0 ,I - P co. Oj sin 0 do (3.11

where o!Oj is the screened Rutherford Cross section which has the iorm:

2 ,J4

p~v2( I - cos 0 + 2q),

The constant XI is Moliere's screening angle and is given by equation (3.21). To solhc

equation (3.10). recursion relations are developed so that a large number of expansion

coefficients can be calculated. Berger [Ref. 2: p. 2131 shows that a convenient form of



the distribution flor random sampling can be found by replacing the Legendre

polynomials P( cos w) by the relation:

Hi( cos W) =f PAx)dx (3.14)
co$ €,

with the recursion relations:

no = I - cos W (3.15)

!H, - 0 - cos~w) (3. 16)

(1+ 1)11=(21- 1)coswll,. -( I - 2)H- 2  1.2 (3.17)

This method of solution to the Goudsnfit-Saunderson theory is used in the Ii S cod
sx stem for the multiple s.attering within the material.

C. MOLIERE

Moliere takes a dillerent approach in that he explicitly starts his theory with the
assumltion that all scattering angles are small, such that the standard trankport

equation reduces to an expression which resembles diflision in a plane:

i.f nI;.)/ + Nj (0r.I') ,I O.S

where ow is the dillercntial s.attering cros section. N is the number 1 'stattering aton

per cm'. 10, - 0 - /. ia vector representing the direction of the ekctran before the la.t
scatter. 4A' - d,, &2,r . and 1l. 1) is the scattering angular distribution. A [oulier
(Besseli transformation which is given in great detail in Bethes pape produces the all-

gular distribution Function of the form:

f1O. 0) 1 dqJliOI x exp C -N a( Y.y i - JolP!}

where J,(;10) and J,iq) are bessel functions of the zeroth order. Moliere takes the theoiy

a step further by transforming his equation into an expression which depends on two

angles 11 and ,.

* 8



The transformed Moliere multiple scattering distribution function then takes the fol-

lowing form:

J(0)0 dO = ;, dJ. yd4(/Y).) exp [ -b + In 14yj-] (3.20a)

00

-='(3.20b)

b - In( 6L" (3.20c)

Y = XC'7 (3.20d)

The first angle is the screening angle. y2. which describes the scattering atom and is

derived from the specil form of the given scattering law:

" -, . ,.x 137) ]-3. .-21'

In .Moliere's original paper, he used the ThoImas-Fcrni potential flor the single scattering

law. Since this form does not contain the Born approximation onl' elastic collilions

against the Coulomb field of the nucleus was considered. Fano IRef I: p. 1 17] showed

that the torrection due to the inelastic collision with atomic electrons consisted of re-

placing Z' by Z(Z - 1) and adding an additional term to .Moliere's constant b:

In( .± : l +V+ In (0. 160JZ- .' 'A - 3. 33Ze thv)] - ,.1 31,=lnl ---- ;+(Zi I)-'{lnQ1Ul--. -ZC!.n.fl" ,

where c. is an integral o%cr an incoherent ,cattefing Function %%hose value is about .5.u.

Berger [Ref. 2: p. 207). extrapolates this constant for seseral materials whkh are shown

in Figure I on page 10.

The second angle is a unit probability angle. -1. which is a measure of the foil

thickness and states that the total probability of a single scatter at an angle greater than

Z, is equal to one.

9
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This "natural" unit of angle was first determined by Williams in his theory of multiple

scattering. The unit probability angle is given as:

2 = 4,rNte'Z(Z + 1):209v)2  a.-- 2

To solve the transformed equation Moliere then defines an iteration constant B, and

expands the integral in terms of a power series in I: B,.:

B, = b + lnB,,, (3.24)

AJO)O dO = € d[°(;) + B.,/ (.) + B2f() +...] (3.25)

where

0O ,, (3.2,)

Moliere's theory is alid for small angles less than thirty degrees [Ref. 12: p. 1256]. His
theory cz.a be extended to larger angles by the introduction of a multiplication factor.

\ sin 0/ , into the overall angular function as suggested by Bethe IRef. 12: p. 12631.

The first order appro\imiation to the Moliere angular distribution with the correction

just mentioned has the following form:

' 0 , (3.27)

This represents the Gaussian term for multiple scattering. Higher order terms are

somewhat more diffliclt to calculate and impractical to program. Bethe indicates that
when the scattering is lees than two degrees. the second terif , represents a ten percent
correction to the Gaussian first term. [Ref. 12: p. 1260]

Since we are concerned with only very thin distances where the scattering is mostly
in the forward direction the first term will represent a good approximation to the multi-

pie scattering.

11



III. ITS (CYLTRAN)

The ITS code CYLTRAN is the transport code for cylindrical geometry. A com-
plete description of the code system is provided in Appendix B. CYLTRAN uses two

methods for determining the multiple scattering distribution of the electrons. When the

scattering is done within the material, and within a full substep interval, a subroutine

named "MULT" is called to calculate the scattered angle of the electron. Subroutine

MULT uses the Goudsmit-Saunderson theory to determine the scattering distribution.

For scattering in the final partial substep at the escaping edge of the material, a sub-

routine named "ANGLE" is called. ANGLE uses a crude approximation to the multiple

scattering which is described in detail in Appendix C. Both methods hinge around the

substep size which depends on the scattering material. The substep size is calculated by

the equation:

DR.4 .v(;E
D p(ISUB) (4.11

where D,.,,G is the mean free path of the incident electron (g ctW). ISUB is the number

of substeps per interval, and p is the material density. The scattered angle of the incident

electron is then calculated afIer each substep from the Goudsmit-Saunderson distrib-

ution. In a cross section generating program XGEN, the average cosines based on the
same substep size given in the equation above, are calculated and stored in an output

file. CLYTRAN reads in these stored cosine averages. In a subroutine named MULT

the angle distribution is formed using up to 240 Legendre polynoniinals with the cosine

aerages. Scattered angles are then drawn from the distribution for each incident
electron after each substep. This process works fine until the final substep at the mate-

rial boundary where the distance from the last full substep to the escaping edge is less

than the substep size. In this region the cosine averages calculated by XGEN are no
longer valid and the Goulsmit-Saunderson distribution can not be used. To determine

the scattering angle distribution a crude approximation to the multiple scattering is used.

The approximation is made in a subroutine called ANGLE. ANGLE is called whenever
the distance from the last full substep to the escaping edge is less than the substep size.

12



The crude approximation is based on Willians' Gaussian expression:

ftO)c exp 2 ~exp 1 (4.2)

where ot is calculated from the relation:

SID (4.3)
a--(1 -<cos0>) Dsubsep

The average cosines are given by the program XGEN, and SHID is the distance from the

last full substep to the escaping edge. For thick foils this approximation is reasonable

because it has very little effect on the total distribution which is calculated from several

Goudsmit-Saunderson calculations within the material. For very thin foils where the

thickness is less then the step size, the entire angular distribution is determined by this

crude approximation. It is therefore necessary to develop a better approximation to the

multiple scattering in the final partial substep.

13



IV. THE JORDAN-MACK CORRECTION

A correction to the multiple scattering distribution which uses the Williams small
angle approximation theory and an explicit treatment of large angle scattering has been
developed by Thomas Jordan and Joseph Mack. The major difference between the
Jordan and Williams solution is that Jordan uses the Goudsniit-Saunderson expression
for the screened Rutherford cross section whereas Williams used the original Rutherford

cross section. The Goudsmit-Saunderson expression is given by:

2,ie4Z 2  sin 0 dO

p v2 (1 - COS 0 + !, 2)2

where 02 is Moliere's screening angle y. . The mean square angle for single scattering is
then defined by integrating the average angle over the cross section in the forward re-

gion:

W2 =A, 02d,wo - .V do (5.2)

6"0

where 0, is defined as the maxinum angle such that the probability ofa scatter greater
than 0, is exactly one. Zerby and Keller [Ref. 13: p. 2021 state the same relation in their
discussion of Moliere's theory, where they assert that the scattering angle must be re-
stricted to exclude large angles for which Moliere's theory breaks down. To accomplish

this. they suggest choosing an angle 0,, such that on the average one large scatter will

occur in an angle larger than 0, . This method was first derived by Williams almost 27
years earlier. The small angle approximation is then assumed in the form:

02 2(1 cos0) (5.3)

and the resulting mean square angle is given by:

o 2iJ (I - cos 0) da (5.4)

14



Equation (5.4) can easily be integrated into the following form:
42 '2

CO Y.C. - In2[ l -Y1] (5.5)

where y.: -- + ,),/,, P=C os , and q = . . See Appendix B for the

complete proof. The term (1 -,u + j) can be found from the condition that one scatter

will occur in the back region:

fd 1 (5.6)

and upon integration it yields:

0- = (5.7)

[2 i2

With the mean square anglc completely determined, the Gaussian form of the distrib-

ution is known:

f >C
2

To extend this relation to larger anclcs the multiplication factor , sin 016 as suggested

by Bethe [Ref. 12: p. 1263] for Moliere's theory can also be incorporated into the previ-

ous equation so that the final distribution function has the Ibrni:

F')a/ e -, (5.9)

For a given electron scatter through a material distance t. the small angle deflection can

be determined from the distribution function F(O) : however, the large angle deflection

must also be determined. To accomplish this, a Poisson distribution function is con-
structed whereby each term represents the probability of a large angle scatter:

11

Pn = m (S 0)
n! e(.o

where m is the probability of a single event. Since the expected number of collisions in

the back region, (6 > O,) has been set to unity, the probability of a single event is equal

to one, (i.e. m= 1). A random number can then be drawn and the probability of each

15



individual large angle scatter subtracted from it until the remaining probability is less

than or equal to zero. For each large angle scatter an explicit random angle detLrmi-

nation is done based on the collision cross section. The Poisson distribution can only

be used when the scattering probability is small and constant as in the case of very thin

fbils. If the foil is too thick or the energy of the incident electron is too small, then the

probability of large angle scattering will increase and Poisson statistics will not properly

described the distribution.
Thus the multiple scattering has been decoupled into small and large angle scatter-

ing. This technique hinges around the angle parameter 0, , the maximum angle for

which one large scatter will occur at an angle greater than 0.. In the case of ultra thin

foils or very high energy electrons it may not be possible to have a large angle scatter.

In this case cos 0,. turns out to be greater than one! Therefore it is necessary to calculate

the angle deflection by the explicit Poisson treatment for all collisions within a step size.

For this case the probability of a single event m is equal to the total Lollision cross sec-

tion integrated over all angles:

N = \' do (5.1

1.



V. RESULTS

The Moliere and Jordan-Mack correction schemes were programed into the IS
code CYLTRAN by inserting a call statement in subroutine ANGLE. This statement

calls a new subroutine ANGDET (ANGIe DETermine) which contains the correction

schemes. When the distance from the last full substep to the escaping edge is less than

the substep size, ANGLE is called by the main program and ANGDFT is called by

ANGLE. The fortran source code for both corrections is given in Appendix C. along
with the existing ANGLE subroutine code. The input parameters to CYLTRAN for
each run where similar to the example input file given in Appendix B. The number of

histories for each run wa I0.1(00. The statistics for each run were calculated based on

ten batches.

The problem of validating and comparing the existing CYLTRAN code with the two

correction schemes was dilficult due to the lack of suf iient experimental data for scat-

toring through \cr% thin foiis. Originally onl. the historic result% of I lanson IRe. 14:

p. 03411 were onsidercd. In this expcriment ilanson used a ISA(,( nlg cmi '

19.o7 x :f.lI) 1cnt) gold ftil with 15.77 \IcV electrons. Figure 2 cn pagc IS sho%%s the

CLYiR\N solution along with the I lan%on data. The subtcp si,e for I ,.- IMcV

electrons in gold is S2.''S tug cm: 1.71 x I) 'cni) so that the I lanson foil is smaller then

the intcrxal subtep. Therefore. the entire distribution is calculated in the subroutine

ANGLE by the crude arrioximation. I'rom Figure 2 ot page IS it is shown that this

approximation giscs a much wider Gaussian width then the experimental data.

I *iure 3 on pge 19 and [i-urc 4 on page 21) show the corresponding .Iordati-.Mack and

Mohere methods of corrc;tion with the l lanson data. Both correction nicthods show

an oierall improvemen; in thle angular distribution. It is of no consequence that the t%%o

solutions give similar results because they both consist of small angle approximate

Gaussian forms. It will be shown later that there are regions where these methods of

correction give dillerent rc-ults.

The next step was to compare these two correction methods with experimental data

of different energies and materials. Only two other experiments for %e thin foils could

be found, and they were the papers of Kagevama and Mozley. [Ref. 1: p. 34S and. 1,:

p. 6471 The Kageyama experiment was for 1.66 MeV electrons through both copper and

lead foils. For this experiment, the low speed of the electrons ct1 ectivcls increascd the

17
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number of collisions and a broader Gaussian distribution resulted. lhe foil thicknesses
were 6.3 mg cm: (7.05 x 10-'cm) and 6.2 mg cm (5.40 x 10-'cm) respectfully. I he Cor-

responding substep sizes were 14.67 ng cm 2 (1.64 x l0--cm) and 8.96 me cm2

(7.S6 x 0-4cm). Therefore. the copper foil is thicker then the substep size and is scg-

mented into three substeps. In the first two full substeps, the multiple scattering dis-
tribution is calculated by the Goudsmit-Saunderson theory. The third substcp is less

than the substep size so that tile deflection angles arc calculated by the approximation
in the subroutine ANGLE. On the other hand, the thickness of the lead foil is less then

the substcp size so that only the ANGLE subroutine is used for the scattering distrib-

ution. Figure 5 on page 22 shows the CYLTRIAN solution for the copper case, and

again the distribution is much broader than the experimental data. The Jordan-Mack

method (Figure 6 on page 23) , does not show exact agreement as in the Hanson case:
however, it does show an overall correction. For this case, the Moliere model
(Figure 7 on page 24) showed the closest agreement to the data.

The lead fbil solutions, (Figure S on page 25 thru Figure 10 on page 27) show the
same trend. The CYLTRAXN solution is always broader then the experimental data and

for low energies, the Molicre method is better than the Jordan-Mack technique.
On the other end of the enerGy spectrum, the Mozley experiment was at a much

higher energy. 600 MeV. and consisted of scattering through ver thin aluminum foils

(2.44i mg cn 2 , 9.0 x 10-1cm). For this case the substep size is equal to 3.99 g cm2

(1.48 x 10- 1cm) . so that the foil thickness is much less than the the substep size. At such

high energies (600 MeV), the scattering is in the forward direction and not much greater

than 0.02 decrees. This makes it very difficult to resolve the scattering and tally the

electrons into such small angle bins. Therefore the curves appear crude. Even with
double precision. only a bin width of 0.025 degrees was allowed before floating point

underflow errors resulted. In spite of these computational problems, the general trends

in the solutions can still be seen. In Figure 11 on page 28 the CLYTRAN solution is

given for this case, and the poor agreement to experimental data is clearly shown. The

Jordan-Mack solution (Figure 12 on page 29) shows great agreement with the data and

is superior to the Moliere case (Figure 13 on page 30).

With the JM solution verified over a range of energies and materials, the research

effort appeared to be winding down, until something unexpected resulted! When the half

width values for several gold foil thickness calculations were plotted for both the

CYLTR-XN and the JM solutions, a periodic "saw-tooth" pattern resulted (Figure 14

on page 32). Only when the periodicity was determined to be the substep size did this
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pattern make sense. In the original ITS code, the angular distribution within a full

substep is calculated by the Goudsmit-Saunderson theory. If the distance between the

last full substep and the escaping edge is less than the substep length, the subroutine

ANGLE is called to calculated the distribution for the region using the crude approxi-

mation. As shown in the theory section, this approximation is dependent on the dis-

tance between the last substep boundary and the escaping edge. The larger this distance

is, the larger the error in the approximation will be. lowever, if the foil thickness is

exactly equal to tile substep size, or a multiple of this size, the entire distribution will

be calculated by the Goudsmit-Saunderson theory and the subroutine ANGLE will

never be called. The effect is such that the error from the approximation grows until the

distance between the last substep and the edge is equal to a substep and then the sol-

ution -corrects" itself by a Goudsmit-Saunderson calculation. With this explanation, a

better understanding of the subroutine ANGLE is given. For the existing ITS material

interfacc approximation there is a strong dependence on the foil thickness. Oil the other

hand. the Jordan-Mack method shows very little dependence on this distance parameter

SLID. For vcry thick foils the error of approximation at the cscaping edge is a small

fraction of the total ditribution which has already been established by the multiple

substcp GS calculation% within the material. A semi-log plot shows this graphically

WFicure 15 on pace 33 .

An interesting result of the Jordan.Mack solution is the apparent evaluation of

Moliere's iteration /_. Upon comparison of the two forms of the Gaussian distribution.

(equations (3.27o and 5.9o, a Jordan-Mack constant can be formed and is gien b":

--,,= ~ - lntyz - I

Comparisons of B. and B.. are shown in Figure 16 on page 34 and Iigure 17 on page

35. In Figure lb the energy is held constant at 15.77 NIeV. while the foil thickness is

%aried from 10 microns to one meter. This figure shows the region where the Jordan-

.Mack solution and the Moliere theory give similar results. At around eight centimeters

B_ becomes constant whereas B. still increases. Since the thickness of the final partial

substep is usually much less than a centimeter this region is of little concern. ligure 17

on page 35 however does contain an important result. In Figure 17 on page 35. the foil

thickness is held constant and the incident electron energy is varied from one clcctron

volt to several MeV. Again there is a region where the two theories are similar. At

around 0.5 MeV the two iterative constants level off. but for energies less than this. the
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two curves diverge. Recall that this iterative constant B is a measure of the Gaussian

width of the scattered distribution. Since B is in the denominator of the exponential,

when B increases the width of the distribution increases. Physically, when the incident

electron energies are low the number of collisions should increase and the Gaussian

width of the distribution should increase. Therefore the value of B should increase as

the energy decreases. The Jordan-Mack solution appears to break down at energies less

than 0.5 MeV. To investigate this problem a "'stand-alone" fortran program named
JORDAN was utilized. JORDAN is simply a bin tally program which uses the

Jordan-Mack correction scheme to form the cumulative distribution function from

which the incident electron angle deflections are drawn. In addition to the standard

transmitted electron distribution, program JORDAN gives the distributions of both the

small and large angle scattering. The program is given in Appendix 1). With the

stand-alone- program several problem runs could be quickly conducted at many diffr-

ent energies. The results of those runs are given in graphical form in Appendix F. For

the small angle distribution a discontinuity developed at energies less than 0.5 Me' at

an angle of 105 degrees. At 0.01 Me\V this discontinutity grows into a major peak. In

this case the small angle distribution has been extcnded far beyond it's region of validity.

We must remember that small angle approximations were used in the developrcment of

the distribution equations.

The large angle distribution% for the related energies show the same pattern. For

energies less than 0.5 MeV the discontinutity at 105 degrees becomes large. Onc expl,,-

nation is that the large angle scattering in the .Iordan-Mack correction is based on a

Possion distribution which requires the probability of a single event to be vcry small.

As the energy decreases, the number of large angle scatters becomes large and Poisson

statistics are not applicable.
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VI. REMARKS

This study looks only at the angular distribution of the transmitted electrons. Al-
though the energy deposition for very thin foils is small, this aspect of the code and the
correction should be investigated. Another of area of interest which needs elaboration
is the apparent discontinuity in the small and large angle distributions at energies below
0.5 MeV. The problem occurs at 105 degrees and is not Z dependent (See Appendix E).
Finally, all the comparisons for this study were calculated using ITS version 2.0. An
updated version 2.1 has recently been installed at the Naval Post Graduate School. Trial
runs have shown the same problems in regard to very thin foils. Version 2.1 contains a
correction to the Landau Straggling Algorithm and doesn't eflct the subroutine AN-
GLE. [Ref. 171
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VII. CONCLUSIONS
The existing CLYTRAN code approximation for the multiple scattering in very thin

materials is inadequate when the thickness of the foil is less then three substep intervals.
The Jordan-Mack correction shows an improvement over a wide range of energies andmaterials. The Jordan-Mack scheme does however break down for very thin materials
when the energy of the incident electron beam is less than 0.5 MeV. For moderate en-
ergies the Jordan-Mack method gives better results then the Moliere first term approxi-
mation. Of course if more Moliere terms were used this difference would be minor. In
addition, is was shown that although the large angle scattering distribution makes a
small contribution, it should not be ignored for moderate energies. Future versions of
the ITS code system should include a correction to the multiple scattering for %cry thin
materials. Finallh. the range of applicability must be deterined and documented with
the final version.
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APPENDIX A. ITS OVERVIEW

The Integrated Tiger Series of Electron Photon Transport codes (ITS) is the most widely
used particle transport code in the world. The code package was developed to incorpo-

rate eight individual codes which were developed over the period from 196S to 1981.

All the codes are based on the original ETRAN model developed by M. Berger and S.

Seltzer. The ITS code system consists of four primary code packages [Ref. 1: p. 91:

XDATA: The electron and photon cross section data file.

XGEN: The cross section generation program.

ITS: The Monte Carlo program file.

L PE.ML: A machine portable update emulator.

The heart of the ITS is the program library file ITS. which contains the eight Monte

Carlo programs plus system directixes for the CRAY, IBM. VAX. and CDC operating
systems. The update emulator program UPEM L creates the various Monte Carlo codes

for a given system with any corrections to those codes that may be desired. Tle output

fortran source code from UPEML is then compiled and stored as an executable module.

Program XGEN generates the problem specific cross section data tape using file
XDATA 1or referenced inputs and a user defined input file. The Monte Carlo codes

then read in the cross section tape and process the user defined problem.

One of the eight ITS codes is CYLTRAN, which simulates the transport of particle

trajectories through a three-dimensional multimaterial cylinder. For this project only the

CYLTRAN code was required. As an ITS user the following steps were required to
execute an ITS run

1. Create the specific ITS code CYLTRAN with the required correction schemes.

2. Generate a cross section tape based on the different type of materials contained in

the cylindrical geometry of a problem.

3. Create an input file which list all the input parameters required to calculate desired

outputs.

39



4. Submit the input file and the generated cross section tape to the ITS Monte Carlo

codes to execute a run.

Table I is a sample input file to generate the cross section tape for the materials in a

cylindrical geometry. Each material line represents a different medium in the cylinder.

Percentages of each material in a compound and its density must be specified. Single
element lines such as Cu, has its density stored in ITS and is automatically used for the

simulation when needed.

Table I. SAMPLE INPUT FILE TO CREATE A CROSS SECTION TAPE

Energy 16.0
Material Cu
TITLE

16 MeV Cross Section for Au foil

Once a cross section tape is generated. an input file with the parameters desien for

a particular simulation must be created. Table 2 on page 41 is a sample input file to
execute an ITS run. The kevwords at the beginning of each line are relatively sel-

explanatory. lowe~er. a few keywords and their numerical parameters require some

explanation to fully understand their importance. These 1k w keywords and their expla-

nation are ligted [Ref. 1: pp. 21-231:

Geometry This keyword sets up the cylindrical geometry of the problem into input

zones, where in this case there are seven input zones. Each line of numerical

parameters following the keyword describes the dimensions of each zone.

Electron/Photon-Escape This keyword tallies the number of incident electrons and

photons that escapes the cylindrical geometry, either latterally or transmit-

ted through.

NBINE tallies the escaped electron photons in specified energy bins.

NBINT tallies them in angular bins.

41



Electron/ Photon- Flux This keyword tallies the energy deposition of electrons and

photons in the subzones described in the keyword geometry.

Histories This keyword represents the number of primary particle histories to follow

as it transport through each medium in the cylinder.

Table 2. SAMPLE OF AN INPUT FILE TO EXECUTE ITS

Echo I
TITLE

Mat:Au 18.67 Mg/cm2 His:100000 E = 15.77NeV
Electrons
Energy 79.0
Cutoffs .1 .1
Position 0.0 (1.0 0.0
Direction 0.0 0.0
Geometry I

0.00 0.00096684 0.00 10.000 1 0 1 1
Electron-Escape

NBINT 24 User
0.5 i. 1.5 2. 2.5 3. 3.5 4. 4.5 6. 6.5 7.
7.5 8. 8.5 9. 9.5 10. 15. 45. 90. 180.

NBINE I User
0.1

Histories 100000
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APPENDIX B. JORDAN-MACK EQUATIONS

The Jordan.Mack correction to the multiple scattering for very thin foils is based

on a Williams Gaussian distribution. To determine the mean square angle, the screened

Rutherford cross section with Moliere's screening angle are combined and integrated

over the forward region:

w = \' 02 do (B.1)

"0

2~ ~~z _ \- 1"Z ( - Cos (9)

- j 2 Cos + 1 d(cos 6) (B.2)J par" (1 - cos 0 + if)-

where Of= :0j is one half the value of Moliere's screening angle and the small angle

approximation of O: 2(1 - cos 0) has been used. The constants in this integral Form

the Moliere unit probability angle. and with the substitutions p = cos OAU, cos 0,. this

equation simplifies into a form which is easy to integrate:

(Jdu (B3.3)f' --l. (I - /I + 11Y2 d2 B3

x,=-(_ 0 -,u+ 1) (- , + .J),.a

w =-C [In(7) - ln(l - u, +)1) - + +1 (B.4)
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This expression can further be simplified by the introduction of the constant /I:

2 _ InX213 (B.56)X¢.df l _ m +l Iq35

which is the form given i the theory section. To evaluate the 'argument- (I -,U. + 1i),

the condition of one scatter occurring in the back region is imposed in the following

form:

ondo =I (B.7)

- , 2 I I du= 1(B.9
2- 7c (1 - P + I

Rearranging yields:

(l-u -"= [ ..7 -1 
1 (B. 10i

S 2 + 1
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APPENDIX C. FORTRAN SUBROUTINES

A. ANGLE SUBROUTINE
In the existing ITS code CYLTRAN, the multiple scattering distribution near tile

escaping boundary is calculated in a subroutine called ANGLE. As described in the

theory section, this subroutine uses a Williams-type Gaussian approximation. In a

subroutine called XINPUT, the GS average cosines with the corresponding D ranges are

read from the cross section tape and stored in the variable names COSAV and DRG.

In the subroutine XPREP the variable name COSAV is transformed into a proportion-

ality constant by the following code:

DRGS(N,J) = DRG(N,J)/ISUB
COSAV(N,J) = ( CONE-COSAV(N,J))/DRGS(N,J)XPREP

where ISUB is the number of substeps and CONE is the constant one. Since the D

ranges are in units of Nig cm- this proportionality constant is then multiplied by the

density in a subroutine called PREP so that the COSAV values are ready for the AN-

GLE subroutine. The crude approximation is done in only nine lines of code. When the

proportionality terms COSAV are multiplied by the distance to the edge boundary.

Sl1D. the resulting term represents an approximation to the average cosine of the de-

flection angle for that specific distance:

ALF = COSAV(NT,MT)*SHD
RA = RAN(IRAN)
IF (RA .LT. CMEt12) THEN

ARG = MAX(-C88,-CTWO/ALF)
EX = EXP(ARG)
CON = CONE+ALF*LOG(RA*'(CONE-EX)+EX)

ELSE

COM = CONE+ALF*LOG(RA)
ENDIF

The constants CONE, CTWO, CIEM2, and C88 are the values 1.0, 2.0, 0.002, and 8S.0

respectively.
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The expression for the cosine of tih deflected angle COM is deried from tile Williams

Gaussian c\pression which is formed into a CD- and fiom which a random value is

drawn:

2(1 -CO To;m)

ex[ ] exp[ (I1-CO.1l) 3(C2)1-71 -  ]ALF

B. ANGDET SUBROUTINE (JORDAN-MACK METHOD)

For the Jordan-Mack correction scheme a subroutine called ANGDET was devel-

oped to be called from the ITS subroutine ANGLE. All the previous coding just de-

scribed for the crude approximation was deleted by the following code:

*DELETE ANGLE . XX-M

The call statement is then placed in the subroutine ANGLE with the patch subroutine

ANGDET placed at the end of ANGLE:

*INSERT ANGLE. 99
COI%:ION/TEMP ,'J SUL, L!AT( IN'1T), 4PAIR, ! TA-X( 15), NTAB ,WT( INE~1, IN:!T),

1ATW( IN, 'T). ZE( INE:M, IN!IT)

'INSERT ANGLE. 120
C --- :--------------------------
C ANGLE DETER:IINATION PATCH C
C ---------------------------

CALL ANGDET(CO1,SiiD,T,RHO(!iT),ZE(1,IT),ATW(1,T))
C
C ----------- END CF PATCH ------ C
*INSERT ANGLE. 190

SUBRYJINE ANGDET(CO!',SHD,E,RHO,Z,A)
DOUBLE PRECISION CO:2,STH ,CTH,SPHCPHi,ETA,FST, HST.AST,
1 BST,XMP,PI,THE2,TARG,SARG,THE,ROT,PEXP,ALtXNP,POFN
DOUBLE PRECISION R,RX,RF,RARG,ARG,COSNAX, POF,POFZ,XTON
DOUBLE PRECISION DSEED,IRAN
CO:ION /VAXRAN/ IRAN
DI:ENSION ROT(3.3),R(3,3),RX(3,3)
DATA PI,RZLRC,EZER3,ALPHA,AVA/3. 1415926536D00,0. 281751
1,0. 511,137. 0371,0. 6025/
RAN(DSEED)-GGUBFS(DSEED)

Initialization of the Constants:

ETwE/EMZERO + 1.
B21= 1./(ET*ET)
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B2= 1. -B21
Z3= Z**I. 333333
ETA = 5*(B21/B2)*CZ3/(.885*ALPHA))**2
1 *(1* 13 + 3. 76*(Z/ALPHA)**2/B2)
FST = 2. *PI*~RZER0**2 *Z*(Z+1) *B21/CB2*B2)

1 '*(AVA/A)*SHD*RH0

Determination of the Integral Values:

HiST = l.+ETA
AST = 1./(HST+1.0)
RARG = 1. /FST + 1. /(2. +ETA)
ARG = 1. /RARG
COSlIAX = HST - ARG

COSIIAX is the maximum angle such that one large angle scatter will
occur in the back region.

144 IF (CQSIMAX. LT. 1. ) GOTO 10

When COSMAX is greater than one, a large angle scatter is not
possible so that an explicit angle determination must be carried out.

COS'HAX =1.-0
BST = 1./ETA -AST
XM P =FSTVBST
CO!1 = 1.
STH = 0.
GOTO 1002

When a large angle scatter is possible, the small angle portion
is determined first using the Jordan-MIack small angle
approximation equation:

10 XM1P =1.
BST 1. /FST
P1 = FST*(DLOG(ARG/ETA)-l. + ETA*RARG)
THE2= 2 * P1
TARG = 1. -DEXPC-PI*PI/THE2)

The multiplication term SQRT(SIN(THETA)/THETA) as suggested by
Bethe is samplied using a rejection technique:

1000 SARG =1. -TARG*RAN(IRAN)
THE DSQRTC-THE2*DLOGCSARG))
Sm = DSIN(THE)
REJECT = 1.
IF (THE. GT. l.E-6) REJECT=-DSQRT(STH/THE)
IF (RANCIRAN).GT.REJECT) GOTO 1000

COM=DCOS( THE)

Initialization of arrays for the large angle portion:

1002 ROT(l,l) = COM
ROT(2,1) = 0.



ROT(3,1) = -STH
ROT(1,2) = 0.
ROT(2,2) = 1.
ROT(3,2) = 0.
ROT(1,3) = STH
ROT(2,3) = 0.
ROT(3,3) = CON
PEXP = -XMP
ALXMP = DLOG(XP)

A random value is drawn from which the probability of each large
angle scatter will be subtracted. If this random value is less
than the the possion distributed value for one deflection, no
large angle scattering will develope:

POFN = RAN(IRAN)
XTON = 0.
POFZ = DEXP(PEXP+XTON)
IF(POFN.LE.POFZ) GOTO 7777

The random walk on the possion distribution is then carried out:

POFN = POFN - POFZ
DO 2000 N=1,500

RF=RAN(IRAN)
CPH = DNINI(COSMAX,DMAX1(-I.DOO,HST-I.DO0/(AST+BST RF)))
SPH = DSQRT(I.-CPH*CPH)
THE = PI*(2.*RAN(IRAN) -1.)
CTH = DCOS(THE)
STH = DSIN(THE)
R(1,1) = CPH*CTH

R(2,1) = CPH*STH
R(3,1) = -SPH
R(1,2) = -STH
R(2,2) = CTH
R(3,2) = 0.
R(1,3) = SPH*CTH
R(2,3) = SPH*STH
R(3,3) = CPH
DO 2050 I=1,3
DO 2040 J=1,3

RX(J,I) = 0.
DO 2030 K=1,3

RX(J,I)=RX(J,I)+ROT(J,K)*R(K,I)
2030 CONTINUE
2040 CONTINUE
2050 CONTINUE

DO 2070 1=1,3
DO 2060 J=1,3

ROT(J,I) = RX(J,I)
2060 CONTINUE
2070 CONTINUE

COM = ROT(3,3)

The probability of another large angle scatter is then calculated:
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XTON = XTON + ALXMP -ALOG(FLOAT(N))
POF = DEXP(PEXP+XTON)
POFN = POFN - POF
IF (POFN. LE. 0. ) GOTO 7777

2000 CONTINUE
7777 RETURN

END

C. ANGDET SUBROUTINE (NIOLIERE METHOD)

The Moliere approximation was programed into CYLTRAN' in a similar mannor.

The sanme delete and inserts for the subroutine ANGLE that were used for the Jordan-

Mack method were used for the Moliere update.

*INSERT ANGLE. 190
SUBROUTINE ANGDET(COII,SHD,E,RHO,Z,A)
DOUBLE PRECISION COM1,STH,CTH,SPH,CPH,ETA,FST,HST,AST,
I BST,XMP,P1 ,THE2,TARG,SARG,TIIE,ROT,PEXP,ALXMP,POFN
DOUBLE PRECISION R,RX,RF,RARG,ARG,COSMIAX,POF,POFZ,XTON
DOUBLE PRECISION DSEED,IRAt4,C1,C2,BK,B,REJECT
DOUBLE PRECISION CF,C3,Al,A2,A3
DOUBLE PRECISION ALPHA,B2,Z
COMMON /VAXRAN/ IRAN
DATA PI,RZERO,EMZERO,ALPHA,AVA/3. 1415926536D00,0. 281751
1, 0. 511, 137.,0371,0. 6025/
RAN(DSEED)=GGUBFSC DSEED)

Initialization of the constants:

ET=-E/EMZERO + 1.
B21= 1. /(ET-,ET)
B2= 1. -B21
Z3= Z-.r. 333333
ETA = . 5*(B2l/B2)*(Z3/(. 885*ALPHA))**2
1 *(1. 13 + 3. 76*(Z/ALPHA)**2/B2)
FST = 2.*ePI*RZERO**2 *Z*(Z+l) *B21/(B2*B2)
I e( AVA/A)*SHD*RHO

Evaluation of the integral values:

HST = 1.+ETA
AST = 1. /(HST+1. 0)
RARG = 1./FST + 1./C2.+ETA)
ARG = 1. /RARG
COSMAX = HiST - ARG
BST = 1. /FST

Evaluation of Moliere constants:

IF (Z.EQ.13.DOO) CF=-5.2D00
IF (Z. EQ. 29. DOO) CF=-5.6D00
IF (Z.EQ.79.DOO) CF=-6.2D00
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IF (Z.EQ.82.D00) CF=-6.3D00
C2=6*FST/ (7*ETA)
Cl=DLOG(C2)
A11l. D00
A2=0. 160D00
A3=3.33D00
C3=(DLG(A2*Z3*Z3*(Al+A3*c(CZ/ALPHA)**2/B2)))-CF)/(Z+A1)

An alternate Jordan-Mack small angle approximation is done if
the value of the constant Cl is less than one. This was done
because Moliere's iterative equation diverges when C1 is less
than 1.0.

IF (Cl.GT.l.ODOO) THEN
BK1. 01D00

444 B=BK
BK=DLOG(B)+Cl+C3
IF (ABSCBK-B).GT.l.OD-4) GOTO 444
THE2=2. ODOQ*FST*B
GOTO 446

ENDIF

445 THE2=2*FST"(DLOG(ARG/ET'A)-l. ODOO+ETA*RARG)
446 TARG =L.ODOO -DEXP(-PI*PI/THE2)

Again the multiplication factor is incorporated into the
distribution:

1000 SARG L.ODOO -TARG*RAN(IRAN)
THE =DSQRT(-THE2*DLOG(SARG))
SmH DSIN(TIE)
REJECT = L.ODOO
IF (THE. GT. l.E-6) REJECT=DSQRT(STH/THE)
IF (RAN(IRA.N).GT.REJEGT) GOTO 1000
CQM=DCOS (THE)
RETURN
END
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APPENDIX D. FORTRAN SUBROUTINE JORDAN

PROGRAM JORDAN
DOUBLE PRECISION COM
DOUBLE PRECISION IRAN,DSEED
COMMON /VXRAN/ IRAN
COMMON /DANS/
1 NDAN1, NDAN2, NDAN3, NDAN4, NDANM
DIMENSION DEG( 100) ,CEG( 100) ,HIS(99) ,FLX(99)
RANNOC DSEED)=GGUBFS (DSEED)
IRAN=63939
NDAN1=0
NDAN2=0
NDAN3O0
NDAN4O0
NDANM=O
NCNT-O
OPEN (50,FILE-'JINPUT' ,STATUS='OLD')
OPEN (70,FILE= XYZ9')

1 FORM1AT(/,/,/)
WRITE (*,I)
WRITE ' JORDANS PROGRAM'
WRITE(*)
WRITE (,)' OPTIONS: 4. MODEL4 (SMALL AND LARGE)'
WRITE (*)'5. MODEL5 (MOLIERE)'
WRITE (,)'6. MODEL6 (LARGE ONLY)'
WRITE (,)'7. MODEL7 (SMALL ONLY)'
WR ITE (,e
WRITE ~ )' ENTER:'
READ(*~',*) NOPT
READ (50,*)
READ (50,*)
READ (5O,*) E,SHD,RHO,Z,A
READ (50,*)
READ (50,*) NUMILIS,NUMBIN
READ (50,'*)
RHOP=RHO*1O0
WRITE (70,*)
WRITE (70,1r)
WRITE (7O,'*)
WRITE (70,44) RHOPZ,E,NUMHIS NOPT

44 FOR.MAT(F5. 2, 'G/CM2 ,'MATZ: ',FS. 2,' E:',F5. 2, MEV HIS: ',16, 'M
$ODEL: ',41)
NZERO=O
NTWO=2
NFOUR=4
NONE1l
NTHR=3
WRITE (70,*)
WRITE C70,*)
WRITE (70,*)
WRITE (70,*) NONE,NONE,NZERO,NZERO
WRITE (70,*) NONE,NZERO,NTWO,NZERO
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WRITE (70,*)
WRITE (7Q,*)
WRITE (70,*)
WRITE (70,*) NTHR,NONE,NONE,NQNE
WRITE (7O,'(AB)') ' JORDAN'
NUMBIP=N2BIN- 1
WRITE (70,*) NUMBIP
WRITE (70,*)
IF (NUIIBIN.LE.O) GOTO 9999
READ (50,*) (DEG(I),I=1,NUMBIN),DEGCNUMBIN+1)
DO 1010 I=1,NUMBIN

CEG(I)=COS(DEG(I)*3. 1415926536/180. )
HIS(I)O. 0
FLX(I)0O.0

1010 CONTINUE
DO 2000 N=1,NUIIHIS

IF (NOPT. EQ. 4) THEN
CALL ANGDT4(COM,SHD,E,RHO,Z,A)

ELSE IF (NOPT.EQ.5) THEN
CALL ANGDT5(COII,SHD,E,RHO,Z,A)

ELSE IF (NOPT.EQ.6) THEN
CALL ANGDT6(COII,SHD,E,RHO,Z,A)

ELSE IF (NOPT.EQ.7) THEN
CALL ANGDT7(COPI,SHD,E,RHO,Z,A)

ENDIF
DO 10210 I=1,NUMBIN

IF (CO,-fGE.CEG(I+1)) GOTO 1030
1020 CONTINUE

I=NUMBIN
1030 HIS(I)=HIS(I)+1. 0

IF(HIS(I). GT. HI'IAX) THEN
HM-AX=HIS( I)

ENDIF
2000 CONTINUE

XHIS=NUHHIS
DO 2010 I=1,NUMBIN

IF (HIS(I).LE.O.) GOTO 2010

DEGREE=(DEG(I)+DEG(I+1))/2. 0
IF (I.EQ.1) THEN

DEGMIN=DEGREE
ENOIF
NER=ERR
NCNT=NCNT+1
WRITE (70,*) DEGREE,HlS(I),NER

2010 CON71NUE
WRITE (70,*) DEGMIN,DEGREE
WRITE (70, *) NZERO,HMAX
WRITE C 70 ,*) '***r****~*LOOPS INFO********e*'
WRITE C70,*) NDAN1
WRITE (70,*) NDAN2
WRITE (70,*) NDAN3
WRITE (70,*) NDAN4
WRITE C70,*) NDANIM

9999 STOP



END

SUBROUTINE ANGDT4(COM,SHD,E,RHO, Z,A)
DOUBLE PREClSION COM,STH,CTH,SPH,CPH,ETA,FST,HST,AST,
1 BST,XMP,P1,THE2,TARG,SARG,THE,ROT,PEXP,ALXN-P,POFN
DOUBLE PRECISION R,RX,RF,RARG,ARG,COSMAX,POF,POFZ ,XTON
DOUBLE PRECISION DSEED,IRAN
COMMON /VXRAN/ IRAN
COMMON /DANS/
1 NDAN1, NDAN2, NDAN3, NDAN4, NDANM
DIMENSION ROT(3,3),R(3,3),RX(3,3)
RANNO( DSEED )=GGUBFS (DSEED)
DATA PI,RZERO,EMZERO,ALPHA,AVA/3. 1415926536D00,0. 281751

1,0. 511,137. 0371,0. 6025/
ET=E/EMZERO + 1.

B2= 1. -B21
Z3= Z**. 333333
ETA = .5*CB21/B2)*(Z3/(. 885* ALPHA))*1*2
1 '*(1. 13 + 3. 76*(Z/ALPHA)**2/B2)
FST = 2.*~PI*RZERO**2 *Z*(Z+1) *B21/(B2*B2)
1 *( AVA/A)*SHD*RHO
HIST = 1.+ETA
AST =1./(HST+1.0)
RARG = 1./FST + 1./(2.+ETA)
ARG = 1./RARG
COSMAX = HST - ARG
NDAN 1=NDAN 1+1

144 IF (COStIAX. LT. 1.) GOTO 10
NDAN2=NDAN2+1
COSMAX = 1. 0
BST = 1. /ETA -AST
XIIP =FST*BST

STH = 0.
GOTO 1002

10 XMP = 1.
NDAN3=NDAN3+1
BST = ./FST
P1I FST*(DLOG(ARG/ETA)-1. + ETA*RARG)
THE2 = 2.*P1
TARG = 1. -DEXP(-PI*PI/THE2)

1000 SARG = 1. -TARG*RANNO(IRAN)
THE =DSQRT(-THE2*DLOG(SARG))
STH =DSIN(THE)

REJECT = 1.
IF (THE. GT. 1.E-6) REJECT=DSQRT(STH/THE)
IF (RANNO(IRAN).GT.REJECT) GOTO 1000
CO.4DCOS (THE)

1002 ROT(1,1) =COM
ROT(2,1) = 0.
ROT(3,1) = -STH
ROT(1,2) = 0.
ROTC2,2) = 1.
ROT(3,2) = 0.
ROT(1,3) = STH



ROTC2,3) = 0.
ROT(3,3) = COM
PEXP = -XMP
ALXMP = DLOG(XlNP)
POFN = RANNO(IRAN)
XTON =0.
POFZ = DEXP(PEXP+XTON)
IF(POFN.LE.POFZ) GOTO 7777
NDAN4=NDAN4+1
POFN = POFN - PQFZ
DO 2000 N=1,500

IF (N. GT. NDANM) THEN
NDANM=N

END IF
RF=RANNO( IRAN)

CPH = DNIIN1(COSMAX,DMIAX1(-1. DOO,I{ST-l. DOO/(AST+BST*RF)))
SPH = DSQRT(1. -CPH'*CPH)
THE = PI*(2.*RANNO(IRAN) -1.)
CTH = DCOS(THE)
STH = DSIN(THE)
R(l,l) = CPH*CTH
R(2,1) = CPH'*STH
R(3,1) = -SPII
R(1,2) = -STH
F(2,2) = CTH
R(3,2) = 0.
R(1,3) = SPH*CTH
R(2,3) = SPH'*STH
R(3,3) = CPH
DO 2050 I=1,3
DO 2040 J=1,3

RXCJ,I) = 0.
DO 2030 K=1,3

RX(J,I)=RX(J,I)+ROT(J,K)*R(K, I)
2030 CONTINUE
2040 CONTINUE
2050 CONTINUE

DO 2070 I=1,3
DO 2060 J=1,3

ROT(J,I) = RX(J,I)
2060 CONTINUE
2070 CONTINUE

COM = ROT(3,3)
XTON = XTON + ALXMP -ALOGCFLOATCN))
POF = DEXP(PEXP+XTON)
POFN =POFN - POF
IF (POFN.LE.0.) GOTO 7777

2000 CONT'INUE
7777 RETURN

END

SUBROUTINE ANGDT5(COM,SHD,E,RHO,Z,A)
DOUBLE PRECISION COM,STH,CTH,SPH,CPH,ETA,FST,HST,AST,
1 BST,,XIIP,P1,THE2,TARG,SARG,THE,ROT,PEXP,ALVXIP.POFN
DOUBLE PRECISION R,RX,RF,RARG,ARG,COSMAX,POF.POFZ,XTON
DOUBLE PRECISION DSEED,IRAN,C1,C2,BK,B,REJECt
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DOUBLE PRECISION CF,C3,A1,A2,A3
DOUBLE PRECISION ALPHA,B2,Z
COMMON /VXRAN/ IRAN
COMMON /DANS/
1 NDAN1, NDAN2, NDAN3, NDAN4, NDANM
DATA PI,RZERO,EMIZERO,ALPHA,AVA/3. 1415926536D00,O. 281751
1,0. 511,137. 0371,0. 6025/
RANNO(DSEED)=GGUBFS( DSEED)
ET=-E/EMZERO + 1.
B21= 1. /(ET*ET)
B2= 1. -B21
Z3= Z**. 333333
ETA = . 5*CB21/B2)*(Z3/(. 885*~ALPHA))**2
1 *(1. 13 + 3. 76*CZ/ALPHA)**2/B2)
FST = 2.*PI*RZERO**2 *Z*(Z+1) *B21/(B2*B2)
1 *C AVA/A)*SHD*RHO
HST = 1.+ETA
AST = 1. /CHST+1. 0)
RARG = 1./FST + 1./(2.+ETA)
ARG = 1./RARG
COSMAX = HST - ARG
NDAN 1NDAN 1+1
BST = 1. /FST
CF=-6. 2D00
C2=6*FST/(C7*ETA)
C1=DLOG( C2)

A2=0. 160D00
A3=3. 33D00
C3=(DLOGCA2*Z3*Z3*(Al1+A3*((Z/ALPHA)**2/B2)))-CF)/(Z+Al)
IF (C3.GT.1.ODOO) THEN

BK=1. O1DO
444 B=BK

BK=DLOG B )+C1+C3
IF CABSCBK-B).GT.1.OD-4) GOTO 444
THE2=2. 0DOO*FST~rB
GOTO 446

ENDIF
445 THE2=2*rFT*CDLOGCARG/ETA)-1. 0D00+ETA*RARG)

NDAN2=NDAN2+ 1
446 TARG = 1.0DOO -DEXPC-PI*PI/THE2)

1000 SARG = 1.00 DO TARG*RANNO( IRA.N)
THE = DSQRT( -THE2*DLOG( SARG))
SmH = DSIN(THE)
REJECT = 1.ODOO
IF (THE. GT. 1.E-6) REJECT=DSQRTCJSTH/THE)
IF (RANNOIRAN).GT. REJECT) GOTO 1000
COHMDCOS(CTHE)
RETURN
END

SUBROUTINE ANGDT6COM,SHD,E,RHO,Z,A)
DOUBLE PRECISION CO!,STH,CTH,SPH,CPH,ETA,FST,HST,AST,

1 BST,XHP,P1,THE2,TARG,SARG,THE,ROT,PEXP,AXHP,POFN
DOUBLE PRECISION R,RX,RF,RARG,ARG,COSHIAX,POF,POFZ,XTON
DOUBLE PRECISION IRAN,DSEED
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COMMON /VXRAN/ IRAN
COMMON /DANS/
I NDANI, NDAN2, NDAN3, NDAN4, NDANM
DIMENSION ROT(3,3) ,R(3,3),RX(3,3)
DATA FI,RZERO,EMtZERO,ALPHA,AVA/3. 1415926536D00,0. 281751
1,0. 511,137. 0371,0, 6025/
RANNO(DSEED )=GGUBFS( DSEED)
ET=-E/EMZERO + 1.
B21= I. /(ET*ET)
B2= 1.-B21
Z3= Z**. 333333
,ETA =. 5*(B211B2)*(Z3/(. 885*ALPHA))**2
1 ir(1.13 + 3.76*(ZIALPHA)**2/B2)
F'ST =2.*PI*RZERO**2 *Z*(Z+1) *B21/(B2*B2)
I (AVA/ A)*SHiD'RHO
HST = 1. +ETA
AST =1. /(HST+1. 0)
RARG 1./FST + 1. /(2. +ETA)
ARG 1./RARG
COSMAX = HST - ARG
NDANI1NDAN1+1

144 IF (COSMAX. LT. 1.) GOTO 10
NDAN2=NDAN2+1
C04 1.0
GOTO 7777

10 VIP 1.
NDAN3=NDAN'3+1
BST =1./FST
COM1l. 0
STH=O. 0

1002 ROT(1,1) = COM1
ROT(2,1) =0.
ROT(3,1) =-STH
ROT(1,2) = 0.
ROT(2,2) = 1.
ROT(3,2) = 0.
ROT(.1,3) =STH
ROT(2,3) =0.
ROT(3,3) =CON
PEXP -XMiP
ALXNP =DLOGOXMP)
POFN RANNN(IRAN)
XTON 0.
POFZ DEXP(PEXP+XTONV)
IFCPOFN.LFE.POFZ) GOTO 7777
NDAN4=NDAN4+1
POFN = POFN - POFZ

NDAN11-0
DO 2000 N=1,500

RF=RAMMO( IRAN)
CPH a DMIN1(COSMAX,DIAX1( -1.DOO,IfST-I. DOO/(AST+BST*RF)))

$PH - DSQRT(1. -CPHIICP))
THE a PI*(2.*RANNO(IRAN) -1.)
CTH - DCOS(THE)

R(l,l) -CPH*CTH
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R(2,1) = CPH*~STH
R(3,l) = -SPH
R(1,2) = -STH
R(2,2) =CTH
R(3,2) = 0.
R(1,3) = SPH*CTH
R(2,3) =SPH"*ST{
R(3,3) = CPH
DO 2050 I=1,3
DO 2040 J=1,3

RX(J,I) = 0.
DO 2030 K=1,3

RX(J, I)=RXCJ, I)+ROTCJ,K)'*R(K,I)
2030 CONTINUE
2040 CONTINUE
2050 CONTINUE

DO 2070 I=1,3
DO 2060 J=1,3

ROT(J,I) = RX(J,I)
2060 CONTINUE
2070 CONTINUE

COM = ROT(3,3)
XTON =XTON + ALXMP -ALOG(FLOAT(N))
POF =DEXP(PEXP+XTON)
POFN = POFN - POF
IF CPOFN.LE.0.) GOTO 7777

2000 CONTINUE
7777 RETURN

END

SUBROUTINE ANGDT7(CO:1,,SHD,E,RHO,Z,A)
DOUBLE PRECISION COM,STH,CT,SPH,CP,ETAFSTHSTAST,
1 BST,tP,P1,THE2,TGSGTHEROTPEXP 'ALMPPOFN
DOUBLE PRECISION R)RX)RF)RARG,ARG,COS1A,POFPFZXON
DOUBLE PRECISION IRAN,DSEED
COMMON /VXRAN/ IRAN
COIfMON /DANS/
1 NDAN1, NDAN2, NDAN3, NDAN4, NDANM
DIMENSION ROT(3,3),RC3,3),RX(3,3)
DATA PI,RZERO,EZERO,ALP.iJ,AVA/3.1415926536DO0. 281731
1,0.511,137.0371,0. 6025/
RANNO( DSEED)=GGUBFSC DSEED)
ET=E/E!IzERO + 1.
B21= I./(ET*ET)
B2- 1. -B21
Z3= Z*lt. 333333
ETA a. S*(B21/B2)*(Z3,c 885*ALPHA))**2

1 *(1. 13 + 3.76*CZ/ALPJIA)**2/B2)
FST a2.*PI*RZEROfe*2 *Z*(z+1) *B21/(B2*B2)

1 *(AVA/A)*SHDl*RHO
HST a1.+ETA
AST - 1./(HST+1.0)
RARG l ./FST + 1./(2.+ETA)
ARG I./RARG
COSMAX - HST - ARG
NDAN1-NDAN1+1
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144 IF (COSMAX.LT. 1.) GOTO 10
NDAN2=NDAN2+ 1
COSMAX =1.0
BST =1. /ETA -AST
vUMP = FST*BST

Col= 1.
STH = 0.
GOTO 7777

10 XKP a 1.
NDAN3=NDAN3+1
BST -1. /FST
P1 = FST*(DLOG(ARG/ETA)-l. + ETA*RARG)
THE2 = 2.*Pl
TARG = 1. -DEXPCPI*PI/TmE2)

1000 SARG = 1. -TARG*eRANNO( IRAN)
THE = DSQRT(-THE2*DLOGSRG))
STH= DSIN(THE)
REJECT = 1.
IF (THE.GT.1.E-6) REJECT=DSQRT(STH/H)
IF (RANNOC IRAN). GT. REJECT) GOTO 1000
COM=DCOS (THE)

7777 RETURN
END
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APPENDIX E. LARGE AND SMALL ANGLE SCATTERING
DISTRIBUTIONS

Since the Jordan-Mack correction scheme decouples the multiple scattering into

large and small angle scattering, it seemed natural to plot the contribution of each sep-
arately. The FORTRAN program JORDAN was used to calculate the small and large

angle scattering distributions. JORDAN is only a number tally calculation and involves

only the columb scattering. Pair production, absorption, secondary production, and

other particle interactions are not calculated. For very thin foils these effects are minor.

The input parameters to JORDAN were for the case of the Hanson gold foil, (18.67 mg

cm-). The energy of the incident electrons was increased from 0.01 .Mcv to 10.0 .\ev.

The number of histories was l0m.U14J for all JODAN runs. [igures IS thru 24 show\

the small angle distributions for this case. Figures 25 thru 34 show the large angle dis-

tributions. Note the large discontinuity in the small angle distributions are at Io5 de-

grees. When the energy is greater than 0.5 .MeV this discontinuity becomes %ery minor.
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Figure 18. Small Angle Spectrum for 0.01 Me\: The input par'Alicter, ,-ere for
a IS.b6 .mg cm- gold foil with 0.01 .McV incident electrons.
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Figure 27. Large Angle Spectrum for 0.05 NIe': The input parameters were the
same as Figure 25 on page 66 except the incident electron encrgy was
0.05 MeV.
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0.35 MleV.

724



0

_0

0
6

c'n

C!a

o

L,,

-0

.0

Figure 32, Las ,\nule S25 onrupace 05except the icident eletroneergy wasth

0.5(0 NlcV.

730

Ink

NI igl~M m~dd ilmJNi __ |_ 0



o

.

<

0

0

In

0

.

o

.- OI

0

0

in 0 in 0 in 0
('4 0 N0 14 0

,O1* 2jop oc/bS/aqwunN

Figure 33. Large Angle Spectrunt for 1.00 Nle\: The input parameters were the
same as Figure 25 on page 66 except the incident electron energy was
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74



K

0

o

Mi.mm
Cr)

-0

0

I .A

A* 2jIOr4DC::/"3.%,"J qunN

Figure 34. Large Angle Spectrum lor 10,0 NMeA: "I-le input parame:ters were the
same a,. Figure 25 on page 66 except tihe incident electron energy ANas
!0.0 NeV.

.75



LIST OF REFERENCES

1. Halbleib, J.A., Mehlhorn, T.A., ITS. The Integrated Tiger Series of Coupled

Electron Photon 31onte Carlo Transport Code, Sandia National Laboratories, Re-

port SAND84-0573, November, 1984.

2. Berger, M.J., "Methods in Computational Physics", Statistical Phvsics, Volume 1,

1963.

3. Williams, E.J., "Concerning the Scattering of Fast Electrons and of Cosmic-Ray

Particles". Proc. R.". Soc., Volume 169. p. 531, October 25, 193S.

4. Goudsmnit. S., and Saunderson. J.L., "Multiple Scattering of Electrons". Physical

Reviev,, Volume 57, p. 24, November 8, 1939.

5. M1oliere, G.,"Multiple Scattering", Nazurforsch, Volume 3a, p. 78, 1948.

6. Synder. H.S.. and Scott. W.T.. "Multiple Scattering of Fast Charged Particles",

Physical Review, Volume 76, p, 220. February 11. 1949.

7. Lcwis. H.W., "Multiple Scattering in an Infinite Medium". Phy'sical Review, Volume

78, p. 520o. January 24, l950.

8. Bothe, Von W., "Die Streuabsoption der Elektronenstrahlen". Z. Pi;s. Volume 54

p. 161, February 15, 1929.

9. Nigam. B.P., Sundaresan. M.K., and Ta-You Wu. "Theory of Multiple Scattering:

Second Born Approximation and Corrections to Moliere's Work ' , Physical Review,

Volume 115, p. 491, March 11, 1959.

10. Spencer. L.V., "Theor' of Electron Penetration", Physical Review, Volume 98, p.

1597, January 20, 1955.



11. Fano, U. "Inelastic Collisions and the Moliere Theory of Multiple Scattering",

Phi'sical Review, Volume 93 , p. 117, August 27, 1953.

12. Bethe, H.A.. "Moliere's Theory of Multiple Scattering", Physical Review, Volume

89, p. 1256, November 28, 1952.

13. Keller, F.L., and Zerby, C.D., "Electron Transport Theory, Calculations, and Ex-

periments". Nuclear Science and Engineering, Volume 27, p. 190, September 30.

1966.

14. Hanson, A.O., "Measurement of Multiple Scattering of 15.7-MeV Electrons",

Pi'sical Review, Volume 84, p. 634, July 3, 1951.

15. Kazeyama. S.. "The Multiple Scattering of Fast Electrons". Journal ol- Phyr. Soc. of

Japan. Volume 2. Number 4, p. 348, December 17, 1955.

16. Mlozley. R.F., Smi th. R.C.. and Taylor, R.E., "M~ultiple Scattering of 600-.NeV

Electrons in Thin Foils", Phyvsical Review, Volume Ill1, p. 647. March 3 1. 195S.

17. H-albleib, J.A., Kensek. R.P.. Version 2.1 of ITS, Itr dated December 11, 19S7.

* 77



INITIAL DISTRIBUTION LIST

No. Copies
1. Defense Technical Information Center 2

Cameron Station
Alexandria, VA 22304-6145

2. Library, Code 0142 2
Naval Postgraduate School
Monterey, CA 93943-5002

3. Thomas Jordan
P.O. Box 3191
Gaithersburg. MD 20899

4. Dr. Joseph Mack
Code P-4 Mail Stop E554
Los Alamos National Laboratory
Los Alamos. NM 87545

5. Dr. Martin Berger. Rm. C311, Bldg. 245
Center for Radiation Research
National Bureau of Standards
Gaithersburg. ID 20899

6. Dr. Steven Seltzer, Rm. C31 1. Bldg. 245 1Center for Radiation Research
National Bureau of Standards
Gaithersburg. MD 20899

7. Prof. K.E. Woehler, Code 61Wh
Physics Department Chairman
Naval Postgraduate School
Monterey, CA 93943-50u0

8. Prof. Xavier K. Maruvama, Code 61Mx 5
Department of Physics
Naval Postgraduate School
Monterey, CA 93943-5000

9. Prof. Fred R. Buskirk. Code 6lBs 5
Department of Physics
Naval Postgraduate School
Monterey, CA 93943-5000

10. Dr. John Halbleib. Division 1231
Sandia National Laboratories
P.O. Box 5800
Albuquerque, NM 87185

78



11. Dr. Thomas A. Mehliorn. Division 1265
Sandia National Laboratories
P.O. Box 5800
Albuquerque, NMI 87185

12. Dr. Kenneth J. Adams
Science Applications International Corporation
1710 Goodridge Drive, P.O. Box 1303
McLean, VA 22102

13. Dr. Eugene NoltingI
White Oak Laboratory Stop H23
Naval Surface Weapons Center
10901 New Hampshire Ave
Silver Spring, MD 20903-5000

14. Dr. Andv SmrithI
White Oak Laboratory Stop 1123
Naval Surface Weapons Center
10901 New Hampshire Ave
Silver Spring, N~ID 2()9()3-5000

15. Major C. 1-111i]
Def'ense Nuclear Agency
Office RAEE
Washington D.C. 20305-1000

16. LCDR L. CohinI
Defense Nuclear Aizencx
Office RAXEE
WVashington 1) C. 20305-1000

1 7. Theater Nuclear Warfare- ProgramI
Naval Sea Sx-stenis Commnand
PMS 4123
Washington D.C. 303621-5101

1S. LCDR Robert J. RossI
Defense Nuclear Agency
Washington D.C. 20305

19. Dr. Norman J. RudieI
I RT Corporation
101 S. Kraemer Blvd., Suite 132
Placentia, CA 92670

20. LT Daniel C Jensen 6
2418 College S.E.
Grand Rapids. Ml 49507

* 79


