
RADC-TR-88-1 1, Vol V (of eight)
Interim Technical Report
June 1988

AD-A 199 824

NORTHEAST ARTIFICIAL INTELLIGENCE
CONSORTIUM ANNUAL REPORT 1986
Building an Intelligent Assistant: The
Acquisition, Integration, and Maintenance
of Complex Distributed Tasks

DTICSyracuse University ELECT

O CT 0 71988il

V. Lesser, W. B. Croft and B. Woolf, et. al, S qH

This effort was funded partially by the Laboratory Director's fund.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

ROME AIR DEVELOPMENT CENTER
Air Force Systems Command
Griffiss AFB, NY 13441-5700

-- = , aI l - *, -,dH l II .. II*
S I " I

This report has been reviewed by the RADC Public Affairs Office (PA) and
is releasable to the National Technical Information Service (NTIS). At NTIS

it will be releasable to the general public, including foreign nations.

RADC-TR-88-11, Volume V (of eight) has been reviewed and is approved

for publication.

APPROVED:

DOUGLAS A. WHITE
Project Engineer

APPROVED:

RAYMOND P. URTZ, JR.
Technical Director
Directorate of Command & Control

FOR THE COMMANDER:

JOHN A. RITZ

Directorate of Plans & Programs

If your address has changed or if you wish to be removed from the RADC mailing
list, or if the addressee is no longer employed by your organization, please
notify RADC (COES) Griffiss AFB NY 13441-5700. This will assist us in main-

taining a current mailing list.

Do not return copies of this report unless contractual obligations or notice
on a specific document requires that it be returned.

• , i m l - munumu n n n n l ~ m ~ nd m ai amninn ml ~ iai i nnn n n ,

.4-)

A

.4-3

.4.0
t -

~CA
MI

C

o- cu

CLJ.

a

u X:

-.

(M

u-

U-

6-4 0

C

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE

Form ApprovedREPORT DOCUMENTATION PAGE OMBNo. 0704-0188

la. REPORT SECURITY CLASSIFICATION lb. RESTRICTIVE MARKINGS
UNCLASSIFIED N/A

2a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION /AVAILABILITY OF REPORT
N/lA Approved for public release; distribution
2b. DECLASSIFICATION / DOWNGRADING SCHEDULE unlimited.
N/A

4. PERFORMING ORGANIZATION REPORT NUMBER(S) S. MONITORING ORGANIZATION REPORT NUMBER(S)

N/A RADC-TR-88-11, Vol V (of eight)

6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION
Northeast Artificial (If applicable) Rome Air Develop~ment Center (COES)
Intelligence Consortium (NAIC) I
6c. ADDRESS (City, State, and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code)
409 Link Hall
Syracuse University Griffiss AFB NY 13441-5700

Syracuse NY 13244-1240
8a. NAME OF FUNDING/SPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

ORGANIZATION (If applicable)
Rome Air Development Center COES F30602-85-C-0008

8c. ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS
PROGRAM PROJECT TASK WORK UNIT

Griffiss AFB NY 13441-5700 ELEMENT NO. NO. NO ACCESSION NO.
62702F 5 2
(over) 5581 27 13

11. TITLE (Include Security Classification) NORTHEAST ARTIFICIAL INTELLIGENCE CONSORTIUM ANNUAL REPORT 1986
Building an Intelligent Assistant: The Acquisition, Integration, and Maintenance of
Complex Distributed Tasks

12. PERSONAL AUTHOR(S)
V. Lesser, W. B. Croft and B. Woolf, et al

13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Year, Month. Dav) 15. PAGE COUNT
Interim FROM Jan 86 0 Dee 86 June 1988 290

16. SUPPLEMENTARY NOTATION
This effort was performed as a subcontract by the University of Massachusetts to
Syracuse University, Office of Sponsored Programs. (over)

17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)
FIELD GROUP SUB-GROUP Artificial Intelligence Plan Recognition

127 05 Intelligent Interfaces .Intelligent Computer-Aided
Planning Instruction

19. ABSTRACT (Continue on reverse if necessary and identify by block number)
'The Northeast Artificial Intelligence Consortium (NAIC) was created by the Air Force
Systems Command, Rome Air Development Center, and the Office of Scientific Research. Its
purpose is to conduct pertinent research in artificial intelligence and to perform acti-
vities ancillary to this research. This report describes progress that has been made in
he second year of the existence of the NAIC on the technical research tasks undertaken
at the member universities. The topics covered in general are: versatile expert system
for equipment maintenance, distributed AI for communications system control, automatic
photo interpretation, time-oriented problem soivi,g, sy'ech understanding systems,
knowledge base maintenance, hardware architectures for very large systems, knowledge-based
reasoning and planning, and a knowledge acquisition, assistance, and explanation system.
The specific topir for this volume is the development nF fntelligent -corfpcc2 -no support
cooperating computer users in their interactions with a computer. -

20. DISTRIBUTIONiAVAILABILITY OF ABSTRACT 21 ABSTRACT SECURITY CLASSIFICATION
&JUNCLASSIFIED/UNLIMITE.D E3 SAME AS RPT, DTIC USERS UNCLASSIFIED

22a, NAME OF RESPONSIRLF INDIVIDUAL 22b. TELEPHONE (Include Area Code) 22 OFFICE SYMBOL

Douglas A. White (315) 330-3564 RADC (COES)

DD Form 1473, JUN 86 Previous editions are obsolete. SECURITY CLASSIFICATION OF THIS PAGE
TNCLASSIFIED

UNCLASSIFIED

Item 10 (SOURCE OF FUNDING NUMBERS) Continued.

Program Element Project Task Work Unit

Number Number Number Number

62702F 4594 18 E2

61101F LDFP 15 C4

61102F 2304 J5 01

33126F 2155 02 10

Item 16. (SUPPLEMENTARY NOTATION) Continued.

This effort was funded partially by the Laboratory Director's Fund.

UNCLASSIFIED

TABLE OF CONTENTS

5 S

5.1 Executive Sum m ary 5-2
5.2 Introduction ... 5-3
5.3 Planning and Plan Recognition 5-4

5.3.1 The POISE System 5-4
5.3.2 A Semantic Database for POISE 5-5
5.3.3 The GRAPPLE Project 5-6
5.3.4 Meta-Plans and First-Principles Knowledge 5-7
5.3.5 Exception Handling 5-8

5.4 Knowledge Acquisition 5-10
5.5 Cooperative Problem Solving 5-12

5.5.1 Graphical Aids to Decision Making 5-12
5.5.2 Intelligent Computer-Aided Instruction 5-15
5.5.3 Negotiation between Distributed Agents 5-17

Appendix 5-A Reasoning About Exceptions During Plan Execution Monitoring
Appendix 5-B Task Management for an Intelligent Interface CI,
Appendix 5-C Multistage Negotiation in Distributed Planning
Appendix 5-D Knowledge Acquisition as Knowledge Assimilation
Appendix 5-E The Role of Plan Recognition in Design of an Intelligent User Interface 9SSI ou For
Appendix 5-F Planning Discourse in an Intelligent Tutor "
Appendix 5-G Teaching a Complex Industrial Process
Appendix 5-H Building a Community Memory for Intelligent Tutoring Systems
Appendix 51 6& Representation For Collections of Temporal Intervals
Appendix 5- A Plan-Oriented Approach to Intelligent Interface Design
Appendix 5-K Providing Intelligent Assistance in Distributed Office Environments "_"__
Appendix 5-L The GRAPPLE Plan Formalism

5-I I ..
) A, I'tor

A,\ ij

Chapter 5

5.1 Executive Summary

The major focus of the 1986 NAIC research at the University of Massachusetts has been
development of interfaces that support cooperating computer users in their interactions with
a computer. These interfaces have been designed to help people complete tasks and to
provide explanations while users engage in their activities. Since knowledge systems must
interact with several kinds of users, including programmers, knowledge engineers, experts,
end-users, and people learning to be users, the interfaces must be approachable, informative,
and capable of communication with users at every level of expertise.

We have been building interfaces that contain both knowledge about typical methods used
by people to achieve tasks and knowledge about how to recognize the user's plans. This work
has involved research into planning, plan recognition, knowledge acquisition, and cooperative
problem solving.

Our work in planning and plan recognition has included significant additions to the POISE
interface system and design of an extended new framework called GRAPPLE. Both systems
provide a hierarchy of procedural descriptions or plans specifying typical user tasks, goals, and
sequences of actions to accomplish goals. POISE represents these plans from an event-based
perspective (i.e. sequences of tool invocations) that represent a specific user plan.

The GRAPPLE framework is a second generation intelligent interface. The overriding
theme of its plan formalism is an expanded representation of knowledge about plans and
their interrelationships. In GRAPPLE, the goal of a plan and the effects of a plan on the
domain model are explicitly represented, as are preconditions, which must be satisfied before
the plan can be executed. This deeper representation of the plan increases the capacity for
reasoning during plan recognition and automated planning and affords the system a much
richer knowledge base from which to reason about plan failure. The system also has a larger
store of semantic knowledge which it can use to "understand" and accommodate exceptional
scenarios during plan recognition.

Among the additions made to POISE, we built a semantic database for representing
objects of the domain. This permitted us to represent constraints either from an object or
a procedural perspective. POISE used these procedural and object descriptions to recognize
the implications of a user's actions and to infer the user's objectives. It used descriptions to

plan actions based on the user's goal.

5-2

-- mn m i i lll ll i i l

In addition to building these two systems, we developed a multistage negotiation paradigm
for planning in a distributed environment. This paradigm was explored in the domain of
monitoring and controlling a complex communications system.

As knowledge engineers tire of their labor, they need to build tools to facilitate the transfer
of expertise from human expert to expert system. Complex knowledge systems have many -2
hundreds of chunks of knowledge and many kinds of knowledge making control difficult to
trace, asynchronous and opportunistic. Knowledge acquisition systems are thus needed to
facilitate transfer of both knowledge and control data to large systems.

This year, as part of a Ph.D. dissertation, a system was built to engage an expert in a
dialogue about which of several interpretations of knowledge are intended for inclusion into 0
a knowledge base. The knowledge acquisition interface interprets the expert's information
and then determines how to include this knowledge into the knowledge base.

This year, we also built intelligent tutoring systems using multiple experts, such as edu-
cators, psychologists, physicists and computer scientists, to encode individual teaching and
learning expertise. Ideally we would like to define and build frameworks that make changing
knowledge simple and that themselves are capable of being rebuilt. This requires a suite of
programming tools for browsing and summarizing expert knowledge, for tracing and explain-
ing the student model, and for tracking reasoning about teaching strategies. As a precursor
to developing such tools, we have begun implementation of a set of interactive and monitored
simulation tutors for teaching college Physics. We expect to develop a framework for building
subsequent tutors as a result of our experience with these initial tutors.

In sum, our research this year has focused on problems associated with inferring and
anticipating the goals and needs of users, communicating with multiple users, and teaching
users expertise that resides in intelligent knowledge bases.

5.2 Introduction 0

The NAIC Al group at the University of Massachusetts is working in several major ar-
eas of intelligent interfaces, including planning, plan recognition, knowledge representa-
tion/acquisition, and cooperative problem solving. The major focus of this research is on
development of interfaces that support cooperating computer users in their interactions with 0
a computer. These interfaces contain knowledge about typical methods used by people to
achieve tasks as well as knowledge about how to recognize plans, help people complete their
task, and provide explanations and support to uscrs.

Knowledge systems must interact with several kinds of users, including programmers,
knowledge engineers, experts, end-users, and people learning to be users. For a knowledge
system to gain acceptance by a community of users it must be approachable and informative.
It must understand what the user wants and must rectify misunderstandings gracefully. It
must communicate with experts at one level, programmers at another, and amateurs at a
third. It must both justify its performance and facilitate its own modification. Preferably
such an interface should have command of several communications media, including natural
language, programming languages, and graphics, and use these media where they are most
appropriate. Needless to say, no current interface is capable of this range of communicative

5-3

L0

skill. Still, without working towards such goals Al researchers are building knowledge systems

that will be underutilized and not well understood by practitioners in real world domains.
The mechanisms we have built facilitate a user's ability to interact naturally with a system

and to improve the computer's ability to describe its own actions and decisions in a clear and
user-centered manner. These mechanisms have been developed in the areas of planning and
plan recognition, knowledge representation, knowledge acquisition, and cooperative problem
solving. This report describes work in each of these areas.

5.3 Planning and Plan Recognition

This year we both completed the POISE interface system (1,2,31 and finished the design of
the GRAPPLE [7,8) framework. The POISE (Procedure Orientation Interface for Supportive
Environments) interface provides a hierarchy of procedural descriptions or plans that specify
typical tasks, goals, and sequences of actions to accomplish goals(41. This year we built a
semantic database for representing objects of the domain to work in parallel with POISE.
Given procedural ar.d object descriptions, POISE can recognize the implications of a user's
actions and can infer the user's objectives. It can also use these descriptions to plan actions

based on the user's goal.
POISE was limited by its reasoning about relationships among plans. The behavioral

plan definitions specify decomposition solely in terms of temporally ordered subplans and do

not represent plan preconditions or goals. This characterization of a plan is insufficient for a 5
planner whose role is to synthesize new plans, since there is no representation of the reasons
behind the substeps, and little knowledge is available about the relationships between different
plans. Also, without explicit goals, there is no way to note that an action may be omitted
because its goal has already been met. Nor is there enough knowledge to support a robust
approach to recognition and recovery from plan failure. With an event-based approach,
recovery must be built into the plan rules, making the rules unwieldy and complex and
discouraging deeper reasoning about failure and recovery.

As a result of all these limitations, we designed and began implementation of a second
generation intelligent interface, GRAPPLE (Goal Recognition and Planning Environment) [5],
which extends the previous system primarily through a reformulation of the plans, incorpo-

ration of state-based information, and use of meta-plans and reasoning from first-principles.
These two systems, POISE and GRAPPLE, are discussed below.

5.3.1 The POISE System

POISE uses predefined, hierarchical activity definitions (plans) to monitor the conversation S
between user and computer system, recognizing the commands issued as instantiations of
primitive plan definitions. Predictions of expected user commands are made as a result of
the successful integration of a primitive action into a more abstract plan representation. The
interface also operates in an alternate mode to automatically generates sequences of primitive
commands in response to user requests for a high-level plan. Such an intelligent interface
would thus be a mixed-initiative system, combining facilities for plan recognition and plan

5-4

• • m Mmm mmmmmm m mml mm '#MP m= mmS

automation, with an embedded planner used to extend the predefined plans as needed.

5.3.2 A Semantic Database for POISE

We completed work on POISE by building an object-based semantic database to augment the
procedural knowledge base of the intelligent interface. The model of the user's environment
was extended to facilitate interaction with agents external to the interface and to provide
the basis for a goal-based mode of operation. A frame-based representation (PRIDE) was
developed for the implementation of this semantic database and integrated with POISE.

PRIDE provides a number of predefined facets for specifying meta-level information about
slots and their values. These facets are used to mark certain slots as being special, to define
constraints on slot values, and to declare triggers (demons) which should be fired upon speci-
fied events. All facets are optional. One of the motivating factors for using a custom-designed
representation instead of an off-the-shelf tool was to be able to optimize the inheritance mech-
anism. The notion of inheritance is a useful aid for database design, since it obviates the need
for redundant specification, and thus saves memory space. However, the computation time
required to retrieve inherited slot values or facets (e.g. when checking restrictions on a slot
value being added) from even a moderately deep hierarchy of concepts becomes prohibitively
expensive. This factor is especially critical for POISE's semantic ,'atabase, since nearly all
accesses are made at the level of object instances. PRIDE was designed to allow the database
designer to exploit the notion of inheritance during the static specification of objects.

The development of PRIDE and its integration with the POISE interpretation system
raised some interesting issues in knowledge representation concerning the role of the semantic
database. In particular, we worried about how to distinguish between the cases in which we
should suspend the constraint checking to allow more flexibility and situations in which we
should clamp down and claim that an access error has occurred. We also considered the
more general AI question represented by the adoption (or rejection) of the "closed-world
assumption." The "closed-world assumption" may be summarized as "If you don't have any
information allowing you to answer true or false to a statement, assume it is false." The
"closed-world assumption" does not recognize "I don't know" as a legitimate response to a
request for information.

As a result of these and other considerations, we argued for uniformity in the representa-
tion of both procedures and objects and, in fact, to blur the distinction between them. We saw
that procedures can be represented as simply another type of object, e.g. procedure-object, in
addition to world-object, relation-object etc. An examination of the original architecture of
POISE against the backdrop of the expanded architecture (with the addition of the semantic
database) revealed many parallels between the way that procedures and objects are handled.
These parallels furthered the argument for a uniform representation.

Another limitation of POISE was inherent in the way the various types of knowledge were
represented. In POISE, domain knowledge was expressed using a frame-like model of domain
objects, while the plan knowledge was represented using a completely different formalism and
underlying representation tool. The use of a uniform representation for both domain plans
and domain objects would allow the system designer to tie together constraints related to both
plans and objects, and to provide greater coherency[4]. Another problem was that general

5-5

domain knowledge directly related to either a plan or object definition is not represented in
POISE. Thus the knowledge needed for a deeper model of the domain is lacking, seriously
limiting reasoning that can be done either during plan failure or while handling exceptions
that arise during plan recognition.

Given the substantial list of points in favor of representing procedures as special kind of
object we decided to include a special kind of object in the object hierarchy for procedures.
Procedure attributes would be represented as property slots, as already described for objects.
Constraint information contained in the COND clause could be represented as facets on
the attributes (slots) of concern and the different sections of the local state could all be
represented in this fashion.

5.3.3 The GRAPPLE Project

We designed and began implementation of a second-generation intelligent interface based
on hierarchical plans that represent user tasks. Again, recognition of instantiations of these
plans occurs by predicting future actions from past events and then matching new actions to
these predictions. This new interface, named GRAPPLE, has been used to explore potential
sources of deeper domain knowledge than those exploited by POISE, thus motivating a re-
evaluation of the characterization and interpretation of plans. As a testbed for GRAPPLE,
we used the domain of software development, which is a complex domain offering a rich source
of knowledge that is relatively self-contained.

An overriding theme of the GRAPPLE plan formalism is an expanded representation of
knowledge about plans and their interrelationships. The goal of a plan and the effects of a
plan on the domain model are explicitly represented, as are preconditions, which must be
satisfied before the plan can be executed. A deeper representation of the plan increases the
capacity for reasoning during plan recognition and automated planning and affords the system
a much richer knowledge base from which to reason about plan failure. The system also has
a larger store of semantic knowledge which it can use to "understand" and accommodate
exceptional scenarios during plan recognition.

The use of a state-based, goal-oriented perspe.-tive in GRAPPLF is in contrast to the
POISE event-based substep plan characterization and follows the classical planning formal-
ism. A goal is specified as a partial state of the semantic database. A goal can be decomposed 0
into subgoals, each of which also is expressed as a semantic database state specification.
Achievement of all the subgoals, along with the posting of the effects of the plan, should
lead to satisfaction of the goal of the plan. Effects can be expressed in high-level as well
as primitive plans, allowing for the expression of complex semantic changes to the semantic
database.

A state-based approach to plan representation provides more modularity. For example, if
one of the subgoals for a plan is to have-more-disk-space, a number of plans may be retrieved
that achieve this subgoal; for instance: delete-a-file, purge-directory, and increase-quota. The
multiple possible plans need not be specified statically; they can be determined dynamically
in order to exploit the rich sources of cuntextual knowledge at runtime. Representing goals
as states in GRAPPLE also allows 'he interface to avoid a potentially redundant execution
of a plan. T¢4 ! plan has a subgoal which is already satisfied, then no plan need be executed to

5-6

achieve the subgoal. The overall ordering of plans which can achieve subgoals of a complex
plan is determined dynamically by monitoring the satisfaction of preconditions. The state-
based approach thus allows for the easy addition and removal of plan definitions from the
plan library, without necessitating a recompilation of all the plans and their subgoals. In
POISE, the event-based plan specification was "hard-cuded," thus rendering the plan library
inflexible to dynamic modifications.

GRAPPLE also attempts to overcome limitations imposed by POISE's nonuniform rep-
resentations. In GRAPPLE, plans are represented with the same knowledge representation
tool/language as domain objects. Therefore relationships between certain plans and objects
can be easily recorded and constraints relating to both plans and associated domain objects
are uniformly specified. The groundwork is laid for a more powerful object representation
language and more powerful reasoning capabilities.

In GRAPPLE, an expected-actions list is maintained for each top-level plan to record
the monitorable user actions predicted by the interface. A pending-conditions list L also
associated with each top-level plan to record those goals, subgoals, and preconditions that
await 3acisfaction.

At any point during the running of the intelligent interface, one or more top-level plans
can be in progress. They are represented by instantiations of those plans on the active plan
blackboard. When a plan is instantiated, each of its goals and subgoals is instantiated as well
and maintained as pending conditions for that plan. A backward-chaining approach is then
taken to predict which plans could achieve these pending conditions.

Predictions are currently' made by matching the subgoal/goal conditions with the goals
of other plans in the plan library. Once a prediction is made, an instantiation structure is
created for the predicted plan and its precondition is posted to await satisfaction. If the
plan is a primitive one, it is posted to tie list of expected-actions for the top-level plan that
subsumes it.

When a user-action occurs, a matcher is invoked to determine which of the expected-
actions is being performed. Values determined by the filter program, which directly monitors
user actions, are passed up to the designated expected action structure, and bindings of vari-
ables are propagated. Pending-conditions are re-evaluated and the plan recognizer generates
new expectatious after integrating the action occurrence.

5.3.4 Meta-Plans and First-Principles Knowledge

We are currently wurking on a meta-plan approach to plan recognition that will provide more
relationships between plans in terms of additional subgoal decomposition. Recognizing plan
failure and integrating the resulting recovery actions are particularly important in domains
like software development, where the basic paradigm of work is "trial and error." Examples of
work in the software development environment demonstrate several plan interrelationships.
For example, obtaining on-line help provides the user with specific information to formulate
and issue additional new commands. Gathering information via tools to analyze, reorganize,

'A more complete and sophisticated prediction mechanism will be incorporated upon the addition of a S
more sophisticated planner module, which will analyze the interactions between effects of plans and pending
goal conditions.

5-7

condense, and present data supports the user in making key decisions about how to carry
out some plan. At times, programmers will model a plan with dummy input in order to see
if it will work as they predict.

Meta-plans allow us to capture these general patterns as a context for executing any plan,
without having to write out all the details in every plan. In our work with meta-plans we

have found that the same basic plan formalism with goal, precondition, subgoal, constraints.
and effects clauses can be used. Meta-plan variables are not domain objects, rather, they are

domain plans, their goals, effects, etc.
As we work with plan definitions in the domain of software development we recognize

additional knowledge about the domain that is not appropriately expressed in the plans
themselves, such as versions, history, configurations, properties and bugs of modules, and a
broad range of first principles knowledge about programming. This knowledge forms a self-
contained world for reasoning about actions, and will, we believe, be an important addition
to the intelligent interface.

This first principles knowledge can be used in the intelligent interface to improve interface
performance and extend more assistance to the user. For example, it enables us to generate
tentative bindings of plan parameters that result in earlier, more detailed prediction, and
also limits the number of alternatives to consider during recognition or execution of plans.
It prc'ides an alternative to simple heuristics such as "prefer the continuation of a plan
already in progress to the start of a new plan" for choosing among alternatives, which may
be increasingly important as the number of alternatives grows or when plans are inherently 0
underspecified. It can be used to double-check decisions made by the programmer. Finally,
first principles knowledge can provide additional semantic distinctions between apparently
equivalent actions (fixing a bug versus adding a new feature) so that future programmer
decisions (such as what tests to run) can be anticipated and double-checked.

We have begun implementing the GRAPPLE plan and semantic database formalism along
with plan recognition, constraint handling, and focusing algorithms. Knowledge Craft(61, a

knowledge representation tool package that offers a logic programming environment built on
top of a frame-based knowledge representation, was used to implement the system. A large set
of plans for a Unix 2 /C software development environment has been written in the GRAPPLE
formalism, and we also formalized some first-principles knowledge for this domain[7]. We
have started work on defining meta-plans to provide integrated interpretations for the entire
spectrum of user actions.

5.3.5 Exception Handling

We have designed and begun implementation of a general architecture to accommodate ex-
ceptional occurrences in an interactive planning system[8]. Exceptions are detected by the
execution monitor. Violations in the plan caused by the introduction of an exception are
computed by the plan critic. Real-world (not user-generated) exceptions are handled by the
replanner. The method used to resolve user-generated exceptions depends on the type of
exception recognized by the execution monitor. In general, the reasoner gathers relevant

2UTni is a trademark of AT & T Bell Laboratories.

5-s

information about the relationships between the exception and the expectations.
The negotiator determines which agents are affected by the exception and uses the in-

formation provided by the reasoner to present suggested changes to the original plan. The
negotiator also directs the acquisition of information from the user, if required, again using
a trace of the reasoner's search to guide the questioning. The negotiator may invoke the
plan critic to detect violations in a plan which remain or result from a proposed change.
Negotiation may also be invoked upon the failure of replanning. If the negotiator or replan-
ner produces a consistent explanation of the exception, control is returned to the planner to
continue plan execution and generation.

The behavior of the reasoner is guided by general principles derived from the type of
the exceptional occurrence. A step-out-of-order exception, for example, may imply that the
user may be attempting a short-cut, while an unexpected action exception may be eventually
recognized as an intentional substitution of the unanticipated action for the expected action.
The reasoner performs a controlled exploration throughout the knowledge base which is
guided by the current state of the procedural network as well as the type of exception which
has occurred. If a number of strategies are possible, the least costly is attempted first.

If a user performs an action that doesn't have a match on the expected-actions list, the
execution monitor first determines whether this action is entirely unexpected or is simply
out-of-order. This determination is made by a search through possible plan expansions. A
user action may also be the expected type of action, with an unexpected parameter value
(unexpected parameter).

The reasoner attempts to establish whether an unexpected action contributes to the
pending task in any way. The fundamental assumption is that the unexpected action is
related to unachieved goals in the remainder of the plan.

The actual contribution made by this exceptional occurrence can be at an arbitrary level
of abstraction and granularity within the task. It may take the place of an expected action,
satisfy the precondition of a later action, or eliminate the necessity of an entire sequence of
later actions. The effects of the actual action are compared with the preconditions, effects,
and goals of other nodes within the procedural net. The reasoner looks for the potential
contributions by focusing on the most local contributions first.

When an action is determined to be out-of-order, it may be the case that the original
ordering may have been specified as a preference, but does not imply strict dependencies 0
between the effects and preconditions of actions. Another possibility is that intervening
steps between the expected and actual actions are no longer necessary. In order to determine
if either of these cases apply, the reasoner must examine the causal structure of the plan. If
the causal structure of the plan is not violated, the exceptional occurrence is allowed. In the
second case, an action may be no longer necessary because the goals of the intervening steps 0
may have been accomplished in some "off-line" fashion. The reasoner does nothing in this
case, but passes control to the negotiator, which involves the user in an attempt to verify the
goals of the intermediate steps.

When an expected action occurs, an unexpected parameter value can cause a constraint
violation. Since parameter values are usually objects themselves, the reasoner is invoked to
determine what relationships exist between the object provided as the actual parameter value

5-9

mmmm mum~i m~mm m 0

and the object which was expected as the parameter value.
Information is collected by the reasoner to establish whether the exceptional parameter

should be allowed. The scope of the plan and knowledge base which may be affected by the
exception is dependent on the type of constraint violation which has occurred. Modifications
and consequences which may result from a static object constraint violation, for example, are
localized to the static knowledge base, while plan constraint violations and dynamic object
constraint violations may have more far-reaching consequences for the remainder of the pAan.

5.4 Knowledge Acquisition

As knowledge engineers tire of their labor, they often build tools to facilitate the transfer
of expertise from expert to expert system. Most of these current tools have little research
significance: they help the knowledge engineer trace the source of errors in an expert sys-
tem's performance, then provide a friendly interface for correcting the errors. But knowledge
systems are becoming very complex, with many thousands of chunks of knowledge and many
kinds of knowledge needing to be represented. Control is often asynchronous and oppor-
tunistic, and can be hard to trace. Knowledge acquisition system must be built to facilitate
transfer of both knowledge and control data to large systems.

The issue of interpretation underlies all work on knowledge acquisition: The knowledge
acquisition system must come to an agreement with an expert about what a piece of knowlt lge
means. This process is called operationalization because it involves translating the acquired S

knowledge into a form that can be used, operationally, by an interpreter. In general, this is
an impossible task because the language in which the initial knowledge is given is ambiguous.

Several difficult research problems must be solved before interpretation of acquired knowl-
edge becomes a straightforward process. Often, knowledge is stated at too high or too low
a level of generality, so the knowledge acquisition system must attempt to integrate the new
knowledge as an instance (specialization) of old, or cluster several old pieces of knowledge
under the new (generalization) knowledge. Additionally, the system must determine which
information to revise when new knowledge is inconsistent with the old. It must be able to
integrate and reconcile the advice of multiple experts.

Knowledge acquisition requires an understanding of how the new information corresponds
to that already known by the system and how this existing information must be modified to O
reflect the expert's view of the domain. The system discussed below engages an expert in a
dialogue about which of several interpretations of knowledge are intended. We have built a
system called KnAc, that modifies an existing knowledge base by using heuristic knowledge
about the knowledge acquisition process, and by anticipating modifications to the existing
entity descriptions91. These anticipated modifications, or expectations, are used to provide 0
a context in which to assimilate the new domain information.

As the cost of constructing and refining a knowledge base becomes a substantial portion
of the cost of constructing an expert system, several approaches to reducing the expense of
this labor-intensive task have been examined. Currently, most knowledge bases are built via a
series of dialogs between experts in a particular application domain and knowledge engineers
familiar with the targeted expert system.

5-10

One approach is to provide the knowledge engineer with better tools that improve his
efficiency. We proposed techniques to implement guides that automate the assimilation of
the expert's knowledge into an existing knowledge base.

An often overlooked aspect of the knowledge acquisition process is the assimilation of
information presented by the domain expert into an existing knowledge base. The knowledge
engineer's task is to modify knowledge base so as to reflect the domain expert's knowledge.
To a large extent, this knowledge acquisition task may be viewed as a recognition problem.
All of the problems facing other recognition systems are present here as well, including: noisy
data (i.e., incomplete or inaccurate information), ambiguous interpretations, and the need
to produce intermediate results before all the data is available. Thus, a significant portion
of this interactive knowledge acquisition task is a matching problem: How does the expert's 0
description of the domain correlate with the description contained in the knowledge base?
How should the knowledge base be modified based on new information from the expert?
What should be done when the expert's description differs from the existing one?

KnAc implements this knowledge assimilation approach to knowledge acquisition. It was
developed to assist in the construction of knowledge bases for the POISEII,2,3 intelligent
interface system. These knowledge bases used a frame-like representation, described more
fully in [2,91 to describe tasks, objects and relationships in the application domain. POISE's
initial knowledge bases, for the office automation and software engineering domains, were
created by hand from interviews between a knowledge engineer and the appropriate domain
experts. Transcriptions of these interviews were examined and the results served as the basis
of the KnAc system.

It is important to note that the goal of the domain expert was not to modify POISE's
knowledge base; this was the knowledge engineer's role. The expert simply presented the
domain information, e.g., descriptions of tasks, objects, etc., and responded to questions and
comments from the knowledge engineer. The burden of assimilating the information, that is,
recognizing where it fit into the existing knowledge base and what additions or modifications
were needed, was not placed upon the domain expert. (Contrast this to approaches such
as[10,11,121. By modeling the knowledge engineer's role in this task, KnAc attempts to
provide this same support.

Consider the opening portion of a discourse in which the expert, the principal clerk of
an academic department, is describing the procedure for reimbursement for business-related S

travel expenses.

"O.K. - on travel. The proper way of doing it, if it's out of state, is that a travel
authorization should be issued before the trip.-'

From this information one concludes that some unnamed task consists of two temporally
ordered steps. However, it is not clear what modifications need be made to the knowledge
base to reflect this information.

If the knowledge base is examined (prior to this interview), a description of this reim-
bursement process will be found (see Figure 5.1). In this simplified view of the task, which
knows nothing about a "travel authorization", the traveler simply goes on a trip and gets 0
reimbursed. Though the knowledge engineer may realize that the clerk and this description

5-11

EVENT take-a-trip-and-get-paid

STEPS: (take-a-trip get-reimbursed)
TEMPORA L-RELA TIONSHIPS:

((take-a-trip before get-reimbursed))
CONSTRAINTS: (...)
ATTRIBUTES: ((traveler ...) (cost ...) (destination ...)

Figure 5.1: Knowledge Base Event Description

are describing the same task, it is not readily apparent from the two descriptions. Matching
such descriptions, and recognizing the implied modifications, are central to the assimilation
process.

To accomplish this, KnAc was required to perform two basic tasks: 1) recognizing where
the expert's information fits into the existing knowledge base, and 2) appropriately modify-

ing the existing knowledge so that it reflects the expert's view of the domain. Determining
where the expert's information fits into the existing knowledge requires that the new infor-

mation be matched against the existing information. To avoid matching the new information
against the entire (existing) knowledge base, the most likely candidate matches should be
selected. Furthermore, since the goal of a knowledge acquisition discourse is modification of
the knowledge base, exact matches between the new and the existing information are not
always expected.

The KnAc System is based on a procedure for matching the expert's entity descriptions
with those already in the knowledge base. It recognizes that discrepancies between the
two descriptions may imply that modifications are needed especially if the discrepancies
(or the implied modifications) can be predicted. KnAc performs these predictions based on
anticipated modifications, or expectations, that arise from an understanding of the knowledge 0

acquisition process. These predictions can be derived from the state of the existing knowledge
base, from cues in the discourse, from previous modifications to entity descriptions, or from
the state of the knowledge acquisition task.

5.5 Cooperative Problem Solving 0

Several projects have been developed to explore issues in cooperative problem solving or the

exchange of reasoning and knowledge as a part of communication between intelligent agents.
In each case, we have designed a system to assist intelligent agents in making decisions or in

learning new material based on information gleaned from another agents. Three such projects

are described below.

5.5.1 Graphical Aids to Decision Making

Decision support problems can either be thoroughly structured, unstructured, or a combi-
nation of the two. Well-structured problems, such as inventory reordering, are recurring

5-12

problems that are largely clerical in nature. For these recurring clerical problems there is a
wealth of clerical computer programs. For less structured problems such as financial plan-
ning, upgrade of manufacturing facilities, R & D budgeting, or architectural design, there are

no comprehensive solution by computer programs. Programs may assist, but the principal
part of these problems are beyond simple computational techniques. For planning problems
such as these, a technique is needed for modeling a system, exploring the sensitivities of the

model to alternative designs, and analyzing the results with respect to the various goals.

ThinkerToy is designed as such a system.
ThinkerToy is a graphical environment for modeling decision support problems. It pro-

vides a tableau on which problems, such as landscape planning, service scheduling, and sta-

tistical analysis can be modeled and analyzed. It uses graphical icons each with associated
physical properties to replace mathematical relationships and properties. The key construct
in this methodology is the Maniplcon, an icon that is not just pictorial in nature, but also a
semantic tool for building models that homomorphically represent semi-structured problems.

ThinkerToy is a homogeneous object oriented system where every object is a graphical
entity and is directly manipulable. Together these objects create a language whose gram-

matical rules are formed by the constituents and whose semantics and syntax are revealed
by the visual metaphors it employs. This homogeneity extends from the very lowest to the

very highest parts of the system:

Scalars: Tools for Trig functions, Log functions, detection, injection, and applying values.

Arrays: Tools for ripping out, injecting, and overlaying values on the face of tabular data.

Charts: Tools for shape fitting, axis stretching, and extraction nets.

TerrainMaps: Tools for physical and pseudo-physical molding and growing of features on

terrain and thematic maps.

5-13

+ ,m , mmmmmm mmmmm~nmnmumnmw If | " I

Chart-ControlPanel

Tile Fil Pioneer II Saturn Fly-by

P

a80
r

t
60 - "'

1 40 .

4 0 20

-4 -2 0 2 4
4

Time (Seconds)

1 EXIT 11

. ... RevealAl

Figure 5.2: Chart

5-14

For example, figure 5.2 show a second two-dimensional object (chart) and the panel that
is used to manipulate its objects. Similar screens exist for one and three-dimensional figures.
The key construct for accomplishing homogeneity within a single dimension are Panels (also
referred to as Maniplicons). A ManiplIcon is an active icon whose actions are invoked
via manipulating it with a mouse. There are Panels that represent a broad set of the basic

Smalltalk object family: Integer, Float, Symbol, Array, Form. There are also composite
Panels that represent tools useful in building tableaus: Scales, Charts, Thermostats, Buttons,
ControlBoards, ControlPanels, Toolkits, etc.

The ThinkerToy implementation kernel is meant to form the foundation for constructing
larger systems. Interesting applications begin to occur when users create a FlowModel, 0
instrument it with charts as meters, collect data from experiments, use the chart to perform
statistical analysis, and then perform iterative changes via arrays. Only when one begins to
use all components together and then produces hybrid models from this base, does the power
of the ThinkerToy environment become apparent.

5.5.2 Intelligent Computer-Aided Instruction

One of the most valuable skills an intelligent interface can have is the ability to teach its
users. Unfortunately, Intelligent Computer Aided Instructional ([CAI) systems typically
require enormous resources to design, implement, and evaluate.

Building such systems requires community knowledge, i.e., multiple experts working to-
gether to encode individual expertise during a knowledge acquisition phase that might span
months or years [131. These experts require a framework that will make changing knowledge
simple and that will itself be capable of being rebuilt. They require a suite of programming
tools for browsing and summarizing their knowledge, for tracing and explaining the student
model, and for tacking reasoning about teaching strategies [141. In short, tools and method-
ologies are needed for knowledge acquisition in an intelligent tutor. This year we have worked 0

on building tools to facilitate such an acquisition process [15].
In addition, knowledge needed to build an intelligent tutor is often distributed, erroneous,

and acquired incrementally[16]. This is especially true because the domain expert, cognitive
scientist, and teaching expert are not typically the same person. One of the goals of our work
is to make the knowledge contributed by each expert both modular and explicit. In this way, 0
multiple experts can work together to integrate their own knowledge and that of others into
the Expert System.

We are addressing this design bottleneck by developing graphic browsing facilities that
allow experts to interact easily with tutoring systems in the service of incremental knowledge
acquisition. The browsers will enable domain experts, teachers, psychologists, and computer
scientists to visualize the structure of existing concepts and the relationships among concepts
and rules. The goal of these browsers is to make it possible for a variety of experts to create,
modify, or delete concepts and rules in the knowledge base. Currently, tutoring systems
have been built for specific applications, thus allowing the building process to remain a black
art-a pre-technology which requires a great deal of experimentation and effort to produce
minimal results. A modular framework will make this knowledge acquisition process more
reasonable.

5-15

Figure 5.2: Systems Moving Towards Equilibrium

We are now building simulation tutors for physics using a team of experts including
physicists, teachers, and computer scientists. These tutors are designed to put a student in
direct contact with physics elements, such as atoms, energy, and heat. The student can use a
variety of activities, such as changing the position or velocity of a body in a celestial mechanics
simulation to view dependent changes in the size, speed, and position of the orbit. The tutor
monitors and advises the student while she/he works, it provides examples, analogies, or
explanations based on the student's actions, questions, or responses.

The first system we have built teaches about the second law of thermodynamics. 3 It is
taught at the atomic level 1171 and provides a rich environment through which the principles
of equilibrium, entropy, and thermal diffusion can be observed and tested. The student is
shown, and is able to construct, collections of atoms that can transfer heat to each other
through random collision, Figure 5.2.

The student creates areas of "high" energy atoms, indicated by dark squares, along with
variously-shaped observation regions to analyze and monitor the energy. Several systems can
be constructed, each with monitorable areas of high energy. Concepts such as temperature,
energy density, and thermal equilibrium for each system can be plotted against each other
and against time. Thermodynamic principles, such as heat transfer through random collision
and entropy as a function of the initial organization of the system, can be observed.

At any time the student can modify the temperature of the system, the number of col-
lisions per unit time, and the shape of the observation regions. All student activities, along
with questions, respons-e, and requests, are used by the tutor to formulate its next teaching

goal and next activity. We are now building the knowledge base of tutoring strategies to

'The second law states that heat can not be absorbed from a reservoir and completely converted into
mechanical work.

5-16

reason about whether to show an extreme example, or a near-miss one, to give an analogy,
or to ask a question. We are also studying student misconceptions and common errors in
learning thermodynamics and statistics to refine the tutor's response.

5.5.3 Negotiation between Distributed Agents

We have focused on developing a multistage negotiation paradigm for planning in a dis-
tributed environment[181. The application domain of involves the monitoring and control
of a complex communications system. The multistage negotiation protocol is useful for co-
operatively resolving resource allocation conflicts which arise in a distributed network of 0
semi-autonomous problem solving nodes. The primary contributions of such a negotiation
protocol are that it makes possible the detection and resolution of subgoal interactions in
a distributed environment with limited communication bandwidth and no single locus of
control. Furthermore, it permits a distributed problem solving system to detect when it is
operating in an overconstrained situation and to remedy the situation by reaching a satisficing
solution. 0

The distributed environment in which our negotiation takes place is a network of loosely
coupled problem solving agents in which no agent has a complete and accurate view of the
state of the network. Problem solving activity is initiated through the instantiation of one
or more top level goals at agents in the network. Each top level goal is instantiated locally
at an agent and is not necessarily known to other agents. Since the conditions which give 0
rise to goal instantiation may be observed at more than one place in the network, the same
goal may be instantiated by two or more agents independently. The desired solution to the
problem is any one that satisfies all of the top level goals.

Multistage negotiation has been devised as a paradigm for cooperation among agents
attempting to solve a planning problem in this distributed environment. One of the major
difficulties that arises is detecting the presence of subgoal interactions and determining the
impact of those interactions. In distributed applications, the problem is exacerbated because
no agent has complete knowledge concerning all goals and subgoals present in the problem
solving system. For example, subgoals initiated by one node may interact with other subgoals
initiated elsewhere, unknown to the first node. These interactions may become quite complex
and may not be visible to any single node in the network. A second issue that arises in 0

planning is recognizing when goals are not attainable.
When a node begins its planning activity, it has knowledge of a set of top level goals

which have been locally instantiated. A space of plans to satisfy each of these goals is
formulated during plan generation without regard for any subgoal interaction problems. After
plan generation, each node is aware of two kinds of goals: primary goals (or p-goals) and 0
secondary goals (or s-goals). In our application, p-goals are those instantiated locally by
an agent in response to an observed outage of a circuit for which the agent has primary
responsibility (because the circuit terminates in the agent's subregion). These are of enhanced
importance to this agent because they relate to system goals which must be satisfied by this
particular agent if they are to be satisfied at all. An agent's s-goals are those which have
been instantiated as a result of a contract with some other agent. An agent regards each of
its s-goals as a possible alternative to be utilized in satisfaction of some other agent's p-goal.

5-17

A plan commitment phase involving multistage negotiation is initiated next. As this phase
begins, each node has knowledge about all of the p-goals and s-goals it has instantiated.
Relative to each of its goals, it knows a number of alternatives for goal satisfaction. An
alternative is comprised of a local plan fragment, points of interaction with other agents
(relative to that plan fragment), and a measure of the cost of the alternative (to be used in
making heuristic decisions). Three characteristics of distributed planning problems motivate
development of a more general cooperation paradigm. First, subgoal interaction problems
which arise in the context of a distributed planning system when agents do not have a global
view are very difficult to detect and even more difficult to handle in a reasonable way. Second,
many application domains embody planning problems that are overconstrained. When these
planning problems are addressed by a network of planning agents, it is essential that the
system be able to determine whether or not the problem is overconstrained. Third, when the
planning problem is overconstrained, it is necessary for the agents involved to arrive at an
agreement as to a set of goals whose satisfaction is regarded as an acceptable solution to the
problem at hand. Each of these issues without the re-exchange of sufficient knowledge as to
permit each agent to construct a global view.

0

5-18

Bibliography

[1 Croft, W.B., Lefkowitz, L., Lesser, V., and Huff, K. "POISE: An intelligent Assistant for
Profession-based Systems," in Proceedings of the Conference on Artificial Intelligence,
Oakland University, Michigan, April 1982.

[21 Croft, W.B. and Lefkowitz, L.S. "Task Support in an Office System," ACM Transactions
on Office Information Systems, vol. 2, pp. 197-212, 1984.

[3] Carver, N., Lesser, V. and McCue, D. "Focusing in Plan Recognition," Proceedings
of National Conference on Artificial Intelligence (AAAI-84), Austin, Texas, pp. 42-48,
1984.

[4] Broverman, C.A. and Croft, W.B. "A Knowledge-based Approach to Data Management
for Intelligent User Interfaces," Proceedings of Conference for Very Large Data Bases 11,
Stockholm, Sweden, 1985, pp. 96-104.

[5] Broverman, C.A., Huff, K.E., and Lesser, V.R. "The Role of Plan Recognition in Design
of an Intelligent User Interface," Proceedings of IEEE Conference on Systems, Man and
Cybernetics, pp. 863-868, 1986.

[6) Knowledge Craft Manual Guide, Vax/VMS Version 3.0, Carnegie Group Inc., March
1986.

[7] Huff, K.E. and Lesser, V.R., "Intelligent Assistance for the Process of Programming,"
Technical Report 87-09.

[81 Broverman, C. and Croft, W. B., "Reasoning About Exceptions During Plan Execution
Monitoring," Proceedings of National Conference on Artificial Intelligence (AAAI-87).

[9] Lefkowitz, L.S. and Lesser, V.R. "Knowledge Acquisition as Knowledge Assimilation,"
University of Massachusetts, Amherst, Department of Computer and Information Sci-
ence Technical Report 87-13.

[101 Eshelman, L., Ehret, D., and McDermott, J. "MOLE: A Tenacious Knowledge Acqui-
sition Tool," Proceedings of the Knowledge Acquisition for Knowledge-Based Systems
Workshop, Banff, Alberta, Canada, 1986.

5-19

aI

[11] Ginsberg, A., Weiss, S., and Politakis, P. "SEEK2: A Generalized Approach to Auto-
matic Knowledge Base Refinement," Proceedings of the Ninth International Joint Con-
ference on Artificial Intelligence, pp. 367-374, 1985.

(121 Kahn, G., Nowlan, S., and McDermott, J. "MORE: An Intelligent Knowledge Acquisi-
tion Tool," Proceedings of the Ninth International Joint Conference on Artificial Intel-
ligence, pp. 581-584, 1985.

[13] Woolf, B., and Cunningham, P. "Building a Community Memory for Intelligent Tutoring
Systems," Proceedings of the National Conference on Artificial Intelligence (AAAI-84),

Morgan Kaufmann, Inc., Los Altos, CA, August 1984.

[141 Woolf, B., and McDonald, D. "Context-dependent Transitions in Tutoring Discourse,"
in Proceedings of the National Conference on Artificial Intelligence (AAAI-84), Morgan
Kaufmann, Inc., Los Altos, CA, August 1984.

[15] Woolf, B., Blegen, D., Verloop, A., and Jensen, J. "Tutoring a Complex Industrial
Process," Proceedings of the National Conference on Artificial Intelligence (AAAI-84),
Morgan Kaufmann, Inc., Los Altos, CA, August 1986.

(161 Bobrow, D., Mittal, S., and Stefik, M. "Expert Systems: Perils and Promise," Commu-

nications of the ACM, September 1986.

[17] Atkins, T.; The Second Law, Freedman, San Francisco, CA, 1982.

[181 Conry, S.E., Meyer, R.A., and Lesser, V.R. "Multistage Negotiation in Distributed Plan-
ning," University of Massachusetts, Amherst, Department of Computer and Information

Science Technical Report 86-87.

5-20

APPENDIX 5-A

Reasoning About Exceptions During Plan Execution
Monitoring*

Carol A. Broverman
W. Bruce Croft

Department of Computer and Information Science 0

University of Massachusetts
Amherst, Massachusetts 01003

(413) 545-0463
broverman@cs.umass.edu

crofttcs.umass.edu 0

June 24, 1987

0

Paper-type: short paper
Topic Area: Reasoning

Track: Science

Keywords: planning, execution monitoring, exception handling

Abstract

In a cooperative problem-solving environment, such as an office, a hierarchical planner can be
incorporated into an intelligent interface to accomplish tasks. During plan execution monitoring,
user actions may be inconsistent with system expectations. In this paper, we present an approach
towards reasoning about these exceptions in an attemp, oo accommodate them into an evolving
plan. We propose a representation for plans and domain objects that facilitates reasoning about
exceptions.

"This wrk is supported by the Air Force Systems Command, Rome Air Development Center, Griffiss Air Force
Base, New York 13441-5700, the Air Force Office of Scientific Research, Boiling Air Force B tse, District of Columbia
20332, under contract F30602-85-C-0008, and by a contract with Ing. C. Olivetti & C.

5-A-1
S1

1 Interactive planning and exceptional occurrences

Hierarchical planners incrementally develop a plan at different levels of abstraction, imposing linear
orderings at each stage of the expansion to eliminate subgoal interactions 18,9,111. The execution
of the plan's primitive actions must be monitored to ensure success. Exceptions and interruptions
are common occurrences, and the planner must react to new information made available during
the vario,.s stages of plan construction and execution. Existing plans may require modification or
new plans may have to be generated.

We are conerned with using a planner as a support tool in a cooperative problem-solving
environment such as an office [2,4]. In such an environment, the planner is not viewed as an
omnipotent agent with complete knowledge of the domain and procedures for accomplishing all
plan steps. Rather, it aiks the user in -,, forming correct and consistent tasks. The operation of
the planner depends heavily on interaction ,'ith the user in order to allow user control and to draw
on the users' domain knowledge. Interactive planners necessarily interleave plan generation and
, exrcci on since user actions determine the couprse of future events.

Pre-, iont, planners have provided general replanning actions which are invoked in response to
problem hj the plan resulting from the introduction of an arbitrary state predicate or "fact"
16,8,12]. In these systems, the replanning techniques provided do not attempt to reason about
failing conditions or possible serendipitous effects of the exception. These methods simply make
use of the explicitly linked plan rationale to detect problems and determine what violated goals
need to be reachieved. We view this type of replanning as a "reactionary" tactic involving little
intelligence, and reserve its use for exceptions generated by external agents'.

To address the problems associated with interactive planning, we propose extending the tra-
ditional replanning approach. When a user action deviates from the planner's predictions, the
system should exploit available knowledge in an attempt to explai he exceptional behavior. Such
a constructive approach is preferred to replanning, since replanning, in this case, would attempt to
achieve goals that the user deliberately chose not to pursue. This paper discusses reasoning about
exceptional occ,#rr'*n',s R-s an approach towards incorporating exceptions into a consistent plan. In
the next two sections, we describe an interactive planner and the elements of our representation
which are used to support the reasoning process. We then outline the types of exceptions that can

occur and algorithms for handling them, within the context of an example taken from the domain
of real estate.

2 An interactive planner

* Input to our interactive planner is provided as an abstract goal specification, and the output
is a partially or fully expanded procedural net, with partial temporal ordering (similar to other
hierarchical planners [8,9,111). A procedural net contains goal nodes, action nodes, and phantom
nodes (goal nodes which are trivially true), along with links representing the causal structure of

'The planner attempts to satisfy a number of agents. The user(s) are regarded as internal agents, while agents
are considered to be external if the system lacks a model for their behavior (e.g., the real world).

5-A-2

the plan. Since complete expansion of the initial goal may require additional information from the
user, only action nodes are considered primitive, and thus executable.

We distinguish between those primitive action nodes which the system is able to carry out using
available tools (system-executable) and those which must be executed by the user (user-executable).
An action node may be both system-executable and user-executable, in which case automation is
preferred. An example of an action which may be solely user-executable could be the cancellation of
an order; the decision to cancel must be initiated by the user and thus can be modeled as a decision
action occurring "offline" [3]. Transferring information from a purchase request to an order form,
however, is a primitive action which may either be performed by the user or automated.

At any point during the planning and execution of a task, an expected-action list contains the
set of user-executable primitive actions which are not preceded by unexpanded goal nodes. This is
the set of actions which are predicted by the system to occur next. As each system-executable or
user-executable action is performed, the procedural net is expanded further, producing an updated
expected-actions list. A user action may be inconsistent with system expectations, in which case
it is flagged as an exceptional occurrence.

3 A representation for plans and domain objects

An important part of our approach is a uniform object-based representation of activities, objects,
agents and relationships2 (2]. An integrated abstraction hierarchy (see Figure 2) combined with a
powerful constraint language facilitates the representation and use of more sophisticated knowledge
about plans, such as the policies of McDermott [7]. The reasoning process described in the next
section exploits this object-based representation. A similar approach has been used by Alterman
[1] and Tenenberg [10] to represent old plans that are adapted to new situations.

The major features of our representation are a taxonomic knowledge, aggregation, decomposition,
resources, plan rationale and relationships. Each of these is defined and illustrated using an example
from the domain of house-purchasing, shown in Figures I and 2. Figure I depicts a partially
expanded procedural net fragment which represents the portion of a house-buying task which
remains after a house has been selected for purchase. Figure 2 shows a portion of the domain
knowledge relevant to this task.

Any complex entity can be viewed as a composition of several other objects as well as an ag-
gregation of properties. An abstract activity object which can be decomposed into more detailed
substeps has a steps property containing a partial ordering of more detailed activity steps. De-
composition of a domain object into other objects is expressed as a set of object types named i, a
parts property. The aggregation of all properties of either an activity or domain object, including
decomposition information, constitutes the object definition.

All entities are represented in a type hierarchy, with inheritance along is-a links between types
and their subtypes. Entities inherit the properties and constraints of their supertypes. For exam-
ple, a mortgage-application-form has various fields which are inherited from the more general form
object., and obeys the constraint stating that it can be manipulated by an apply type of activity

'In the remainder of the paper, we refer to plan descriptions as actittiies and objects of the domain simply as
objects.

5-A-3

inspect-house

SPLIT

exist(fundsO) (N

(purpose): a

(expansion)

get-mortgage
goal: exists(funds)

(steps)

applg-for- receive-ma rtg age-
mortgage approval

S (follows) effect: approved (mortgage)

....

igo-to-b°aink c,-oeo I iv.,e- i

Figure 1: Example procedural net fragment

entity

obec aciiy aet rltosi

* form 0r eciv-o -form

date: J <aoplicat ion-form> >)Fumber: Exmp Resources: apl Icat fon-moren
000

pi cation-form A pplig-for-martgaseSo

PlIcant 5te ps (fo llowt <g o-to-p lace <bank>>
nipulated- fill-out-form

pply> <mort gagle-
application- form> >)
I°-- oS

mortgage oage

application- application-
form form

Figure 2: Fragment of knowledge base

5-A-4

-= ._ -. . m mimm mmmI i Im m I0

(inherited from application-form). Activities inherit the preconditions and effects of their super-
types, as well as decomposition information. For example, any apply activity may be decomposed
into an activity of type go-to-place followed by fill-out-form. Apply-for-mortgage is a subtype of
apply and thus inherits and specializes this decomposition. Apply-for-mortgage also inherits the
effect of pending(application-form).

An activity has an associated set of effects which are asserted upon its completion. Effects are
represented as predicates on domain objects. The goal of the activity is a distinguished main effect
and is used for matching during plan expansion. An activity schema also includes a declaration
of the types of domain objects it may manipulate. The inverse of this resources property is the
manipulated-by property expressed in domain objects to indicate which types of activities may affect
them. The union of an activity schema with the descriptions of associated object types provides a
rich semantic representation of the domain, incorporating objects and operators.

Causal knowledge is represented by goal properties and purpose links. Goals are of a global
nature, in that they relate an activity to a representation of its intent; that is, they state what
this activity accomplishes regardless of the context of the current procedural net. Purpose links
may be placed between two plan substep nodes in both static and dynamic plan representations, to
indicate that a substep of a plan produces a state required for the proper execution of a later substep,
much like NONLIN's goal structure [9]. The purpose links prove to be particularly important in
determining whether or not an exception can easily be incorporated into an existing plan.

Arbitrary relationships may also exist between domain objects. For example, a seller relation
may be depicted between an individual and a certain house, expressing the fact that someone is
selling a particular house. A special type of relationship which may exist between two objects is a
transformation relation, which contains a procedural attachment for producing the correct instance
of one type of object associated with the instance of the second object type. For example, the
abstract class object address may be related to telephone-number through a special transformation
specification which indicates that a phone call using a phone-number may produce the corresponding
address.

4 Unexpected occurrences

A user action occurs within the context of predictions made by the system. Exceptions can be
generated by unanticipated user actions. Because of the inherent open-endedness of the domain,
an unexpected occurrence may in fact be a valid semantic action, not recognized as such because
of an inaccurate or incomplete activity description.

Referring back to our example depicted in Figures 1-2, we can imagine the following possible
scenarios:

(a) Suppose receive-mortgage-approval has occurred. We are expecting an inspect-house action
by the user. Instead, the user executes the first step of the close-on-home procedure, go-
to-closing-location. This is an instance of a step-out-of-order exception, since this step is
expected, but not until later in the plan.

(b) Suppose the purchase-and-sale-agreement has been signed, and the system next expects the

5-A-5

0J

user to start cariying out the steps to obtain a mortgage (go-to-bank). Instead, a sell-stock
action is taken by the user, generating an unexpected-action exception.

(c) Suppose that while the user is waiting for his mortgage to be approved, his friend from
the bank stops in the office and hands him a hard-copy of the approval. Since the normal
way of receiving approval is in the form of an electronic message, the user simply offers a
user-assertion by introducing the predicate approved(mortgage).

(d) Suppose, that while executing the fill-out-form substep of the apply-for-mortgage step, the
user fills in the address field with a phone-number instead of an address, triggering a constraint
violation. This is a case of an expected action, unexpected parameter type of exception, where a
static object constraint violation has occurred. Unexpected parameters can result in violations
of other types of constraints, such as a static constraint in the activity schema, or a constraint
dynamically posted on a domain-object by an activity instance.

The above scenarios illustrate the classes of unexpected occurrences which can arise. Actions
can be out-of-order or completely unexpected. A user-assertion arbitrarily introduced to the system
may have implications for the current plan. A user assertion is modeled as an unexpected action
with the assertion as its main effect, and is treated as an unexpected action. An expected action
may occur with an unexpected parameter, resulting in the violation of a static or dynamically posted
object constraint, or the violation of a constraint within the plan itself. In 'the following sections, 0
we develop algorithms' for reasoning about the various types of exceptions, and show how each of
the above scenarios can be resolved, resulting in a consistent plan.

5 A general architecture for exception handling

While this paper focuses primarily on the reasoning process used to handle exceptions, a general
architecture designed to accommodate exceptional occurrences is shown in Figure 3. Several of
the modules are similar to those described in other hierarchical planners, specifically [121. We
have extended the basic replanning model to include additional modules (highlighted in Figure 3)
to address exception handling. Exceptions are detected by the execution monitor and classified
by the exception classifier. Violations in the plan caused by the introduction of an exception
are computed by the plan critic. Real-world (not user-generated) exceptions are handled by the
replanner. The replanning approach we have adopted is similar to that of [12], where one or more of
a set of general replanning actions is invoked in response to a particular type of problem introduced
into a plan by an exceptional occurrence. For interactive planning, we extend the set of general
replanning actions to include the insertion of a new goal into the plan.

The exception analyst applies available domain knowledge in an attempt to construct an expla-
nation of an exception. Its primary function is to determine the relationships and compatibility of
the actual events to the expected actions, goals and parameters. The particular entity relationships
investigated by the exception analyst are determined by the type of internal exception. The ex-
ception analyst may be triggered by both external and internal exceptions, although it is primarily
used for internal exceptions.

5-A-6

PLANNEREXECUTION [XCPION
MONITOR CLASIIER

CRITIC

ANALYST0

Figure 3: An architecture for a cooperative planner

The paradigm of negotiation 15] has been used as a model for reaching an agreement among
agents on a method for accomplishing a task. We propose to use negotiation for establishing a
consensus among agents who are affected by an exception. The negotiator determines the set of
affected agents and uses the information provided by the exception analyst to present suggested
changes to the original plan.

We distinguish between effecting and affected agents with regard to the occurrence of an ex-
ception. The effecting agent is that agent who has caused the exception. An affected agent is one
whose interests are influenced (either positively or negatively) by the exception. Affected agents
are those who are "responsible" for the parts of the plan where problems are detected by the plan
critic. An external agent can never be an affected agent, since the system has no model of an
external agent's interests or behavior.

Using information provided by the exception analyst about relationships between actual and
expected values, the negotiator initiates an exchange between the effecting agent and the affected
agents. The negotiator and plan critic execute in a loop in which the plan critic analyzes changes
suggested by the negotiator to detect any problems introduced. This loop is exited when no further
problems are detected by the plan critic and all affected agents are satisfied.

The negotiator also directs the acquisition of information from the user, if required, again using
a trace of the exception analyst's search to guide the questioning. Negotiation may also be invoked
upon the failure of replanning. If the negotiator or replanner produces a consistent explanation
of the exception, control is returned to the planner to continue plan execution and generation. A
successful negotiation can result in a system which has "learned," that is, the static domain plans
may be augmented with knowledge about the exception and thus enhances the system's capability
to handle future similar exceptions.

5-A-7

6 Reasoning about exceptions

The behavior of the exception analyst is guided by some general principles derived from the type
of the exceptional occurrence. A atep-out-of-order exception, for example, may imply that the user
may be attempting a short-cut, while an unexpected action exception may be eventually recognized
as an intentional substitution of the unanticipated action for the expected action. The exception
analyst performs a controlled exploration throughout the knowledge base which is guided by the
current state of the procedural network as well as the type of exception which has occurred. If a
number of strategies are possible, the least costly is attempted first. In the following sections, we
present algorithms for handling the various types of exceptions, illustrating (where relevant) with
the example scenarios developed in section 3.

6.1 When the action taken doesn't match an expected one

If a user performs an action which doesn't have a match on the expected-actions list, the exception
classifier is invoked to determine whether this action is entirely unexpected or is simply out-of-order.

This determination is made by a search through possible plan expansions.

6.1.1 Unexpected action

If a user action occurs which is not expected anywhere in the plan, the exception analyst attempts
to establish whether this unexpected action contributes to the pending task in any way. The fun-
damental assumption is that the unexpected action is related to unachieved goals in the remainder
of the plan.

The unexpected action may be related to the expected action or to another plan step which is
predicted later in the plan expansion. The actual contribution made by this exceptional occurrence
can be at an arbitrary level of abstraction and granularity within the task. In other words, an action
may take the place of an expected action, satisfy the precondition of a later action, or eliminate
the necessity of an entire sequence of later actions. The effects of the actual action are compared
with the preconditions, effects, and goals of other nodes within the procedural net. The exception
analyst looks for the potential contributions by focusing on the most local contributions first. The
control of the exception analyst is illustrated by the following algorithm:

1. Can the exceptional action be substituted for an expected action? If either of the following
criteria are met, a substitution should be allowed:

(a) Effects of the exceptional action exactly match those of the expected action.

Scenario (c) is an example where a uoer-asaertion is introduced to inform the
system of the results of an actions which has occurred "offline." The exception
analyst notes that the effects of receive-mortgage-approval are matched by this
dummy action, making the expected action no longer necessary.

(b) The intersection of effects of the exceptional and expected actions are exactly those

effects of the expected action which have purpose links to later plan steps.

5-A-8

2. Does the exceptional action allow a simplification of the remainder of the plan?

(a) If the action can be substituted for a later step in the plan (established by the above
method), treat the exception as an out-of-order action (below) and record the substitu-
tion of the matching actions.

(b) Do any of the effects of the exceptional action match with an unachieved effect which is
the purpose for a later plan step? If so, a later precondition is satisfied; note that the
precondition is now a phantom, but do not modify expectations.

3. Does the unexpected action allow an entire hierarchical wedge to be removed from the plan?

If the exceptional action results in the satisfaction of a higher-level goal, the steps comprising
the expansion of that goal may no longer be necessary. The exception analyst determines
the parent node of the expected action. If the goal of this parent node is achieved by the
effects of the exceptional action, then the following is done: Check to see if the effects of
each of this parent's children (excluding exceptional action itself) are now true. If none of •
the unachieved effects have purpose links to steps occurring after the parent node, then a
substitution is allowed. The exceptional node is incorporated in the procedural net, and the
expected action, its parent and siblings are considered to be achieved.

This method can be applied to scenario (b). The exception analyst notes that the
exceptional.step sell-stock has the same goal (ezists(funds)) as a more abstract step
in the plan expansion, namely get-mortgage. The user may intend to buy the house
with his own funds, and not the bank's. The hierarchical wedge of the plan which
constitutes the expansion of get-mortgage is removed from the plan and replaced
by sell-stock.

0

6.1.2 Out-of-order action

If the action is judged to be an out-of-order plan step, there are two possibilities to consider:

1. The original ordering may have been specified as a preference, but there are no strict de-
pendencies between the effects and preconditions of actions. In order to determine if this is
the case, the exception analyst must examine the causal structure of the plan. Specifically,
if there are no purpose links between the actual step and an intervening step which has not
been performed, the ordering may be relaxed.

This case applies to scenario (a). The exception analyst notes that the inspect-house 0
action is optional, since there are no purpose links from that node to nodes later in
the plan. Therefore, a relaxation of the originally specified ordering is allowed.

2. The intervening steps between the expected and actual actions are no longer necessary. This
may be because the goals of the intervening steps may have been accomplished in some
"offline" fashion. The exception analyst does nothing in this case, but passes control to the
negotiator, which involves the user in an attempt to verify the goals of the intermediate steps.

5-A-9 "1

6.2 Unexpected parameter exceptions

When an expected action occurs, an unexpected parameter value can cause a constraint violation.
Since parameter values are usually objects themselves, the exception analyst is invoked to determine
what relationships exist between the object provided as the actual parameter value and the object
which was expected as the parameter value. The exception analyst attempts to establish the
following:

1. The two objects may have a common ancestor in the object hierarchy. If so, the exception
analyst constructs the set of features unique to the expected object, since the lack of these
features in the object actually provided as the parameter value may be problematic.

2. The two objects may both be manipulated-by activities which belong to a common activity
superclass. If so, they probably are utilized in similar fashions.

3. There may be any number of other relationships between the two objects. Specifically, a
transformation relationship may link the object provided with the expected object, describing
a method to the obtain the expected parameter value.

To handle scenario (d), the exception analyst notes that the phone-number object
and address objects are linked through a transformation relationship, specifying
that a procedure call may be used on the phone number to produce the corre-
sponding address.

4. The discrepancy between the two parameters may result from differing quantities of the
object type. If so, an excess may or may not be allowable. The semantics associated with the
underlying data type are particularly important when handling quantity discrepancies, since
commonsense reasoning may be required. For example, if the go-to-bank step was supposed
to result in withdrawing 50 dollars, emerging with 100 may not be problematic, but baking
a cake in a 450 degree oven when the recipe calls for 350 degrees may have unsatisfactory
results.

This information collected by the exception analyst is used during negotiation to establish
whether the exceptional parameter should be allowed. The scope of the knowledge base which may

be affected by the exception is dependent on the type of constraint violation which has occurred.
Modifications and consequences which may result from a static object constraint violation, for
example, are localized to the static knowledge base, while plan constra nt violations and dynamic
object constraint violations may have more far-reaching consequences for the remainder of the plan.

7 Status

Implementation of a prototype which incorporates the ideas presented in this paper is currently
underway. One of the major aims of this work is to augment domain plans with knowledge acquired
during exception handling. We are currently looking at the issue of propagating change in an object-
based representation.

5-A-10

me m aa NH H •iIHN a aS

References

[11 Alterman, R. "An adaptive planner", Proceedings of AAAI-86, 65-69, 1986.

12) Broverman, C,; Croft, W.B. "A knowledge-based approach to data management for intelligent
user interfaces", Proceedings of VLDB 11, Stockholm, 96-104, 1985.

[31 Broverman, C.A., Huff, K.E., Lesser, V.R. "The role of plan recognition in design of an
intelligent user interface", Proceedings of IEEE Conference on Man, Machine, and Cybernetics,
863-868, 1986.

[41 Croft, W.B.; Lefkowitz, L.S. "Task support in an office system", ACM Transactions on Office
Information Systems, 2: 197-212; 1984.

[5) Fikes, R.E. "A commitment-based framework for describing informal cooperative work", Cog-
nitive Science, 6: 331-347; 1982.

[61 Hayes, P.J. "A representation for robot plans", Proceedings IJCAI-75, 181-188, 1975.

[71 McDermott, D.V. "Planning and Acting", Cognitive Science, 2, 1978.

[81 Sacerdoti, E.D. A Structure for Plans and Behavior, Elsevier North-Holland, Inc., New York,
NY, 1977.

[91 Tate, A. "Generating project networks", Proceedings IJCAI-77, Boston, 888-893, 1977.

[101 Tenenberg, J. "Planning with Abstraction", Proceedings of AAAI-86, 76-80, 1986.

[11] Wilkins, D.E. "Domain-independent planning: Representation and plan generation", Artificial
Intelligence, 22: 269-301; 1984.

[121 Wilkins, D.E. "Recovering from execution errors in SIPE", SRI International Technical Report
346, 1985.

5-A-11

APPENDIX 5-B

Task Management for an Intelligent Interface

W. Bruce Croft

University of Masachusetts

ABSTRACT

An intelligent interface assists users in the execution of their tasks. To do this, the system must be
able to represent tasks and the objects that ae manipulated. The intelligent interface described in this
paper uses an object management system to manage object and task instantiations and the relationships
between them. The object management system is viewed as an implementation of a data model that
emphasizes the modeling of operations.

1. INTRODUCTION

In interactive computing environments, the users play a dominant role in determining the operation of
the system by selecting the services or tools that are required for their tasks. A task is simply a sequence
of activities, some of which are performed on the computer, which taken together accomplish users' goals.
Examples of this type of environment are office information systems, software development environments
and CAD/CAM systems. In such systems, the interaction with the user is typically viewed as an
unpredictable series of tool invocations, rather than as the execution of tasks which wre at a higher level
of abstraction. The lack of knowledge of user tasks severely limits the role of the s.stem during the
interaction. To address this limitation, we define an intelhient interface as a subsystem that provides a S
means of describing and supporting the typical interactions users have with the computing environment.
The primary function of the intelligent interface is to provide a wide range of assistance to users in the
execution of their tasks.

The characterization of a user's interaction with a system presents a number of problems that cannot
be addressed with conventional programming languages. The following features of task description are
particularly important:

1. Tasks involve user actions as well as executable code. Often they are nondeterministic.

2. Tasks must be able to be specified by users with widely varying computer experience.

3. Task descriptions are often incomplete. The description of a task must be able to change as the user's
understanding of the task changes.

4. Task descriptions represent only typical actions involved in carrying out a task. Exceptions to these
typical patterns are very common.

This research was supported in part by the Rome Air Development Center and by Digital Equipment Corporation.
Author's address: Computer and Information Science Department. University or Massachusetts, Amherst, MA 01003 (413/545-0463).
CSNET: croftOu mass.

5-B-i

The POISE system [CROF84] was designed to address the problems of task definition and support. In
this system, tasks are specified as underconstrained plans [COHE82, Ch. 15]. A task is described in terms
of subtaska, associated objects, local variables, the preconditions for the task and the effect of carrying out
the task. It is underconstrained in the sense that the exact ordering of subtasks is often not specified or
only partially specified. The primitive tasks in a task hierarchy are either the operations provided by the
tools or application programs. No further breakdown of these operations is necessary to execute them. Not
all of the lowest-level tasks in a task hierarchy need be primitive tasks; they may currently only be
specified at an abstract level or they may correspond to actions that occur outside the system (e.g.,
making a telephone call).

As the user specifies more details about a task, or as the system learns more about a task, the task
descriptions are further constrained by the addition of rules that affect the ordering of subtasks or the
relationships of objects or variables used by subtasks. New subtasks representing more detailed actions
may be added. Examples of these added constraints are

* a rule specifying when step A must come before step B

• a rule specifying that the object used in step B is the same as the object in step D.

In this way, the system builds up detailed plans for tasks that are initially specified at a higher level of
abstraction by the users.

The system uses the task descriptions to predict user actions (as well as automating aspects of the
task). When an ezception to the predicted action occurs, the system is alerted to the fact that its task
description is inadequate and it can then take appropriate action. The emphasis on acquiring knowledge
through exceptions is also found in Borgida's work [BORG85]. Many types of exceptions can occur
including, for example, different orderings of subtaks, missing subtasks, subtaska activated with
preconditions not satisfied, and object constraint violations.

TASK SUPPORT OBJECT
INTERFACE *Planner MANAGEMENT SYSTEM

USERS <- > HANDLER <-> *Recognizer <-> *Object descriptions
*Exception- *Task descriptions

handler *[nstantiations
*Specifier \/

TOOLS
eApplication

Programs

Fig. 1. The POISE system.

The basic architecture of the system incorporating task definition and support is shown in Figure 1.
The interface handler is responsible for presenting to the users an integrated view of the tasks, tools, and
objects that are available. Users can invoke tasks or manipulate objects directly with the tools. The task
support module "understands" the user actions and choices, records them, and takes appropriate actions.
This module has four major components. The planner executes plans (task descriptions). This includes
predicting user actions and propagating constraints from one task step to another. The recognizer is used
to recognize plans that the user is following without having been specifically invoked. This includes the
recognition of exceptions. Recognition of plans in ambiguous situations requires sophisticated control and
backtracking mechanisms [CARV841. The cxception handler is used to update task descriptions in response
to specific user actions. The specifier provides the means for users to specify tasks. This specification is
done through a graphical interface and requires the user to describe tasks in terms of subtasks,
relationships between subtasks, and objects that are manipulated.

The object management system provides facilities for describing objects and tasks and for managing

5-B-2

their instantiations. Tools can be viewed as a special class of application program that manipulates the
objects stored in the object management system. For example, in an office system, the tools would include
an editor, a forms package, a spreadsheet, and a mail facility. In this paper, we shall describe how the
object management system can be considered to be an implementation of an extended data model.

TASK: Purchasing

REQUISITION

Fill-out-requisition/
Receive-purchase-request -> -> Complete-purchaseI \/ I

I Fill-out-order-form II I i
I I I

REQUEST ORDER FORM PAYMENT FORM

Fig. 2. An example task.

A simple example of the operation of this system in the office environment is given by the purchasing
task shown in Figure 2. This shows the task at the highest level of abstraction. The description of the
purchasing task, its subtaska and the associated objects (such as the order form) reside in the object
management system. The task description contains a constraint that a request for a purchase must occur
before an order form or a requisition can be filled out. It also specifies that either one of those steps must
occur before completing the purchase. The other form of constraint relates the contents of the request,
the order form and the payment form. At this level of abstraction, the task description will look very
similar to an ICN specification [ELLI821. Some of the steps in the task description will be specified at a
greater level of detail. For example, the "Fill-out-order-form' subtask may contain a detailed description
of how this step is accomplished. Other steps, such as "Fill-out-requisition', may be only partially
specified. It is the responsibility of the task support module to monitor the user's interactions with the
system, recognize when a requisition is being used and to gather information that will further specify this
step. Once the purchasing task has been specified by the user, it is presented by the interface handler as
one of the "tools' available to the user. When a particular purchase is required, the user would invoke
this task and the system would create instantiations of the purchasing task and related objects such as the
order form.

2. DATA MODELS AND EXTENSIONS

Data models provide a means of defining the structure of objects in a particular environment,
constraints on those objects, and operations that may be performed on them [TSIC821. Much of the
research in this area has concentrated on the static aspect of object description, rather than the dynamic
aspect. To support the intellig-.nt interface, however, we are forced to look at the task descriptions and
ask how they are related to Vplication programs, transactions and the data manipulation languages
provided in conventional database systems. We define an extended data model as consisting of a means
to describe objects, a means of describing operations and a means of describing the connections between
objects and operations. Constraints are specified as part of both the object and operation definitions.

Object definitions are accomplished using a data model such as that described in Gibbs IGJBB841,
which allows non-first normal form objects, generalization hierarchies and constraints defined using
domain specifications and trigger procedures. For example, in an office application, an order form that

5-B-3

contains a variable number of ordered items may be defined as a specializatior of a general form object.
The order form may inherit a constraint from the general form object that the form number should be
between I and 99999. A specific constraint, that the total field should be the sum of the costs of the items,
could also be defined.

The operations that can be defined include tasks, application programs, tools and transactions. The
primitive operations, which are provided in the data manipulation language in database systems, are
predefined and apply to all objects. These operations include creating, updating, deleting and retrieving
objects. A containment hierarchy of operations, as shown in Figure 3, results from the observation that
operations higher in the hierarchy are described in terms of operations that are lower in the hierarchy.

Tasks

Application Programs
Tools

Transactions

Primitive Opt-ration

Fig. 3. Operation hierarchy.

A distinction can be drawn between atomic and non-atomic operations. The primitive operations and
transactions are atomic in the sense that they are indivisible from the user's point of view. On the other
hand, the steps involved in tasks and application programs can be visible to the users and may require
user input. Task concurrency and constraint checking thus cannot be handled in the same manner as
transactions. Delaying constraint checking until the end of a task, for example, is not possible because the
intermediate states are visible to the users. The fact that tasks can be suspended indefinitely also requires
that locking does not occur as it would for a transaction. These points lead to the conclusion that
transactions can only be defined for the very low level operations from the user's point of view. The
maintenance and checking of task instantiations in order to provide a consistent view of the system's
operation to the user is entirely the responsibility of the task support module. For example, the task
support module can assist the user in "undoing" the steps of a task and can check constraints whenever
new information becomes available.

The main advantages of introducing task, application program, and tool operations into the data
model are that the connecti. is between user-level operations and objects can be made explicit and a
common framework is provided for describing and managing the static and dynamic aspects of a system.
Generalization hierarchies of operations, multiple instantiations of operations, and inheritance of
operations through specialization of object types can all be described. For example, it is possible to
describe a 'Fill-out-form" task that is connected with a general form object. We could then describe a
"Fill-out-order-form' task as a specialization of the more general task that includes more steps and
constraints. An order form, which is a specialization of the general form object, would have a connection
to the 'Fill-out-order-form' task but would also inherit operations connected to the the general form, such
as "Get-form-number'.

In contrast to the Smalltalk view [GOLD831, where objects are defined through the operations that
are attached to the object, our view is that the operations and the structure of the objects are both of
interest and have separate descriptions, but are tightly connected (a kind of 'marriage of equals"). An
alternative description of the extended data model, which is more object-oriented in nature, would view
tasks and objects 3s two subclasses of a more general object class. Operations that are attached directly to

5- B-4

objects are atomic whereas task "objects" describe user-level operations that typically are non-atomic and
manipulate a number of other objects. The extended data model is closely related to the model described
by Stemple and Sheard [STEM82, SHEA85].

The description of the operations vary according to the operation type. Task descriptions were
mentioned in the last section. The programming languages and data manipulation languages used to
describe application programs and transactions in conventional database systems are the major part of the
description of these operations, but other information is needed. From the point of view of the intelligent
interface, the most important information about these operations is the name, the functionality, and the
input/output characteristics. That is, given a task step, the POISE system has to know what lower-level
operations can carry out that step, how these operations can be invoked, and what information is
required.

As mentioned previously, the description of operations involves a definition of constraints. These
constraints, either explicitly defined in task descriptions, or implicit in the application program code,
define allowable transitions of the object instantiations and the operation instantiations. It has been
recognized that static and transition constraints are not independent and that redundant specifications are
not uncommon [SHEA85]. POISE is designed to use either form of a constraint during planning and
recognition. For example, a task description constraint may specify that if an order amount is less than
$500, the step 'Fill-out-order-form" is appropriate, otherwise "Fill-out-requisition' should be used. In the
description of objects, the same constraint could be specified by allowing only values less than $500 in the
amount field of the order form. By allowing users to specify this constraint in either way, POISE simplifies
the task description process.

3. OTHER MANAGEMENT ISSUES

A number of other problems arise in the management of the object and operation instantiations for
the intelligent interface. One of these is that in this type of system it is essential to know which people or
more accurately, 'agents', can carry out tasks. The description of agents and the "roles" that they take
has been the subject of previous research [ELLI82]. In the system described in this paper, agents would
be represented as a class of objects with connections to both tasks and other objects.

During the process of planning and recognition, the intelligent interface must keep track of
assumptions that are made in order to backtrack should a mistake be made or if the users change their
actions. Part of this record keeping involves version histories of the objects [ZDON841. However, in the
intelligent interface, histories of operation instantiations are also required. This situation is further
complicated by the fact that there may be multiple interpretations of a single user action, only one of
which may turn out to be valid. The process of planning also requires the propagation of constraints into
"predicted' versions of the objects. The interpretations in this system are similar to contexts used in some
systems developed for artificial intelligence research [BARR82, p. 351.

By representing operations and objects in a single framework, the management problem is
considerably simplified. A task instantiation can have a set of object instantiations associated with it.
These object instantiations can be either "base" objects or "constraint" objects. Base objects record the
state of the objects as seen by the users. Constraint objects are used as placeholders for propagating
constraints and making predictions. The definition of a constraint object is a "relaxed" version of the base
object definition. For example, a particular field in a base object may be specified as containing an
integer in the range 1 to 100. The constraint object version of the field has to be able to hold values such
as "20<x<60" to allow for symbolic propagation of constraints.

The object management system is partially implemented using a frame-based language !WRIG83]. At
this level, both the operations and objects are represented as frames. Facilities such as generalization
hierarchies and triggers are typically supported in these languages. The slots of the frames can hold any
type of information, including code, and can therefore be used for the complex datatypes and constraints
used in the extended data model. The planner and recognizer have previously been implemented as
independent modules and are currently being reimplemented to take advantage of the object management

5-B-5

system.

ACKNOWLEDGMENTS

The author benefited from many discussions with David Stemple. POISE was designed jointly with Victor
Lesser.

REFERENCES

[BARR821 Barr, A. and Feigenbaum, E.A, eds., The Handbook of Artificial Intelligence, Vol. 2,
William Kaufmann, Los Altos, CA, 1982.

[BORG851 Borgida, A. and Williamson, K., "Accommodating exceptions in databases and refining
the schema by learning from them", Proc. 11th Int. Conf. on Very Large Data Bases,
1985, pp. 72-81.

[CARV84 Carver, N.F., Lesser, V.R., and McCue, D.L., "Focusing in plan recognition", Proc.
AAAI Conf, 1984, pp. 42-48.

[CO E821 Cohen, P. and Feigenbaum, EA., eds., The Handbook of Artificial Intelligence, Vol. 3,
William Kaufmann, Los Altos, CA, 1982.

[CROF84 Croft, W.B. and Lefkowitz, L.S., "Task support in an office system", ACM Trans. on
Office Information Systems 2(3), 1984, pp. 197-212.

JELLI821 Ellis, CA. and Bernal, M., "Officetalk-D: an experimental office information system",
Proc. ACM SIGOA Conf. on Office Information Systems, 1982, pp. 131-140.

[GIBB84] Gibbs, S., An Object-Oriented Office Data Model, Ph.D. Thesis, Dept. of Comp. Sc.,
Univ. of Toronto, Toronto, Canada, 1984.

[GOLD831 Goldberg, A. and Robson, D., Smalltalk-80: The Language and Its Implementation,
Addison-Wesley, Reading, MA, 1983.

[SHEA851 Sheard, T., Proving the Consistency of Database Transactions, Ph.D. Thesis, Comp. and
Inf. Sc. Dept., Univ. of Massachusetts, Amherst, MA, 1985.

[STEM82] Stemple, D., Generalized Type Specifications for Database Systems, Tech. Rep. 82-15,
Comp. and Inf. Sc. Dept., Univ. of Massachusetts, Amherst, MA, 1982.

[TSIC82 Tsichritzis, D.C. and Lochovsky, F.H., Data Models, Prentice-Hall, Englewood Cliffs, NJ,
1982.

[WRIG83 Wright, M. and Fox, M.S., SRL 1.5 User Manual. Intelligent Systems Lab., Robotics
Inst., Carnegie-Mellon Univ., Pittsburgh, PA, 1983. 0

(ZDON841 Zdonick, S., "Object management system concepts", Proc. ACM SIGOA Conf. on Office
Information Systems, 1984, pp. 13-19.

5-B-6

I0

APPENDIX 5-C

Multistage Negotiation in Distributed Planning

S.E. Conry
R.A. Meyer
V.R. Lesser

December 15, 1986
Coins Technical Report 86-67

This work was supported, in part, by the Air Force Systems Command, Rome Air De-
velopment Center, Griffiss Air Force Base, New York 13441-5700, and the Air Force Office
of Scientific Research, Boiling AFB, DC 20332 under Contract No. F30602-85-C-0008. This
contract supports the Northeast Artificial Intelligence Consortium (NAIC). This work was
also supported, in part, by the National Science Foundation under CER Grant DCR-8500332,
and by the Defense Advanced Research Projects Agency (DOD), monitored by the Office of

Naval Research under Contract NR049-041. This work was done while S.E. Conry and R. A.
Meyer were on sabbatical at the University of Massachusetts.

5-C-1

Multistage Negotiation in Distributed Planning

S. E. Conry and R. A. Meyer V. R. Lesser
Clarkson University University of Massachusetts

Potsdam, N. Y. 13676 Amherst, MA 01003
(315) 268-6510, -6541, -6511 (413) 545-1322

conry 0 clvms (bitnet) lesser @ umass-cs.umass.edu (csnet)

December 15, 1986

Paper Type: Full-paper

Topic: Reasoning

Track: Science

Keywords: Distributed problem solving

Abstract

In this paper we describe a multistage negotiation paradigm for planning
in a distributed environment with decentralized control and limited interagent
communication. The application domain of interest involves the monitoring
and control of a complex communications system. In this domain planning for
service restoral is performed in the context of incomplete and possibly invalid
information which may be updated dynamically during the course of planning.
In addition, the goal of the planning activity may not be achievable - the
problem may be overconstrained. Through multistage negotiation, a planner is
able to recognize when the problem is overconstrained and to find a solution to
an acceptable related problem under these conditions. A key element in this
process is the ability to detect subgoal interactions in a distributed environment
and reason about.their impact. Multistage negotiation provides a means by
which an agent can acquire enough knowledge to reason about the impact of
local activity on nonlocal state and modify its behavior accordingly.

lS

This work was supported, in part, by the Air Force Systems Command, Rome Air Development Center,
Griffiss Air Force Base, New York 13441-5700, and the Air Force Office of Scientific Research, Boiling
AFB, DC 20332 under Contract No. F30602-85-C-0008. This contract supports the Northeast Artificial S
Intelligence Consortium (NAIC). This work was also supported, in part, by the National Science Foundation
under CER Grant DCR-8500332, and by the Defense Advanced Research Projects Agency (DOD), monitored
by the Office of Naval Research under Contract NR049-041. This work was done while S. E. Conry and R.
A. Meyer were on sabbatical at the University of Massachusetts.

5-C-2

1 INTRODUCTION

We present a multistage negotiation protocol that is useful for cooperatively resolving re-

source allocation conflicts which arise in a distributed network of semi-autonomous problem

solving nodes. The primary contributions of such a negotiation protocol are that it makes
it possible to detect and to resolve subgoal interactions in a distributed environment with

limited communication bandwidth and no single locus of control. Furthermore, it permits

a distributed problem solving system to detect when it is operating in an overconstrained
situation and act to remedy the situation by reaching a satisficing [1 solhtion.

Multistage negotiation is specifically not intended as a mechanism for goal decomposi-

tion in the system, though some goal decomposition is a natural result of negotiation in the

context of this paradigm. Our protocol may be viewed as a generalization of the contract

net protocol (2,3,41. The contract net was devised as a mechanism for accomplishing task

distribution among agents in a distributed problem solving system. Task distribution takes

place through a negotiation process involving contractor task announcement followed by
bids from competing subcontractors and finally announcement of awards. Multistage nego-
tiation generalizes this protocol by recognizing the need to iteratively exchange inferences

drawn by an agent about the impact of its own choice of what local tasks to perform in
satisfaction of global goaLs.

Multistage negotiation produces a cooperation strategy similar in character to the Func-

tionally Accurate/Cooperative paradigm [5] in which agents iteratively exchange tentative

and high level partial results of their local subtasks. This strategy results in solutions
which are incrementally constructed to converge on a set of complete local solutions which

are globally consistent. Before describing multistage negotiation in detail, we first motivate
the need for a new cooperation paradigm.

2 MOTIVATION FOR MULTISTAGE NEGOTIATION

The distributed environment in which our negotiation takes place is a network of loosely
coupled problem solving agents in which no agent has a complete and accurate view of the
state of the network. Problem solving activity is initiated through the instantiation of one S

or more top level goals at agents in the network. Each top level go&! is instantiated locally

at an agent and is not necessarily known to other agents. Since the conditions which give

rise to goal instantiation may be observed at more than one place in the network, the same

goal may be instantiated by two or more agents independently. The desired solution to the

problem is any one that satisfies all of the top level goals.

In this type of distributed network, it is very expensive to-provide a complete global view
to each agent in the system. Communication bandwidth is generally limited. Exchange
of enough information to permit each agent to construct and maintain its own accurate
global view would be prohibitively expensive. In addition, progress in problem solving
would be significantly slower due to a decrease in parallelism attributable to the need for
synchronization in building a complete view. Multistage negotiation has been devised as

a paradigm for cooperation among agents attempting to solve a planning problem in this
distributed environment. In the remainder of this section, we explain the contributions of

5-C-3

multistage negotiation in solving distributed planning problems.

One of the major difficulties which arises in planning systems is detecting the presence
of subgoal interactions and determining the impact of those interactions. In distributed ap-
plications, the problem is exacerbated because no agent has complete knowledge concerning
all goals and subgoals present in the problem solving system. For example, subgoals ini-
tiated by one node may interact with other subgoals initiated elsewhere, unknown to the
first node. These interactions may become quite complex and may not be visible to any
single node in the network. A key objective of our multistage negotiation is to allow node.
to ezchange sufficient information so that these interaction* are detected and handled in a
reasonable manner. This objective is achieved by exchanging knowledge about the nonlocal
impact of an agent's proposed local action without requiring the exchange of detailed local
state information.

Another significant issue that arises in planning is recognizing when goals are not at-
tainable. When satisfaction of a goal requires the commitment of resources, conflicts may
arise among goals competing for limited resources. A planning problem is overconstrained
if satisfaction of one top level goal precludes the satisfaction of others. Detection of an over-
constrained situation in a distributed environment is, again, particularly difficult because
no agent is aware of all goals, and each agent has only a limited view of the complete set of
conflicts. When a number of alternative choices for goal satisfaction are known, detection of
an overconstrained situation is not possible without either multistage negotiation or a global
view.

In an overconstrained problem, a planning system must reformulate what it seeks as a
satisfactory solution. Having several equally important top level goals, the planner must
decide which ones should be sacrificed to permit satisfaction of others. Since the distributed
network has no agent with sufficient knowledge to serve as an intelligent arbitrator, a
consensus must be reached. Multistage negotiation provides a mechanism for reaching a
consensu among those nodes with conflicting goals concerning an acceptable satisficing
solution.

In the following sections, we first describe the problem in more detail, discussing the
application domain itself as well as an example which illustrates the nature of the planning
problem. We then discuss two models of problem solving relevant to this domain: one which
is oriented from the perspective of a single goal and one which is node centered. In the
fifth section we discuss a multistage negotiation protocol which utilizes these models and
has been incorporated in a distributed planner for this problem. We illustrate this protocol
with the aid of a simple example. Finally, we discuss ways in which this research extends
existing work.

3 APPLICATION DOMAIN

The application domain of interest is the monitoring and control of a complex commu-
nications system. This system consists of a network of sites, each containing a variety of

communications equipment, interconnected by links. These sites are partitioned into several
geographic subregions with a single site in each subregion designated as a control facility.
Each control facility has responsibility for communication system monitoring and control

5-C-4

within its own subregion and corresponds to a single node in the distributed problem solv-
ing network. In order to distinguish between the communication network and the problem
solving network, in this paper we reserve the term "site" to mean a physical location in
the communication system. The term "node" will be used to refer to those sites at which
processing and control reside.

The communication network considered here represents a long-haul, transmission "back-
bone" of a larger, more complex communications system. From this transmission oriented
perspective, each user is provided with a dedicated set of resources (equipment and link
bandwidth) which establishes a point-to-point connection, or circuit for a significant period
of time. Any equipment failure or outage will cause an interruption of service to one or
more users.

An overall knowledge-based system to perform the monitoring and control function
would employ distributed problem solving agents involving data interpretation, situation
assessment, fault diagnosis, and planning [61. In this context planning is used to find restoral
plans for user circuits which have been interrupted as a result of some failure or outage.

A restoral plan consists of a logical sequence of control actions which allocate scarce
resources in order to restore end-to-end user connectivity (circuits). These actions allocate
or reallocate equipment and link capacity along some route to specific circuits and are
subject to a number of constraints. For example, a circuit is assigned to one of several
priority categories. In attempting to restore service, resources belonging to circuits of
a lower priority may be preempted. Depending upon the type of circuit, there may be
special equipment needs which are not necessarily present at all sites. Available routes
through the network may be constrained by lack of certain equipment items such as switches
or multiplexers. Thus generation of a restoral plan for a single circuit uses conventional
route finding algorithms [7] in combination with knowledge about circuit types and priority,
needed equipment, network topology, and equipment configuration at all sites along the
restoral path. For any specific circuit there will generally be many alternative restoral
plans, so the planning system must then attempt to select a combination of alternatives
which restores all circuits.

There are a number of features of this planning problem that make it interesting. There
is implicit in this domain the assumption that the knowledge of each agent is incomplete. It
may also be inaccurate and inconsistent with that of other agents. Restoral plans must be
generated in a distributed fashion because no agent has a global view and reliability issues
mitigate against delegating the responsibility for planning to a central node. The overall
system goal is one of determining plans for restoral of all interrupted service. Although each
agent implicitly knows this goal, it generally will not know all of the specific circuits which
require restoral. The planning system need not satisfy the overall goal to be successful. In
many instances, the overall goal may be infeasible, and thus a satisfactory plan will fall
short of reaching this goal.

The distributed planning problem addressed in this paper and our approach to solving
it can best be understood with the aid of an example. A simplified diagram of a small
network is shown in Figure 1. In this phase of our work, we use a simplified model of a
communications system which disregards any constraints arising from equipment configu-
ration at a site. There are five subregions, labeled A, B, C, D, and E, shown. Each site is

5-C-5

B D

L /12 L-10 -
L--2 L-3

L-1/ L-4 L-SL-

E E-

Figure 1: Example Network

designated by a letter-number pair, where the letter indicates the subregion in which the
site is located. The communication network links are designated by L-number. The control
facility for each subregion is located at the site marked with an "". Each control facility
has a planning agent to restore interrupted service. It should be noted that a separate
communication network, of substantially lower bandwidth, is not shown, but is asumed to
interconnect the control facilities for the purpose of exchanging messages among the agents.

For the purposes of describing the restoral problem, we assume that there is an equip-
ment malfunction at station B3-2 that fails all communication using link L-11 We also
assume that each link can handle at most two circuits and that there are four circuits es-
tablished at the time of the supposed failure. These are described in Table I by listing the
sites and lins along the route of each circuit. To simplify the presentation, these circuits
all have the same restoration priority so that none of them should be preferred over the
others for restoral in the event of service disruption.

As a result of the presumed failure, two circuits are disrupted, namely ckt-1 and ckt-2
(both use L-11 to get from B3-1 to B3-2). The planning activity is initiated when an agent
observes disruption of a circuit terminating within its subregion and instantiates a restoral

5-C-6

ckt-1 '(A-1 :L-1: A-2 :L-12: B-1 :L-11: B-2)
ckt-2 (B-1 :1-11: B-2 :L-10: C-3 :1-5: D-2)

ckt-3 I (E_-1 :L-6: C-2 :L-4: C-3 :1-5: D-2 :L-7: D3
ckt-41 (B-1 :L-12: A-2 :1-2: C-1 :L-3: C-2)

Table 1: Circuit Descriptions

goal. In this example, the restoral goals are autonomously instantiated in subregion A (for
ckt-i), subregion B (for ckt-1 and ckt-2) and subregion D (for ckt-2). Each agent initially
has only the following knowledge about each circuit terminating in its subregion:

* a circuit identifier that is unique within the network,

* a priority or degree of urgency for restoral,

e detailed routing of this circuit within this agent's area of responsibility, and

o the end stations of the circuit and the agents responsible for them.

In addition, each agent has detailed knowledge concerning the status of resources resident
in its subregion.

The first phase of the planning process is plan generation, and since it uses only one
stage of negotiation, as in contract nets [2,3,41, we shall not consider the details of plan
generation here. When viewed from a global perspective, plan generation produces two
alternative restoral plans for each circuit. Each plan is represented in Table 2 as a list of
alternating sites and links, traversing the proposed restoral path. To clarify the examp!',

Plans for goal gl to restore ckt-i:
gl/pl (A-i :L-1: A-2 :L-2: C-1 :L-3: C-2 :L-4: C-3

:L-5: D-2 :L-7: D-3 :L-8: D-i :L-9: B-2)
gl/p2 (A-I :L-1: A-2 :L-2: C-1 :L-3: C-2 :L-4: C-3

:L-10: B-2)

Plans for goal g2 to restore ckt-2:
g2/pl (B-1 :L-12: A-2 :L-2: C-1 :L-3: C-2 :L-4: C-3

:-10: B-2 :L-9: D-1 :L-8: D-3 :L-7: D-2)
g2/p2 (B-I :L-12: A-2 :L-2: C-1 :L-3: C-2 :L-4: C-3

:L-5: D-2)

Table 2: Alternative Plans

we have adopted a naming convention for goals and alternative plans which incorporates
the circuit name and plan number; thus the two alternative plans for restoring circuit ckt-I
are designated gi/pi and gl/p2. It is essential to remember that these are global plans

5-C-7

which have been generated in a distributed manner, and no single agent necessarily knows
of all plans or any one complete plan.

As a result of plan generation, a node produces local alternative plan fragments which
may be used to satisfy global goals. Each global plan listed in Table 2 is composed of
several fragments distributed over a subset of the agents. This is illustrated in Table 3
which summarizes the knowledge each agent has about goals, alternative plan fragments,

Goal Plan Frag. 1 Resources Used Cost

gl 1A L-1, L-2 9
g2 7A L-2, L-12 90

Agent A
gl 2B L-9 __9_

5B L-10 1 6
g2 8B L-9, L-1o, L12 9

,1 1B L-12 6 1
Agent B

gl 3C L-2, L-3, L-4, L-5 9
6C L-2, L-3, L-4, L-1O 6

g2 9C L-2, L-3, L-4, L-1 9
12C L-2, L-3, L-4, L,-5 6

Agent C
gi 4D L-5, L-7, L-8, L-9 .. 9
g2 1OD L-7, L-8, L-9 1 9

13D L-5 j 6
Agent D

Table 3: Local Knowledge About Plan Fragments

and local resources. Plan fragments are numbered and each is identified by a letter indicating
the responsible agent. Note that agents are not ezplicitly aware of global alternative plans,
but are only aware of local alternatives. For example, even though Agent A has resources
needed by both gl/pl and gl/p2, the local plan fragment is the same in both cases, and
thus Agent A "sees" only onie alternative plan for goal gl.

This example is considerably oversimplified in order to focus attention on the significant
characteristics of this planning problem and to illustrate the cooperation strategy which
results from multistage negotiation. The communication network has been simplified so
that link capacity is the only resource, and thus there are no constraints arising from local
equipment configurations. The number of circuits and link capacities are also much smaller
than is typical. Since only two top level goals exist, the subgoal interactions are simple and
can be recognized in only one step. In a more realistic problem, subgoal interactions often
involve multiple dependencies and may require several steps of negotiation to detect and
resolve.

The features of the planning problem which are important for the discussion of multi-

5-0-8

stage negotiation in this paper are summarized below:

" Goals are autonomously generated at nodes in the system.

* The same system goal may be generated at more than one node, independently.

e Knowledge about local resource availability and potential goal interactions at each
node differs from that at other nodes.

" Goal satisfaction in general requires nonlocal resources.

" The planning problem being addressed is, in general, overconstrained. A choice to

satisfy some goals may preclude the satisfaction of others, so choice heuristics are
necessary.

" Goals are prioritized, but this does not imply a total ordering with respect to priority.

4 MODEL OF PROBLEM SOLVING

The planning problem discussed in the previous section can be viewed in a broader context.

In this section we characterize a problem solving model in which multistage negotiation is
useful. The search space for a problem of this kind can be considered from two points of

view: a task or goal centered perspective and a node centered perspective. Each of these
ways of viewing the search space provides a different set of insights with respect to problem

solving.

When viewed from the perspective of the system goal, the global problem appears as

an AND-OR tree progressing from the system goal (at the root), down through goals and

plans, to local plan fragments distributed among the agents. A goal centered view of our

example problem is illustrated in Figure 2. Two goals have been instantiated, with four

alternative plans and several local plan fragments. Of course, since this is a distributed

environment, no single agent has a complete view of this tree. Observe that each agent is

aware of both goals gi and g2, but agent D is only aware of one plan fragment for gl, the

one which is a component of gi/pi.

An agent may not simply satisfy a local goal by choosing any plan fragment, but must

coordinate its choice so that it is compatible with those of other agents. Formulation of a

plan as a conjunction of plan fragments induces a set of compatibility constraints on the

local choices an agent makes in satisfaction of global goals. In Figure 2, we show the plan

fragments interconnected by dashed lines. These dashed lines indicate the local knowledge

an agent has about which other agents are involved in compatibility constraint relations with

its own plan fragments. Observe that an agent generally does not have complete knowledge

about these compatibility sets. In our application domain, these constraints involved shared

resources between two agents.

From a node centered perspective, plan fragment selection is constrained by local re-

source availability. An agent cannot choose to execute a set of alternative plan fragments

that require more local resources than are available. For example, agent B's local resources

permit selection of any pair of its own plan fragments in satisfaction of gl and g2, whereas

5-C-9

,, 2

I I I I "

-- I - .. _I _.D I11 i _ I4I I 12

Figure 2: Global Search Space

agents A, C, and D each can select only one plan fragment. The resulting feasibility tree

known to each agent is shown in Figure 3. In this figure, resource constraints associated with
goals and plan fragments are enclosed by ovals and connected to the appropriate objects
with dashed lines. Restoral goals initiated in a subregion are designated with an "*".

From each agent's perspective, the search is over a group of alternatives subject to a

set of local resource constraints and a set of compatibility constraints imposed by actions
of other agents. Multistage negotiation provides a mechanism by which agents coordinate

their actions in selecting plans subject to both resource and compatibility constraints. As
additional constraints are added to an agent's base of knowledge, its local feasibility tree is

augmented to reflect what it has learned.

5 MULTISTAGE NEGOTIATION

In this section, we describe the multistage negotiation protocol we have developed and give

an example of its application in the distributed planning problem which has been discussed.
We first treat the protocol at a very high level, discussing the general strategy. We then

provide more detail as to phases of planning and the role of negotiation in each. The section
is concluded with a detailed trace of negotiation and reasoning in each agent pertinent to
our simple example.

5-C-10

, I /

914 92 919 2

Aiur 3: 5oa Feilt FeeeB

(C)

ZSS

Figure 3: Local Feasibility Trees

5-C- 11

High Level Protocol

Multistage negotiation provides a means by which an agent can acquire enough knowledge
to reason about the impact of local activity on nonlocal state and modify its behavior
accordingly. When problem solving activity is initiated, agents first engage in a phase of
plan generation. Each agent ascertains what alternatives for partial goal satisfaction are
locally possible and tenders contracts to appropriate agents for furthering satisfaction of the
goals needed to complete these plans. On completion of this phase, a space of alternative
plans has been constructed which is distributed among the agents, with each agent only
having knowledge about its local plan fragments. An agent then examines the goals it
instantiated and makes a tentative commitment to the highest rated feasible set of plan
fragments relative to these goals. It subsequently issues requests for confirmation of that
commitment to agents who hold the contracts for completion of these plan fragments.

Each agent may receive two kinds of communications from other agents: 1) requests
for confirmation of other agents' tentative commitments, and 2) responses concerning the
impact of its own proposed commitments on others. Impact of local actions is reported as
confirmation that a tentative local choice is a good one or as negative information reflecting
nonlocal resource conflict. The agent incorporates this new knowledge into its local feasi-
bility tree. It rerates its own local goals using the new knowledge and possibly retracts its
tentative resource commitment in order to make a more informed choict. This process of
information exchange continues until a consistent set of choices can be confirmed.

Termination of the negotiation process can be done using systera-wide criteria or it
can be accomplished in a diffuse manner. If global termination criteria are desired in an
application, some form of token passing mechanism [8,9,10] can be used to detect that
the applicable termination criteria have been met. When synchronized global termination
is not required in an application, the negotiation can be terminated by an "irrevocable" 0
commitment of resources. A node initiates plan execution in accordance with its negotiated
tentative commitment at some time after it has no pending activities and no work to do for
other agents.

Mechanics of Negotiation 0

When a node begins its planning activity, it has knowledge of a set of top level goals
which have been locally instantiated. A space of plans to satisfy each of these goals is
formulated during plan generation without regard for any subgoal interaction problems.
After plan generation, each node is aware of two kinds of goals: primary goals (or p-
goals) and secondary goals (or s-goals). In our application, p-goals are those instantiated
locally by an agent in response to an observed outage of a circuit for which the agent has
primary responsibility (because the circuit terminates in the agent's subregion). These are
of enhanced importance to this agent because they relate to system goals which must be
satisfied by this particular agent if they are to be satisfied at all. An agent's s-goals are
those which have been instantiated as a result of a contract with some other agent. An
agent regards each of its s-goals as a possible alternative to be utilized in satisfaction of
some other agent's p-goal.

A plan commitment phase involving multistage negotiation is initiated next. As this

5-C-12

phase begins, each node has knowledge about all of the p-goals and s-goals it has instanti-
ated. Relative to each of its goals, it knows a number of alternatives for goal satisfaction.
An alternative is comprised of a local plan fragment, points of interaction with other agents
(relative to that plan fragment), and a measure of the cost of the alternative (to be used
in making heuristic decisions). Negotiation leading to a commitment proceeds along the
following lines.

1. Each node examines its own p-goals, making a tentative commitment to the highest
rated set of locally feasible plan fragments for p-goals (s-goals are not considered at
this point because some other agent has corresponding p-goals).

2. Each node requests that other agents attempt to confirm a plan choice consistent
with its commitment. Note that an agent need only communicate with agents who
can provide input relevant to this tentative commitment.

3. A node examines its incoming message queue for communications from other nodes.
Requests for confirmation of other agents' tentative commitments are handled by
adding the relevant s-goals to a set of active goals. Responses to this agent's own
requests are incorporated in the loca feasibility tree and used as additional knowledge
in making revisions to its tentative commitment.

4. The set of active goals consists of all the local p-goals together with those s-goals that
have been added (in step 3). The agent rates the alternatives associated with active
goals based on their cost, any confirming evidence that the alternative is a good
choice, any negative evidence in the form of nonlocal conflict information, and the
importance of the goal (p-goal, s-goal, etc.). A revised tentative commitment is made
to a highest rated set of locally consistent alternatives for active goals. In general,
this may involve decisions to add plan fragments to the tentative commitment and
to delete plan fragments from the old tentative commitment. Messages reflecting any
changes in the tentative commitment and perceived conflicts with that commitment
are transmitted to the appropriate agents.

5. The incoming message queue is examined again and activity proceeds as described
above (from step 3). The process of aggregating knowledge aboL, nonlocal conflicts
continues until a node is aware of all conflicts in which its plan fragments are a
contributing factor.

Two issues need clarification at this point. One deals with the question of termination
and the other is concerned with the quality of the result obtained through negotiation
(relative to optimality).

Negotiation in this framework continues as long as there are any pending activities
in an agent. The only way a situation leading to nontermination could arise involves an
agent's making a tentative commitment and subsequently entering a cycle of retracting and

* remaking that commitment indefinitely. It is not reasonable to expect that an agent should
never retract a tentative commitment. It is also not reasonable to expect that an agent
would never decide, based on new knowledge, to recommit to an alternative it had previously
rejected. An agent's local reasoning must be able to detect when it is making a tentative

* 5-C-13

commitment it has previously made with no new knowledge. Negotiation activity in an
agent terminates either when it has no pending activity and no incoming communications
or if an attempt is made to return to a previous commitment with no new knowledge from
other agents. Endless loops of commitment and decommitment are prevented through this
mechanism.

The other issue of impurtance at this point is related to the quality of the result obtained
through negotiation. In the initial negotiation stage, each agent examines only its p-goals
and makes a tentative commitment to a locally feasible set of plan fragments in partial
satisfaction of those goals. Since each agent is considering just its p-goals at this stage,
the only reason for an agent's electing not to attempt satisfaction of some top level goal is
that two or more of these goals are locally known to be infeasible. (This corresponds to an
overconstrained problem.)

In subsequent stages of negotiation, both p-goals and relevent s-goals are considered in
making new tentative commitments. The reasoning strategy employed at each agent will
only decide to forego commitment to one of its p-goals if it has learned that satisfaction of
this p-goal precludes the satisfaction of one or more other p-goals elsewhere in the system.
If the system goal of satisfying all of the p-goals instantiated by agents in the network is
feasible, no agent will ever be forced to forego satisfaction of one of its p-goals (because no
agent will ever learn that its p-goal precludes others), and a desired solution will be found.
If, on the other hand, the problem is overconstrained, some set of p-goals cannot be satisfied
and the system tries to satisfy as many as it can. While there is no guarantee of optimality,
the heuristics employed should ensure that a reasonably thorough search is made.

To make these concepts concrete, multistage negotiation is applied to the simplified
planning problem discussed in the previous sections.

Example

We return to our example of planning activity, assuming that each agent has the knowledge
depicted in the appropriate part of Figure 3. A summary of the transactions that occur
during negotiation to achieve plan selection is shown in Table 4. This table is segmented
by agent and by "time slice" to convey a sense of progress in problem solving through
negotiation. The notational conventions are relatively simple. Tentative commitment to a
locally known activity and the associated communication issued to an appropriate agent
is denoted in the form (plan fragment name; message - agent). Exchange of conflict
information is indicated in the form (conflict; type of conflict -+ agent). To make the trace
easier to follow, each received message is noted in the form (source agent - message).
As is evident in Table 4, negotiation begins with tentative commitments to alternatives in
agents A, B, and D. Though the problem is overconstrained (it is not possible to restore
both ckt-1 and ckt-2), no agent is yet aware of that fact. In response to the initial tentative
commitments, there is activity in agents A and C. Agent A knows that it cannot act to
satisfy both gl and g2, but it does not know if this precludes satisfaction of g2 (since g2
is an s-goal, there might exist another global plan not requiring any action by A). Since A
recognizes the need to attempt satisfaction of its own p-goal first, agent A informs agent B
there is a conflict between what B requested and satisfaction of one of A's p-goals. Thus A
has given B the knowledge that the plan fragment B selected would force A to forego one

5-C-14

A B C D
1A; OK? -C 1113;OK? - A 131); OK?- C

_______5B; OK? -. C
B -o OK? iB' A - OK? 1A

B -~ OK? 5B
conflict; D -0K? 13D
(11B AND -p-goal gi)

-B match 6C with
IA and 5B

IA is OK - A
5B is OK - B0

conflict;
(13D AND -gi via C)

C-

(11B AND -ip-goal gi.) (13D AND -gi via C)
C - 5B is OK

________8B; OK?- A lOD; OK?- B
B-OK? 8B D - OK? IOD

conflict; 8B; OK?. C 9i
(8B AND -. p-goal gi)

-B
A- B-.OK?8OB
(8B AND -p-goal gi)

B knows gI and g2 conflict; 0.
not both possible (8B AND gi via C)

(not both gi and g2)

C - B-
___________(8B AND - gI via C) (not both gi and g2)

Table 4: Summary of transactions during negotiation

5-C-15

of its p-goals.

Agent C has now received three communications requesting that plan fragments be
extended. It observes that it can effect a plan completion for gi, satisfying both the request
from A and the request from B. It also observes that it cannot satisfy both gi and g2 with
use of its locally known plan fragments due to local resource constraints. Since it has the
opportunity to complete a plan for ckt-1 and not for ckt-2, it elects to tentatively commit
its resources to plan fragment 6C. Messages reflecting this commitment are formulated and
transmitted to A and B, while a message indicating the conflict in C is sent to D.

As a result of this second round of communications, activity in subregions B and D is
concerned with exploring the remaining alternatives they have for restoral of ckt-2. An
acceptable plan for ckt-1 is already reflected in tentative commitments. Agent B elects
to try plan fragment 8B and agent D elects to try 10D. Agent B learns that an attempt
to satisfy g2 via 8B also fails in A, so it now knows that the problem is overconstrained.
Based on the fact that a way of satisfying gi has already been located, B elects to forego
satisfaction of g2 and advises D that it should also give up on g2. Negotiation terminates
with tentative commitments reflecting a plan choice for gl.

In concluding this section we summarize, by "time slice", changes to the local feasibility
trees that take place during the negotiation illustrated in Table 4.

Slice 1:

e No changes.

Slice 2:

* No changes in constraints by A.

* 6C is tentatively committed to a complete plan by C.

Slice 3:

e 1A is marked as tentatively satisfying gl by A.

* 5B is marked as tentatively satisfying gl by B.

e Agent B adds the constraint (-' gi) to 11B.

* Agent D adds the constraint (-' gi via C) to 13D. (Note that in this example,
the new constraint on 13D is, in fact, redundant. In other examples, with a
more complex set of goals, new constraints propagated in this way often provide
additional information.)

Slice 4:

* No changes.

Slice 5:

e Agent B adds the constraint (-i gl) to 8B.

* Agent B propagates the constraint (-' gl) on 8B and 1lB to their parent, g2.
Agent B now knows the problem is overconstrained.

5-C-16

Slice 6:

* Agent D modifies the constraint (- gl) on goal g2* to (- gl*). Agent D now

knows the problem is overconstrained.

This example illustrates ways in which knowledge is integrated into the local feasibility
tree as it is acquired through negotiation. It shows how knowledge aggregated at the level
of plan segments can be propagated in drawing inferences concerning interactions at the
goal level. It also shows how the network of agents can become aware that it has an
overconstrained problem.

6 CONCLUDING REMARKS

In this paper, we have presented a new paradigm for cooperation in distributed problem
solving systems. This paradigm incorporates features found in two cooperation strategies
treated in the literature: the contract net protocol [2,3,4] and the FA/C paradigm [5]. It
has been devised to permit an agent in a distributed problem solving system to acquire
enough knowledge to reason about the impact of local activity on nonlocal state and to
modify its behavior accordingly.

Three characteristics of distributed planning problems motivate development of a more
general cooperation paradigm. First, subgoal interaction problems that arise in the context
of a distributed planning system in which agents do not have a global view are very difficult
to detect and even more difficult to handle in a reasonable way. Second, many application
domains embody planning problems that are overconstrained. When these planning prob-
lems are addressed by a network of planning agents, it is essential that the system be able
to determine whether or not the problem is overconstrained. Third, when the planning
problem is overconstrained, it is necessary for the agents involved to arrive at an agreement
as to a set of goals whose satisfaction is regarded as an acceptable solution to the problem
at hand. None of these issues can be resolved in the context of the previously proposed
cooperation paradigms without the exchange of sufficient knowledge as to permit each agent
to construct a global view.

Another factor motivating formulation of a more general cooperation paradigm is the
observation that many application domains have characteristics that distinguish them from
other multi-agent planning problems which have been investigated. The strategies suggested
by Lansky [11] and Georgoff [12] dealing with planning for a multiple agent domain by a
centralized planner are not applicable in situations where there is no central planner. In
addition, the agents in our networks are not motivated purely by self interest. They are
interested in cooperating to achieve some goals pertinent to system performance. For this
reason, the metaphor proposed by Genesereth and others [13] does not represent the domain
characteristics. It should be noted, however, that our metaphor can be adapted for use in
networks of agents which are selfish (as long as they do not lie a great deal).

The mechanisms presented in this paper are related to the techniques that have been
utilized in conventional planning systems. Each agent in our system builds a data structure
analogous to the Table of Multiple Effects used by NOAH [141 and NONLIN [15] in detecting
subgoal interactions. This structure is incrementally built using knowledge gleaned through

4
5-C-17

negotiation. In detecting and resolving conflicts, a form of criticism analogous to that
performed by NOAH's Resolve Conflicts critic is employed. Criticism is necessary in our
distributed problem solving systems for the same reason it was needed in NOAH - decisions
are made initially based on local criteria, whereas nonlocal conditions affect the viability
of those decisions. Unlike NOAH (and like NONLIN), alternatives are not discarded after
they have been rejected. Backtracking in the form of revised tentative commitment is a
feature of the protocol.

In many planning problems, the constraints arising from resource availability are very
important in determining a satisfactory solution to the planning problem. We have found
that resource constraints play a crucial role in our system as well. The ability to reason
about resources is critical in determining adequate solutions. This was recognized in the
design of SIPE (161. Since we have no central planner, the mechanisms for reasoning about
resources are somewhat different from those employed in SIPE, but resources as a factor in
problem solving are just as important to multistage negotiation as they were in SIPE.

The distributed planning system discussed in this paper is currently in the final stages
of implementation on an existing distributed system simulation facility [17].

References

[1) J. G. March and H. A. Simon, Organizations, Wiley, 1958.

121 Reid G. Smith "The Contract Net Protocol: High Level Communication and Control
in a Distributed Problem Solver," IEEE Transactions on Systems, Man, and
Cybernetics, vol. SMC-10, no. 12, December 1980.

[31 R. G. Smith and R. Davis "Frameworks for Cooperation in Distributed Problem Solv-
ing," IEEE Transactions on Systems, Man, and Cybernetics, vol. SMC-11,
no. I, January 1981, pp. 61-70.

[41 R. Davis, and R. G. Smith "Negotiation as a Metaphor for Distributed Problem Solv-
ing," Artificial Intelligence, vol. 20, no. I, January 1983, pp. 63-109.

[5] V. R. Lesser and D. D. Corkill "Functionally Accurate, Cooperative Distributed Sys-
tems," IEEE Transactions on Systems, Man, and Cybernetics, vol. SMC-11,
no. 1, January 1981, pp. 81-96.

[61 S. E. Conry, R. A. Meyer, and J. E. Searleman "A Shared Knowledge Base for Inde-
pendent Problem Solving Agents," Proceedings of the Expert Systems in Gov-
ernment Symposium, IEEE Computer Society, McLean, Virginia, October 1985.

[71 A. S. Tanenbaum, Computer Networks, Prentice-Hall, 1981.

[81 S. Vinter, K. Ramamritham, and D. Stemple "Recoverable Communicating Actions
in Gutemberg," Proceedings of the International Conference on Distributed
Computing Systems, May 1986.

191 E. W. Dijkstra and C. S. Scholten "Termination Detection for Diffusing Computations,"
Information Processing Letters, vol. 11, no. 1, August 1980, pp. 1-4.

5-C-18

(101 N. Francez "Distributed Termination," ACM Transactions on Programming Lan-
guages and Systems, vol. 2, no. 1, January 1980, pp. 42-55.

[11] A. L. Lansky "Behavioral Specification and Planning for Multiagent Domains," Techni-
cal Note 360, Artificial Intelligence Center, SRI International, Menlo Park, California,
November 1985.

[121 M. Georgeoff, "Communication and Interaction in Multi-Agent Planning," Proceed-
ings of the National Conference on Artificial Intelligence (AAAI-84), Au-
gust 1984, pp. 125-129.

[13] M. R. Genesereth, M. L. Ginsberg, and J. S. Rosenschein "Cooperation Without Com-
munication," Proceedings of the National Conference on Artificial Intelligence
(AAAI-86), August 1986, pp. 51-57.

[141 E. D. Sacerdoti A Structure for Plans and Behavior, Elsevier-North Holland, New
York, 1977.

[11 A. Tate "Project Plannig using a Hierarchic Non-Linear Planner," Research Report
No. 25, Department of Artificial Intelligence, University of Edinburgh, August 1976.

[16] D. E. Wilkins, "Domain-Independent Planning: Representation and Plan Generation,"
Artificial Intelligence, vol 22, pp. 269-301.

[171 D. i. Macintosh and S. E. Conry, "SIMULACT: A Generic Tool for Simulating Dis-
tributed Systems" to appear in the Proceedings of the Eastern Simulation Con-
ference, April 1987.

S

5-C-19
I - -- .. , ~ wmm m mml i N mIIINIIwI

APPENDIX 5-D

Knowledge Acquisition as Knowledge Assimilation

Lawrence S. Lefkowitz
Victor R. Lesser

Computer and Information Science Department

University of Massachusetts

Amherst, MA 01003

larrygumass-cs.edu

lesser~umass-cs.edu

April 1987

Abstract

Knowledge bases are constructed and refined using information obtained from do-
main experts. The assimilation of this information into an existing knowledge base
is an important facet of the knowledge acquisition process. Knowledge assimilation
requires an understanding of how the new information corresponds to that already
known by the system and how this existing information must be modified so as to
reflect the expert's view of the domain.

This paper describes a system, KnAc, that modifies an existing knowledge base
based on a discourse with a domain expert. Using heuristic knowledge about the
knowledge acquisition process, KnAc anticipates modifications to the existing entity
descriptions. These anticipated modifications, or expectations, are used to provide a
context in which to assimilate the new domain information.

This research was supported, in part, by the External Research Program of Digital Equipment Corpo-
ration, by the Air Force Systems Command, Rome Air Development Center, Griffias Air Force Base, New
York 13441-5700, and by the Air Force Office of Scientific Research, Boiling AFB, DC 20332 under Contract
No. F 30602-85-C-0008. This contract supports the Northeast Artificial Intelligence Consortium (NAIC).

5-D-1

1 Introduction

An often overlooked aspect of the knowledge acquisition process is the assimilation of in-

formation presented by the domain expert into an existing knowledge base. Consider the

typical means by which knowledge bases are currently constructed. This usually involves a

series of dialogs between an expert, or experts, in the application domain and a knowledge

engineer familiar with the target expert system. The knowledge engineer's task is the

modification of the expert system's knowledge base so as to reflect the domain expert's

knowledge. To a large extent, this knowledge acquisition task may be viewed as a recog-

nition problem. All of the problems facing other recognition systems are present here as

well, including: noisy data (i.e., incomplete or inaccurate information), ambiguous inter-

pretations, and the need to produce intermediate results before all the data is available.

Thus, a significant portion of this interactive knowledge acquisition task is a matching

problem: How does the expert's description of the domain correlate with the description

contained in the knowledge base? How should the knowledge base be modified based on

new information from the expert? What should be done when the expert's description

differs from the existing one?

KnAc is a system that we have developed that implements this knowledge assimilation

approach to knowledge acquisition. It was developed to assist in the construction of knowl-

edge bases for the POISE [CLLH821 intelligent interface system. These knowledge bases

use a frame-like representation, described more fully in [CL84,Lef87 to describe tasks,

objects and relationships in the application domain. POISE's initial knowledge bases, for

the office automation and software engineering domains, were created by hand from inter-

views between a knowledge engineer and the appropriate domain experts. Transcriptions

of these interviews were examined and the results served as the basis of the KnAc system.

It is important to note that the goal of the domain expert was not to modify POISE's

knowledge base; this was the knowledge engineer's role. The expert simply presented the

domain information, e.g., descriptions of tasks, objects, etc., and responded to questions

5-D-2

EVENT TAKE-A-TRIP-AND-GET-PAID

STEPS: (TAKE-A-TRIP GET-REIMBURSED/

TEMPORAL-RELATIONSHIPS:

((TAKE-A-TRIP before GET-REIMBURSED))

CONSTRAINTS: (...)

ATTRIBUTES: ((TRAVELER ...) (COST- --) (DESTINATION ...))

Figure 1: Knowledge Base Event Description

and comments from the knowledge engineer. The burden of assimilating the information,

that is, recognizing where it fit into the existing knowledge base and what additions or

modifications were needed, was not placed upon the domain expert. (Contrast this to

approaches such as [EEMT86,GWP85,KNM85j.) By modeling the knowledge engineer's

role in this task, KnAc attempts to provide this same support.

Consider the opening portion of a discourse in which the expert, the principal clerk

of an academic department, is describing the procedure for being reimbursed for business-

related travel expenses.

"O.K. - on travel. The proper way of doing it, if it's out of state, is that a
travel authorization should be issued before the trip."

From this information one can conclude that some unnamed task consists of two temporally

ordered steps. However, it is not clear what modifications need be made to the knowledge

base to reflect this information.

If the knowledge base is examined (prior to this interview), a description of this

reimbursement process will be found (see Figure 1). In this simplified view of the task,

which knows nothing about a "travel authorization", the traveler simply goes on a trip

and gets reimbursed. Though the knowledge engineer may realize that the clerk and

this description are describing the same task, it is not readily apparent from the two

descriptions. Matching such descrip.':ons, and recognizing the implied modifications, are

5-D-3

central to the assimilation process.

To accomplish this, KnAc was required to perform two basic tasks: 1) recognizing

where the expert's information fits into the existing knowledge base, and 2) appropriately

modifying the existing knowledge so that it reflects the expert's view of the domain. De-

termining where the expert's information fits into the existing knowledge requires that

the new information be matched against the existing information. To avoid matching the

new information against the entire (existing) knowledge base, the most likely candidate

matches must be selected. Furthermore, since the goal of a knowledge acquisition discourse

is the modification of the knowledge base, exact matches between the new and the existing

information are not always expected.

Thus, the procedure for matching the expert's entity descriptions with those already 0

in the knowledge base must be specialized for knowledge acquisition. KnAc's matching and

match evaluation procedures are described in Section 3. Discrepancies between these de-

scriptions may imply needed modifications and need not degrade a match, especially if the

discrepancies (or the implied modifications) can be predicted. Anticipated modifications,

or ezpectations, arise from an understanding of the knowledge acquisition process. They

can be derived from the state of the existing knowledge base, from cues in the discourse,

from previous modifications to entity descriptions, or from the state of the knowledge

acquisition task. The generation and management of these expectations is described in

Section 4. Finally, the status of this work and its contributions to the knowledge acquisition

task are summarized in Section 5.

2 The KnAc System

In this section, the basic architecture and functionality of the KnAc system, is presented.

During each cycle of the KnAc system, descriptions of domain entities are accepted from the

'Figure 2 contains the architecture of the knac system. The parenthesized numbers in this paragraph

(e.g., (1)) refer to this figure.

5-D-4

user (1) and compared with entities in the existing knowledge base (2). (Figure 4 contains

a portion of this knowledge base.) These candidate entities (3) are selected based on KnAc's

expectations of changes to the knowledge base. The comparisons (4) are evaluated both in

terms of how well they match and the extent to which the differences between them were

expected (5) within the context of the match. Once the best matches are selected, the

implied modifications (6) are made to the existing entity knowledge base (7), after being

verified with the user (8), if necessary. Expectations of further modifications are generated

from a variety of sources, including the information obtained from the discourse (9), the

state of entities in the knowledge base (10), previously made modifications (11) and the

state of the acquisition process.

The descriptions obtained from the expert must be presented to the matcher in the

knowledge base's representation language. The purpose of the discourse manager / user

interface is twofold: to permit a more "user-friendly" specification (e.g., natural language,

graphics, menus, etc.) of these descriptions, and to provide KnAc with any available cues

as to the state of the discourse. Currently, the natural language protocols are translated,

by hand, into the system's representation language. Discourse cues are assumed to be

minimal, such as "topic" information.

Thus, the discourse fragment presented in Section 1 translates, approximately, into

the structures shown in Figure 3. These structures may then be compared with selected

entities from the existing knowledge base.

To avoid having to examine the entire knowledge base in order to assimilate the

new information, entities that are most likely to be modified are selected as candidate

matches. Thus, if there exists an expectation of some modification to a given entity

description, that entity is compared to the new information from the expert. The way in

which these modifications are anticipated will become clearer in Section 4. Initially, the

only expectations available are based on the discourse cue recognizing that TRAVEL is a

topic of interest. Hence, the entities semantically close to TRAVEL in the knowledge base

are selected as candidate matches. These entities include TAKE-A-TRIP-AND-GET-PAID,

5-D-5

Discourse Manager / User Interface (

Discourse ,Entity 8)Modification
(9) Topics Match Descriptions Verification

Candidate
Selector

Match ___ Mac
E Candidates MatcherX

' P () KB() '---

E K State Comparison iC Entity Evaluator r(4)T EniyResults
A State 1

T Descriptions (K5)BoI !Match
O. Expected Modifications EvaluatorN
S Matches

Implied Mods: (6)

K o w " gB (7)
()KB i-niy IModifier Verified Veife

Entities 2: Th Mods S ArchitectureModifications KBKod '
Ac

KBModifications

Knowledge Base

Figure 2: The KnAc System Architecture

5-D-6

EVENT EVENT- 1

STEPS: (ISSUE-TRAVEL- AUTHORIZATION TAKE-A-TRIP)

TEMPORAL-RELATIONSHIPS:

((ISSUE- TRAVEL- AUTHORIZATION before TAKE- A- TRIP))

CONSTRAINTS: ((DESTINATION outside-of STATE))

ATTRIBUTES: ((TRAVELER ...) (DESTINATION ...))

EVENT ISSUE-TRAVEL-AUTHORIZATION EVENT TAKE-A-TRIP

OBJECT TRAVEL- AUTHORIZATION I

Figure 3: Discourse Manager Output

shown in Figure 1.

The system then compares the expert's descriptions with the selected matcn candi-

dates. The matching process, described more fully in Section 3, determines the similarities

and differences between a pair of entity descriptions. The results of these comparisons are

then evaluated in order to select the best match for each of the expert's entity descrip-

tions. Section 3.2 describes the evaluation process, which rates the match results on a

field-by-field basis and combines these ratings to produce an overall rating for each match.

For example, when the task described by the expert, i.e., EVENT-i, is compared

with the existing task description TAKE-A-TRIP-AND-GET-PAID, the contents of each

field of these structures (e.g., parts, generalizations, temporal-relationships, pre- and post-

conditions etc.) are compared. In the steps field, they have one entity in common (TAKE-

A-TRIP) and each has one entity not found in the other (ISSUE-TRAVEL-AUTHORIZATION

in EVENT- 1 and GET-REIMBURSED in TAKE-A-TRIP-AND-GET-PAID). They have several

attributes in common (TRAVELER and DESTINATION). Their temporal-relationships are

mutually consistent, though different. Both entitles are specializations of EVENT.

The ratings for these field matches is shown in Figure 5. Remember, these ratings

reflect not only the degree to which the fields match, but more importantly (from the point

5-D-7

Figure : A porion ofthute knwegebs

take r trip
and get paid

Frm hsertig, hebstmtce a re letd thee-i sinfcatamiuiy

th irt.,If threare no accetabl g atcfo

of heexprts etiy dscpions, a ne enrtity is addkoedg te knoedg ae

.fitel Rating

ntherlizihons 1 ians,

constraitsi0n00

dialog,~ ~ ~ ~ ~ ak reurdtaa hmmth

Figure : A ntin s the knowledge base .

When the best matches have been selected, the differences between the expert's de-

EVENT- 1 vs. TAKE-A-TRIP-AND-GET-PAID

Field Rating
generalizations 1.000
parts 0.133
attribute-names 0.055
constraints 0.007
Match Rating 0.299

Figure 5: Ratings for field matcher

5-D- 8

scription and the existing one are used to modify the knowledge base. For instance,

the "extra" step in EVENT-1, i.e., ISSUE-TRAVEL-AUTHORIZATION, is added as a step of

TAKE-A-TRIP-AND-GET-PAID. The extent to which this modification requires confirma-

tion from the expert depends on the level of autonomy granted to the system. At various

levels, all such modifications could be verified with the expert or only unexpected ones or

only deletions, etc.

Once the knowledge base has been modified, new expectations are generated to be

used in interpreting the next "discourse frame". The generation and management of these 0

expectations is described in Section 4.

3 Matching for Knowledge Acquisition

In order to match entity descriptions provided by the domain expert to those already known

to the system, KnAc must be able to compare these structures and evaluate the results.

This matching process, while in some ways similar to that found in most recognition/inter- 0

pretation systems, displays certain characteristics unique to knowledge acquisition. In par-

ticular, since the goal of a knowledge acquisition dialog is the modification of the knowledge

base, the information provided by the domain expert should not completely match the ex- 0

isting entity descriptions. The matching process must be modified so as to be able to

recognize and, where possible, anticipate these discrepancies. The matching techniques

presented in this section make these discrepancies explicit; the evaluation of these match

results, described in Section 3.2, incorporates the extent to which these discrepancies were

anticipated into its rating procedure.

3.1 Matching Entity Descriptions 0

POISE's knowledge base is represented in a frame-based language, similar to that used by

systems like Knowledge Craft®[WF83,KC86. Comparison of these knowledge structures

requires matching on a field-by-field basis. Each field may be considered to be one of

5-D-9

two types of structures: sets of elements such as steps and generalizations of an event,

or collections of constraints such as the temporal relationships and the pre- and post-

conditions. KnAc contains matching techniques for both of these types of structures.

3.1.1 Set Matching

Determining how well two sets of elements match is not difficult; neither is determining

how "different" they are (e.g., see ITve77l). For knowledge acquisition purposes, however,

the relevant question is "How likely is it that they can be modified so as to match?" To

determine this, KnAc examines not only the elements in each (set) field of the knowledge

structure, but also makes use of information about that field (i.e., meta-information or

facets). In particular, information about the size of each field and the range of the elements

in that field permit KnAc to calculate the probability that the extra elements in one of the

structures will be added to the other.

Consider the comparison of the steps of EVENT- 1 and TAKE- A- TRIP- AND- GET- PAID.

A typical measure of similarity is:

1 if Set 1 = Set 2 = 0
match-rating = Set1 n Set 2 otherwise.

ISet1 U Set2

With one step ouL of the three unique steps between them in common, the similarity

of these fields would be 1/3. How likely is it, however, that the "extra" step in the

expert's description (i.e., ISSUE-TRAVEL-AUTHORIZATION) will be added to the existing 0

description? Without requiring a deep understanding of domain-specific semantics, some

additional information can still be used. If events usually have few steps (as specified by

the meta-information about the step field of EVENT), the addition of this particular step is

less likely than if there are many more steps still to be added. Similarly, if a step is going

to be added, the range of possible steps will affect the probability of the desired one being

added. This range is determined by combining the "type restriction" meta-information

about the slot (i.e., a step of an EVENT must be an EVENT) with the existing knowledge

5-D-10

base (i.e., the number of EVENT descriptions known to the system).

Thus, KnAc rates each set match based on the likelihood of the modifications implied

by the match. The likelihood is determined from the anticipated size and range of the sets

and requires no additional semantic information about their content. The derivation of

these ratings is fully described in [Lef87].

3.1.2 Constraint Matching

Although comparing (or combining) arbitrarily constrained sets of entities is a difficult

problem often requiring substantial domain knowledge, KnAc compares sets of constraints,

pairwise related by a common relation, in a purely mechanical fashion. 2 This section

describes a mechanism for comparing such constrained sets; the mechanism is independent

of the particular relation, requiring only a description of its algebraic properties, i.e.,

whether or not the relation is reflexive, symmetric and/or transitive.

First, any implicit constraints are made explicit by propagating the specified con-

straints using the relation's algebraic properties. The temporal relation before, for exam-

ple, is only transitive; if the constraints (A before B) and (B before C) were specified, then

(A before C) could be deduced. When the constraints are thus propagated, inconsistencies

may be detected by check the results for any of the prohibited properties of the relation

(i.e., non-reflexive, non-symmetric and non-transitive). If each set of constraints is inter-

nally consistent, the two sets may be merged and re-propagated, and this combined set of

constraints may be checked for consistency.

If two sets of constraints are mutually consistent, a measure of their similarity may

be obtained by determining the changes required to make them equivalent. Simply adding

each set of constraints to the other would accomplish this, but this may add more infor-

-The current system checks each relation separately; it does not handle interaction between different

relations, though it is able to combine relations with their inverses. For instance, before and after constraints

are handled together.

5-D-11

mation than is necessary. For instance, if the first set of constraints contained (A before

B) and (A before C) and the second sets contained (B before C), then only (A before B)

need be added to the second set. Requiring the addition of both constraints from the first

set would imply a larger discrepancy between the sets than actually exists. Obtaining the

minimal set of constraints that need to be added is not a trivial problem. KnAc contains

a new approach to generating these sets, called "opensures"3 , based on their algebraic

properties.

Thus, as with fields containing sets, KlAc is able to rate constraint matches by deter-

mining the likelihood of the implied modifications. This rating is based on the algebraic

properties of the relationships involved and requires no additional semantic information.

KnAc's methods for constraint propagation, determination of consistency, and generation

of opensures are presented in [Lef87].

3.2 Match Evaluation
S

After comparing each of the entity descriptions provided by the domain expert against

those candidate entities selected from the existing knowledge base, KnAc evaluates these

match results in two passes. First, the likelihood of two entities matching, based on the

extent to which they differ and the probability of these differences being corrected, is

determined a- described above. This "degree of fit" is a relatively inexpensive means of

pruning the set of possible matches.

The second pass of the match evaluation takes into account the context in which 0

the comparison is being made. In addition to how the descriptions differ, it considers

whether these differences are expected in a particular situation. The extent to which the

modifications implied by the differences between the structures are expected serves as a
"context-dependent" measure of the match. The anticipation of such modifications is a

crucial part of the KnAc system and is described in the following section.

3 i.e., the inverse of "closures"

5-D-12

Consider, for example, the addition of the step ISSUE-TRAVEL-AUTHORIZATION to the

description of TAKE-A-TRIP-AND-GET-PAID. The addition of such a step could have been

foreseen for several reasons. First, since there were fewer steps in the existing description

than are typically found in events, adding another step was reasonable. More importantly,

upon examining the existing description to see if it was consistent and complete, it was

discovered that a precondition of the step GET-REIMBURSED, describing the traveler as

the recipient of funds, could not be satisfied by the only earlier step in the task (i.e.,

TAKE-A-TRIP). This further supported the addition of another step (occuring before

GET-REIMBURSED) to the task.

4 Anticipating Modifications

KnAc provides a context in which to interpret information provided by a domain expert by

anticipating modifications to an existing knowledge base. These anticipated modifications,

or expectations, are derived from KnAc's heuristic information about the knowledge acqui-

sition process. This section describes how these expectations are generated, how they are

used to provide a context in which matches may be evaluated, and how they ranked and

managed.

4.1 Generating Expectations

KnAc contains a body of heuristics about the knowledge acquisition process. These heuris- 0

tics, obtained through the analysis of several knowledge acquisition dialogs, allow KnAc to

anticipate modifications to an existing knowledge base. These heuristics may be divided

into four categories. The first group is based on the state of the knowledge, both that al-

ready contained in the knowledge base and new information provided by the expert. The

second category depends on modifications previously made to the existing knowledge base.

The third set makes use of a model of the discourse process, while the final set incorporates

knowledge about teaching and learning strategies.

5-D- 13

um w mmm mm mlm mm mnm m~m| | $ |0

Since it is expected that the collection of heuristics will be modified, both as a result

of improved understanding of the knowledge acquisition process and through the addition

of domain specific heuristics, KnAc allows heuristics to be added (or removed) in a straight-

forward way. Most of KnAc's current heuristics are quite simple and domain-independent;

the addition of more complex, application-specific heuristics may improve the system's

performance in certain domains.

Consider a simple heuristic based on the state of an entity description:

Heuristic 52: Fields with too few components will be augmented.

This heuristic states that if information is detected to be missing, the addition of that

information may be expected. Missing information may be detected in various ways. One

simple approach compares the number of entries in a field of a knowledge structure with

the field's expected cardinality. If the field is determined to contain too few values, ad-

ditional values (of the appropriate type) will be expected. The expected field size may

come, in order of specificity, from meta-information about a given field of a given entity,

via inheritance from a generalization of the entity, from the default information for the

type of the entity, or from an overall field default size. This size information may be static

or determined dynamically by the system. An expectation generated by this heuristic is:

Exp146: Expecting (certainty 0.360):

MOD: ADD ?New-part<is-a-knac-structure-p> to the

Parts field of Take-atrip-andget-paid

Derived from Take-a-trip-andgetpaid and HS2.

Other heuristics based on the state of the knowledge exploit references to unknown entities,

unsatisfied preconditions, and range/value conflicts to anticipate changes.

Changes to the knowledge base may imply additional modifications. For instance, two

heuristics that are triggered when a new entity description is added are:

Heuristic Ml: Detailed information usually follows the introduction of a new entity.
Heuristic M2: Context information usually follows the introduction of a new entity.

5-D-14

Additions of information to specific fields of entity descriptions (e.g., attributes, steps,

constraints, etc.) form the basis of other modification heuristics.

Cues from the discourse manager, such as the topic of discourse or recently referred

to entities, are the key to KnAc's discourse heuristics. Because the current system lacks a

sophisticated discourse manager, the only discourse heuristics being used are:

Heuristic DI: Entities close to specified topics are likely to be referenced or modified.

Heuristic D2: Referenced entities are likely to be modified or referenced again.

These heuristics generate expectations of some unspecified modification to the referenced

entities or to those semantically close to them. "Closeness" is determined by the number

and types of relationships (i.e., links) separating two entities.

4.2 Managing Expectations

As the number of expected modifications to the knowledge base grows, KnAc's ability to

use the expectations to focus its attention diminishes. Thus, a means of selecting the

most likely expectations (for a given time) is required. This is accomplished by assigning

a rating to each expectation and pruning the set of heuristics based on this rating.

Each heuristic is responsible for determining a rating for each expectation it generates.

This rating depends on the quality of the data and the specificity of the heuristic. In

addition, each heuristic assigns a function to its expectations that specify how these ratings

will change with time. For instance, certain expectations are important when they are

created but become less valid with the passage of time; others become more critical as

time passes. Some become more (or less) significant based" on some state of the knowledge

base; others are always valid. The functions currently available in KnAc are: fade, increase,

until, while, after, for, always and never.

5-D- 15

5 Status and Conclusions

In this paper we have examined an often overlooked aspect of the knowledge acquisition

process: the assimilation of information presented by a domain expert into an existing

knowledge base. Though a fundamental part of the current conventional knowledge base

development process, the issue of automatically locating and appropriately modifying ex-

isting knowledge to conform to the domain expert's descriptions has received little, if any,

emphasis. Most current knowledge acquisition tools place this burden on the domain ex-

pert, forcing him to take over part of the knowledge engineer's task. By automating this

assimilation process, the KnAc system better insulates its user from the knowledge base.

KnAc accomplishes this assimilation by: 1) comparing entity descriptions provided by

the domain expert with existing knowledge base descriptions, 2) evaluating these matches

in the context of the knowledge acquisition discourse, 3) making the modifications to the

existing descriptions implied by the expert's information, and 4) generating (and manag-

ing) expectations of further changes to the knowledge base.

This work has developed several generic matching (and match evaluation) techniques

especially adapted for knowledge acquisition. They shift the focus of matching from ex-

amining how closely two entities match to exploring the likelihood of their being modified

so as to match. This is accomplished by matching procedures (for sets of entities and

collections of constraints) which determine differences as well as similarities, an evaluation

technique which explores the probability of the modifications required to make entities

match and the degree to which these modifications are expected, and a means of antici-

pating modifications to the knowledge based on heuristic information about the knowledge

acquisition process.

The KnAc system is implemented in Common Lisp running on a TI Explorerg. Its

current use is still experimental, though it has been able to assimilate a 20 step dialog on

the travel reimbursement process, correctly constructing an internal representation of the

plan in the POISE knowledge base. A complete description of the implementation and the S

5-D- 16

sample dialog can be found in fLef87].

0

0

S

0

S

S

0

5-D-17

0~

References

[CL841 W. Bruce Croft and Lawrence S. Lefkowitz. Task support in an office system.
ACM Transactions on Office Information Systems, July 1984.

[CLLH821 W. Bruce Croft, Lawrence S. Lefkowitz, Victor R. Lesser, and Karen Huff.
POISE: An intelligent assistant for profession based systems. In Proceedings of
the Conference on Artificial Intelligence, Oakland University, Michigan, April
1982.

[EEMT861 Larry Eshelman, Damien Ehret, John McDermott, and Ming Tan. MOLE: A
tenacious knowledge acquisition tool. In Proceedings of the Knowledge Acqui-
sition for Knowledge-Based Systems Workshop, Banff, Alberta, Canada, 1986.

[GWP851 Allen Ginsberg, Sholom Weiss, and Peter Politakis. SEEK2: A generalized
approach to automatic knowledge base refinement. In Proceedings of the Ninth
International Joint Conference on Artificial Intelligence, pages 367-374, 1985.

(KC861 Knowledge Craft Users Manual. Carnegie Group Inc., 1986.

[KNM85] Gary Kahn, Steve Nowlan, and John McDermott. MORE: An intelligent
knowledge acquisition tool. In Proceedings of the Ninth International Joint
Conference on Artificial Intelligence, pages 581-584, 1985.

(Lef871 Lawrence S. Lefkowitz. Knowledge Acquisition through Anticipation of Modi-
fications. PhD thesis, University of Massachusetts, Amherst, MA, 1987.

[Tve77] A. Tversky. Features of similarity. Psychological Review, 84(4):327-352, July
1977.

[WF831 M. Wright and Mark S. Fox. SRL 1.5 User Manual. Intelligent Systems Lab-
oratory, Carnegie-Mellon University Robotics Institute, 1983.

5-D- 18

APPENDIX 5-E

The Role of Plan Recognition in Design of an
Intelligent User Interface*

Carol A. Broverman Karen E. Huff
Victor R. Leaaer

Department of Computer and Information Science
University of Massachusetts

Amherst, Massachusetts 01003

July 17, 1986

Abstract

We report on the design and implementation of intelligent interface that
assists users performing computer-based professional work by recognizing se-
quences of actions that are globally consistent and meet desired goals. Our
approach is based on hierarchical plans that represent user tasks. Recognition
of instantiations of these plans occurs by predicting future actions from past
events and then matching new actions to these predictions. The intelligent
interface GRAPPLE (Goal Recognition and Planning Environment) extends
a previous system primarily through a reformulation of the plans, incorporat-
ing more knowledge about the plans and the domain. We present this new
formalism, which lays the groundwork for the development of meta-plans and
reasoning from first-principles.

1 Introduction
In complex domains of computer-based professional work, thtee is a need for intelli-
gent interfaces which assist practitioners (as opposed to novices) with sequences of
actions which meet desired goals and are consistent in their global context. It is not

*This work is being supported by the Air Force Systems Command, Rome Air Development
Center, Griffiss Air Force Base, New York 13441-5700, and the Air Force Office of Scientific Research,
Boiling Air Force Base, District of Columbia 20332, under contract No. F30602-85-C-0008.

5-E-1

a question of replacing the practitioner with an expert system, but rather of coop-
eratively supporting the work of the practitioner with an intelligent assistant. This
assistant would bridge the gap between the practitioner's perspective on problem-
solving activities and the computer system's perspective on tool invocations and
resource usage.

Using predefined, hierarchical activity definitions (plans), the intelligent inter-
face can monitor the conversation between user and computer system, recognizing
the commands issued as instantiations of primitive plan definitions. Predictions of
expected user commands can be made as a result of the successful integration of a
primitive action into a more abstract plan representation. The interface can also
operate in an alternate mode and automatically generate sequences of primitive
commands in response to a user request for a high-level plan. Such an intelli-
gent interface would thus be a mixed-initiative system, combining facilities for plan
recognition and plan automation, with an embedded planner used to extend the
predefined plans as needed. The assistance provided to users would include:

" Detecting actual and potential errors, including errors of global strategy;

" Recovering from and correcting errors using context and goal information;

" Creating and managing agendas of work to be performed;

" Summarizing accomplishments of terminal sessions;

e Automatically performing steps in a plan or completing a plan.

Realizing this type of it telligent interface will require Al techniques for several
reasons. During recognition, the information needed for a definitive interpretation
of a plan may not be complete. Further, the plan definition may be approximate
and based, in part, on heuristic knowledge. The interface will have to generate
selected alternatives, make choices, and be prepared to retract interpretations at a
later time. It will usually be too burdensome to write predefined plans to cover all
possible situations, so there will be a need to generate new plans dynamically (either
to interpret user actions or to carry out some high-level plan). An embedded planner
will ensure robustness of the interface over a wider range of activities. Finally, a
deep knowledge of the domain, together with appropriate automated reasoning
techniques, will add to the power of all aspects of the interface.

In this paper, we discuss a research effort to investigate the role of plan recog-
nition in the design of intelligent interfaces. A first-generation system, called
POISE (Procedure Oriented Interface for Supportive Environments) is briefly pre-
sented as an intelligent interface which incorporates plan recognition viewed from an

5-E-2

i

event-based perspective. The limitations of this approach are cited, and a second-
generation system is being designed and implemented to extend the earlier effort.
This new goal-based system, called GRAPPLE (Goal Recognition and Planning
Environment), is presented in detail. Fundamental changes and the resulting ca-
pabilities are highlighted. The last section of this paper is devoted to a discussion
of current research directions, such as the incorporation of meta-plans, and the
representation and use of first principles knowledge about the domain.

2 An Event-Based Intelligent Interface 0

We have implemented an intelligent interface called POISE [1,2,51 which performs
simple plan recognition and plan automation in the domain of office automation.
POISE is written in Common Lisp and is integrated with DEC FMS office automa-
tion tools and VMS mail facilities.

The original POISE system successfully addresses the goal of implementing a
mixed-initiative intelligent interface which recognizes and automates plans which
are represented in a hierarchical plan library. The plans POISE uses are behavioral
(event-based) in nature; an abstract plan is decomposed by specifying a combi-
nation of lower-level plans, using grammar rules with temporal operators. These
temporal operators include the regular operators of concatenation, alternation, and
repetition, supplemented with a few concurrency operators[4]. Thus, an ordering
of subplans is specified explicitly within the more complex plan, and this ordering
constitutes the skeletal definition of the abstract plan. 0

A semantic database is accessed by the POISE interface to model all domain
objects being manipulated by the plans. Objects are represented using a frame-
based language[l], exploiting the inheritance feature for ease of specification, and
including facilities to represent semantic constraints within and between objects.

The POISE system provides solutions to the problems of incomplete information
and search complexity through its focusing mechanisms. A set of heuristics is used to
limit the generation of alternatives when ambiguity arises, and truth-maintenance
techniques are applied to retract incorrect interpretations [2]. Constraints from
both the semantic database and within the plans are propagated statically and
dynamically throughout the active instantiation network. Constraint propagation
results in further pruning of predicted user actions, a limited capacity for error
detection, and an ability to automate the completion of a partially instantiated
plan.

5-E-3 0

2.1 Limitations in the First Generation System

POISE is limited in the types of reasoning which can be performed about relation-
ships among plans. The behavioral plan definitions specify decomposition solely
in terms of temporally ordered subplans and do not represent plan preconditions
or goals. This characterization of a plan is insufficient for a planner whose role is
to synthesize new plans, since there is no representation of the reasons behind the
substeps, and little knowledge is available about the relationships between differ-
ent plans. For example, a POISE plan may require that subplan B follow subplan
A, but it does not describe the semantic database state established by subplan A
and required by subplan B. Also, the temporally-ordered substep f3rm of plan de-
composition is rigid and lacks the modularity needed to easily integrate new plans
into the plan library. Since environments can be arbitrarily complex and dynamic,
limitations imposed by a purely event-based representation are significant.

Also, without explicit goals, there is no way to note that an action may be
omitted because its goal has already been met. Nor is there enough knowledge
to support a robust approach to recognition and recovery from plan failure. With
an event-based approach, recovery must be built into the plan rules, making the
rules unwieldy and complex and discouraging deeper reasoning about failure and
recovery. Since in most semi-structured environments, the "main-line" or standard
definition of a plan is actually less common than the variations and exceptions
which occur [71, a serious attempt to overcome these limitations imposed by the
event-based approach should be made.

Another limitation of POISE is inherent in the way the various types of knowl-
edge are represented. In POISE, the domain knowledge is expressed using a frame-
.Lke model of domain objects, while the plan knowledge is represented using a com-
pletely different formalism and underlying representation tool. The use of a uniform
representation for both domain plans and domain objects would allow the system
designer to tie together constraints related to both plans and objects, and provide
greater coherency[lj. In addition, general domain knowledge that is not directly
related to either a plan or object definition is not represented in POISE. Thus the
knowledge needed for a deeper model of the domain is lacking, seriousl3 limiting

4 reasoning that can be done about plan failure or while handling excel Ions that
arise during plan recognition.

5-E-4

3 A Second Generation System

We are currently designing and implementing a successor to POISE called GRAP-
PLE. This system is being developed in order to address shortcomings inherent
in the original POISE system, and to pursue further problems which arise when
performing plan recognition in a largely unstructured domain. We are particularly
interested in exploring potential sources of deeper domain knowledge than those
exploited by POISE, thus motivating a reevaluation of the characterization and
interpretation of plans. As a testbed for GRAPPLE, we are using the domain of 0
software development, which is a complex domain and offers rich sources of knowl-
edge, yet is relatively self-contained.

3.1 Fundamental Changes

An overriding theme of the GRAPPLE plan formalism is an expanded represen-
tation of knowledge about plans and their interrelationships. The goal of a plan
and the effects of a plan on the domain model are explicitly represented, as are
preconditions, which must be satisfied before the plan can be executed. A deeper
representation of the plan increases the capacity for reasoning during plan recog-
nition and automated planning and affords the system a much richer knowledge
base from which to reason about plan failure. The system also has a larger store of
semantic knowledge which it can use to "understand" and accomodate exceptional
scenarios during plan recognition.

The use of a state-based, goal-oriented perspective in GRAPPLE is in contrast
to the POISE event-based substep plan characterization and follows the classical
planning formalism. A goal is specified as a partial state of the semantic database. A
goal can be decomposed into subgoals, each of which also is expressed as a semantic
database state specification. Achievement of all the subgoals, along with the posting a
of the effects of the plan, should lead to satisfaction of the goal of the plan. Effects
can be expressed in high-level as well as primitive plans, allowing for the expression
of complex semantic changes to the semantic database.

A state-based approach to plan representation provides the system more mod-
ularity. For example, if one of the subgoals for a plan is to have-rm ore-disk-space, 5

a number of plans may be retrieved that achieve this subgoal; for instance: delete-
a-file, purge-directory, and increase-quota. The multiple possible plans need not
be specified statically; they can be determined dynamically in order to exploit the
rich sources of contextual knowledge at runtime. Representing goals as states in
GRAPPLE also allows the interface to avoid a potentially redundant execution of
a plan. If a plan has a subgoal which is already satisfied, then no plan need be

5-E-5

4 !Si

executed to achieve the subgoal. The overall ordering of the plans that can achieve
subgoals of a complex plan is determined dynamically by monitoring the satisfaction
of preconditions. The state-based approach thus allows for the easy addition and re-
moval of plan definitions from the plan library, without necessitating a recompiling
of all the plans and their subgoals. In POISE, the event-based plan specification is
"hard-coded," thus rendering the plan library inflexible to dynamic modifications.

GRAPPLE also attempts to overcome limitations imposed by POISE's nonuni-
form representations. In GRAPPLE, plans are represented with the same knowledge
representation tool/language as domain objects. Therefore relationships between
certain plans and objects can be easily recorded and constraints relating to both
plans and associated domain objects are uniformly specified. The groundwork is
thus laid for a more powerful object representation language and more powerful
reasoning capabilities.

In order to provide complete coverage of relevant activities, GRAPPLE also
models objects and processes which are not directly monitorable. Certain actions,
such as decision making by the user, always occur "offline." Other actions, such as
communication, may occur "online" through mail facilities or "offline" via phone
or in person. Even when "offline," these actions cannot be ignored in constructing
a total picture of the user's activities; for example, such actions may satisfy the
preconditior2q of later actions. To handle this, any plan can be denoted "offline", in
which case GRA_ PPLE must deduce when its execution has occurred and when its
effects should be posted to the semantic database.

3.2 GRAPPLE Plan Formalism

A plan definition in GRAPPLE consists of a set of clauses: Plail-name, Goal,
Plan- Vars, Builtin- Vars, Precondition, Subgoals, Constraints, and Effects. Plans
may be either "builtin" or "complex". "Builtin" plans are those plans which map
directly to primitive commands that may be issued by the user in the programming
environment and will have a Builtin-vars clause but will never have a Subgoals
clause. "Complex" plans, by definition, require multiple subplans to achieve their
goals. Each intermediate step corresponds to a subgoal in the Subgoals clause.
Plan may also be "offline" if they model user decision-making or some other non-
monitorable activity. All types of plans have a Goal clause, but the other clauses
do not have to be present in the plan definition, except where just mentioned.

The Gual clause identifies a state' of the semantic database that is achieved by

'Obviously, this as well as nther semantic database state specifications are partial states of the
semantic database, since it deals with only a few 3spects of the entire state, which is the conjunction
of every fact in the semantic database.

5-E-6

the successful completion of the associated plan. The goal is expressed as a predi-
cate calculus proposition whose truth can be determined by querying the semantic
database. The Goal of a plan is distinct from its more abstract purpose, which is
determined dynamicaly by the integration of an instantiation of this plan into a
hierachical interpretation at runtime.

The Builtin-vars clause is present only for "builtin" plans, and defines the primi-
tive values that are determined by the filter program2 . The Plan-vars clause defines
the names and types of the input and output parameters of the plan. The direc-
tional flow of the parameters is determined by the goal statement; those parameters
which are bound in the Goal are the output parameters.

The Precondition clause defines the initial state of the semantic database that
must hold in order for the plan to be allowed to begin. It is expressed as a proposi-
tion in predicate calculus. The precondition may be 'locked," in which case, once
it is achieved, it cannot be negated until the plan actually begins3 .

The Subgoal clause is present for "complex" plans, and consists of a set of se-
mantic database states, again expressed as predicate calculus propositions. The
Subgoals represent the decomposition of the plan Goal. Thus, complex plans are
not defined in terms of other plans, but indirectly through states of the semantic
database which may be achieved by other plans. Individual subgoals in the Subgoals
clause may also be 'locked," which indicates that once achieved, a subgoal must
persist until the completion of the entire plan. In general, though, it is not required
that all subgoals be true at the completion of a plan. The order in which subgoals
are to be achieved is determined dynamically, dictated by the preconditions of the
plans chosen to accomplish them. A notation is provided for denoting "iterated sub-
goals", indicating that a subgoal may be achieved repeatedly with different variable
bindings while completing the plan.

The Constraints clause specifies constraints that must hold within and between
variables used by any of the clauses of the plan. They are expressed as predicates
on the semantic database.

The Effects clause specifies modifications that are to be made to the semantic
database upon completion of the plan. New objects can be created, aDd attributes
and entities can be added or deleted. Additions and deletions from the semantic
database are specified as predicates and qualified by the type of modification (ADD
or DELETE). New entities are specified with the NEW qualifier. All types of plans

2The filter program monitors user actions, and traps all command issued by the user. It is respon-
sible for determining the type of 'builtin" plan that corresponds to the command, and presenting
the primitive parameters of that invocation to the intelligent interface in a standardized form.

5 The start of a plan is defined by either the occurrence of a primitive action which is integrated
as a subpart of that plan or the occurrence of the plan itself, if "builtin".

5-E-7

may have an Effects clause, allowing the expression of a complex, high-level change
to the semantic database.

The semantic database, used in POISE to model the world of the user, serves the
additional role in GRAPPLE as the state description of a classical planning system.
It is consulted to determine if a goal, precondition, subgoal, or constraint is true.
The effects clause serves as a non-procedural description of a state transition. The
semantic database may be thought of as an entity-relationship model, with entities,
attributes of entities, and relationships between entities. The usual translation to
predicate calculus notation may be made, whereby the entities become constants,
the attributes map into functions, and the relationships map into predicates and
(optionally) additional functions[3]. These constructs are then used in the sentences
of which the various plan clauses are composed. An example GRAPPLE plan
definition is given in Figure 1, and a portion of the semantic database, with links
and attributes corresponding to available predicates and functions, is. shown in
Figure 2.

3.3 Plan Recognition in GRAPPLE

The plan recognition component of GRAPPLE is currently being designed and im-

plemented. Basic mechanisms have been established for predicting expected actions
based on occurrences already seen and for incorporating an occurrence of an action
into an interpretation structure. Aa ezpected-actions list is maintained for each
top-level plan to record the monitorable user actions predicted by the interface. A
pending-conditions list is also associated with each top-level plan to record those
goals, subgoals, and preconditions that are awaiting satisfaction.

At any point in time during the running of the intelligent interface, there are one
or more top-level plans which are in progress. They are represented by instantiations
of those plans on the active plan blackboard. When a plan is instantiated, each of 9
its goals and subgoals is instantiated as well and maintained as pending conditions
for that plan. A backward-chaining approach is then taken to predict which plans
could achieve these pending conditions.

Predictions are currently 4 made by matching the subgoal/goal conditions with
the goals of other plans in the plan library. Once a prediction is made, an instan-
tiation structure is created for the predicted plan and its precondition is posted to
await satisfaction. If the plan is a primitive one, it is posted to the list of expected-

4A more complete and sophisticated prediction mechanism will be incorporated upon the addition
of a more sophisticated planner module, which will analyze the interactions between effect# of plans .
and pending goal conditions.

5-E-8

(PLAN-NAME edit IS-COMPLEX

PLAN-VARS: (t : text; ds: abstract-spec)

COAL EXISTS (t)
Iatest-realization(t, ds) AND believed-consistent(t ,ds)

PRECOND EXISTS (b: text) I baseline(b,ds)

SUBGOALS (NAME Accessible)
E (VARS (f : aile) (t :text))

(STMT (EXISTS (f) I stored-in(t,f)))
(NAME Created)
(VARS (nt, at :text) (ds :abstract-spec))
(ITERATED)
(STMT (EXISTS (nt)
latest-realization(nt,ds) AND successor(nt,ot)))
(NAME Accepted)
(VARS (t:text) (dls :abstract-spec))
(COMPLETES Created)

(STMT (believed-to-be(t,ds))
CONSTRAINTS (Accessible.t =Createdifirst].ot)

(Createdfthisl.nt = Createdtnextl.ot)
(CreatedlanylJds = ds)
(Accessible.t = b)
(ds = Accepted.ds)
(Created(finalj.nt = Accepted.t)

EFFECTS None - accomplished by sub plans

Figure 1: A GRAPPLE Plan Definition

Figure 2: Subset of Semantic Database in GRAPPLE

actions for the top-level plan that subsumes it.

When a user-action occurs, a matcher is invoked to determine which of the
expected-actions is being performed. Values determined by the filter program,
which directly monitors user actions, are passed up to the designated expected
action structure, and bindings of variables are propagated. Pending-condition. are
reevaluated and the plan recognizer generates new expectations after integrating
the action occurrence.

Choice points have been identified at various stages during plan recognition. For
example, one choice point occurs when many plans qualify as achievers of an out-
standing goal or subgoal. Another arises when an incoming action matches several
predicted actioson the epected-action list and there is not enough information
to disambiguate. Heuristics to guide the focus of control and to limit search are
currently under investigation.

ai.4 Current Research Directions

Work is in progress to develop a model for describing and using meta-plans, which
are special plans describing the use of the domain plans, and to explore the potential

for reasoning using first-principles knowledge about the domain.

5-E-10
0

3.4.1 Meta-Plans

We are currently working on a meta-plan approach to provide more types of rela-
tionships between plans, in additional to subgoal decomposition. Recognizing plan
failure and integrating the resulting recovery actions are particularly important
in domains like software development, where the basic paradigm of work is "trial
and error." Also, during informal analysis of programmer terminal sessions, we
have noticed other plan interrelationships. Obtaining on-line help provides the user
with specific information to be able to formulate and issue some other command.
Gathering information via tools to analyze, reorganize, condense, and present data
supports the user in making key decisions about how to carry out some plan. At
times, programmers will model a plan with dummy input in order to see if it will
work as they predict. Occasionally, work is undertaken in experimental mode, where
the initial state is explicitly saved in advance, the work then performed, and a de-
cision made as to whether to accept the results or back-up to the initial state and
try again.

Meta-plans allow us to capture these general patterns as a context for executing
any plan, without having to write out all the details in every plan. In our work
with meta-plans to date, we have found that the same basic plan formalism with
goal, precondition, subgoal, constraints, and effects clauses can be used. The meta-
plan variables are not domain objects, rather, they are domain plans, their goals,
effects, etc. While it was not one of our original goals, we found that ineta-plans
can be written so that the effects manipulate the actual recognition data structures
described in section 3.3. Thus, we can implement the intelligent interface at the
topmost level as a simple plan execution system, where execution of the meta-plans
causes recognition of the domain plans.

3.4.2 Incorporating First Principles Knowledge

As we have worked with plan definitions of either the state-driven or event-driven
type, we have recognized that there is additional knowledge about the domain
which is not appropriately expressed in the plans themselves. This is particularly
true in specialized domains such as software development, where there is a rich set
of technical concepts (such as versions, history, configurations, properties and bugs
of modules) and a broad range of first principles knowledge about programming.
This knowledge forms a self-contained world for reasoning about actions, and will,
we believe, be an important addition to the intelligent interface.

This first principles knowledge can be used in the intelligent interface in several
different ways, to improve interface performance and extend more assistance to the

5-E-11

4

user. Using the first principles knowledge to generate tentative bindings of plan
parameters will result in earlier, more detailed prediction, and will also limit the
number of alternatives to consider during recognition or execution of plans. It
provides an alternative to simple heuristics such as "prefer the continuation of a
plan already in progress to the start of a new plan" for choosing among alternatives,
which may be increasingly important as the number of alternatives grows or when
plans are inherently underspecified. It can be used to double-check decisions made
by the programmer (modeled in the offline plans). Finally, first principles knowledge
can provide additional semantic distinctions between apparently equivalent actions
(fixing a bug versus adding a new feature) so that future programmer decisions
(such as what tests to run) can be anticipated and double-checked.

4 Status

We have defined the GRAPPLE plan and semantic database formalism and are
currently completing the plan recognition algorithms, including constraint handling
and focusing. Knowledge Craft [6] , a knowledge representation tool package that
offers a logic programming environment built on top of a frame-based knowledge
representation, is being used to implement the system. A large set of plans for
a Unix3/C software development environment has been written in the GRAPPLE
formalism, and we are starting to formalize the first principles knowledge for this
domain. We have also started work on appropriate meta-plans in order to provide
integrated interpretations for the entire spectrum of user actions.

References

[I] Broverman, C.A.; Croft, W.B. "A knowledge-based approach to data
management for intelligent user interfaces," Proceedings of Conference
for Very Large Data Bases 11, Stockholm Sweden, 1985, pp.96-104.

[21 Carver, N.; Lesser, V., McCue, D. "Focusing in Plan Recognition," Pro-
ceedings of AAAI, Austin, Texas, pp.42-48, 1984.

131 Chen, P.P. "The entity-relationship model: toward a unified view of
data," ACM Transactions on Database Systems, 1:1, pp.9-36, March
1976.

5 Unix is a trademark of AT & T Bell Laboratories.

5- E- 12

[41 Croft, W.B.; Lefkowitz, L.S. "An office procedure formalism used for an
intelligent interface." COINS Technical report 82-4, University of Mas-
sachusetts, 1982.

[51 Croft, W.B.; Lefkowitz, L.S., "Task Support in an Office System," ACM
Transactions on Office Information Systems, vol. 2, pp.197-212, 1984.

[61 Knowledge Craft Manual Guide, Vax/VMS Version 3.0, Carnegie Group
Inc., March 1986.

[71 Kunin, J.S. Analysis and Specification of Office Procedures. Ph.D. thesis.
Laboratory for Computer Science, Massachusetts Institute of Technology,
Cambridge, Ma., February 1982.

5-E-13

APPENDIX 5-F

liming Dhwo e I.an Iltlignt Tuter

Beverly Woolf
David D. McDoinald

20 February 2986

Department of Computer and Information Scc
University Of Mmsahuw

Amberst, Massausetts M003

Tutoring bs a highly constrained and specialized form of communication
between a tutor and student. As such it requires complez disurse skills
knowledge of the domain, and knowledge of common atrom Buildng a
machine tutor that replicates these discos.. skill requires attention to the
representation and maiua~nof domain and discorse knowledge. This;
artide describes a tutoring syitem that reasons about its choice of tutoring
strategies, domain knowledge, and discorse convntions beiore engaging the
student. The system can discus two domains and has focused on thew
implementation of thre computational eluents a discourse maaemn
network, pedagogical annotations; of the domain knowledge, and qualitative
inferences about the student and topic. Tis article discuue these three
components, discourse system in general, and theoretical isues in the
impeetto of manf machine interfaces, especially they impaon the
design of of systems for tutoring discourse.

5-F-o

Tutoring presents both torand student with fundamental problems of

P -m Municatdon. For example, an effective tutor must recognize whether his memage has

been receive by the student, whether it was understood, and how the very forms of that -

mesage cotild have influenced the student's anmer T1e student, for his part, must

recgnzeif data delivered by the ttor has been consistent with his own "undemsanding"0

of the domain and of the convervational situation. He must Judge whether the tutor's

teaching strategies or choic of topic provide insight into saliency or relational information

that he might be unaware of.

Compounding this atuation is the fact that the studen generally does not know what

it is that he doe. na kuw and one of the goals of the tutor's discurve is to clarify this

data. Tutoring dicoum, therefore, emplerys specialized rules and complx strategies to

facilitate an adroit tutor in knowing how to talk, how to lisen, whalt to know, and how to

tech.

Building a machine tutor capable of replicating theme qxecialized rules and complex

strategies requires careful representation of both domain and discoums knowledge. We are

engaged in building a system, named Menu-tutor [1, 2], that addreins the-se bang our

research is also being applied in several natural language and interface ares, including

legal reasoning and scheduling. The system employs a discoums controller and asociated

knowledge basesi to make decisons about the choice of tutoring strategies, domain topic,

and disoumg move. Each decision is based on the context of the student's presumed

knowledge and the current history of the discourve history. We call this kind of sysem

4'otx-emet because its output behavior is generated only after cosieration Of

discoums interactions and in relation to the nature of student knowledge and export

knowledge.5Fi

Meno-tutor teaches in two different domains, rainfall and Pascal programming, and

predicates its choice of topics on ro ratlo about tutoring strategies and communication

skills. The article disc.. thre coponents that are used by Menttor to structure the

generation of discous. The first Is a Dbcozue Management Network tha provides a

general framework within which tutorin rules can be defined and tesed Mwe second is a

system of pdaggilly motivate annotations on th. knowledge base that measuues a

student's presumed knowledge per topic and orders topics according to the system's

Pereion of the learner's ability. The third component is a model of discourse

conventions and qualitative reasoning about discouuse that used to refine discourse decions

1.1 The Natb= of TetaR2u

We defne tutoring as communication between a tutor and a student whose goal, in

general, ia to clarify a body of knowledge to which the student has already been ex -pse

(e.g., through lectures or reading). Though tutoring can be non-verbal or graphtic, it

typically involves an extended linguistic exchiange in which the tutor engages the student in

effective discourse even in the face of student errors. Not every activity we might casually

associate with 'tutoring" is, in fact, effective as a tutoring tool, for example, pre~tests,

post-tests, and drill and practice exercises. Thewe have developed in the context of clasoom

teaching where the studentfteacher ratio as large and one-on-one, sdetecf tutoring

has not been pouile. Theme activities do not represent esential vehile of tutoring. One

of our goals in developing competent machin tutors is to reduce this large ratio of

student! to tutors and to establish the more meuztive one-on-one interaiction as the norm.

5-F-2

In addition to worrying about the nature of tutoring, we also must address discours

issues in general. Na seaeakmz employ subtle linguistic cues to shift topics or provide

supleentryknowledge; haw listene= use these cues to se up expectations about the

undeulying structure of the discourse. The expectatiow set up by listenevs are what the

speaker tries, to anticipate and to deliberately control for. Such expectations and inferences;

are -owerf ogn in stucurn any conversation; they ar esecaliy powerful in tutoring.

For example, a tuto might choose a convemtifooal move burnd on the student's

actual -eqa Pe to his question or he might choose a rei P e bued on his itrrtto

of that repos and his "readng of the student's knowledge buaned on that rePonse . For

bnstnce, the tutor might make assumptions about the student's laick of knowledge, a~s for

example when a sequrel of wrong rmpofume- implies that the student dosnt know the

answers. (Hie may not have understood the question.)" We are researchig discourve

expectations in order to anticipat a students choice of re v e and to formalize discourse

expectations into dopttinleements, such ns plan and rules. The machine we have

built and the extensions we are currently building respond to broaid infereoce about a

student's knowledge, to his moe of the domain, and to the current disicourse history.

The basic problem is how to make inferences about the us and how to have these

Infeence govern the form of the text produced.

1 We -- snpu that a machine cannot know with certainty what a Iser knows, eihrcan a
listener ko what a machine knows; a machin cannot be omniscient or clairvoyant. However, the
machine can deduce, the besis of evidence, uiaething about what the Iser SMMe. TMum

.inm-iom can be ased to govern the farm at the tent generated. A primary Sald of machine
d wsaxies to clarify deductions made about the listener by bringing about siuations (e46 by the

uetosit asks and the c of inhformation it mapplies when carrecting or explaining that
facilitte thene deductioas.

5-F-3

Tutor: Do you know what the climate is like in Washington
and Oregon?

Student: Is it cold?
Tutor: No, it is rather mild. Can you guems about the

rainfal there?

Student: Normoal, I guess.
Tutor: Well, the Japan current, which starts in south easmern

Pacific, goes along the coast of Japan and aross the
North Pacific ending up off the coast of Washington
and Oregon. How do you think that current affects the
climate there?

Student: It's probably rainy.
Tutor: It is indeed very wet, there are rain forests in both

Washington and Oregon. What does that tell you
you about the tpeaueof the Japan current?

Student: its warm.

rqmo 1: A 0mmsa Dlsmur frau Stews [I1

student answered the nuxt two quetions about "'rainfal ad the 4tenmperature of the Japan

Current" correcdy.

1.3 113 of t i me in Dhe nri

Tere are interesting problem to be solved before a machine tutor can be dedgnd

that displays the aMount of &=exbilty shown by this example. One of them a how to

recgnzea p.es - ' unspoken problem or intentions. We call this the -tip of the iceber

problem, by which we mean that the words spoken by the student or the teacher are only

a sna portion of what they know about each other and what they are co-MUmunicating in

a dwmru. Sam o1 the first work on this problm was done by Allen [4J, who built a

sysem to model the knowleidge neee by an effecthe agent at a tran station. The

5-F-4

For instace, the adjustments that a computer tutor inakes should be dependent upon

its q=iecfc experleace with a qiecific student A variety of experiences should lead to a

variety of reqFose stubh that machine PreqMfs to a knO wdgeble student is

fundamentalldfent both in style and content, fromn the sam ssems response to the

confused student.

Further, a computer tuo hd not Wmply Porec false answers; in the am of a

student's wrong anwew. for example, it soul resove hiaes much s:

>> whether it bs preferable to etplain the error or to start a lIdagt
exploration of the students knowledge;

>> whether to allow uncertainty about the student's knowledge to peris
temporarily while it explore a potential mhoonotion;

>> how hard it shoul work to understand why a student answered a question
incorrectly or how much u~os sould be exeoted to rasolv questions about the
student's premmned knowledge or m-scomoeptionW and

>> when and how to explain a wrong answer give If that is the beat
respons to maire

As an example of what an effective hwmu tutor can do, we present a protocol of an

expert human tutor working with a student on undesanding rainfall in Figure 1. The

protocol is taken from an earlier ivestigation of human tuoring behavior [3) and shows

how the expert remains reqmav and senstive to the student's nimutum knowledge. We

sumues that the tutor began to question the student about general topics (e~g., "climate

and urainfiall in an attempt to ur the student's frontier of knowledge. Then, reacting

to the student's failure to answer the firs two questions correctly, we believe that the tustor

decided to chanse strategy to one that would provide the student with additional

nFormation which might help him infer the orrec information. Mwe strategy worked-th

5-F-5

discourse in Figum 2 is in the tyle of Alen's eaamples and is predicated on the agent

anticipating or preticting the tav r's problem.

Tryd -Is this the gate for the train to Now York?-

Ag" 'No, you want ae number 44 and
the train leives at 633"

IWOM 2: Obeeis ft R.mals Umpire PElm

If the traveler had been a1rrct, then just ying W would have been enough for

the agent to do and the r, pomwe would have solved the traveler's problem. Howeve, the

traveler was wr a simple 'no" by itself wald have been inffidient becaue it

would not have addresed the travelers actual problan. y giving the additional

information, the agent smowed that be recogized that what the traveler was myin was

only a small pan-only the tip of the ireberg-of what he actually intended to communicat.

Tne "tip of die iceberg poblm" in turng - s to recognize the tudent's umpoken

confusions and m-nmpd6ow- By maintaining a red of the udent's previous a mic or

by directly questioning him about hi. mis neils a machine ator can aquire the sme

kind of information that our train agent used.

2. Oervie of Mm ter

A majr thrust of our resmuch has been to develop the contrl and data structures

needed to plan rmponsv discourse, such as that observed in human ttoring. In this

section we discus Menotr [I] and identify the control ructure used to custombe the

tutor's disur e for the individual student. Menotutor is a "generlc tutor, ie., it is not

mmitted by design to a ingle tutoring approach or tutoring domain. Rather, it provides
0

5-F-6

a general framework within which tutoring riles can be defined and teed.

We conta our work with older tutoring and diacoum systems [5, 6, 7, 8 that

were retrieval-ounted." While we have placed our emphais oan chooing amng aternative

rspomP that guide the lesner baued on what the tutr knows about him, other rstems

have placed emphass an nreieving a extre answer. They sought to produm a rrect

answer of the userls knowledg or current hitoy [9, 10. Ma recent

interface and tutoring sytems [9, 10, 11] have begun to tailor their rqsooses to the ue

and to discourse wntet.

S

Tutor: Do you think it rains much in Oregon?
Student: No.
Tutor: Why do you think it doesn't rain much

in Oregon?

Student: Because the neighboring states are dry.
Tutor: The neighboring states are dry, but, you can not

gei from that. In fact, it does rain a lot
in Oregon. Can you gue what causes the rain there?

Student: Well, there are high mountains in the region
and the states border the Pacific Ocean.

Tutor: Yes. The Pacific borders Oregon. How do you
think it is involved in the heavy rainfall there?

Student: Ocean air rises and cools upon reaching the land
Tutor: That is right.

FIgure 3: Dliers Uslog an Altermafiw 1Tesrf Style.

5-F-7

As an etample of a discous produced by the Mono-tutor, we pre@=n Figure 1.

Mono-tuor produied the actual text and hqghkvel transitions in this discourse (we describe

how in Section 3). This first tutor In dicurue and twelv other human dbwcurus were

used to Oreani engine the Mm-otutor. That is, we analyzed the common transitons

and vpeech patternswed in the discourses and then defined the structures and knowledge

neceseary for a machine tuto to have a similar model of the student and to make the

sam transithm For instance, the tuto rin soem in the disceurs of Fgur I recognized

that the student made two wrong answers and it infered that his knowledge was limited"'

It then judged that the question-answer approach, which hW been used until then, was

ineffectiv and should be changed and that a nwtopic, the OJapan Current," dxoul be

discussd because it is a dominant influence behind the region's cdimat. The system

decided to supply the additional data in a descriptive, rather than an interropatv style,0

because the student seemed onfused and might profit from the aditim of uippmnutl

data. At this point, Meno-tutor is not a fully capable tutor for any one subject but rather

a vehicle for experimenting with tutoring in several domains. Ins knowledge of the two

domnains on which it has been defined is &hallow.%

I'oft' not that thin aswer were imp* swrong, rather that they reflect remoable deault
senmptomsabu the weather in 'northern stes.. An atm to probe the student-s default

sn. is mnade in the nx discouzu, IFigure 4.

20Menotutar hw been develaped Wan"~ a fuel-ane natutal lang understander or generator.
The conceptual equltaen of a student's hIntis fed by hand to the tutor (Lae., what wooW havm
Leen the output of a natural, language comree1si1 syltm) ad the output is produced by
standard tocetental roeplieent techniqus We have not yet worked with MUMIBLE, ou sufmc
langug generator, because we haven't yet Ivestd in building a lapg enough knowledge bm to
make the linkup awful. Out intent Is to develop a aplxknowledg bae, probably in the
dozain of b" to extend the urface language geerator to deg with the doan, and to build
a simple natural langug PuuEW to interfac with the ident.

5-F-8

11h frt discure was generated by Meno-tutor in mch a way that all the decidos,

twpm, and tuaoing styles available to the system were ciplicit and modifiable by the

autbon. Modifying discou deiom allowed us to generate additiomal discomes and to

move beyond the 'in dgns fl dibcoune. We have begun to eqmr

the *tutming spaic our apparatus defined by varying the domain and the particulars of

the rules. The disormm in Figure 4, for instance, is based an the mie domain as the

fit, but is done in an alternative nuaming style, brought about by modifying the

me-fua" that govern whether the tutor etplores the student's fionl (F'qpm 1) or

probes the students miu, aceploks about tie current topic a soon a the first miMd is

made (Fqpure 4).

I PROGRAM LESSONI(tMIUT, OUTPUT);
2 VAR
3 SUMGRADES$&UI1DENSTJNTEGER;
4 MEDIANAREAL;
5 BEGIN
6 SUM-O;
7 S7LDINT:-0,
s READ(GRADES)r.
9 WHLE GRADES>0 DO
10 BEGIN
11 SUM:-SUM + GRADES; S
12 STUDEN7S:-STUDENT +I;
13 GRADES:-GRADES+I;

should be READ(GRADES);
14 END;
15 MEDIAN.-SUMISTJDENTS;
16 WR17EN
17 (MMiR MEDIAN GRADE IS', MEDIAN8:3)
18 END.

7igur 4- A Stuint ,a Paco r[.

5-F-9

Two mebianaes we modified to achieve this second disours. The first moves the

tutor to change its tutoring seategy. In the earlier discourse, this rule was used

calkurvatively; 6ae transition would have been made onily after seveal. topics were

comletlydicmed and the auo had som confidence about the tudent's knowledg. at

lack of it. In this dincourse, however, the Mue wa applied after a Wanle icorc answer,

thus shifting the focus of de dlecourse abruptly at the beginning of the discours.

Discourse Produced Usng a PASCAL Dara Base

Tutor: Do you know that GRADES, in une 9. is

a c n a v arinh for the W H IE loop?

Stud ent: Yes

Tutor: Do dthatmma tha GRADES shul be
a) JImted hom the loap?
b) Addd im SLIM I M the loop?
c) Im -H thu loap?
d) Ba*a) andc)

Student: C

Tutor. yoarnsema to mad about domu
VaIa of tdo WHILE loop. Now Imta talk
Mhom som G& med mamm
What do Yoarnh* READ (MRAD"S i lie 11
dome With t "60 Of GRAD?

a) Rama as wha of GRADES a -n rime
b) Ranai a && valme og GRADES.

Studet: A c) Amigs seea new ra vam to GRADES.

Tutor: Thee do yarn thak she GRADES :-- GRADES + 1
apm do am of dme vaham?

Student: Yea

Tutor: There is y u med
Ading am to a varkiaB a mma. way to se
thauugh a ramp of valuea. Buat it cnot apply
here tau yow READ untamin in line 8
tetrieves only a ingle Value. You SWoUM r-p4bce
fine 13 with a seonad call to READ (GRADES).

Figure 5 Mene~mu Disam.g fires f rm &@e Prgra of 11gm 4.

5-F- 10

Mwe second modified rule causes the tutor to question the student about

micoetous. Typically, this rule Is triggered after all topics ame complete, either by the

questions about thiem having been, answered correictly or by the student having been

corre by fth -tter In the second discourse, however, the rule was modified to

eliminate that requirement, with the effect that the rule was enabled after the student's

fire 'incorrect answer that is linked in Mfeno4utor's model to a commnon misclonceon.o

In addition to producing a variety of tutoring style by changing the miet-rules, we

explord the tutoring Vow in a second way. We ued the sm teaching mnechans a

used for the rainfall discours and substtuted a amw knowledge bars, this time about

elentary PASCAL looping constructs." We wanted to deonstrate the power ad isolating

reaonngabout tutoring strategies from reasoning about the knowledge to be tutored. One

reason for this was to see if the tutoring component could be interfaced with a different

expert knowledge base and a different language generator and ciould then teach a new

subject and eve NeWk in a new language. If our mouaialnwas effective we could

combine a Pasa knowledg bas and, my a Chiem languag generator, with the tutoring

coponent and the resulting system could interrogate a student in Cines and teach him

about propiammint in Pascal. The differenc in domain and language realization should

force no changes in the tutoring component, though of course it might be quite

inappopriate in China to ane the am* mix and tcructure of tutoring strategies as in the

4 Englis langug version of the syste.

. Meao4utor wa originally developed ws pan of a brger remearch effort dietdat building an
on-lime run-ime~ systm for inovice Pascal nser (13, 14t. As a pat of this effort, a Bug
Finder was developed that detected mnxi-4me memantic errmr in novice Pascal jxirogm [15, IQ1 and-me this information =n to Menao-tutor. The Bug Finder could identifier t type of error and
the line numbers of related variales It was used for four semesters on clams of several
hundred students at the University of Itnmchusem 0

5-F-li

The program in Fgur 4 was actually submitted by a novice programmer and the

discours in Figure 5 actually generated by the original Memo-tutor with changes to elper

knowledge bas as will be discuined in Section 4.

The change required to produce each discoums are dmscibed in Woolf [1]. Though.

the number of dsourses produced is still smtall, the fact that our architecture allowed us

to proldufe varied but stil quite reasonable discums as we changd the porticulars of ret

a few nhles, substantiates the overall effectivenes of our deign.

3. The Dbcoe~r Maoainsd Neiwur

The first mechanism used by MmOOutor to customize discourse to the idividual.

student is the Discourse anageMentI Notwok (DMN) Memootutor separates t production

of tutorial disumw into two disinct components. the tutoiing component which contains

the DMN, and the murface language generator. The tutoIg coponent makes decieonsi

about what discourse transition to make and what infonnation to convey or quory the

surf ace language generator takes conetual epciict- n from the tutoring component and

produces the natufral language output. Theme two components interface at the third level of

* the tutoring component as, described below. The knowledge base for the tutor is, a

KL-ONE network annotated with pedagogical information about the relative importance of

each topi in the domain discussed in Section 4.

* The~11 tutoring component is beet descried as a at of decsin-uit oranized into

three plannIg levels that successively rfne= the action of the tutor, Figure 6. We refer to

the network that stuctures thes decisions, defining the default and ntata-levdl tranitions

btenthem, as a Discourse Management Network or DMN. The refinment at each

level maintain the COn sran dictated by the previous; level and further elaborates the

* possbilities for the systems actions. At the highest level, the discours is constrained to a

5-F-12

I"gw t,' StN Areb GIC OTATin Cems

q~eifc utrig pprac tatdeerIIe, o VInsachw fe h sse i nenp

ther~p stdet oum c by qubyonn hidor byf decribing th at f oi

wihut nn Intrc A the owestm feoer antace, Iow sctom pn the swiltrty

Finstanuce, ne tratc nwvoe qutig the s tudentev , the sytM can choos frtom a

half-a-dixaa alternatives, eg., it can question the student about a qmecihc topic, the

dpendency between topics, or the role of a subtopic. Again, after the student has given

5-F-13

his ansers, the stem can choc from among eight ways to respond, eg.,itcnov

the student. elaborate on his anser, or, afternatively, bi~Ly acknowledge his answer.

The tutoring component presenitly contains forty states, each organized as a LISP

structure with dote for functions that are run when the ate is evaluated. The slots defineA

such things as the specificattions of the tet to be utteed, the net Late to go to, or how

to update the student and dicuue od T7he DMN is structured like an augmented

transition network (ATN), It is travezmd by an iteadve routine that says within a

predetearmined Vacm of paths from mode to node.

The key point about this control structure it that Its paths are not fixed; each default

path can be Vpempted' at any time by a 'meta-rule that moves Mefo4utor onto a new

path, which is ostesbly moore in keeping with student history or dlacoum history. T7he

action of the mewa-rule corremponc functionally to the high-evel transitions oluerved in

human tutoring. Figure 7 represets the action of two mewa-rules, one at the strategic and

one at the tactical level. The ubiquity of the mew-rules-the fact that virtally any

transition betwee tutorin states (nodes) may potentially be preemptd-epesjt an

Zimoran deviation from the standard control mechianium of an ATN. Formally, the

behavior of Memo-ttor Could be represented within the definition of an ATN; howeve, the

need to include arm for every mewa-rule a paen of the arc wt of every Late would mn

the point of our deign.

1he system preen* contains 20 mewa-rules mae originate frm mor, than one Late

and mov the Cuum to a single, now state. The peodtnsof th. mewa-rules detesnine

when it is time to move off the default path: they amuine such data structures as the

student model (e.g., Doew the student know a Oiven topic?), the discoure model (eg., Have

enough quesions been asked on a given topi to smwhether the student knows it?), and

the domain model (e.g., Do related topics exist?). Two meta-rules are described in an

5-F- 14

&S

S*'IL'ISG' **vg ~ &p1.

informal notation in Spgre 8 and in more detail in the n=x section.

.1An -zM13. 0 a er ~mmi

In this section, we provide an explicit view of the way the deiso-units and

meta-rules interact in the tutoring ;pom We descrbe the generation of a portion of the

diicwune Sim below.

TUTOR: No, it is rather mild. Can you vum abou the rainfal' there?

STUDENT: Normial, I gum&.

* TUTOR: Wedl, the Japan, Current, which starts in the wutheastern Pacific,
flows alomg the wags of Japan. and acros, the North Pacific,
eiding up off the owa of Washington, and Oregon How 4o you thik that
current affects the climate there?

The CICample begins after the Student has alady answered one question incorrectly. Figures

9 and 10 show Snapshots of Meno-tutor's passage thrugh a usH portio of the Discurs

MAnanat Network (DMN as it plan and generates the smple discous.

5-F- 15

S-MCWLE - a Strategic Meta-rue

Fromza teadh-daa

IP .ylptd-m Moves the tuo to begin a series of shllow questions about a
Variety Of topics.

Aetlvadmv The pret topic is complete the tutor has little confidem in
ins amsnmn of the audits knowledges.

DiBeahr. Generates, an ezpedmy diift hrm detailed examination of a
single topic to a slaflow mnao of a variety of topics an the
threshold of the studnt's knowledgie.

T6-AJM(PLC1TLY - a Tactical Mets-rule
Fronzzpicitimp grnpectacknowlee' z
Tir ipc-incorec-acknawledouent

D~crPdhin: Moves the tutor to utter a briefakolegni of an
incorrect answer.

ActlvadkmL The wron answer threshold has, been reached and the wudent
-ezn confued

Dehaylur Shits the discourse frm an explicit correction of the stuent's
answer to a responme that recognizes, but does not dwell on, the
incorect anSWerf.

Fren 8: Infum Nefada st Ibtarmm.

The tutor begins in the state Iif-c~tclde~it(Snapshot 1, Figure 9).

Being a tactical state, its principal acton is to my something about a saudent's wrong

answer, in this case *Vo." Having said this, the tutor atil has cbontrol of the discourse and

can continue to elaborate its response to the student's wrong answer. In the present design

thee is no default path out of expw&ci&woynect-acbwwledS* at the tactical leve. With a

different se of rules, the tutor mnight, for examnple, continue speaking or it might reinforce

the mudent's answer, perhap by repeating it or elaborating pant of it. However, since we

4 5-F-16

decded, in dongtha nlM tha he beethingto doat tbapoatisto awe to

highe phannin Weve and to omdr refrmulating eithe the amtegy or the peday of

the utteran, the auo roaun= to the sutegoc Weve and to the paumt mut, sewA-da, a

kbtd by the up uarrw in Snapdxp6 1.

TU~cm

swoka TWA0

cowfla" map I" T TO0

mbaIfi TUaCb 2E="

awS

llpi 9~~apeb o II DM durng hmurus lani PC

5-F- 17 0

Once in mvch-ddra, we take the default path down to the tactical level to

teach- speVic~ae. In general at this point, a different meta-rule might have applied to take

the tutor to a more particular tacal state, but in this cms that did not happen At

:embh-apec-cda, as in any tacdoca state, the tutor sys something and in this cane it

extends the utterance already begun with 'No." The utterance is constructed from the

iecificadon built into this decisiom-unit and iniiulzdby the values its elements have in

this domai and at this point in the discourse. The specification a Wpdfe- CahaII

(Curremt49*i), where m-ret49*i has beeni carried forward from the previous ply of the

discourse and is sAMl -the climate in Washington and Oregon." The atribut value of this

topic a wrather mild (a canned phrase) and the surface laniguage generator, MlUMELE [163,

renders it in this discourse context (Ia., IuM sentence") a 'U's rather mild."

From twah-pwfc~cbuwl~ds there Is so default path and the tormoves up again to 0,

teach~daa (Snaphot 2). This time, however, the context has changed and befor teach-dat

can be evaluated, a meta-rule takes the tutor to a different decision-unit. Thelia~ has

changed because the topc brought up until this point in the discourse have been answered

or resolved. In detail, what happened was that, when the tuto supplied the rr et answer

to its own question (ie., O's rather mild'), the DMN register equeiglon..complete* was Me,

satisying one of the preconditions of the meta-rue, SI-EXPORE (see Figure 8) The other

pircndition for this meta-rule was already atisfed, namely, that some topics related to the

current topic remain to be discused (as indicated by another registr) When Si-EXpLORE 0

is triggered it moves the tutor to epCreW-ccWpeteac, in effect estblshng that previous topics

are complete and that a new topic can be explored. The next mweint ent topic in the

knowledge ban is "rainfall in Washington and Oregon and it becomes the current topic.

5-F- 18

u1.YOI

IYA uG 0
-XPOO uwUA AA
a caagOhy YUWJ

RAM w"IMEW Gm~ womm0

ASI 3 a%.. 4

u~rva0

4A.Im"

o~oweveow amme0

a Cksmoa&T Tpee UTTIR SMO0

CA Weiq~
Figure 1k*U TWA"r~gDmru lmg(a)

5-F- 19 0WA.L

Once in compi l..p. y, the tutor takes a default path to the tactical leve and to

upI-00MY-queia. (Snaapdaot 3 in Figure 10) once again; and at the tatcl level the tuow

says someting, In this cas further qustioning topics on the threhold of th. wiudow's

knowledge. Thnerum this time is constucted from the Moedfcation built into

uzpwww-TQueuMD , hi has been finvI-siue by the values at this pi~r in the

discourse. The qweiiatios is qh ui (Wrntepl), where votwaglople has been

rebound to "rainfall in Washington and Orgn at the tim the meft-rule wan onabled, as

mentioned above. 7he utterancea put out by Menotuto a OCan you quess about the ranfall

At this point Meno-tutor ame to a default path and cuter the tacicl tate

evalawe-bqwu which receives and evaluates the Mudent's anser (not shown) His anser is

wrong a second time and the default path moves the tutor, once spin, to

cqpiift-icwrecrqwbkse dgeueu where it would normally correct the Ladent, as before

However, this tate Is not evaluated becamse the ctetis diffewet and a new met-rule,

T6.A IMPLCITY, Figure 8, fires, moving the tutor to a new deedon-unit (Smapihot 4).

The context change is two-f ok 1) the student neem confused, and 2) the teot for

wroag-answerstshold is met Recognizing a confused tudent is admittedly a mabjective

and imprecise inference for a machine tutor. In this ipentiowe have chosen to

measure the student's confusion an a function of the number of questions asked, the number

of incorrect e,oP i ansP given, and the extent to which the student's frontier of knowledge has 0

been pldored. in the example discourse, two questons were asked, two questions amwered

incorrsectly, and the student's frostier of knowledge barely explored. Therefore, the student is

Judged to be confused and the meta-rule T6.A2MLILY triggred, forcing the sy"m to

move to the tactical state &mplicf4ncrwcr..ciued~vxm. This move causes the tutor to

5-F-20

utter a refinement of its default reqxonse; instead of correting the student, as did the

default n~o a of the previous atterac, tt generated frm this state Imaplicitly recognizes,

but dons not dwell on, the incorrect answer and the tuo ays "Well . .

There a sodefoult path frm bapikft-fwaco iobw mwImwu and the ttrmoves up

to tewh-da (Snapshot 5) One agpin, a se-ule takes the to ea am ne Mtatelal

decision unit, dewrbe-daredn. Thbe con=es in this ase is that the threshod of wron anm.e

has been met (a recordedt by a register) and there ados at leas owe to*picn the

knowledge bas (01apan Current*) which is linked to the majr topic (the "~clinme in

Washington and Oregont"). Based on the fit fact, the system infers that the present

strateg, teachdaa, has been ineffective; based on the second fact, it infmm that there

remains an undiscussed geographical factor which, if describd, could enable the studen to

infer the correc answer. S3-DESCRIBE is therfor triggered, moving the tustor to

dewvib.-dosin. The action of this usia-rule terinmaes the inferactive (VA appah and

begins a lengthy descriptive pouags about the =Mkl topic, the "Japan Current.

Rom duscrib-emiai, the tuor takes the default path to thes tactia level and

d&xribe-*pwcic,ww1.d,. (Snapshot 6) and prepares to speak. The utterance specification in

this state is sp@dfe- uelh (menmt4opc). As mentioneid above, inrmtpcis now 'Japan

Current" and spedflcdcrb has the effect of enunciating ah attae value of a specfic

topic in the knowledge buos. Thus the decrpto realized by Menouto is *the Japan

Current, which stamt in the Southeast Pacific, goes along the coast of Japan and &rm the

North Pacific, ending up off the coast of Washington and Oregon."

5-F-21

is& brief tout through the MN has illustrated the kind of knowledg that a tutoring

system min- have in order to make inferncs about the content and approach ol the

tutoring d~scourse. It has also provided a view of the tutoring apa= available to Menoamtr

in that it can chang the topics being tutoedA (rainfall vs. P'asal) along with the particulars

of the tutoring rules for ganerating the discourse.

4. PehdiAaili ea.Knewe

The second' method used to Mtuctur tutoing diecourse is to annotate the domain

knowledge bae with pedagogical information. Anoaiosighlight- relevant toic and

direct the planning of the text by keeping data per topic and per studen, Figure 11. Topics

are tagged in relation so a student's hisoomy and presumed leve of knowledge; e.g., data that

appears trivial in the context of current discourse can be skipped while imet dat,

empeciafly if it has bee 'miseed by the student, can be expored in depth. Annotations

play a role in tutoring comparable to that of size and centrality in pogahs[In- they

identify Pamt of a knowledge base that are mowe relevant to the student and maggest

strategies that will build on what the student already know.

In this sens Menao4utor incorporates a vernon of Goldstein, (181 Genetic Graph which

he developed In the context of a compate coach. His genetic graph provided a structure to

clasify domain knowledg into skill categoie being represented as knowledge a student

would have used if he took correc actions in a coputer gam. Skills were linked to what

the student was trying to learn and the topics he already knew while linguistic acs in the

graph enabled the coach to generalize from, describe an analog to, or suagen a deviation

from, a skill that the student already knew.

5-F-22

&I0-

0 grapb, force a knowldg preenato out SoU f aW limi nuAe of exliiILils

PAII00 WR

0v

The annotations in Meno-tutor were developed how the work of Conklin [17] whose

program planned Vaarpblnt descroptios ol visual scene ude the guidance of an

annotated knowledge bass of the objects and spatial relaions depicted in the scene The

annatations were derived from an nemplrlcafly-baued cozieato of an object's visual szmwu

[19] and created a view of the domain "almost as if one could pack up the data base and

shak It so that it dangle in order of decreeag malleaWe [17, pp. 1. Annotation served to

higlih eemnts which, because of dmncentraity, or .ntuianms In the would

naturally be the firs -topics to be diswund.

Our prem us of the annota te udent model is sdmilar to Conklin's in the se

that the model of the student's history is projete ont a gena knowledge base, and the

concepts or cmple. from which the student would profit are derived by mathn his

history to the contents of the domain.

Two complementary organizing schemes are used to adjus the bazic planning

mechamuon and to define topics to be discussed, corrected, or questioned. They provide

plannig template. that act as guideposts for searche. through the knowledge. The first

annotation scheme, Risdand's MicA.!i,. Rmdii (bM) 2],encode. an intrinsic importance

value to each topi without regard for particular student. It provides a way to quickly0

retrieve topics ordered by tecigor learning priority. This numeric annotation provides a

coarse way to pull topics out of the knowledge base ordered by importance. The numbers

were chosen by the author, based on empirical studies of learning and teaching in the

mibjec area. The Michelin Rating is comparable to the importance number used by Collins

at aL. 2].

5-F-24

The second annotation scheme, the Empeced Cowmsacy (M.) acts, as a focus of

attentmo for tutorin and a sumch represemt the systems view of the tudents knowledge

item by item. At th. beginin of the union, the EC value is se without regard for the

so 's, npeecy, it is dynamically updated during discourse as a recrdar of t tutor's

oF M -denow in its own evaluation of the student's knowledge. A raised BC Indiate an

increase in knowledge ol the topic; a Ioiesed BC value idicafte a w og ;eqMain o~r

decreasing evidence of knwledg of the topic.

The BC value Is updated at each ply of the discourse and checked for gapost for, or

deviations frm, the Sgw value. For imsance, U the EC had a high value for a particular

topic, it Implied that the stuet had leared the topic and, puiumably, all topics; of lower

MR value. However, if the student subusequently madle afro. on this or lower topics, it

would suggest that, in fact, the shudent did not know topics at this level In such a case, the

tutor would ad just its BC value downward to be consistent with an apparent lower tdmld

of knowledge. 0n the other hand, if the EC was accurate, additional Pcorc anwersa ddths

topic, and topics of lower MR value, would. support the systemls confidec in its BC value.

The BC and MR act together as a focus of attention to determine the type ol actions,

to be generated by the tutor. For instance, if annotations, suggest that the topic is salient

(hig MR) and the student's knowledge negilgble (low EC), additional explanations and

examples will be favored in the dialogue as opposed' to additional queeons. Alternatively, if

the annotations had a high BC value, indicating some level of student knoledge, the tutor

will reduce its interactions, with the student.

5-F-25

Addtinalyannotations are used to regulate the amount of interaction between tutor

and student. For example, a succssion of caomet answen confirm an existent high EC

value, and ultimately leads to soter rePqpam wP from the tutor , to the paint where a single

student amo on the he&l of seteal correc answers would be overlookted as a momentary

lapse. On the other hand, a lower EC raises the sysem's attention to a stedims answer and

mo to more frequeant Intemation, and correction.

The conbie annotation schieme allow the systm to avoid inarpu gist ois

including thou. Wow~ the student's learningl tuhrmold (they would be too easy), and as

those abeiw it (they would be too hard) In this us., Menowtutoir implements the genetic

graph by tangapart disore stratelgies and domain knowledge and teaching outward frm

the studlent-s prewied thrshold of knowledge. Unlikes the genetic graph, Mawouto does0

aom wrewrite* domain knowledge into skills or oonsain the system to expres to information

about the student's actions a a speclalization or genraiztion of an earlier used ukiL a

Rather, Meno4utoir enables domain knowledge to be uxp -Ped in a variety of ways and

allows multiple pedagogical information, e4g., qiecializatorn and mrmples, to be added to

that representation as a way of providing flexibility and expremsveoess to the system.

We explored the power of this system of pedagogical annotations in two ways. in

addition to producing alternative tutoring discourses by changin the doema knowledge base

and annotation, we explored the effect of changing the annotations on a constant domain

knowledge base. We wanted to demonstrate the power that ordering domain topics had on

the production of discmurse and we suspected that a knowledge base annotated with different

'M genetic graph exied a a module apart frx= domnain knowledge, thereby duplicating
i F, mation stared there. Alteratively, the ikl desdgmated in the genetic graph could have been
implemented n the aily ,;P in of the damain knowledge base, thereby limiting the syiwem's- and eaz;r f-VVm

5- F-26

paramunt would rovide a vey different *view* of the topics to be tutored.

UWe changed the MR an the rainfall domain knowledge bame, which had the effect of

imposing a distnct importance hirarchy onto the list of topics to be dimcmed. Figure 12

illustrates the nw ordering on the original rainfall dama bas and Figure 13 sbows the

proposedi dialogue. The Ihuu was not actually genated by Meno4utor, but the diange

appear to be tfOrwad Since the new bfichelin Rating highlight the mc*of

9 I/ &OP4I'rTLOiJAL FLOW

0U IA CTL
W V IO %D

0IA

Ilgure 11.RafalIebP.3mw it NwMk6lu ad.

5-TIWA' F-27 C

"Japan Current over the oncep of wam dima e" or "heavy rainfall," the roe of the

"Japan Current' ane pie. priority over the general dewaiptoms As the student contined to

give col answers to the quesions about the Japan Current, new role topla were elected

for questionng.

UOR Do you know what the climate is like in
Washington and Oregon?

STFUDErfT': Is it cold?

TUTOR: No, it is rather mild. Can you gum
about the effect of the Japan Current a the
climate them?.

STUDENT. I doan't know.

TUTOR: Well, the Japan Current begins in south eastMern Pacific.
Can you quess in which direction it travels?

STUDENT: Northwardly?

TUOR: That as rgh Do you know where it ends up?

STUDENT: Ner Washington and Oregon?

TUTOR: Good. How do you think that currnt
affect the cumt in Washington and Oregon?

STUDENT: It's probably rainy.

TUTOR: It is ideed. Tre am rain foes n both
Washington and Oregon. What does that tell you
about the temperature of the Japan current?

STUDENT: It's warm.

F 1e L Dbiur. Predmed by Varyiug Mkhuf Rating.

5-F-28

The biggest problem with buIlding knowledge bases for tutoring systems is how to

organize and order domain topics. Such an organization must include relations between

tois to*i -tCOMO topic piedlecemo preknowledge, examples, analogies, and topic

rankingS. without such knowledge, design of machine discourse remains in the hands of the -

system author and one author's selection of sallent topics might be another author's selection

Of trivia.

Since few empirical studies treat learning and teaching in specific domains, (see for

example mathematics r20, chess [221, prgamn [23, 24], and physics [25, 2Q1) the optimal

organization of topi. in ams domains is unknown. Even emprical studies, when used in

conjunction with a tutoring system, ane barely adequate to completely dein the organization

and ordering of th. knowledge bae. Expert tutoring systems require the coevolution of

empirical studies of learning and teaching in ecb domain; without such research, which is

scarce today, development of intelligent tutoring systems reflects the idosnrai view of the

patcua system deiger

In addition to studyin the effect of modifyin the annotations on the domain

knowledge base, our second exploration of the effect of pedagogical annotation was to

substitute a new knowledge base for the fact about rainfall and to usne a knowledge base

about Pascal loopin conept that drew on extensive cognitive studies about bow novices

earn Pas'a constructs [14, 271. Tbe Michelin Ratings for the Pascal knowledge base were

suplied by Woolf based on teaching experience and rich cognitie studies These ognitive

stuies and Meao4uoor Itself, were part of a larger research effort directed at building an

on-line, nnime support system for novice Pascal users [13, 141. As a part of this effort, a

Bug Fnder [151 was also developed and used for four semesters on clamss of several

hundred students. The Bug Finder detected run--time semantic errors in Pascal programs and

5-F-29

peued meages on to the tutor about the location of the erro, the names of variables

amociated with the emr, etc. The Bug Finder has =nce been retired and the discoure in

F'gure 8 was genaved based on dmulated mesages from the Bug Finder and smulated

student inpt

Tle program in Figue 14 was submitted by a novice programmer and the diaogue it

edere from Meno4umo is reproduced in Figure 15. Given the program of Fr 14

and the peru of the WHIE Imop which were programmed correctly, the tutor inferred that

the student did indeed undersand the bsics of loop po g--oa. To be certain that the

tutor and the student dared a common vcabulary, the tutor qfkd two quetimons; both wer

answered correctly, sggesting that the student understood the rudiments of looping cosuc

and the role of the control variable. In the third question, the Mmotumor analyzed the

stW 5nt's grasp of deeper programming concepts Pfr studies [23] had linked several expfict

1 PROGRAM LESSON PLTYN, OLrPUfl
2 VAR 0
3 SUMGRADES,'lUDENTSUTEGER;
4 MEDIAN'REAL;
S BEGIN
6 SUM:-0;,
7 STUDENTS:'-,
8 READ(GRADES);
9 WHILE GRADES>0 DO
10 BEGIN
11 SUM:-SUM + GRADES;
12 S IJDEXM:-STUDEN7 S+1;
13 GRADES:-GRADES+1; <--- should be READ (GRADES);
14 END;
15 MEDIAN:;SUMSTUDENTS;
16 WRTELL
17 (TE MEDIAN GRADE IS-, MEDIANS&3)
18 END.

Figure 14: A Student Pasad Proaam

5-F-30

prgrmin ore with conceptual dsnesaig of looping constructs. For instance, the

programming earo in this student's program has been. linked with a bele that (1) a single

call to READ will acorn; all the values, of a variable at once, or that (2) updating the

control variable (lin 13) will do a tacit READ through as&i value of the variable each time

through the loop. The tutor's third and fourt questona discriminate between these two

micocetinsand indicate, a is ofte the cas, that the student had both miomcept-ign-Ms

(both answers wer wrong. The tutor's lagt reqpowse is an emple of the "grain of truth*0

speech pattern: it confirms and reinforces the student's comvet knowledge aboutpogamn

while pointing out the naporaecomponent of that answer.

A portion of the Pascl knowledge bas is represented in Figure 16. It was encoded in

the -am kind of KI-ONE semantic network a was the ranfal discourse. Thius the Pascal

knowledge bas was available for intepreas n by the sam techniques as used in the earlier

discourse. However, this knowledge bas was richer than the rainfall knowledge base

because it contained amptosabout incorrect, yet commonly held, programming

micepions.

In sum, the annotation prmys prwde a heuristic for ordering and organizing

discourse to and help to individualize the dialogue for an individual student The hooks

into the expert knowledge source, in the form of tutoring information, act as pointers to tat

generation strategies. In this way pedagogical as well as rhetorical alternatives can be tested

and identified while the system is in use. These convemstional alternatives were used during

devepmn of the thir component of the syte, representation, of discourse conventions,

and tutoring maxims, as described in the nezt section.

5.-F-3 1

Discourse Produced Using a PASCAL Data Base

Tutor: Do you know that GRADES, in line 9. is
a m ain viab for the WHE loop?

Studeu: Ye

Tutor. Does that ow doat GRADES sbamld be
a) Imikiee Ibalec1 the loop?
b) Added bf SUM Wl the loop?
c) Moile wth th loop?
d) Doth a) med c)

Student: C

Tutor: Yom -oo to inm~about doan
vatiabe of dou WHILE Io*p Now We telt

Wbot do you thn READ (GRAvES) im l~ 8
doe with do value of GRADES?

a) Rad us volume at GRADES atamne.
b) Rueide in a eol value of GRADES.L
q) A n en wa w zopu value. so GRADES.

Studcaw: A

Tutor. The. do yo oik tha GRADES -- GRADES + I
-po th ex at if hee vaMW

Studew: Yes

Tutor: Thin is your otbomeaptim.
Ading am to a vaiable is a cmo way to sep
tluOuh a rawp at VawLut it un apply
here beasme your READ iuim HBOe 8
tieve only a am*l value. You abould rae

line 13 with a seodcaDl to READ (GRADES).

Figure W. Tbbt~r for Fm,.o Mas fa do. Pepa of F~gur 14.

S. Ovewiatlve Rhd.abMu Tuth Dhm r

The third matbod sed to Orpn tuoriag diuus a to encode knowledge of

discourse conventdon into the discourse decision making procemL hmy of the discourse

decision described above for fth DUN sad the annotated knowledge bas wer predefined

by fte authos, eg., mew-rules governing discourse moves and algoiiti used to evaluate a

Mulet's knowledge were inmented according to the skuthor(own view of teching and

5-F-32

COTAOL. VAAL O. er AI%

"COP'TROL VAteL~ M404Wp;0 Wrn4;p4 L..0olp

4

M~~o4CpIe 0 5 " MAISM4T MOOWP4ATIlo,.J
~(NOWL4.. SgE CO4TOl VANU1QL.9.

Fje16% TI. Exper Kumwh BMr fw 68 P - DiMUrM

larming in the two domaism Thi limite Sm MM twawrd develong A machin tutor
14 d no wWtma~chM" to fae~ abou bow and when to dzift diuwum ot ho to

*Maumateiudet acWiMs In this uectm we desarib a theoroica view of hum=an tn

and diacour digd to remed this dtuadmn We WSM~g A JePmentaicu for infuMMM

and excaqw on m&d by humns In d&McUMs. We have two goals in aind In definling

such a sepeea ios: 1) to mse expecttions and infereces to umivat dlscam decioo

4 and 2) to identfy a at of maxim tha =n&ely effective tutoring

5-F -33

4

...... u........he .ru

The Eiru goal in rqxsntg humaon expectations; in discours is to use qualitative

-----n--- made about discurs to govern the mechanical tutor's re, w options Human

qWeakers and listeners have expectations about each other and about the umndelying stucture

of the discouru in which they ar enagaged. For example, they use subtle linqutc oes to

relate their current Mtturapg to preeeingme to shift topics, or to Provide ppmety

knowledgeI to each other. These expectations se up by listener ane what the human ear

ties to Anticipate and to deliberately control for

That qualitative Judgments about the apprit affect of discourse do exist shoulda

not be controvervial and can be ilustraed by an example. Coedrthe range of affc that

might be used in a quay about loop exution in a Pascal progam shown in Figure 17.

Each sentenice has a similar locutlonaz force, yet each conveys a different attitude toward

the student on the part of the tutor. Further, there is a continuum such that a tuo May

couch his statements at any place og the sop of lhst of rmpooses and the implied afc

would be one of clone attention, eve commitment, to the student. On the other haud, a

statement selected from the bottom of the lit would imply non-commitment, non-involvement,

and pombly antagonim. Relative to the four utterances, we my that use of a phras

repening a certain point on the wcale carries the implication that the tutor chose W~ to

- If the input is 10, how many times would your loop exute?

- Do you know how many times your loop would execute?

- I bet you don't know how many times your loop will iterate.

- You couldn-t poinbly understand loop execution.

Ffgur 17: Emplicades of Ufterances

5-F-34

phas the utteance by other xesinon lowar on the Nit. This reasoning on the parn of the

listeer b. licened by the Gulcean [2ffJ maxim of manner, which, along with his vay Senera

maxim for dicure are invocatve of discourse, though no yet a detailed basis frm which

we can fashion a complete computational theory od discourse.

Our cail stational moxd of d4hrs -w -includes qualitative amsesmen and constraints

about dSor ne theatn used to over the mechanical tutors options For mample, if the

machine interprt a Wi rse- mowe such as, main accnhi, as in Figure 17, it will r ecord

the negative connotations, associated with the utterance, Similarly, any choice of discours

move causeespqecific inferences to be made about the speaker's intention (or knowledge) in

addition to those inferences made about his actual worde

In our cmmputational model of discouuse, Infeences; about the speakers inten triggers

meta-rules that move the tutor into a nw state squs,= Section 3. 7Uhe mxoes b

aalogosM to the redvlpitcycle of LISP where the top4d 4tikig of the machine

a sumggested in Figure I& The fire OWp it to kiterpre a students Iepos which in turn

triggers, mechanical infercs that are placed in a heap Thione inferences; that are iuppoud

4 l"EP: Blehave according to default sate sequeo (consitent wfth
curent infeences

A) generate tmx
B) Interpret studen's; resP.aM M

SrFP2: Identify inferences of student's literal utterance and endorme
evidence

SITMP: If endorsed inferences reach threshold, trigge meta-rules, and
move quyine to a new state sequmnoe.

STEP4: Go to 1.

r a Step et the Integent lTw.

5-F-35

[Sullivan and CahenJ ar eadorsed and gven reasons to be believed or dibelieved.

Endo~um nr associaued with an applicability condition, eg., "marec anser Indicates

Corrlc iomaio' t is ahwas powible when the reFqianse is correct; "cect amera indicates

a Sued* is applicabl when the r Fme wPis crrc- but earlierP reqwoinesere, wrong; "could

be a mistake Is applicable for any freim om. Inferences that pass beyond dhubd will be

used to activate changes in th system's behkavior. Somne uadouienenis are iweg~w, meaning

they provide reasous to d~sievei their auocatedItrrezos Othie are pstvmeaning

they aippoaut the -nuerrutadon with which they are assockae

Mhe state of affairs of a discourse Is represented by the sa of asinents that ane
0

either positive or negative ouppo t of prior swawt When evec for a change in the

current intrrain or "belief" for a ne Implicatin is preseted, the sWone will take

action by activating a meta-rule which in tur changes the teaching or dScourse P req1o1.

5.2 A - -dma BMa of~eict~i me Ausint

To ake inferences about dIsco.,. moves, we began with Grice. original formulation. 0

of iinplctures [281. He suggested that implicature reided within certain words, for mtmpie,

the Italicized words in Figure 19.- The word swd in the first sentence carries an Implication

that the activity of going to Jail proceeded, and poulbly caused the second activity, that

Gorge becamse a criminal. Th e- of the word tiad in the second sentencis carries wit it

an entailment that Milli failed to swim the Eagilu channel, and the use of the phrase me.

1) Georg went to Jail md became a criminal.
2) Mfilie tried to swim the Englida channel
3) 1 have am leg.

Figur 19. IMPicatues in texc.

5-F-36

k# in the third sente, implies that the k dos nt in f have two lep.

Implicaturs include the dedurata normally accepted by a fatonal dicoure and embody a

qeak Is motvaton, Inawe and involvement in the discurs.

In our irml 1at1-al model of discourse, bmpacawn ane p. rent as bound to

discourse moves. Implicatures esit independen of the ftruth or "meaning' of the uttea

and definu w t the listme receivsin addition to the spoken wocd This qualitative

impliau is placed on a heap whenevw it movedaiIs Invoked. Figur 20 lists the

implicais bound to two inovedames, quuImm tsl and u1,t 1,mq. For insance, if a

sudent questions the tuto about a topic, the implications of this ae that the Mudent 1)

thinks the topic is important, 2) knows (or is rying to learn) topics on his deiold of

knowledge, 3) thinks th. topic is learnable throug discurs. Thm implications will be

aumed by a listene independent of the content of the quay.

xvica ob iin on tolog

(deflmne-ove~cass QUESTION-TOP'IC
Evidence:

Q+ topic is LptwtW
Q+ topic is within threshold of bnedse
0+ topic is £euinble through discorse)

(defin4mov-cIa CORRECr-ANSWER
Eviden:

Q+ topic is geneally known
0+ topi is bcr-Arun Wuormwlon
0++ SWw is a gUe)

Flgur 20. Implication beumu to meie doom

5.F-37

Steim~kindmfh ln.mhp n tudent has marginal knowledge of the topic,-erhaps derived from kowing its definition.
St~debin~ae ad bufumdm - student displays prior ezperlmce with topic.

Ubimm- b - student displays --mra dc information.
OR odrstmil - tudnt appears knoowledgable about this topic.

___...__... - there is some agreement betwee student's information and
domain knowledge.

a --_-- " " -i.hr .. a-- -- -We have identified both known ad unknown
topic in the domain.

Or~k A~wroist- topic is relevant in this domain.
"rond*..p.re.knm - several compomts of th topic a well undaood.
"Topki 1 !--- o - topic was laned beaore t discouse.
r.4icm.~bu - tkpic s closely related to both known and unknown toms
"o . i - topic was fully develped during discou.

nngm 2L 2: Ass,,ns u. Made by d System.

Globel aswi..ftan- baned on atmnded reasoning ovar sequences of implicatures.

They include inferences sinch a i~ SIs mOfm1i, *to*i Is knew or mkesmii. In

resdi and ae modMd with each noew tutor/stdent Interactions. Global asgme t are

heuatic and represent the system's bee estimate about the mate of affairs of knowledge of

the student ova a squen of discourse moves. Wheres implicatures are always pomilbe,

tempered by aggregated inferences from prior utterace Slobal ansements can never be

assumed, but require reasoning under uncertainty to deduce which one of a number of

competing global aues might take effect. A number ad Slobal ments are

presented in Figure 21. The auemient is isted on the left and the Inference of which the

amemm is a Vgou is on the right. Reasoning , uncertainty allows us to accumulate

support for or against a number of these aummets.

5-F-38

5.3 Ui.. Inffw In Dhucur Dudm

Tuator. Do you know tha GADE in lin 8 is a contro vari"l?
Ssudewu Yes

IMPLICATURU
*stcbhm-deaulknowbdp
(*Iqle waORoLvad"bl) amfynw
(Ot* cacuoLvarimbb)i Wnsaabh
(*to* coontroLvarhaMk Oamw ted-'

Tutor- Good. What Is the value of grade bdor mleaving the
loop in line 13?
Studext: 9999

IMPUICATURAS
*Muhm hm definitomns' MW
(eople valumtoLvadubl) ,sg erlykoU
(No*e vaaf-nuoLvarialA) k~omhehwbae
(t*- isLvadabh) mamteral

GLOBAL MSZSENTS

Tutor: That's rigt. What is the value of grade after leaving the WHiLE loin line 13?
Student: I don't know.

IMPUJCATUWU
tM tol ism lack of knowedge

*Msmt-c~ no mw-toic

GLOBAL AS SMENTS

1gw. =- Uukg, Imfums to Madvut Dbusm.

5-F-39

As an mmmple of the use of implicatume and auenents in making discouui decions,

we pesen three quions that migh be asked of a student who had submnitted an incorrect

Pacal program, -e Flgur 22. The fbrs correct - ; m pims= hmmediate finplicat on

the beap. The to*pis generally known or learnable thrugh othe r -ot (L, textbk orA

lectures), the topic was studied a background material or the student's answer was a gum

Abter two Fmrrect auffa, the tutor can reinorce its initial evaluatio of the studets

knwle dge but now licenced to make more- emteav infeence about the studen or the

topic. In this case, the global amemnent is that there ks some agemn between the

student's informaton and the domai knowledge bin. Such an infeence is pomible because

evidence from a second correct amser plovided support for the gloal amement.

The students third reqi;afse as w.ea and the tuto ksnow forced to revene its

currnt evaluation. After a alngle wrog answer. several immediat *plcures arn availabl 0

U=c they are bound to the converatiamal move-ete the student doe no know the

material in question or he made a carelm error. If we ainie the former andreone

that the wrog answer camne on the heels of two corec amen, we have a more complex

aueinnt Poumble: the towi might Hie on the student's thresold of knowledge. Thus

aseement is lIscenced by the fa that the student correctly identified an mampl control

varible, perhaps by umng its definitin, yet he incorrectly indentifled it value after loop,

exit.

The example sows how the tutor can make general ameemments about the student ovaer

several interactions using evidence brought from earlier reqxome and weighe alon wit

mmret W*plcatume to generate a more global view. In this way the tutor can achiee a

broader view of studen knowledge and topic complexity.

5-F-40

The thre quesions presented above cme fro= our Paical tutor (See Section 2) and

show the kind of power we want from, a discours ilffericing mechanism. Ilie nt two

SSguW= Co04Mpl this exape and Figure 23 thw. the studment received the same Pascal

problem as did the student of Figure 14. However the mcnd utudent produced a different

program with a new so of smande errors. Again this proram is syntactically conru but

produces rum time arams' It reveals at Ingt four unalylns wailscnmceptions about cao

PROBLEM~ Write a program that finds the average grade for a student who typs his
grads in at the keyboard. After the lagt grade is typed In the studmnt will type 9999.
Plean print out the average grade.

I Progrm Studmt9 (Inpu, output);
2 Var
3 aim, mum, grade, ave : integen,
4 Begin
5 sum:0;
6 num 1;
7 read (grade);
8 while grade <> 9999 do
9 bei
10 read (gade);
11 smm: mm + grade;
12 mum: mum + 1
13 and;
14 while grad -9999 do
is begin

416 ave :- sum/sum;
17 writeln (ave)
18 and;
19 End.

Figur 23: A Mudmat Priram

MW no~ is lavWe in several ways. Mwe valuie of the Orea cemmand in line 7 will not be
IPrad be" m the "read mannnd in tIne 10 immediately rephaces it with a new value. The

mecnd loop will newe ternmate beatuse the atrol variale -grade-n a never modified inide the
4 loop body. We also suggest, that the student s that the meand loop wil execute amly once

inm its only action is to pint out the average. We call such a loop an "N-oop and suzggst that
the studen ha confused the IC" canditiaal contuct with the family of looping astruct.

5-F-41

variables, loopin construt, and flow of control. Cognitive studies of progiamming [14, 16,

17 suggs for instaces, that the student may believe

>> the order of operations Inside the loop shoul be READIPROCESS (a Pascg
WHILE loop is deigned to be PROCESS/READ);

>> the value of a variable inside the loop is distinct from ts value outside the

>> the loop construct does no test the last value of the cootrol varibl; and

>> a single iteration ad a sequence of commands requires a looping coruct.r

There~~~~~~ s vdnefracmlo McpLo. For instance, the fact that "rea (grade)r in

line 10 FpecedesP the processing of grade in line U1 is evidence for the first misonepton

In addition, the use of two loops, both controlled by the same variable, *grade,* is evidence

for the second and third mis -o, ,Pt-1- since they suges that the student does not realize

that the value of 'grade will be availabl at thes end of the fit Loop and therefore dons

not have to be retested'. In the example, the t0tors goal is to determine the breadth of the

student's understaning and to resolv, the ambiguity among the possble misconceptims The

object is to focus the discourse on the repair of a single misconception. The discourse

suggests how out tutor might unravel the student's mulna p admk u

"verbalize" his malformed ideas. In order to generate that discourse, the tutor must:

focus on several topics in smceon (e.g., control variables and while loops);

handle several error simultaneously (eg., value the control variable and the
number of loop itera."); and

customize new exampies to preent to the student (eg., a hypothetical program
and a new problem).

5-F-42

1. Tutor Do you know that GRADE in iine 9 is a control variable?

Student: Yes

2. Tutor: OIL What i the value of GRADE at anytime during loop execution?

Studam Depmm on the value read an.

3. Tutor Right, and what is the value of GRADES kammediately A= leaving the WHILE
loop, in lHne 13?

Student I don't know.

4. Tuto. OJL, no mfapo the values read in wm 1 5 9 10 '999.
How many times would your WHILE loop execute.

Student. I don't kuow. Maybe 5 times.

5. Tutor-. Well, what would be the value of GRADE immediately jAgg leaving the
loop in tine 13?

Studuns: I don't know.

6. Tutor: You seem to have a muocpo.The loop would execute 4 times.
Although 9999 would be red in"d the loop during the fourth iteation and
tested at the top of the fifth iteration, the entram tee for that iteration
would fadl am GRADE a now unequal to 9999. The fift loop ecution would
never oomu and control would pan to line 14 immediately after the loop.

You probably asnmd that the value of the variable inalde the loop was
different from its value ounide the loop. In fa, whether bukde or outdle of
the loop, variables in a WHILE loo have the same vale If GRADE equals
9999 before the loo terminate st will sill equal 9999 after the loop terminate.
Testing the value of GRADE immediately after the WHILE loo is superfluous.

Now, let me give you a new problem: Compute and print the average number
of hours worked each day by a mtdent employed during a month if hours per
day is typed in and averaged by the program. Aseume that hours per day are
typed on a iingle line and followed followed by -1.

Fgur 24: frapsed Intoerh r m for the Pregram In Figur 9.

Note that in Figure 24 the tutor asks one question (lne 1) to establisbi that both it

and the student dakre a common vocabulary about control variables. In the next two

questions (lines 2-3) the tutor asks enough questions concerning micnetosabout variable

values and control flow to establish that the student does in fact believe that the value of

5- F-4 3

gradu,~ am available after the fim loop terminates. In line 4 the tutor presents example

input that has been cusrm-taiore to the student-s knowledge of the problem. Ins goal is to

verify the hypodaeis that the student did not realize that the value of grades was available

after the loop acited. Based on the student's vreqpioiwe thus far the tutor (line 6) explains its

diagnosis of the m fepinin terms of caaersisof the prementing program.

UA Tutoring Maxim

In the previous 3 setoswe used inferncs about~ discours expectations to govern

the mechanical tutor's choice of reqimomsP options. In this etion we Alescrbe tie second goal

behind the representation of discourse convmntimus. namely to identify maxims that underly

effective tutoring. Based on a nr-.ber of studies about tutoring and discours strategies [11,

28, 29, 30, 31], we have begun to identify mims that allow good human tutors to produce

effective discourse. Some of dims discouse descriptors include:

Quality: be committed to the student and interested in him;
maipport the student; be co-operative with him;

Quantity: be qicfcand perqiicious;
use a mninimum of attributes to describe a known concept;

Relation: be relevant;
find a student's threshod of knowledge,
bring up new topics and viewpoints as appropriate to tie student's threshold

Manner. be in control;
oraiethe psrcem of moving from topic to topic, but

alwthe student to take sme inititive and
allow context to determine a new topic,
return to complete unfinished topics;

5-F-44

De co-Oparatve:
-work with stent

-[l to o
clal teminte topi -
review at rest topic
c ereln control of dialogueBe committed:

-how antsewe

on~ ttop

oudic topic

Be relevant: 0
-find Kudent's threhold

ques ilon student
evaluate MKN hypahaupiao and w yics~o

-teach at thebold

pro analogy example
Be organized:
-srcuedomai

oudtine topic
introdue topic
terminate Wic

-complete inf omation

clal terminate toic
Wada msbtopic after topic
teach attributesn after topic

Be i conrol:teach ubgoal after goadBe in control:

-4ty P-O du
introduce topic
dmft topic
question sudent

rgMN 25. Tutaft Ma mppu b mmWmb

5-F-45

0

Figure 25 propose a further way to discriminat these maim in term of discourse

moves that support echb one. Obviously, a variety of discourse moves could have be

selcte toimpemet echmaxim. The maxim we have chosen are listed an the left

and the sequence of moves supporting them on the right

11w linkage between maxims and support moves can be read in two wayr. from

left to right it offers a way to plan discoue and from right to left it provides a way to

evaluate the effect of the discourse on the student. In the first direction a maxim on

the left Is used to plan the dscourse and the utterac to be generated 'shsped to fit

into the movedasm on the right. For instance, being maximnally organized is often a top

goal for a tutoring system. Uf this is the cue, ndadetof the parular content of

the next res ponse , the system will try to couch its next utterance in team a discourse

move ssociated with the oraia- oa maim: eatimw hqdul, hasftc topic, teraimate

topic, or rewiew topic. The system can tolerate movement away from this particular goal,

but if the goal is a top one, the discourse algorithm must ultimately return language

generation to the specified discourse moves.

In the second direction, tutoring moves on the right are used to compile a reord

of the discourse interaction. By 'abetractin" from moves, on the right, to maixims that

subsumes it on the left, the system can have some reading of the presumed Oeffect" of

its discourse on the student. For inistance, if the interaction with the student has

included moves such as, sqbal twplc, dmaty tisoat tq*i, and reu 111.Ucu I of

dhr , the mnachin can Judge that the overall effect of the discourse might be seen as

being co<operative. (Obviously, a few make accusin within the discourse could negate

any such impression.)

5-F-46

0.

In -tn, we have used implicit infeenes and expectations in discourse to recognize

qualitative states, such as Oteo Is pmrdyf known, hasn k hbekone lfemuadva,

or 't Isn oncafuni. Discours moves an repriesented in tarm of Implie expectations

dicted in the studeet Raqiones by the studlent, catgorized, Sor instance, as

correct-answer in the context of a number of prior partialy-corrurt-mnswers, is similauty

taken to support epVe ctations by the tutor such as stiit.sib or

*uteumtb~mm m~. aanges in any of thes state may trigger meta-rules that change

the tutor's req onse.

We make aumociations between discourse moves (as Instazn of amove clines) and

mnaxims in terms of qualitative evidence. Each discourse move is defined a a data

structur with two amodated inferences: implicatures and global aueents Implicatures

are linked directly to a discourse move and represent an uInm mad. about the move

itself; they are fixed and na-eoal.Global auments are linked indirectly to

sequences of move~caues and represent Inferences made about an effect over several

miove-clans~e; they ane volatile over the Be5 of the dialogue. Implicature and global

asements are usd in conjunction with the disourse manager (Section 3) to move the

system from one at of discourse states to another.

We have suggested that bern tutoring is a prorese of specialized cMmunicatIon,

the tutor's ablit to refine Its d&mourne to the domain and to the student is central to

its sicces. Sinc tutoring requires anticipatin a student's unspoken infierenes and

expectatins, a sysemn tutor must have a way to roggzea student's m' vccptons

5-F-47

and to rason about disoum elemas that ar qualitative, rather than quantitative, that

eflet intmo rd tam qMh am

We have demibed the control and data ructurm of Meno.tutor as a way of

showing how a tutoring syun agt Artificial itlg= techiniques can plan and

generte its dismue. We have deimbed three compuial elements ddgned to

customi e a machine's rPonwe to an individual sudent: a dicoue managemmt

strutun, annotatio f of the tudent model, and qualitatve about the student

and topic. In each of thed mechanims, we have lookd at ways to dynamically recgd

and update information about the sdent or topic based on knowldg o dioure. Our

work focuses on the deep level planning required to motivate discoum rather than on

the generation of syntactically orrect natural language output.

7. Reeavm

[1] Woolf, B., ComxtDeposda PfAi S ming a Mckie Taw, Ph.D. Diertion, Computer
and Information Sciences, Univendty of Mascuet, Amherst, MA, 1984.

[2] Woolf, B., and McDonald, D., "Design imue in building a computer tutor," in IEEE
Ccww ., i S on aArtifical Intelligence for Human-Ma teracon,"
Sept. 1964.

(3] Stevens, A., Colins, A., and Goldin, S., -Disgohg studut-s -m ptim in cae
models," in InthemToewi jaowe of Ma-Machln Studis, 11, 1978 and in Slem=n &
Brown (eds.), Intelligev TuWNIRn Systema, Academic Prem, Cambridge, MA, 198.

(4] Alen, ., A Plan-ased Apprh to Speh Act Rwagnju, in Brady & Berwick (a&),
Coutm Models of Dt.wse, MIT Press, Cambridge, MA, L8.

[5] Brown, I. S., Burton, R., and Bell, A., "SOPHWE, A sophisticated instructional
vironnim t for teacbn electronic turoublehooting (An ecample of A.L in CAL),"

ivermsialw Jowal of Ma.Maclne Studies, 7, 1977.

[6] Burton, R., and Brown, J. S., "An invesgat'on of computer coaeng for informal

5-F-48

larni g actvitIn," in IferuMwi JcW71i of MamxMachie Studn, 11, 1978, also in
Seman & Brown (9d), Ircitger Tamat Sy n, m, Acadnic Pe, Cambridge,
MA, 199L

[7 Man, W., Moore, ., and Levn, J., "A compeno model for human dakg,"
Iamu a JMet CoVerm ce an Anikdi Inell(lge, 977.

[8] McKeown, IL, "Generating relevant Iplanations: Natural language P I i wea to
quesiofs about dam basestutcture," Natimi Praowdbq af d th Anel. of
ArdcWil Inlreillemce, 19M0.

[9] Fmm, T. W., VPrviding help and advice in task otioded sysems, Procedkp
lICA 143, Karbruhe, W. Germany, 1983.

(10] Wulenaky, I., "Taking to UNMx in engish: An oVegw of UC,- Pceedip
AAAI42, Pittbbfrh, PA, August 19G2.

[111 aancey, W., "Tutoring rules for guiding a ae method dialogue," Intermawlw
Jowual of Ma.-Machie Studio, 11, 1M as in Sleeman & Brown (ad), Inaeugra
Twoain System. Academic Fie., Cambridge. MA, .

[121 McDonald, D., "Natural Lmguag Gemeration a a Computia Prokm.: an
Introductilo," in Brady & Berwick (ed), C u Model of Diwse, rffr
frm, Cambridge, MA, 19M.

[13] Soloway, E, Woolf, B., Barth, P., and Rubin, E., "MENOUM An intetll t tutoring
system for novice progrmmer" in the Sevmnth Imermowala Jobw Ca 'eece a
Artic'/l Intelligmce, Vancouver, Canada, 1961.

[14] Soloway, E., Bonar, I., Woolf, B., Barth, P., Rubin, E., and Eulich, IL, Cognition
and pogamming: Why your students write those crazy porams," P eedngs f
the NIMda M wato CmPMan Coeremce, NECC, No. Detom, TX, L961.

[15] Rubin, E., A Bq Finder fo Pacal Progrmu, Unpublished Masters Theis, Univewt
of Maachusetts, Amherst, MA, 1961.

[16] Bonar, I., "Colecting and analyzing on-ine poo from novice progammmur"
eaMvioral Reerch Method ad Inaaetario,, 1982.

[171 Conklin, E.,"." PhD. Theis, Univent of MaahunAmherst, MA, 1983, am
avW ble as Tech Repx ##.

[18] Golkdtein, L, "Te Genetic Graph," in Sieeman & Brown (c&), Intelliget Tuoring
Syamu, Academic Pie., Cambridge, MA, L982.

[19 1onklin, E., Edich,., and McDonald, D., "visual Saience," CognIve iewce Joir ,

1964.

5-F.49

[201 Riudand, E, "Undestanding undentanding matlematics," Cgtved cience, Vol 2,
No. 4, 1918.

[211 Collins A., Warnock, E., and Paumfiume, I., -Analy~s and synthia of tutoria
dalogus," Prak ofey~ Lewwb anmd Moburim. vol. 9, Acadlemic Poo, Inc., 975.

[22] Cu., and Simon, 'oem

123] Damar, J., I e~ din the hgaf4 novie pop-,umudg. Ph.D. Dluiertalan,
Deartnmw of Computer and Infomatio Scence, Univerdy of Mansumcbu .
Amhra, MA, 1964.

[24] Jalaon " and Saloway, E. "PROUST: Knowledgsebaued program debugging,"
Proceedings Eighth IofNtreioni Sf twwe Engluwing Ccq~armwce Orlano, FL. March
1964.

(25 far-Mg, J., bkDurmat, L, Simon, D., and Sman, H., "Expert and novice performance
in wiving physics polems," Sciene, Vol. 20k, 20, 196.

P26 Reff, F.. "Phy"ic..

[271 Dana,, J., "Nauwal poblem wivng wtategies and pogramming language conwtucts,"
Proceeding, of the Fawth Mmi Corerence of the Cfoniiv Sciece Society, IMg.

(281 Gfice, H., Ogc and Conveant," in Cole & Morga (ads. Syuut and Seuolce,
Academic Prow, Now York, pp. 41-58, 1975.

[291 collis, A., Wamnock, E., and Pausfiume, J., -Analyss and synthei of trial
dalogue, Pricbawj of Lem'nlau ad Mat~adlo, Vol. 9, Academic Press, Now
York, 1975.

[30] Relchman, R., -Plain Speaking: A Themy and Grammar od Spontaneom. Dbuoue,"
PhID. Thesis, Harvar University, Depaitmen of Madhmatics, alg Bolt, Beranek
and Newman, Technical Report ~461, 1981.

[31] Sans, L., -Parental Communication Deviance and Schizphena A
CognltiveDevelopMental AnalyWi, in Valna & Hintlka (a&), Cognit Cmwarira
an COwa~anIcaia, im6.

5-F-50

APPENDIX 5-G

TEACHING A COW INDUS7RIAL PROCESS

Bevel' Woolf
Darrel Blegen

Jol mn H. Jansen
AMi Verloop

COINS Technical Report 86-24

I

A slightly condensed version of this paper has appeared in the National Conference
for Artificial Intelligence (AAAI-86), Philadelphia, PA., 1986.

I

,I

TEACING A COMPLEX INDUSTRIAL PROCESS

Beverly Woolf
Computer ad nfrainSciee

Univtityo Ma mc hutts
Amlert, M Mchuets, 01003

Johan IL Jansen
Ari Veloop

J. IL Jams Co., Inc.
Stem and Nwe: Elngneem

18016 140 Ave. N.E.
Woodinville (Seattle), WA "M62

ABSTR ACr

Computer training for industry is often not capable of providing advice
custm-tailored for a specific student and a specific learning situation. In this paper
we descibe an intellient computer-aided systemn that povides multiple expl
and tutoring facilities temr to the individual student in an industri setting. The
tutor is based on a mathematically accurate formulation of the kraft recovery boiler
and provides an interactive dsmulation complete with help, hints, explanations, and
tutoring. The approach Is eeiible to a wide variety of nee a industrial
problems in which the Val is to train an operator to control a complex system and
to solve difficult "real time" eme

'Itis sirk w wpmted by The American Paper Initute, Inc. a mi-ert ude institution
for the pulp, per. ad peeband industry m the United Stem Enersy und Mateimi
Deplrmez, 260 Madison Ave., New York, NY, 10016. Prepamaon of this paper ws opported
by the Air Farce System CAmmand, Rome Air Develpment Center, Griffim AF, New York.
13441 and the Air Force Office a Scimentific Research, Boin AF, DC 2MM tder contract
No. F30602 2CO0 5-G-2

Learning how to control a complex industrial process takes years of practice
and training; an operator must comprehend the physical and mathematical
formulation of the process and must be skilled in handling a number of
unforesn opmt problem and emgenc. Even experienced operators need
continuous training. A potentially significant way to trai both eRxienced and
student operators for such work is through a "reactive computer environment w

[Brown et al, L2] that simulates the process and allows the learner t propose
hypothecs solution that can be evaluated in "real time". However, a simulation
without a tutoring component will not test whether a student has actually
improved in his ability to handle the situation. In addition, a simulation alone
might not provide the conceptual fidelity [Hoilan, 1984] necesary for an opeator
to learn how to use the concepts and trends of the process or how to reamon
about the simulation. For instance, evaluating the rate of change of process
variables and comparing their relative values over time is an important pedagoigal
skill supporting expert reasoning; yet rate of change is a difficult concept to

represent solely with the gauges in a traditional simulation.

RECOVERY
BOILER - CAS-
TUTOR

SA]ME 6

DlIRI 0
EMISINS755 STEM1ei

EFICII. --- FEEDATER-C--

ItJLI IILIYV . , []I iqua- Uil

Rpm L- 8tedbo vbw d do 3aM7 ism.

5-G-3

meN~me~e m, J e frn nmm mm~mm am mmimlman nm

We have built a Recovery Boiler Tutor, RBT, that provides tools for
developing abstract models of a complex procem. The system does not actually
represent the mental models that a learner might develop; rather, it provides tools
for reasoning about that complex proces. These tools include graphs to
dem-ntrate the relationship of process parameters over time, meters to measure
safety, emiMons, efficiency, reliability, and safety, and interactie dialogues to
tutor the operator about the on-Soing proce.. The synec renders a
mathematically and physicaly accurate simulation of a kraft boiler and interacts
with the student about tho concepts needed for his exploration of the boiler.
Our Val has been to couple the mo vaion appeal of an interactive imulation
with the tutoring and modeling ability of an artifical intelligence system to direct
the student in his e .eietation.

The tutor was built in direct response to a serious industrial situation. Many
indusnitl accidents, caued in part by human errors, have lead to dangerous and
costly exploso of rmcovery boilers in pulp and paper mills. The American
Paper Institute" built the interactive tutor to provide on-ste trmining in the
control room of recovery boilers. The tutor is now being beta tested in pulp and
paper mills acw the United States and is being prepared for nationwide
distribution.

2. The Recovery Boiler Tutor

A recovery boiler is an extremely complex machine found in hundreds of
pulp and paper mills around the world. Figure 1, from the RET screen, pictures
a typical boiler and some of the meters used by an operator to control the
proc. The actual boiler can cost up to 7O million and can be up to 20 stories
high. Its function is to procemes the spent black liquor that can be produced in a ,
pulp mill, up to M tonsday, and to allow recovery and re-use of the pulping
chemicals. It is a process in which hot and molten inorganic chemicals may lead
to smeit/water and combustible ga explosions, endangering life and property.

The goal behind the tutor is to challenge an operator, to solve boiler 0
problems and to maintain his incentive to continue to "play" with the tutor. The
operator is encouraged to move setpoint controllers and to watch the resuts of his
actions on the animated boiler or control board. The tutor monitors the
operator's freewheeling trial and error behavior and provides help, hints,
explanations, and tutoring when needed or requested. 0

The Aerindcn Paper Institute d a non-proft trade 5nt4tution fr the pulp, per, and
papeabowr industry in the United States. -5-G-4

[Note: A partial olackout is in progre and it will lead to deteriortion of the
combustion proces if no action is taken. Meters indicate that CO, S02, an 02

-edI ame abnormally WghLI

[An alum bt M"younde]
Tutor: What action are you ping to take? -
Student: ameck unelt spout oongwater. [Student's action does not rnlt in a

Cham in the boiler.
Tutor. It looks am though the liquor isn't burning ...

SWuAM*. Help What Is Ping on? [Student request help.]
Tutor A partial blackout is occurring and this causes TRS, CO, S02, and 02 to 0

increase. Steam flow and steam temperature us dropping. I think part of
the bed is not burning.

Student Rod the primary air ports. [A =nall mprovement in the boiler readings
can be obsewed.J

Tutor. Your action is rcrrect; however, at this time radding alone is not effective 0

Student: Raine the liquor tmpeature. [Student's action does not reverse the
emergency and a ww alarm bu=e sounds]

Tutor. Rodding the air port apparently was not enough to undo the blackout.
Student: Increase the oil fuel supply. [Student's action reveries the emergency.] 0
Tutor. That solved the problem airight. Good thinkring.-

Analysis of thi problem: You had a partial blackout caused by plugged primary
air ports and a cold bed. Partial blackout can be effectively treated through a
combination of rodding the primary air ports and adin more heat. The problem 0
can be avoided by keepin the air ports clean.

11gw. 2: Dialogn DIwM Tuto aud Operator.

An ezample interactim* b3etween the student and tutor is shown in Figure
2. As the operator changes setpoint controllers and requests information about the
boiler, the tutor selectively discusses the optimality of his action (we sbow how in
Section 3) and suggests how he might better focus his action or better utiliz his
data. An important feature to note about this dialogue is that at any point
during the simulated emergency there are a large number of actions an operator
might take and, as the problem worsens, an increainag number of actions that be
shmMl take to correct the operat conditions. Thus, an immediate and correct
response might require only one action, such as rodding the primary air ports, but

OMe duftoue of Figure 2 was not actually produced in nauual language; student hw wo
handled through menu (Fgure 3) and tutor output produced by cuttin5 tw fran

- -'ex Met tfloladed when the emergency was tavaked.

5-G-5

iiiiif~~lWhat Are You Going to Do
iIIiIliIitIWh~at Do You Want To Do ~I9I~lh

Determine source of dilution
H

Check instrumentation Look at boiler
Check dissolving tank agitators Manually adjust controls
Rod smelt spout Flip emergency switchiIUse portable auxiliary burner See panelboard
Remove liquor guns See alarm status
Put in liquor gun* Go do something
Clean liquor guns See trends
Rod primary air ports Examine report
Rod secondary air ports Help
Cheek smelt spout cooling water Go to analysis & quit
Start standby feewdwater pumps Change ROT* mode
Restore water flow to deaerator Nothing
Quit___________________

(A)()
11m. 3Mu ft Mmd Tasks to be Nfurusi ft t SA.1

* a delayed response causes the situation to worsen and requires the addition of
auxiliary fueL

The operator interact with the tutor through a hierarchy of menus, one of
which is shown in Figure 3. Mw firm menu, (A), allows an operator to select a
physical activty to be performed on the boiler, such as checking for a tube leak
or rodding the smelt spout. The second menu, (13), allows the operator to select
a particular computer screen, such a the alarn board or control panel board.

The student can initiate any of 20 tang tuahiom, emrencies, or
opeang conditions (see Appendix 1). He can also ask that an emergency be
chosen for him or he might accidently trigger an emergency a a result of his
action on the boiler. Once an emergency has been initiated, the student shoul
adjust mter and perform actions on the simulated boiler to sove the emergency.

* For eample, if the system hasa simulated a TRS reading of greater than 15
ppm and if the amount of oxygen is lea than 2%, then the student is expected to

incrasethe oxygen until it is 2.5%. If he does this, the evel of TRS wl
autmaicalybe reduced to lea than 5 ppm and the boiler will return to a

normal state. Howeve, if he does not perform this action, a critical situation will
* develop aIcoPanied pmbyby a blackout and, if the situation is allowed to

continue, a dangerous explosion.

While the simulation is running, the operator can view the boiler from many
directions, and can focus in on several components, such as the fire bed in Figure

4 4. The tutor provides anssance through visual clues, such as a darkened smelt
bed; acoustic clues, ringing alarm buzzer, textual help, epatin, and dialogues,
such as that illustrated in Figure 2. The operator can request up to 30 process
parameters on the complete panel board, Figure 5 or can view an alarm board
(riot shown). The tutor allows the student to change 20 uetpoints and to ask

5-G-6

RECOVERY
BOILER LUE GAS-
TUTOR _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

SAFETY 1

TRS 0.

____ __ IPp"
EMISSIONS75 EN61

Q371.1

EFFIC IENCY EDAR

RELIABILITY lqo a

0'

1tm 49 heam ThuW of do fe &i

menued questiom suh is '"Jj is the problem?0, "How do I jet out of it?-,
"What cauaed it2', and "%%a can I do to preven ft?.! The operato cmn
request mewe reacHnp phyzica and chemical repot. dynamic trends of variables.
All variables ar updated in real time (every 1 or 2 m=&nd).

* In addition to poviding information about the eVplci variablies in the
boiler, RBT Provides information about implicit procemfs through reasouin tools,
with which an operator can understand and reaon about the complex procems.
One =1ch tools is compodite meters (let side of FRm I and 5). These meters
record the gtate of the bolrusing synthetic measures for ufgfl g~jiWg

* s~~SIWimac and abh1ja of the boiler. The meter reading ar calculated from
complex mathematical formulae that would rarely, if eve, be used by an operator
to evaluate the same charceitc of their boiler. For istance, the safety mete
is a compolition of seven ineednt parameters, including steam pressure, mtam
flow, steam temperature, feedwater flow, drum water level, firing liquor solids,

* and combustible. in the flue gas. Meter readinags allow a student to make

*nm towr quectIs m mnswud by cuttin tex fmr a M1e which we auded wth t
qleclfl CuCrge~. Thin queshois do not povie the basi af the tworls knowledge

* repreueP.stm, which wil be dlacuued in Secim 3.2

5-G-7

STEM FLUE GAS

BOILER Drum 1167 FEEDUATER Furnace
TUTOR * Q Mpph 488.3 1 - 1 ,1

SAET -impressure COTUS 3002
4641 p's'pp" pp" Pro* -"~j~attemp 1.9

__________ * DC Dilution Flue Gas Temwperature
755__wpm ID Fan

EMISSIONS Sooth lve 670
E"1 or Mpph 36.6 ijj- Ban East, DCE

COMBUST ION AIR

EFIINYSplit Press Temp LIQUOR "AXE-UP
x) (.%"1) (OF) Mpph 194.1-prim 55 1.9 388 9p" 291

OF 248 Saltcake

REIBLTY sc 4 S.8 388 x Sol 65.8 lb/1u a
EIAIIYDISSOLVING TANK stm/~liq 3.68 UIIR I

Level(x) Density(x) Flow(gpm) psi LIR OL

86 946363

14M 5: 7W CmNP~ub CAuuuI PaMiL

inferences about the effect of his actions on the boae using charctrsc Of the
rnngboiler. Thlee meters are not presently available on existing pulp and

paper mill control panwls; howeve, if they prov effective as training aids, they
could be Inoprtdinto actual control panels.

Other reasoning tools include trend analyses, Figure 6, and animated0
graphics, such as shown in Figures 1 and 4. Trend anl~yses show an operator
how essential proces variables interact in real time by allowing him to select up
to 10 variables, including liquor flow, oil flow, and air flow, etc, and to plot
each agai ns the others and time. Animated graphics ane provided as a part of
every view of the boiler and include realistic and changing drawings of dynamic
components of the boiler, such as steam, fire, smoke, black liquor, and fuel.

Each student action, be it a setpoint adjustment or proposed solution, is
recorded in an accumulated response value. Thim value reflects an operator-s
Overall score and how successful, Or unsuccessful, his actions have been and
whether the actions were performed in sequence with other relevant or irrelevant
actions. This accumulated value is not presently used by the tutor, but the
notation might be used to sensitize the tutor's future responses to thle student's
record. For instance, if the operator has successfully solved a number of boiler
emergencies, the accumulated value might be used to temper subsequent tutoring0

5-G-8

BOILER

TUTOR FLEGAS

SAFETYA

EMISSIONS Pp" E"

722 647

EFFICIENCY _ r tE

16".6
0- _-FUEL

RELIABILITY Iliquor gas
Liquor. f low Feedwater flow 258 .
Steamt f law Air flow Steam Pressure

___________Drum level 02 Tag ~ p 8 ~

so thet it is les intuuhe. Similarly, if a studlent's psw perfomnce has; been
poor, the accumulated value could be used to activate aore aweesdW relones
from the tutor.

3. MultI*l Re jlntdum of'Kold

Multiple concepts and processes owere represented in RBTr, some procedurally,
some declaratively, and some in both ways. Far ezample, emergdee in the steam
boiler were frn represented as a set of mathematical formulae so tha process
parameters and meter values could be produced accurately in the imulation. Then
these Ume ergencies were encoded within. the tutor's knowledge base as a
frame-like data structure with slots for preconditions, optimal actions, and
conditions for solution satisfaction so that the tutor could evaluate and comment
upon the student's solution.

5-G-9

RKM can -eonz and explain:

* equipment and proc. flows,

* emrede prtn problems as well as normal conditions,

* solutions to ergnisand operat problems,

* proeins for implementing solutions, and

* tuoring strategies for assisting the student.

Four modules wer used to represent this knowledge: uvdiudlo,, buowledge bau,
anadeut xwde, and kouducdof atuwegin. Development of the last three

compnents, was bMpire by prior work in intelligent tutoring systems [Brwna at
al., 1982; Anderson at al., 1965, Sleeman, 1962, S3te at al, 196; and Woolf and

Mc~nad,194a 194bj

Mwe sbmkdms use a mathematical foundation to depict prcee in a boiler
through meter readings and four animated views of the boiler. It reacts to more
than 35 proem prameters and generates dynamically accurate reports of the
thermal, chemical. and evironmental performance of th* oie (not sbown) upon
request. Au alaurn board (not dbown) represents 25 variables whoms button will
turn red and alaum sounded when an abnormal condition exi for that
parameter. 'The simulation is interactive and inqpectable in that it displays a -zeal
time* model of its procw, yet allows the student to 'Op' the proem. at anytime
to engage in activities needed to develap his mental models [Holian et al., 19641 0
The operators who tested RBT mentioned that they like being able to stop the
procs. to ask questions or to explore boiler characteristics.

If a student working on a problem inadvertently trigers a second problem,
the least serious problem will be placed on a stack and held in abeyance while
the student is coached to solve the more serious problem. After the more serious
Problem is solved, the student is coached to solve the remaining one. Thus, the
simulation provides facilities for handling multiple intnitOsof eegni

Engineering details about the steamn and chemical pmnmeteti in RIM and the bolr .mulatkm
capabilities can be found in [Janaeu et al., 19661.

5-G-10

One advantage ot a formal representation of the proces is the availability
of a "database of powible worlds into which information band on typical or

prevousmoves can be fed into the simulation at anytime [Brown et al, 1982] and
a solution found. In this way, a student's hy-heia cases can be pruoaed,
veiffed, and integrated into his, mental model of the boiler.

3.2 mhm amdFw dnand Onerat. CAmdltm

The kuwwledge Mmw contains prcniinpostoonditioms, and solutions for
emrnciesVA or operating conditions, desncibed as inunm.g Scenarios are

repesetedin frame-lke text files containing Inrecond it, postconditions, and
acceptable solutions for each scenario. For example, in Lisp notation, a true
blackout would be described as:

(or (< bakout-factor 1)

(or (increasing 0±)

-f~ssn TRS)
(increaftn C0)
(increasin Sol))

(and (W lco~atr1
(>he~nu MOD

Scenarios in RN!' have beent teased apart to represent succesively more
serious problems. For instance, a smelt spout pluggage is reprete as separate
scenari depending on whother the solution requires rodding. the spout, applying a
portable auxiliary burner, removing the liquor, or a combiao of ail three.
Again, formalized knowledg of the domain made It eas to represent and
evaluate graduated scenarios, as well as multiple operator actions.0

The efficiency of the student's action i evaluated both through the type of
action performed, such as iija gdU Q2 or jgincn seamflow for a true
blackout, and the effect of that action on the boiler. Thus, if an 1napprpriate
action nevertheless resulted in a safe boiler, the student would be told that his 0
action worked, but that it was not optimal. For example, a partial furnace
blackout requiring manual rodding of the air delivery system can be alleviated by
shutting down the boiler. However, this is an expean-'veW and unwarrented action
and the student will be advised to use an alternative approach.

5-G-11

23 Stud Madel to Monitor the Oneratr . Soluio

The student modaL records actions carried out by the student in solving the
emergency or operating problem. It reonzscorrect as well as incorrect action
and identifies each as relevant, relevant but not optimal, or irrelevt.

The tutor compare the studen-s actions with those specifiled by the
knowledge base and uses a iamplified differential model to recognize and comment
about the difference betwee the two. For instancv if a partial blackout has
beena aulated, the black liquor solids ame less tha 5896, and the operator adjusts
the primary air presure, the tutor mught interrupt with a msgesuch aW

"Primary ai pressure as one factor that might contribute to blackout, but there is
another more crucial factor - try again.'

or

"You have overlooked a major contributing factor to blackouts.

The student model is currnty the weakest component of the tutor. We
intend to incorpoarate inferences about patterns of student eror. and possible

mscncepions a a way to increase the tutor's ability to reason about what the
operaItor has accomplished so far and what possble micocein he has. For
ezample, we would like to test presumed micnetosand use future operator
actions to verify the ezistence of those miccetons. To do so, the student
model would have to link misocpin with scenarios and to record all common
errors and evidence for possible micnetos

3A IntutnlStratei to Assit OhRS~

The butnictl strwesa~ contain deciion logic and rules to guide the
tutor's intervention of the operator's actions. In RDT, the intent has been to
"subordinate teaching to learning' and to allow the student to exspeziment while
developing his own criteria about boiler emrenis The tutor guides the student,
but does not provide a solution as long as the student's performance appears to
be moving closer to a precise goal.

OMiuonceptioas wil be compiled by J. H. Jansen Co., Inc. Steam and Power Engineer:, who,
in additio, to being the author: of RBT. have extensive operating exeience with boemr in the

Represented as If/tben rules based on a specific emergency and a specific

stuentactontheI --- dnalrules are desined to verify that the student has
ainked- the right questions and has made the correct inferece about the saliency

of his data. Respome ame divded into three categories.

ludhed seln "Have you. cousidered the rate of Increase of 02r
"if what you suggest is true, then how would you eplan the low
emisdans waing?

SYath"" dat: 'SO&h 02 and TRS have abnormal trends.
"Did you notice the relationt between steam flaw and liquo flow?'

CI t. actina: "Yes It looks lik rodding the ports workted this time".

The tutor selects from within each category a respons that address both the,
operators action and his apparent ability to solve the, problem. Special

preauionrymeages are added to the most specific tutor resoes to alert an
opertorwhen a full scale diAse is imminent.

The Intwtional strateies are deigned to encurage an operao's
generaton of hypotheses. Ltvidence from other problem solving domains such a
medicine [Barrows and Tamblyn, 1M), suggests that students generate multipie
(usually 3-5) hyootheuss rapidly and make crrtect dlagnse with ounly 203 of the
available data.' The RBr tutor was deigned to be a partner and co-solver of
problems with the operator, who Is encouraged to recopn the effec (or lack of
semis) of his hypothees and to experiment with multiple eIpIanation of an

eMgenc. No penalty is ezacted for slow response or for long periods of trial
and errproblem solvins.

* Ths approach is distinct from that of Anderson et al, [1985] and Reiser et
al., [1985J whose geometry and Lisp, tuto m meitl -1ackolde a incorrect
student answers and provide hints. Theme authors argue that eonussolution
paths in geometry and Lisp are often so ambiguous and delayed that they might
not be recognized for a long time, if -at all, and then the source of the original

* error migh be forgotten. Therefore,, immediate computer tutor feedback is
needed tO avoid fruitlein effort.

However, in indstrial trainin, the trainee must learn to evaluate his own
performance from its effect on the industrial proces. He should trust the proces

* itself to provide the feedback, as much as is possble. In RET we provide this

"Mledical umnan hawe been found to ask 60% of thewr quesias whie weatching for~ new data
and obtain 759k of their agnificant inforniadon within the &Wr 10 minutes after a problem is
sated PDartmnwW n Taznblyn 19601 5-G- 13

feedback through animated simulations, trend analyses, and -real-time" dynamically
updated awtem The textual dialogue from the tutor provides added assrace
that the operator has extracted as much information a possible from the data and
it establishes a mechaism to redirect him if he has not PBurton and Brown, 1982;
Goldtein, 1982J.

4. xtL

RBT was developed on an IBM PC AT (512 KB RAM) wm& enhanced
graphics and a 20 M33 hard disk. It usm a math co-procesmor, two display screens
(one color), and a two key mouse. The simulation was Implemented in Fortan
and took 321 KB; the tor was IpeetdIn C and took 1IM KB.

Although we tied to implement the tuto in Lisp, we found extensve
interfacing and memory probleam InWding segment se restricl=m (64k),

Incmpti~ltywith the ezitlu Fortran simulator, and addreesable RAM
resrlclom(640K). To circumvent thes problems the tuorwsdvlpdiC

with many ijsp features implemented In C, snuch as functional call within the
parmt.. of C functions. Meter readinas and student actions were transferred
from the imulation, in Fortran, to the tutor, in C, through vectors pained
between the two progra.

Mw aroch taken here can be extended to other engineering and industrial
training problems. Factous that are likely to be considered In buildig a training
system ane avaibility, cos, and apporate I of software and hardware for the
scope of the task. In our case, decliom were made to enure swift production of
a dsmulatlon and tutor, gime przmtl 18 months-a de -- amet tim.

The tutor has been well-received thus far. It is presently used in actual
training in the control raom of several pulp and paper mills throughout the US.
Formal evaluation will be available soon. However, informal evaluation suggests
that working operators enjoy the simulation and handle it with extreme care.
They behave as they might at the actual control panel of the pulp mill, slowly
changing parameters adjusting meters through small intervals, and checking each
action and examining several meter readings before moving on to the next action.

5-G-14

Both exeenced and novice operators engage an lively use of the system
aftrabout a ha ho int ion. When several operators interact with the
ttor, they sometimes trade "wa tones advising each other about rarely am
situations In this way, aerenced operators frequently become partners with
novice operators as they work together to imulate and solv unusual problems.

Sveral fundamen lemom about building an Intelligent tuto were learned
from this project. The first and foremost was the need for "in-houe" eet; in
our case the pro ammer, project manager, and director of the project were
themselves chemical engineers. More than 30 years of theoretical and practical
knowedge about boier design and teaching was incrortd into the system. Had
the experts no previously identified the cemicl. pbysal, and thm m
characterst of the boiler and collected examples of socedu tewi activities,
development time for this project would have been much oager.

A aed critical leemo was the need to clarify and implemen the
componens of a teaching pho y early in the development procem in order to
ensure full realization of a tutor in the completed system. For example, in order
to manifest a philosophy of subordinating teaching to lemaing, we had to build up
the system's ability to recogniz partially cor-ret as well a i-nevant actions, (in
the knowledge bin), to custom-ailor its responses to eac type of answer (in the
i u n ra), and to quietly monito the operator wil judiciously
resoninS about when to interrupt him (in the student model). The need to limit
authoritaian responses from the system and to restrict it to giving only as much
help as absolutely needed, meant that tutoring was not tacked onto the end of an
expert system, but rather was developed as a part of componnts of the expert
system. We suggest that slence (inactivity) on the part of a computer system is
in itself a recognition of the learner's role in the training procem and provides an
expremon of our confidence in his progress.

A third and most surprising lemon learnt from this project was that a
teaching system can be designed for multiple students. The system is now being
used with groups of operators who work with each other and with the computer
to solve problems; pedagogicay wholesome things are beginning to happen among
them. For example, novice and experienced operators, who might otherwise not
be comparable in training and ability, can share their problem solving knowledge
and experience; each teaching and learning in a non-evaluadve environment.

Several issues remain unresolved in our work to improve the compter tutor's
ability to respond to the student. We need to to sort out those sk/ils or processes
that a student has learned from those that he is still trying to learn and to sort

5-G-15

out those concepts he has from those he still has problems with; we also need to
recognize which techniques, have been effective in helping him. Currently, the tuor
can not do this and we have sgested how we might extend the student model to
icorporme inferences made about the student's knowledge, his erros and potential
mccption to make prog.r along these lines.

The authors thak Jermy Metz, Bradford LeaT , and the A.P.I Recovery
Boiler Committee for their e=ouaement and mpport.

Anderson, J., Boyle, C., and Yost, G., -rbe Geometry Tutor," in Praccldp ofP
the Iut anu i.l JdhW CoVereI an Anrftflal lxNUtege , Los Angples, 1965.

Barrows, H. S., and Tamblyn, R. H., P4iaivmed Lawwkg: Ax Appvach to
Medical Eduwatim, Springer Publishing Co., New York, 1M0.

Burton, I., and Brown, ., An nwiptian of Computer Couching-for Informal
Learning Activids," in S Wm, D. and Brown, J. S. (Ede.), Intelligew
Twwbq Syaam, A cademic Pnm, Cambridge, Ms, 19.

Brown., J., Burton, PL, and deKl , J., e Natu Lsanuag, ad
Knowledge Eninern Techiques in SOPHM it U, and M,- in Seman,
D. and Brown, J. S. (Eds.), Intelligent Twmrg Symms, Academic Press,
Cambridge, Mm, 19M

Goldstein, I., "lb. Genetic Graph: A Representation for the Evolution of
Procedural Knowledge," in Sleeman, D. and Brown, J. S. (Ed.), Intellit
T,,ring System, Academic Press, Cambridge, Maw, 1982.

Hiolan, J., Hutchins, E., and Weitzman, L., "S77AMEL An Interactive
Inspectable Simulation-based Training System," in The Al. Magazine, Summer,
1984.

Jansen, J., Verloop, A., and Blegen, D., "Recovery Boiler Tutor. An Interactive
Simulation and Training Aid," in Proceedings of the Technical Aociaiou of
the Pulp and Paper Industry Engineering CoVerence, Seattle, 1986 (in print).

5-G-16

Reiser, B., Anderon, J., and Farrell, R., -Dynamic Student Modelling in an
Intelligent Tutor for Lisp Programming, in Proceedings of the Intentuona/
Joiw Coqfernc en Artftial Iaelligence, Los Angeles, 1985.

Slater, J, Petroman, R., and Shiyam-Sunder, S., "An Expert Tutor for Rigid Body
Mechanics: Athena Cats - MACAVITY," in Proc e ndu of the Epet Symms
in Gowwau Syupoasio, IEEE and MITRE Corp, Oct 1984.

Sleeman, D., "Ameing Aspects of Competence in Basic Algebra," in Sleeman, D.
and Brown, J. S. (Ed.), Intefent Tidolng Sytms., Academic Press,
Cambrdge, Mm, 9

Woolf, B. and Mdond, D., -Context-dependent Transtions in Tutoring
Dicourse," in Procedings of the Nationa Couq1erence on Ant~icil Ingutigoe,
(AAAI), Austin, TX, Aug M9Sa.

Woolf, B. and McDonald, D., "Desig Isues in Building a Computer Tutor," in
IEEE Compuar, Sept 1964b.

The A.P1. Recowery Bolr Reference MoL, Prepared by J. H. Jansen Co.,
America Paper Institute, New York, NY., 1982.

9. A n gneln 1: Enierancu and Prb .mnl by the
Tutor

Smelt/Water Exploion
Combustible Gas Exploson
Tube Rupture (variou locations)

OpuuUdma Prtm
High Drum Water Level
Low Drum Water Level
LM of Steam Header Pressure
Nozule Pluggap

* Liquor Supply Loss
Smelt Spout Pluggage
Heavy Smelt Run-off
ID Fan Failure
FD Fan Failure
Carryover and Pluggage
Depleted Weak Wash Flow

5-G-17

Low liquor Furng Solids
Partial Blackout
Coupife Blackout
Lmsruzmt Air Failure
Electical Power Failure

5-G- 18

APPENDIX 5-H

Building a Community Memory for
Intelligent Tutoring Systems'

Beverly Woolf and Pat Cunninghamt
Department of Computer and Information Science,

University of Massachusetts, Amherst, Massachusetts 01003
tThe Hartford Graduate Center, Hartford, Conn 06101

completion of one system and the beginning of another. A
Abstract completed knowledge base provides grit for our collective

This article discuse. the need for multiple experts to grinder, forcing us to further clarify and amplify teaching
work together to develop knowledge representation and learning knowledge and to improve communication be-
systenu for intelligent tutors. Three case studies am tween those experts who contribute to it.
examined in which the need for a pragmatic approach Articulating and incorporating communal knowledge
to the problemn of knowledge acquisition has become into a tutor reveals a great deal about each area of ex-
apparent. Example methodologies for building tools
for the knowledge acquisition phase are described in- pertise and about the tools used by the experts to per-
cluding specific tasks and criteria that might be used form problem solving in the domain. For example, build-
to transfer expertise from several experts to an intel- ing the boiler tutor described in Section 2.1 indicated sev-
ligent tutoring system. eral weaknesses in the tools available to industrial boiler S

operators. We therefore developed simulation tools, in-
cluding abstract meters and trends (Figure 1) that might

1. A Community Memory ultimately be integrated into the equipment used by boiler

Building intelligent tutoring systems requires community operators. Similarly, in building a geometry tutor jAn-
knowledge, i.e., multiple experts working together to en- derson, Boyle, and Yost, 19851 provided an environment
code individual expertise in an intelligent tutor. This that would be a valuable aid to motivated learners, even
knowledge acquisition phase might span months or year. without help from any on-line tutor. Anderson introduced
Thus, we need a framework to simplify changing knowl- visualization and forward and backward reasoning tern-
edge in the tutors as well as a suite of programming tools plates that would facilitate geometry problem-solving in-
for browsing and summarizing knowledge, for tracing and dependent of teaching media.
explaining the student model, and for tracking reasoning In the next section, we briefly describe our three in-
about teaching strategies. In short, tools and methodolo- telligent tutors and in Section I indicate some method-
gies are needed that can be used specifically for knowledge ologies for how knowledge can be acquired from multiple
acquisition activities within an intelligent tutor. In this experts to build additional tutors.
paper we share our experience of building three intelligent 11. CASE STUDIES
tutors and describe the criteria for, and in some cases, the
emerging tools used within this acquisition process. A. RBT for Teaching Complex Industrial

The concept of a community memory for intelligent Processes
tutors reflects the fact that knowledge of tutoring is often The first tutor to be discussed is fully implemented, tested,
distributed, incomplete, and acquired incrementally [Bo- and now used for training in nearly 60 industrial sites
brow, Mittal and Stefik, 1861 and thus requires contri- across America. The Recovery Boiler Tutor, RBT 2 , is
butions from several experts. This is especially true in described elsewhere [Woolf, Blegen, Jansen and Verloop,
tutoring systems because the domain expert, cognitive sci- 19861, and will only be summarized here. It provides mul-
entist, and teaching expert are typically not the same per- tiple explanations and tutoring facilities tempered to the
son. Given multiple experts who contribute to building individual user, a control room operator. The tutor is
the system and the need for a large amount of testing and based on a mathematically accurate formulation of the
modification to fine tune the tutor, completion of a tutor boiler and provides an interactive simulation, (Figure 1)
can not be the "final" step in development of a single sys- coile wid p , hinteran ation, igureing
tem, but rather must be a forcing function between the complete with help, hints, explanations, and tutoring.

'This work was supported in part by the Air Force Systems Com-

mand. Rome Air Development Center, Griffiss AFB, New York, 3RBT was built by J. H. Jansen Co., Inc., Steam and Power
13441 and the Air Force Office of Scientific Research, Boiling AFB, Engineers, Woodinville (Seattle) Washington and sponsored by The
DC 20332 under contract No. F30602-85-C-0008. This contract sup- American Paper Institute, a non-profit trade institution for the pulp,
ports the Northeast Artificial intelligence Consortium (NAIC). Par- paper, and paperboard industry in the United Stats, Energy Mate-
..- upport also from URI University Research Initiative Contract risis Department, 260 Madison Ave., New York, NY, 10016.
No. Noooi4-M K-0764.

5-H-1

NM ri

miim 7411 66 i sm"uw _ _ _ _ _ _ _-u _ -.

nf ft I Ir

mu

wv'ei~ _________.....____-"_...._____-

W I it

Figure 1: Several Views of the Recovery Boiler Tutor

The tutor challenges operators to solve boiler emer- communications within a controlled environment to teach

gencies while monitoring their actions and advising them Spanish (Cunningham, 1966I. It uses graphical Cuisenaire

about the optimality of their solutions. The tutor r - rods 3, to generate linguistic situations in which the rod

nizes less than optimal and clearly irrelevant actions and plays various roles. For example, it is used as an object

can continue to be given or taken by a student, or it is used to brush 5modiiesitsresons acordngly Opratrs an ontnue teeth. As anew rod is presented, the student theorizes

their freewheeling or purposeful problem-solving behavior about what situation is encountered and types the appro-

while the tutor offere help, hints, explanations, and tutor-

ing advice when needed or when requested. Operators gain priate phrase below the picture. In the case illustrated at
the top of Figure 2 the tutor presents a rod in the center

experience in recognizing the impact of their actions on the bo T he suuen resnth od fo the new

simulated boiler and to react before the tutor advises them box. The student responds by typing the word for the new

regarding potential problems. piece at the cursor. In the bottom figure, the tutor cor-
rects a student who places an adjective before rather than

Meters, as shown on the left side of screens in Figure 1, after a noun. In this exercise, students might have classi-
record the state of the boiler using synthetic measures for fled the word "blanca" as an adjective referring to the size
safety, emisona, efficiency, and reliabiity of the boiler, of the rod before kntoing its meaning. The tutor does not

The meter readings are calculated from complex mathe. clarify studen& conjectures. Students can later change a

matical formulas that would rarely (if ever) be used by hypothetical definition if in fact the new word turns out
operators to evaluate the boiler. The meters have already to define the color of the rod. Meanwhile, they will have

proved effective as training aids in industrial training sites learned to write the word, spell it, and place it correctly
and could possibly be incorporated into actual control pan- in a sentence.
els.

Operators have reported using the system as much as C. ESE for Teaching Physics
70 hours in three months to practice solving emergencies. A third tutor is now in the early implementation stage.
They handle the simulation with extreme care, behaving t is part of a program to develop interactive and mon-

as they might i the) ;ere in actual control of the pulp mill itored simul:tions to teach physics at the high school or

panel, slowly changing parameters, checking each action, college level. 4 One of these tutors teaches the second law
and examining several meter readings before moving on to
the next action.

B. Caleb for Teaching a Second Lan- 3originaly developed by Gattegno for teaching arithmetic

guage 'Thew tutors aure being built by the Exploring Systems Earth

Our second intelligent tutor teaches languages based on a (ESE) consortium, a group of three universities working together
powerful pedagogy called the "silent way'-a method de- to develop intelligent tutors. The schools include the University of

Massachusetts, San Frascisco State University, sad the University of
veloped by Caleb Gattegno. The system uses non-verbal Hawaii.

5-H-2

bFigure 3: Systems Moving Towards Equilibrium

Expert system shells contain a framework for building

Figure 2: Caleb: A System for Teaching Second Languages knowledge bases about concepts and rules and for mak-

ing inferences about them. However, they are limited as

of thermodynamics and provides a rich environment at specific tools for designing and storing tutoring knowledge.

the atomic level through which the principles of equilib- They are frequently based on production rules and are lim-

rium, entropy, and thermal diffusion can be observed and ited in representing history and dependency of the tutor-

tested [Atkins, 19821. Students are shown (and are able ing interaction. Also, they inadequately represent tutoring

to construtct) collections of atoms that transfer heat to and misconception knowledge such as how to reason about

other atoms through random collision (see Figure 3). They teaching strategies, how to update and patess student od-

can create areas of high-energy atoms, indicated by dark els, how to select a pah through domain concepts, and

squares, along with variously shaped regions within which how to remediate for misconceptions. In this section, we

the high energy atoms can be monitored. Concepts such describe the criteria for developing tools specific to this S

as temperature, energy density, and thermal equilibrium knowledge acquisition process.

can be plotted against each other and against time.

The tutor uses all student activities - including ques- A. Environment Expert
tions, responses, and requests - to formulate its next teach- The first expert needed to build an intelligent tutor is the
ing goal and activity. It uses student actions to determine environmental expert. This person often uses a majority
whether to show an extreme or near-miss example, whether of system memory (Bobrow, Mittal and Stefik, 19861 to 0
to give an analogy or whether to ask a question. To refine provide an envelope within which students and system in-
the tutor's response, we are now studying student miscon- teract. The environment provides specific tools and opera-
ceptions and common errors in learning thermodynamics tors for solving domain problems or for performing domain
and statistics. activities.

Environmental, teaching, cognitive, and domain ex-
III. Tools for Knowledge pert contributions interact strongly with each other-

Acquisition especially those from the environmental expert. For ex-
ample, a system that asks students to record entrance and

Given the complex heterogeneous nature of the knowledge exit angles for light in an optics experiment, asumes that
required to build each of these systems, we need method- the environment supplies such measuring devices.
ologies and tools to transfer teaching and learning knowl- The following criteria for developing a tutoring envi-
edge from human experts to systems under construction. ronment have begun to emerge:
Few such tools exist. 1) Environments should be intuitive, obvious, and fun.

5 The second law states that heat cannot be absorbed rron a rr- Student energy should be spent learning the material, not
voir and completely converted into mechanical work. learning how to use the environment ICunningham, 198MI.

5-H-3

l - I| N

For example, to indicate errors, express feelings or con- cision logic and rules that guide the tutor's intervention
vey meaning, the second-language tutors, visual activities with the student. Tools to facilitate teasing apart and en-
mimic the human Silent Way teache6- gestures, facial ex- coding teaching knowledge are just beginning to emerge.
pressions, and rods. For example, we have developed a framework for manag-

2) Environments should record not only what students ing discourse in an intelligent tutor fWoolf and Murray,
do, but what they did, intended to do, might have forgot- t9871 that reasons dynamically about discourse, student
ten to do, or were unable to do [Burton, in press i. Envi- response, and tutor moves.
ronments should provide a *wide bandwidth" within which The framework (Figure 4) reasons about which ped-
multiple student activities can be entered and analyzed. agogical response to produce and which alternative dis-
For example, the Pascal tutor developed by Johnson and course move to make. It custom-tailors the tutor's re-
Soloway 19841 processed and analyzed an entire student sponse in the form of examples, analogies, and simulations.
program before offering advice. Discourse schemas, or collections of activities and response

3) Environments should be motivated by teaching and profilesare responsible for actually generating system ac-
cognitive knowledge about how experts perform tasks and tions and for interpreting student behavior. The number
the nature of those tasks. For example, Anderson 119811 and type of schemas used is dependent on context.
pci formed extensive research with geometry students be- We used empirical criteria to define discourse schemas: 0
fore developing his geometry tutor interface, and Woolf et tutoring responses were analyzed from empirical studies of
al. 19861 incorporated knowledge from experts with more teaching and learning and from general rules of discourse
than 30 years experience working with boiler operations structureiGrooz and Sidnerl.
before building the RBT interface. The framework is flexible and domain-independent; it

4) Environments must maintain physical fidelity' is designed to be rebuilt - decision points and machine
Ifollan, Hutchins and Weitzman, 19841. The RBT tutor actions are modifiable for fine-tuning system response.
presents a mathematically exact duplicate of the industrial We are now using this framework to improve the
process. It models and updates over 100 parameters every physics tutor's response to idiosyncratic student behav-
two seconds. Visual components of the industrial process ior. Response decisions and machine actions, explicitly
such as alarm boards, control panels, dials, and reports ark represented in the system, can be modified through a ed-
duplicated from the actual control room. itor. Appropriate machine response can be assessed con-

5) Environments should be responsive, permissive, tinuously and improved. In the long term, we intend to

and consistent [Apple, 19851. They should target applica- make this reasoning process available to human teachers,

tions based on skills that people already have, such as mov- who can then modify the tutor for use in a classroom.

ing icons, rather than forcing people to learn new skills. No single teaching strategy is appropriate for every

By responsive, we mean that student actions should have domain. For example, Anderson et al. 119851 built ge-

direct results-that students need not perform rigid sets ometry and Lisp tutors that responded immediately to in-

of actions in rigid and unspecific order to achieve goals. correct student answers. These authors argued that im-

By permissive, we mean that students may do anything mediate computer feedback was needed to avoid fruitless

reasonable and that multiple ways should exist for tak- student effort.
ing action. By consistent, we mean that moving from one This pedagogy was opposite to that used by Cunning-

application to another, (for example, from editing text to ham 119861 and Woolf et al. 119861. These latter tutor's

developing graphics), should not require learning new in- advice was passive, not intrusive. The strategy was to sub-

terfaces. All tools should be based on similar interface de- ordinate teaching to learning, and to allow students to ex-

vices, such as pull-down menus or single and double mouse periment while developing hypotheses about the domain.

clicks. The tutors guided their students toward developing their

No one environment is appropriate for every domain, own intuitions, but did not correct them so long as their

We must study each domain to determine how experts performance appeared to be attaining a precise goal.

function in that domain, how novices might behave dif- In industrial settings, particularly, trainees must learn

ferently, and how novices can be helped to attain expert • to generate multiple hypotheses and to evaluate their own

behavior, performance based on how their actions affect the indus-

trial process. For example, no human tutor is available

B. Teaching Expert durinig normal boiler operation.

Acquiring sufficient and correct teaching expertise is a long
term problem for builders of tutoring systems-in part, C. Cognitive Expert

because sophisticated knowledge about learning, teach- At present, the role of the cognitive scientist is incom-

ing, and domain knowledge remains an active area of re- pletely understood; in part, this expert seeks to discover
search in ,iost domains. Teaching expertise includes de- how people learn and teach in a given domain. For ex-

ample, cognitive science research in thermodynamics will

"Fidelity measures how closely simulated environyment. match the enable systems to recognize common errors, teas apart

real world. High fidelity identifies a system an almost inditinguish. prbable misconce,,tions, and provide effective remedia-

able from the real world.

5-H-4

II

, " 'Sua:

61o

:ItT:.7:w ...

Figure 4: A Framework for Managing Tutoring Discourse

tion. Cognitive science research provides the tutor with a
basis for selecting instructional strategies. The importance fledged team member suggests a less than adequate trans-
of addressing common errors and misconceptions in physics fer of domain knowledge.
is well documented, and the tutor's intelligence hinges on In the tutors described above, the domain experts
making that knowledge explicit, were (and are) integral to the programming effort. The

We want a tutoring system to help students generate programmer, project manager, and director of RBT were
those hypotheses that are necessary precursors to expand- themselves chemical engineers. More than 30 years of the-
ing their intuition, and developing their own models of the oretical and practical knowledge about boiler design and
physical world discover and "listen to" their own scientific teaching strategies were incorporated into the system. De-
intuitions. To do this, we rely on work done by cognitive velopment time for this project would have been much
scientists who study how students reason about qualitative longer than 18 months if these experts had not previously
processes, how teachers impart propaedeutic principles (or identified the boiler's chemical, physical, and thermody-
the knowledge needed for learning some art or science) namic characteristics and collected examples of successful
"Half, in pressj, and what tools are being used by experts teaching activities.
working in the field. The second language tutor was developed by a person

For example, the cognitive science experiments that who holds a graduate degree in teaching English as a sec-
must be performed to build our thermodynamics tutor in- ond language and has spent more than 7 years using the
clude (1) investigation of real-world tools cirrently used by Silent Way to teach intensive English courses to foreigners
physicists, (2) examination of studies that focus on cogni- living in America and to teach Nepali to American Peace
tive processcs used by novices and experts, and (3) com- Corps volunteers living in Nepal.
parison of novice with expert understanding of thermody- Based on the numerous expert systems projects, the
namics. following criteria for acquiring domain knowledge are well

RBT articulates cognitive knowledge by explicitly understood:
recording student attempts to solve emergencies. It shows 1) Domain experts should be true experts-if possible,
students their false paths and gives reasons behind par- the best in the field (Bobrow, Mittal and Stefik, 19861.
ticular rule-of-thumb knowiedge used to solve problems. 2) Domain experts are expensive. Gaining the at-
RBT also provides students with various examples from tention of knowledgeable people is expensive and time
which they can explore problem-solving activities-perhaps consuming. However, the willingness and availability of
in time showing students their own underlying cognitive such experts to participate is critical to the knowledge-
processes. By using such knowledge, a tutor can begin to engineering process. Assigning the task to a person of
help students learn how to learn. lesser ability (or worse, to persons with "time on their

D, Domain Expert hands') might doom a project to failure.
3) Individual domain experts may have incomplete

An in-house domain expert is critical to building an intel- knowledge or conceptual vacuums; therefore multiple ex-
ligent tutoring system. By "in-house", we mean that the perts are needed for testing and modifying domain knowl-
domain expert must join the project team for anywhere edge throughout the tutor's life.
from six months to several years while domain knowledge 4) Similarly, domain knowledge can be overly dis-
is being acquired. Any less commitment than that of full- tributed and spread so diffusely among different experts as

5-H-5

to leave severely restricted any system that uses only a sin- jCunningham, 19861 Cunningham, P., Caleb: A Silent
gle expert I Bobrow, Mittal and Stefik, 19861. Thus domain Second Language Tutor: The Knowledge Acquisition
knowledge must be acquired incrementally and must be Phase, Master's thesis, Tech. Report #87-6. Rensselaer
prototyped. refined, augmented and reimplemented. The Polytechnic Institute, Troy, NY, 1986.
time needed to build a tutoring system "should be mea- !Grosz and Sidner Grosz, B., and Sidner. C.. The Struc-
sured in years, not months, and in tens of worker-years. tures of Discourse Structure, Proceeding.s of tIr Amery-
not worker-months"[Bobrow, Mittal and Stefik, 19861. can Association of Artificial Intelligence, 1985.

5) Domain knowledge as found in textbooks is in- [Johnson and Soloway, 19841 Johnson [. and Soloway E.,
complete and idealized[Bobrow, Mittal and Stefik, 1986!. Intention-Based Diagnosis of Programming Errors, in
Textbooks rarely contain the commonsense knowledge-the Proceedings of the American Association of Artificial In-
know-how used by expert tutors or professionals in the telligence, AAAI-84, Austin, TX, 1984.
field-to help choose another teaching strategy or solve dif- [Half, in pressi Halff, H., Curriculum and Instruction in
ficult problems. Books tend to present clean, uncompli- Automated Tutors, in in Poison, M. and Richardson, J.
cated concepts and results. To teach or solve real-world (Eds.) Foundations of Instructional Tutoring Systems,
problems, tutors must know messy but necessary details of Lawrence Earlbaum Associates, Hillsdale, NJ, in press.
real or perceived links between concepts and unpublishedrules of teaching and learning. lHollan, Hutchins and Weitzman, 19841 Hollan, J.,

Hutchins, E., and Weitzman, L., STEAMER: An Inter-

active Inspectable Simulation-based Training System, in

IV. Conclusion The A.I. Magazine, 1984.
[Mittal and Dym, 19851 Mittal, S. & Dym, C., Knowledge

Communities of experts are needed to provide a focus for Acquisition from Multiple Experts, in AI Magazine,
articulating distributed knowledge in an intelligent tutor. 6(2), 1985.
The resultant machine tutor should include recent as well [Woolf and Murray, 19871 Woolf, B., and Murray, T., A
as historical research about thinking, teaching, and learn- Framework for Representing Tutorial Discourse, Inter-
ing in the domain. Evaluating such an articulation would, national Joint Conference on Artificial Intelligence, Mi-
in itself, contribute to education-and ultimately to corn- lan, Italy, 1987.
munication between experts. [Woolf, Blegen, Jansen and Verloop, 19861 Woolf,

Compiling diverse research results from environmen- Wo, Blegen, Jansen and Veroop, A., Wooln,tal, teaching, cognitive, and domain experts is currently B., Blegen, D., Jansen, J., and Verloop, A., Teaching0
a Complex Industrial Process, Proceedings of National

hampered by lack of explicit tools to help authors trans- Association of Artificial Intelligence, Philadelphia, PA,
fer their knowledge to a system. Based on criteria set
out above, we intend to continue to develop and inte-
grate kno~vledge acquisition tools to facilitate assimilation [Woolf and McDonald, 19841 Woolf, B., and McDonald,

of teaching and learning knowledge into intelligent tutors. D., Design Issues in Building a Computer Tutor, in
IEEE Computer, 1985.

References
(Anderson, 19811 Anderson, J., Tuning of Search of the

Problem Space for Geometry Proofs, International Joint
Conference on Artificial Intelligence, British Colombia,
1981.

Anderson, Boyle, and Yost, 19851 Anderson, J., Boyle,
C., and Yost, G., The Geometry Tutor, in Proceedings
of the International Joint Conference on Artificial In-
telligence, Los Angeles. 1985.

'Apple, 19851 Apple Corp. Inside Macintosh, Vol. 1,
Addison-Wesley, Reading, Mass., 1985.

Atkins, 1982! Atkins, T. The Second Law, Freedman Pub-
lishers, San Francisco, CA, Scientific American Series, 9,

1982.

Bobrow, Mittal and Stefik, 19861 Bobrow, D., Mittal, S.,
and Stefik, M., Expert Systems: Perils and Promise, in
Comr'unications of the ACM, Vol 29, #9, 1986.

Burton. in press i Burton, R., Instructional Environ-
ments, in Poison, M. and Richardson, J. (Eds.) Founda- 0
tions of Instructional Tutoring Systems, Lawrence Earl-
baum Associates, Hillsdale, NJ, in press.

5-H-6

U •|| ! | H m

APPENDIX 5-I

A REPRESENTATION
FOR COLLECTIONS OF TEMPORAL INTERVALS

Bruce Leban, David D. McDonald and David R. Forster

Department of Computer and Information Science
University of Massachusetts

Amherst, MA 01003

ABSTRACT cally about time. The logics are based on the concept that
instead of a predicate calculus statement being universally

representation and re necesary true or false, it may be true or false at different moments
Temporal prsentatonsdreasonings neccury of time. Temporal quantifiers (much like the universal and

components of system that consider events that occur in eltnilqatfe)aeue oalmn h acis

the real world. This work explores ways of considering existential quantifiers) are used to augment the calculus.

collections of intervals of time. This line of research is mo- Allen (1983) describes a computational approach to
tivated by related work being done by our research group maintaining knowledge about events in time, for use in Al
on appointment scheduling and time management. Natu- systems that reason about temporal knowledge. Allen's
ral language expressions that refer to collections of inter- representation takes the concept of a temporal interval an a
vals are used naturally and routinely in these contexts, and primitive and explicitly allows representations of indefinite
an effective means of representing them is essential. and relative temporal knowledge. A temporal interval is

used as the primitive unit because reasoning about points
Previous studies, which considered intervals primarily in time frequently yields counter-intuitive or paradoxical

in isolation, have difficulties in representing some classes
of expressions. This occurs not only with expressions that
explicitly refer to collections of intervals, such as "the first Ladkin (1985, 1986a) makes an argument for the use
of every month," but also with expressions that do so only of non-convex intervals for reasoning. A convex interval
implicitly, such as the U.S. Election Day: 'the first Tues- of nontcovex intevals eason a convo ierval
day after the first Monday in November." The traditional i An interval i an a c nio o of
solution to this problem has been to provide special means intervals.
of specifying those forms that are judged to be the most
useful (to the exclusion of all other forms). In this paper, it is assumed that a temporal structure

The *collection representation" builds on previous based on convex intervals has been defined that has a useful

work in temporal representation by introducing operators set of operations and relations (see appendix). We believe

that allow the representation of collections of intervals, that the work could be extended to temporal structures

whether they occur explicitly or implicitly in the expres- based on time-points or non-convex intervals.

sion.

The operators introduced are natural extensions of the I9 COLLECTIONS OF INTERVALS
relations and operations on intervals. The representation
has potential use in scheduling in three areas: graphical
display, natuad language translation, and reasoning. An interval t is denoted by (t 0 ,tq) or (t.;t6) where

to, t o and to + t6 are real numbers denoting moments in
time; the interval starts at time to and extends through
time to or to + t6.4*

I PRIOR WORK

A collection of intervals is a structured set of inter-

Much of the work on time has focused on temporal vals. The order of a collection is a measure of the depth
reasoning (as opposed to temporal representation). For of the structure. An order I collection is an ordered list
example, Rescher and Urquhart (1971) and van Benthem of intervals. This is somewhat similar to a non-convex
(1983) describe temporal logics for reasoning mathemati- interval except that the maximal convex subintervals of

* This work was supported in part by the Air Force Systems Control. ** We ignore the sticky questions of whether the intervals are open

Rome Air Force Development Center, Griffiu AFB, New York, 13441 or closed and whether time is represented in a continuous or discrete

and the Air Force Office of Scientiic Research, Boiling AFB. DC 20332 fashion, as these issues are largely irrelevant to the work discussed

under Contract No F30W2-85-C-0008 and by the National Science here. We assume that if t and u are intervals and Cq = u.. then

Foundation under Support and Maintenance Grant DCR.8318776. t U u (t., up),

5-1-I

a non-convex interval are disjoint and the order they are III THE COLLECTION REPRESENTATION
given in in immaterial. An order n collection (n > 1) is an
ordered list of order n-I collections. The notation used The foundation of the collection representation is a
for collections is essentially set notation, except tot the un- set of primitive collections called caendrs. A calendar
derstanding that the order of element is maintained. For is a collection consisting of an infinite sequence of inter-
example, vals that span the timeline, i.e., t, meets 1,+, for any two

{(Zl,Z2), (z3,z 4), (zs)) consecutive intervals. A calendar may have a first interval
is an order 2 collection. The collection of Thursdays (which (the first moment in time the system is prepared to con-
contains all the Thursdays in order) in an example of an sider), but does not have a last interval. Dey, Mont and
order 1 collection. The collection of months where each Chinese-Calendar- Years ae instances of calendam.
month is represented by a collection of the days in that
month (in order) is an order 2 collection. Two new classes of operators, dicing and dicing, amre

defined to operate on collections of intervals. The dicing
A. A Formula Approach operators provide means of generating collections from in-

tervals, for example, to break a collection of intervals into

Many useful collections can be described by arithmeti- smaller intervals. In Figure 1. a dicing operation is illus-
Cafl rl, t te are sube difficulties with this. We trated between the first two steps. This operation replacescal formulae, but there ar te st le ie ith ti. each interval on the left (a week) with a collection of subin-reject this apprach for the reaons outlined in this section. tervals (the days in that week).

Given an appropriate definition for day representing The slicing operators provide means of selecting in-
the length of one day and, for convenience, assume that tervals from collections of intervals, for example, to select
time to is Saturday, December 31, 1904, midnight, the col- the first interval of a collection. In Figure 1, a slicing op-
lection of Thursdays can be described by the formula: eration is illustrated between the second two steps. This

Thursdays =(a; Iday) I a = 5dl. + to (mod 7dal)) operation replaces each order I collection (a collection of
the days in each week) with a single interval (the fifth day

We can generalize Thursdays by replacing the 5 with any of each week).
other value. In other words, it can be understood that
Tucsdavs is an essentially similar collection to Thursdays.

The same approach applied to construct the collection
of all Januarys is less successful. Since every fourth year
is a different length, one possible formula is:

Januarys = ((a;31daV*) I . DI.-€ Slci .

(a + to mod 1461days) E (0,36,730,1095))

This formula is considerably more complicated than the WON, Do,. dunag: Wek. S/Dap dunar W##.

one given for Thurday.* More importantly, it fals to Figure 1. Slicing and Dicing
provide a means of conveniently recognizing Auguuts as
a generalization of January.. To generalize from January.
we would need to replace each of the values (except 1461) The terms *slicing" and "dicing" are chosen for both
with appropriate new values: the chance of an arbitrary their euphonic and metaphoric appeal." e The operators
substitution producing a reasonable generalization is quite have a right-to-left precedence. Each operator corresponds
small. Essentially, the formula is in a "compiled" form that roughly to a preposition, so these expressions can be read
is quite distant from how the concept would naturally be naturally by someone who speaks a prepositional language
expressed. (e.g., English).

The formulae become even more complicated when New collections can be built by combining other col-
new collections must be built from existing collections. For lections using these operators. The calendars serve as a
example, consider "the first Thursday of every January." basis for this construction. Since the calendars are not suf-
This requires combining the collection of Thursdays and ficient for reasoning about statements that reference col-
the collection of Januarys to produce a new collection. Fur- lections that might not yet have been defined or might
thermore, the system must allow for collections to be com- include unknown intervals in the future (e.g., "when Di-
bined in fairly arbitrary ways, since it will not be possible ana is at work"), collections can also be built by predicate
to predict all useful specifications. reference.

ome If thee ternms seemn to have conflicting meaningo, *Sling can be

t 'would be even more compliated if it were correct the Gregorian thought of as corresponding to "Selection* and ").g tn 'Dividing
calendar specifies that only 97 out of every 400 years are leap years Up'

5-1-2

A. Primitive Collections B. The Dicing Operations

A calendar is defined by specifying the intervals of The dicing operators are extensions of the relations on
which it in composed. The notation ((a; 61; 62; ... ; 6)) de- intervals (listed in the appendix). A dicing operator takes
notes the calendar an order I collection as its left argument, an interval asm

its right argument and produces an order I collection as a
result. A dicing operator can also take a collection as the

Isis-I ,<!5 right argument, in which case it operates on each interval
in that collection.

The list of 6-values is treated as if it were a circular list.

A calendar can also be defined by specifying how it~ inFor each relational operator (R) there are two dicing
to be constructed from another calendar. This is denoted operators: strict (:R:) and relaxed (.R.). If C is an order I
by ((C;&;s2;. .. ;s ,)) to indicate that the first interval of collection and t is an interval, the dicing operators are
thi s calendar is the union of the first s, intervals of C; the defined by:
second interval is the union of the next 2 intervals of C, C :R: t c{ (t I c E C A C R t) \ {)
etc. As above, the list of a-values is treated a a circular
list. CR.t (C I EAR \ (c)

The effect of a strict dicing operator is to break up 9 into
If we asume that the unit of measure is I second, we pieces according to C. An illustrative example occursmight have the following definitions: when C is a calendar. The expression Weeks :overlaps:

Deya M ((to; 864"0)) (January-1986) will break up the month on the bound.
aries of the weeks, i.e., it will give those weeks or partsMAont-7_- ((Davs;31;28;31;30;31;30;31;31;30;31;30;31; of weeks that overlap the month. (See Figure 2a.) The

31;28;31;30;31;30;31;31;30;31;30;31; effect of a relaxed dicing operator is to select intervals
31;28;31;30;31;30;31;31;30;31;30;31; from C that have the appropriate relation with t. Thus
31;29;31;30;31;30;31;31;30;31;30,31)) Weeks .overlaps. (January-1986) will break up the month

in the same way as above, but for the weeks at the begin-
Thee definitions are intensional rather than extensional, ning and end of the month it will give the entire week (in-
That is, while a calendar defines an infinite data struc- cluding that part not overlapping the month). (See Figure
ture, it does not require that an implementation actually 2b.) In contrast, Weeks :during: (Jnuary-1986) will give 0
build the complete structure, but only that it build those only the weeks that are completely contained in the month.
portions of the structure it needs. (See Figure 2c.)' Finally, Weeks :<: (Januarp1986) will

Collections can also be constructed from a predicate. give only the partial week at the beginning of the month.
The collection ((Condition)) is the minimal collection of (See Figure 2d.)
intervals C that satisfies the property that there does not
exist an interval t disjoint from C, such that Condition is C. The Slicing Operations
true during t. This definition is carefully constructed to
avoid the question of whether the predicate operates on The slicing operators, denoted f/C and ifl/C, op-
interval or points, erate on any collection, replacing each of the contained

order I collections with the result of the application of
the slicing operator. Operating on an order 1 collection
yields either a single interval or an order I collection (usu-
ally a subcollection of the original order I collection). The
expression f/C applies the selection function f to the col-
lection and returns a single interval, while [flC returns
a collection. F may be a predicate, in which case it con-

. Wak, :overla p: (Jaa trP.96) b. Week.overlape. (Jan-acy-1986) structs a collection containing the intervals which satisfy
the predicate. The expression If,, f2.14/C is the coi-
lection Consisting of the individual applications of f I, 12,

.,' to C in order.

In some ca.ses, a selection function may not have a
r result (e.g., the 2gths of Februarys), it which case the re-

suit is defined to he the empty interval c. Note that since
c. Weeks during. (Japi.',y.1986) d. Week. < (Jnvary- 1986) the dicing operator will never produce a collection that

Figure 2. Dicing Operators contains c, any re~aiIt that includes E is a sign of a failed
selection operation

5-1-3

l l l l I I l i i I m i U

The integers are defined as selection functions so that unlabelled. An interval of a calendar could also carry tags
n/C selects the nth interval in C and -n/C selects the that could be used to label the boxes or to organize the
nth interval from the end. The function the is defined so data in a tabular form.
that the/C selects the single interval of C, and produces c
if C contains other than a single interval. The bus schedule of Figure 3 provides a good illus-

tration of this. The schedule is constructed as an order 2
The function any is used to select intervals nondeter- collection, where each interval has been tagged. The col-ministiclly. 41/C selects a single interval of C. anv nj/C lection prefers to display intervals with the same tag in

selects R intervals of C. [eny -nj/C selects all but n inter- the same column. The intervals in turn prefer to display
vals of C. The mta slicing operator has a subtly different only their start times. Notice that in several places a tableoperation when used in a declarative statement - in that entry is blank. Despite this, displaying the table presents
cae, it refers to an intervl without specifying which one. no problem.
This usage of any has a close relationship to the existential
quantifier of the predicate calculus.

Hamhire Amherst UM&@* Smith Mt. Holyoke

D. Examples of Collection. - - 8:20 8:35 8:45
10:00 10:10 10:20 10:35 10:45Table I gives a list of English phrases and their cor. 11:00 11:10 11:20 11:35 11:45 S

responding expressions in the collection representation. ... Every hour ...
6.00 6:10 6:20 6:35 6:45
7.00 7:10 7:20 - 7:45

IV APPLICATIONS 8:00 8:10 8:20 8:35 -
The reason for constructing this representation is to 11100 11:10 11:20 11:35 11:45

provide a framework for a scheduling system. The pre-
vious sections have shown how terms commonly used in Figure 3. A Bus Schedule
scheduling can be easily expressed. The representation was The appointment calendar display of Figure 4 woulddesigned to address three areas of our group's research on be treated in a similar fashion. In this case, the collectionscheduling: graphical display, natural language translation f appointments is superimposed on another collection to
(primarily generation), and reasoning (about schedules). provide the time grid, with the roles of tags and starting

The illustrations in Figures I and 2 indicate the type times reversed in the displayed table.
of graphical display that would be generated by the system. The English text in Table 1 indicates the type of nat-
The definition of each calendar can be made to contain ural language that could be produced or processed by thesimple graphical display information, such as the shape system. Expressions in the collection representation can
and orientation of any "boxes" in which they and their be almost literally translated into natural language with
contents are shown. The boxes in Figures I and 2 are comprehensible results. Similarly, statements can be eas-

Table 1. English Collection Representation
Mondays 2/Days :during: Weeks
Januarys I/Months :during- Years

First Monday in January 1986 I/MondaVs :during: January. during: 1986/ Year.
or equivalertly: 1/(2/Days :during: Weeks) :during:

I/Months during: 1986/ Years
First of every month 1/Day. :during: Months

First Monday of every month 1/Monday. :during: Months
Last two Mondays of every month (- 1, -21/Mondays :during: Months

Week of the 15th of each month the/ Weeks .overlaps. IS/Days :during: Months
First full week of each month 1/ Weeks :during: Month.

Week of the first of the month 1/ Weeks .overlaps. /Days :during: Months S
First week of the month 1/ Weeks overlaps. Months

U.S. Election Day I/Tuesdays.>. I/Monday* during: November
The first (or only) day of t 1I/Days overlaps. i

The day after I I/Days .>rneets. - I/Days overlaps,
Any day of the week any/Days during: Weeks

Any day this week any/Days during: Weeks overlaps. (Today)

5-1-4

:00 :20 :40 ration of this paper. We would also like to thank Peter

9 fart Bob Ladkin for sending us advance copies of his papers pre-
sented at this conference.

10 Diana

i I Egon Robin
APPENDIX

12 Lunch

Figure 4. An Appointment Calendar The intersection of two intervals is defined by:

ily translated since the temporal components of the state-

ment are not distributed acmros a number of quantifiers The cover of two intervals is defined by:
and predicate.. For example, the statement

t to a -E (min(t,., ue), max(tp, up))
((Rey-worked)) contains Weekend.Days :during: (January)

can be glossed an "The time that Roy worked included the The union of two intervals (t U u) is defined only if
the intervals overlap or meet and is equal to the cover of

weekend days in January.' the two intervals. The empty interval c = (oo,-oo) and

Since the expressions are stored symbolically, the sys- any interval that has a > P is automatically replaced by e.

tern need only generate the actual intervals that it needs. This definition is motivated by the desire to have t n t = c

For example, for the expression and t o c = t, for any t.

23/Secons during: 4570/Minute :during: 1986/ Years We use the following binary relations on intervals:

the system naturally would not generate a data structure t overlap, u M 9 ru # c

containing the 31536000 seconds in 1986 before selecting t during u (t, 2! %,) A (tp < u)
the one desired. If the system was asked whether two ex- t contains u u during t
pressions conflicted and could not determine this by purely t < u t6 p- ue
symbolic means, it still would not need to generate all the t > u St > up
intervals in each collection. Only then subcollections and
intervals that have been determined to be possible candi- t -

i - (g0 - is) A (g0 - us)
dates for conflicts need to be generated (and this process a > U (to - ui) A (to > up)
can be done recursively), f meets u- (gp = u.)

If scheduling conflicts occur, the system can replace The during, < and > operations form partial orders. Note
specific slicing operators with the eny operator. For exam- that t < u is not equivalent to (g < u) V (g = u); however,
pie, the system could make the following successive gener- t < u is equivalent to (I < u) A -(t overlaps u).
alizationa in searching for a non-conflicting schedule: REFERENCES

the/ Monday. during: I/ Week.:during: Month. Allen, Jams F., 1985, Maintaining Knowledge about
the/AnydeV&:during: I/ Week.:during: Months Temporal Intervls' in Brachman and Levesque,

the/ Monday. during: any/ Week :during:. Month. Reading in Knowledte Representation. Morgan Kauf-
the/Anydsy :during: any/ Weeks :during: Months mann, pp. 509-521.

van Benthem, J.F.A.K., 1983, The Loric of Time. D. Rei-
Our motivation for this work has been to provide a del, Boston.

frameworl, for the scheduling system. We are in the pro- Ladkin, Peter, 19M, -Comments on the Representation of
ces of building a scheduling system around the represen- Time' in Proceedings of the 1985 Distributed Artificial
tation. We believe that the consideration of collections of Intelligence Workshop, Sea Ranch, California, pp. 137-
intervals is essential to the scheduling domain and that the 156.
notation and accompanying semantics introduced in this Ladkin, Peter, 1986a, Primitives and Units for Time
paper provide a natural medium for that consideration. Specification' in the Proceedings of the National Con-

ference on Artificial Intelligence, Philadelphia, Pennsyl-

ACKNOWLEDGMENTS vania.
Ladkin, Peter, 1986b, *Time Representation: A Taxon-

omy of Interval Relations' in the Proceedings of the
We would like to thank Scott Anderson. Carol Brover- National Conference on Artificial Intelligence. Philadel-

man, John Brolio, David Lewis, James Pustejovsky, Pene- phia, Pennsylvania.
lope Sibun, Philip Werner, Mary-Anne Wolf, and Bev Reacher, Nicholas, and Urquhart, Aladair, 1971, Temporal
Woolf for their assistance in this research and/or the prepa- Lore. Springer-Verlag, New York.

5-I-5

. ... 11imm~lm m m mmdlllm ImI

APPENDIX 54

A Plan-Oriented Approach to Intelligent Interface Design

Carol A. Broverman
Karen E. Huff

Victor R. Lesser

COINS Department
Graduate Research Center

University of Massachusetts/Amherst
Amherst, MA 01003

Intelligent Interfaces

In complex domains of computer-based professional work, there is a need for
Intelligent Interfaces which assist practitioners (as opposed to novices) with
sequences of actions which meet desired goals and are consistent In their
global context. It Is not a question of replacing the practitioner with an
expert system, but rather of cooperatively supporting the work of the
practitioner with an Intelligent assistant This assistant would bridge the gap
between the practitioner's perspective on problem-solving activities and the
computer system's perspective on tool Invocations and resource usage.

Using predefined, hierarchical activity definitions (call them plans), the
Intelligent Interface can monitor the conversation between user and computer
system, recognizing the commands issued as Instantlations of the plans, or
automatically generating primitive commands for a high-level plan requested
by the user. Such an Intelligent Interface would combine facilities for plan
recognition and plan execution, with a embedded planner used to extend the
predefIned plans as needed. The assistance provided to users would Include:

- detecting actual and potential errors, Including errors or global
strategy

- recovering from and correcting errors using context and goal
Information

- creating and managing agendas or work to be performed, by
predicting specific future actions based upon Past actions

5-J-1

- summarizing accomplishments of terminal sessions, partitioning
activities into domain-oriented tasks

- automatically performing steps In a plan or completing a plan, thus
shifting from a mode In which the user has the Initiative to a mode In
which the Interface assumes control.

Realizing this type of Intelligent Interface requires various Al techniques
because:

- during recognition, the Information needed for a definitive
Interpretation of a command may not be complete. The Interface will
have to generate selected alternatives, make choices, and be prepared
to retract the Interpretation at a later time.

- the predefined plans may be under-specified; for example, 0

Information might be lacking to distinguish which of several higher
level plans a given plan will be part of. Further, definition of a plan
may be approximate, and based In part on heuristic knowledge.

- It will usually be too burdensome to write predefined plans to
cover all possible situations, so there will be a need to generate new
plans dynamically (either to Interpret user actions or to carry out
some high-level plan). An embedded planner will add robustness to
the Interface.

- the practitioner must make decisions In the course of
problem-solving, and that reasoning must be modeled In order to be
"checked'. Even though It appears unrealistic at present to model all 0

decisions, declarative knowledge and automated reasoning techniques
can be used for selected subdomains.

Relationship to Power Tools

We believe that the Intelligent assistant approach and the power tool approach
are complementary. The key to Integrating them lies In uniform definition,
representation, and management of knowledge. Both Intelligent Interfaces and
power tools depend upon appropriate knowledge at appropriate levels of
abstraction. Sharing selected knowledge makes Improved user-support
possible.

5-J-2

Intelligent Interfaces can pass contextual constraints to the tools, describing
the problem-solving situation In which the tool Is Invoked. And the tools can
pass descriptive Information back to the Intelligent Interface, describing
characteristics of domain entities which specify and/or constrain their future
use. In fact, the Integration of Intelligent Interfaces and power tools can be
carried out at multiple levels. When a power tool becomes sufficiently
complex, an Intelligent assistant needs to be embedded within the power tool
to assist the user In selecting sequences of tool facilities to carry out desired
goals.

Implementing Intelligent Interfaces

We have Implemented an Intelligent Interface called POISE [1,2,31, which does
simple plan recognition. It Is Integrated with DEC FMS office automation
facilities and VMS mail facilities; a demonstration system Is now running.
POISE uses hierarchical plans whose definitions are behavioral (event-driven)
-- lower-level plans are combined via grammar rules with temporal operators
to define higher-level plans. A semantic database Is used to describe all
objects being manipulated by the plans.

The POISE system provides solutions to the problem of Incomplete Information
through Its focusing mechanisms (which limit the generation of alternatives to
certain plans min focusm) and through truth maintenance (to retract wrong
Interpretations and re-interpret). It also provides predictive capability
through static and dynamic constraint propagation, handling both constraints
from the semantic database and from the temporal plans.

A Second 6eneration System

We are currently designing and Implementing a successor to POISE called
GRAPPLE (Gioal Recognition bid Planning Environment). In POISE, there are
limitations on the kinds of reasoning which can be performed about the
relationships among plans. We have found that behavioral plan definitions,
which lack exr9 'cit goals and preconditions, are not sufficient for a planner to
synthesize new plans. Without explicit goals, there Is no way to specify that
an action may be omitted because Its goal has already been met. Nor Is there
enough knowledge to recognize failure of a plan -- failure recovery must be
built Into the plan rules, making the rules rather complex, and preventing
special reasoning about failure and recovery.

5-J-3

In GRAPPLE, each plan has an explicit goal, a precondition and a set of effects
(state-changes In the semantic database, some of which may be conditional).
All plans have Internal constraints used for specialization and Internal
consistency checking. Composltion of plans is specified by enumerating the
appropriate subgoals (without making any choices of specific plans to achieve
those subgoals). The ordering of plans Is determined dynamically by
preconditions being met. Thus, GRAPPLE plan definitions follow the classical
state-driven formalism, with the current state recorded In the semantic
database. In addition to this fundamental change In the nature of the plan
definitons, we have extended the plans to Include off line" actions, so that we
can model user decision-making and the user's beliefs about the state of the
work.

In the GRAPPLE formalism, plan failure Is recognized when the goal of the plan
is still false after the effects are posted. Ordering Inform.. ation Is given on a
p plan basis, and need not be given for sequences of plans since this can be
calculated from the precondition Informatior If a plan has a subgoal which Is
already satisfied, then no plan need be executed to achieve the subgoal. Finally,
new plans can be added without changing existing plans, because decomposition
Is through subgoals, not through other plans directly.

Incorporating First Principles Knowledge

As we have worked with plan defInitons of either the state-driven or
event-driven type, we have recognized that there Is additional knowledge about
the domain which Is not appropriately expressed in the plans themselves. This
Is particularly true in specialized domains such as software development,
where there Is a rich set of technical concepts (such as versions, history,
configurations, properties and bugs of modules) and a broad range of fIrst
Spr/nc/p/es knowledge about programming. This knowledge forms a
closed-world for reasoning about actions, and will, we believe, be an important
addition to the Intelligent Interface.

This first principles knowledge can be used in the Intelligent Interface In
several different ways, to improve Interface performance and extend more
assistance to the user. Using the first principles knowledge to generate
tentative bindings of plan parameters will result In earlier, more detailed
prediction, and will also limit the number of alternatives to consider during
recognition or execution of plans. It provides an alternative to simple
heuristics such as 'prefer plan continuation to start of new plan" for choosing
among alternatives, which may be increasingly important as the number of

5-J-4

alternatives grows or when plans are Inherently under-specified. It can be
used to double-check decisions made by the programmer (modeled In the off lIne
plans). And, first principles knowledge can provide additional semantic
distinctions between apparently equivalent actions (fixing a bug versus adding
a new feature) so that future programmer decisions (such as what tests to run)
can be anticipated and double-checked.

Status

We have defined the GRAPPLE plan and semantic database formalism, and are
currently working on plan recognition algorithms, Including constraint handling
and focuslng. A large set of plans for a Unix/C software development
environment has been written In the new formalism, and we are starting to
formalize the first principles knowledge for this domain, We have also started
work on appropriate meta-plans (such as execute-plan, undo-effects,
save-plan-state, suspend, redo-failed-plan, etc.) which will, we hope, provide
realistic Interpretations for the entire spectrum of user actions.

References

[11 Broverman, C,; Croft, W.B., OA Knowledge-based Approach to Data
Management for Intelligent User Interfaceso, Proceedngsof kZDB /,
Stockholm, 96-104, 1985.

[2J Carver, N.; Lesser, V.; McCue, D., "Focusing In Plan Recognition",
Proceedings of A4A, Austin, Texas, 42-48, 1984.

(31 Croft, W.B.,; Lefkowltz, L.S., Task Support In an Office System', A471
Trnsact/ons on Off/ce /nformat/on ystemg 2:197-212, 1984.

This work Is being supported by the Air Force Systems Command, Rome Air
Development Center, Grif fIss Air Force Base, New York 13441-5700, and the

Air Force Off ice of Scientific Research, Bolling Air Force Base, District of
Columbia 20332, under contract OF30602-85-C-0008.

5-J-5

APPENDIX 5-K

Providing Intelligent Assistance
In Distributed Office Environments

Sergei Nirenburg
Colgate University

Victor Lesser

University of Massachusetts

Published in Proceedings of the Third National A CM Conference on Office Infor-
mation Systems (1986).

This work was supported by the Air Force Systems Command, Rome Air Devel-
opment Center, Griffiss Air Force Base, New York, 13441-5700, and the Air Force
Office of Scientific Research, Boiling AFB, DC 20332 under Contract No. F30602-
85-C-0008. This contract supports the Northeast Artificial Intelligence Consortium
(NAIC).

5-K-i

A

PROVIDING INTELLIGENT ASSISTANCE

IN DISTRIBUTED OFFICE ENVIRONMENTS

Sergei Nirenburg

Colgate University

Victor Lesser

University of Massachusetts

AbstracL We argue here that a task-centered, an agent-centered
and a cognition-orierted perspective are all needed for providing
intelligent assistance in distributed office environments. We present 0
the architecture for a system called OFFICE that combines these

three perspectives. We illustrate this architecture through an example.

1. Introduction.

An expert system for the distributed office environment where there is cooperative 0

activity of a number of workers must provide guidance to the user about how to
prioritize his own tasks so that they are coherent with the goals of the whole system.
This scheduling problem is the key issue in effective distributed planning. Com-
ponent subproblems here include managing resources; equalizing workload distribu-
tion; managing goal conflicts; maintaining a proper level of redundancy in task exe-
cution and especially in information flow; analysing dependencies in the sets of
goals, plans and events, etc. Automation of any of the abo-. . tasks clearly involves
manipulation of many types of knowledge, both domain and control.
To illustrate the problem of local scheduling that takes into account global coher-
enc,:, consider an office consisting of an executive, E, and his/her secretary, S.
Suppose, E is dictating letters to S, and the telephone rings. S answers, and the call
appears to be about a very important shipment, and S is asked to provide some
information about it. The scheduling choice here is between continuing with the
letters (task TI) and performing the request that came over the phone (task T2). We
want our system to consider a number cf factors here, including the relative impor-
tance of the tasks (say, a number of people may be idle in the company because of
the lack of raw materials that are to be shipped), the time limitations (suppose, the
information :, needed before the end of the business day, and it's already 4 p.m.;
also, the estimated time of finding the requested information), personal charaieris-
tics of S and E, etc. If the secretary were scheduling purely locally, he/st - may
prefer to schedule T2, but knowing that E will be detained by her doing so, S may
prefer TI based on global coherence considerations. S's knowledge about personal
characteristics of E can also be a factor: if E is very conscious of his/her status and
importance, then the decision of scheduling TI is even mote strengthencd; if not,
and if S has the characteristic of being assertive, T2 may be preferred, after an
explanation to E.

5-K-2

In what follows we describe OFFICE, a system that provides intelligent assistance in
the office environment. First, we trace it genesis from three research pr ;jcrt5 ir.
connected fields and discuss its functionality. Second, we describe how an office
can be modelled in a distributed computer system such as OFFICE and describe its
architecture and the basic processing cycle. Finally, we give an example of OFFICE
operation where we concentrate on its reasoning capabilities.

The Task-Oriented Perspective.

Our initial effort in developing an expert system in the office domain is the task sup-
port system POISE (Croft and Lefkowitz, 1984). POISE has been designed to support
office workers in their problem solving activities through the use of plan recognition 0
and planning. In the plan recognition mode the system obtains messages about cer-
tain atomic events (such as tool invocations) and tries to determine into which of
typical tasks known to the system this event fits. [n this manner POISE is able to
monitor the activities in an office, predict some future activity and detect some
errors. In the planning mode of operation POISE is supplied with a typical tasks and 0
its parameters and tries to execute as much of it as possible, based on its knowledge
of the task structure and the status of domain objects in a semantic database. POISE's
knowledge takes the form of an hierarchy of typical tasks represented with the
preconditions necessary for the execution of the tasks plus the statement of the
intended goal.

The use of object-oriented knowledge in POISE is, however, limited. It currently
does not have knowledge about static relationships among participants (agents) in the
plans that it monitors. As a matter of fact, POISE does not in practice distinguish or
reason about the agents' roles and the objects in plans. Thus, for instance, it does
not have the possibility to understand that an unusual event happened if it gets the 0
message that the president of a company typed a letter (and not a secretary). There-
fore it cannot infer that the secretary may have a day off or that a goal must be
instantiated of changing workload distribution among the employees.

POISE is also limited in that plan processing operates sequentially, one input mes-
sage at a time. This is a potential efficiency bottleneck, but also :. rot a good model 0

of the activities in an office, that are typically distributed. POISE plans are struc-
tured so that they in principle allow concurrent execution of subtasks of a task.
Straightforward transformation of POISE into a distributed system cannot, however,
be performed. Since there is no developed agent-oriented perspective, there is no
way in POISE to express a fact such as 'Requests made by the manager of the office 0

have priority over those made by other workers'. There is also no way of talking
about seemingly independent tasks being actually rtarts of a cooperative problem
solving situation. This includes the considerations of arbitration of competing claims
for limited resources. More information and a better organization of knowledge are
needed for scheduling in a disLTbuted environment. The workers in an office are
largely responsible for scheduling their own activities. Thus we argue for incor-
porating an agent-oriented perspective in order to handle scheduling issues.

5-K-3

The Agent-Oriented Perspective.

One of the research areas where we can look for ideas of how to implement the
agent-oriented perspective is the field of distributed Al. One of the current
approaches there is the study of functionally accurate, cooperative (FA/C) distri-
buted problem solving (Lesser and Corkill, 1981; Lesser and Corkill, 1983; Durfee
et al., 1984, 1985). With this approach, a problem is solved in cooperation by a set
of semi-autonomous processing nodes (agents) that independently generate partial
solutions, communicate them through a network to other nodes, receive messages
from other nodes, and modify their hypotheses in accordance with new input. The
experience of this group has shown that the control problem is difficult; that the net-
work communication is. both difficult and computationally expensive; most impor-
tandy, it was found that the key to global coherence is in having sophisticated agents
who can reason about their own view of processing as well as the views of other
agents, including the metaknowledge involved in controlling own processing as well
as other agents' processing.

The office world offers a number of additional challenges, since it is very
knowledge-intensive. The number of various types of objects is large. The com-
plexity of these objects, both physical (e.g., a computer or a person) and mental
(e.g., the role of a secretary in the office), is significant. The same is true as
regards the processes that are typically performed in a office. There are also many
types of static relationships among the objects (e.g., the one between any two office
workers) and the processes (e.g., bidding is a component of purchasing). The
requirements of the domain can necessitate changes in the basic network and node
architecture of the FAC problem solving approach.

The Cognition-Oriented Perspective.

The FAC distributed problem solving concetrated on the architecture of the net-
work and the nodes, with the view of organizing the control structure. The types of
knowledge necessary for control and communication in OFFICE are studied in the
field of cognitive agency research (e.g. Georgeff, 1984, Moore, 1985, but mainly
Nirenburg et al., 1985, 1986). The view of the world in this field is that cognitive
agents in are immersed in a world which is non-monotonic, in the sense that
changes in it can be introduced not only because of the activities of a single agent
but also through uncontrolled external events. Agents are capable of a variety of
cognitive tasks. They can perceive objects and events in the world. They possess a
set of goal types and means of achieving goals of these types: plans. They perform
goal and plan generation, selection and execution in complex situations in which
many goals and plans coexist and compete for the attention of the agent's conscious
processor.
The study of the causes of particular choices of goals and plans by the agent (in
other words, reasons for scheduling decisions) is the central point of the approach.
The knowledge that underlies the reasons for scheduling domain, communication
and control actions is claimed to involve such factors as personality traits, and physi-
cal and mental states of the agent, in addition to the knowledge about the domain
situation and the typical tasks and goals. The general idea is to use all the types of

5-K-4

knowledge discussed in the cognitive agency approach within the architectural
framework inspired by the distributed Al research.

2. An Architecture for a Distributed Office System.

We present here, through an example, an architecture for an intelligent assistance
system that integrates the task-, agent- and cognition-oriented perspectives.

2.1. Representing an office.

An office is modelled as a network whose nodes are interpreted as office workers
and edges, as communication channels. Every node in the network is a complete
problem solver. It typically represents a human and computer program working
together. Following POISE, OFFICE deals with typical activities in a university-based
research project (RP), namely: purchasing equipment, hiring and travel. The types
of agents in the RP office include Principal Investigator (PI), Research Associate
(RA), Graduate Student (GS), Secretary (S), Vendor (V) and Accountant (A). A
typical instance of a project may involve 1 P1, 2 RA's, 6 GS's, 1 S, 3 V's (e.g.,
DEC, Symbolics and TI) and and 2 A's (say, one in Accounts Receivable and one
in Personnel).

The knowledge that agents have about roles in the organization, including their
own, is illustrated in Figure 1 for a subset of roles in RP. Figure 2 shows the com-
munication channels for the RP office.

Role knowledge: Secretary (S)

" performs paperwork for organization;

* reports to PI (not other members of organization);

* answers phone;

" types documents;

* handles mail;

* maintains all schedules (meetings, deadlines, etc.);

* reminds project members, vendors, etc. about commitments, etc.;

* seldom initiates activity without request;

* protects PI from too much external interference and low-level chores;

* takes shorthand notes during meetings, etc.

Default necessary and sufficient resources for S: a desk; a chair; a telephone; a computer terminal;
office supplies; a shared office (a separate office is unusual)

Role Knowledge: Principal Investigator (PI)

* makes decisions concerning management of resources, including hiring, purchasing equipment
and firing;

* manages project progress, which involves distributing equipment, distributing agent responsi-
bilities and general supervision and control, including giving assignments, advice and sugges-
tions to RAs, obtaining (oral and written) reports from RAs;

5-K-5

0 acts as the spokesperson for RP;

* procures funds for RP;

* signs disbursement vouchers, etc.

Default necessary and sufficient resources for PI: a separate office (shared office is unusual), a desk,
chairs, a conference table (optional), a blackboard, a computer terminal, a telephone.

Figure 1. Knowledge about roles in an RP office.

GS

P I RA

SS

V A

Figure 2. The network of processing nodes in a model of an RP office.

Every agent is aware of its responsibilities to carry out parts of certain plans. Th'y
also know who or where from they must seek information that is necessary for them
to perform their tasks. *
At any moment t each agent in OFFICE has an agenda of current goals or, more pre-
cisely, of current goal instances, as illustrated in (1), 0

(PUS, PUt , HI(3 ,TR } (1)

where PUi , HIj and TRk stand for instances of goal types Purchase, Hire and
Travel, and oui designate subsets of network nodes. Intuitively, at any given moment
the office workers are pursuing a number of goals, working in teams. Note that

• Information about the typical agents for all types of tasks is among the knowledge that

every agent pos~esses.
5-K-6 S

some such goals can be in conflict. Therefore, means of resolving them have to be
known to agents.

The architecture of an agent in OFFICE is illustrated in Figure 3. We will not go
into the details of knowledge representation here. Suffice it to say that we use a
frame-based representation for objects and events. Plans are represented in extended
EDL (cf. Nirenburg et al., 1985). An agent has knowledge about its own plans and
goals. It also has a representation of the plans and goals of other agents in the net-
work

2.2. How Do the Agents Operate?

A cycle of processing by each agent involves a consecutive invocation of the percep-
tor, the goal generator, the scheduler, the planner and the executor (cf. Figure 3).

The perceptor
a) obtains as input messages about changes in the world that were received
since the previous time cycle (changes are various new states, including results
of actions performed by agents in the system). *
b) 'understands' these actions in terms of plans they are parts of and,
correspondingly, in terms of what was the goal that the agent of that action
pursued. This step embodies the plan recognition activity of the system, since,
in the general case, it must understand plans of others in order to perform its
own plan production.

The goal generator
updates the agenda of its goals due to new inputs. Thus, the arrival of new
input (2)

(message- 14 (2)
(instance-of message)
(speech-act order)
(sender PI-)
(receiver Secretary-33)
(proposition (communicate Secretary-33

Vendor- 101
'what is the price of desk-22?'
Phone))

will lead to the generation of the low-level goal instance 'Get-Info-34' that will
be fulfilled when the secretary knows the price of the desk. Even the plan for
reaching this goal is specified in the message: using the telephone. This
inferencing activity can help the secretary to predict the future steps in working

• Input messages are classified according to their speech act character. Messages can be
either assertions or requests. Assertions can be definitions, opinions, facts, promises, threats
and advice. Requests can be questions (request-info) or commands (request-action). Ques-
tions can be either yes/no or wh. Commands are orders, suggestions or pleas. This classifi-
cation is needed to improve the understanding capabilities of the system (as compared, e.g.,
with POISE).

5-K-7

toward the higher-level Purchasing goal. Thus, in a spare moment may be
devoted to preparing a purchase-order form, even though the time for that in
the plan has not yet come.

The scheduler

selects a goal to pursue from among a number of candidate goals on the
agenda. An important feature of the system will be the use of knowledge about
goal interactions (including conflicts) in scheduling goals for processing. The
knowledge that the scheduler uses includes:

a) the bias factor, determined by the knowledge about authority distribution in
the office, that estimates the importance of the agent's decision from the global
point of view; thus, a P1's goal is more 'important' than a GS's goal;

b) information about the level of a goal: whether it is a top-level one or the
subgoal of a goal for which another agent is responsible;

c) predefined relative 'importance' of a goal (purchasing may be given a prior-
ity over hiring, for example);

d) information about the set of goals currently on agenda; if a goal facilitates
fulfillment of other goals on agenda, its rating grows.

The planner
has the task of providing a plan for the achievement of the goal scheduled by
the scheduler. If the agent knows of a canned plan that typically leads from the
current state to the goal state, simply passes the plan to the Executor (see
below). If more than one plan can be used to achieve a given goal, the planner
selects one of them, based on static evaluation functions and/or lookahead (at
present we use the former alternative) for execution.

If there is no canned plan to go from the current state C to the goal state G,
then the agent uses the 'rules of the world' to try to find a sequence of applica-
tions of standard plans that leads from C through a sequence of intermediate
states (partial solutions) I to G.

The knowledge needed by the planner: the list of plans, the goal-plan table, the
rating functions for plans and the 'rules of the world'.

The executor

is called after the planner produces a plan for achieving the current goal.* It
performs the following sequence of steps:

a) creates an instance of the chosen plan (if such an instance does not already
exist) and lists it under the corresponding goal on the agenda.

b) checks preconditions of the plan; if preconditions do not hold (the plan is
not immediately applicable) then sets precondition states to be (sub)goal states;
puts them on the goal agenda (note that one of preconditions is 'to have values
for all non-optional parameters') else expands the agenda tree by substituting
the current plan by the sequence of its component plans.

* This is a simplification. In reality, planning and execution steps can be interleaved.

5-K-8

4S STM
L T M Short Term

Long Term Iperceptor Memory

Memory
I (blackboard)

event-goal '
table ___ ____

_ _ I goal4

generator own
goals _________agenda

goal-plan
table Ischeduler represent.

_ _ _ _ _ _other

agendas
plans4,/_

_

obj ctsplanner Ievents~

_ _ _ _ _ instances

rules of Iexecutor
theworl

network
___________commiuni -

I_ _ - --- -cat ion

events_____ 0
I __ __ _ __ __ _ __ __ __ _ __ __ _ __ __ __ _ __ __ _t o o t h e r n o d e s_ _

Figure 3. Node Architecture.

> flow of data

-------------------> flow of control

c) if the first subplan in this sequence has the current node as its agent, it is
processed by the executor; if another role in the office is the agent of a sub-
plan, the execution of the current plan is interrupted and a value of its 'status'
slot is set to 'suspended' (until other nodes will perform their share of process-
ing).

d) if the plan is 'primitive' the actions specified in it are performed. Then the
executor checks whether the plan is completed; if yes, reports this, through the
communication charnels, to the agent responsible for the next plan in the
script.

3. An Example Run of Office.
We will consider 2 top-level goals: PU (purchase) and HI (hire). If agent A has a
top level goal G on its agenda, then A is responsible for achieving G. If, while per-
forming plan P, A comes across a subplan, SP, in which a different role, B is
specified as agent, A must request that B perform SP, and check whether SP is per-
formed, if a report from B is not received on time.

More than one agent can be responsible for achieving a certain goal: say, both A
and B have G on their agendas. In this case A does not request B to perform a sub-
plan but simply waits for B to do it. If after N time slices (where N depends on the
type of SP) a report from B is not received A sends B a reminder. B exhibits similar
behavior.

Each agent learns about other agents' activities from messages coming from those
agents or through its own metalevel reasoning based on its beliefs about other
agents' goals and knowledge. One of the possible heuristics to restrict the amount of
communication among agents is to allow them to report about execution of a certain
subplan (SP) only to agent(s) that are (or will be) involved in performing the top
level plan that contains SP as a suhplan. In other words, not everything that hap-
pens in the system is automatically made known to all agents.
We will follow the processing at one node of the network, that of Secretary (S). At
the beginning of the run S already has a nonenipty agenda of plans and goals. It also
has a representation of agendas of other nodes in the network. This representation
may contain mistakes, because it is mainly a result of plan understanding activities
of the node. The contents of S's agenda and S'. belief about the agendas of a sam-
ple of othe- - tes at the beginning of our manual trace are given in Figure 4.

S's own agenda:

AGENDA ITEM 1:
PU3 (object = terminal)

communicate (agent = F, destination = PI, object =

[communicate (agent VI, object = terminal, destination = S)
communicate (agent V1, object bill, destination = S)J)

check-goods (agent = PI, object = terminall6)

5-K-10

L I l~l l IIllll l[llilllll

plan-selector (agent = S, object =

[pay-for-goods (agent = S, destination = VI, object = bill)

cancel-goods (agent = S, destination = VI, object = (terminall6 bill)])

AGENDA ITEM 2:
process-purch-order5 (object = book)

make-doc (agent = S, doc-type = purch-order, object =book, destination = V2)
communicate (agent = S,object purch-order, destination = V2) J

Secretary's beliefs about PI's agenda:

AGENDA ITEM 1: 0

PU3 (object = terminal16)
complete-purchase (agent = PI, object = terminal16)

AGENDA ITEM 2:
HI2 (RA) 0

evaluate (agent = PI, object = candidate3)
make-doc (agent = S, object offer, destination = candidates)
communicate (agent = S, object offer, destination = candidates)
select (agent = candidate, object accept/rej)
make-doc (agent = candidate, object = accept/rej)
communicate (agent = candidate, object = accept/rej) 0
plan-selector (agent = S, object = [acceptance-track rejection-track])

S's representation of RAI's agenda:

AGENDA ITEM 1:
PU1 (object = book1l)

process-purch-order (agent = S, object = bookl 1)
complete-purchase (agent = S, object = bookll)

An agenda item consists of the name of a plan and the names of those of its subplans that are not yet
executed, with the bindings for their parameters. Plan names are printed in bold. Plan names with
numbers appended represent plan instances. The above agendas say that the secretary has the plans
to facilitate the purchase of a terminal and to facilitate purchasing of a book asked for by a research
associate (PU1); S believes PI has plans to hire a research associate (HI2) and to facilitate the pur-
chase of a terminal (PU3). S also believes that RA1 has the plan of purchasing a book (PU 1). PI is 0
responsible for both of the plans on its agenda; S is co-responsible for the PU3 plan. In contrast, S is

responsible only for a subplan of the top-level plan PU1. RAI is responsible for PUI.

Figure 4. Sample Contents of the Agendas of an Agent.

Now let us trace the operation of OFFICE through a number of time slices starting
with the above state, observing the decision S makes and the changes to its agenda
due to new inputs.

5-K-11 W

------ tim e slice I ------

Suppose, there is one message posted on S's blackboard • messagel9 from RA2, of
type order, that asks to get a price for a desk from vendor V by phone. This mes-
sage is perceived by S and a new goal, GET-INFO1l, is generated and put on agenda.
S also updates its representation of RA2's agenda by adding there the (inferred) plan
of buying a desk. Since S is not responsible for this inferred plan, it does not copy
the inferred PU goal to its own agenda.
Next, the scheduler must choose one of the 3 goals on the agenda (PU3 PROCESS-
PURCH-ORDER5 and GET-INFO11) for immediate processing.
In our example GET-INFOlI will be chosen. This happens because PU3 is out of
contention since it is in the stage of waiting for ordered goods (terminal) to come, so
the choice is between P-P-O and GET-INFO. P-P-O has, of course, been on agenda for
a longer time, but GET-INFO can be performed by just placing a phone call, while
P-P-O requires typing out a form. There is no rush on the book order, so the goal
that can potentially be achieved sooner is selected. This is an informal statement of
one of the policies that guide metaprocessing in OFFICE.

Next, a plan get-info is found for achieving the chosen goal; this plan is instantiated
and the executor runs its first subplan: communicate15 (agent = S, object = mes-
sage34, proposition = message19.proposition, destination = V2, type = question,
instrument = phone). As a result of that subplan, the vendor is informed about the
question.

------ time slice 2 ----

New inputs: a) Message20: a terminal and a bill arrived from vendor VI b) Mes-
sage 2 1: the price for the book arrived from V2.
The messages are perceived and understood as the execution of specific plans traced
on S's agenda: a) refers to the two communicate plans that are objects of the next
component of the plan chosen for the PU3 goal; b) is the response to message l9
above.

The above messages do not lead to the generation of any new goals. The scheduler
now has the following choice: PU3, P-P-05 and GET-INFO11. P-P-05 has the same
status as at the previous cycle. PU3 is now at a point where the PI must be told that
preconditions hold now for the execution of the check-goods plan (becaust; the termi-
nal arrived). Only one action remains to be performed in GET-INFOl, and that is to
relay the information obtained from V2 to RA2.

At this point GET-INFOI1 is chosen for the following reasons. S knows that PI is
currently in a meeting with a candidate for hiring. Even thouh the importance of
the check-goods plan is high (in terms of the amount of subsequent processing ot tie
goal), it cannot be performed for the time being and should be rated low. With the
other two goals, other agents must wait until S finishes with these plans in order to
continue their processing. But GET-INFOI I is closer to completion. Therefore, it is
chosen, and S sends the plan (communicate agent= S, Destination = RA2,

5-K-12

Object = Message21.proposition) to the executor.

After this plan is executed, the whole GET-INFO1 I is deleted from the agenda.

4. Summary and Status.
We hope we have shown that in order to provide assistance in distributed office
environments we need to integrate the three perspectives. It is important to carefully
choose the task and delineate the world corresponding to it. It is equally important to
provide an architecture that can support sophisticated scheduling activities by nodes
in a distributed problem solving network. At the same time one should try to explore
the sources of real-world knowledge that is used as the basis for scheduling. In
addition to the observable world situation the scheduling algorithm must have access
to the knowledge about the internal states of the processors, or, in other words, the
'personal profile' of the agents to whom the system provides assistance.

The node-level knowledge and processors have been implemented in Zetalisp on a
Symbolics 3600 Lisp Machine. We are currently developing the network level of the
system.

References

Corkill, D.D., 1982. A Framework for Organizational Self-Design in Distributed
Problem Solving Networks. Ph.D. Dissertation, University of Massachusetts,
Amherst. (Available as COINS Technical Report 82-33.)

Croft, B.W. and L.S.Lefkowitz, 1984. Task support in an office system. ACM
Transactions on Office Information Systems, Vol. 2, 197-212.

Durfee, E.H., D.D. Corkill and V.R. Lesser, 1984. Distributing a distributed prob-
lem solving network simulator. COINS Internal Memo, University of Mas-
sachusetts.

Durfee, E.H., D.D. Corkill and V.R. Lesser, 1985. Increasing coherence in a dis-
tributed problem solving network. Proceedings of Ninth IJCAI, Los Angeles,
August 1985, 1025 - 1030.

Georgeff, M., 1984. A theory of action for multiagent planning. Proceedings of
AAAI-84, 121 - 125.

Lesser, V.R.. D.D.Corkill, 1981. Functionally accurate, cooperative distributive
systems. IEEE Transactions on Man, Systems and Cybernetics, SMC- 11, 81-96.

Lesser, V.R., D.D.Corkill, 1983. The distributive vehicle monitoring testbed: a tool
for investigating distributed problem solving networks. AI Magazine, 4, 15-33.

Nirenburg, I., S. Nirenburg and J. Reynolds, 1985. POPLAR: Toward a Testbed for
Cognitive Modelling. Technical Report COSC7, Colgate University.

Nirenburg, S., l. Nirenburg and J. Reyr)lds, 1986. Studying the Cognitive Agent.
Technical Report COSC9, Colgate University.

5-K-13

APPENDIX 5-L

The GRAPPLE Plan Formalism

Karen E. Huff and Victor R. Lesser

COINS Technical Report 87-08

April, 1987

Computer and Information Science Department 0

University of Massachusetts
Amherst, MA. 01003

This work was supported in part by the Air Force Systems Command, Rome Air Development
Center, Griffiss Air Force Base, New York 13441-5700, and the Air Force Office of Scientific
Research, Boiling AFB, DC 20332 under contract No. F30602-C-0008. This contract
supports the Northeast Artificial Intelligence Consortium (NAIC).

5-L-1

m0

Table of Contents

1.0 Introduction

1.1 Requirements

1.2 Guide to Organization of Report

2.0 Formal Definition of GPF

2.1 Overview of Operator Definitions

2.2 Major Operator Clauses

2.2.1 Goal Clause
2.2.2 Effects Clause

2.3 The Semantic Database

2.3.1 Mcldeling the Semantic Database
2.3.2 Formalizing the Semantic Database
2.3.3 Relationship Between SDB and Effects Clause

2.4 Decomposition Clause

2.4.1 GPF Plan Networks
2.4.2 Style of Decomposition
2.4.3 Final Subgoals
2.4.4 Iterated Subgoals

2.5 Constraints

2.5.1 Underconstrained Operators
2.5.2 Special Use of Constraints with Iterated Subgoals

2.6 Other Features

2.6.1 On-line versus Off-line Operators
2.6.2 Interface to Real-world Observations
2.6.3 Protection Intervals
2.6.4 Operator Libraries

2.7 Use of Predicate Calculus

2.7.1 Evaluation of Plan Formulas
2.7.2 Role of Bindings in Recognition and Execution
2.7.3 Interpretations and Multiple Database States

* 2.7.4 Construction Interpretations

5-L-2

3.0 Extensions to GPF

3.1 Decomposition

3.2 Ordering and Forced Execution

3.3 Semantic Database Extensions

3.4 Specialization Hierarchies

3.5 Improved Notation

3.6 Specifying Operator Costs

3.7 Non-atomic Primitive Actions

3.8 Declaration of Variable Names

4.0 Review and Conclusions

4.1 How Requirements were Met

4.2 Relationship to Other Plan Formalisms

4.3 Acknowledgments

5.0 References

Appendix A: Formal Grammar for Operator Definitions

Appendix B: An Operator Library

5-L-l3[l ,, ,,,, ,,,, ,,,,, m ,--,,,, -. -- --. ii m m m m m m | UI II II

List of Figures and Tables

Figure 1: Architecture for an Intelligent Assistant
Figure 2: A Basic Operator

Figure 3: Static Precondition Examples

Figure 4: Blocks World
Figure 5: Semantic Database Formalized
Figure 6: Extended Blocks World Blocks
Figure 7: Primitive Operations for Extended Blocks World
Figur 8: Extended Blocks World Strucures

Figure 9: Operators for Building Towers

Figure 10: Expanding a GPF Plan Network
Figure 11: Pathological Plan Net Expansion

Figure 12: Pathology Resolved
Figure 13: Net Expansions with Non-Final Subgoals
Figure 14: Iterated Subgoal Examples
Figure 15: Successful Realization of Make-tower

Figure 16: Use of Constraints
Figure 17: Constraints in Iterated Subgoals
Figure 18: Use of the Observe Clause

Figure 19: A Recognition Scenario

Figure 20: Tune Line
Figure 21: State/Time Diagram

Figure 22: Operator Definitions by Specialization

Table 1: Achievers for Subgoals and Preconditions

5-L-4

1.0 Introduction

The GRAPPLE plan formalism was designed to support the central paradigm in the

implementation of an intelligent assistant. That paradigm involves performing both plan

recognition and planning for a user working in a computer-based, professional domain. Two

examples of these types of domains are software development and the automated office. Using

a planning paradigm, the intelligent assistant can provide such help as:

" maintaining agendas (by enumerating the states yet to be satisfied in a plan),

* detecting errors (such as when a new user action cannot be recognized or
violates a protected condition),

" correcting errors (for example, by informing of the need to satisfy a missing
precondition or substituting the nearest expected action instead or suggesting
that another action be performed first),

" answering user questions (which are interpreted as queries on either the state of
the domain or the state of the plan), and

" automatically executing user tasks (by performing planning and execution
monitoring).

A schematic architecture for such an assistant is given in Figure 1. The assistant itself is

domain-independent. Its domain knowledge is embodied in a set of operators (written in the

GRAPPLE Plan Formalism GPF) which describe the actions possible in the domain. Using

these operator definitions, complete plans can be constructed to explain a series of user actions

(plan recognition) or to achieve a desired user goal (planning).

The GRAPPLE project is described in [2]. It has evolved from an earlier effort called POISE,

described in [1,3,5]. The application of POISE to office automation tasks is discussed in [6];

its application to the software development environment is described in [8]. The results of the

POISE project demonstrated the viability of a planning approach to intelligent assistance, and

GRAPPLE is intended to build on and extend those results.

1.1 Requirements

In this section, we discuss the requirements that an intelligent assistant application places upon

a plan fonnalis±" We also mention the rationale for choosing an underlying formalism that is 0

different from that used in POISE.

5-L-5

Figure 1: Architecture for
An Intelligent Assistant

KB State
Schema Description

Operator Instantiated
Library Plans p
Static Dynamic

Plan
Recognition
and
Execution

Domain-independent

User - - System

In the domains of interest, there are three distinct parties with distinct capabilities. The first

party is a dumb agent (in this case, a computer system), capable of carrying out actions from a

specific repertoire on explicit command, but without any facility for judging the global sense or
advisability of those actions. The second party is a human user directing the agent, capable of

planning and understanding the actions, but fallible; the fallibility arises from the complexity of
the world state coupled with the complexity of the actions themselves. The final pairty is the

intelligent assistant, with incomplete knowledge of the domain, but with the ability to operate

accurately within that part of the domain where its knowledge is complete. Thus the intelligent S

assistant compensates for the fallibility of the user, but cannot entirely replace the user. To the

5-L-6

user, it appears that the intelligent assistant augments the facilities of the dumb agent, in effect

giving the dumb agent an acceptable level of "smarts".

A unique requirement derives from the fact that it is too complex to build a fully autonomous,

automated agent to replace the user. For these domains, it simply is not possible to codify all

the knowledge necessary to make the intelligent assistant as knowledgeable as the user -- what

the expert user knows is not well-enough understood. Therefore, the plan formalism must

allow the definition of incomplete plans, which cannot be executed without cooperative input

from the user. The formalism must make a distinction between decisions which the intelligent

assistant can make independently and those for which the assistant must have recourse to the

user. This aspect of GRAPPLE plans represents a departure from previous planning work,

where the planner has all the knowledge needed to be fully autonomous.

Another set of requirements stems from the fact that the human user remains in the picture,

unlike the usual situation where the user is simply replaced by an automated agent. The

intelligent assistant must be able to converse with the user, especially to answer user questions.

GRAPPLE plans should reflect the user's view of the hierarchical levels of activities. Thus,

use of hierarchical plans is motivated by a desire to have consistency between the assistant's

and the user's pictures of the relationships between activities, independent of the traditional

motivation of controlling search space to make planning more efficient. A related concern has

to do with answering questions posed by the user about the world state. We want the world

description to encompass the user's interpretation, in addition to the simple facts about the

physical reality of the world. Thus, the world description in GPF will be richer than that of

traditional planning systems. It will include not just the bare facts (block A rests on block B

which rests on block C), but the interpretations placed upon those facts by the user (blocks A,

B, and C form a structure which is some kind of column).

Additional requirements stem from the fact that even small applications in our target domains

require the operator definition language to be engineered for real-world situations. This

includes requirements for operators with large numbers of variables, repeated actions,

complex constraints on operator variables, and "underconstrained" variables. Further,

operators must be able to create new world objects (whe!n a programmer uses the editor to

create a new file, the effect on the world state is to create a new object of type file); such a

feature is not comrionly implemented in operator definition languages.

5-L-7

m~mllmmm lllmumwdllllW I I || 1

Finally, the plan formalism must support plan recognition as well as planning. Occasionally,

these two applications rquire different sorts of information, and these differences must be
accommodated. However, in both cases, the execution of plans is monitored by the intelligent

assistant, so an interface is needed by which information on success or failure can be acquired.
Such an interface has further uses: performing actions can lead to the acquisition of new
information about the world (not just changed world states). One interface can serve as the
conduit between the real world and its description within the intelligent assistant.

We wanted to act upon the insight gained from our work with the POISE system: namely, that

more knowledge was needed in operator definitions. In particular, additional knowledge was
required to deal with exceptional situations arising from multiple top-level goals being achieved

in parallel. POISE could handle multiple, concurrent top-level plans, and that capability had to
be preserved. But, POISE had insufficient information to reason about interactions among
on-going plans, at any hierarchical level. Take a POISE plan of the form A <- B C (D / E)
which is read as "plan A consists of performing action B, then action C, then either actions D

or E". We needed to add information to know when C might be redundant, because its goal
had been already been achieved by other on-going legal actions; or, when C could not directly
follow B, because certain effects of B were subsequently wiped out prior to C starting; or,
what to do if C failed -- perhaps D is provided for the C-succeeding case, and E for the

C-failing case. This last issue requires that we be able to decide whether C has in fact failed,
which POISE had insufficient information to do.

We also knew from the POISE experience that the more complex a domain is, the more

important it is to consider the difficulties of providing a complete operator library. It is

important that the library be modular, so that one can add new operators without having to

rewrite existing operators.

As a result of all these requirements, the GRAPPLE plan formalism has all the characteristics

of a full-featured plan formalism suitable for the standard planning algorithms of the literature.
It should be noted that traditional planning techniques cannot be transferred directly to this

application due to many factors including:

multiple t!p-level plans can be executing concurrently, implying that plan
interactions cannot be reliably predicted because new top-level plans can start at
any time,

Huff and Lesser 5-L-8 April, 1987

* the planner is not fully autonomous (it lacks complete knowledge, as explained
above),

" the goal of plan recognition is to recognize the user's actual plan, which may be
different from an optimal plan,

" the goal of plan recognition is to recognize the user's actual plan as it is being
performed, not after it is complete, so as to maximize the opportunity for
detecting errors while they are still readily correctable.

1.2 Guide to Organization of this Report

The remainder of this report is divided into three parts. In Section Two, we give a precise

definition of the GRAPPLE Plan Formalism GPF, the language in which operators are defined;
the GRAPPLE semantic database, which is not separable from GPF, is also defined. In

Section Three, we consider useful extensions which could be made to GPF. In Section Four
(the final part), we summarize how the requirements for GPF were met and compare

GRAPPLE to other plan formalisms.

A formal grammar for GPF appears in Appendix A. An operator library for a single,

complete example domain appears in Appendix B. A companion technical report [9] describes

how GPF is used to model the software development domain; an extensive set of software

development operators written in GPF is given there.

It is traditional that no plan formalism may be properly introduced to the field without a
blocks-world example; therefore, we follow tradition and present various plans for stacking

and unstacking blocks. The simplest of these plans have appeared in the literature many times,

and thus serve as a straightforward way for the reader to compare GRAPPLE to other plan

formalisms. We also present more complex blocks-world examples which serve to show the

strengths of GPF for complex domain modeling.

The blocks world was originally conceived as a robot problem. For the application of an

intelligent assistant, it is more appropriate to think in terms of a small child playing with a robot S

manipulating blocks, while an adult looks on. The intelligent assistant acts the role of the adult:

interpreting the child's commands to the robot as attempts to build meaningful structures (thus,

performing plan recognition), or demonstrating to the child how to build meaningful structures

(thus, planning and executing the necessary primitive actions). 0

5-L-9

2.0 Formal Definition of GPF

2.1 Overview of Operator Definitions

GRAPPLE provides for the hierarchical definition of operators. An aggregation hierarchy is
used, where multiple, lower-level operators are aggregated into a single higher-level operator.

Each lower level operator is a part of the higher level operator. (This is in distinction to a

generalization hierarchy, where lower level operators are specializations of higher level
operators.) At the lowest levels of the hierarchy, we have primitive operators which

correspond to the atomic actions in the domain. Operators at all other levels are complex 0

operatots, defining activities at higher levels of abstraction.

GRAPPLE operators are fundamentally state-based. They follow the state transition approach
introduced with the earliest planning work. This is in contrast to event-based (also called

behavioral) formalisms, of which POISE plans are an example. In an event-based system, the

emphasis is on sequences of actions; in a state-based system, the emphasis is on sequences of

states.

Every GPF operator includes clauses which define the goal, the precondition, and the effects of

the operator. An example of a (partial) GPF operator showing just these clauses is given in
Figure 2, this is the traditional example of the primitive operation to stack one block on another.

(Throughout, we follow the convention that the operator template, including GPF reserved 0

words, is given in uppercase, and the details of this specific operator appear in lowercase.)

The interpretation of the basic GPF clauses is as follows:

* If the operator is executed in an initial state A in which the precondition is true,
then the effects are realized causing a transition to state B.

* If the execution of the operator succeeded, then the goal will be true in state B;
otherwise, it will be false. (The Figure 2 example does not yet deal with failure
-- we will expand the example later to show how it is handled.)

0

While the goal, precondition and effects clauses are the core of a operator definition, there are

other operator clauses. All operators have a constraints clause which describes relationships
among operator variables. If the operator is primitive, it has an observe clause, which is part

of the interface to the real world necessary for both plan recognition and plan execution.

Complex operators have a decomposition clause, which shows how the complex operator is

5-L-10

FIGURE 2: A Basic Operator

(OPERATOR stack IS-PRIMITIVF
This is an operator for moving a single block on top of another;
the block to be moved must be available directly to the robot arm
(i.e., must have no other blocks on top of it)
and must also be on the table.
The block which is to serve as the base must have its top clear
to receive the block being moved.

(GOAL on(x,y))

(PRECOND (clear(y) AND clear(x) AND ontable(x)))

(EFFECTS (ADD on(x,y))
(DELETE clear(y))
(DELETE ontable(x)))

broken down into simpler pans. That completes the overview of operator clauses.

As would be expected in a state-based formalism, there is a database which is used to describe

the state of the domain world. Domain-specific predicates, functions and initial constants are

predefined, and constitute the schema of the database. Queries on the state of the world are

then expressed as formulas in first order predicate calculus. Since the database serves as both

the state definiuon and the description of all domain objects, we call it a "semantic database" or

SDB.

0

2.2 Major Operator Clauses

2.2.1 Goal Clause

The goal clause identifies the particular database state which is meant to be achieved by the

execution of this operator. Obviously, this is a family of database states, since a typical goal

will mention a small subset of the database predicates, leaving the truth value of other

predicates unspecified; the specific member of the family is immaterial to the operator. The

goal is a formula whose truth may be determined by querying the database. Other operators

may have identical or similar goal clauses, in which case there are alternate ways to achieve this

goal.

We make a distinction between the goal of a operator, and its purpose. While the goal is

predefined and static, the purpose is decided dynamically when operators are instantiated and a

plan hierarchy is constructed. The purpose of a operator consists of contributing to goal and/or

precondition satisfaction for other parts of the plan hierarchy. If the plan hierarchy includes an
operator P whose precondition is A, and if another operator Q whose goal is A appears in the

hierarchy as part of the expansion of P, then the purpose of Q is to satisfy the precondition of

P. There might be another plan hierarchy with an operator R, whose goal is A AND B, and Q

might appear in the hierarchy as part of the expansion of R; then the purpose of Q would be to

contribute to the satisfaction of the goal of R. In each case the purpose is different, but the goal

of Q is always the same.

In some sense, the goal clause in GPF is redundant because the purpose of an operator is the

real determiner of success or failure, and because an explicit effects clause is provided. The

presence of the goal clause in GPF is intended to give the operator designer the opportunity to

provide some focusing information. The goal clause lists the important effects of the operator,

and thus distinguishes between the "main" effects of an operator and its "side" effects. The use

of this information in constructing plan hierarchies is described in Section 2.6.4.

2.2.2 Effects Clause

The effects clause defines a state transition (from an initial state to a final state) which occurs as

a result of executing this operator. If execution of the operator was successful, then the goal

will be true in the final state of this transition. The effects clause is expressed as a set of atomic

5-L-12

0A

database operations such as making predicates true or false or creating new database objects;
taken together as a single, uninterrupted database transaction, these atomic operations define
the state transition. In the case of a complex operator, the state transition takes place after all

subgoals are achieved.
/

The effects clause will usually include more than just .hose database operations which maice the

goal true. The effects clause is the means of updating the semantic database, including bare
facts and interpretations of those facts; so, all knowledge to be gained from executing a

particular operator should be described in the effects clause: goal-related "main effects" as well

as "side-effects". We give a few examples:

* In the simple stack operator of Fi aure 2, the deletion of clear(y) and ontable(x)
are side-effects of achieving on(xy). However, they cannot be omitted if we
are to have an accurate state description for the state after a stack action for x and
y.

4D

- We might imagine that in the process of stacking (or unstacking a block), we
would have access to information about the weight of the block; for the sake of
argument, let us assume that this information is accessible only at this time.
Then, we would want to record it in the semantic database, so that it was
available later. For example, we might have other operations on blocks which
were conditional on certain weight constraints.

" If we had operators to build structures (towers, bridges, fences, etc) out of the
blocks at our disposal, we might want to record the color of a structure, based
on the blocks of which it was composed. The color might be red, blue, ... or
multi-color (for the case where mixed colors of blocks were used.) Recording
the color of the structure might not be information needed by any other operator,
but it might facilitate discussion with the user about the domain state.

2.2.2.1 Conditional Effects We allow the database operations of the effects clause to be

conditional. Thus the effects clause actually defines a family of transitions; the goal of the

operator will be true for some family members, and false for the rest.

Conditional effects can be used in two ways. First, we can define generic operations, and
4 leave the fine distinctions to the effects clau.,e. To do so, we make one or more database

operations conditional upon some fact in the state prior to execution of the operator. This

allows us to get extra mileage from a single operator: without conditional effects, we would
have to make multiple operator definitions. Second, we can make the outcome of a operator

4 dependent upon observations from the real world; this means that we have the ability to make

the appropriate database updates both in me case of a operator succeeding as well as in the case

5-L-13
I

of a operator failing. In this case, the database operation is conditional upon feedback from the

real world. Examples of these two uses of conditional effects are as follows:

Suppose we assume that when we stack one block x on another block y, x can
come either from the table or from on top of another block z. Then, in the stack
operator, the "side-effects" involving the new status of x will be either deleting
ontable(x) or deleting on(x,z). The choice of "side-effect" is conditional on the
status of x prior to the stack action.

" Suppose the child's robot could not lift blocks whose weight was greater than a
certain threshold, and suppose further that the only way to gauge the weight of a
block is to attempt to stack or unstack it. Then it is possible that a stack
operation would fail if the block were too heavy. In this case, either the effects
as given in Figure 2 would be achieved (along with an effect recording that the
weight of the block is below the threshold) or the blocks would remain in their
original position and we would achieve a single effect: namely, recording that
the weight of the block is above the threshold.

2.2.2.2 Effect, of Complex Operators Although one might suppose that complex

operators should not have effects clauses, we not only allow this, but believe that effects

clauses for complex operators provide for more accurate domain modeling. Of course, if the

goal of operator P was A AND B, and the decomposition of P was to achieve A and achieve B,

then P itself would not strictly require any effects. When a complex operator does have an

effects clause, it generally involves recording some higher-level semantic concept in the

semantic database. For example,

* If we were building structures and had operators to paint blocks, then we might
have a operator to make a structure red, consisting of painting all blocks in the
structure red. The blocks are marked red (in the SDB) as each of the subgoals is
accomplished, and the structure is marked red (in the SDB) as an effect of the
paint-structure-red operator.

" If we are building a vertical structure with three blocks, then we can do so with
two stack operauons. The effects of the stack operations show x on y and z on
x. As effects of the vertical-structure operator, wt, can introduce an object
representing the structure, and show that blocks x, y and z are part of it. These
effects give a higher-level semantic interpretation to the world state than is
possible with just on(x,y) and on(zx).

2.2.3 Precondition Clause

The precondition clause establishes constraints on the initial state in which operator execution

can start; these constraints must be met in order for the state transition defined in the effects

5-L-14
S

clause to be valid. Another way to look at the precondition clause is to say that it defines an

appropriate start state from which the goal may be achieved via this operator.

2.2.3.1 Use in Ordering Actions Operators must be executed in the order dictated by

their preconditions. Ordering of operators is not specified in any other way; in particular, the

temporal ordering rules found in an event-based formalism are not used. Preconditions allow

an implicit concurrency among operators: if two complex operators have true preconditions.

then both can be executing at the same time.

In the case of a complex operator, the precondition must be true before any subgoal is to be

achieved. Therefore, it is good operator writing style to push preconditions down to the lowest

possible operators in the hierarchy, so as to allow as much concurrency of higher-level tasks as
makes sense for the domain. For example, we might have a set of operators including some to

build structures of various types and others to take them apart. From such operators, we can

define another operator to build a new structure out of the blocks of some existing structure.
During execution of this re-use-blocks operator, we need not complete the dismantling prior to

starting to re-build; if blocks are available in the right order, we can interleave dismantling with

re-building. In this case, wt do not want to have a precondition on re-building that requires

that all necessary blocks be available. Availability should be a precondition on individual

stacking operations, which satisfy the subgoals of re-building.

2.2.3.2 Types of Preconditions We make a distinction between two types of

preconditions: normal and static. An operator may have both types, or only one type, or none.

The precondition of a operator is understood to be the conjunction of the normal and stati

preconditions when both are present.

The normal precondition for an operator takes the form of a list of formulas, which are

implicitly joined by the AND operation. Thus if the operator writer states:

(PRECOND (A, B AND C))

the complete normal precondition is understood to be the formula:

A AND B AND C

5-L-15

By dividing the entire normal precondition into separate parts, the operator writer is providing

some heuristic information to the planning system about how to break the precondition into

separately achievable parts. For the example above, the information indicates that A can be

achieved separately but B and C can be achieved together. The use of this information is

described in Section 2.6.4.

If a normal precondition is found to be false, it will be appropriate to take explicit steps to make

it true. For static preconditions, this is not the case; a static precondition specifies universal

conditions of applicability for the operator. A static precondition may involve some aspect of

the database which is not changeable, or it may cover a case where it does not make sense

(given the domain) to attempt to make the precondition true when it is false.

FIGURE 3: Static Precondition Examples

(OPERATOR stack IS-PRIMITIVE
; this is another way to move a single block on top of another. Here we
;assume that blocks come in two types: those with flat top surfaces, and
,those with other types of top surfaces. We add the static precondition
that the base block must have a flat top in order for the other block to sit on it.

(GOAL on(x,y))

(PRECOND (clear(y) , clear(x) . ontable(x))) 0
(STATIC flattop(y))) ; here is the required condition

(EFFECTS (ADD on(x,y))
(DELETE clear(y))
(DELETE ontable(x))

(OPERATOR unstack IS-PRIMITIVE

; this is the basic operator for taking one block off the top of another

(GOAL ontable(x))

(PRECOND (clear(x))
(STATIC on(x,y)))

(EFFECTS (DELETE on(x,y))
(ADD clear(y))
(ADD ontable(x))

5-L-16

Iwo examples of static preconditions are given in Figure 3. The examples use an extended

blocks-world example which includes blocks of two types: cubes and pyramids. No blocks can

be stacked on top of a pyramid, because its top isn't flat. In the first Figure 3 operator, we see

that the precondition requiring a flattop is a static precondition: the "flattop-ress" of a block is

predetermined for a given block, since we are not dealing with a domain in which there are

operators to turn cubes into pyramids, etc. In the second Figure 3 operator, we define the

action of unstacking blocks. The precondition requires that the two blocks to be unstacked are

presently stacked. If not, it doesn't make sense to stack them, since the operation unstack will

simply undo that action. Hence, the precondition on the unstack operator is static.

Note: static preconditions involving unchangeable aspects of the world must be used carefully.

They restrict the modularity of the operator library, in the sense that some operators are written

in ways which are dependent on knowledge of what the other operators in the library do or

don't do. They prevent the later, straightforward addition to the operator library of operators

which do make this aspect of the database changeable. In the first Figure 3 operator, we would

have to change the static precondition into a normal one if we decided to extend the world

modeling to include the reshaping of blocks (as in a Lego system, where blocks are

composable.)

5-L-17

2.3 The Semantic Database

A state description mechanism, which we have called the semantic database, is central to any

style of state-based plans. In this section, we discuss how the semantic database can be

informally modeled, and how it may be formalized from this model. We also discuss the issue

of formalizing assumptions about the valid states represented in the semantic database.

2.3.1 Modeling the Semantic Database

We have found that the ER (entity-relationship) model of data [4] is a useful way to plan how

to model the domain world. The ER model is appealing during the process of writing plans

because it is highly intuitive, and it lends itself to an attractive graphical representation.

FIGURE 4: Blocks World

ORIENT

BAR CUBE PYRAMID
/0

IS-A IS-A IS-A

CLEAR T/F

ON ON-TABLE T/F

COLOR

IN BSE

5-L-18

FIGURE 5: Semantic Database Formalized

Predicates (Extensional) Predicates (Extensional, from ER
attributes)
on (block, block) type-struct(structure, (unknown ,tower,
ontabie(block) column ...))
in(structure,block) type-biock(block, (cube, pyramid, bar))
clear(block) color(block, (red, green, blue))
top(structu re, block) onient(bar, {horizontal, vertical)
base (structure, block) name (block,stning)

Functions Predicates (intensional)

in-struct(biock) :structure committed(b: block):
in-struct(x) = y IFF in(y,x) THEREEX!STS s

top-of (structu re): block in(s,b)
top-of (x) = y IFF top(x,y)

base-of(structure): block
base-of (x) = y 1FF base(x,y)

Constraints

IF in(sl ,b) AND in(s2,b) THEN equal(sl ,s2)
; in" is many to one

IF on(bl ,b2) AND on (bi ,b) THEN equal(b2,b3)
IF on(bl ,b2) AND on(b3,b2) THEN equal(bl ,b)

; on" is one to one
IF equal(name(x),name(y)) THEN equa(x,y)

block names must be unique
on-table(x) XOR THEREEXISTS y I on(x,y) ;law of gravity
NOT on(x,x) ; on is not reflexive
IF on(x,y) THEN (THEREEXISTS s I in(s,x) AND in(s,y))

;any stack of two or more blocks must be a structure
IF top(s,x) THEN clear(x) ; what it means to be on top
NOT committed(x) 1FF (clear(x) AND ontable(x))

;what it means not to be in a structure
IF top(s,x) THEN in(s,x)

the top of a structure must be in the structure
IF base(s,x) THEN in(s,x)

the base of a structure must be in the structure
IF base(s,x) THEN ontable(x)

,the base of a structure must rest on the table.

5-L-19

With ER, there are objects called entities, these entities have attributes, and the entities

participate in relationships. Attributes are typed; we expect to handle strings, booleans,

enumerations and numbers. As a further convenience in the ER schema, we allow the

distinguished transitive relationship is-a between two entity types (as opposed to entity

instances). This relationship is used to define a generalization hierarchy; it has the usual

meaning that the one entity inherits all attributes and relationships defined on the other.

In Figure 4 we give an ER schema of a simple, but interesting blocks-world; in Figure 5, the

predicate calculus formulation of this world is given (the translation from ER to predicate

calculus is discussed in the next section). This example has been chosen to give the flavor of

domain modeling which is appropriate for and possible with GPF plans. In this world, we

have three types of blocks: cubes and pyramids and bars; they are shown in Figure 6. The

blocks can be assembled into structures. (We will be limiting this world to vertical structures

with tops and bases, in order to keep the examples to a manageable size.)

Since we will use this extended blocks world for all our remaining plan examples, we give in

Figure 7 the primitive operations of this world. (A few operator features are used which have

yet to be introduced.) Each stacking or unstacking action must now take the structure into

account. This leads to two variations on stacking: start-struct (which introduces a new

structure) and extend-struct (which builds on an existing structure). To keep the example

simple, we assume that bars cannot be re-oriented (if they appear in the initial world in vertical

position, so they stay, and similarly for horizontal position.) Examples of the kinds of

structures which can be built using these primitive operations are given in Figure 8.

Figure 6: Extended Blocks World Blocks

Types of Blocks In the Domain

Cube Bars Pyramid

5-L-20

FIGURE 7: Primitive Operators for Extended Blocks World

(OPERATOR start-struct IS-PRIMITIVE
this is an operator for moving a single block on top of another, thereby starting a new
structure.

(GOAL top(s,x) AND base(s,y) AND on(x,y))

(PRECOND (NOT committed(y) , NOT committed (x))
(STATIC not type-block(y, pyramid)))

(EFFECTS (NEW s structure) (ADD on(x,y)) 0

(DELETE ontable(x)) (ADD top(s,x))
(ADD in(s,x)) (ADD base(s,y))
(ADD in(s,y)) (SET (type-struct s unknown)))

(OPERATOR extend-struct IS-PRIMITIVE
this is an operator for moving a single block on top of another, as part of extending an
existing structure. Structures cannot be extended if they have a pyramid at the top.

(GOAL top(s,x) AND on(x,y))

(PRECOND (NOT committed(x) , top(s,y))
(STATIC NOT type-block(y, pyramid)))

(EFFECTS (ADD on(x,y)) (DELETE ontable(x))
(ADD top(s,x)) (ADD in(s,x))
(DELETE top(s,y)) (SET (type-struct s unknown))))

(OPERATOR remove-from-struct IS-PRIMITIVE
this is the basic operator for taking one block out of a structure. If there were only two
blocks in the structure, we disband the structure.

(GOAL NOT committed(x))

(PRECOND (top(s,x))
(STATIC on(x,y)))

(EFFECTS (DELETE top(s,x)) (ADD clear(y))
(DELETE in(s,x)) (ADD ontable(x))
(ADD IF (OLD(NOT base(s,y))) THEN top(s,y))
(DELETE IF (OLD(base(s,y))) THEN in(s,y))
(DELETE IF (OLD(base(s,y))) THEN base(s,y)
(SET (type-struct s unknown))))

5-L-21

! ! II

Figure 8: Extended Blocks World Structures

Types of Vertical Structures To Build

Tower Tower 4 - Others "-

2.3.2 Formalizing the Semantic Database

2.3.2.1 Predicate Calculus Representation If we start with the ER model, then we

need to transform entities, relationships, and attributes into predicates and functions of the

predicate calculus in order to write the operator clauses as formulas. We make the obvious

translation between the ER model and predicate calculus, as follows:

For each relationship, define a predicate of the same name with arguments of
number and type as in the relationship.

* For each attribute with a true/false value, define a (one-place) predicate of the
same name; its argument must be an entity of the appropriate entity type.

For each attribute whose value is other than true/false, define a predicate of the
same name which takes as its arguments an entity of the appropriate entity type
and a literal representing the attribute value of interest.

Define functions for certain relationships, taking one or more entities as
arguments and returning the entity which completes the relationship. (This must
be done only where the result is unique. Two such functions can be defined for
1-1 relationships; one such function can be defined for a many- 1 relationship; no
functions can be defined for a many-many relationship.)

Define further functions, if needed, to retrieve attribute values. If entity type E
has an attribute named A, then a function named, say, get-A can be defined with

5-L-22

a single argument which is an entity of type E. The result of the function is the
value of attribute A for that entity.

Define arbitrary predicates with n arguments to represent interesting formulas
with n variables composed from the foregoing (extensional) predicates and
functions, with qualifiers as needed. We call these predicates intensional,
because they are not directly recorded in the database; their truth/falsity can be
computed from the facts recorded in the semantic database.

* Predefined predicates are provided for basic relationships on attribute values
(strings, integers, and booleans): equal is overloaded for all attribute value
types. The usual substring, greater-than, less-than, etc. can also be used.
These predicates are also intensional.

The predicate calculus formulation of the blocks world was given in Figure 5.

2.3.2.2 Database Constraints Included in Figure 5 are a set of SDB constraints. These

constraints must hold for any state of the database. (We do not allow the testing of these

constraints in the course of an update transaction, during which time the constraints will
almost certainly be violated.) The constraints record all assumptions being made about how the

domain is being modeled. If a constraint fails to hold for some state of the database, then either
there has been an error of interpretation, or there is an error in the effects clause of some
operator. Additionally, when choices are being made between alternative interpretations, those

interpretations which lead to the violation of SDB constraints can immediately be rejected. For

example:

* The "law of gravity" constraint of Figure 5 states that for all blocks, either they 0

rest on the table or they are supported by another block, but not both. If the
operator start-struct had the error of omitting the (DELETE ontable(x)) from the
Effects, then such an error would be caught by testing the law of gravity
constraint on the state after a start-struct action.

" Suppose our domain included an entity type E with at least two different
attributes (Al and A2), and we had separate plans which set these attributes.
Suppose we had a constraint FORALL x: greater-than(Al(x),A2(x)). During
recognition, we may see an action involving A I Y. ith a particular value VA, but
not know for certain which entity was involved. If A2(E 1) is greater than VA,
then we can rule out El right now, thus using the constraint to reduce the
number of possible interpretations. But if A2(El) ;s not set, El is a valid
possibility. Suppose we choose to guess El. Later, we see an action setting
A2, and suppose we know for certain that entity El is involved. Now suppose
that this leads to a state where, for El, A2 is greater than Al. We must have
made a mistake in guessing El on the action setting Al.

5-L-23

An alternative use of the database constraints would be to achieve implied database updates.

For example, the law of gravity constraint could be interpreted to mean that any time we

delete/add on(x,y), we must add/delete ontable(x). This has the advantage of reducing the
number of separate effects which must be written in an operator definition (which might

reasonably be assumed to reduce the possibility of the writer making errors in writing the

operators.) This is a legitimate issue. However there are other (more direct) ways of achieving

this goal, which are described in Section 3.3.1 under extensions. Therefore, we retain the

interpretation that database constraints are not to be violated, and if violated, indicate an error

(of interpretation or operator writing.)

One speciai use of constraints is to validate the initial state of the semantic database. In the

blocks-world of Figure 5, the initial state will contain no structures if and only if there are no

stacked blocks. In particular, the correct state description of an initial state where there are

four blocks arranged in two stacks will contain two structures. If an initial state description

fails to satisfy the SDB constraints, then there is no guarantee that the operators will work

correctly.

A final use of constraints involves their applicability to formal reasoning about operator

formulas. The constraint which establishes the equivalence of NOT committed(x) with

clear(x) AND ontable(x) could be used to match a precondition of the first form with an

operator whose goal has the second form. This application of database constraints is important

to maximizing use of the operators in an operator library. It is discussed further in Section

2.6.4.1 on computing which operators can be used to achieve subgoals and preconditions.

2.3.3 Relationship between SDB and Effects Clause

The effects clause of an operator specifies the state transition to be made when the operator is

completed. A state transition consists of individual operations which include creation of new

objects in the database, addition of new relationships (predicates), deletion of existing
relationships, and setting of attribute values. These database changes are denoted by NEW,

ADD, DELETE, and SET operations respectively. The collection of individual operations in

an effects clause defines a comilete transaction on the database. As has been mentioned

previously, some of these operations may be conditional.

5-L-24

2.3.3.1 NEW The NEW operation allows the representation of a state change which
includes the creation of new objects in the semantic database. A NEW operation takes as its
argument a (variable) name for the new object instance. An example of the NEW operation

appears as the first effect of start-struct in Figure 7. Note that the type of the object must be

specified in the NEW operation.

A

In very simple domains, the NEW operation is not needed. The textbook blocks world, with a

fixed number of block constants and with no explicit representation of the block structures,

does- not require a facility to create new database objects. However, most complex domains do
need such a facility. Some domains are inherently constructive (software development for
one), so that the NEW operation is central to being able to model the domain.

It is sometimes necessary to have the NEW operation be conditional on the existence of objects

in the database; for example, the operator writer often wants to say "make a new database
object only when one meeting such-and-such a description does not already exist." So, as an
optional part of the NEW clause, attribute values and/or predicates can be given to serve as the
description of the desired object. If this additional information is given, then it is assumed that

an actual new object will be created only when no object already exists with exactly these
attribute values and for which the predicates are true; if such an object already exists, then it is
bound to the variable name. For example:

(NEW x type WITH (attr(x,val), rel(x,y))

will not result in a new object being created if there is an object x whose attribute attr has the
value val and for which rel(xy) is true. If there is no x satisfying the WITH condition, then a

new object x will be created and two implicit database operations will be performed:

(SET attr x val)
(ADD rel(x,y))

S
NOTE: The omission of the converse operation, to delete objects in the database, means that

the database is not "garbage collected". Such an operation could easily be added to GPF.

2.3.3.2 ADD/DELETE The ADD and DELETE operations take as arguments an
(extensional) predicate or a conditional (extensional) predicate. (Limitation to extensional

5-L-2 5

predicates is necessary because those are the ones explicitly recorded in the database -- the

intensional predicates are computed from the extensional ones , and thus can be used for

querying but not updating the database). Thus, their form is:

ADD/DELETE <extensional predicate>

or ADD/DELETE IF <cond> THEN <extensional predicate>

ELSE <extensional predicate>

If the condition evaluates to true, then the relationship of the THEN part is added to or deleted

from the database; otherwise, the relationship of the ELSE part is added or deleted. (The else

clause is optional.)

ADD and DELETE are used in the all the plans of Figure 7.

The use of ADD and DELETE follows the terminology of the earliest planning work, and

evokes the "frame problem". We take DELETE p(x,y) to be equivalent to ADD NOT p(x,y).

Further, we assume that it is not an error to ADD a predicate which is already true in the

database, nor to DELETE a predicate which is already false in the database. The actual

implementation of the semantic database can use either the closed or open world assumptions;

this implementation issue is not constrained by the plan formalism.

2.3.3.3 SET The SET operation has the form:

SET <attr spec>

or SET IF <cond> THEN <at" spec> ELSE <attr spec>

The attribute specification is a triple, consisting of the attribute name, an object (of a type with

that attribute), and an attribute value. The database change is to set the given attribute of the

given object instance to the given value. A set operation is actually a shorthand notation for

two operations: one to delete the existing value of that attribute for that object, and one to add

the specified value as that attribute for that object. This notation insures that attributes are

single-valued. By providing the special SET syntax for manipulating attribute values, we are

also insuring that the attribute be set to a specific value, rather than being constrained to a range

5-L-26

0

of possible values. (Relaxation of this restriction is discussed in the Section 3.3.2.) An

example of an unconditional SET operation appears in all the plans in Figure 7.

2.3.3.4 OLD Because the effects clause deals with a state transition involving a start state

and an end state (as opposed to dealing with a new state only), there is a need to refer to
attribute values and predicates in the old state or to objects identified by relationships in the old

state. Otherwise, for example, it is impossible to phrase a database operation which adds a

fixed value to the existing value of a numeric attribute. To accommodate this, we provide a

distinguished function OLD, which takes as its argument a database predicate or a database

function returning an attribute value or an object instance.

The <cond> construct used in the ADD/DELETE and SET database operations can be

conditional on the prior state, but not on the final state. (That is because the purpose of the

effects clause is to define a computation of a new state from an existing state). Therefore, this

construct must take the form OLD(<formula>). We require the OLD to be explicit (see the

Observe clause discussed in Section 2.6.2.2 for an alternative use of the conditional in

Effects.)

S

The remove-from-struct operator of Figure 7 has some conditional effects using the OLD

construct. There can be two different outcomes of the remove-from-struct operator that the

structure simply has one fewer block, leaving a different block at the top, or that the structure is

disbanded, and has no blocks in it at all. Thus, the effects clause takes into account whether or 0

not, in the prior state, the block y (which is under block x) is or is not the base of the structure.

2.3.3.5 Semantics The semantics of the effects clause is defined by the following

operational model. Before any part of the effects transaction takes place on the database, each 0

instance of OLD is located, its argument is evaluated (in the context of the current database

state) and the entire OLD construct is replaced by the value returned (which could be a database

object, an attribute value, or a true/false value). Then the NEW operations are performed as

follows: first, all WiTH specifications are evaluated in the current database state; then all new 0

objects (for which the corresponding WITH failed to evaluate to true) are created. Then, all

other operations (including any implied ADDs, DELETEs, or SETs from the NEW operation)

are performed in any order according to the condition given for each operation. That completes

the transaction. 0

5-L-27

With this interpretation, some care must be taken in using OLD in a complex operator. The

OLD will be evaluated ir a state in which all the (final) subgoals are true, not, for example, in

the state in which the precondition was true. However this is the right interpretatio-. of OLD

for complex plans. For example, it is possible to write correct plans to keep an accurate count

of the number of each different type of structure in the world, even when two or more

structures of the same type are being built 4.oncurrently. Those problems which do arise can be

avoided by writing multiple operators with different (static) preconditions, obviating the need

for effects conditional on prior states of the database.

5

5-L-28

0

2.4 Decomposition Clause

Complex operators are decomposed into subgoals, such that if each subgoal is achieved, then
the goal of the complex operator can be achieved (via the addition in the SDB of the effects, if

any, of the complex operator). Thus, complex operators are not defined in terms of other

operators, but indirectly through states of the database to be achieved by other operators. This

makes for a modular operator library -- new operators can be added without having to change

existing operators to mention the new operator names.

To make an interesting blocks-world example, let us define a tower to be a stack of blocks 0

three units high where the top block is a pyramid; we exclude the use of horizontal bars in the

tower to ensure its columnar shap . One operat --r for building a tower is a complex operator

with a decomposition clause, constructing a towe from two cubes and a pyramid. This

operato has tvo subgoals, one defining the state wher, the foundation (a two cube stack) is in 0

place and the ohe," defining the state where the pyramid is on top of the foundation. This

operator is given in Figure 9 (it does use some operator features which we have not yet

Jiscussed.) An alternative operator with the same goal is also given there; the alternative

operator builds a tower from a vertical bar (2 units high) and a pyramid (adding the third unit of 0

height). Alt-make-tower has a subgoal decomposition with a single subgoaL

When rying to achieve a complex goal, any of the subgoals which are already true need not be

re-achieved. This interpretation of the meaning of the subgoals makes the operators applicable 0
in more circumstances (i.e., larger families of world states). It saves the writer from havig to

write additional operators which are minor variations of other operators providing for minor
variations in the circumstances in which they will be applied.

We treat preconditions as attributes of operators, not of goals or subgoals. So, if there are two

operators which achieve the same goal, they need not have the same preconditions. Therefore,
no information on subgoal ordering is given in an operator. Subgoals must always be achieved
in the order dictated by the preconditions of the operators which are chosen to achieve them.

On the principle that a plan formalism should not require duplicate information from the writer

(thereby avoiding the need both to check for and to resolve inconsistencies), subgoal orderings

are not allowed even when all operators for achieving a subgoal have the same preconditions.

Orderings are always computed from the relevant preconditions.

5-L-29

I--

FIGURE 9: Operators for Building Towers

(OPERATOR make-tower IS-COMPLEX
;we make tower from two cubes and a pyramid.

(GOAL tower(s))

(PRECOND (TRUE))

(DECOMP (FINAL SUBGOAL build-foundation
(in(s,x) AND base(s,y) AND on(x,y))

(FINAL SUBGOAL add-pyramid
(in (s,z) AND on(z,x))

(CONSTRAINTS (type-block(y,cube)) ;base-is-cube
(type-block(x,cube)) ; middle-is-cube
(type-block(z,pyramid)) ; pyramid-at-top

(EFFECTS (SET (type-struct s tower))))

(OPERATOR alt-make-tower IS-COMPLEX
we make a stack with a vertical bar and a pyramid -- an alternative type
of tower also 3 units high.

(GOAL tower(s))

(PRECOND (TRUE))

(DECOMP (SUBGOAL build-it
(in(s,x) AND base(s,y) AND on(x,y)))

(CONSTRAINTS (type-block(y,bar)) ; base-is-bar
(orient(y,vert)); bar-is-vertical
(type-block(x,pyramid)) ; pyramid-at-top

(EFFECTS (SET (type-struct s tower))))

5-L-30

I i

2.4.1 GPF Plan Nets

The standard way to represent hierarchies of plans is through a hierarchical plan network [11].
At each level in a GPF network, there are nodes representing states of the world, tied together
in some temporal order (typically a partial order rather than a true linear sequence). Each state
is defined by a condition formula: if the condition is true, then the state holds (is achieved.)
The states are to be achieved in a sequence dictated by these orderings. If state A has an arrow
to state B, then state B must be achieved after state A; when a state has several predecessors, its
achievement must take place after all the predecessor states have been achieved. (See also
Section 2.6.3 which discusses the durations over which states must be preserved.)

At the highest level in the plan net is a single state representing the goal to be (or being)
achieved by this plan net. Top-down expansion from one level to the next is made by selecting
an operator to achieve each state appearing at the higher level. The first node of the expansion
inherits the predecessors of the higher-level node, and the last node of the expansion inherits

the successors of the higher-level node. Certain states, representing effects of operators, are
terminal and not subject to further expansion. Other states, whose conditions are already true,
also do not need to be expanded (established terminology denotes these as phantom nodes; see
also Section 2.6.3 on protection intervals.) Nodes which are not expanded are simply copied
from one level down to the next level.

Figure 10 shows the two cases of network node expansion from a higher level to a lower level:
via 1 rnmplex operator and via a primitive operator. In the case of expansion viia a complex

of Eor, the expansion includes an operator-head node, followed by multiple nodes in parallel
repiesenting the separable parts of the precondition, followed by a precondition-true node,

followed by all subgoals in parallel, followed by a operator-end node representing the effects
of the operator. (Operator-head and precondition-true nodes act like SPLIT and JOIN nodes
[see II]; their condition formulas are TRUE). In the case of expansion via a primitive
operator, the expansion includes an operator-head node, followed by multiple nodes in parallel
representing the separable parts of the precondition, followed by a precondition-true node,
followed by an operator-end node representing the effects of the operator. In either case, if the

precondition is not divided into multiple parts, the nodes preceding the precondition-true node
can be omitted and the precondition formula attached to the precondition-true node in lieu of the
formula TRUE.

5-L-31

STATE EpnigaGFPa ewr

X Node Expansion by
OperaorPm iiex Operator

True3 20fXTu fXo

One side-effect of the lack of subgoal ordering in complex operators is that the ordering

between the states of the world as seen at any given level in the procedural net may be more

permissive than is strictly correct; the orderings that are given are correct, but some orderings

may be missing. (These missing orderings are in addition to the missing orderings which result

from not yet having considered operator interactions; generating these additional orderings

requires further expansion of the plan net.) This permissiveness will be removed at the next

lower level in the plan net, when preconditions of the operators chosen to achieve these states

are revealed. This is as it should be, since ordering will be dependent upon the operator

choices made in the case where multiple operators with different preconditions satisfy the same

goal. We have followed a "least-commitment" approach here.

2.4.2 Style of Decomposition

We want to make the choice of subgoals a function of how a typical expert in the domain views

the hierarchy of domain tasks. The subgoals should enumerate the significant intermediate

database states on the way to achieving the goal. In particular, achieving the precondition to all

operators which achieve a subgoal is often an appropriate choice as an additional subgoal. This

would usually happen if the achievement of the precondition was not possible via a primitive

action, but only via a complex operator. In choosing such a subgoal, the writer is providing

additional knowledge to the planning system about aspects which are common to all operators
that could be used to achieve another subgoal.

We could have chosen to use additional subgoals in our tower operator, to make the blocks

selected for the structure available for the robot to grasp (remember that a block cannot be
grasped unless its top is clear). Without additional subgoals, these actions (to clear tops) will

still have to be performed, in order to meet the precondition of the operators chosen to build the

foundation and add the pyramid. The choices are a matter of style, and a function of how the

domain is typically viewed.

We believe, from our own experience writing operators, that writers will often elevate

complicated, common preconditions to subgoal level. To make an analogy with an everyday

situation, imagine a person writing a list of things to do today. Some entries in the list are

likely to be preconditions to other entries, but they are accorded separate entries because they

are sufficiently complex in their own right.

5-L-33

In a domain (such as the blocks world example used in this report) where there are a small
number of primitive operators, which can be combined in endless ways to achieve higher level
goals, the need for including common preconditions as subgoals is not very compelling.
However in domains where there are a large number of primitive operators, each used in a
distinctive way, this facillay will be very useful. This is one case where the blocks world fails
to be appropriate to demonstrate GPF features.

In these other types of domains, there will be many cases where a single state expands into a
precondition state and a single subgoal satisfiable by a primitive operator, another level in the
net is required to reveal the interesting detail in the precondition state. This leads to plan nets
which have an excessive number of levels, with each level introducing a very small number of
new net nodes. A pathological plan net of this sort, using an example from the software
development domain, is given in Figure 11. In this case, allowing common preconditions to
appear as subgoals will reduce the number of hierarchical levels, thus reducing the
"artificiality" of the hierarchy. Figure 12 shows a case where three levels of the hierarchy are

collapsed into a single level.

GPF has been designed so that the operator writer can take advantage of common
preconditions when they arise. However, GPF also handles those cases where different
operators for achieving the same goal do not have preconditions in common.

2.4.3 Final Subgoals 0

In order to allow this style of operator writing where preconditions may be elevated to subgoal
level, we cannot require that all subgoals be true simultaneously in order for the operator to
complete. Therefore, we need to distinguish those subgoals which must be true
simultaneously in order for the operator to end. We call these the final subgoals. The
algorithmic identification of which subgoals should be final is non-trivial, due to two factors.
First, in the case of an iterated subgoal (discussed in detail in Section 2.4.4), a complex

relationship will exist between the subgoal clause and the goal clause. Second, when the goal
(and effects) involve domain abstractions, there may be little apparent commonality between the
goal and the subgoals (see for example, the tower operator of Figure 9.)

2.4.3.1 Identifying FINAL Subgoals While the algorithmic identification of final 0
subgoals is an open issue, it is straightforward to have the operator writer identify the final

5-L-34

Figure 11:
ready Pathological Plan Net
to test Expansion

make
system

True have *tts of
executable #a*ea~

link

ave u 6f

object

compil

have

5-L-35

ready to Figure 12: Pathology Resolved
test Using Additional Subgoals

make (Three Net Levels Combined As One)
system

final
S have

non-finalhve

have O a0t
True,..

...

objet "A-4. tem

5-L-36

subgoals when the operator is written. A single keyword (FINAL) is all that is required on
those subgoals which must be true simultaneously at operator completion in order to ensure

that the goal can be made true. The Figure 9 example must have both of its subgoals marked as

final.

Subgoals need to be expressed with some care, because (among other reasons) the granularity

of FINAL is at the level of the entire subgoal. It would be unacceptable to express the

build-foundation subgoal as top(sx) AND base(sy) AND on(x,y) because top(sx) will

become false when the add-pyramid subgoal is achieved. Therefore, we "back off' to the
predicate which is not going to change, substituting in(sx) for top(s,x) in the complete 0

formula.

2.4.3.2 Examples of Non-FINAL Subgoals As an example of non-final subgoals,

consider again the action of constructing a tower. The make-tower operator of Figure 9 can be
modified to take advantage of non-FINAL subgoals (the Figure 9 operator is correct as it

stands, but not the only way the operator can be written in GPF). There are four additional

subgoals needed; three deal with making blocks x,y, and z available to be used in this
structure. The other missing subgoal deals with an intermediate step in situations where an

existing structure can be modified to construct a tower. (The existing structure might consist of
two cubes on which one or more bars had been stacked.) To make this operator follow the
decomposition style based on non-FINAL subgoals, we would include additional subgoals as

follows: 0

(SUBGOAL make-first-cube-available
NOT committed(x))

(SUBGOAL make-second-cube-available
NOT committed(y)) 0

(SUBGOAL make-pyramid-available
NOT committed(z))

(SUBGOAL remove-extraneous-blocks
top(s,x)) •

Note that none of these subgoals are FINAL -- they all deal with intermediate steps to be

passed through. The remove-extraneous-blocks subgoal requires that ir ,he course of
constructing the tower, we pass through a state where block x is on the top of the structure.
For a tower made from scratch, this subgoal will be satisfied simultaneously with the

5-L-37

build-foundation subgoal, so no additional actions are required. For a tower made by partially

dismantling an existing tower (for which build-foundation is already true), this subgoal forces

the removal of the extraneous blocks. This subgoal is obviously not a final subgoal, since

ultimately z will be placed on x.

2.4.3.3 Other Considerations It should be noted that in some cases, the non-FINAL

subgoals will never have to be achieved. In the make-tower example, if build-foundation has

already been satisfied, the operator can complete without ever having achieved the subgoals

make-firs.t/second-cube-available. An operator always completes when a state is reached in

which all FINAL subgoals are true simultaneously, even if some non-final subgoals were

never achieved during the course of the operator.

With both FINAL and non-FINAL subgoals all explicit, the operator mirrors the thinking of a

person trying to build a tower. "Well, let's see. I've got to make three blocks of the right sort

available; that's not simple -- they could be buried deep in existing structures. I've got to stack

the two cubes. But, if I can find two cubes already stacked, then I could just remove the extra

blocks from that structure. The only other requirement is to place the pyramid. I guess that

will do it."

As states representing FINAL subgoals in the plan net are expanded, states will be generated at

the lower level which duplicate the non-final subgoal states at the higher level. We obviously

want to avoid having duplicate nodes in the net. To accomplish this, the orderings between the

nodes at the higher level can be revised so that those (non-final) subgoals which are

preconditions to other (final) subgoals are shown to precede them. What would have been the

duplicate node becomes a node with a "true" state label (the same as would have been generated

for an operator with an empty precondition). This is diagrammed in Figure 13.

2.4.4 Iterated Subgoals

Often, a subgoal must be iterated: the need arises in real world situations to repeat a subgoal

with different variable bindings. For example, we could define an operator to partially

dismantle a structure, so that a particular block becomes the top block of the (shorter) structure.

This operator has a single subgoal, to take a block out of the structure. The subgoal is repeated

for each block which is above the block that is to be made the new top block. Another example

is an operator to build a tower of arbitrary height; it has one subgoal to start the structure, an

5-L-38

Figure 13: Net Expansions
with Non-Final Subgoals

Plan Net to be Expanded

N ode chosen to
expand

Node Expanded.
Duplicate Nodes Found:
Non-final Subgoai Same as
Newly Revealed Precondition

i Duplicate Nodes

Revision of Plan Net
to Handle New Ordering
for Non-final Subgoal

Precondition Changed
to True

iterated subgoal to extend the structure, and a third subgoal to place the pyramid on top. In this

case the iteration is terminated by the pyramid placement action.

A notation is provided for indicating an iterated subgoal and for specifying its termination.

Examples of this notation for the two cases described above appear in Figure 14. In all, there

are three types of iteration provided in GPF. The first type is somewhat like a do-until loop.

Here, the iteration is terminated when another subgoal becomes true (which may be viewed as

being termin-ted by some condition being achieved, namely that subgoal). This type of

5-L-39

Figure 14: Iterated Subgoal Examples

(OPERATOR make-arbitrary-sized-tower IS-COMPLEX

(GOAL tower(s))

(PRECOND (TRUE))

(DECOMP (FINAL SUBGOAL build-foundation
(in(s,x) AND base(s,y) AND on(x,y))

(FINAL SUBGOAL add-height ITERATED S
(in(s,z) AND on (z,v)))

(FINAL SUBGOAL add-pyramid COMPLETES add-height
(in(s,w) and on(w,u))

(... ; continues as in previous examples

(OPERATOR dismantle-struct IS-COMPLEX

(GOAL top(s,x))

(PRECOND (TRUE)
(STATIC in(s,x) AND NOT base(s,x))) 0

(DECOMP (FINAL SUBGOAL take-off-top
ITERATED-OVER (y: above(y,x.)
NOT in(s,y)))

assumes that above(x,y) is intensional predicate as follows:
above(x,y) IFF on(x,y) OR (on(x,z) AND above(z,y))

that is, x is above y if it is directly on y or if it is on a block z which is
;above y.

(EFFECTS

5-L-40

" '. • .i I l l l l i l l l Rm I i i i i
i l l .

iteration is used for the arbitrary-height-tower operator. In the second type, iteration is

controlled in the manner of a do-loop such as DO FORALL i SUCHTHAT <condition on i>.

This type is used for the dismantle-struct operator. A third type of iteration is provided for

cases where one subgoal is iterated by being paired with another, so that for each iteration of

one, there will be a related iteration of the other. In this case, iteration terminates when the

iteration of the paired subgoal terminates (for which a separate termination condition must be

specified).

Operators which use the do-until type of iteration are "underspecified". From a plan execution

point of view, they do not contain enough information in order to be able to know when to

terminate the iteration by executing the completing operator, the user must provide that

information. From a plan recognition point of view, the termination of the iteration can

obviously be identified when the completing operator is executed. However, there is not

enough information to predict when this will happen, nor any information to confirm the

"rightness" of termination when it does occur, the user's decision must be accepted without

question.

5-L-41

,i,.~imm ~ num,,,m lm mmu ~ mmoa nuam im mon wl nummmuuu...m= I I0

2.5 Constraints Clause

The purpose of the constraints clause is to provide restrictions on valid bindings for operator

variables. Such restrictions are necessary to ensure the achievement of the goal. Constraints

may involve a single variable, or may define relationships between the two or more operator

variables. Constraints are necessary for correctly expressing the operator for making a tower,
as given in Figure 9. One successful realization of make-tower is diagrammed in Figure 15.
In the tower operator, the constraints serve the purpose of excluding certain unacceptable
expansions, as shown in Figure 16. The constraints guarantee that a tower, and only a tower,
can be realized from this operator.

2.5.1 Underconstrained Operators

The presence of constraints in an operator definition does not mean that the operator is fully 0
constrained. In the make-tower operator of Figure 9, the choice of blocks from which to make
the tower is not specified to the point of uniqueness. Suppose the make-tower operator is
executed in a state in which there are exactly two cubes and one pyramid. Two different
towers can be built: one with the cubes in reverse order of the otht.r. If there are multiple 0
pyramids in the state, then we have a choice of which pyramid to use for the top of the tower.

Figure 15:
Successful Realization of Make-tower

Start 511 02 AssA
Step 1: Step 2:
Build-foundation Add-pyramid A

134

-I A 13

5-L-42

Figure 16:
Use of Constraints

Constraint Violation Examples

base-is 4" , "
-cube middle-is Two or

-cube More violations

An operator which is underconstrained in this way allows the recognizer/planner to make an
arbitrary choice of binding for the underconstrained variable(s). (Such a choice is always
constrained by considerations of other operators in the plan net as well.) But arbitrary choices
are not always what is desired. In the types of domains for which GPF has been designed, it
is not possible to completely replace the user with an automatic planner. There will be cases
where the appropriate constraint cannot be expressed, because the knowledge required to do so 9
is simply not codifiable. In such a case the recognizer/planner must have recourse to the user
to make the selection.

In order to distinguish cases where arbitrary choices are not to be made from cases where they 0
can be made, the special constraint OUT-OF-SCOPE is provided. This constraint can be used
in addition to other constraints on the same variable. The additional constraints can be checked
or used to help predict a binding; but the ultimate binding choice is in the user's hands and
cannot be checked for validity. For example, if "OUT-OF-SCOPE(x)" were added to the
make-tower operator of Figure 9, then x must be a cube, but only the user has the knowledge
to pick which cube to use; the recognizer/planner is prevented from making an arbitrary choice
of binding for x.

We call an operator cooperative if it uses the OUT-OF-SCOPE constraint on one or more

5-L-43 0

L

variables. Such an operator cannot be executed automatically without cooperation from the
user.

2.5.2 Special Use of Constraints with Iterated Subgoals

In the case of an operator with one or more iterated subgoals, we need to allow some additional
notation to be used in the constraints clause. It will usually be necessary to express special
constraints for the variabl-s of the first iteration and/or the final iteration; and, there may be
constraints which apply between the variables of two successive iterations. Since a single
subgoal expression is used to stand for all iterations, it is not possible to express these
requirements within the subgoal expression itself. The special keywords FIRST, FINAL,
EVERY, THIS, and NEXT along with the predicate "equal" are used for this purpose.
"Equal" is a predicate between two operator variables, and is true if both the variables have
bindings and those bindings are the same; otherwise, it is false.

Examples of the use of these keywords appear in Figure 17, the full operator for building a
tower of arbitrary height. (In the figure, variables have been given descriptive names for
improved readability). The constraints relating to the iterated subgoal require that:

* in the first iteration, the newly placed block must rest on the second block which
was placed in the foundation step (use of FIRST).

- on the i-th iteration, the newly placed block must rest on the newly placed block
of the (i- 1)th iteration (use of THIS/NEXT).

• the newly placed block of the final iteration is the block on which the pyramid
will be placed (use of FINAL); or, in the case that there are zero iterations to add

4 height, the pyramid is placed on the second block from the foundation step.

* the newly placed block of every iteration must be a cube (use of EVERY).

5-L-44

Figure 17: Constraints In Iterated Subgoals

(OPERATOR make-arbitrary-slzed-tower IS

(GOAL tower(s))

(PRECOND (TRUE))

(DECOMP (FINAL SUBGOAL build-foundation
(in(s,seconidblock) AND base(s,baseblock) AND
on(secondblock,baseblock))

(FINAL SUBGOAL add-height ITERATED
(in(s,newbloc) AND on (newblock,oldblock)))

(FINAL SUBGOAL add-pyramid COMPLETES add-higt
(ln(s,finalboc) and on(finallock,nexttolast))

(CONSTRAINTS (equjal(FIRST(oldblock),seconidbkock))
(equal(NEXT(oldblock),THIS(newvbkock)))
(type-block(finalbkck,pyramid))
(type-block(seonclblock,cube))
(typ-block(baseblock,cube))
(type-bkock(EVERV(newblock), cube))
(equjal(nexttolast,LAST(newbock)) OR

equal(nexttolast,secondblock))

5-L-45

2.6 Other Features

2.6.1 On-line versus Off-line Operators

In order to allow a more complete model of domain activities, GPF provides for two distinct

types of primitive operators: on-Line and off-line.

2.6.1.1 Definition An on-line operator is one which corresponds to an explicit,

monitorable action in the domain. All of the examples given so far in this report have been

on-line operators. An off-line operator is an action which is not directly observable, and

whose execution must be deduced fiom evidence of the on-line actions which have occurred.

The intention in introducing off-line operators is to highlight user decisions that play a key role

in modeling the domain. For example, consider the issue of designing operators to model the 4

child/robot blocks world. One way to describe the actions of building a tower is "well, I have

to select the blocks that I want to use, I have to de-commit the selected blocks if they are

already in other structures, and I have to build the foundation and add the pyramid." The

"action" of selecting the blocks to use corresponds to a user decision which directly affects 0

how the remainder of the operator will be carried out; it does not correspond to any overt and

observable action taken by the user.

There is no requirement that off-line operators be used -- highlighting user decisions in this •

way is a matter of choice relating to the desired view of the domain. The child/robot blocks

world as modeled without any off-line operators in Figures 7 and 9 may be a perfectly

acceptable approach, depending on the goals of domain modeling.

2.6.1.2 Benefits One advantage of representing user decisions as explicit operators is to

have integrated explanations for various (on-line) information gathering activities. In GPF

applications, the domain state is so complex that the user typically does not remember it

accurately in entirety; this applies both to the domain state as modeled within the intelligent

interface and the state information which is outside the scope of that model. Thus, one class of

actions commonly performed will be information gathering: explicit probes of the domain state

to compensate for the user's imperfect/incomplete memory of that state. For example,

weighing a block is performed because the user cannot remember its weight (or perhaps never 0

knew it).

5-L-46 .

Information gathering actions could be regarded as always legal, meeting high-level goals
which are always instantiated. But that interpretation prevents the intelligent interface from

correlating information gathering with other ongoing activities. For example, the reason a
block is being weighed might be that it is being considered for use in a structure (where say,

lighter blocks are preferred to heavier blocks). Given an explicit representation of the decision
to select blocks, an association can be made showing the weighing action as part of the

decision-making. This is clearly a more interesting model of actions than is possible if
information gathering activities are regarded as independent, random, always-legal actions.

Although off-line operators were actually introduced in order to represent user decision

making, they can be used for at least one other interesting purpose. Sometimes, actions in a
domain may be achievable by either monitorable or non-monitorable means. For example, in
computer-based domains, communication between two people could occur by electronic mail,
and thus be monitorable. But, it can also occur when the two people meet in the hallway or

talk on the phone, and thus not be monitorable. Certain actions (entering a scheduled meeting
on one's calendar or fixing a software bug) may be dependent on the fact that communication
occurred. To handle this, two different operators are written, each having the same goal (say,

learn of meeting or learn of bug); one operator would be on-line and the other off-line. This

use of off-line opeao extends the action modeling which is possible for the domain.

2.6.1.3 Inferring Execution of Off-line Operators Since off-line operators are not

monitorable, their execution must be deduced from the other ongoing activities. This happens 0
when an action is performed whose precondition is not satisfied, but when that precondition

could be satisfied by presuming an off-line operator to have occurred. Sometimes the off-line
operator will contribute directly to satisfying the precondition, and sometimes the off-line

operator will complete another operator which contributes to satisfying the precondition. In

the blocks-world case described above, the de-committing of blocks is dependent on (i.e., has

a precondition for) the selections having taken place. Thus, when on-line actions to de-commit

specific blocks are recognized, it can be inferred that blocks had already been "selected" (and

the specific selected blocks can be identified.)

If after-the-fact recognition of off-line operators were the only possibility, then the power
gained from defining them would be negligible. However, it will commonly be the case that
supporting on-line actions (typically information gathering actions) will be taken before the

off-line action; by recognizing these related actions, it is possible to predict the off-line action

5-L-47

(with parameter bindings) before it has occurred rather than to deduce it after it has occurred.
For example, the decision to use certain blocks in a structure might be dependent upon their

distances from one another or their weight (move the lightest, closest blocks in preference to
the heaviest, furthest blocks.) Thus, selecting blocks could be represented as a complex
operator, with subgoals for measuring and weighing, in addition to a subgoal to make an actual
selection. (This last subgoal would be achieved by an off-line operator)

2.6.1.4 Syntax and Operator Writing Style Off-line operators are distinguished in the
formalism by a single keyword. Only primitive operat can be denoted off-line. A complex

operator may happen to decompose into only off-line operators, in which case it can be thought

of as off-line itself. Those complex operators which are potentially off-line (because there is an
off-line operator matching each of its subgoals) and those that must be off-line (because only
off-line operators match each of its subgoals) can be computed statically.

The operator writer has considerable flexibility in using off-line operators to shape how actions
are modeled in the operators. As a matter of GPF operator writing style, we suggest the

following possibilities in using off-line operators:

to represent key user decisions about variable bindings, whether or not those
decisions are OUT-OF-SCOPE. In particular, all uses of the OUT-OF-SCOPE
constraint can be placed within off-line operators, but off-line operators are not
required to contain an OUT-OF-SCOPE constaint. Example: whether or not
the intelligent assistant has enough knowledge to bind choices for which blocks
to use in a sructure, the decision to use a block can be represented by an off-fine
operator.

* to represent user decisions to terminate a COMPLETES style iteration when no
on-line operator can be used to do so. In this case, the operator which signals
completion is an off-line operator. Example: The operator to build a tower of
arbitrary height has an appropriate completing on-line operator: to place the
pyramid. But, an operator to build a column (defined to be a stack consisting
only of cubes) of arbitrary height would have an off-line operator tQ signal that
the last cube has been added.

* to create and initialize domain entities which do not have a physical existence in
the real world. In some ways this is the converse of the iteration termination:
here an off-line operator is used to set up the circumstances in which another
operator can be started, rather than completed. This use of an off-line operator
helps to bridge the gap between the modeled and unmodeled parts of the
domain, or between the physical reality of the world and the user's interpretation
of that reality. Example: a separate off-line operator can be written to create
structures, rather than having them be created in start-struct.

5-L-48

2.6.1.5 An Example In Appendix B, we present a group of operators for the extended

blocks world, including primitive operators and off-line operators which adhere to this style.

New structures are created in a separate off-line operator, make-new-struct, instead of in

start-struct. Every choice of which block to use is made in the off-line operator,

set-block-aside. There are two operators for building a 2-cube/l-pyramid tower, one operator

can only be used when there is an existing structure which can be modified into a tower;, the

other is used when the tower is to be built from scratch.

To write these operators, we introduce a new predicate set-aside, whose arguments are a block

object and a structure for which it is "targeted". Basically, we want to separate the notion that a 0

block is set-aside for a structure (the predicate set-aside) from the notion of its being available
to put into that structure (the predicate ready) and from the notion of its actually being part of

the structure (the predicate in). In the off-line operator, we will set-aside blocks (without

placing them); and, in start-struct and extend-struct, we will place blocks (which have already 0
been made ready.)

This example is a bit contrived. It would be more convincing if support activities, such as
weighing blocks or measuring distances, had been included. In their absence, there is a lot of S

extra operator mechanism for rather little gain. We have distinguished certain cognitive

actions, but have not provided any extra knowledge about those actions. The example does not
contain any cases where an off-line operator is necessary, for example to terminate an iteration.

We have made a separate issue of selecting blocks, without giving any information as to the 0

decision-making considerations involved; the set-block-aside operator is as underconstrained as

the original formulation.

Off-line operators represent a starting point for deeper domain and user modeling; they are not 0

in themselves the total solution. In some sense, off-line operators are also a place holder for

future extensions to the intelligent assistant: we are currently exploring the use of reasoning

from first principles to model user decisions.

2.6.2 Interface to Real-world Observations

GPF was designed to be used in an application combining plan recognition, plan execution,

and planning. In order to accomplish recognition and execution, an interface to the real world

is needed to receive the stream of primitive actions as they occur (recognition) or to generate a

5-L-49

stream of the primitive actions to be performed (execution). This interface is not strictly needed

for systems which only do planning (i.e., the dynamic construction of plans in the abstract)

because a planner typically deals with idealized executions, rather than actual executions

including the possibility of failure.

2.6.2.1 Filter Interface We envision a filter program which sends and receives

descriptions of primitive actions. During recognition, the filter program is the "window on the

world"; during execution, the filter program is the effector of actions as well as a "window" on

results. Its purpose is to provide a clean abstraction of real world actions. Within the filter

program, alternative action formats and various inconsistencies among formats can be a

normalized and presented to the intelligent interface in a standardized way. With a suitable

abstraction of the real world provided by the filter, the plans themselves become easier to write.

The filter program can be implemented without any knowledge of the semantic database, as it

can use strings for object names (which would be represented as attributes of the objects in the

semantic database.) We believe that this is an appropriate separation of responsibilities. It

implies that all changes to the semantic database are made by/within the GRAPPLE system.

Thus, in the operators, we must define database changes for failed as well as successful plan 0

execution; and we must have input from the filter program upon which to base these

conditional effects.

An alternative formulation would be to allow the actual semantic database updating to occur 0

independently (perhaps within the filter program), and to define only the effects of success in

an operator. In this case, after each operator is executed, the database would be queried to

determine if all effects had occurred, if they had, then success is deduced, otherwise failure is

deduced. •

The advantage of the approach we have chosen is that it is explicit about the nature of the

failures which can occur. The disadvantage is that it is very cumbersome (if not impossible) to

deal with wide-reaching failures, such as dropping a block (while trying to stack it on another 0

block) in such a way that a tower built earlier is destroyed. This problem derives from the

so-called "STRIPS assumption"J7]. This assumption, which is the most commonly chosen

approach to the frame problem, provides that all changes between two states be explicitly

enumerated in the effects clause and that everything else is assumed not to have changed.

Normally it is easy to comply with this assumption in describing state changes for successful

5-L-50

plans. But when effects involve non-local changes as in state changes for failed plans, the
STRIPS assumption begins to break down. The approach we have taken is perhaps most

appropriate when simplified assumptions about the pervasiveness of failure are used.

2.6.2.2 The Observe Clause The Observe clause is the means for realizing the real
world interface. This clause is used only in primitive operators it cannot be used for complex
operators, or for any type of off-line operator (for which there is by definition nothing to
"observe"). In this clause, the values passed to/from the filter program are specified; each

such value is given a name. Since the filter program is to have no knowledge of the semantic
database, these values associated with these names are restricted to being of string, boolean, or

numeric type; in particular, they cannot be database objects.

For simplicity, we assume that the filter program uses the same operator names as given in the
operator definitions. Therefore, no additional information is needed in the Observe clause to
name the operation being described.

2.6.2.2.1 Observe Clause Format There are two parts to an Observe clause: that which
is used to describe an action (the stimu/us on the world state), and that which describes its
results (the response from the world). During recognition, the filter program passes both types
of values to the intelligent interface; during execution, the intelligent interface passes the action
description values to the filter, which in turn passes the wsponse values back when the action

has completed. Response values may be descriptive information which is obtained during an
action or they may be success/failure clues. An operator may have no response values, in
which case it "cannot" fail; this is appropriate when a somewhat simplified domain is modeled,
due to the complexity of the complete domain.

If we model stacking of blocks in the simplest way, then the description of the action (the

stimulus) consists of the names of the two blocks in some order (say, base first followed by
top block). Thus, the Observe clause would be:

(OBSERVE (namey namex))

and there would be additional constraints as follows:

5-L-51

(CONSTRAINTS (name(y,namey))
(name(x,namex))

The Observe clause establishes that namex and namey are the variable names by which the
values passed to/from the filter program are known; the constraints clause shows how these

values relate to other variables already known within the operator.

In this case, there are no response values and failure of stacking is not provided for. We could

inchide a response about block weight (as suggested earlier) as follows:

(OBSERVE (namey namex)
(RESPONSE measured-weight))

The full version of this operator is given in Figure 18. Here, the variable measured-weight is

used for a dual purpose. It is named in the conditional effects, and therefore used for

success/faflure determination (stacking fails if the measured-weight is over the threshold., This

is an example of a conditional effect which is not conditional upon the prior state of the

database, but rather on the outcome of the action as it occured in the real world. (In this case,

we have a conditional effect which does not use the OLD construct.) Measured-weight is also

used for the simple feedback of descriptive data, which is recorded in the database in the last

Effect.

2.6.2.2.2 User-Supplied Values In some cases, one or more parameters needed to

define an action are beyond the scope of knowledge of the planning system, and must be

provided by the user. This is analogous to the situation of an out-of-scope constraint on a plan

variable, except it applies to a value needed to define an action. In plan execution, this value

must be provided before the action can be executed; in plan recognition, the value will be

returned as if it were one of the response values. (If only plan recognition were to be

supported, no additional construct would be needed.)

A (slightly contrived) example for the child operating the robot can be constructed if we

imagine that the robot has both a normal speed and slow motion speed in which any action

could be performed; assume one or the other speed must be selected for each operation. Slow
motion might be useful when placing a block on a very tall column of stacked blocks which S

were not precisely aligned on one another. If alignment of blocks is not modeled in the

5-L-52 S

FIGURE 18: Use of the Observe Clause

Thisis vriaionofth pe~rto o Figure 3. Here we
ad nobserve clause, and use information about the weight of the block.

Assume that weight is a function of blocks, and its value is one of an
enumeration consisting of (ok, overweight, unknown)

;(DECLARE x,y: block) a saw"I declaration of operator variables

(GOAL on~x,y))

(PRECOND (clear(y) ,clear(x))
(STATIC flattop(y) AND (NOT

(equalweight(x),overweight)))
*notice that we do niot use this operator
If the weight of the
*block is already known to be
over the threshold

4(OBSERVE (namey, nanex)
(RESPONSE measured-weight))
;success of the operator will be dependent on the
*value of measured-weight.

(CONSTRAINTS (name(y, namey))
(name(x,namnex)))

(EFFECTS (IF (equal(measured-weight,ok) THEN ADD on(x,y))
(IF (equal(measured-weight,ok) THEN DELETE clear(y))
(IF (equal(measured-weight,ok) THEN DELETE ontable(x))
* i block is too heavy, then the stacked state of the
blocks is unchanged.

(SET (weight x r'easured-weight)))
in any case, we record the weight

sernantit database, then the intelligent assistant has no way of deciding when to use slow

motion - only the child can decide. *
To handle this situation, an OBSERVE clause construct of the following form is allowed:-

(OBSERVE (... USER-SUPPLIED ("description", name) ...)

The "description" is needed to support a query to the user for the value during plan execution;
the variable name is needed in order to have aname by which to refer to the value (for example,
in the effects) during plan recognition. An example use for the case of the two-speed robot

5-L-53

described above would be this observe clause for the stack x on y operator:

(OBSERVE (namex namey

USER-SUPPLIED("standard or slow speed", sp))

2.6.3 Protection Intervals

The partial order information in a plan network specifies valid sequences of achieved states;

this is a separate notion from the intervals over which those states must be maintained once

they are achieved. For each state in a plan net corresponding either to a normal precondition or

to a final subgoal, there is an associated protection interval. Within this protection interval, the

state must be maintained- that is, if it is violated, then it must be re-established.

No protection interval is defined for a static precondition: if the static precondition is violated

before the operator begins, then the operator choice is no longer valid, and another operator to

achieve the same goal must be selected. No protection interval is defined for a non-FINAL

subgoal; when a precondition of one of the FINAL subgoals is instantiated which duplicates

the non-FINAL subgoal, the two will be coalesced and the protection interval associated with

the precondition will be used.

The protection interval for a precondition starts when the precondition becomes true, but not

before the associated operator-head node is reached in the partially ordered plan network. This

protection interval ends when the operator begins. A primitive operator begins (and also ends)

when its effects are posted to the semantic database. A complex operator begins when the first

primitive operator in the expansion of one of its subgoals begins.

The protection interval for a FINAL subgoal begins when the subgoal becomes true, but not

before the precondition-true node is reached in the partially ordered plan network. This

protection interval ends when the operator ends. Any operator (primitive or complex) ends

when its effects are posted to the semantic database.

5 -

5-L-54

2.6.4 Operator Libraries

An operator library is a collection of primitive and complex operators for a particular domain.
An operator library for the extended blocks world, based upon the SDB of Figure 5, is given in

Appendix B. This library could easily be extended with the addition of complex operators to

build other types of vertical structures than towers; such operators would be modeled on the
tower building operators, with different subgoals and different constraints.

Both-plan recognition and plan execution call for the construction of (hierarchical) networks of
instantiated operators built from the operators in the library. These hierarchical structures can

be built in a top-down or bottom-up fashion, or by mixing both strategies.

There is one essential operation in expanding a plan hierarchy: expanding a state which is

currently unsatisfied by an operator which will achieve it. Associated with each state is a

condition formula defining the state; conditions which are not merely the formula TRUE come
in two flavors: preconditions and subgoals. Thus, this matching involves either matching

operators to the subgoals they satisfy or matching operators to the preconditions they satisfy.

If the expansion is bottom-up, then for a given operator, the idea is to find out which higher
level operators it could be part of, i.e., which operators have subgoals that this operator

satisfies or which operators have preconditions that this operator satisfies. If the expansion is
top-down, then for a given operator, the idea is to find out what lower-level operators are part

of it, i.e., which operators could satisfy its precondition and its subgoals.

In computing and using the matches between operators in the library and conditions used in

operators in the library, we want to maximize use of the heuristic information supplied by the
operator writer about how preconditions can be split into separately achievable parts and about
how subgoals represent the significant intermediate step towards achieving the goal. In the

remainder of this section, we discuss one set of matching algorithms and its implications on

plan writing style. Alternative matching algorithms will be briefly mentioned.

2.6.4.1 Computing Acbievers We say that an operator is an achiever for a condition

when the goal of the operator makes the condition true. Obviously, condition A is achieved by

an operator whose goal is A. But, exact matches are not the only cases of interest. For
example, condition A is achieved by an operator whose goal is A AND B. And, condition A

5-L-55

is achieved by an operator whose goal is B when there is a database constraint of A IFF B or

IF B THEN A.

Achievability is decidable through resolution refutation. Given a condition, we consider each
operator goal in turn. If we can derive a contradiction from NOT (IF <goal> THEN
<condition>) taken together with the semantic database constraints and the definitions of the
intensional predicates, then we have found a goal (and thus an operator) which is an achiever
for the condition (because the goal logically implies the condition). For example, start-struct is
an achiever for the build-foundation subgoal of make-tower. while not identical, the goal of

start-struct implies the subgoal build-foundation because in(sx) is implied by top(s,x) using

one of the semantic database constraints.

Note that with this definition, an operator may fail to satisfy its goal, but still satisfy its purpose
(the condition it is an achieve for) in a plan net. For example, an operator P with the goal of A
AND B could be used as the achiever for a condition B ; if P fails because A is not achieved,
condition B is still achieved and P has satisfied its purpose in the plan net. Thus in tracking the
progress of operators, the important issue is whether or not the desired condition was
achieved, not whether or not the operator succeeded.

When computed as indicated, the set of achievers may include operators which are not
appropriate for a given dynamic situation in a plan net. The computation is static, and does not
take into account the dynamic picture. In particular, static preconditions and constraints are not 0
considered. For example, take the condition A(x) ; if operator Al achieves A(x) with a static
precondition of NOT B(x), and operator A2 achieves A(x) with a static precondition of B(x),

then we know that Al and A2 are applicable in mutually exclusive situations. The selection
between Al and A2 must be made dynamically. 0

It is also important to recognize that the achiever set may be inadequate in a given sit'ation. If

the only achiever for A(x) has a static precondition of NOT B(x), then there is no operator to
apply in the specific situation where B(x) is a constraint in the operator in which the subgoal 0

A(x) appears. This situation calls for more sophisticated planning.

For a given library of operators, we can define a set of library conditions, made up of all

subgoals of complex operators and all (separate parts of) normal preconditions for both 5

complex and primitive operators. For each library condition, the matching algorithm to

5-L-56 S

compute the possible achievers can be executed and the achiever information stored for later

use in expanding plan hierarchies. The achievers for all library conditions in the operator
library of Appendix B are given in Tab!e 1.

2.6.4.2 Alternative Algorithms The algorithm for computing achievers described here is
dependent upon the heuristic information supplied by the operator writer as to how one formula
(the entire normal precondition or the goal) can be broken down into separately achievable

parts. There is a burden placed upon the operator writer to accurately present the granularity of
the separate parts: the plan net can still be cor-ectly expanded if the granularity is too small, but

not if it is too big. For example, if a plan P has two subgoals A and B, and there is a plan Q
which achieves A AND B as its goal, we will match Q to both subgoals; then, after executing

Q to satisfy one subgoal, the other will have been satisfied as well. Thus, when the conditions

are broken into more parts than absolutely necessary, the matching algorithm is still effective.
0 Suppose plan P has a subgoal A AND B, and we have no match by our algorithm to A AND

B, but we do have a plan Q for A and a plan R for B. In this case the algorithm fails to make

any connection between Q together with R with respect to that subgoal of P. Here the
granularity of conditions is too big, and the algorithm fails.

The algorithm we have described takes advantage of the information which GPF makes it
possible for the operator writer to provide. However, the use of other algorithms which ignore
this information is not precluded. For example, it is possible to use an algorithm which
ignores the segmentation of the precondition, treating it as a conjunct of disjuncts to be

achieved in parallel (in the manner of STRIPS-style planners [7]).

The algorithm we have described is not completely general, due to several factors. First, it
* does not take advantage of some dynamic situations. For example, in achieving a condition A

AND B in the case where A is already true, it will ignore operators which achieve B alone.

Second, it makes no attempt to reason from the effects clause, but always works with the goal

clause. This puts some additional burden on the operator writer to phrase the goal accurately;
* but it also simplifies reasoning -- the effects clause is somewhat awkward to use due to the

presence of conditionals.

The advantage of the algorithm described is that it focuses on a small number of possible
* achievers for any given condition, and thus bounds the search problem in plan expansion. In

summary, we consider this algorithm as an appropriate interim approach to expansion of plan

5-L-57

Table 1: Achievers for Subgoals and Preconditions

Plan / Subgoals Achievers

Tower-by-adaptationl
make-pyramid-available pick-and-free-block
remove-extraneous-blocks start-struct% extend-struct*, dismantle-struct
add-pyramid start-struct', ,axtend-struct

Tower-f rom-scratch/
get-empty-struct get-struct
miake-first-cube-available pick-and-free-block
make-second-cube-avalable pick-and-free-block
build-foundation start-struct
make-pyramid-available pick-anid-free-block
add-pyramid start-struct', extend-struct

Make-alt-tower/
-make-bar-available pick-and-free-block
make-pyramid-available pick-and-free-block
build-it start-struct

Pick-and-free-block/ 0
pick set-block-aside
free remove-from-struct, make-arbitrary-block-available

Dismantle-struct/
take-off-top remove-from-struct, make-arbitrary-block-available

Make-arbitrary-block-available/
clear-its-top start-struct', extend-struct', dismantle-struct
remove-desired-block remove-from-struct, make-arbitrary-block-available

Preconditions (normal only) Achievers

start-struct (pick-and-f ree-block~pick-and-f ree-blockI

extend-struct (pick-and-free-block. start-struct)',
(pick-and-free-block, extend-struct),0

_________________________ ick-and-free-block, dismantle-struct)

remove-f rom-struct (start-struct)-, (extend-struct)-,
____ ____ ____ ____ ____ (dismantle-struct)

Ruled out dynamically when static preconditions and constraints considered

5-L-58

nets: more sophisticated algorithms can be used later. No changes need be made in GPF to

use other algorithms.

2.6.4.3 Completeness of Operator Libraries It is instructive for the operator writer to

look at the achiever set of any condition (subgoal or element of a precondition), because

various omissions/erro can be identified in this way. (Refer to Table I).

The preconditions of the achievers should cover the appropriate range of cases. For example,

the operators make-arbitrary-block-available and remove-from-struct form the achiever set for

the goal NOT commiued(x). Remove-from-struct is primitive, and requires as a precondition

that the block to be removed be at the top of the structure. It would be easy to omit

make-arbitrary-block-available, which is a generalization of remove-from-struct that applies to

any block in a structure.

The operators which are achievers for a given condition often have some characteristics by

which they can be distinguished. For example, start-struct, extend-struct and dismantle-struct

are all ways to achieve top(sx). But start-struct and extend-struct achieve it by adding blocks

to a structure whereas dismantle-struct achieves it by removing blocks from a structure. These

differences should be reflected in the preconditions of the different operators: in two cases, x

must not yet be in s and, in the other case, x must already be in s. Such information is of great

value in reducing the number of expansions which are possible from a given node in the plan

net. 0

The achievers should be examined to see if there are missing operators due to goals having

been stated too narrowly. The operator writer provides a kind of focusing information when

writing the goal of a plan: those details of the effects which are omitted from the goal are

implicitly of local, not global, importance. (Remember that the goal focuses on the "main"

effects of an operator and separates them from the "side" effects.) However, it is possible for

the operator writer to be overly restrictive in stating goals. The result is that an operator which

is actually suitable for achieving some condition cannot identified as such because the goal 0

omits the necessary predicate(s). Depending upon the subgoals and preconditions of other

operators in the library, the unstack operator of Figure 3b might have an inappropriate goal due

to the omission of the predicate clear(y) which is one of its effects.

5-L-59

2.7 Use of Predicate Calculus

GPF operators are based upon predicate calculus notation. Each operator clause consists of

one or more predicate calculus formulas, with some additional embroidery (GPF keywords like

STATIC, NEW, etc, and other constructs such as OLD, conditionals, and iteration

specifications, etc.). The formulas are quantifier-free. In this section we discuss how the

truth/falsity of these formulas is evaluated using bindings, how sets of bindings called
interpretations apply to multiple database states, and how constructing interpretations is related

to recogition and execution of plans.

2.7.1 Evaluating Operator Formulas

Bindings bridge the gap between operator formulas and the semantic database, so that the

formulas may be evaluated. A binding is a pair <XY>, where X is a variable name in an

operator and Y is an object in the semantic database. Given a (possibly empty) set of bindings,

the truth of the formula with respect to a particular state of the semantic database may be

determined. A formula is directly evaluatable when all its variables have bindings. When

some variables in a formula have no bindings, then existential quantifiers may be added to the

formula for all such variables and the truth of the formula may be determined For example,

given all the following formulas, bindings and SDB state information:

Plan Ezmen Bdigtase

P(x,y) <x,Al> P(A1, A2)
Q(z) <yA2> Q(A3)

P(x,y) can be evaluated directly since both x and y have bindings; furthermore, given these

bindings, P(x,y) is true. In contrast, Q(z) cannot be evaluated as is, because z is without a

binding. However, we can evaluate THEREEXISTS z i Q(z), which will evaluate to true

exactly for the binding <zA3>.

2.7.2 Role of Bindings in Recognition and Execution of Plans

When performing plan recognition, we are given an initial state, and a sequence of actions.

4 From these actions, we want to infer the top-level plan which explains the actions. For

example (refer to Figure 19):

5-L-60

• given an initial state of cube C1 on the table, cube C2 on CI, bar B I on C2,

structure STI containing C1, C2, and BI, and pyramid P1 on the table

* first action: unstack involving the block named "B 1"

- second action: extend-smruct placing block "P" on block "C2"

- we infer the goal to be tower(STI) via the make-tower plan, where the first
action satisfies the remove-extraneous-blocks subgoal, and the second action
satisfies the add-pyramid subgoal.

When performing execution of a plan to meet a goal, we are given the goal, an initial state, and

need to generate the sequence of actions.

State no: FIGURE 19:
InkfalA Recognition Scenario

Ii Action 1:
,, Remov*-from-atruct

Obaerve("81")

State 41:
After Action I

unknown

Action 2:
Extend-etruct

After Action t.2 :~OereP~

al ST1:

State a3:
After Effects ot
Make-tower

STI:
tower

5-L-61

In pelforming both plan recognition and plan execution, we are interested in instantiated

operators with their variables bound. The operators in the operator library are actually operator

templates, representing families of instantiated operators. For example, the unstack operator

can be instantiated for any pair of blocks; if the pair is not stacked in some state of the world,

then this instantiation of unstack is irrelevant in that state, but may be relevant in some later

state.

There are two essential aspects to performing recognition or execution: building a plan net of

appropriate operatom and finding the right set of variable bindings for these operators. If the

right bindings cannot be found, then other operator choices must be considered. We have
already covered (in Section 2.6.4 on Operator libraries) which operators need to be considered.

In the remainder of this section, we discuss the issue of variable bindings for operators. This

issue of bindings is non-trivial in the presence of the constraints clause.

2.7.3 Interpretations and Multiple Database States

Obviously not all the formulas in an operator are intended to be true simultaneously in a single
database state. There will be times when both goal and preconditions are false, when the goal

is false but the precondition true, when the goal is true and the precondition false, etc. We are
interested in sets of bindings for the variables in an operator which have certain properties with

respect to multiple database states.

An interpretation consists of a set of bindings for some/all of the variables in an operator. For

a given operator, we are (ultimately) interested in an interpretation (call it the goal
interpretation) which has a set of bindings for all variables mentioned in the goal statement, and
for which the goal statement is true in some (single) database state.

We may be able to arrive at a goal interpretation directly, without executing any operators,

when the goal is already true; if not, we use another kind of interpretation, a working

interpretation, to try to arrive at a goal interpretation. A working interpretation satisfies the

following conditions:

- there is a binding for those variables named in the operator which are needed to
make the following true

- there is a database state SP in which the operator precondition is true under this
interpretation

5-L-62

" if the operator is complex, then for each final subgoal, there is at least one state
SJ in which the subgoal is true under this interpretation. (For iterated subgoals,
there are multiple 53's, one for each iteration necessary to before termination of
the iteration).

* if the operator is complex, then for each non-final subgoal, there may be a state
SK in which the subgoal is true

* if the operator is complex, then there is a state SM in which all final subgoals are

true under this interpretation.

* there is a database state SN in which the effects are true under this interpretation.

• the constraints of the operator are true under this interpretation for all database
states SP through SN inclusive.

* the states are related in time as follows (see Figure 20):

* each SJis at or after SP and at orbefore SM
* each SK is at or after SP and at or before SM
* SM is at or after SP
* if the operator is complex, SN is after SP and

is the state immediately following SM.
* if the operator is primitive, SN is

immediatply after SP

* the truth of any operator formula under this interetation at any time other than 9
that stated above is immaterial.

Figure 20: Time Line

SJ's and SK's In this range

zero or more time units exactly
one time unit

4 4

SP timem SN

5-L-63

Figure 21: Statelme Diagram

~ M N
gubgoM tIM AN fWWGa o

.Jbgo& UM tuoe mu

SK RWIN sGWWOU vue

da , mma aowor " "

so 81 82 S3I I I
II I

TIME

remove-from extond-struct

Precpndw RamOv a- vilire l .
for -sew

aN ni-s

Paecoddiuan

If the operator executes successfully, then dhe goal Will be true in state SN and we can derive a

goal interpretation from the working interpretation by taking that subset of the bindings which

apply to variables in the goal clause.

The working interpretations; for the example scenario of Figure 19 are given below (the states

are diagramnmed in Figure 2 1):

5- L-64

remove-from-stt g ,nda-uc tower

<s, STI> <s,STI> <s,STI>
400l> <xPl> <x, C2>
<y,C2> <y,C2> <y,Cl>

<z,Pl>
SP =state sO SP =state sl SP = state sO
SN =state sl SN= state s2 SM =state s2

SN = state s3
SM(build-foundation) = state sO

SM(add-pyramid) = state s3
SJ(remove-exraneous-blocks) = state s2

SJ(make-first-cube-available) = none
SJ(make-second-cube-available) = none

2.7.4 Constructing Interpretations

We can rephrase the purpose of plan recognitions/execution in terms of goal and working

interpretations, as follows. During automatic execution of plans, we are interested in finding a

goal interpretation for some operator, given a goal to satisfy and a (possibly empty) set of

initial bindings. For the operator library of the extended blocks world, we might be given
"tower(s)" as the goal, and optionally some binding for . If there is no tower in the initial

state (i.e., if there is no goal interpretation), then we have the choice of building a working

interpretation for make-tower or for alt-make-tower. This in turn means building working

interpretations for operators which satisfy the subgoals of these operators. And so forth, down

to primitive actions. S

During recognition, we are interested in finding a goal interpretation for some top-level

operator, given a sequence (not necessarily complete) of primitive actions. Here we want to

build a working interpretation of each primitive operator, and working interpretations for the 0

operators they satisfy conditions for, and so on up to a top-level operator.

There are six ways to compute bindings for interpretations: taking them from the initial

problem specification, taking them from the filter program, getting values from the user,

propagating a binding from another operator by enforcing consistency, performing a NEW

database operation in an effect clause, and evaluating operator clauses. We consider each in

turn.

5-L-65

2.7.4.1 Values from the Initial Problem Specification In the case of plan

execution, some bindings may be supplied as part of the problem definition. For example, we
could have been given the problem of generating actions for meeting the goal "tower(s)" given

the binding <sSTl>. Pre-supplied bindings are strictly optional. When they :ire supplied is

determined by what the goal really is. Making the structure ST1 into a tower is a different

overall goal from making an arbitrary structure into a tower. We allow all options from fully

bound goals to filly unbound goals, and all cases in between.

2.7.4.2 Values from the Filter Program The converse of getting values at the top of

the plan hierarchy with the goal (during planning) is receiving values at the bottom of the plan

hierarchy from the filter program. This occurs both during plan execution (for

RESPONSE-type variables) and plan recognition (for all OBSERVE variables). After an

action is executed, its response variables are bound to specific values. When an action is seen,

all the observe clause variables are bound by the filter program to specific values.

2.7.4.3 User-supplied Values In the case of an OUT-OF-SCOPE variable, the binding

must be supplied by the user. Also, in the case of a USER-SUPPLIED variable during plan

execution, the binding must be supplied by the user. In each case, some dialog with the user

would take place to establish the binding.

2.7.4.4 Enforcement of Consistency Another source of bindings is through the

enforcement of consistency between one operator and another operator which is part of its

hierarchical decomposition. The variable bindings must be consistent if the lower level

operator is to contribute towards satisfying the higher-level operator. There are two cases for

the lower-level operator: either it is a operator to satisfy a precondition, or it is a operator to

satisfy a'subgoal.

If subgoal A of operator X is being achieved by operator Y, then we say that theinterpretations

of X and Y are consistent if the binding of each variable in the goal of Y is the same as the

binding of the co esponding variable in A and the time span S 1 to SN of X is within the time

span S 1 to SM of Y. Similarly, if precondition A of operator X is being achieved by operator

Y, then we say that the interpretations of X and Y are consistent if the binding of each variable
in the goal of Y is the same as the binding of the corresponding variable in A and the state SN

of X equals state S 1 of Y. (Correspondence of variables deals with alternate naming schemes:

if the goal of Y is p(xy) and the subgoal A of X is p(a,b), then x corresponds to a and y to

5-L-66

b.). Thus, if we have bindings for X we can propagate them to Y, and vice versa, by using

these consistency rules.

2.7.4.5 Performing a NEW Effect By definition, the execution of a NEW operation to

create a new database object binds the variable named in the operation to the new object. This

means that such an operation will override any binding for that variable which may have been

made by other means.

In general it would be desirable to avoid predicting a binding for a variable which will be

bound via a NEW effect. However, this is not so easy. For one thing, the NEW can be

conditional. For another, there may be several operators for achieving a given goal, and some

may have NEW's while others don't.

As an example, consider the make-tower operator (Figure 9) in a world state with one cube on

the table and one pyramid on another cube. (Assume the operator library of Figure 7, without

off-line plans.) In this initial state, build-foundation is not satisfied, but add-pyramid is.

When the build-foundation subgoal is not already true, the only way to make it true is by an

operator (start-struct) which unconditionally creates a new structure. Thus, we would like to

avoid binding s to the pyramid-cube structure to satisfy add-pyramid, because that binding will

have to be retracted when build-foundation is achieved. In practice, there is no way to avoid

making the wrong binding for s and retracting it later.

2.7.4.6 Evaluation of Operator Clauses The final way to produce bindings is to

evaluate the goal, precondition, constraint, or subgoal clauses of the operator. In general, this

technique will provide multiple possibilities for bindings, rather than unique bindings; it is a
really a heuristic for predicting bindings. For example, if we are missing a binding for a

variable in a precondition, then we can add an existential quantifier for that variable and make a
database query of the precondition (as described in Section 2.7.1). All bindings which make"

the query true are candidate bindings for the variable in question.

Candidate bindings are a function of the other bindings used in the query. If those bindings

shoed have to be retracted, then the candidate set will have to be reevaluated. If we arrive at a
candidate set <x,(cl c2 c3)> from evaluating THEREEXISTS x / p(y,zx) with (<y,bl>

<z,b2>), then if b2 later proves to be the wrong binding for z (because it was itself one of

several candidates), the candidate set (c] c2 c3) should be thrown out and the query on

5-L-67

predicate p reevaluated. In summary, every candidate binding is contingent upon the bindings

used in the query which produced the candidate.

There is another contingency assumption involved in candidate bindings: candidates are
contingent upon assumptions about the states of the operator to which the clause being

evaluated belongs. In the example above evaluating a precondition, there is an assumption that
the current state is state S 1 of the operator. Such assumptions could later prove to be wrong,

in which case the entire candidate set will have to be thrown out and recomputed. (Similarly,

evaluation of the goal is contingent upon the assumption that the current state is state SN of the

operator, and, evaluation of a subgoal is contingent upon the assumption that the current state
is state SM for that subgoal of the operator; and, evaluation of a constraint is contingent upon

the assumption that the current state is between states SI and SN of the operator.)

In summary, the use of evaluation of operator clauses is not guaranteed to return a unique

binding. In addition, it is based upon certain implicit assumptions, and thus subject to
retraction and reapplication. If candidate bindings are propagated through enforcement of
consistency or used to compute other candidate bindings, then the newly computed bindings

are also subject to retraction.

The exception to the rule that evaluation of operator clauses provides guesses for bindings

occurs when the clause in question involves unchanging aspects of the world state and happens

to return a single candidate. The clause could be a static precondition or a constraint. For

example, in a blocks world where new blocks are not introduced, and where blocks retain their
shape (cube-ness, pyramid-ness, etc.), the selection of the pyramid for the top of the tower is
unique if there is but one pyramid in the initial state. It does not matter when we evaluate the

clause - no state change will affect this binding. But, GPF does not provide a general way of
determining when this will be the case, so we must treat all bindings resulting from evaluation

of operator clauses as if they were tentative.

5-L-68

3.0 Extensions To GPF

The core of GPF, described in the foregoing sections, is not intended to be the final word on a

ian formalism for GRAPPLE. It is quite sufficient for a first implementation. In this section,
we discuss several types of extensions to GPF which may be implemented in later versions.
Most of the extensions add functionality, but a few provide convenience for operator writers

without actually making possible the expression of new information about operators.

3.1- Decomposition

We have found that operator writers may find it more natural to make a decomposition of a

complex operato via other operatom rather than via subgoals which seem rather abstract. We

could allow the following alternative form of a decomposition clause:

- (OPERATOR <operao name>)

(OPERATOR <operator name>)...)

The appearance of the keyword OPERATOR (in lieu of the keyword SUBGOAL) would imply

that the goal of the named operator is the subgoal, with the meaning that any operator which

met this goal could satisfy that subgoal. Notice that it is possible to do this only because the

externally visible operator variables are exactly those of the goal. Using this approach, the

keywords OPERATOR and SUBGOAL could be intermixed within a decomposition. The use
of OPERATOR is merely a notational and conceptual convenience to the operaror writer.

Having made this step, we can add some additional keywords to restrict selection of operators

to meet subgoals. A construct could be introduced, with the form:

(ONLY OPERATOR <operator name list>)

to indicate that only the named operators could be used to meet this subgoal. The operator

name list could have a single operator name or several operator names.

Following the same form, we could allow:

(PREFERRED OPERATOR <operator name list>)

5-L-69

to mean that the named operators are preferred, but that other operators could be used as well.
This construct would provide some focusing information during recognition or execution.
However, it is a very simple mechanism; deeper models of operator preferences are definitely

more desirable (see Section 3.6).

3.2 Ordering and Forced Execution

The ONLY construct suggested above is a type of escape mechanism for the operator writer,
where he can essentially say, "Trust me, this is the way it is. I'm not going to explain it."

This is useful when incorporating the explanation into the domain model is deemed to be too
complex considering the benefits it brings. Such tradeoffs have to be made when modeling

real domains. Two other uses for such an escape mechanism involve additional restrictions of

operator ordering and forcing operator execution.

Occasions may arise when the operator writer wishes to impose additional orderings on the

sequencing of activities, other than those implied by the preconditions of operators. A simple
way of doing this (similar to [14]) is to have a clause in which these additional restrictions can

be stated:

(SEQUENCE ((<operator or subgoal name> AFTER <operator

or subgoal name>) ...))

Partial orders, established pairwise, are very flexible for this purpose. The make-tower plan of

Figure 9 could include:

(SEQUENCE ((add-pyramid AFTER build-foundation))) 1

Similarly, occasions arise when an operator writer wants to force the execution of an operator,

regardless of whether the goal of the operator is true at the necessary time. We can add the

keyword FORCE before the keyword SUBGOAL (or OPERATOR) in a decomposition to

achieve this effect.

5-L-70

3.3 Semantic Database Extensions

3.3.1 Macros for Effects Clauses

Writing effects clauses can be tedious. Every time we add on(xy), we also need to remember

to delete ontable(x), or we violate the law of gravity constraint. Such clusters of operations

could be expressed as macros so that we could write:

(MACRO new-support(ab) IS
(ADD on(ab))
(DELETE ontable(a)))

(OPERATOR start-struct IS-PRIMITIVE

(EFFECTS (INCLUDE new-support(x,y))

It is a -e that the use of intensional predicates can also alleviate the proliferation of details in the

EFFECTS clause. Intensional predicates are always computed, never explicitly recorded, so

making a predicate intensional means it cannot appear in an EFFECTS clause. We could make

ontable(x) intensional, defined as FORALL y NOT on(xy). However, if ontable needed to be

evaluated frequently, then it is more efficient to record it explicitly as an extensioal predicate.

The use of macros is a very direct means of simplifying effects writing. It is not quite so

straightforward to achieve this using the constraints alone. In the case of the law of gravity

constraint, it not easy to automatically get from the expression of the constraint to something of

the form "when the effects include adding/deleting on(a,b), then an implied effect is to

delete/add ontable(a)". And, if the operator writer should omit the effect dealing with on(ab),

* there is no way to bind b from the effect which is provided, namely ontable(a). A constraint of

the form greater-than(a,b) does not contain enough information to be able to perform any

additional database operations to make it true when it is false. Also, not all constraints need be

associated with implied database updating;, deciding which do and which don't is non-trivial,

3.3.2 Use of Intensional Predicates in ADD/DELETE

GPF operators are precluded from adding and deleting intensional predicates. Thus, we cannot

have an effect which includes ADD commined(x). If we were to allow this, then we could

have situations where x was committed (because committed(x) is recordc;* in the database) but

*o 5-L-71

in(s,x) would be false for all structures s (because we had not also recorded what structure x

was committed to). That means that the database is logically inconsistent, given the definition
of "committed".

Adding or deleting intensional predicates would be useful in order to have "underconstrained"

effects, where part of the detail needed for the complete set of effects is not known. However,

to provide this facility, it is necessary to draw upon some sophisticated database/logical

techniques. The benefits have to be carefully weighed against the drawbacks (in additional

mechanism and additional processing).

A related database extension would be to allow attribute values to be constrained to a range,
rather than set to a specific value. This is also useful in situations where information is lacking

to make effects fully constrained. This extension requires that predicates on attribute values be

able to return a value of "unknown" in addition to "true" and "false". The introduction of

"unknown" would have wide-reaching impact on the logical foundation of GPF.

3.4 Specialization Hierarchies

When writing large libraries of operators, it is helpful to be able to define generic operators

from which a family of specialized operators can be defined. This saves the operator writer
from repeating the generic aspects of the operators in each of the specializations. This facility
is similar to the is-a hierarchy which we allow on SDB objects. The simplest provision of such
a facility would allow an operator declaration starting :

(OPERATOR X IS-SPECIALIZATION-OF Y ...)

X would automatically inherit all the clauses of Y. Any clauses given in the definition of X
would be added to these base clauses to form the complete operator definition for X. As an
added feature, the keyword OVERRIDE could be used to indicate that the corresponding clause
of Y is to be replaced entirely by the clause provided in the definition of X.

In Figure 22, we give an example of a specialized operator, make-red-tower, whose definition

is based on the make-tower operator. Make-red-tower has an additional constraint: namely,
that all the blacks be red, it also has an additional predicate in the goal clause and an additional
effect.

5-L-72

Figure 22: Operator Definitions by Specialization

(OPERATOR make-red-tower IS-SPECIALIZATION-OF make-tower

(GOAL AND color(s,red))

(CONSTRAINTS (color(x,red))
(color(yred))
(color(zred)))

(EFFECTS (SET (color s red))))

(OPERATOR aft-make-tower IS-SPECIALIZATION-OF start-struc

(GOAL OVERRIDE tower(s))

(CONSTRAINTS (type-block(y,bar))
(type-block(x,pyramid))
(orient(y.vert))

(EFFECTS (SET (type-struct s tower))))

Also, in Figure 22, we rephrase the alt-make-tower operator as a specialization of start-struct,

where the base block is constrained to be a vertical bar and the top block is constrained to be a

pyramid. In this case, the goal clause is overridden, and there are additional effects.

0
There is another case where specialization is useful Strictly speaking, as long as the filter

program has no knowledge of the semantic database, it cannot distinguish between a primitive

action which is a start-struct and one which is an extend-struct. To deal with this, we can

define a single primitive action stack in the manner of Figure 3. Then start-struct can be a
specialization; the specialized form will require extra preconditions about x and y both being on
the table, and will have extra effects about top, base, and in. Similarly, extend-struct is another

specialization, requiring as a precondition that block Y not be on the table, et.

Operator definitions through specialization could be handled entirely by the operator reader
(which takes the external operator form presented here and manufactures the definitions in an

internal form), so that the use of specialization is entirely transparent to the
recognition/execution algorithms. However, this will prevent us from using specialization to 0

solve the prctlem of the filter program distinguishing between start-struct and extend-struct

5-L-73

(we would have to define these operators as complex ones with a single subgoal satisfiable by

the stack primitive operator). In other cases as well, it might be that the existence of

specializations might be of some value to the intelligent interface. Expanding the specializations
within the operator reader thus is probably not the best way to proceed.

A planning system which is intended to capitalize on specialization hierarchies of operators is

described in [15].

3.5 Improved Notation

In GPF, we have chosen to allow each individual operation within an effect clause to be

conditional. In practice, operator writers will probably find that the same conditions keep

getting repeated. This happens in the stack operator of Figure 18. One solution to this

problem is to group multiple operations within the scope of a single condition. This is a fairly

straightforward change to the GPF grammar.

There is no way in GPF to assign a name and a value to a variable unless it appears in one of

the clauses. For example, we might have an operator with a block variable b such that the

effects of the operator included various operations on the top block in the structure to which b

belongs. It is cumbersome to have to keep writing top-of(in-struct(b)) each time we want to

refer to this other block. We would like to be able to give it a name, and refer to it by its name

each tme it is needed. We need a local variable facility to do this in the general case; it could be

implemented using macros. In the operator remove-from-struct, the static precondition is

expressed as it is only in order to establish a binding for y which can be used in the effects

clause; on(x,y) logically implies NOT base(sx) which is the more "understandable" expression

in this case.

3.6 Specifying Operator Costs

In order to enhance the ability of the intelligent interface to select operators or to predict certain

operators in preference to others, information about the costs of different operators is

necessary. In some domains, two operators which achieve the same goal may have quite

different resource consumption pattens. A generalized clause to do this might look like:

(COST ((<resource type> <expression of numeric value>)...)

5-L-74

In the blocks world, resources might be time (a function of distance the block is to be moved)

and electricity (a function of the weight of the block and the distance moved). In a

computer-based domain, resources include CPU time, elapsed wall clock time, user time (to

issue command and provide any interactive input), disk space, etc. Domain-specific rules

about the relative importance (scarcity) of the different types of resources would also be

needed.

3.7 Non.atomic Primitive Actions

In the initial implementations of GPF, we will be treating primitive actions as atomic, that is, as

if they occurred instantaneously. Some extensions need to be made to GPF in order to relax

this restriction. We will need to know which of the (normal) preconditions for an operator are

required simply for the operator to begin, and which must persist until the operator ends. (For

complex operators, we assume that a precondition must persist as long as it is needed by an

operator achieving one of the subgoals; this is independent of whether or not primitive actions

are treated as atomic.)

When primitive actions are not atomic, the stream of actions being recognized or generated will

show separate entries for a primitive operator starting and ending. It is interesting to note that

there is enough knowledge in GPF as it stands to handle this. At operator start, we need all the

non-RESPONSE OBSERVE variables; at operator end, we need only the RESPONSE

OBSERVE variables.

3.8 Declarations of Variable Names

In its basic form, GPF has no provision for declaring the types associated with each variable

name. Such information is useful for two reasons: it is helpful to the (human) reader of

operators and it provides information which can be used for additional checking of the

correctness of an operator. If the semantic database is implemented in a strongly typed way (so

4 that a query of the form on(block,structure) returns ERROR and not FALSE), then type

checking does occur at run-time; with declarations, it could occur at the time the operator

library is constructed by the operator reader. If the semantic database is not implemented in a

strongly typed way, then no such checking will occur unless there are declarations to be

4 checked at operator-read time.

5-L-75

In the absence of required declarations, the operator writer is always free to include type
information in comments. We believe that this is good operator writing style. An example
appears in Figure 18.

5

5- L- 76

4.0 Review and Conclusions

In this section we revisit the subject of the plan formalism requirements, and discuss how GPF

meets these requirements. We also compare GPF to some of the major milestones in the
planning literatti.

4.1 How Requirements Were Met

The unique requirement on GPF, to allow for the definition of incomplete operators, is met

with three specific GPF features. The three features are the OUT-OF-SCOPE constraint, the

COMPLETES form of termination to iterated subgoals, and the USER-SUPPLIED stimulus
values defining an action to the filter program; the intelligent assistant is prevented from

unilaterally making a binding on variable or value (the first and third cases), or unilaterally

terminating an iteration (the second case). One other approach to incomplete plans is possible

(in both GPF and other plan formalisms): to define as primitive certain operators which are not

actually primitive, thereby requiring the user to supply any necessary substeps and their

parameters.

The user-related requirements are met by the use of hierarchical operator definitions, the

provision for non-FINAL subgoals (to control the level in the plan hierarchy at which particular
conditions appear) and by a style of extended world modeling in the semantic database. (This

latter issue is further supported by the use of ER data models to assist with construction of the

SDB). Emphasis on the cognitive aspects of the user's actions is provided by the OFFLINE

operators.

The real-world requirements are met by operator variables, constraints, and iterated subgoals.

The NEW database operation supports domains which are inherently constructive. The

RESPONSE variables in an operator provide for the real-world feedback needed both for
defining effects of failed operators and for dynamic capture of domain information.

The POISE-related requirements for handling exceptional situations are principally met by

introducing goals and preconditions for all operators. Executing an operator is redundant when

its goal is already satisfied. Once preconditions are present, the temporal ordering of operators

can be deduced. The grammar rules become superfluous under their original interpretation (an

ordering to be followed); with their omission, the formalism becomes tuly state-based. In any

5-L-77

case, the preconditions allow precise control on operator ordering, while the temporal rules

approximated the ordering. Concurrency of actions at any hierarchical level is implicit in the

fact that any operator whose precondition is true can be executed. The introduction of a goal

for each operator allows operator failure to be detected: an operator fails when its goal is not

true after its effects are posted. Modularity of operator libraries is ensured because the subgoal

decomposition is through states to be achieved by a choice of other operators, not directly

through those other operators.

4.2 -Relationship to Other Plan Formalisms

The foundation of GPF lies in the basic state-based plan formalisms introduced with the early

planning work, such as STRIPS [7]. At the core of such operator definitions are the two

clauses defining the preconditions and effects. The so-called STRIPS assumption, requiring

enumeration of all database changes comprising a state change, is used in GPF.

The form of GPF operators is intended to capture as much domain knowledge from the

operator writer as possible. An important part of this domain knowledge is the subgoal

decomposition for complex operators. The subgoals enumerate the intermediate steps which

close the distance between an arbitrary present state and the desired final state where the goal of

the operator is true. This knowledge bears a resemblance to GPS means/end analysis [10]. A

GPS planner identifies differences between the present state and the desired state, and uses

these differences to select which operators to apply; the selection is made from a pre-supplied

table correlating differences to operators. In GPF the differences are the subgoal states, and

the matching operators are the achievers for those states.

The subgoal decomposition of GPF also has similarities to NOAH [11], the key work

introducing hierarchical operators and hierarchical networks of plans. NOAH operators are not

written from the user's perspective, but from the system's perspective: thus, they are operators

for expanding nodes in a net rather than operators for actions in the domain. NOAH makes

default assumptions about the intervals over which conditions must be preserved, these default

assumptions are not general. These two characteristics of NOAH operators were improved

upon in the NONLIN [14] system. NONLIN, and to some extent NOAH, require the operator

writer to give ordering information which in GPF is deduced from normal preconditions and

the fact that a normal precondition is a distinguished subgoal which must precede all other

subgoals.

5-L-78

SIPE [16] is a recent and very full-featured plan formalism built on the same base of earlier
work as GPF. GPF constraints are similar to SIPE's (and both owe something to MOLGEN
[12,13]), but SIPE has some additional constraint types not in GPF. SIPE provides several of
the extensions to GPF defined in Section 3, including the decomposition through operators.
SIPE has an elegant approach to simplifying effects clauses through "deductive operators"
(which are also used to achieve conditional effects). SIPE has a special language for operator
resources, and special algorithms to support reasoning about resources. It also provides a way
to distinguish changeable and unchangeable aspects of the world state; these aspects are
implemented differently to improve efficiency.

Three aspects of GPF are new: the ability to specify incomplete operators, the notion of offline
operators and the provision for database changes which create new database objects. The
treatment of iterated subgoals in GPF is more extensive than that of other formalisms. The

emphasis on user-oriented domain modeling, supported by the use of the ER model of data, is
unique to GPF. One difference of style from NOAH, NONLIN, and SIPE is that GPF does

not require the operator writer to specify ordering or purpose interrelationships between

subgoals and preconditions.

4.3 Acknowledgments

All of the other members of the GRAPPLE project have contributed to the development of
GPF. Carol Broverman raised many insightful questions during numerous design
discussions. She and Chris Eliot have taken the lead in designing the plan recognition
algorithms for GPF. Bob Cook completed the initial implementation of the recognition
algoithms. Prof. Bruce Croft provided comments on an initial draft of this report.

5-T,-79

5.0 References

[1] Broverman, C.A., and W.B. Croft, "A Knowledge-based Approach to Data
Management for Intelligent User Interfaces", Proceedings of Conference for Very
Large Databases, 1985.

[2] Broverman, C.A., K.E. Huff, and V.R. Lesser, '"he Role of Plan Recognition in
Intelligent Interface Design, Proceedings of Conference on Systems, Man and
Cybernetics, IEEE, 1986, pp. 863-868.

[3] Carver, N., V.R. Lesser and D. McCue, "Focusing in Plan Recognition",
Proceedings of AAAI, 1984, pp. 42-48.

[4] Chen, P.P., "The Entity-relationship Model: Toward A Unified View of Data," ACM
Transactions on Database Systems, vol. 1, no. 1, March 1976, pp. 9-36.

[5] Croft, W.B., L.S. Lefkowitz, V.R. Lesser and K.E. Huff, "POISE: An Intelligent
Interface for Profession-Based Systems", Conference on Artificial Intelligence,
Oakland, Michigan, 1983.

[6] - Croft, W.B., and L.S. Lefkowitz, "Task Support in an Office System", ACM
Transactions on Office Information Systems, vol. 2, 1984, pp. 197-212.

[7] Fikes, R.E., and NJ. Nilsson, "STRIPS: A New Approach to the Application of
Theorem Proving to Problem Solving", Artificial Intelligence, vol. 2, 1971, pp. 3

189-208.

[8] Huff, K.E. and V.R. Lesser, "Knowledge-based Command Understanding: An
Example for the Software Development Environment", Technical Report 82-6,
Department of Computer and Information Sciences, University of Massachusetts,
Amherst, 1982. 3

[9] Huff, K.E. and V.R. Lesser, "Intelligent Assistance for Programmers Based Upon a
Formal Representation of the Process of Programming", Technical Report 86-09,
Department of Computer and Information Sciences, University of Massachusetts,
Amherst, 1986.

[10] Newell, A. and H.A. Simon, "GPS: a Program that Simulates Human Thought", in
Feigenbaum, E. and J. Feldman eds., Computers and Thought, McGraw-Hill, New
York, 1963.

[11] Sacerdoti, E.D., A Structure for Plans and Behavior, Elsevier-North Holland, New
York, 1977.

[12] Stefik, M., "Planning with Constraints", Artificial Intelligence, vol. 16, 1981, pp.
111-140.

[13] Stefik, M., "Planning and Meta-planning", Artificial Intelligence, vol. 16, 1981, pp.
141-169.

5-L-8O

[14] Tate, A., "Project Planning Using a Hierarchical Non-linear Planner", Dept. of
Artificial Intelligence Report 25, Edinburgh University, 1976.

[15] Tenenberg, J. "Planning with Abstraction", Proceedings of AAAJ, 1986, pp. 76-80.

[16] Wilkins, D.E., "Domain-Independent Planning: Representation and Plan Generation",
Artificial Intelligence, vol. 22, 1984, pp. 269-301.

Appndix A
Forml GammaPfo Operator Definitions

Symbols: [.]denotes an optional construct

I denotes alternation

I)used for bracketing

Comments: Comments within an operaor definition will follow the Common LISP
convention: frm a semi-colon to the end of the line.

<operator> <- (OPERATOR <operator name>
(ISCOMPLEX I IS_PRIM[ITIVE) [OFFUINE]
<goal clause>
<preconds clause>
(<decomp clause> I <observe clause>]I
<constraints clause>
<effects clause>) 0

<goal clause> <- (GOAL <formula>)

<preconds clause> <- (PRECOND (<formula, list>) [(STATIC <formula>)])

<formula list> <- <ormula>, <formula list> I <formula> 0

<decomp clause> ((DECOMP <subgoal defist>)

<subgoal defist> <- <subgoal def>
I <subgoal def> <subgoal deflist>

0

<subgoal def> < ([FINAL] SUBGOAL < subgoal. name >
(<iteration spec>]
< formula>)

<iteration spec> <- TERATED
I COMPLETES <subgoal name>
I ITERATED-OVER (<vbl name> : <set spec>)
I PAIRED-WITH <subgoal name>

<set spec> <- <ormula>

<observe clause> <- (OBSERVE (<ob name list>) [(RESPONSE <name

list>)])

<ob name list> <- <vbl name>
I <vbl name> <ob name list>
I <user supplied value> <ob name list>

<user supplied value> <- USER-SUPPLIED (<descript>, <vbl name>)

<descript> <- <string>

<name list> <- <vbl name> I <vbl name> <name list>

<constraints clause> <- (CONSTRAINTS <constraint list>)
I (CONSTRAINTS)

<const-aat list> <- < constraint>
I <constraint> <constraint list>

<constraint> <- <formula>

<effects clause> <- (EFFECTS <effects list>)
I (EFFECTS)

<effects list> <- <effect>
I <effect> <effects list>

<effect> (- (<newobj op>
I <ad-delete op
I <attr set op>)

<add-delete op> <- ADD I DELETE <cond-predicate>

<cond-predicate> < pedicate>
I IF <formula> THEN <predicate>
I IF <formula> THEN <predicate> ELSE 0

<predicate>

<newobj op> <- NEW < obj name> <type name> [WITH (<with spec>)

<with spec> <- <predicate> I <predicate>,<with spec>

<attr set op., < SET <attr spec>
I SET IF <cond formula> THEN < attr spec>
I SET IF <cond formula> THEN < attr spec>

ELSE <attr spec >

4 <attr Spec> <- (<attr name> <vbl name> <value>)

<formula> - (<formula>)
I OLD (-formula>)
I <predicate> I NOT <predicate>
I <formula> AND <formula>

4~ I <ormula> OR <formula>

<predicate> <- <pred name> (<arg list>)

(TRUE IFALSE

<arg list> <- <arg> I <arg> , <arg list>

<arg> <- predicate>
i<vbl name> I <qualifier> (<vbl name>)
kfunct>
I <value>

<qualifier> <- THIS I NEXT I FIRST I FINAL I EVERY I SOME

-funct> <- <funct name> (<arg list>)

4-
-8

0

Appendix B
An Operator Library

The following additional SDB predicates and constraints are assumed, in addition to those of •

Figure 5:

Extensional: setaside(structure,block)

Intensional: ready(structre,block):
ready(s,y) 1FF setaside(s,y) AND NOT committed(y)

free(block):
free(y) 1FF FORALL s: NOT setaside(s,y)

empty(structure):
empty(s) 1FF FORALL b: NOT in(s,b)

Constraints: setaside(sl,b) AND setaside(s2,b) 1FF equal(sl,s2) 0

(OPERATOR start-struct IS-PRIMIVE
; this is an operator for moving a single block on top of another, to be used 9
; when the structure being built is currently empty of blocks.

(GOAL on(xy) AND top(s,x) AND base(s,y))

(PRECOND (ready(sy) , ready(sx))
(STATIC NOT type-block(y, pyramid)
AND empty(s)))

(OBSERVE (namex,namey))

(CONSTRAINTS (name(xnanex))
(name(y,namey)))

(EFFECTS (ADD on(xy))
(DELETE ontable(x))
(ADD !op(sx))
(ADD in(sx))
(DELETE clear(y))
(ADD base(s,y))
(ADD in(s,y))
(SET (type-struct s unknown))
(DELETE setaside(sx))
(DELETE setaside(s,y))))

n inill llnIn I IIll~l III

(OPERATOR extend-struct IS-PRIMiTIVE
; this is an operator for moving a single block on top of another, to be used
; when a structure already has blocks in it.

(GOAL on(xj) AND top(sx))

(PRECOND (top(s,y) , ready(sx))
(STATIC NOT type-block(y, pyramid)
AND NOT empty(s) AND NOT in(sx)))

(OBSERVE (namex,namey))

(CONSTRAINTS (name(x,namex))
(name(ynamey)))

(EFFECTS (ADD on(xy))
(DELETE ontable(x))
(ADD top(s~x))
(ADD in(sx))
(DELETE top(s,y))
(SET (type-struct s unknown))
(DELETE setaside(sx)))

(OPERATOR remove-f-om-struct IS-PRIMiTIVE
; this is the basic operator for unstacking, i.e., taking one block out of a
; structure. If there were only two blocks in the structure, we disband
; the structure.

(GOAL NOT committed(x) AND NOT in(sx))

(PRECOND (top(sx))
(STATIC on(x,y) AND in(s,x)))

(OBSERVE (namex))

(CONSTRAINTS (name(xnamex)))

(EFFECTS (DELETE top(sx))
(DELETE in(sx))
(ADD IF NOT(OLD(base(s,y))) THEN

top(s,y))
(DELETE IF (OLD(base(s,y))) THEN
in(s,y))

(DELETE IF OLD(base(s,y)) THEN
base(s,y)

(ADD clear(y))
(ADD ontable(x))
(SET (type-struct s unknown))))

.- J 9q ! ,

(OPERATOR tower-by-adaptation IS-COMPLEX
;we make a tower from an existing structure which has a cube at its base

and a cube on top of the base.

(GOAL tower(s))

(PRECOND (TRUE)
(STATIC base(sy) AND on(x,y)))

(DECOMP (SUBGOAL make-pyramid-available
ready(sz))

(SUBGOAL remove-extraneous-blocks
top(sx))

(INAL SUBGOAL add-pyramid
(top (sz) AND on(z,x))

(CONSTRAINTS (type-block(zpyramid)) ; pyramid at top
(type-block(xcube)); cube in middle
(type-block(ycube)); cube at base

(EFFECTS (SET (type-struct s tower))))

(OPERATOR tower-fxixn-scratch IS-COMPLEX
;we make a tower from scratch.

(GOAL tower(s))

(PRECOND (TRUE))

(DECOMP (SUBGOAL get-empty-smxtc
empty(s))

(SUBGOAL make-first-cube-available
ready(sx))

(SUBGOAL make-second-cube.-available
ready(s,y))

(FINAL SUBGOAL build-foundation
(on(x~y) AND in(sx) AND bassy))

a (SUBGOAL make-pyramid-available
ready(sz))

(FINAL SUBGOAL add-pyramid.
(top (sz) AND on(zx))

(CONSTRAINTS (type-block(zpyrAmid)); pyramid at top
(type-block(x,cube)); cube in middle
(type-block(y,cube)); cube at base

(EFFECTS (SET (type-stuct s tower))))

*8

(OPERATOR make-alt-tower IS-COMPLEX
; we make a stack with a vertical bar and a pyramid - an alternative type
; of tower also 3 units high.

(GOAL tower(s))

(PRECOND (TRUE))

(DECOMP (SUBGOAL make-bar-available
ready(s,y))

(SUBGOAL make-pyramid-available
ready(s,x))

(FINAL SUBGOAL build-it
(top(s,x) AND base(sy) AND on(xy)))

(CONSTRAINTS (type-block(y,bar)) ; base-is-bar
(orient(y,vert)); bar-is-vertical
(type-block(xpyramid)) ; pyramid-at-top

(EFFECTS (SET (type-struct s tower))))

(OPERATOR make-new-struct IS-PRIMIVE OFFLINE
;this is an operator to find an empty structure, i.e. to get a "label"
;which can be attached to a group of blocks that will be stacked.
;if there are no empty stuctures, then a new one is created

(GOAL (empty(s))

(PRECOND (TRUE))

(CONSTRAINTS)

(EFFECTS (NEW s structur))

5-1,-R9

(OPERATOR set-block-aside IS-PRIMITIVE OFFLINE
;this is an operator to target a block for a structure being built
;both uncommitted blocks and committed blocks are candidates for
;being set aside; but blocks already set aside are not.

(GOAL (setaside(sx))

(PRECOND (TRUE)
(STATIC free(x)))

(CONSTRAINTS)

(EFFECTS (setaside(s,x)))

(OPERATOR pick-and-free-block IS-COMPLEX
;this is a complex operator which accomplishes the setting aside of a
; block as well as de-committing it if necessary.

(GOAL (ready(sx))

(PRECOND (TRUE))

(DECOMP (FINAL SUBGOAL pick
(setaside(s,x))

(FINAL SUBGOAL free
(NOT committed(x))

(EFFECTS

(OPERATOR dismantle-swuct IS-COMPLEX
; an operator to partially dismantle a structure
; this is the (destructive) way to make a block be the top of a structure

(GOAL top(sx)

(PRECOND (TRUE)
(STATIC in(s,x) AND NOT base(s,x)))

(DECOMP (FINAL SUBGOAL take-off-top
4 ITERATED-OVER (y: above(y,x))

NOT in(sy)))

; assumes that above(xy) is intensional predicate as follows:
; above(x,y) IFF (on(x,y) OR THEREEXISTS Z I (on(x,z) AND above(z,y)))
; that is, x is above y if it is directly on y or if it is on a block z which is
; above y.

(EFFECTS

5 -1,-90

(OPERATOR rnake-arbitrury-block-available
this operator is a generalization of remove-from-struct, which doesn't

;require that the block be at the top of the structure.

(GOAL NOT conitted(x) AND NOT in(sx))

(PRECOND (TRUE)
(STATIC in(sx) AND on(y,x))

(DECOMP (SUBGOAL clear-its-top
top(s,x))

(FINAL SUBGOAL remove-desired-block
NOT in(szx))

(EFFECTS

* MISSION
Of

Rome Air Development Center

_ RADC plans and executes research, development, test and selected

acquisition programs in support of Command. Control, Communications

and Intelligence (C31) activities. Technical and engineering support within

areas of competence is provided to ESD Program Offices (POs) and other
ESD elements to perform effective acquisition of C3! systems. The areas S

* of technical competence include communications, command and control,
battle management, information processing, surveillance sensors,

* intelligence data collection and handling, solid state sciences,

electromagnetics, and propagation, and electronic, maintainability, and S

i compatibility.

