DTIC FILE COPY Naval Research Laboratory

Washington, DC 20375-5000

777

20-2199

NRL Memorandum Report 6337

The NRL Data Base of Oblique-Incidence Soundings of the Ionosphere

JOHN M. GOODMAN AND MARK DAEHLER

Ionospheric Effects Branch E.O. Hulburt Center for Space Research Space Sciences Division

September 20, 1988

Approved for public release; distribution unlimited.

		REPORT	DOCUMENTATIO	N PAGE				Approved Vo. 0704-0188
IA. KEPUKI SELU	RITY CLASSIFICAT	TION		15. RESTRICTIVE	MARKINGS			
UNCLASSIFIE								
2a. SECURITY CLA	ASSIFICATION AUT	THORITY		3 DISTRIBUTION	N/AVAILABILITY	OF REPORT		
2b. DECLASSIFICA	TION / DOWNGRA	ADING SCHED	ULE	Approved unlimited	for public .	release	e; dis	tributio
4. PERFORMING	ORGANIZATION R	EPORT NUME	BER(S)	5. MONITORING	ORGANIZATION	REPORT NU	MBER(S)	
NRL Memoran	dum Report	6337						
6a. NAME OF PE	RFORMING ORGA	NIZATION	6b. OFFICE SYMBOL (If applicable)	7a. NAME OF M	IONITORING ORG	ANIZATION		
Naval Resea	rch Laborat	torv	(ir applicable) Code 4180					
	y, State, and ZIP			76. ADDRESS (C	ity, State, and ZI	P Code)		
	D.C. 00075							
asnington,	DC 20375-5	5000						
	NDING / SPONSOR	ING	86. OFFICE SYMBOL	9. PROCUREMEN		DENTIFICAT		BER
ORGANIZATIO	N		(If applicable)					
PAWAR	, State, and ZIP C	ode)		10 SOURCE OF	FUNDING NUMB	ERS		
	, , , , , , , , , , , , , , , , , , , ,			PROGRAM	PROJECT	TASK		WORK UNIT
lashington,	DC 20363-5	5100		ELEMENT NO.	NO.	NO.		ACCESSION N
	Security Classific			62936N		R0834		DN156-1
3a. TYPE OF RE	M. and Daeh PORT	136. TIME		14 DATE OF REPO 1988 Septer		h, Day) 15	PAGE C	OUNT
nterim 16. SUPPLEMENT			2/86TO <u>3/88</u>	1900 Septer	uber 20		47	
O. JOFFCEMENT								
							b., bl/	
FIELD	COSATI CODES	SUB-GROUP	18. SUBJECT TERMS (-			
			Oblique+inci Data base	aence sound:	•	Frequenc	y man	agement
1			Ionosphere		I	HF Lonogram		

DD Form 1473, JUN 86	Previous editions are	o bso lete	SECURITY CL	ASSIFICATION OF THIS PAGE
John M. Goodman		(202) 767	-3729	Code 4180
22a NAME OF RESPONSIBLE INDIVIDUAL		226 TELEPHONE	(Include Area Code)	22c OFFICE SYMBOL
UNCLASSIFIED/UNLIMITED SAME A	S RPT DTIC USERS	UNCLASSI	FIED	
20. DISTRIBUTION / AVAILABILITY OF ABSTRAC	т	21 ABSTRACT S	SECURITY CLASSIFICAT	ION

S/N 0102-LF-014-6603

CONTENTS

INTRODUCTION	1
EQUIPMENT AND DATA PROCESSING	1
EXPERIMENTS AND EXERCISES	2
DATA BASE DESCRIPTION	6
COMMENTS ON THE DISTRIBUTION OF THE DATA SETS	8
FUTURE ACTIVITIES	9
RECOMMENDATIONS FOR FURTHER WORK	10
ACKNOWLEDGEMENTS	11
REFERENCES	12

4

aric

THE NRL DATA BASE OF OBLIQUE-INCIDENCE SOUNDINGS OF THE IONOSPHERE

1.0 Introduction

The Ionospheric Effects Branch (4180) of the Naval Research Laboratory has been collecting ionospheric data through use of the AN/TRQ-35 Chirpsounder * system since 1980. A description of the data base for the 1980-1982 period was published as NRL Memorandum Report 5452 [Goodman, 1984a]. An examination of the usefulness of oblique ionospheric sounding as an aid to frequency management has been reported [Goodman et al, 1983; Goodman and Martin, 1984; Goodman, 1984b]. The purpose of the present document is to update the original version with a description of data obtained since report 5452 was released.

A complete listing of experiments is contained in Table 1, along with the relevant dates, the equipment stations and their locations, and the type of data available.

2.0 Equipment and Data Processing

The raw ionosonde data documented herein by NRL was recovered through use of the AN/TRQ-35 system. The complete AN/TRQ-35 system typically consists of three (or four) transmitters of moderate power, a three (or four) channel receiver, and a spectrum monitor. The transmission waveform is of the chirp variety which, in comparison with sounders of the pulse variety, allows for a greater capability for interference rejection and lower power operation. No detailed description of the AN/TRQ-35 system is provided herein since such material may be found elsewhere. An early description of the Chirpsounder ⁵ technique has been given by Barry and Fenwick [1965]. A comparison of various Real-Time-Channel-Evaluation (RTCE) techniques including the chirpsounder ⁹ approach may be found in a paper by Darnell [1978]. Figure 1 shows the complement of equipment associated with a version of the AN/TRQ-35 known as the Tactical Frequency Management System (TFMS) currently being used by the DoD.

Manuscript approved April 4, 1988.

Chirpsounder^{}is a registered trademark of BR Communications.

Raw data obtained during the 1980-82 period were largely comprised of polaroid photographs which were scaled for the relevant Maximum Observable Frequencies (MOF's), the Lowest Observable Frequencies (LOF's), and the socalled FOT^{*} bands. Figure 2 is an annotated sounding from the AN/TRQ-35. By scaling a sequence of these ionograms it is possible to develop diurnal patterns such as those in Figure 3. These plots correspond to data obtained over three mid-latitude paths, the geometry of which is given in Figure 4.

The manual scaling of the photographic output derived from the AN/TRQ-35 was a laborious procedure. Even so, much useful data has been obtained from an analysis of the scaled results. In more recent years of data collection, the process has been revamped.

Data from the RCS-4B sounder receiver in the AN/TRQ-35 complement can presently be recorded by a data collection system which was developed at NRL (see Figure 5). Although the data are developed inside the receiver in digital form, they are available externally only in analog form. The data collection system is based on a Hewlett-Packard 9000 series 300 computer equipped with an A/D converter and both fixed-disc and cartridge tape memory storage units. The computer collects ionogram data in real time, displays the ionogram on the computer CRT in the same form as seen on the sounder CRT, and records the data on the fixed disc. In its present form, the fixed disc file holds data for 291 ionograms, slightly over the amount of data produced by the sounder receiver in 24 hours of operation. Once per day the fixed-disc data are transferred to a magnetic tape cartridge for permanent archiving. A single tape cartridge utilized by NRL can store data associated with 1164 ionograms, slightly more than that produced by a single sounder receiver in four days.

Figure 6 is an example of one of the digital ionogram records. Ionogram data are compacted to minimize storage requirements. The system records the amplitudes of the HF signals received at the sounder, so the ionogram can be later reconstructed with various discrimination levels. With such post-processing it is sometimes possible to detect propagating modes not otherwise apparent. Figure 7 is an example of the same data being processed at differing discriminating levels.

3.0 Experiments and Exercises

This section provides a listing of the experiments included in the data base together with the geometries involved. Since report 5452 was published, four additional experiments/exercises have been conducted. Futhermore, as part of our on-going research, a considerable number of oblique ionograms have been

* The FOT band is taken by NRL workers to be the frequency region for which high signal strength is observed in the absence of multipath interference. It is an adaptation from the French term "FOT" which corresponds to the Optimum Working Frequency or "OWF".

obtained using a receiver located at NRL. Approximately 50,000 ionograms were listed in report 5452; over 165,000 are listed in this report. It is of interest to get some comprehension of the temporal coverage of the data sets in equivalent path-days. Typically, four ionograms/hour are obtained for a single station pair. Here a station pair is defined as a sounder circuit or path between a transmitter and a receiver. Therefore 1⁻⁵,000 ionograms corresponds to a coverage of 41,250 path hours or approximately 4.7 path years of data. It is noteworthy that the data have been concentrated in two epochs: 1980-82 and 1986-present. Figure 8 shows the sunspot number dependence over this period of time along with the periods of the various experiments. It will be noted that about 90% of the 1980-82 data corresponded to high solar activity conditions. In the period 1986-present, the activity was generally low to moderate.

3.1 Teamwork '80

Teamwork '80 was a NATO Marine Corps landing exercise conducted in the North Atlantic. During this exercise a representative of NRL was stationed on the USS Mt. Whitney, which was anchored off the coast of Norway. An AN/TRQ is receiver was located on the Mt. Whitney and transmitters were positioned at Soc Buchan (Scotland), Kolsaas (Norway), and Orland (Norway). Figure 9 depicts the geometry. Ionograms were obtained using the AN/TRQ-35 during a period of time on 18-19 September 1980. Preliminary results have been described in reports by Uffelman [1981] and Goodman and Uffelman [1982].

3.2 SURTASS-I

NRL has cooperated in two exercises in support of the U.S. Navy SURTASS System. The first was conducted in February of 1981. The experimental configuration of this initial exercise is depicted in Figure 10. During this exercise, AN/TRQ-35 transmitters were located on three (3) fixed land sites at Driver (VA), Ft. Bragg (NC), and Robins (GA). An AN/TRQ-35 receiver was placed aboard a slowly-moving ship, the R/V Moana Wave, in the Atlantic Ocean off the southeastern coast of the United States. The preliminary results of this program have been discussed by Uffelman and Harnish [1981].

3.3 Polar Sea

This particular experiment arose as an opportunity to gather high latitude ionospheric data. Originally it was planned to locate an AN/TRQ-35 system aboard a temporarily "icelocked" Coast Guard vessel positioned off the north Alaskan coast. The logistics proved too perilous, however, and as a result the transmitter component of the system was deployed to Fairbanks (Alaska) instead. Receivers were located at Anchorage (Alaska), Sacramento (CA) and the Naval Research Laboratory. The relevant geometry is provided in Figure 11.

3.4 Solid Shield

The Solid Shield exercise took place between 3 and 20 May 1981. During this period Chirpsounder transmitters and receivers were located at stations along the east coast of the U.S., and several ships operating in the Atlantic Ocean were equipped with receivers and spectrum monitors. As far as NRL was concerned, the relevant transmitters were located at Hurlbert Field (FL), and Driver (VA). Data sets were also obtained at Norfolk using AN/TRQ-35 transmissions from distant Nea Makri (Greece). Figure 12 gives the geometry. Initial results from the Solid Shield exercise have been reported by Uffelman and Harnish [1982].

3.5 Indian Ocean

The Indian Ocean exercise took place during July-August of 1981. AN/TRQ-35 receivers were located aboard two ships, the USS Kitty Hawk and the USS America, which were maneuvering in the Indian Ocean region. Transmitters utilized were located at San Miguel (Phillipines), H.E. Holt Station (Australia), Diego Garcia, and Nea Makri (Greece). Figure 13 gives the geometry.

3.6 Surtass-II

This was the second in the series of experiments designed to support the SURTASS program office. During this experiment, which was conducted in November of 1981, AN/TRQ-35 transmitters were located on the R/V Moana Wave and at Robins (GA) and Isabela (PR). The receiver at Norfolk (VA) was exploited to extract ionogram information over the three possible paths. Preliminary analyses of this data may be found in several publications, including Uffelman and Hoover [1984], and Uffelman et al [1984]. For the relevant geometry refer to Figure 14.

3.7 Classic Green TOAD

This experiment was sponsored by the U.S. Navy as a test of HF Time-Difference-of-Arrival (TDOA) and kindred techniques for HF emitter location. The experimental phase of the program was conducted during March of 1982, and it involved a number of DoD organizations and supporting contractors. NRL was involved in a number of data gathering efforts in support of this effort and the data sets included Thomson scatter profiles, using the Arecibo facility, and total electron content, using several sites in the Caribbean basin. NRL also obtained oblique-incidence ionograms, using the AN/TRQ-35. Receivers were located at Homestead (FL), Isabela (PR), and Bermuda, while a transmitter was located aboard the USNS Bartlett. Figure 15 depicts the geometry for the experiment.

3.8 Army SFBCS

This program was designed to test system concepts in conjunction with the U.S. Army Special Forces Burst Communication System. The test was conducted between June 28 and August 9, 1982. NRL was responsible for the deployment of AN/TRQ-35 assets and was fully involved in the data collection efforts. An AN/TRQ-35 receiver was located at Ft. Bragg (NC) and transmitters were located at Ft. Knox (TN), Leavenworth (KS), Ft. Lewis (WA), Isabela (PR), Driver (VA), and Patrick AFB (FL). Figure 16 gives the geometry. Results have been reported by Harnish et al [1983].

3.9 NRL SSL-BCT

During the latter part of 1982, NRL (4180) supported the U.S. Army as the architect and director of a test designed to assess the merits of two competing HF Single-Site-Location (SSL) technologies. As such, NRL was responsible for orchestration of a Baseline Certification Test (BCT) from a base-station located at Fort Ord, CA. This test, termed the SSL-BCT, was the most comprehensive one of its type and a considerable amount of ionospheric diagnostic information was obtained. It included: oblique-incidence ionograms over five paths, vertical-incidence-ionograms at three specified midpath stations, topside ionogram data, total-electron-content data from three sites, and a number of supporting data sets. A brief open source description has been prepared [Goodman and Uffelman, 1983]. A discussion of the data obtained during the SSL-BCT has been reported by Daehler [1983]. Figure 17 gives the geometry involved.

3.10 NRL Data Sets

A RCS-4B sourder receiver obtained on loan from the US Army Signal Warfare Center (SWC) has been operated sporadically for several years. Paths monitored have been those to Isabela (Puerto Rico), Driver (Norfolk, VA), Corine (Utah), Chelveston (UK), and Gibraltar (UK). Operation of this sounder has been useful for developing data-management techniques and for development of a system to measure absolute propagation-delay time. Figure 18 gives the geometry of the paths sounded using NRL as a receiver site.

3.11 Worms (FRG) Data Sets

A data collection system was established by NRL personnel at the Army Fifth Signal Command Headquarters in September 1986 to start a long-term data collection project aimed at improving MOF forecasting for HF paths in Europe. Data collection, with some interruptions, is still continuing at the time of this report. The system has been operated since installation by Fifth Signal Command personnel. Paths monitored have included those to Worms from Nea Makri (Greece), Rota (Spain), Bann-B (Ramstein AB, Germany), Chelveston (UK), and Gibraltar (UK). The work is supported by the US Army Communications Electronics Command (CECOM), Ft. Monmouth. A comparison of

some of some of the MOF data with several propagation models was included in an interim report to CECOM [Daehler 1987). Figure 19 gives the geometry of the paths which have been sounded.

3.12 ORSI

The National Security Agency (NSA) requested the Ionospheric Effects Branch to conduct a test of several techniques for analyzing Single-Site-Location HF Direction-Finding data. This test exploited an existing basestation (SSL/HFDF) at Skaggs Island, CA. As a part of this test, two RCS-4B sounder receivers located at Skaggs Island were used to monitor propagation to that station from sounder transmitters located at Robins AFB (Macon, GA). Tinker AFB (Oklahoma City, OK), Howard AFB (Panama), and Ft. Huachuca (AZ). A documented description of propagation, including identification and relative amplitudes of propagating modes at the times and frequencies relevent to the ORSI test, has been produced and is maintained on file at NRL [Goodman and Daehler, 1987]. Figure 20 gives the geometry of the paths which were sounded.

3.13 Norwegian-Based Data Sets (Operation Cold Winter)

NRL participated in a short-duration test of a modified version of IONCAP, called IONCAST, from a base station located near Evenes, Norway. The test took place between 16-27 March 1987 and involved the collection of ionograms over several paths. Locations are indicated in Table 1. The Data sets are addressed in an NRL Memorandum report [Goodman and Rhoads, 1988]. Figure 21 gives the geometry of the paths sounded.

3.14 Regency Net

The Ionospheric Effects Branch established data collection systems at Tinker AFB (Oklahoma City, OK), Ft. Huachuca (AZ), and NRL (Washington, DC) in August 1987 to provide a record of ionospheric propagation during the Pilot Network System Test 1 (PNST1) of Magnavox's equipment for Regency Net, a new strategic HF companications system under development by CECOM, Ft. Monmouth. Paths monitored were Tinker AFB and Grissom AFB (Ft. Wayne, IN) to Ft. Huachuca; Grissom AFB to Tinker AFB; and Grissom AFB and Tinker AFB to NRL. Selected data are being analyzed by the Electromagnetic Compatibility Analysis Center (ECAC) as required to assist in the evaluation of the communications equipment. Figure 22 gives the geometry of the paths sounded.

4.0 Data Base Description

4.1 General Layout

Table 1 provides certain basic information about the NRL Oblique-Incidence ionogram data base for specified experiments using the AN/TRQ-35 during 1980-82 epoch. Approximately 50,000 ionograms were obtained in photographic form and approximately 422 of these have been scaled for "routine" parameters such as the MOF, LOF, and the FOT band. These parameters have been recorded on magnetic tape cartridges for convenience in preliminary analysis and for plotting purposes. In addition, since the beginning of 1982, all raw analog ionogram traces have been recorded on magnetic tape as well. This has assisted the development of automated analysis approaches. Since 1986, roughly 117,000 ionograms have been obtained in digital form.

Table 2 gives a breakdown of ionograms partitioned in accordance with the following rules:

A. GEOGRAPHICAL AREA:

Longitudinal differences are ignored (even though they are certain to exist) and we only consider latitudinal dependencies, which generally thought to be more pronounced. The following selections were made on the basis of the locations of the midpoints of the paths in question.

HIGH	:	llatitudel	≥	60 ⁰
MIDDLE	:	20 <u><</u> latitude	<	60 ⁰
LOW	:	latitudel	<	20 ⁰

The vertical bars refer to absolute values.

B. SEASON:

WINTER	:	December 22 - March 21
EQUINOX	:	March 22 - June 21 and September 22 - December 21
SUMMER	:	June 22 - September 21

Definitions for the summer and winter for the Southern Hemisphere are reversed.

C. TIME OF DAY:

DAY : 0800 - 1600 TRANSITION : 1600 - 2000 and 0400 - 0800 NIGHT : 2000-0400

Local time at the path midpoint ("control point") is used. Note that there are eight hours for each epoch.

D. SUNSPOT ACTIVITY:

HIGH: $R_I \ge 100$ MEDIUM:50 $\le R_I$ <</th>LOW:0 $\le R_I$ <</th>

Here R_{I} is the (daily) International Relative Sunspot Number. R_{I} is used in the majority of cases but some portion of the 1980-82 period involved the specification of the Zurich sunspot number R_{π} (now defunct).

E. MAGNETIC ACTIVITY:

DISTURBED	:		an	2	80
MODERATE	:	15 ≤	an	<	80
QUIET	:	0 <u><</u>	ap	<	15

Here a_p is the planetary magnetic activity index. The relationship between the index a_p and the more familiar quasilogarithmic index K_p may be found in a number of references (viz., Mayaud [1980])

F. PATH DISTANCE (KILOMETERS)

VERY LONG	:	d	≥	40	00	
LONG	:	3000	≤	d	<	4000
MEDIUM	:	2000	≤	d	<	3000
SHORT	:	1000	≤	đ	<	2000
VERY SHORT	:	500	≤	d	<	1000
ULTRA SHORT	:	0	<u> </u>	d	<	500

Both R_I and a_p are obtained from the Solar-Geophysical Data (prompt) Reports issued by NOAA (see for example Coffey and McKinnon [1987]). Table 3 is a set of composite distributions for the 1980-1982 period, the 1986 - present period, and the full period. "Pie-chart" representations of the data in Table 3 are provided in Figures 23-25.

5.0 Comments on the Distribution of the Data Sets

The vast majority of the data has been obtained over mid-latitude paths (i.e., 912) while 72 has been obtained over low latitude paths and about 22 of the ionograms are representative of high latitudes. There would appear to be a clear need to obtain data sets in other than the mid-latitude region. In view of the considerable interest in high latitude performance prediction, priority consideration for data collection in the future is directed toward the auroral zone and polar cap regions.

The seasonal distribution would appear to be reasonable, although it would appear that some steps should be taken to obtain more wintertime data, which now corresponds to about 187 of a three-part total.

As expected, the diurnal distribution is uniform; this is a result of the fact the data are generally collected continuously - around the clock - for any given exercise/operation.

As indicated earlier, the 1980-1982 epoch was dominated by <u>high</u> solar conditions (i.e., 882) of the time while the 1986-present epoch was largely representative of <u>low</u> solar activity (i.e., 902). The composite distribution was: 262 for high, 92 for moderate, and 652 for the low activity cases. The fact that the ratio of the number of ionograms obtained during 1980-82 to those obtained during 1986-present was 0.42 (rather than one-to-one) caused the composite percentage of low solar activity ionograms to be significantly larger. The ionograms were obtained over either largely quiet (i.e., 71%) or only moderately disturbed conditions (i.e., 28%). The 1% remaining were obtained during conditions which are defined as disturbed. Of course the reader is reminded that 1% of the data base corresponds to roughly 1700 ionograms --still a healthy number.

The distribution of path lengths is not unreasonable, with only 197 in excess of a canonical maximum limit for 1-hop F2 mode propagation (i.e., 4000 km). This category is termed "very long". The "short" to "long" category (i.e., $1000 \le d < 4000$ km) comprises 517 of the data. About 227 of the ionograms are in the Near-Vertical-Incidence-Skywave (or NVIS) domain or just beyond. These latter paths should be useful in the analysis of short-haul tactical links.

6.0 Future Activities

6.1 Data Collection

NRL is continuing to accumulate ionograms using the system described in Section 2. Data is to be collected at NRL throughout 1988 except during periods for which the AN/TRQ-35 system is required for field operations. Also, data from Worms (FRG) will be obtained on an irregular basis in support of the 5th Signal Command in Europe. Future operations anticipated during 1988 include ORSI II in May-June, involving data collection over moderate to long paths but emphasizing the 1500 km path between Colorado Springs, CO and Skaggs Island, CA. A second operation will likely involve further support of the U.S. Army Regency Net Program during the late summer of '88. Finally, we anticipate obtaining additional data in the fall of 1988 over a number of mid-latitude paths terminating at Ft. Huachuca, AZ in support of an Army HFSSL Program.

6.2 Equipment Modification

The AN/TRQ-35 sounder system provides ionograms in which the relative times of arrival of incoming signals are displayed as a function of frequency. While this information is important for frequency management purposes, the usefulness of the data could be greatly increased if the time scale were calibrated to give the absolute propagation delay time. With absolute timing, it is possible to derive the profile of electron density as a function of altitude. In contrast to MOF and time-delay spread measurements, which are indeed useful as measures of propagation effectiveness, the electron density profile is a description of the ionosphere itself, and therefore important for studying the morphology and time variations of the propagating medium. This information can be expected to be important for improving propagation models and for further developing updating methods, in which near-real-time sounder measurements are used as a correction to propagation model forecasts of MOFs or multimode conditions.

NOTE: In the absence of an absolute (organic) measurement of time delay, two other methods may be employed to solve the problem. The first method may involve the exploitation of a vertical incidence sounder located near the oblique path midpoint or control point. The second method requires the presence of a readily-identifiable mode such as ground waves (only useful for short paths) or sporadic E, both of which are used as a height reference. The ground wave is naturally associated with a reference altitude of zero kilometers while the sporadic E returns are taken as arising from scatterers at 100 km altitude (and at a range determined by the path length and ionospheric height). Since the AN/TRQ-35 preserves the relative positions of the ionospheric echoes, such an approach will yield an absolute ionogram subject to the accuracy of the assumption of the sporadic E height. However, it must be stated that the most profitable and exacting approach involves the systematic removal of the problem rather than treating the symptoms.

Equipment is currently being set up to permit absolute calibration of ionograms from the RCS-4B receiver. The procedure is to measure the start times of each transmitter frequency sweep and of each receiver scan, to a precision of one microsecond or better. In the current procedure, the transmitter start times will be measured relative to a cesium frequency standard, and then calibrated relative to Universal Coordinated Time (UCT) by occasionally comparing the cesium standard pulses with timing signals from a Global Positioning System (GPS) receiver. The start time of the receiver scan will be measured routinely with the GPS receiver.

7.0 Recommendations for Further Work

7.1 Improved Absolute Propagation-delay Measurements:

While the method currently underway for measuring absolute propagation-delay time is expected to demonstrate the feasibility and usefulness of the measurements, it is not suitable for extended or routine measurements because it will involve frequency transfers of the GPS receiver from the sounder receiver location to the sounder transmitter location. The obvious solution is the addition of a second GPS receiver, which would then make routine and long-term measurements possible.

7.2. Automatic Ionogram Scaling:

Whereas sounder measurements are valuable for frequency selection on a sounded path, their use is labor-intensive and requires highly-trained personnel. Therefore the widespread application of sounders to frequency management over a large geographical area is limited. Part of this problem could be solved by automatic interpretation of oblique-incidence ionograms, similar to procedures which have been developed for interpreting verticalincidence-sounder data. The task should be relatively simple for well-formed ionograms, and extremely difficult for ionograms which are abnormal or correspond to extremely poor propagation. It seems probable, however that a system which could automatically handle something like 90% of all ionograms could be developed. The time required to analyze the remaining cases could probably also be shortened by a semi-automatic interpretation scheme, in which the automatic system would take over after a human observer's initial interpretation.

Acknowledgements

We would like to thank A.J. Martin for preparing the graphics for the most recent exercises (1986-present), Mrs. Peggy Hoover for compiling the data sets and preparing the tables and pie-charts, and Mrs. Rhea Smithson for typing the manuscript.

References

Barry, G.H. and R.G. Fenwick, 1965, "Extra-Terrestrial and Ionospheric Sounding with Synthesized Frequency Sweeps", in Hewlett-Packard Journal, 16 (11) pp 8-12.

Coffey, H.E. and J.A. McKinnon (editors), 1987, "Solar Geophysical Data Prompt Reports", December 1987, No. 520 part 1, NOAA, Boulder.

Daehler, M., M.H. Reilly, F.J. Rhoads, and J. M. Goodman, 1987, "Comparison of Measured MOFs with Propagation Mode Forecasts", in <u>Effect of the Ionosphere on</u> <u>Communication. Navigation and Surveillance Systems</u>, (edited by J.M. Goodman), Govt. Printing Office, available through NTIA, Springfield, VA.

Daehler, M., 1983, "Single-Site-Location Certification Test Data Base Description", NRL Memorandum Report 5180.

Daehler, M., 1987, an Interim Report to CECOM, Comparing Propagation Models with Data, 4180-351:MD:pak (unpublished)

Darnell, 1978, "Channel Evaluation Techniques for Dispersive Communication Paths", in <u>Communications Systems and Random Process Theory</u>, edited by J.K. Skwirzynski, published by Sijhthoff and Noordhoff, the Netherlands, pp 425-460.

Goodman, J.M. and D.R. Uffelman, 1982, "The Role of the Propagation Environment in HF Electronic Warfare", NRL Memorandum Report 4943, (23 Nov 1982). ADA121658.

Goodman, J.M. and D.R. Uffelman, 1983, "On the Utililzation of Ionospheric Diagnostics in the Single-Site-Location of HF Emitters", in <u>Propagation Factors</u> <u>Affecting Remote Sensing by Radiowaves.</u> (NATO-AGARD-CP-345), Tech. Edit. & Reprod. Ltd., London. AD137559.

Goodman, J.M., M. Daehler, M.H. Reilly, and A.J. Martin, 1983, "Global Considerations for Utilization of Real-Time Channel evaluation Systems in HF Spectrum Management", in <u>Proceedings of MILCOM '83</u>, IEEE Press. Paper 18.4, 350.

Goodman, J.M. and A.J. Martin, 1984, "Global Management of the HF Channel (A Note on the Possible Utilization of Oblique-Incidence Sounders)", NRL Memorandum Report 5468.

Goodman, J.M., 1984a, "A Description of the NRL Oblique-Incidence Ionogram Data Base", NRL Memorandum Report 5452.

Goodman, J. M., 1984b, "A Commentary on the Utilization of Real-Time Channel Evaluation Systems in HF Spectrum Management", NRL Memorandum Report 5454.

Goodman, J. M. and M. Daehler, 1987, "The ORSI-1 Data Base", (unpublished).

Goodman, J.M. and F.J. Rhoads, 1988, "Status of the NRL high Latitude HF Communication Assessment Program", NRL Memorandum Report (in press).

Harnish, L.O., G.H. Hagn, and W.T. Alvarez, 1983, "Comparison of IONCAP Predictions with AN/TRQ-35 (V) Oblique-Incidence Sounder Measurements for a onemonth CONUS Test During July and August 1982", in <u>Proceedings of MILCOM'83</u>, IEEE Press.

Mayaud, P.N., 1980, "Derivation, Meaning and Use of Geomagnetic Indices". American Geophysical Union, Geophysical Monograph 22.

Uffelman, D.R., 1981, "HF Propagation Assessment Studies Over Paths in the Atlantic", NRL Memorandum Report 4599, (October 26, 1981). ADA 107599.

Uffelman, D.R. and L.O. Harnish, 1981, "HF Systems Test for the SURTASS Operation of February 1981, NRL Memorandum Report 4600. ADA106 747

Uffelman, D.R. and L.O. Harnish, 1982, "Initial Results from HF Propagation Studies During Solid Shield", NRL Memorandum Report 4849, July 30, 1982. ADA 118492

Uffelman, D.R., L.O. Harnish, and J.M. Goodman, 1984, "HF Frequency Management by Frequency Sharing by Models Updated in Real Time", NRL Memorandum Report, (also appeared in revised form in NATO-AGARD-CP-345, 1983).

Uffelman, D.R. and P.A. Hoover, 1984, 'Real-Time Update of Two HF Channel Evaluation Models by Oblique Sounding', NRL Memorandum Report 5246, January 13, 1984, Also appeared in revised form in Proceedings of MILCOM'83, 1983. ADA 137556.

List	of	NRL	Experiments	During	Which	Ionograms	were	Obtained
------	----	-----	-------------	--------	-------	-----------	------	----------

OPERATION and DATE	RCVR/	DEGREES	l Me:	EDIA		
PATH ID PATH #	XMTR	LAT. LON.	ANALOG	DIGITAL		
TEAMWORK '80 (155580-235580)	1	▋ ▋ ┃ ┃ ┃ ┃ ┃ ┃ ┃ ┃ ┃ ┃ ┃ ┃ ┃ ┃ ┃ ┃ ┃ ┃	PHOTOS	=========== CARTRIDGE		
USS MT.WHITNEY (SHIP)	•	COAST OF N.ATLANTIC		TAPE		
KOLSAAS.NOR P.1		60.0 N 10.3 E		88Z		
ROBINS AFB, GA P.2		32.633N 83.583W				
SOC BUCHAN, SCOT P.2	•	57.3 N 1.5 W		1		
OERLAND, NOR P.3		63.7 N 9.7 E				
SURTASS I (15FE81 - 23FE81)			PHOTOS	CARTRIDGE		
R/V MOANA WAVE (SHIP)	R	SE COAST OF U.S.		TAPE		
DRIVER, VA P.1	•	36.817N 76.500W		892		
ROBINS AFB, GA P.2		32.633N 83.583W				
FT.BRAGG,NC P.3	X	35.015N 78.983W	 _	 		
POLAR SEA (02AP81 - 15AP81)			PHOTOS	CARTRIDGE		
FAIRBANKS, AK		64.850N 147.717W		TAPE		
CHESAP.BAY DIV.,MD P.1		38.067N 76.417W		282		
ELMONDORF(ANCHORAGE), AK P.2		61.217N 149.883W		1		
SACRAMENTO, CA P.3	X	38.583N 121.500W	 	 		
SOLID SHIELD (03MY81-19MY81)			PHOTOS	CARTRIDG		
FT.BRAGG,NC	R	35.150N 78.983W		TAPE		
DRIVER, VA P.1		36.817N 76.500W	l	100 2		
HURLBERT FLD., FL P.2		30.3 N 86.4 W				
SHAW AFB, SC P.2		33.967N 80.483W				
MACDILL AFB, FL P.3		27.850N 82.483W	{			
NORFOLK (NAVCAMSLANT), VA	R	36.950N 76.300W	i			
CAMP LEJEUNE, NC P.1 (BOGUE FIELD)	X	34.667N 77.350W	 	1		
NEA MAKRI (MARATHON), GR P.1	j x	38.063N 28.983E	1	i		
DRIVER, VA P.2	X	36.817N 76.500W	Ì	İ.		
MACDILL AFB, FL P.2, P.3	X	27.850N 82.483W	{	ł		
HURLBERT FLD., FL P.3	X	30.3 N 86.4 W	1			
SHAW AFB, SC P.3	X	33.967N 80.483W		1		
INDIAN OCEAN (25JL81-24AU81)			PHOTOS	CARTRIDGE		
USS AMERICA (SHIP)	R	INDIAN OCEAN	1	TAPE		
SAN MIGUEL, PHIL. P.1		15.150N 120.983E	ŀ	162		
DIEGO GARCIA P.2	•	7.3335 72.417E	1	1		
H.E.HOLT(NW CAPE), AUSTL P.3		21.750S 114.167E	1	1		
NEA MAKRI (MARATHON), GR P.3	X	38.083N 23.983E		1		
USS KITTY HAWK (SHIP)	R	INDIAN OCEAN	t I	1 		
SAN MIGUEL, PHIL P.1		15.150N 120.983E		1		
DIEGO GARCIA P.2	•	7.3335 72.417E		I		
H.E.HOLT(NW CAPE)AUSTL P.3	•	21.750S 114.167E		1		
NEA MAKRI (MARATHON), GR P.3	X	38.083N 23.983E	 			
SURTASS II (10N081 - 22N081)			PHOTOS	CARTRIDGE		
NORFOLK (NAVCAMSLANT), VA		36.950N 76.300W		TAPE		
		32.633N 83.583W		100 z		
		18.500N 67.017W		l		
R/V MOANA WAVE(SHIP) P.3	X	SE COAST OF U.S.	1			

TABLE 1 (Cont'd.)

.

OPERATION and	DATE	RCVR/				DIA
PATH ID P.	ATH #	XMTR	LAT.	LON.	ANALOG	DIGITAL
		25282	*********			1
CLASSIC TOAD (19MR8		•			PHOTOS	CARTRIDGE
USNS BARTLETT (SHIP		R		T OF U.S.	MAGNETIC	TAPE
HOMESTEAD AFB, FL	P.1	•		80.383W	TAPE	827
ISABELA, PR	P.2	•		67.017W		
BERMUDA (TUDOR HILL) P.3	X	32.333N	64.750E		
SFBCS (28JN82 - 0	YAU8Z)		26 1601	70.00017	PHOTOS/	
FT.BRAGG,NC		R		78.983W	MAGNETIC	1
FT.KNOX,TN	P.1	•		85.950W	TAPE	
FT.LEAVENWORTH, KS	P.2	•	39.317N	95.917W		
FT.LEWIS,WA	P.3		47.139N	122.589W		l I
FT.BRAGG, NC		I R	35.150N	78.983W		1
ISABELA, PR	P.1	•	18.500N	67.017W		l Í
DRIVER, VA	P.2	•		76.500W		1
PATRICK AFB, FL	P.3	•	28.250N	80.600W		t l
						· •
SSL-BCT (29N082 -	18DE82)	i			PHOTOS/	CARTRIDG
FT.ORD, CA		R	36.652N	121.735W	MAGNETIC	TAPE
CHINA LAKE NWC, CA	ZONE 1	j X	35.662N	117.622W	TAPE	100 z
NELLIS AFB, NV	ZONE 2	X	36.250N	115.033W		i
LUKE AFB, AZ	ZONE 3	X	33.535N	112.382W		i
		ĺ				1
FT.ORD,CA		R	36.652N	121.735W		1
ERIE,CO	ZONE 4) X	40.100N	105.047W		
SAN DIEGO,CA	ZONE 5	X	32.708N	117.246W		
FT.LEWIS,WA	ZONE 6	X	47.139N	122.589W		
NRL (13AU86 - 1 NRL	(VBNLU		29 01 TN	77 01 711		CARTRIDG
ISABELA, PR	P.1	R X	38.817N			TAPE
ROTA, SP	P.1 P.1	•	36.617N	67.017W		1002
CORINNE.UT		•	41.583N	6.350W	1	1
DRIVER.VA	P.2	·		112.420W		
•	P.3		36.817N	76.500W		
GRIBRALTOR, SP	P.3		36.183N	5.367W		ļ
CHELVESTON, UK	P.3	X	52.300N	0.517W		
WORMS (030C86 - 1	(JN87)	1				CARTRIDG
WORMS, GE		R	49.633N	8.367E		TAPE
PIRMASENS, GE	P.1	•	49.200N	7.600E		1002
ROTA, SP	P.1	•	36.617N	6.350W		
BREMERHAVEN, GE	P.1	'	53.533N	8.583E		1
BANN B, GE	P.1.P.2	•	49.383N	7.600E	[1
SIGONELLA, IT	P.1,P.3		37.400N	14.917E		1
NELLINGEN, GE	P.2		48.717N	9.267E		1
EDINGEN, GE	P.3			8.617E		د ا
NEA MAKRI (MARATHON			38.083N	23.983E		
ORSI (09JA87 - 2	0 FE 87)	1				CARTRIDG
SKAGGS ISLAND, CA		R	38.183N	122.383W	1	TAPE
FT.HUACHUCA,AZ	P.1	j X	31.550N	110.333W	!	1002
ROBINS AFB, GA	P.2	X	32.633N	83.583W		Í
TINKER AFB, OK	P.3	ixi	35.417N	97.400W		

OPERATION and DATE RCVR/ DEGREES MEDIA XMTR | LAT. LON. | ANALOG PATH ID PATH # DIGITAL ----| ORSI cont'd(09JA87 - 20FE87)|

 SKAGGS ISLAND, CA
 R
 38.183N
 122.383W

 ISABELA, PR
 P.1
 X
 18.500N
 67.017W

 HOWARD AFB, PANAMA
 P.2
 X
 9.500N
 79.500W

 DRIVER, VA
 P.3
 X
 36.817N
 76.500W

P.3 X 36.817N 76.500W -----NORWAY (19MR87 - 25MR87) |CARTRIDGE EVENES (NARVIK), NOR | R | 68.433N 17.417E | TAPE
 EVENES (NARVIK), NOR
 P.1
 X
 68.433N
 17.417E

 MILLTOWN, UK
 P.1
 X
 57.667N
 3.567W
 | 100Z BODO, NOR P.2 | X | 67.283N 14.283E CHELVESTON, UK P.2 | X | 52.300N 0.517W THURSO, UK P.3 X 58.600N 3.500W HELGELANDSMOEN, NOR P.3 X 60.100N 10.217E ----------REG.NET'87 (14AU87 - 29SE87) CARTRIDGE
 NRL (WASH., DC)
 R
 35.900N
 77.017W

 TINKER AFB, OK
 P.1
 X
 35.417N
 97.400W
 TAPE 1007 DRIVER.VA P.2 X 36.817N 76.500W GRISSOM AFB, IN P.3 | X | 40.667N 86.133W | R | 31.550N 110.333W P.1 | X | 36.817N 76.500W | FT.HUACHUCA,A2 DRIVER.VA | TINKER AFB.OK P.2 | X | 35.417N 97.400W GRISSOM AFB, IN P.3 | X | 40.667N 86.133W TINKER AFB.OK R 35.417N 97.400W P.1 | X | 36.817N 76.500W DRIVER.VA GRISSOM AFB, IN P.2 X 40.667N 86.133W

	1	(Cont	14 1	
مباهما		ιιοατ	· u.)	

TABLE 2

-

OPERATION											<u>F</u>	
TEAMWORK			W									
'80	•		E									
	 		S 100Z									
		н	W 100Z	D 33	z je	H 897	jD		VL			
SURTASS I	2,088	M 100Z	E	T 34	z je	4 11 7	M		L.			
	ļ	L	IS	N 33.	Z I		Q	100 2	M		US	
	 	1 1H 31Z	 W	D 34		H 100Z	 D	14Z	VL	38Z	 S	
POLAR SEA												
		L	S	N 33	Z I		Q	72 X	M		US	
SOLID			 W									
	8,465	M 100Z	E 100Z	T 33	Z IN	1	M	472	L		VS2	27.3
SHIELD	ļ	L	S	N 33	z į i		Q	53 z	M		US4	48.6
INDIAN			 W									
OCEAN												
	l	L 772	S 100Z	N 34	Z I		Q	58Z	M		US	
	•		 W				•		•			167
SURTASS II	2.973	M 100Z	E 1002	T 33	Z M	1 31Z	M	62X			vs	427
		L	S	N 34	z ji		İQ	38 2	M	42 2	US	
CLASSIC	<i>-</i> 	•	 W 23%	•								
			E 772									
TOAD			S	N 34	z įi		İQ	53Z	M		US	
		 H	 W	D 33	- z 11	1 39Z	 D	 7 1	 VL		 s	212
SFBCS	5,962	M 1001	E	T 34	Z 1	1 20Z	M	68Z	L	23 z	vs	342
		L	S 100Z	N 33	z 1	417	Q	25 z	M	112	US	11 Z
	<i></i> 	,	 W				۱		•			
SSL-BCT												
	ļ		S		z I	, 	Q	30 Z	M			
	<i>~</i> 	 H	 W	 D 34		 1			1	 40 Z	 S	
NRL	38,125	M 100Z	E 75Z	T 33	Z 1	- 1 10Z	M	182		182	vs	
as of 10JN87	ļ	L	S 25Z	N 33	Z I	2 90Z	Q	81Z	M	171	US	25Z
			W 272			 H						
WORMS												
as of 310C87		L	S 17Z	N 31	Z I	L 917	Q	91 Z	M		US	56 Z
		H	 W 100Z	D 34	z İr	H	iD		İVL	23 Z	s	20 z
ORSI	18,881	M 100Z	E	T 33	z h	4	M.	7 2	İL -	372	VS	
	1	L	S	N 33	z 1	L 100 z	Q	93Z	M	20 2	US	
			W 34Z		·							
NORWAY			E 66Z									
	1	L	S	N 37	Z I	L 100X	Q	71 z	M	7 Z	US	112
REGENCY			 W									
NET '87	32,544	M 100Z	E 17Z	T 33	- f Z h	1 15 z	M	45Z		12 2	VS	131
	1	L	<u>IS 837</u>	N 34	z İr	. 85 z	io	55Z	İM	127	US	137

TABLE 3

OPERATION	TOTAL	A	1	B		C	t	D	1	Ē	1	F		
1	H H	42	W	6 Z	D	33Z	H	88Z	D	32	VL	241 S 271	: [
TOTALS	49,632 M	71 2	E	48Z	T	33 z	M	72	M	422	L	102 VS 202	<u> </u>	
1	I IL	252	İS	467	N	34Z	İL.	57	ÍQ	55Z	M	47 US 157	:	

OPERATION	TOTAL	A 1	BL	C	1	Ď	i	E i	F	Ī
I	H	.5Z	237	D 34Z	H		D	.3Z VL	167 S 287	T
TOTALS	117,195 M	99.5Z E	422	T 33Z	M	10 Z	M	21.7 Z L	152 VS 42	Ì
	1 IL	S	35Z 1	N 33Z	IL.	90Z	10	78 ZIM	122 US 252	1

1986 THRU PRESENT OPERATIONS

Ī	OPERATION	TOTAL	I			B	Ī_	Ç	1	D	1	Ē	ĺ.	F	
ļ.		1	H	22	W	182	D	34Z) H	26Z	D	17	VL	197 S	272
1	TOTALS	166,827	M	91 z	E	44Z	T	33Z	M	92	M	28 z	L	142 VS	8Z
		1	L	77	IS	382	IN	33Z	L	65Z	0	712	ÍM –	107 US	227

TOTAL OPERATIONS

KEY:

A = Geographic Area

B = Season

1

C = Time of Day D = Sunspot Number

E = Magnetic Activity

F = Path Distance

AN/TRQ-35 OBLIQUE SOUNDING EQUIPMENT

CHIRP TRANSMITTER

SPECTRUM MONITOR

CHIRP RECEIVER

Figure 1: Photographs of AN/TRQ-35 components, including an oblique-incidence sounder transmitter and receiver of the type used for the measurements described in this report.

ANNOTATED SOUNDING FROM THE CHIRP SOUNDER

Figure 2: Oblique-Incidence ionogram produced by the AN/TRQ-35 sounder system, indicating the quantitative information available from it.

MEASURED MOF, LOF, AND FOT

PROCESSING UNIT

Photographs illustrating the oblique-incidence sounder equipment Figure 5: and the automatic data processing equipment used to record the ionogram information.

Figure 6: Ionogram observed 1982 November 30, 20452 over the Ft. Ord - Nellis AFB path.

Figure 7: The ionogram from Figure 6 displayed using different values of discrimination level D (= signal strength as a fraction of the maximum observed signal strength). Only those frequency-time delay points are plotted for which the signal strength exceeds the discrimination level.

Figure 9: Map showing the location of sounder equipment during the Teamwork "80 exercise. In this and the following figures, "T" indicates a sounder transmitter and "R" indicates a sounder receiver.

Figure 10. Map showing the location of sounder equipment during the SURTASS I experiment.

Figure 11: Map showing the location of sounder equipment during the Polar Sea experiment.

Figure 12: Map showing the location of sounder equipment during the Solid Shield experiment.

Figure 13: Map showing the location of sounder equipment during the Indian Ocean experiment.

Figure 14: Map showing the location of sounder equipment during the SURTASS II experiment.

Figure 15: Map showing the location of sounder equipment during the Classic Green Toad experiment.

Figure 17: Map showing the location of sounder equipment during the Single-Site-Location Baseline Configuration Test (SSL-BCT).

Figure 18: Map showing the location of sounder transmitters monitored from time to time with a receiver at NRL.

Figure 21: Map showing the location of sounder equipment during the operation Cold Winter.

Map showing the location of sounder equipment during the Regency Net PNST1 test.

œ?

Figure 24. Pie-chart distributions of ionogram data from test operations from 1986 through the present.

ଙ୍କେ

Figure 25. Pie-chart distributions of ionogram data from all test operations.