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A numerical method for two-point boundary value problems with constant coefficients is devel-
oped which is based on integral equations and the spectral integration matrix for Chebyshev nodes.
The method is stable, achieves superalgebraic convergence, and requires O(NlogN) operations,
where N is the number of nodes in the discretization. Although stable spectral methods have been
constructed in the past, they have generally been based on reformulating the recurrence relations
obtained through spectral differentiation in an attempt to avoid the ill-conditioning introduced by
that process.
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1 Introduction

Spectral methods are now a popular tool for the solution of many types of partial differential
equations. In the usual formulation, the basic idea is to represent the solution f by means of a
(truncated) series expansion, and to compute spatial derivatives of f by analytic differentiation of
the series. The linear map 2 9 N which takes a vector of N function values If(xi)} to a vector of
N derivative values {f'(xi)} is known as the spectral differentiation matrix. The precise form of
D depends on the location of the points {xi} and the choice of the approximating series. For
periodic functions, Fourier series are used with the function tabulated at equispaced nodes. For
bounded domains, Chebyshev or Legendre series are used with the function tabulated at Chebyshev
or Legendre nodes, respectively.

Although spectral differentiation is remarkably accurate in exact arithmetic, there are a num-
ber of difficulties associated with its use. Ill-conditioning of the matrix with increasing N fre-
quently causes degradation of the observed precision. Furthermore, as recently demonstrated by
Trefethen and Trummer for certain hyperbolic problems [6], the time step restrictions due to this
ill-conditioning can be more severe than those predicted by the standard stability theory.

In this paper, we will consider only the simplest steady-state case, namely linear two-point
boundary value problems with constant coefficients. It is well known that prcblems of this type
are efficiently and accurately solved by spectral methods. On the other hand, it is also well known
that care must be taken in applying spectral methods to such problems. The naive approach leads
to the use of unstable recurrence relations for the determination of the expansions coefficients, a
consequence of the high condition number of VN.

Our main purpose in this paper is to provide a consistent framework for developing well-
conditioned spectral methods. After collecting the necessary results from approximation theory,
we present a fast algorithm for computing the indefinite integral of a given function by means of
the spectral integration matrix. The indefinite integral is then used to recast the governing differen-
tial equation of the boundary value problem as an integral equation, which is solved with spectral
accuracy.

2 Chebyshev Approximation
We will require several results from approximation theory. The Chebyshev polynomial of degree k

on [-1, 1] is defined by the formula

Tk(cosO) = cos(kO) . (1)

Clearly, ITk(x)I 1 for x E [-1, 1],

To(x) = 1, TI(x) = x (2)

and, using elementary trigomometric identities,

Tk+j(x) = 2xTk(x) - Tk-j(x) for k > 1 . (3)

The functions Tk constitute an orthonormal basis with respect to the inner product

(fg) f(x)g(r)(1 - x.2)- 1 2dx (4)
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The Chebyshev nodes ti of degree k are the zeros of Tk, namely

(2i +I)
t= cos 2k , for i=O,1,2,...,k-1. (5)

Let Cn[-1, 1] denote the set of functions defined on [-1, 1] with n continuous derivatives. If
f E C' [-1, 1] and

g(x)= E akTk(X) (6)
k=O

.* is the Chebyshev expansion associated with f, then

ak = 2 f(X)Tk(X)(1 - X2 )-1/ 2dx - - f(cos O) cos kO dO , (7)

7r Ck _1 Irek

where co = 2 and ck = 1 for k > 0. Moreover, the remaindcr in truncating the series at N terms is
of the order

n- as N - oc (8)

In particular, if f is infinitely differentiable, then the remainder goes to zero superalgebraically
(faster than any finite power of 1/N). For a more complete discussion, see Gottlieb and Orszag [3].

Remark 2.1: In practice, the Chebyshev series (6) is truncated at some finite number of termb,
say N. By relation (7), the coefficients ak are the coefficients of the Fourier cosine series of F(O) =
f(cos 0). Thus, if f is tabulated at equispaced points in 0, a condition satisfied by the Chebyshev
nodes {ti}, we can obtain all N coefficients ak by means of the FFT or, more precisely, the Fast
Cosine Transform, using O(N log N) operations. Similarly, the inverse cosine transform can be used
to compute function values g(x) : f(x) at the nodes {tj} from the coefficients ak of the expansion.

2.1 Differentiation and Integration of Chebyshev Expansions

Definition 2.1 Let X be the space consisting of infinite sequences of real numbers

x = (x 0 , X1, x2, ... ) .

For any a E X, we will denote by D(a) the sequence b given by the formula

bk=- p ap (9)
Ck p.k+l

p+k odd

where co = 2 and Ck = 1 for k > 0. We will refer to the mapping V X -* X as spectral
differentiation. W will denote by 1(a) the sequence d given by the formulae

1
dk = (Ck-1 "ak- 1 - ck+1 "ak+l) for k >1 (10)

2k-

0 d, = 2d, - 2d 2 +2d... . (11)

where the coefficients ck are defined as above. We will refer to the mapping I : X --. X as spectral

integration.

2



[-7

I

The above definitions are motivated by the following lemma, which may be found in the Ap-
pendix to [3].

Lemma 2.1 Let f be a smooth function given by a Chebyshev series
00

f(x)= akT(x). (12)
k=O

Then the derivative of f has a series expansion of the form
00

f'(x) = E bkTk(x) (13)
k=O

with bk given by (9). The integral of f has a series expansion of the form

f(t) dt = _dkTk(X) (14)
1 k=O

where dk is given by (10) and (11).

Remark 2.2: The series expansion (14) is the basis for Clenshaw-Curtis quadrature [2]. After
obtaining the coefficients dk, one computes

~100 
2 +f(x)dx=2Zd2+l, (15)

k=O

which follows immediately from the equalities

Tk(-1) = (_1 )k and Tk(1) = 1 . (16)

It is clear from (9) and (10) that D is unbounded in the 100 norm, while 111110 < 2. This
behavior is reflected in the condition numbers of the finite-dimensional analogs of these operators.
If f is represented by a truncated Chebyshev expansion

N
f(x) = E akTk(X) , (17)

k=O

then the coefficients of f' are still given by (9), but the summation is truncated at N terms. Now

let a = (ao, al,..., aN), A = (ao + c, a, + e,...,aN + ), D(a) = b and D(A) = b. Then

I1 - bllo0 - o(V2), (18)
IlA - all. (

the maximum error being incurred for the calculation of b0 . In other words, the process of differ-

entiation via Chebyshev series has a condition number proportional to N 2 . On the other hand, it

is easy to show that for any A,
Ila - d1100  32 <- (1.9)
ilA - ai 00  2

where d = T(a) and d -1(A). In other words, the process of differentiation via Chebyshev series

has a condition number bounded by 2.
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2.2 The Spectral Integration Matrix

The spectral differentiation matrix for Chebyshev nodes can be expressed in terms of 'D by the
formula

DlN = CN D " " CN 
(20)

where CN is the discrete cosine transform of dimension N.

Definition 2.2 The spectral inteyration matrix for Chebyshev nodes IgV is defined by the formula

IN = CN'" ICN • (21)

It is clear that the matrix Ig can be applied to a vector in O(N log N) operations by using a
Fast Cosine Transform algorithm.

Before turning to the solution of two-point boundary value problems, we briefly investigate
the behavior of Dgr and TAr with a set of three examples (Fig. 1). Note that in these examples,
we test DV by differentiating a function f(x) and we test Ig by integrating the corresponding
derivative f(x). The integration of f(x) itself is even more stable and of less interest. When
f(x) = sin(x), we observe the expected convergence as soon as the number of sampling points is
sufficient, approximately 7r per wavelength. However, as the number of points increases, differen-
tiation becomes less and less accurate while integration is essentially unaffected. Although there
is no need to use 1000 points to resolve sin(x) alone, the error introduced by its differentiation re-
mains when the problem becomes more complex and more points are required. For example, when
f(x) = sin(x) + .01 sin(10x), about 50 points are required to achieve spectral accuracy, at which
point an error of the order 10- has already been incurred. When f(x) = sin(x) + .005 sin(60x),
the situation is worse. In single precision, even with the optimal choice of N, the mean square error
is greater than 1%.

3 Two-point Boundary Value Problems

The two-point boundary value problems considered here are second order equations of the form

Lu=u"+ pu'+ vu=f(x), x E [-1,1] (22)

with p, v E R and Dirichlet conditions

u(-1) = a, u(1) =I. (23)

The fact that high order polynomial approximations achieve superalgebraic convergence for such
differential equations has been known for a long time. Ciarlet, Schultz and Varga [1] have shown that
superalgebraic convergence can be achieved even when the governing ordinary differential equation
is nonlinear, so long as the solution is sufficiently smooth. In the standard spectral formulation [3],
using a "Chebyshev-tau" method, we seek a solution

N

UN(X) = E akTk,(x) , (24)
k-O
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Figure 1

The numerical behavior of spectral differentiation and integration is demonstrated with three examples.

The left hand of each pair of figures is a plot of f (x) a a dashed curve and f'(x) as a dotted curve. The

right hand of each pair is a plot of the mean square error in the spectral differentiation of f() (dotted

line) and the spectral integration of f'(X) (dashed line) vs. the number of points in the discretization. For

the top figure f(x) = sin(), for the middle figure, f(X) = sin(x) + .01 sin(l0) and for the bottom

figure f (x) = sin() + .005 sin(6Oz).
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subject to the boundary conditions

N N

(1)k ak= a and ak= 3, (25)
k--O k=O

where we have used the equalities in (15). From the differential equation (21) and the spectral

differentiation matrix, we obtain the relations
N N

I p(p2_k2)ap+ E pap+ vak= f for k = 0,...,N-2 (26)
Ck P-+ Ck Pk+1

p+k e.en p+ k odd

where the {fk} are the Chebyshev expansion coefficients for the right-hand side f(x). This set of
equations is inherently ill-conditioned. A reformulation of the recurrence relations is, therefore.
used to compute the solution in a stable manner (see [3], p. 118.).

Consider now the one-dimensional Poisson equation

U" = f(X), u(-1) = a, u(1)= . (27)

Rather than setting up the recurrence relations as in (25), it would be very attractive to be able
to write

* u(x) -f(r) dr dt + Cix + Co• (28)

The spectral integration matrix of Definition 2 1 provides us with precisely the ability to compute
this formal solution. The constants C1 and Co are chosen to satisfy the boundary condition.

When the differential equation contains terms in u' or u, we still have a simple analytic expres-

sion for the solution. We may assume, without loss of generality, that we are given homogeneous

boundary conditions and that the corresponding Green's function has the form

t ul(x) vi(t) for x < t (29)
u2 (x) v2 (t) for x > t

* where ul and u2 are solutions of the homogeneous equation L u = 0. Since the equation has

constant coefficients, ul and u2 are known explicitely. The desired solution can then be written as

u(X) = G(z, t)f(t) dt (30)

= ul(x) -- v (t)f(t) dt + (31)

U2(X)" (ifI v2(t)f(t) dt - J v2(t)f(t)dt) . (32)

The indefinite integrals in the preceding expression can be tabulated by means of the spectral

* integration matrix, while the definite integral can be computed by formula (14). Once this initial

work, requiring two Fast Cosine Transforms, is done, the solution is obtained using approximately

3N additional operations, where N is the number of Chebyshev nodes used. A similar observation

is made by Rokhlin in [4], where the integrals are computed by a finite-order quadrature formula.
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His approach has the advantage that it does not denend on the location of the discretization nodes.
One drawback of this particular use of Green's functions is that the terms ul, v1 , u2 and v2 may
behave much more violently than either the right-hand side or the solution, requiring many more
points in the discretization than necessary. Another drawback is that the method does not extend
to non-constant coefficient problems, since we cannot determine the Green's function analytically.

We consider a closely related approach which does not require knowledge of the Green's function.
An integral equation is constructed by solving for a(x) = u"(x) rather than u itself. The original
system (21) becomes

a(x)4-t a(t)dt+ pCl + J o(r)dr dt + v Cx + v Co= f(x) (33)

Representing c(x) and f(x) by truncated Chebyshev series

N N

a (x) =Z aT(x )f (X)= T"() (34)
k=O k=O

and using the spectral integration matrix, we obtain the system of equations

ao+ 1 iCi+vCo = fo (35)

a,+(coao-C2 a 2 ) +v(8Cl+a,-a3) = fl (36)
28

a + -(ck-I ak-1 - Ck+j ak+1)+ -(Ck-1 dk-1 - Ck+ dk+1) =fk (37)
2k 2

for k=2,...,N, (38)

where co = 2, ci = .... CN = 1, ck = 0 for k > N, and the coefficients dk are givn by equation
(10). This is a system of N+ 1 eqtuations with N+3 unknowns (the coefficients ak and the constants
of integration Co and CI). Two additional equations are obtained from the boundary conditions

N

1

Co C + E 2- . (ck-I dk- - ck+ I dk+)(1) =(40,

Co±+C, +Z (ck_, ldk-, - k+, d+,) =/3. (40)

k=2

The discrete problem is pentadiagonal except for the two rows derived from the boundary condi-
tions, and can be solved using approximately ION floating point operations.

4 Numerical Examples

A two-point boundary value problem solver, using the method of the previous section, has been
implemented and tested on a variety of examples. It requires two cosine transforms and the solution
of one linear system, with a total computational cost estimated at 10 N (logN + 1) floating point
operations. All calculations cited below were carried out in double precision on a SUN 3/50
workstation with f68881 floating point accelerator.
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Table 1
Table of CPU times (in seconds) and mean square errors in computing the solutions to three boundary

value problems. The subscripts 1-3 refer to the three equations discussed in the text and displayed

graphically in Fig. 2 from top to bottom.

N T1  E_ T2 E2 T_3

16 0.08 7.2 10- 5  0.06 2.2 0.06 0.9

64 0.30 8.7 10 - 16 0.32 4.0 10- 9  0.32 7.9 10- 4

256 1.46 1.1 10-'5 1.48 9.1 10- 14  1.40 8.1 10- 14

1024 6.42 1.5 10-15 6.32 9.1 10- 14  6.10 1.0 10- 13

The behavior of the algorithm is demonstrated with three examples (Fig. 2 and Table I ). In

the first case, we used a model problem from Stoer and Bulirsch [5]

- y" + 400y = -400 cos 2 7rx - 27r 2 cos 27rx (41)

y(0) = yl = 0, (42)

with exact solution
e-20 20 + 12
+- e °  1+ e -  cos 7rx (43)

Standard finite difference and finite element methods tend to converge quite slowly, due to the
large derivatives of the exact solution near the boundaries. While multiple shooting, which is rec-

ommended in [5], is a viable approach, the method is computationally expensive. Our calculations

show that the corresponding integral equation is solved to spectral accuracy with very little effort.

The second example involves a boundary layer near each endpoint. The governing equation is

y" -Y= 0 , (44)

y(-1) = 1 y(l) = 2, (45)

where c = 10'. As is well-known, the Chebyshev nodes are particularly good at resolving boundary

layers since they tend to cluster at the two endpoints (see [3]).

The third example is one where the solution is very oscillatory:

y" + 5 y' + 10000 y = -500 cos(100x)esz , (46)

y(0) = 0 y(l) = sin(100)e - , (47)

for which the exact solution is

y(x) = sin(lOOx)e - , . (48)

In each case. it is clear that the spectral integral formulation is both rapidly convergent and

stable.
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5 Conclusions

The spectral integration matrix is a well-conditioned operator which yields an antiderivative of
a function tabulated at Chebyshev nodes. In this paper, we have presented a fast algorithm for
the solution of constant coefficient two-point boundary value problems through the use of integral
equations and spectral integration. The difficulty with variable coefficient problems lies not in the
formulation of the integral equation, but in the fact that the resulting system of equations for
the coefficients of the Chebyshev series of n" is dense. Gaussian elimination would require 0(N 3 )
operations, where N is the number of Chebyshev nodes used in the discretization. On the other

U hand, the spectral integration matrix can be used to apply the integral operator in O(NlogN)
operations, making iterative methods much more attractive. Rokhlin [4] has demonstrated that
conjugate residual type methods can work quite well for such integral equations. The number of
iterations required is a function of the underlying problem, and does not increase with the number
of nodes. Unfortunately, for many situations of interest, complex behavior of the solution causes
the condition number of the underlying problem and the number of iterations to be large, so that
direct methods would be preferable.

I would like to thank V. Rokhlin and F. Saied for many useful discussions.
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