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DYNAMICAL PROPERTIES OF SOLAR CURRENT LOOPS
WITH LINE-TIED FOOTPRINTS: EFFECTS OF
TOROIDAL FORCES

INTRODUCTION

in an earlier paper (Chen, 1987), the dynamical behavior of a current
loop under the action of curvature ("toroidal") forces was studied. The
model loop is immersed in an ambient plasma such as the corona and is
characterized by twisted magnetic field lines. The magnetic field and
current density have toroidal and poloidal componeats. The medel assumes
that the current conservation is established 1iin or below ihc photogphere.
The calculation showed that if the apex position of an equilibiium loop is
perturbed, the loop can expand. The condition for instabiliiy to such
expansion was given in terms of a parameter g = ¢p/¢T. vhere Qp is the
magnetic flux enclosed by the 1loop above the photosphere and ¢T is the
total flux of the entire current structure including the subphotospheric
current. Although the subphotospheric flux or current structure is nu:
measutable in reality, it is a physically wmeaningful quantity. The
analysis used an integrval form of f - cElJ x B - Up to describe the centel
of-mass motion of the apex. The drag between expanding loops and ambient
gas was included using a simple model. This allows release of magnetic
energy via drag heating. A less developed predecessor of this model was
discussed by XKue and Chen (1950) in the context of a magnetic energy
release mechanism.

The main results ar¢ the following. (1) There exists a critical value
€y which depends only on physical parameters above the photosphere such
that an equilibrium loop with g < €c1 (g > gcr) is unstable (stable). (29
An unstable loop can expand and =ometimes reach a "second" equilibrium
following a period of damped small oscillation. A loop initially in
equilibrium typically expands at subsonic velocities. This corresponds 1o
slow drag heating of the ambient gas. (3) For a loop which is not
initially in equilibrium (perhaps due to loss of equilibrium) with moderate
to large current and magnetic ficlds, thc apex can he driven supersonically
through the ambient gas. For a loop with -20G initially at a hoight of 10
km, the apex can attain velocities of 1oughly 1200 km s ] for rtens of
minutes, dissipating up to 1032 erg via drag heating (also shock heating in
the supersonic case). During the expansion of loops, the Larentz force can
do work =o that the magnetic energy can be dissipated. Thus, a wvide range
of apex v~olocities and magnetic energy 1elease rates are poszible within

the context of the model.

Manuscript approved June 3. 19%8




Curvature forces are a parcicular form of Lorentz and pressure forces
which occur in curved segments ot current-carrying plasmas and act along
the local radius of curvature. (A similar force also occurs in metallic
current hoops.) In the laboratory, these forces are well-understood.
However, laboratory plasmas are typically surrounded by vacuum which in
turn is enclosed 1in rigid metallic containers. Tw addition, magnetic
fields are applied by external coils to balance the curvature forces
(sometimes referred to as the "hoep stress"). In the solar and
astrophysical environments, magnetic structures are usually embedded in
plasmas and are not surrounded by metallic containers. The curvature
forces in such environments have not been ftully investigated.

The model described above was simplified in order to elucidate the
basic physics underlying curvature forces and their effects in solar and
astrophysical environments. One simplification 1is that the initial
geometry of the loop is a half torus of unitorm aspect ratio R/a, where R
is the major radius and a is the minor radius and that the loop expands (if
unstable) maintaining the half-torus geometry. The uniform aspect ratio
approximation is not expected to result in a serious error since the
curvature forces depend on the local aspect ratio R/a as In(8R/a), a
relatively mild dependence. However. in a realistic current loop, the
footpoints are expected to he essentially immobile compared with the apex
on the relevant time scale of tens of minutes (the so-called photospheric
"line tying") and the loop does not remain a half torus. Tn the ideal MHD
apptoximation, the footpoint magnetic field i< tied to the "infinitely"
conducting photospheric (and subphotospheric) plasma which is much denser
than the coronal plasma. v this paper. we achieve stationary footpoints
without invoking the ideal MHD line tying because of the small fractional
ionization in the photosphere (perhaps 1(')>3 to 1074). However, the ionized
component of the photospheric plasma is coupled to the magnetic field lines
that enter the photos<phere. The 1ionized particles in turn are coupled to
the neutrals via collisions on the 1elevant time scale. 1f the magnetic
flux structure extends deeper down, the fractional ionization is expected
to increase. Thus, any motion of the footpoints would be resisted by drag
forces which scale as an% (eq. [3IN]) where np iz the photospheric density
and Vf is the footpoint velacity, Since np 1< much greater than the
coronal density n , the footpoint motion due to =similar forces muet he
clover by (np/nD) /2 in comparison wilh possible wmotions of the apex. 1If

wC estimate n. o~ 109 cmf3 and ”p ~ 1017 Cm_3. then (nc/np)l/2 ~ 10_4.

()




In the present papcr, we will use a simple model geometry that
explicitly takes into account the immobile footpoints. The basic physics
is the same as that of the earlier paper (Chen, 1987). Because the more
realistic geometry requires extensive modification of equations, it seems
desirable to document the calculation in detail. We therefore repeat the
analysis with immobile footpoints. However, the interested reader is
roferred (o the earlier paper for a more general discussion of curvature
forces in the solar environment and a more coaprehensive reference list.

We will start with a model current loop which 1is initially in
equilibrium and calculate its time-dependent behavior in response to
perturbations of the apex height (Sec. II). The theoretical framework will
be first presented, followed by a numerical calculation of the long-time
evolution of loops including the drag force due to the ambient gas (Sec.
III). Curvature forces are not limited to equilibrium loops. As an
example, we discuss the behavior of a loop carrying a relatively large
current, which may not be in equilibrium initially. Although no attempt to
model specific observation will be made, we will discuss the potential
relevance of the results to plasma activities in the corona (Sec. 1V). It
will be shown that a current loop acting under the influence of curvature
forres can exhibit a range of behavior (expansion velocity, energv release,
etc.) compatible wirh vcertain motion related effects in the =solar

environment.




II. DYNAMICS OF A MODEL CURRENT LOOP

In this section, we consider the evolution of an isolated loop with
twisted magnetic field lines which is initially in equilibrium. Figure 1
shows schematically a model loop which has a toroidal magnetic field Bt and
poloidal magnetic field Bp with a poloidal and toroidal current density
components Jp and Jt’ respectively. The apex of the loop is at a height of
Z from the photosphere, R is the Jlocal radius of curvature (major radius)
and a is the minor radius. The aspect vratio R/a is taken to be roughly 5
to 10. The loop is embedded in a field-free plasma of pressure P,- In
order to satisfv current conservation, we allow the current to close in or
below the photosphere where the plasma 1is simply assumed to be much denser
than the coronal plasmas. The footpoints are separated by a distance ZSO
and are assumed to be essentially immobile because of the dense
subphotospheric plasmas. No particular current distribution will be
specified below the photosphere.

The ambient plasma above the photosphere 1is assumed to decrease

exponentially with a scale height H. 1In the corona, H can be given by

where k is the Boltzman constant, Ta is the ambient plasma temperature, m.

. . . . . . . . 4
i the ion mass and g i< the gravitational acceleration which is 2.7x10° c¢m

~
-«

-
sec © at the surface. At the base of the corona, H is roughly 10° km.

A. Curvature forces

Curvature forces can occur in any curved segments of current-carrying
plasmas and depend on the local major radius R and local minor radius a.
In a solar loop configuration, we expect the apex vegion, say, one third of
the loop about the apex, to exhibit the greatest degree of motion bhecause
it is farthest from the necatrly immobile footpoints. The motion of the apex
region, schematically shown in Figute 1 as the region between the two
dashed lines, is determined by the Lorentz force, which consists of both
the magnetic ‘ension and pressumie forees, and Up.  The local force density

f acting on a plasma element i gi-en by

t - >-J =8B Up, (1a)

—



In this paper, the displacement current 1is neglected. Each plasma element
moves according to f. However, the motion of the cernier ot mass of each
segment of the loop is determined by the force integrated over the given
segment. In considering the motion ot the loop apex, we will refer to this
center-of-mass motion. The center of mass of a slice of the loop lies on
the dash-dot line along the loop. 7Tn order to integrate t over segments of
the loop, we make a geometiical simplification that the loop above the
photosphere is a part of & ‘toroidal plasma which is intersected by the
photosphere with a footpoint separation of 220. The current in or below
the photosphere, which conserves currvent, will not be zpecified in detail.
For such configurations, we see¢ from Biot-Savart law that the contiibution
to the magnetic field near the apex due to the current segment below the
photosphere scales as (a/R)6/n, where 8 is the angle between the vertical

and the line cuane~ting a footpoint to the axis of the torus (see Fig. 1

and the definition of 6 tollowing eq. [11]). In view of this
simplification, we will generally consider loops which are larger than
half-torus for a given se:ant ?SO. Then, 6/n i« less than 1-). Because we
consider R/a in the range of 5 1o 10, a/R < 1. As the apex height

increases, the loop becomes more toroidal with decreasing 6/nm << 1,
reducing the correction term. The treatment is expected to be most
accurate for curvature foirces near the apex vwhich remains nearly semi
toroidal. This approximation is similar to that used by Anrer (1978) and
Van Tend (1979). This geometry 1is an over-simplification but it has the
advantage that we can analytically calculate the forces acting on segments
of the loop near the apex and include the important feature that the
footpoints are immobile. For an improved geometiyv, <ee, for cxample, Anrer
and Poland (1979). Note that the integral fors of 1 tabee into arcount the
curved geometry in a natural way.

In order to determine the motion ot the apes (f.e., its center of
mass), we integrate f over a section of the torus ar the apex.  In doing
$0, we must impose certain conditions: the loop ic currounded by oa placma
of pressure pa (no metallic container surtounding  the  loop) and the
magnetic field vanishes at infinity. A technique for integrating over

toroidal plasmas was developed previously (Shafranov, 1966), originally fou

T R R I == IR T
with the usual equation relating the current and magnetic f{ield
C
J= 77 9xB. (1b)

——



application to laboratory plasmas, and the analysis will not be reproduced
here. Using the same analysis but with the above conditions (as opposed to
the laboratory conditions), integration of f over a section of the torus

yields the equation cf motion for the center of mass of the apex

2 2
I B
t 8R 1 17t
F - 1n{—)*—6-——~1}, (2
R C2R [ a 2 7p 2 82
p
. 2 2 . 2~ ) . . ) )
vhere FR = Md"Z/dt” with M = na nm, . Here FR is the integrated force

along the major radius per unit length of the leoop. As the apex moves,

the minor radius a also changes. This evolution can be described by

2

7
2 1 2
a t t
27 73 (821 *Bp)' (H

nc“a’nm, B
i p

joPR [N

Note that, for the simplified geometry, the major radius R is 1elated to

the height of the apex 7 by

Ty - (4)

This equation expresses the constraint that the footpo.nts are immobile.

Here T, is the t-tal toroidal current defined by

a
.9 .
It = Lnf’dx LJt.
0
The quantity ﬁp is defined by
p - p
S )
B~ /8n

where p is the average internal pressure ot the loaop, P, is the ambient
pressure and Bp = Bp(a) is the poloidal magnetic field at the outer edge of
the loop (v - a). The quantity Ei is  the internal inductance,
characterizing the minor radial current distribution, and Ei ranges from 0
for a surface distribution to 1/2 for a uniform current distribution. Note
that the curvature effects are 1elatively insensitive to the assumption of
uniform R/a because of the logarithmic dependence. 1In equation (2), mass

flow along the 1loop, orthogonal to major radial expansion, is also




neglected because the curvature forces occur with or without such flow.
Moreover, mass flow is important only if the fiow velocity is comparable to
the Alfven speed in the loop.

By choosing to use the integrated form ot the force equations, we
sacrifice the description of each plasma element. However, this is not a
serious disadvantage. 1In fact, if we were to obtain a local selution for
each plasma element, we would integrate the result to determine quantities
such as the center-of-mass motion in order to compare with observation.
The integrated result would then (ake on the form of equations (2) and (3).
The detailed structure enters thoough quantities such as p and Ei. This
technique allows one to obtain the integrated form without first tinding a
detailed point-wise solution. The fact that MHD is amenable to global
integrated representations has proved useful for various problems (e.g..
energy principles, virial theorem. etc).

In Se~. III, we will integrate these equations numerically. In this
section, we will first use a <simplified wversion, applicable to nea:

equilibrium cases, in order to <tudy the linear behavior and gain insight

for the later results. Note  that  if  the loop is neatly in equilibiium,
a2 fa)
torce balance along the mincr radius, da”/dt’ 0, gives
0
=1 . B"/B . f
Bp Py (6)

F., = qt 1n[§5] ‘ BP % . %l . )
which describes the force per unit leagth of the loop acting on the center
of mass if the loop is near equilibrium. As the initial configuration, wve
will adopt a model loop of the type discussed in Xue and Chen (1981. Fou
this class of equilibrium loops, the curvatuie forces are explicitly
balanced. Here, we give a birict <«ummary of equilibirium propertics. In

equilibrium, the force density t acting on each element of the loop i«

zero. Therefore, we have FR = 0 exactly. This equation then gives
8R ! Ei
Bp In TJ LY 5
5

’



Since Zi/Z is generally the smallest term, we will adopt, for conveniecuce,
a suitace current model and set {i = 0 henceforth. For R/a of the order of
10, we see that Bp < 0 in equilibrium. This particular equilitiium
condition arises from the absence of ambient magnetic field. This poin:t
and some modifications due to the presence of ambient fields will be
discussed briefly in Sec. IV. However, the essential physics ol curvature
forces is not limited to this class of equilibria or by this condition. It

is convenient to define the total poloidal current by

a
I [ J.dr,
D
P d
where the integraticn is over the minor radius. For the surface currvent
model, we have
an
B — 1
o p
with BP - and p p in<ide the loop. outr<ide the loop, we have
?1(
B —
P Ct
with B? - 0 ana p b and 1 i< measured along the minor radius from tiwec
center ot the circular cross section. In the above exprecsions, the
cotvection teims of the ovder (a‘Rye/n due to the geometri al

simplification ate neglected.

The above expressions are appropriate tor currvent carrying plasmac
embedded in an ambient plasma with no metallic containers. AS noted
before, this is an important difference from such laboratory systems a-
tokamaks. Incidentally, this ¢lass of equilibria properlv satisiies the

requirements of the virial theorem (Shalyanos 1966).

B. Dynamical Instability

In this scction, we investigate the <stability properties of the
equilibrium loop with respect to pertmbations nf the apex height. In Scc.
IT1, we will consider more general cases with larger velocities. In the
present paper, we will assume for simplicity that R/a is uniferm. We note
that the curvature forces depend on the local aspect ratio as In(8R/a),

which is 2 rather mild dependence, <o that the essential phvsics of

p—
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curvature forces should not depend sensitively on thiz ~nproximation. As
the apex is displaced from 1its initial equilibrium, the forces cxperienced
by the apex region be given by linearizing equation (7) which is valid for

small deviation away from equilibrium;

2
d4°(82) _
&) |

— . (8)
de” ¢ MK Z

2., . . .
Here M = na“p is the mass per unit length of the loop, 8a is the change in
the minor radius and p is the average mass densit” inside the loop. The

quantity 86{) is obtained from eq. (5):

&p - <Spq éB
88 - —5—" 28 =L, (")
l B;’/E%n P p

wherte 8p is the change in the average internal pressure and

Y4
&p - == n , 10
Pa T (1m
where H i< the gravitational scale height. Because we assume that there is
no mass tlow along the loop, the total mass MT of the loop above the
photosphere is constant in time wvhere
M. - Z2mERM,

1

with M given above. Here, the function © is given by

1 g Z 2 S,
0 0 (1)
.= 7 < =
n O
co ] , , .
where 8 = sin (s /R) and  2rB8R is  the length of  the  loop above the
photosphere. In this papet, we will mainly use 7.2 s o Because we i

)
the integrated <olution rather than the local (differential) solution, wo

will use a number of global conditions to constrain the dynamical behavion,
We assume that, on the time scale of the loop evolution., possible change

in the fluxes are small. For the toroidal flux, we assume

9




B az Z constant (12)

and for the poloidal flux, we assume

LTlt = QT = constant. (13)

Here, ¢, is the total poloidal flux and LT is the total self-inductance of
the current distribution including the submerged part (Figure 1). Note
that current conservation requires only that there be some current. Given

a current, the total flux ¢, and inductance L. can be unambiguously defined

T T
(albeit not necessarily measurable) without specifying details of the
underlying current structure. The submerged structure is included in the
calculation via the inductance. We can define the inductance Lp associated

with the poloidal flux above the photosphere by

-
1]}
~k®

where the total poloidal flux is é. = ¢ 4+ ¢ . Then, we define at time t
¢ T P S

é L
= B_ B
£ = = . (14)
éT LT

This quantity € is a rough measure of the relative "size" of the loop above
the photosphere and the entiie current structure. 1f the current is closed
near the photosphere, then € - 1. If the submerged current structure is
much larger than the loop above, then € << 1. Note that the initial flux
;s‘ thus the 1initial inductance of the submerged current, is not
calculated. It 1is wused as a parameter to characterize the submerged
current structure. Note also that we do not require @P and @q to he
separately constant since tlux emeigence appeals to be common. A

We have described the essential ingredients of the model. We will now
attempt to calculate more specific properties. For the dynamics of the

loop interior, we assume that the adiabatic expansion lav is valid:
gY

p V' I constant

= )
where y is the adiabatic index and where ¥V = 2n2aL®R is the volume of the

10




s

loop. Then, we have

- -(,1 da 1 dR 1 de
_ 7= ¢a 1. dh 1dv .
8p - Yp(La dz Rdz * 04z ]82 (15)

| N

dr
dz

and

oo

Nl
il

N

8B
-2 2 (16)
t
From the definition of B), we find
EEE alt da 17
B I, a - (7
P t

In calculating 8It’ we assume that the submerged current structure,
whatever it is, remains unchanged on the relevant time scale in the much
denser plasma. This assumption 1is consistent with equation (4), the
immobile footpoints. Then, the changes in L. are primarily due to changes

T
in the loop abowe the photosphere and we have

BLT = SLP.
From equation (13), we obtain
61{ SL
— e TR (18)
Tt ’p

For a partial-toroidal plasma of major 1adius R and minotr radius a (R/a >>

1), the inductance is (Bateman, 1978)




gy

a

L =:4“@‘[1n @5)..2] (19)

with Ei

0. Substituting the variation of Lp into equation (17), we find

da) | 1 d@] 52 ™

= , L ___l_ ==
dz a dZ 0 dZ

e fter i er
N

vhere L = In(8R/a) - 2. 1In order to determine da/dZ, we must related the

changes in the pressure to changes in the field. From equations (6), (16)

and (17}, we obtain
"-1Y1 dR 1 de “-1)1 da
g, 2t - 8)| o[ LOEE 8L (s d HCR

Equating this expression to the right hand side of equation (9) and using
equations (10), (15) and (17), we can solve for da/dZ. After some

straightforvard algebra, we find

-1
da a -1
. EE[SL . (1 - zsp] . wJ
“-1YZ dR 8n - Z dR Z 40
X [28(1 + L J§ (T—7_ + B—z(g-pa - Yp ﬁ (ﬁ) + 687(28 - W)jl, (20)
p
where
ve .
Bp/8n

For the parameter values to be wused later, this guantity ranges from 0.01
to 0.1. This means that the minor radius expansion is generally much
slower than the cpex motion. Using these results in equation (8), ve

finally obtain the linearized equation for the height of the apex:

2
Q—iégl - T(v)éz,
dt




- 29[1 ; ep]é g—g} . (21)

Here M = r[azr_xmi is the mass per unit length. If we set £ =0 (4’Q >> ép),

the right hand side 1is positive, indicating that the perturbation grows.
If we set € = 1 (the current 1is closed in the photospherc), the right hand
side is negative so that the displacement is restored. Thus, there exists

a quantity €y with

2
0<e <1 (22)

such that the d2(6Z)/dt2 =0 for £ = g . By setting I'(t=0) equal to zero

and after some algebra, we find

Z dR Z do -1 1
ERNUE RS B {[L ay(r -
-1
Z dR Z2 do
Cauli Tl a)E %“} - (23)

Here we have defined n = (8n/B;)(Z/H)pa, q, = (1 ZBP) + 1/72(1 + ZBP)w, q,

i} LA _ !
1/2(1 - ZBP), qy = (1 - 2Bp) 21 - Bp)w. and q, = (1 Bp)L . Note

that €r is a function of equilibrium quantities above the photosphere

only. A current loop with g < €or is unstable to perturbations and a 100?
with € > ¢ v is stable. For solar current loop parameters (e.g., Z ~ 10°
km, a ~ 10" km, p, ~a few dynes cmwz), €. is typically 0.2 to 0.4 (Sec.
IIT). The quantities ¢ and €y have the foilowing physical inteipretation.
For € < €y << 1, the loop above the photosphere is a small {raction of the
entire current distribution. As the loop expands, the changes in the loop
magnetic field and average internal pressure are relatively small in
comparison with the changes in the ambient pressuire. In paiticulat, éBp >
0 so that the loop is unstable. For ¢ > €yt the loop is a larger fraction
of the total current. The magnetic field and internal pressure decrease
more rapidly in such a way that the displacement is restored. In a more

formal sense, the present time-dependent problem requires specification of
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initial conditions. Given a loop above the photosphere, the quantity
e(t=0) parametrizes the initial configuration according to the submerged
current structure. This basic behavior depends on the existence but not
the details of the submerged current structure which behaves differently
from the loop above (i.e., much less mobile).

For the unstable case, equation (21) yields the exponential growth

time T is given by

T - [r(o>]_1/2. (24)

It is significant to note that 1 =« It_1 so that unstable loops with larger
It linearly grows faster. For the stable case, the loop can oscillate
about the equilibrium position.

At this point, it is useful to consider the energy budget of a current
loop and provide a more transparent meaning for the terms in equation (7).
Assuming, for simplicity, that the loop is a half-torus, the total magnetic
energy of the semi-toroidal loop above the photosphere is the sum of the

poloidal magnetic energy Ep and toroidal magnetic energy Et where

1
Ep = 5 LpIt, (25)
vhere Lp given by equation (19), and
2
B
t 2.2
Et T (n a R]. (26)
Using the principle of virtual work, we find
2
nl
Fo-—t [ B8 ), (27)
p \a
d
and
n It
Foo- — [s g 1], (28)
)
t 2¢” P

where Fp and Ft are the major radial forces acting on the entire loop due
to Jth and Jth, respectively. It is straightforward to show that the

total pressure force in the major radial direction is
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n Ii
Fo o - B . (29)
1 N
Figure 2 shows the wvarious local force components. Locally, the two

components of the Lorentz force are both along the minor radius as shown.
However, when these forces are integrated over the toroidal volume, ve see
that Jth contr’bution points outward along the major radius (eq. [27]) and
Jth contribution points inward (eq. [28]). This is entirely due to the
curvature of the current distribution. Adding the three forces and
dividing the sum by nR to get the total force per unit lengih, we recaver
equation (7), providing a heuristic derivation. The expression for Fp
shows that as the major radius expands, the Bp component does wotk on the
loop, losing energy to the loop. At the same time, the loop does work on
the Bt component so that the B, component gains energy as the loop expands.
Because the minor radius expanés, the internal gas and Bt do work against
the ambient pressure and lose energy. On  balance, there is a net loss of
poloidal magnetic energy to the kinetic energy of the loop. A fraction of

this energy is then converted to thermal energy via drag heating.

C. The Behavior of an Expanding Cutrent Loop

In the preceding section, we have described the near equilibrium
behavior of a model curvent loop embedded 1in a background plasma. In this
section, we will consider the long time scaling behavior which will be
useful for interpreting the numerical results to be obtained.

As the loop expands, the velocity of the apex increases and the drag

on the ambient gas becomes important. As a simple model, we write

D]
F, - ¢ b1 m.aV‘). %0
d dlai ¢
where Fd is the drag force per unit  leugth, V dZ/dt is the velocity of
the loop (i.e., the apex), n, is the local ambient density and < 1= the
It . r
drag coefficient. An  otder-of -magnitude estimate for the characteristic

terminal velocity in the nonlinear expansion phase can  be obtained by

equating Fd to the driving force FR given by equation (7). We then obtain
2 -1/2
vV, - I[Lcdmic naaR] . (31)
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Equation (31) shows that V_ is proportional to It/nal/z. 1f we
estimate V, by taking It =5 x 1010 A, n,6 = 4 x 109 cm_3, R = 105 km, a =
10% ¥n and using ¢y =1, we find V, ~2 x 10% km sec” . It is of interest

to compare this value to the estimated sound speed CS in the corona:

2kTa 172
¢ = [ 57
For T - 2 x 10° K and y = 5/3, C, = 2.3 x 102 km sec” !, Although the
actual expansion velocity depends on g, the above comparison indicates that
the peak expansion velocity can be comparable to the sound speed under the
action of curvature forces alone. It will turn out that equilibrium loops
of the type used here can only produce subsonic expansion. However, if a
loop is allowed to be out of equilibrium initially, carrying a sufficiently
large Lt (e.g., loss of equilibrium at t = 0), then it may be driven

supersonically (or super-Alfvenically for magnetized ambient plasmas).
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III. EVOLUTION OF Murtl CURRENT LOOPS

In the preceding sections, we have discussed in detail the linear
(82/7 << 1) behavior of a model current loop in a background plasma. The
description of the long-time behavior has been limited to scaling laws. Ve
will now attempt to provide a more quantitative discussion of the nonlineal
behavior by numerically integrating the equations of motion. Numerical \N\\\
examples are given to illustrate the range of behavior under the action of
curvature forces using parameters compatible with the solar enviionment.
The basic physics, however, is not limited to the sun.

As the apex 1rises with increasing velocity, equation (7) will no
longer be adequate. In addition, the drag due to the ambient plasma gas
may become significant. We will incorporate this effect by a simple drag

model, equation (30). Adding F, to equation (2), we obtain

d

2 ? 9
az I [m 68 . lg 1 U (‘a”p“ i
- P CIB 0 '
dt2 nc2a‘an. a p B; J d mH
(32)
vhere M = naZB. Higher order contributions are neglected for simplicity.

Ve have directly integrated the set of equations (3) and (3?) for a variety
of loop parameters. As stated in connection with equation (20), da/dt is
typically one tenth of dZz/dt or less <o that the minor radius is nearly in
equilibrium for small to modervate dZ/dt. We have found equation (6) to be
nearly true even for velocity V up to U.SCS. This justifies, a posteriori,
the use of equation (6) in the linear perturbation analysis.

The drag term in equation (32) 1is the force whicihh the expanding loop
experiences in displacing the ambient gas. The drag coefficient 4 is the
coupling coefficient between the loop and the ambient medium. 1In our
model, we adopt a simple 4 based on a straight cyvlinder transverse to the

flow in a compressible gas. For the subsonic regime with a Reynolds numben
Re of 106 to 108, 4 is 0.5 to 1 (Tritton 1977). At Mach 1, <4 attains a
maximum value of approximately 2 and decreases rapidly for larger Mach
numbers. The supetsonic drag coefficient is obtained from Hoerner (1951)
In our calculation, the ambient plasma has no background field. Tf
there are ambient magnetic fields, the drag coefficient ¢4 must be modified
and, for super-Alfvenic motion, MHD shocks are generated. We do not treat

shocks per se. The physical picture 1is simply that if the apex is driven




L B da L R

-y

supersonic or super-Altvenic, then shocks are generated. We believe that
this treatment is a reasonable one unless the ambient fields are comparable
to or exceed the loop fields (~20G for the supersonic examples). The
results are to be interpreted as order-of-magnitude estimates.

Figure 3(a) shows the velocity of the apex for a loop with the initial

equilibrium height ZO = 105km, a, = 2 x 104km and It = 4.5 x 1010 A,
corresponding to Bp = 4.5G and Bt = 8.1G. This loop is half a torus (ZO =
So) with the footpoint separation of 250 = 2x105km. This is a case with

relatively weak magnetic fields. The ambient pressure is taken to be Py
2 dyn Cm72 at T = 2 % 1O6K so that the number density is n = 4 x 109 cmw3.
For this loop, we have €p 2 0.28 (eq. [23}). The values of ¢
significantly smaller than €y should give rise to instability. Curves 1
and ? correspond to €(t=0) = 0.01 and ¢€(t=0) = 0.05, respectively. The
velocity is normalized to the sound speed CS 2.4 0x 1O2 km sec_l. These
curves describe two loops of apparently identical appearance above the
photosphere with different initial conditions €(0) corresponding to
difterent submerged structures. For Curve 1, the flux enclosed by the
entire current distribution 1is one hundred times what 1is above the
photosphere and for Curve 2, the total flux 1is 20 times what is above.
Because of the low current and weak magnetic field, these loops do not
expand rapidly. Although not shown here, these loops continue to expand
slowly even after one hour with the major radius reaching 1.5 to 2 times
the initial values. The expansion 1is nearly exponential for the first 20
minutes. In Figure 3(b), the height of the loop apex is show. 1In general,
with other parameters being equal, loops with smaller wvalues of g€ < €.y
expand more rapidly expand more rapidly to larger values of Z, and in cases
where loops can attain "second" equilibrium (see Fig. 4 for an example),
they do so later and at larger values of 2. Also, as a loop expands, the
expansion tends to slow down because the current and magnetic field
decrease aud £(t) increases, sometimes reaching a second equilibrium. The
dashed line describes a(t)/ao. showing that the minor radius expansion is
much less than the increase in the apex height.

Figures 4 shows the behavior of a smaller loop with an initial height
of Zoy = IOAkm and RO - 7.2x103km wvith Zn/sn = 1.5. The footpoint
separation is 250 = ].%3x]0&km with 6/m - 0.374. The aspect ratio is taken
to be 5 so that ay = 1.4 x 103km. The current is It = 3.3 x 109A with Bp =
4.5G and Bt = 8.1G. For this loop, we find €., ° 0.05. In this example,

ve have used € = 0.03 and the loop is only mildly unstable. The apex
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velocity reaches a maximum of ~U.3Cq with a vrise time of 7 minutes. The

velocity then decreases until ;he height reaches 2 = 6.5x104km.

Subsequently, the apex executes damped oscillation with a period of ~5 min.

Preceding examples show model loops which are fairly "tall", i.e.,

with Z0 2 Sy ZO = s, for Figure 3 and Zo = 1.550 for Figure 4. Flattet

equilibrium loops (Z0 < SO) are also easy to find. It seems intuitively ‘\\\~

reasonable (perhaps necessary) that flatter loops should be able to slowly

evolve to taller configurations 1if small changes in parameteirs are made.

This is in fact the case. In Figure 5, we use a loop with Z” - ]Uakm, s,

1.25x104km, RO = 1.28x104km. Ro/aO =5 and e(t=0) = 0.05. The curtent s
, It = 6x109A with Bp = 4.5G and Bt = 8.1G6 in equilibiium. At t-0, e
increase the current It from the above equilibiium value by 1%. This, ot
course, corresponds to increasing the magnetic tield twist slightly. (Note
that the eqs. (3) and (22) are not Llimited to equilibrium.) The result
shows that the apex rises and executes damped oscillation about
l.16x104km. The expansion velocity is small, never exceeding ~0L 10
Analogously, if the current is decreased slightly, the height can decxeaée
slowly followed by «mall amplitude damped oscillation. This behaviol
suggests that a current loop can evolve to a taller (lower) loop in a
quasi -equilibrium manne: if the cuirvent increases (decrecased) slovly.

In general, with all orher quantities bheing equal, smaller 'm<tahlce
loops, have shotrter e-folding times (eq. [?1}) hecause of the reduced
. inertia. Unstable loops with larger currents I‘ alvwo have shorter e

folding times because ot the increased lorenis torce. lu Figute ¢, we =how
an example with larger currents. The loop is not in equilibrium initially.

This example may be relevant to a loop which «uffers loss of equilibiium.

The parameters used are 2o - lUbkm. 20 TS Ay T 1U4km and II - iﬂllA S0
1 that Bp = 20G and B, - 21G. Curve 1 corresponds to €(0) - 0,01 and the
loop attains Mach 3 in less than one minute. At t = 18 min, the apex
velocity is approximately V/C_ = 5 or v = 1200 km s = and the apex has
risen to Z - 20 «x ]HS km. Subsequent Iy, the expansion velocity slowly
decreases over tens of minutes as the loop expands.  Curve 7 corresponds to

€(0) = 0.05 and the configuration is =<lower than that described by Curee 1.

The apex attains Mach 3, the mazimum ~elocity, in about 5 minuter . also
with a sharp tise near t - 0. The velocity then slovly decreastes 10 Mach

in about 30 wminutes as the loop expands. For  =maller currents, the
velocities are smaller. From Figures 3 - 6, it is clear that curvatuse

force can produce a wide range of hehavior.




IV. PHYSICAL IMPLICATIONS AND DISCUSSION

We have described the dynamics of the apex of a model current loop
embedded in a background plasma. The structure 1is such that the semi-
toroidal section of the loop 1is in the wupper tenuous plasma while the
remainder of the current distribution is embedded in a much denser plasma.
The dynamical properties obtained are most applicable to the apex of the
semi-toroidal loop. We vreiterate that the objectiv is not to model
specific phenomena but to understand the basic effects of curvature forces.
For this purpose, we have constructed the model in such a way that the
model loop behavior is primarily determined by the curvature torces. In
the preceding sections, we have given theoretical and numerical resulrs.
Although the results cannot be applied directly to ohserved solar phenomena
because of simplifying assumptions, it is useful to determine the range of
expected behavior using parameters compatible with the solar environment.

Observationally, it is not always easy to determine the magnetic

stiucture or its motion. Howewver, =signatures of motion mav be manifested
as heating of coronal gas and moving gaseous material. Hete, we will
examine some possible observational implications. For this purpose, it ic

useful to consider the rate at which the magnetic energy is converted to

thermal energy via drag. We have calculated the quantity

dZ
Fd(&fj

for the model loops described in the preceding <cection. Here, Fd is the

drag torce given by equation (30) and dE/dt 1is the vrate at which the

2o
=~

ambient gas is heated by drag due to the apex motion. In calculating this
guantity, we have assumed that only one third of the semi-torus around the
apex is effective in drag heating. As the above expression indicates, the
heating rate is proportional to VB. Ve have also computed the time-
integrated total energy which the magnetic field loses in the form of loop
plasma kinetic energy and drag heating. This gquantity is essentially equal
to the time-integral of dE/dt plus the loop kinetic energy. Ags pointed out
before, the minor radial expansion is found to be much slower than the apex
motion so that it is neglected in  comparison with the major radial
expansion.

Figure 7 shows the energy release rates due to drag for the loop
described in Figure 3. For € - 0.01 (Curve 1), the rate reaches 102 erg

s ! at t = 20 min and increases to 1026 erg S‘l at t = 30 min. During this

20




time, the major radius increases from l.]SZO to ].ORO. Before t - 20 min,
the loop exhibits only slow motion and insignificant energy output. For ¢
= 0.05 (Curve 2), the loop motion 1is less pronounced with the energy
release rate in the range of 1025 erg Sil during t = 20 min to t = 30 min.

Figure 7(b) shows the time-integiated energy converted from the magnetic

field to thermal and kinetic enecrgy. For € = 0.01 (Curve 1), the total
amount of magnetic energy teleased in 30 minutes 's ~ 1.5 x 1029 erg while,
for £ = 0.05 (Cutve 2), it is IH?Q erg. For both cases, roughly one half
of the energy is in the torm ot theirmal energy. In Figure B, we give the

energy output profile tor the loop dexciibed in Figure 6. For this loop,
the magnetic tield components are - 00 and  the apex can be driven
supersonic with correspondingly greater  magnetic energy r1elease.  Howvever,

as discussed before, this locop i¢ not dnitially o equilibrium in the

context of the present model. “tFor Curve 1 (£ - 0.01), the maximum energy
. 8 . : :
release rate is roughly 4 = 10 Clp Yith a time integrated total of &
11 . .
L erg in 30 minute:s. Curve 0 (f o1y, shows an energy o ooutpu

profile in which the pealk heating occurs in a duration of 10 minute:s with a

tong decay phase lasting for tens ot minttes.  The total encirgy teleased is
toughly 3 x lHi] elg  dnowlominutes. For  thewe  cnpves,  there ¢ a
possibility of <trong shock heating. Note that magnetilc energy convel =jion
takes place on the time =vale of  tens of  minutes, The tate of energy
release can have a wide 1ange. Thic type of "dunamical® magnetic encray
release mechanism has been  cugpected  ecarlien (Zneamd Chen, 1980y . A«

mentioned eatlier, the importance of  mechanioal energy outpt in the flare
energy budget has been diccussed (Webbh et al.. 1980y, Aleo, it g laig
number of loops release energy at =low rates, they may contiyibute 1o non
violent thermal energy input to the corona.

[t is of interest to estimate the temperature of the ambicnt gas whiol,
is heated by the supersonic motion ot the apex. For stiong shocks, the

temperature T, behind the shock frout can be ectimated by

T N

o [2yM (v D [y DO 0
N
a (y+ 1)y M

(lLandau and Lifshitz, 1959) where M i< the Mach nunber of the <hocl and I1

¢

is the ambient temperature. Taking M - 3 (Fig. 6(a)) and y = 5/, we tind
. . 6 . . f

T, = 3.7 Ta. Using Ta -2 % 107 K, we find T, = 7.4 x 107 K. For larger

values of M, the temperature iz  higher. Thus, in this particular example




(Curve 2), the coronal gas in the vicinity of the apex could be heated to
approximately 107 K and the heated gas might be seen to travel away from
the sun with a peak value of ~ 800 km se&_l. This phase can last for tens

of minutes with the velocity and heating diminishing with time. For Curve

1, the velocity is considerably higher (a peak value of ~ 1200 km s~1).

These calculated apex velocities are similar to those associated with

certain dynamical effects. For example, the sources of moving type IV

bursts are quoted to have velociiies in the range of roughly 200 km sﬁl to
1500 km sfl with typical velocities around 400 km .\1 (e.g.., Svestka,

N

1980). For coronal mass ejection events, Gosling et al. (1976}, for
example, reported speeds ranging from less than 100 km s ° to more than
1200 km s’l with the average being roughly 500 km s 1. They also reported
association of type 11 radio bursts with events moving faster than about
400 km s‘l. Note that we do not attempt to "explain" these phencmena here.

Mouschovias and Poland (1978) and Anzer (1978) have described loop-
type (as opposed to "bubble™) transient models. In anzei’s work, poloidal
current density Jp and plasma pressure ave neglected, effectively treating
the loop as a metallic wire. The Ltoops are not not in equilibrium
initially. In addition, the ambient plasma is neglected. Nevertheless,
the underlying physics is <imilar to that of our model in that both models
use Lorentz curvature forces to drive currvent loops. Here, although the
present model is not specifically for coronal transients, wve make 3
qualitative comparison with the work ot Anzer. [n Anzer’s work, It was
found that magnetic fields of 1G can drive «c¢oronal transients. In our
model, we estimate the necescary magnetic fields to be greater. This can
be understood in the following way. In Anzer’s model. the poloidal current
dencity Jp and pressure gradient are neglected. In the toroidal geometry,
the force Jth acts to counter the expansion of the apex. Furthermore, the

ambient material which also acts to oppose (he expansion is neglected.

The anly retarding torce is gravity. In our pre=ent model, we include the
poloidal current and plasma  piressure. For the nonequilibrium examples
(Fige. 6 and 8), the magnetic fiold components are 10 2N in the lower

corona <o that gravity is unimportant (see below). Thus, Anzer’s model

tend: to requirte smaller magnetic  f{icldes  than  our model tao diive curitent

loop:s ta a given velocity. In addirion, the cantrent loops used by Anzer
are much large:s, initially - MOR n o model, the magnetic field is=
also weaker at comparable altitutes. Taking, for example, Curve 1 of
Figuie 6, we find that at t - 30 min, Zo ~ %RQ. the magnetic field




components are toughly 106, For Carve 7 at  t o - 30 min, Z“ = JRQ, the
ma;netic tield components are roughly DG, We attribute the numerical
differences primarily to the neglect ot poloidal current and plasma
pressuie. In addition, the inclusion of ambient coronal gas aliows
conversion of magnetic cnergy to thermal energy in our model.

1 Citing the re<ult of Anzer (1978), Carlqvist and Alfven (1980)
suggested that expanding current leops may contribute to the acceleration
of solar wind particles. By virtue of including both toroidal and poloidal
current compenents, plasma  pressute  and  ambient gas, our model can be

extended to give a notentially better description of loop structure and

dynamics beyond the immediatc vicimity of  the sun. (Alse include eq. |13
if gravity is important.) We note that Klein and Burlaga (1987) reported
observational evidence ot magnetic c¢louds at  TAU consistent with the
geometry ot magnetic lovops. It has  been suggestod (Cocconi et al.. 1938;
Gold 1959, 1962) that the magnetic  field lines of magnetic cloudes may be

anchored in the sun. However, the deto Do magnetic <rpucture and dynamics

of magnetic cloads in the intérpraactar - wpace  have not been fully
. . . . .

wnderstood.  T1 ie possible  that empan ing arren! o or o omagmet o loops can

naturalt - i e 1tise to thes otrueiur - Tr o io <ipnifi-ant to note that

Flein ana Burlary (1982) suggested  that  certain different types of v louds
mav o he ditferent  moanveration. ot G P i phenomenon «uch as coronal

transtehts,

The motion teo Pl a0 g tin Daee ot thy convection cone hat been
conc bderedd o e By et T ey it Chon, 1987y cbooach o Tas
tubes are anshored e ton i cnce tien cone, then equilibrinn and
dvtiamioal cone pderar o e s he b e o v e oand Chen (1980 1R

mav o be applicable.  Tnoparticoalar, the indusrice ctteors desoribed by may
. : :

b relevant.

T the exampless tioavea e tods apery the role of gracity has not
i i :
been considereds For cone phenomena,s pras it man he Dopoartant . For th
aper of A Toops mraciry e Atong the o eagor o adn o thar i i
straighttorcad to Snclude the poa irartional toro b hiea
Ly

} ma o n 1 { )

0 1"{‘\ |
Heve o B e the prraitational foroe per unit lenpth acting on the apes and

,
g bs the gravitational acceleration. For  the sake of pencrality, we have
ine Taded both the ambient dencity n and  the average internal density n.
a :
3
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If n > n, (e.g., coronal mass ejections), FG is downward. If n < hos then

the structure is buoyant and F is upward. For magnetic fields of 10

G
20G, the curvature forces dominate the gravitational force.  For example,
for the supersonic loop depicted in Figure 6 with a density of 1Ogcm'3, the
curvature forces are of the order of 1010dyn cm—1 while FG is of the orde:
of lﬂgdyn cm‘l. The basic tenets of curvature effects remain qualffélively
valid with the addition of gravity.

In summary, we have theoretically studied the behavior of a simple
semi-toroidal current loop under the action of curvature forces. It has
been shown that such loops are capable of exhibiting a wide range of
dynamical behavior. Starting with MHD equilibria with the curvature forces
explicitly balanced and with the footpoints of the loop vremaining
stationary, loops can expand with a wide vrange of subsonic velocities,
giving rise to a correspondingly wide vrange of magnetic energy output.
Some loops can attain second equilibria. Loops may also evolve, in a
quasi cquilibrium manner, from "flat" to "tall" loops if the current is
increased slowly. The typical time scales for motion and energy release
are tens of minutes. Given loops initially in equilibrium with no ambient
magnetic tields, the subsequent motion seems to be subsonic with relatively
slow heating of the coronal gas. 1f we start with nonequilibrium loops
vith large currents., possibly as a result of loss of equilibrium, they can
attain highly supersonic (or super-Alfvenic in magnetized ambient plasmas)
cxpan=ion velocities with rapid heating due to shock heating. Thus, it
appeatl = that expansion of magnetic loops can contribute energy to the
eoronal gas, along with other possible mechanisms, with a wide range of
enclgy telease rates.

A novel but somewhat unconventional featute of the model is the
inclusion of submerged current distributions in the dynamics of the loop.
As pointed out previously, the present model depends on the existence but
not any details of the submerged current distributions. The submerged
current is parametrized by the quantity ¢, the ratio of fluxes, detined by
equation (14). Although not measurable in reality, this is a physically
meaningtul quantity. The condition for instability is found to be given bv
€ < e . It is of interest to speculate on how such an equilibrium loop

a1
can be manufactured by the sun =since a loop wvhich is observed to exist o
an extended period of time (perhaps a few days) is presumably in stable
equilibrium. For example, if a flux loop emerges through the photosphere,

it expands until it reaches an equilibrium for which € > €y Recall that




€ depends only on physical parameters above the photosphere while ¢ -
@p/¢T. It is possible within the context of this model that a stable loop
can become unstable if QT increases (smalter ¢€). This may occur due to
topological changes in the subphotospheric rugnetic flux structure to which
the loop is connected. There need not be significant changes in the loop
parameters or coronal conditions prior to the onset of expansion.

In our model, the current loop above the photosphere is connected to
the submerged structure via flux tubes going through the photosphere. The
flux tubes serve as a conduit for electromagnetic and other processes. Ve
have not addressed issues concerning the details of possible flux
structures below the phtosphere and possible dynamics of and transport
mechanisms in such current or flux structures in subphotospheric regions.
[t appears that these properties can influence the dynamics of the current
loop above. Thus., in a more complete model, the parameter ¢ will contain
much more physical effects. In our calculation, we kept only one aspect,
viz., the relative tlux and the inductive effects, to illustrate celrtain
basic physical properties. An adequate discussion of these issues requives«
more understanding ot subphotospheric tields and plasma properties, both
inside and outside ot possible flux  structures. s a tirst step, we have
included the submer ged current Structure only as a parameter .
Nevertheless, the basic conclusion that the behavior ot current loops can
depend on submerged current structules is not based on detailed assumptions
and seems worthy ot more detailed consideration.

As a starting point for stuadying the etfects of curvatwie torces, we
have used a simple model  <system  in the limit of rero background magnet is
field. Although these equilibria (8P <ty may o be tclevant to certain
structures such as "cool  loops™ with a prescumre deficit incide (e.g.,
Foukal 1976; Chiuderi et al., 1977; Hood and FPriest 1979), many of the
observed loops are likelv to corirespond to the 6P > 0 caze. In an upcoming
paper, we will report on loop equilibria with nonseto background magnet i
fields such that Bp > 0. The  present analveis can be applied to this caw
in a <imilar way. once difterence 1« thar greater amounts ot (nitent can be
supported in equilibrium and o  wider 1ange  of  expancion motion can he
exhibited by cquilibrium loops. The basic effecte of curvature forec i

not timited to the particular claze of equilibria used in thic paper.

(]
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of possible behavior that may be exhibited by current loops.

particular observed phenomena. The precise role and

Throughout the paper, the emphasis and the objective have been to
isolate the essential physics of curvature forces and to describe the range
The results
are to be taken in an order-of-magnitude sense. The effects of various
1 approximations and different types of equilibria should be studied for a
more complete understanding. In this paper, we do not claim to explain any

relative

importance or unimportance of curvature forces in any observed phenomenon

must be evaluated in future research. Qur reference to observaticns is

limited to pointing out the possible relevance to the soiar environment.

Nevertheless, it appears that current loops wunder the action of curvature

forces can exhibit a range of motion (velucities, energy dissipation, etc.)

in the right "ball park" in the rcncext of dynamical solar phenomena.
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Fig.
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Schematic drawing of a model current loop embedded in the corona.
Components of the current density J and magnetic field are shown.
The subscripts "t" and "p" refer to the toroidal and poloidal
directions, respectively. The radius of curvature is R and the
apex height from the photosphere 1is Z. The footpoint separation
is 250. The segment betwveen the dashed lines is the "apex
region", taken to be 1/3 of the loop for numerical calculations
(Secs. IIT and 1IV). If the apex region were devided into thin
slices, the center of mass of each slice would lie on the dash-dot

line. No particular structure is specified below the photosphere.
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Fig. 3
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Behavior of a model loop initially in equilibrium with ZO = 1U5km.
Zo=s?0and a - 2 x 10%m. e, - 0.28 (eq. [23]). T -
4.5x10° A, Bp = 4.5G and Bt = 8.1G. For both figures, Curve 1 is
€(t=0) = 0.01 and Curve Z is ¢g(t=0) = 0.05. (a) Velocity profile
normalized to the sound speed CS = 2.4 x 102 km seckl. (b) Apex

height. The dashed line shows a(t)/a0 corresponding to Curve 1.
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Fig. 4
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Behavior of a model loop initially in equilibrium with AO = 104km,
s =7 /1.5and & = 1.4x10%km. I, - 3.3410%A, B_ = 4.5G and B, -
0 o o t p t
8.1G. scr = 0.05 and €(t=0) = 0.03. (a) Velocity profile. (b)

Apex height.
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Height of the apex of a quasi-equilibrium model loop with ZO -
km, 2 = 0.8s with s = I.?bxl”bkm and a_ - 2.6x1”5km. 1. -

N 0 0 ) t
6x107A, Bp = 4.5G and Bt = 8.1G6. The curve corresponds to g£(t.0)
- 0.05.
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Behavior of a nonequilibrium model loop with ZO = s, = ]05km and

ag - lﬁakm. Curve 1 is € = 0.01 and Curve 2 is g - 0.05. The

quantity £, does not apply to nonequilibrium loops. It = 1011A.
L

Sp = 206 and Bt - 21G. (a) Velocity profile. (b) Apex height.
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Magnetic energy released by the model loop of Fig. 3} (R - IH[j km

and a - 2 x 10/‘ km). Curve 1 is < - 0,01 and Curve 2 i« g -~ .05,

(a) Rate of drag heating near the apex. (b Time integrated

magnetic energy released as drag heating and kinetic energy. Diag

heating is roughly one-half of the total energy released.
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Magnetic energy i1eleased by the nonequilibrium loop of Fig. 6 (R -
105 km and a = 2 x 10& km). Curve 1 is € = 0.01 and Curve 7 15 ¢
- 0.01. (a) Rate of drag heating near the apex. (b) Time
integrated magnetic energy released as drag heating and kinetic

energy.
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