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1. Introduction

We consider the problem of solving an elliptic partial differential equation on a domain that
is broken up into rectangular subregions. By using domain decomposition or substructuring tech-
niques, the problem is reduced to separately solving approximate problems in the subdomains and
updating the solution at the interfaces between two or more subregions. For the class of domain
decomposition methods considered in this paper, the basic idea consists of the following: the differ-
ential operator is discretized on a grid imposed over the domain, which is partitioned into several
subregions. Then, by applying block elimination to the discretized equations, a system is derived
for the unknowns on the interfaces between subregions. This system is sometimes called the ca-
pacitance system. Forming the right hand side for the interface system requires the solution of
independent elliptic problems on the subdumains. For certain constant coefficient problems on reg-
ular domains, fast direct methods can be applied to the solution of the interface system [3, 4]. Such
is not the case, however, for more general operators or irregular domains. For efficiency reasons the
system must then be solved by iterative methods, such as the preconditioned conjugate gradient
method. Once the solution is known on the interfaces, one more elliptic problem must be solved
on each subdomain with the computed values as boundary conditions.

In [3], an eigenvalue decomposition in terms of Fourier modes is given for the capacitance matrix
for the case of the Poisson equation on a rectangle divided into two strips. This decomposition is
described in section 2. In this paper, we are interested in the analysis of this decomposition, which

0 we will cell MC, as a preconditioner on irregular domains and in particular, we want to study
the dependency of the convergence rate on the gridsize and the shape of the domain. Many of
the preconditioners, when applied to an L-shaped region, have convergence rates that are bounded
independently of the gridsize. The bound, however, depends on the relative aspect ratios of the
subdomains. For example, all of the preconditioners, except for MC, are known to deteriorate when
one of the subdomains becomes narrow. In section 3, we show that, if we use Mc as preconditioner
for the capacitance matrix on any L-shaped region, the preconditioned matrix has a condition
number that is bounded by 2.16, independently of gridsize and aspect ratios. Given an L-shaped
region, there are two ways of separating it into two rectangular subregions. We prove, also in
section 3, an interesting property of the preconditioner Mc, namely that the convergence rate is
not affected by the way we choose to subdivide the domain. In section 4, we discuss the extention
of some of the results in section 3 to C-shapes. In the proofs of sections 3 and 4, we often use a
common operator, which describes the interaction between two perpendicular interior interfaces.
This operator is analyzed in detail in the appendix.

2. The interface operator and its preconditioners

In order to illustrate the method, we will apply the process described above to a simple region
2, which can be decomposed into two rectangles Q, and Q22, with interface r3, as shown in fig.1.
Let the linear system

Au =f (2.1)

represent the discretization of the differential operator on Q. By ordering the variables in Q, and
* 912 first and then those in r3, the system (2.1) can be written in block form as:

.422 ,423 ) u2  f2 (2.2)
13 23 A33/ ?13 h3

wiere the indexes for u and f rorspond to gridpoints in .Q, Q. and [7,3, respectively. Based on
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Figuie 1. Tile domain Q and its partition

the following block decomposition of the matrix in (2.2):

(All ( I

A = A2 2  I A2 A 23  , (2.3)
AT A C

where C is the Schur complement of A 33 in A, i.e.
A33 - ATA-' A13 - AT A-A 23  , (2.4)

the system (2.2) can be solved as follows:

Step 1: Compute
- -A13Al1f1 - A2TA 22f 2  (2.5)

and solve
Cu 3 = g (2.6)

Step 2: SolveS Ali ul = f, - A 13 u 3  (2.7)

and
A 22u 2 = f2 - A 23 u 3  (2.8)

The computation of g by (2.5) and ul and u 2 by (2.7) and (2.8), require the so!.ti'n, ,f independent
problems on the subdomains. The matrix C given by (2.4), also called the capacitance matrix, is

* dense and expensive to compute. It is possible, however, to compute the action of C on a vector
v at the cost of solving problems on the subdomains with boundary conditions on F given by v.
Therefore, the interface system (2.6) is often solved by preconditioned conjugate gradients (PCG).
Since each iteration involves solving problems on the subdomains, it is essential to keep the number
of iterations low. For this reason, much effort has been devoted recently to the construction of good
preconditioners for the capacitance matrix [6, 1, 7, 3, 4]. Many of the preconditioners proposed are

* spectrally equivalent to the exact boundary operator. They therefore yield convergence rates that
are bounded independently of the gridsize. The method is particularly suited to problems for which
the subproblems can be solved efficiently, for example, when the operator has separable coefficients.
When the siibdomain problems cannot be solved efficiently but they can be approximated by
separable operators, it is possible to derive block preconditioners for the originil system based on

0 preconditioncrs for the interface system [8, 2, 5].
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In [3], the case of a constant coefficient operator on a rectangular domain divided into two strips
is analyzed. For this simple case, it is shown that, for many of the preconditioners proposed in the
literature, while the condition number of the preconditioned system can be bounded independently
of the gridsize h for a fixed domain, it can grow as a function of the aspect ratio of the subdomains.
Roughly speaking, the aspect ratio of a rectangle is the ratio between its height and its width (note:
for one of the preconditioners proposed in [1], the bound grows when only one of the subdomains
becomes narrow). A fast direct solver for C based on Fourier analysis can be derived from the
exact eigenvalue decomposition of the capacitance matrix. This operator takes aspect ratios into
account and solves exactly the interface problem for the case of constant coefficients on a rectangle
divided into two strips. It is therefore proposed in [3] to apply it as a preconditioner for interface
systems on irregular regions or for variable coefficient operators. We will call this preconditioner
M1Ic. For the case of a five point finite differences discretization of the Poisson equation:

-ux - = f (2.9)

on a regular grid of size h = -', Mc has a decomposition of the form:

Mc =Wn AW , (2.10)

* where A is a diagonal matrix and W, is the matrix of sine modes of dimension n, whose elements
are given by:

2 i j r

wij = sin n (2.11)

for i,j= 1,...,n.
Given integers n, m, and 77 2 , define

Aj(n,(l,m2)=+ + -- ) aj + n+ (2.12)
- j + 4

where

aj 4sn 2 (n + ) 2

and

2

= 1 +-(2.14)

The eigenvalues of Mlc are given by

Aj = Aj(n, ml,M 2 )

for j = 1..... n, where m, and m 2 are the number of grid points in the y-direction in 921 and Q2

respectively.
The preconditioners proposed in [6] and [7] have the same eigenvectors as (2.10), but the

eigenvalues are those of the square root of the one-dimensional discrete Laplacian, namely V/-7 in

[6] and a0 + - in [7]. For the case of the Poisson equation (2.9), it can be proved that one of
the preconditioners given in [1] also has a decomposition of the form (2.10). The eigenvalues A, for
this operator can be obtained by setting m 2 = m, in (2.12), i.e. A,(n. il, ml). This preconditioner

3



is therefore exact for the case of a rectangle divided symmetrically into two identical rectangular
subdomains.

3. L-shaped regions
In this section, we describe the interface operator and its preconditioners for an L-shaped

domain, the simplest irregular shape that can be decomposed in rectangular subregions. Consider
the Poisson equation on the region fQ of fig.2. It is clear that either interface, r 4 or F5, will divide the
domain into two rectangles. We might ask ourselves two questions: is a particular decomposition
better than the other? And how does the convergence rate depend on the mesh size and the aspect
ratios of the subdomains? We will show that for the particular preconditioner Mc we analyze,
the two decompositions produce iteration matrices with the same convergence rate. We also give
a bound for the condition number that is independent of the mesh size and the subdomain aspect
ratios.

Un

r 4 n3

m2 f?2  F5  Q3

Figure 2: L-shaped domain

Let the linear system
Au f (3.1)

represent a standard second order five point discretization of the differential equation on a regular
grid imposed on the domain Qt. Let us first consider the domain Q as the union of two rectangles
divided by the interface F4 . An interface system of the form

C 4 u 4 = g4 (3.2)

can be derived for the variables on r4 by the process of block elimination, similarly to equations
(2.5) to (2.8).

Similarly, we can consider the domain f2 as the union of two rectangles divided by the interface
F.5 and an interface system of the form

C5us =g , (3.3)

can be derived for the variables on F.5.
On the other hand, by reordering the gridpoints on the subdomains first and then those on

the interfaces I . and F.5, A can be written in block form as:

A A P) (3.4)• = pT .4r
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where
411 A44 adP (.A44 2

.4 ( A22 , Ar = A 5 5  and P (2
A-33 )A35

The matrix A of (3.4) can be decomposed as follows:

A= pT 45) (3.5)

where C 45 is the Schur complement of Ap in A, i.e.,

C4 5 =_ Ar - PT A-p ( Al 4  A24 A 1 A 2s A2 (3.6)
25 22

with
M4 = A 4 4 - A T A-'A, 4 - A TA-'A 24  (3.7)

and
1M5 = Ass - AjsA-' A2 5 - A3TA3 A 35 . (3.8)

The matrix .14 would be the capacitance matrix for r 4 if the domain 23 were absent. Similarly,
.M15 would be the capacitance matrix for P 5 if the domain fl were absent. In fact, they are nothing
but the preconditioner Mc described in the previous section. Both M 4 and M5 have eigenvalue
decompositions of the form (2.10). According to the definition (2.12), the eigenvalues of M 4 are
given by A(n. m1,m 2 ) for j = 1,...,n and its eigenvectors, by W,. The eigenvalies of M 5 are
Ai(m 2 , n, n3 ) for i - 1,m 2 , with eigenvectors given by TV, 2 .

The matrix C4 of (3.2) is the Schur complement of A44 in A, but it can also be written as
the Schur complement of M 4 in C4,. Similarly, Cs is the Schur complement of A 5 5 in A, but it

can also be written as the Schur complement of M5 in C45. Therefore, we can derive the following
expressions for C4 and C5:

Lemma 3.1. The interface matrix for r 4 in Q can be written as

C 4 -m4 BTM-'B (3.9)

where B = A.-- IA 24 . Similarly, the interface matrix for F5 in Ql can be written as

C5 :- I.f BM11 B T' (3.10)

The preconditioner proposed in [3] for C4 in (3.2) would correspond to Mc = M 4 and similarly,
S.Mc = .15 for C5 in (3.3). Since Mc is positive definite, we can choose ./17 as a symmetric

preconditioner. Let us define the preconditioned matrices:

14 = C4/C hlM /2 and 0s = M. 1 1lCsAI1 12  (3.11)

B y (3.9). w e have c ,4  = - f T h and bs I'll - . (3.12)

5



where
1, 1 /2 AT -1A4 Xr4 12  (3.13)

2522

If we choose F4 as the interface, at each iteration subdomain problems will be solved oil Q, and
Ql2 U r5 U Q3 . Similarly, if we choose Fs as the interface, at each iteration subdomain problems
will be solved on fil U 174 U Q-2 and Q3. The work per iteration is therefore comparable for both
ways of splitting the domain. We will next show that, by solving (3.2) with preconditioner M 4
and (3.3) with preconditioner M5 , both systems are also equivalent from the convergence point of
view. Therefore, in a general case, there is no a priori reason to prefer one way of decomposing the
domain over the other.

If n = M 2 , this fact is not surprising, considering that both interface systems have the same
order and it is easy to see that C 4 = C5 . It is not obvious, however, whether one way of decomposing
the domain should be prefered when n A M 2 . As it turns out, even in this case the asymptotic
convergence rate is the same for both systems, because the matrix C 45 of (3.6) satisfies the following
theorem:

Theorem 3.1. Consider the following symmetric positive definite (SPD) system, written in block
form:

* where the blocks .4 and B are square matrices. Also, define the Schur complement systems:

(A - BC- BT)x = f - BC-'g (3.15)

and
(C - BT A-1B)y = g - BT A-f (3.16)

Consider the solution of (3.15) by the following fixed-point iteration, with splitting matrix given
by A: given an initial guess x ° , define the i-th iterate as the solution to:

Ax' = f - BC-'g + BC-1BT i - 1  (3.17)

for i = 1,....
Similarly, given y', define the i-th iterate of a fixed-point iteration for solving (3.16) with

splitting matrix given by C, as:

Cy' = g - BT A-1f + BTA-Byi -  (3.1S)

for i = 1,2 ..
* Then, the two iterations are convergent. Moreover, they are equivalent in the sense that for

any given initial guess x° for (3.17), there exists an initial guess y' for (3.18), such that for all
i = 0, 1.... we have:

y, = q, + pyi ,1 (3.19)

where q = C-g and P. = -C-BT and

Sje +'IA _ ec l i (3.20)

where e' =x' - x , e' = - y and IIUIIA denotes the A-norm of a vector u, i.e. \ ./774u.
Completely analogous results also hold for x' and e' given an initial guess y" for (3.16).

Proof. Given x, define y' = q + PIXo. By induction, we can see that (3.19) satisfies (3.18) for
every i > 1.

6
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From the classical matrix iterative analysis for the convergence of block Ga.iss-SeHil it-ration
for SPD matrices, it can be shown that the two iterations converge. Also, since the matrix of (3.14)
is SPD, so are the blocks A and C and their corresponding Schur complements. Therefore, A - 1 / 2

and C - 112 are well defined and

II-1-' 2BC- l/ 2 < I (3.21)

We can also prove that

Ae. + 1 = BC - 1 BTe

and
e'Y = P.,e.'

Therefore, we have
41/2e+1 = -(A-1/2BC-112 )CI/ 2 el, (3.22)

q and
Cl"2ei = _(C-112BTA -1/2 )A1/ 2e' (3.23)

Using (3.21), (3.22) and (3.23). we can prove (3.20).

When an iterative method such as PCG is used, the rate of convergence depends on the
condition number of the corresponding preconditioned matrix in (3.11). By applying the last

theorem to C 45 and by using (3.12), we can conclude the following:

Theorem 3.2. Solving both systems (3.2) and (3.3) with preconditioners of the form Mc produce

equivalent asymptotic convergence rates. Moreover, by (3.12), we have

£C(C 4 ) 1 1 (3.24)1 -IIBbll 12

and
a (_%) _I- 1 IIT!I 

(3.25)

II i

Numerical computations show that the singular values 3i of b decrease very quickly with the
index i. Therefore, in practice, only a few eigenvalues of C 4 and C 5 are different from 1, which leads

to rapid convergence of the PCG method when anpied to either matrix. For example, for the L-
shaped region with corners at: (0, 0), (3, 0), (3, 0.25), (1, 0.25), (1, 1.25) and (0, 1.25), for n = 31 and
63, table 1 shows the singular values of i and the eigenvalues of C 5 , computed in single precision.

Our conclusion is that either way of decomposing an L-shaped region into two rectangles
produces the same convergence rate, when preconditioner Mc is used. Moreover, we will be able to
give an analytical bound on the condition number of the preconditioned capacitance matrix. This

bound is derived from a bound on the norm of the operator B Tb.
But first, we will give an expression for the elements of a unitary transformation of B. Let

the elements of the matrix UW, be given by (2.11) and similarly, define the elements of Vm,2 by

replacing n by m2 in (2.11).

The operator
QvE = A .424

which is part of the definition (3.13) of B, is the operator that takes boundary values on the

interface F.4 . solving a Poisson problem on Q12 and then takes the values of the solution at the

[7



n=31. m2 7 n=63, rn2= 15

sv ofB a(s) sv ofB a(C5 )

0.18204 0.96686 2.165E-01 0.95312
0.03868 0.99850 6.816E-02 0.99535
0.00514 0.99997 1.578E-02 0.99975

0.00045 0.99999 2.971E-03 0.99999

0.00002 1.00000 4.607E 04 0.99999
0.00000 1.00000 5.863E-05 1.00000

0.00000 1.00000 6.082E-06 1.00000
5.093E-07 1.00000

3.610E-08 1.00000

U Table 1: Eigenvalues of preconditioned capacitance svstem
for an L-shaped region

gridpoints which are adjacent to r5. It is possible to derive the elements of Q.TE when it is pre
and post-multiplied, respectively, by the matrices VVi and W. The elements of

0 Win2 QNEWn

are given by
2 sin ir sin

_______ ______ 2 +I +

qij = (m M (m2) (3.26)2 )n+ ) ,n + 0,M2

for i = 1, ... , m 2 and j = 1,...,n. A proof of (3.26) can be found in the appendix (see lemma 5.2).

For any given integers n, ml and M 2 , let A(n, ml, m 2) be defined by (2.12), where -yj is given
by equation (2.14). By using (3.26), it is easy to prove the following lemma:

Lemma 3.2. Let

V = WBWn (3.27)

Then, [(V 1i2 = 1B112 and the elements of the matrix V are given by

2 sin m sin J(2
vij - 2 (3.28)

/(n + 1)(M 2 + 1) Sf')S(5) (afl + or (MA

4 ) I A ( rn5 )
for I= 1,...,M 2 andj = 1,...,n, where Vj(n, 1, m 2)I and 1 mV/1A(2 , n, n3 )I.

* As equations (3.24) and (3.25) suggest, in order to find a bound for the condition number of

the preconditioned capacitance system. we need to bound the norm of B, or V. Since we have an

expression for the elements of V, we can bound JJVJJ1 and IVII, and then use the properzy:

IlV1l2 < V11Vll11lVl- -

The results are summarized in the next theorem. A proof can be found in appendix B:

8
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heore-n 3.3. Define the aspect ratio for the domain Q 2 in fig.'2 as A = Tn

a) jVl1 1 < V/ft 0.733 and 11111, < 0.733.

c For all gridsizes and all L-shaped regions,

A.(C) < 2.16 and A:(Cs) < 2.16 (3.29)

In our experiments on L-shaped domains with many different aspect ratios, condition numbers
larger than t.2 have not been observed. The bound 0.54 in b), however, is fairly tight for J[I'Vl jjt' J,.
as was shown by numerical experiments with large values of n and 712. Therefore, if a tighter bound

is desired for the condition number, one would need to bound the 2-norm of !iT/J directly.
We would also like to discuss briefly how the parameter n 3 (or, respectively. rn) affects the

performance of preconditioner M 4 (0),). Clearly, as n 3 tends to zero for large m 2 , the domain Q
approaches the shape of a perfect rectangle. The preconditioner .114 should reflect this by becoming
the exact boundary operator. In other words, KI(C 4 ) should approach one. We can verify that this
is the case as follows: Ili in (3.28) depends on n3 only through Ai(in 2 . n. n3 ) (defined in (2.12)).
When the aspect ratio "+I tends to zero (i.e. Q23 becomes thinner), A,(1n 2 , n, n 3 ) tends to infinity
and therefore Ii, tends to zero. However, we can see that this dependency is very weak, because
Aj( 1772, n_ n 3 ) tends rapidly to an asymptotic value independent of n 3 when such aspect ratio grows.
Only the fact that

Aj (m 2 ,n, n 3 ) _ 2 vrc (3.30)

is used in the proof of theorem 3.3, which is true for all n 3 . The discussion above implies that the
performance of .1 4 as a preconditioner for C 4 is fairly independent on how irregular the region is.

Incidentally, for the other preconditioners mentioned in this paper [6, 1, 7], the preconditioned
capacitance matrix always has the form X+B3TB, for some operator b to which the bounds (a) and
(b) of theorem 3.3 can also be applied, as long as (3.30) holds. The bound given in (c), however.
does not hold for other preconditioners, for which the norm of X may grow when the aspect ratio
a of the domain 0.2 decreases (see [3] for an example on a T-shaped region).

4. C-shaped regions

Some of the expressions and results of the previous section are more general than they appear
and they can be used as basic components for more complicated regions that are unions of rectangles.
For example. a C-shaped region can be subdivided as indicated in fig.3.

Similar to L-shaped domains, the region of fig.3 can be separated in three rectangles by either
F6 and r-, or F8 and £9. By ordering the variables in fr,, i < 5 first and then those on Fj, 6 _< j _ 9.
the matrix .4 that represents the discrete differential operator on Q can be written in block form
as in (3.4), where

~ A .. , 4- A66 . (4.1)

Ass 5 A99

and
.416 .4 18

P= 126 -427P

9 A59



71 n 4
Int

11 fl2

rn8

3I r7

n5

Figure 3: C-shaped domain

A system

C67 U 967 (4.2)

can be derived by block elimination for the interfaces 16 and 1t7, where C67 is the Schur complement
in A of the blocks A66 and .477- In [4), a multistrip operator Ml 6 7 is described, which solves. exactly.
the problem on a rectangle divided into three strips (,Q 2 and fQ3). We will analyz2 11 67 as a

preconditioner for C67. The operator Al 67 has the following block structure:

11167= 6 S (4.3)

where
-T -1 _ T -1H 6 = A66 - A16 A-' A1 6 - A2 6 A2 2 ,426 ,

H7 = 477 - A 1 A 37 - A 7 A- A 27

and
S = -AT 6 A1A2 7

The blocks 116, H7 and S have eigenvalue decompositions of the form (2.10), with eigenvalues given
by A(n, M 1 , M 2 ), Aj(n. M 2 , M 3 ) and

bj(n, m 2 ) =-2 J + (4.4)

respectively, for j = 1. n. (See lemma 5.1 in appendix A).
Similarly, a system

C89 US 9 g89( .5

can be derived for the interfaces 1'? and F9, where C89 is the Schur complement in A of the blocks
.-18 and A9. The system (4.5) can be preconditioned by a block diagonal preconditioner . sJ,. wit i
diagonal blocks .Is and M.l. is the exact interface system for F8 witIi respect to the snbdoinains

10



Q, and Q.4 , and .119 is the exact interface system for [9 with respect to the subdomains Q:j and Q5 .
Both M8 and .19 have decompositions of the form (2.10).

Al It can be easily shown that Cr. the Schur complement of the blocks .41- in .1. can hw written
in block form as:

QsE 0
A437

0 QNE

QSE 0 M8  0
0 QT

0 N 0 M9

where QSE = 4T 1t.4 18 and QNE = AT A-.4 39 . Again, by applying theorem 3.1. we have that
both ways of dividing the domain are equivalent, in the sense that initial residuals can be found such
that the same number of iterations are necessary when PCG is applied to C67 with preconditioner
,1167 than when PCG is applied to C89 with preconditioner Al89 . The preconditioned interface
operator for 76 and F 7 ,

C6 7 = 267M6-,

can be written in the form
SC 6 7  I -- T[ , (4.6)

where b E R(ml+m3)x2n and

=(M -91 1 2 (Q TE O 1)/6

Similarly, the preconditioned interface operator for for 1s and F9 ,

C8 ( 0 1/~2 c (89 A18 0 /20 A1 9 0 A19

can be written in the form
c 89 = I -Bj3T  (4.7)

The condition numbers of 067 and 059 are bounded by

/C(C6 7 ) < 1 1 (4.8)

and
n K(e' 9 ) _ 1 

(4.9)1 - 1lbTb!2

Define V as the following unitary tranformation of B:

V 0 Wm 3 } 0 V1V

Then 11I'l = Jfll. The matrix V can be written as a block two by two matrix

11
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L

Fit R FE

Fs

Figure 4: Interaction between interfaces

whose block elements have expressions similar to the matrix V for L-shaped regions. namely,
V66~ ~~ l'm r1/2Q"T V -

V66 = 'Vlmi 8 " 2  SEWnR6
*x = l% 17 Ai" 2QTEW R_

1/676 = VSmrEVVfU 
(4.11)

V77 = Em3MV' 2 Q ,R-

where R 6 , R 7 and R- are diagonal matrices such that:

For the case when ml = S in2 , a simple expression can be found for R6 , R 7 and R-, namely
R= = R 7 = R+, with the diagonal elements of R± given by

r± = A,- 1  (4.12)

where A, is Aj(n, rnl, m 2 ), given by (2.12) and bj is bj(n, M 2 ), given by (4.4). Arguments simi ir to
those in theorem 3.3 can be applied to give the following:

Theorem 4.1. Consider a C-shaped region like fig.3, where ml = M 3 _ m 2 and a is the asi ,ct
ratio for the domain f12 or Q3 in the picture, i.e. a = . Then,

a) IVIl, _< v ' 0.7877 and ]IVI¢ < -L- 0.7877

b) 11VT Vl2 < I -V IBII -< I<BIIIBIkc: < 0.62.
0 c) /C((C67 ) < 2.63 and KI(C89 ) < 2.63 for all gridsizes and all C-shaped regions such that

Tn1 = Mn3 < in 2 .

Proof. In appendix B.
I

* 5. Appendix A: The interaction between interior edges

In this appendix, we define the operators that represent the interaction between two interfaces
of a given subdomain. Consider the rectangular region R of figA. with edges LN, FE, Fs and F1 1'.
This region R represents a generic rectangular subdomain in the domain Q. Let n,1 be the number
of gridpoints in FN (or Fs) and n2 , the number of gridpoints in FE (or Lw). The corner points are
not included in the edges. They may or may not be interior to Q.

12
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For the case of constant coefficienits operators, it is possible to describe, in terms of Fourier
rmodes. an operator Q which takes boundary values on one of the edges and computes the solution
on the gridpoints adjacent to the same or other edge.

Let A be the matrix which represents the discretization of the differential operator in Q. If
the interface Fk. where k = N, S, E or W, is interior to Q, then we can define Pk, the submatrix
of .4 that represents the coupling between gridpoints of R and gridpoints on Lk. Also define AR,
the diagonal block corresponding to the interior points of R, in other words, 4 R is the restriction
of the differential operator to the region R. We can now define the operator QkI which represents
the interaction between the edges rk and Fl as:

Qkl - pT AP 1P (5.1)

For constant coefficients operators, when rk and Fr are parallel, the operator Qk! is diagonaliz-
able by Fourier modes. For examplk, for the case of the Poisson equation we can prove the rolowing
lemma. Here, for any given n, IV,, is the matrix of s modes of dimension n, with elements given
by

2 sin + (5.2)
n +1 n±+1

for i,j 1,...,n.

Lemma 5.1. Consider the Poisson equation on a domain Q which contains the rectangular region
R. Let QNS be the operator that represents the coupling between interfaces rN and I's, defined
as in (5.1). Then,

Wnh1QNSWn, = DNS

where the matrix DNS is diagonal, with diagonal entries given y
if ~~n : /- 1-Y7j " (5.3)

where

7 = 1 + - - ()) + (5.4)

and
a7 1 ) = 4 sin 2 7r (5.5)

2(ni + 1)

* A similar expression can be found for QEW.
Also,

W., QNNV'Vn, = DNN

where the matrix DNN is diagonal, with diagonal entries given by

0 djj=-v -- 2+) (5.6)

Similar expressions can be derived for Qss, QEE and QwIV.

Proof. Proofs for formulas (5.3) and (5.6) can be found in [3] and [4). Here we give a different -
more general - proof using direct (or tensor) products. The matrices PN and PS can be written as:

=  (2) 9((5.7)

13
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Ps= (2 )  I (5.8)

where Ij, for 1 1.2, is the identity matrix of dimension n1 and c, is the i-th column of 11.
The matrix AR is the discrete Laplacian operator on the region R and it has the following block
tridiagonal form:

I, T

AR } " (5.9)

where T = tridiag( 1, -4, 1). It is easy to prove that

IV,, TW,,1 = DT

I
_(1)

where DT diag(-2 - oj ). Then we have

11DT 11

WniQvsVn (e2)0 Il) (e(2 0 I1) (5.10)

I, DT

By reordering the equations in (5.10), we have:

(T.1

where T, = tridiag(1, -2 - a ' ) , 1). Therefore, WnQNsWn, is diagonal and its diagonal elements

are given by

e(2)
T T-le(2)I ±j n2

which can be proved to be given by (5.3).

Similarly, we can prove that W, QNNWI, is diagonal and its diagonal elements are given by

e (2)T T-le (2)

which can be proved to be given by (5.6).

Operators like QNE, on the other hand, which represent the interaction between perpendicular
edges, are not diagonalizable by Fourier modes. Moreover, they are, in general not square, but
n, by n2 rectangular matrices. It is possible, however, to describe the elements of the matrices
I,", QNEIV, and VV,, QvwlVn2 for constant coefficients cases.

Lemma 5.2. Consider the Poisson equation on a domain Q which contains the rectangular region

R. The elements of W nIQVE TV,2

14
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are given by

nE IT - - i n+ (3.11)jj
or i = 1..... nj an(d j = 1.n2, where a ') = 4 sin 2  ' for 1 = 1,2. Similarly. the elements

of the matrix

Qvw = IVQNwIVn

are given by
2 sin 21 sin

______________+_ n22+1 (.2
j / n - , 1(i) (2) (5.12)

(n+1)(n 2 +1) r + oj

Proof. The eigenvalue decomposition of the matrix AR is well known and it is given by

S.4R = (VV 2 0W V.,) A (W72n, 0 14E,) (5.13)

where A is the n1 n2 x n1 n 2 diagonal matrix whose diagonal elements are

= (1) _ (2)

* with J = (j - 1)nl + i for i = 1...,na d j =1 ... ,n 2 .Also, we have

Pw = 120e )  
(5.14)

By replacing equations (5.13) to (5.14) in (5.1) and then applying the following two properties of

tensor products:
i) (XyY)T=XT~yT and

ii) (XI 0Y 1)(X 2 O 0Y 2 ) = (X 1X 2 )0 (Y 1Y 2 )

" we have:
Qe h ((e 2)TV 2 ) 0 W) A

- 1 
(W 2 0 (VVele'))) (.13)

and therefore,

QNW = ((e,2)Tw02 ) 01) A-1 (12 0 (IVie,')) (5.16)

Then we can see that the j-th column of (5.16) is given by

2 sin (r (2) 11 + diag(a )) W1 e()

S 2 +1 n2 +1 '

from which (5.11) follows.

Similarly, (5.12) can be derived by using

PE = 12® e(')  (5.17)

0 instead of (5.7).

6. Appendix B: Proof of theorems 3.3 and 4.1

0 Proof of Theorem 3.3

15
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Proof.
Theorem 3.3: Let the aspect ratio for the domain Q~2 in fig.2 be defined as a ~.~~Then.

nt+1

a) Il /a 0.733 and I1K< 10.733.

b) jj T tIjj2 K -I11 = IIl'1 < lIVII111V 100  < 0.54.
c6 For all g ridsizes and all L-shiaped regions,

IC(C 4 ) :5 2.16 and /K(C5 ) < 2.16 .(6.1)

Proof. (b) follows from (a). (c) follows from (b) and from equations (3.24) and (3.25). In order to
prove (a), we will first need to prove some lemmas that give bounds for the column and row sums
of the absolute values of (3.28), the elements vij of the matrix V'. The eigenvalues (2.12) of M4

*and M5  can be bounded by A n l 2 !4sn j 62
2(n + 1)(62

for allj =1-.n and

Ai(M 2 , n, n3) : 4 sin 2( 2 r1 (6.3)

for all i = 1,..., n12. It is easy to show that

where the function f is defined by

fVy) -inai cosxM inizj cosyl 65
f(X' Y) sin 2 x -! + sin 2 yM 65

X, and Y, Similarly, we have

M2+1mn+1

The column and row sums of Jvjj can be then bounded by expressions that involve the integrals of
* f with respect to x or with respect to y. The following lemma gives an expression for the integral

of f with respect to x, for a fixed y. Since f(x, y) = f(y, x), an analogous result holds for the
integral of f with respect to y, for a fixed xr.

Lemma 6. 1. Given YE (0, 1) and a, b E(0, 1) such that a<y < b,

* f 2 7r T7. ri
]f(x, y) dz -rCos Y 2 r - g(sin b, smn y 2) + g(sin a-2sin y- 2 (6.7)

a

where

0 IV~)= -log. -v+I + arctan .f- - (6.8)
2 - 2z7 +~ w -V
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Proof. By replacing Z s In X- and IV - sin y2- in (6.5) and defininig

F(z. w) = ,I (6.9)

we get

b ~sin b2
f 2f

f f(x, y) dx C osY- F(z, w)dz
T 2'

'2 sin a-

2 Cos yi Ilgz+V'-w+W + arctan v2W s

2 ( 2 - 2ZW+ I Sifl 2

2 7r 7t
C osy Y-r - g(sinb- sin y-) , sinsxy7)l

2 \2 2 2 2/

lWe will also need to describe the behiavor of f (x, y), for a fixed y E (0, 1), in the interval
x E (0. 1). We can easily see that, when x, y E (0, 1), f (x, y) > 0. In1 the next lemma we prove that
f (., y) has one and only one relative maximum in (0, 1).

0 Lemma 6.2. Give - (0, 1). there exists a unique x*(y) e (01) such that:

max f (x, y) =f (x*,y)
O<x<1

f (.1 y) is monotonically increasing on the interval (0, x*) and f(. y) is monotonically decreasing on

U(x-, 1). Moreover, f (x*,y) is bounded by

f (X, *Y) ! T3ctY2(.0

Proof. The partial derivative of f with respect to x is given by:

eaf 2 7 2 7
= (x,y)(sin X- z...)(sin X- - Z+)

OX 2 2

where (x, y) >0 for all x, y E (0, 1) and

Z± ( + in2 Y7r 9 ( + sin 2y-r2- sin 2 y
2~-I~i 2 4 22

It can be shown that

0 _ -< ~ - <1 (6.11)
3

and Z+ > 1. Therefore, 21>0frx<x n < 0 for x > x*, wvhere x*' is the unique solution
in (0. 1) to

sin 2X.(6.12)
2

Therefore, f has a unique mnaximium in (0, 1) at x*. Moreover, since for all x E (0, 1),

f f(X,y) < F(si n x -sin y-)
2 2
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%%here F is defined by (6.9). we have

f (x', y) :K m ax F(Z, sin y- 3 oy
_O<z<1 2)=TF~c/t2

Wecan now prove (a) in theorem 3.3:

We will only prove the inequality IIVI!11 ! -,- 0.733. The proof of IlI -0.733 is
completely analogous, by using (6.4) instead of (6.6).

By (6.6), we have

1V1 -max +vj 1 ma.fx~j C. 13)

Let h = "L 1+1= x. Since f .> 0 for x, y E (0, 1) and, by lemma 6.2, f is monotonic in the intervals
(0, x"(yj)) and (x'(yj), 1), it is easy to see, by using graphical arguments, that

h f1xy) f(,y~x+hf(*,Y) ,( 4

_ h

when h < x"(yj). On the other hand, when h > x*(y), all the values of xi, i 77,..,r2 are on
the interval (x., 1), where f is monotonically decreasing. Then, we have

h f (xi, yj) = hf (h, yj)+ h f (xi, yj) f 1~~jd~fhj (6. 15)
i=2 h

Let us first assume that h < x*(y3 ). By (6.11) and (6.12), we can prove that x*(y) y for all
y E (0, 1). Then, by (6.7), we have:

I

Jf(x, yi)dx < 2 r+gsnh7sin yy-) (6.16)

because y(z, w) > 0 for w < z. Define the function G(h,13) =g(sinhz,sin~h:j). Then, the right
hand side of (6.16) can be written as:

- (r+G(h, p3)) ,(6.17)

with .3 1.~ By differentiating G with respect to 13 we can see that < 0 for all h C- (0, 1)
and .3 E [1, ±-x. Therefore, G decreases with 13, i.e.

*G(h,,3) ! G(h, 1) = rn g(z, w) = - log 2 + 6.8
IV Z+2 2 - V/2 2
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for all h E (0. 1) and 3 E [1, +-x). \V can then bound (6.16) by

1~1 124-VJ f(x,yj) dx \/ 7 r+ log-- ' (2.19)

h

On the other hand. by (6.10). we have

3hf~'y) Y¢) <_- h cot .3h- (6.20)

The right hand side of (6.20) can also be proven to decrease with 3 and h and therefore we have

3 3
hf(x*(y), yj) - h cot h- < (6.21)

4,V3- 2 \3-7

By replacing (6.19) and (6.21) in (6.14), we have

S1 ( 2+v 3
hf(xi,yj)i< yr+log2 + 2 "- 1.4666

V-2 7 2 -V v/2 ./3,r (6.22)

and therefore, by (6.13), we have
i \ /a 0.7333 (6.23)

when h < x'(yj).
When h > x'(y3 ), by (6.15) we have

1

h f(xi,yj) J f(x,y,)dx + hf(h, yj) (6.24)

By (6.7),

J f(xr, y)dx<fl. - ~~ (r +g(sinxz7,sinyji-I

7=- (7r+1 )x

and. by (6.18), we have

* f(x, yj)dx < - (T r+log 2 - )V2 (6.25)

.r"(y,)

Since f(h, yJ) < f(.r(yj),yj), by (6.21) we have

3
4 hf(h, yj) 3 2¢-- (6.26)

19
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By replacing (6.25) and (6.26) in (6.24). we have

h Ef (iy., <1.4666

j=1

and therefore. by (6.13), we have

11111 :< VaO.7333 (6.27)
when h > r-(y). By (6.23) and (6.27). we proved that (6.23) holds for all h < 1.

Proof of Theorem 4.1

Proof. Define the function

f 1X + X - X

XNe can easily prove that
f f(x) 0.866 for all X E [0, 1) .(6.28)

By (4.4) and (2.12), we have

A, (n, MnI. iM2 ) -6(n, rni 2) = OI +1 + +(62.29)m+
1 Y n+1 .. iM21 M2+ " o+-f (624

Since y j <~ 1 andl m, : in2 , we have

/ ~ ~ -2+1

A1 ( nm MI M2 ) 1 bj (n, rn2)1 2 - ______a

-7 + +.A21

=2 a+~2(y2' (6.30)

+ 4 2

> 1.73 orj + T
*+ 4

Expressions for the elements of QSE and QNvE of (4.11) are given in appendix A. We can easily
verify that the elements of both matrices have the same absolute values. Also, both .11 and .19have eigenvalues that are bounded from below by 4 sin j7

By (4.10), (4.12) and (6.30), we can see that JII j is bounded by

0 1,- Im 1  r in xi -2 cos xi 1sin yj csylh /W6 '~~m 1+1max Ssin 2 x i2 y (6.31)

where xi = 11(m, + 1) and yj = j/( n + 1), for i m , and j =1.... n. The proof of theorem
.3.3 applies now to the expression in parenthesis.
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