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DIFFERENT ALGORITHMS FOR OBTAINING UPPER BOUNDS TO
MULTIVARIATE NORMAL AREAS OUTSIDE OF ORIGIN
CENTERED RECTANGLES USING JOINT
MARGINAL PROBABILITIES

By

Donald R. Hoover
I. INTRODUCTION.
Upper bounds for multivariate normal probability areas outside of

rectangles centered at the origin are of interest due to their applica-
tioens in producing conservative unbiased simultaneous confidence

intervals and hvpothesis tests. Unfortunatelv, it is often not compu-

tationally practical to integrate multivariate normal area over
dimensions n > 4 and obtain these probabilities exactly. The method
commonlv used to determine upper bounds for nermal probabilities
of these regions is based on the conservative assumption of indepen-
dence as given in the following theorem suggested by Dunn (1958) and

proved by Sidak (1967).

Theorem I-1. Let x - N(0,7) and let Ai be the event {xif(—ci,ci)?

Then
# n n n n .
Pri{ -~ A} < T PriA ~Prio AL > 1 - Pr{Ai}
i=1 i=1 i=1 * i=1
4 Since 1967, three different approaches have been taken which enable
n
f one to obtain lower upper bounds for the Pri{ . Ai} than those given bv
i=1

Theorem I-1. These approaches require that £ be known and integration




[ ey

over joint m-variate densities be possible for some m: 1 <m < n

N

to obtain Pr{Ai X Ai ey Ai }. These three approaches are described
1 2 m
in chapter II, and compared in chapter III. They are combined together
n
in chapter IV to produce lower upper bounds for Pr{ i) Ai} than are
1=

obtained from using any one approach alone. In chapter V examples of

combining these methods are given and in chapter VI selected tables

N

i=1
three approaches are shown. Chapter VII has a descriptive summary of

n
of upper bounds for Pr{ Ai} given different combinations of the

the terminology used in this report znd can be used for quick reference.
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IT. NEW APPROACHES FOR UPPER BOUNDS.

Approach I. Intersection Subtraction

This theorem was first proven for m = 2 by Hunter (1976)

and later extended tc m > 2 by Hoover (1987). The theorem is

Theorem A-I, Let x be a nx1 vector distributed N(0O,T), vy

-~ ~

be any permutation <«(¢) of the elements of x, and Ai be the

event yi¢ (-c Let 1 <m < n and let S5 be a set

:(1)'°r(i))'

of size (m-1Ai-1) of integers 1,2,...,i-1. Then

n
Pri . x,¢{(-c.,c.)}
1 1
i=1
n .
< Pr-aA,r +  PriA,r - Prfa, | ALl
- 1 9 i i cg. J
i=2 j€sy
D C
= PriA,t 4+ o PriA.c [ A}
1 - it Ty
i=2 jes.
1
Proof.
n n
Pri . x.¢(-c.,c.)} = Pri (' v.#i~c_, .. ,c_,..)?
i=1 . ot i=1 1 (1) (1)
n R p i-1 C -
= Pr (A = Pr’Al: + o Pria; 1 Aj] :
i=1 i=2 i=1
a n
PriA.l + o Pria. | A% = pPri{a Y+ ) Pria T-PriA. [, A.]
1 =2 * jes, Vi jes ]
1 J 1 1
Remarkg.

1) To implement this thecrem requires being able to determine
PriaA, [ 1 A,]C

i ‘ j i, which requires being able to integrate over m
jes, -
184

dimensional marginal distributicns.

3
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2) For m = 2 the above theorem is equivalent to Hunter's

Theorem which is: Let x be “ N(0,7). Let

Z be any maximal
tree connecting the X, and forming no circuit and eij be edges

on this tree then

n
Pr1'U xi¢(-ci,ci)f <
i=1
Voprd{ —c.,e)r - ¥ -c. n -c. 1.
! Pr xii( cl,cl) L Pr{xit( cl,ci) xj¢( cJ,cj))
e,ch
i

3) This theorem still leaves unsolved how to choose the 'best"
permutation ~(-) of Xy and sets Sj to give the lowest upper

n
bound for Pri - xii(—ci,ci)f. At least one '"best' permutation set

i=]

S5 exists since there are a finite number of permutations and sets
s For the case m = 2 this is equivalent to finding the best tree
T for the theorem mentioned in remark 2. This is possible tc Ao;
the procedure is given bv Theorem AP-1 in the Appendix.

4) This approach is distribution free. The theurem is true for
all unions of any collection of events A,: i = 1,...,n. The fact that
Ai was yi¢(—cr(i),c?(i)) where vy N«0,f) and ~{*) is a permu-

tation of 1,...,n; was not used in the proof. The next two approaches

will be less general,

Corollary A-IC. Group Subtraction Overlap.

Let s and S, be sets of integers from {1,...,n’.
Let :; be the upper bound for Pri{ (- A, l.
ies, T
1
Let :, be the upper bound for Pr: i Ai}.
- iESz
LLet s

be the intersection of the sets Sy and s

i~




Then
Pr{ U A} < &, +¢ -Pr{r) A}
ie(s,us,) -1 2 iEs
1772 3
Proof.

Pr{ U Ajl = Priy Ai}+Pr{ U ALY - Pr{( Ai):‘(.\) Aj)}

1E(slu52) iesl iesz 1esl ies,
< Pri Ai}+Pr{ () A.}-Pr{ U Ai\’
iesl ias2 J iE(sl‘Sz)
-i:]+¢2 - Pr{ A1}
iESB -

Approach II, Conditional Multiplicative Approach.

The following theorem is a corollarv of a theorem from Glaz and

Johnson (1984),

Theorem A-Ti. Let x be an n>1 vector distributed N(C,7) where

~

all off diagonal elements of -DI'D are nonnegative for some D,

where D 1is a diagonal matrix with elements +l1. Let v be any

permutation = (+) of the elements of x and Ai be the event

yis(—c_(i),cj(j)). Let 1< m - n and let s, be a set of size

(m-1Ai-1) of integers 1i,2,...,i-1 for i=2,...,n.
Then
n n

Pri  x,¢f(-c,,c.)¥ -1 - 7T pria;'" | A
. i i*tti’ - . L
i=1 i=1 jcs




Proof. Part One.

n n n
P W - } o= - e g (=~ = 1= N - 1
r{‘: xii( ci,ci)J 1 Pr{' Xy ( ci,ci)} 1 Pr{. (yis( cr(i),c_(i))J
i=1 i=1 i=1
n
=1 - T pPri -c_,. lvie(ecn, vath 0 ), =1, ... ,1-1
o riyis( Cri)*Cn (i) )Je( CH(J) Cn(J)) j=1 i-1}

Part Two. By a theorem in Karlin and Rinott (1980)

. *
(a) |v! has an MTP2 distribution when x"“N(0,I and the
elements of -Di_lD are nonnegative where D 1is any diagonal matrix
with elements +1.
S O £ faee oy g R
(b) )i~( CY(i)’C?(i)) for all i ,}ilt[O,C_(i)) for all i and
these are monotone sets of the same tvpe.

It hence follows from (a), (b) and theorem 2.3 part (1) in Glaz and

Johnsen (1984) that

e - "o (= ire ) o<
Prt§is( C_(i>.}jv( C_(j),C_(j)) for all jes; b 2

Pr{yi:(_cT(i)’Cf(i))>ng(—cf(j)’cﬂ(j))’ i=1,...,i-1:

which implies that

n

- v - (- v e (= j < 1o«
LT ) eyt gy) for Ak aee T L

n
T Pr{yis(—c
i=1

@@ Yy gy AT

*
See Karlin and Rinott 1980 for a definition of MTP,.




which when applied to the result of part one implies

n n
Pr{ U x,¢f(-c.,c.)} < 1= T Priv,e(- Yiv.e(- .
rt.; hlé( c cl) <1 T r\}lc( C”(i)’cf(i)"yjf( C—(j)’cf(j))’ Jcsl}
i=1 i=1
n
=1- T priafl U afl
i=1 jes | J
1
Remarks.

1) To implement this theorem requires being able to determine

Priat! ;. A%}
SR
I=854

dimensional marginal distributions.

which requires being able to integrate over m

2) TFor =2 the above theorem is equivalent to the following:
Let x -~ N(0,7) where the off diagonal elements of -D'D are
nonnegative Wwhen D is somc diagonal matrix with elements +1.
Let T be anyv maximal tree connecting the % and forming no circuit
WLOG let ¥; be a terminal mode of this tree and let all connections

be directed toward ¥;. Llet eij be the directed edge connecting Xi to

x. i.e. (x. 2V x.) and let AS be the event x,¢(~c.,c.). Then
j i i i i1

i=1 - e.. T
1)

U w d e Vs g o ‘ ¢ 1aC1a%7.
Pr: \ hi¢( Li,Ci)_ 1 [PrLAl} TV PrAAj_AiJ]

3) As in Theorem A-I for m=2 the best tree T can be found using
the procedure of theorem AP-1 in the Appendix. Fer m > 3 it is harder
to find the "best" permutation -(+) and sets s, to get the lowest

possible upper bounds from this method.

4) This theorem is not distribution free it depends highlv cn the
fact that 155 is MTP2 and that intervals of the form [O’Ci) are monotone

of the same type.

~I




Approach III. Independent Subunit Conservative Bounds.

Theorem A-III. (Khatri 1970. Proved by Bechner 1987). Given x  N(0 7)

and {wll,{wz},...,{wF} are disjoint collections of X such that

F
(R S A S N S
=1 f 1°72 n
Then
F
Pri % x,c(-c,,c.) Topri 0O X.e(-c,,c.)}
— i i*i
i=1 f=1 x,.cW
F
which implies
n F
Pr:f xiz(-ci,ci); <1 - ’T Pr’ t xii(—ci,ci)u
i=1 f=1 xiskF

Proof. The proof in Khatri's article was incorrect. It has come to mv
attention that the theorem has been subsequently proven bv Bill Bechner

at the Universitv of Texas Austin but the proof has not been published vet.
Remarks.,

1) Bv itself, this theorem 1s not any superior to the Dunn-S5Sidak
method but, as we shall see later, is useful when combined with the two
previous approaches mentioned in this chapter.

2) This theorem is highlv nondistribution free and can be used
onlv on convex symetric probability regions centered at the origin

(or compliments of such regions) involving densities where f(x) = f(-x).

Corollary A-IIIC. Given x ~ N(0,2) and {W W

Lo
- 1, L

ot

disjoint collections of the X5 such that

P A O S SN
I *“n

8




and if is an upper bound for Pri i}
iswf
n
Pri 1 x,f(-c.,c.)} -1
. i i
i=1
Proof.
By Thm. A-III
‘n L
Pri; xif(—Ci,C.)J <
i=1
F
=1- 7 1 - Pr X.¢(-
. . i
f=1 I:ZL\F
-
1= T 1=
. f=1 ‘

bv repeated application
of the distributive
multiplication inequality

Xl¢ (—Ci’ci)

F
HEN G T
=1 f
F
1 - 7 Pr
f=1
c.,c.)
1 ).
9

|

J

Then




I11. COMPARING THE METHODS.

Theo ems A-1 and A-II have been presented in a way to enable us
to use m dimensional marginals for m > 2. To keep the statements
and proofs of the theorems simple for the remainder of this technical
report m = 2 will be assumed whenever theorems A-I and A-III are used.
All of the results in this chapter could be extended to comparable
results for m > 3,

Since there are several different methods to use, the question
arises as to under which conditions is one method better than the
others (i.e., gives closer bounds). This question is explcred further

in the present chapter.

Thereon (-1, Let = and Ai be as described in Theorems A-I, A-11

and A-11I. 1let n 2 then (i) the intersecticon subtraction method

(Theorem 4-1) upper bound i{s exactlv the same as the conditional multi-

plicative method (Theorem A-II) upper bound and is exact. (ii) When
the correlation is non zero, the Dunn-Sidak upper bound result is

inferior to the upper bound of theorems A-I and A-T1.

Proof. (i) The A-T upper bound for Pr1A1 Az is Pr{Al;+Pr_Aq-—
PrfAl‘A: which equals Prf.f\l Agt bv elementary axioms of probability.

The A-I1 upper bound for Pr{Al‘AZl is

_priaSa TAC ACY o 1_priaCoaCy o - A 5
1 Pr.LAl Pr,Az Al. 1 Pr\A1 Az\ = PrLAl.Az,
(i1) Theorem 1 in Sidak (1967) and its proof show that Pr{A1,A7 is
a monotonically decreasing function of the abselute value of the correla-
o Y 9
tion coefficient for fixed variances :I and - where again Ai =Pr o i(-c;.ci)'
10
R "~ p—— SRS



Theorem C-2, Let x and Ai, i=1,...,n be as described in

theorems A-I, A-II and A-III. For n > 2, assuming m = 2 and that
the conditions are met for the conditional multiplicative (A-II)

upper bound, then for anv upper bound given by either overlap subtrac-
tion (A-I) or by Dunn-Sidak (I-1) there exists an equal (or superior

if T 1is not diagonal) upper bound given by (A-II).

Proof. First. For a given directed tree T with edges e, and the
root at X as described in remark 2 of theorem (A-II),

the (A-I1) upper bound is

c c,.cC Pr(AiriA?)
Lo-pr) 1 GaiaDl =1 - Pr(Ai) - —

e, :T e,.cT Pr(A?)
ij ij 3

Pr(aS)pra)
1 - Pr(Aj)C T —r ) -9
e e Pr(a%) i=1
by theorem L J
1 in Sidak

(The inequalitv is strict if § is not diagonal)
= Dunn-Sidak upper bound

Second. Ffor a given directed tree T with edges eij and the root at

% as described in remark 2 of theorems (A-II) and (A-I). Let T, be

the tree connecting the first two elements in T and Ti be the sub
tree ot 1 connecting the first 1 elements in 1 4i=3,...,n. Let

(A—I)i and (A—II)i be the A-I and A-II upper bounds for Pr ! (Aj).
i1,
Then bv theorem C-I we have 1

(A-I)2 = (A-11)

11




A - T T TR T v v~ e

Where Xy is the third element of the
b tree and jT is the item
9

- = - - in T, to which x, is
(A 1)3 (A 1)2 + Pr(AX ) Pr(Ax rwAi ) 2 3
3 3 “T, connected.

= (a-1), + Pr(a, naS )

3k
EZ
= _ _ _ _ C
1 [1-(a I)2 Pr(Ax nAj )]
3 T
2 C
Pr(aS )-Pr(a_nas )
It 3 1,
B 1 - [[l-(A—I)Z] : - ]
Since &—— c Pr(a; )
(1-(A=1),) < (A, ) It
2 i 2
2 Pr(A? nA? )
Jr, %3
=1 - ([1=-(-1),) ——— ]
- PT(A, )
. C C
Tl - HL-(A—II)Z] . Pr(Ax3 AjT )}
Since ¢« .-—" 2
(A=1), > (a-1D),
= (\—11)3 .
Thus (:\—I)3 ; (A—Ii)3 .

Following this proof inductively expressing (A_I)A and (A_II)A in terms of
(A—I)3 and (;\—II)3 and 2y, the fourth element of tree T, we will get (.»\—I)4 -
(A—II)4 etc, until obtaining (A-I)nt‘(A-II)n for anv n > 2, But Tn==T and thus
the upper bound from using A-I on T is higher than the upper bound

from using A-I1 on T which completes the proof.




theorem C-3. Let T be as described in remark 2 of theorems A-II
and A-III and let oi and <4 be constant. If mafoi.! is bounded
T

bv some value less than one then as n - «, the Sidak-Dunn assunption

of independence eventuallv produces a better upper bound for

than does the intersection subtraction method (A-I) and in fact for n large

enough, (A-I) will produce an upper bound for

=]

Pr: .
i=1

o=

which is larger than 1.

Proof. The intersection subtraction method upper bound is

Y PreA, - PriA, "A, ' =
- i T i j
ij
Pr;,\1 i [Pru’\l_ *-—PrxAi B nj ] >
,.eT 1
ij . . ‘
"By Theorem 1 of Sidak since ‘Pij‘ is
bounded below 1, PrfAi;—Pr{\i'Aj} >
n>0 for all i and j. See footnote below.
n
PreA. Y [n)}=PriA +(np-L)n>1> 1-7 (1-Pr-A,}) = independence
1 + - 1 IS 1 i
e,.cT & N upper bound
) A f T ough
for some or n large enoug
>0

Since <y and :? are constant and maxiPii' is bounded by some value

T IS,
less than one, it follows that PrfAi? = kl' for kl some constant and by
Theorem 1 in Sidak that Pr{Ai"Aj} < k2 for k2 “ kl. Therefore,

[Pr{Ai}—Pr{AiﬂAj}] > n for some constant n > 0.

13
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Conclusion,

Theorem C-2 shows that whenever it applies, the conditional multi-
plicative (Theorem A-II) alwavs gives ti thter upper bounds than do
either the intersection subtraction (Theorem A-I) or the Sidak-Dunn
(Thereom I-1) methods. Hence (A-II) should be used in preference
to (A-I) and (I-1) to obtain upper bounds whenever the data is jointly
MTPZ. Theorem C-1 implies that for small n, the intersection sub-
traction method (A-I) gives tighter upper bounds than does the Dunn-
Sidak method (I-1). Theorem C-3 implies that as n gets larger, the
Dunn-Sidak (I-1) upper bounds tend to become superior to those of the
intersection subtraction method (A-I) for cases with the same <c,,

1

and Epij[ bounded away from one. The Dunn-Sidak method has been
compared with the intersection subtraction method in more detail

(see Hoover (1986)).

14




Iv, COMBINING THE APPROACHES.

The three methods A-I, A-II and A-III can be combined together
to give lower upper bounds to Pr{iQI xii(—ci,ci)} than could be
obtained by using any of these methods, or the Dunn-Sidak Theorem alone.
In fact, whenever I 1is nondiagonal, there will exist some combina-
tion of A-I, A-II and A-III which gives a lower upper bound to
Pr{iél xi¢£-ci,ci)} then does the currently used Dunn-Sidak method.
It would be nice to be able to, for a given situation, determine the

best combination of A-I, A-II and A-III in terms of giving the lowest

n
upper bounds for Pr{ xi¢(—ci,ci)}. Unfortunately in most cases

i=1

this would be computationallv impractical to do. Nevertheless it
is possible to develop procedures which combine the methods in wavs

that produce good results,

Example M-one.

At this point, a description and example of how the three methods
can be used together should be given., Let us assume x is an 8 - 1
vector with a N(0,7) distribution and that a directed tree with the

following links has been set up

We now define three types of links

S -~ Intersection subtraction (A-I)

M - Conditional multiplicative (A-11)

1 - Conservative independent subunit (A-III)

15




These links correspond to which method is being used. We can now assign

these link types to such links on the tree for instance

X4
$s
I

S M
X, < X, + X, <« X

1 2 3
4 M
s
M
X

6

The first step we wish to take is to identify the continuous sets of

variables connected by M links and calculate the upper bounds for

Pr- A, where A; ic as defined in Theorem A-TT. Inthe above example
set
N\ N N
there is onlv one such sat Xe i Xg i X4 i Xq. The (A-1I1) upper

bound for

Pr{ (M) % s *l-[Pr astePriasias o Pria®iaS opriafiac
ie3.5.6. 7 1 is 1=[ProAgePriAs Ay -Pridg ag riA,ag)]
A £ ’
bv repeated apolications of A-II.

Note the order that (A-I1) was applied does not matter. For instance if

K M M M ¢ t
{ X, -~ + X, » X
we too )\6 X5 3 \7 o ge

. A . .
(A): < 1-[PriASYePria

Cr,C- c
TePriA
i — 7

Pr® 3‘A7

S SSAE}-Pr{AgIAg}],
i=3,5,6,7
the reader can check that #%* gives the same value as *,

So let % be the (A-II) upper bound for Pr{ |, ALY,
. i
i=3,5,6,7

The next step is to use Theorem (A-I) to compute upper bounds
using those calculated in the first step and incorporating the §

links. 1In the above example this will give us

16




Pr{ (a0} < priay} + Pria,} - Pr{AlﬂAz} by theorem (A-I)

L)
i=1,2

and

Pr{ U (A.)} < >+ Pri{A, IPri{a }-Pr{A nA }-Pri{A nA ) by a
i=3,5,6,7,4,8 * b 8 &3 &7

slight modification of Theorem (A-I)

Let il be the upper fornd for Pr{ U (Ai)} which in this case
i=1,2

was Pr{A1}+Pr{A2}—PrfAl“A2} and let $2 be the upper bound for the

Pr{ C (A.)? which was derived above.

i=3,5,6,7,4,8

The last step is to incorporate the I link between Xq and X,

bv using corollarv (A-IIIC) to give us the upper bound for

[e e}

pr{i,;,1<Ai)3 <1-a-1p a-Ly .

1t should be noted that for real cases where a tree has been determined,
assignment of S and 1 links is arbitrary, whereas M links can be
assigned only if the joint distribution of the entire group connected
by M links meets the MTP2 conditions of theorem (A-II).

It should also be mentioned that the M links were handled first
in step 1 because theorem (A-II) can only be used with M links.
There is no way to incorporate other types of links into the results.
The S 1links were then incorporated before the I links were since doing

so gives superior results (lower upper bounds).

17
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Example M-two.

G This is another, different approach which could be used to

combine the methods together to obtain an upper bound. Let us

assume x is a 4x1 vector with a N(0,I) distribution and

-~

that a directed tree with the following links has been set up
X, * X, € X, *X

Let Pr{Ai} have the usual definition for i =1,...,4 and assume
: 1o . ! !
that the (;xl’,|x21,|x3|) are jointly MTP2 and the (;x21,|x3|,|x4|)

R | . s
are jointly MTP2 but (:xll,lng,lx3],lx4|) is not jointly MTP2.

Then by Theorem (A-II) an upper bound for Pr{AlLAZLAB} is

c c c..c c *
{ 2= 1= AS1epriatra©y { C}. ~aS3 %
| 1 1 [Pr{Al4 Pr.A2 Al‘/Pr‘Al Pr{A2 A3 /Pr Ao}]

and by Theorem (A-1I) an upper bound for Pr{AZ;A3JA4} is

o = 1o (4CYepriaCe Gy FaC1ap 1 aCnasC ‘. C
g 1 [PrtAZJ Pria a’ /Pr\AZ, PrLA40A3}/PrtA3} .

A Using :1 and :2 along with corcllarv A-IC and

S) = ApsAyuAgs Sy = AnA0, 5 Sy = Ag Ay

514 Sy = ApAyALA,

gives:

C‘ -—

" Note Pr{Ag‘A , c
J Pr{Aj}

18




It would be nice if it were possible to find the best tree T

and method combination set up which gave the lowest upper bounds.
To do so would require a quadratic program which, except for small

n would be computationally impractical to solve.

It might be possible to develop a ''good' procedure to combine
the three approaches in such a way to give a lower upper bound
than does the Dunn-Sidak method when [ is not diagonal and hopefully

give an upper bound which is close to the lowest possible upper bound

achievable from any procedure combining the methods.

The author believes that there is one navticular situation where

n

one can find the lowest upper bound for Pr: ., Ai} nossible from com-
i=1

bining the three procedures and show that this method is indeed the

lowest possible upper bound. That situation is when the absolute

! | |
lye..,ix 1) are

values of all the elements in x (i.e. 1xl;,gx7‘

jointly MTP,.

Hvpothesis M-1. Let x ~ N(0,”) if !x' 1is also jointlv MTP2 i.e.

for some diagonal matrix D with elements +1 such that the off

diagonal elements of -DID are all nonnegative, then the upper bound
. n \ , n

for Pr - A} or Pri . x,{(-c,,c.)} geiven bv (A-II) from using
j=1 1 j=1 1 i’7i

n

anv tree T 1is lower than the upper bound for Pr{'ulxié(—ci,ci)}
1:

given from using any combination of A-I, A-IC A-I, A-III and

A~IIIC on that same tree T.

The proof would be quite complicated since there are so manv

wavs to combine the different metheds together vhich must be considered.

19
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Given that hypothesis M-1 is true, then to get the lowest

. n
possible upper bound for Pr: ;A from any combination of the
i=1

three approaches, we use the (A-II) approach entirely on T' the

i1

best tree derived in remark 2 of theorem (A-I1) ard theorem (AP-1)

in the Appendix.

20




V. EXAMPLES OF APPLYING THE COMBINED METHODS.

Example One. Consider the MA(5) model. Let

X, be iid N(0,1) and

5 R
let y, = I x Then P = max(é—l%—l—l,O) and Oy = /5.

j j= j+i V.sY!
J i=1 ] .JQYJ

Let the set R = {v),y,,¥,,V;,¥g:¥g)

wants to know upper bounds for

A) Pr{ U v 1 > 1.96 /5

jeR

B) Pr{ U |y.| > 2.25 5}
jer

C) Pri . v, > 2,50 v5}
jer 3

D) A lower bound for ¢ such that Pr:

Clearlv the best tree T' is S P

P12 ™ Pp3 = Pyg = Pgg

for any continuous group of size 3 or more on

density so we are dealing onlyv with S and I

(3eh1 = N4
.80 while P37 .20.

3

and suppose the researcher

Yoayg cr < .10
jeR

77VgTvg and
It can be shown that
T' that there is no MTP2

links. Below answers to

A, B and C are shown using the procedure of example M-one in chapter IV with

(i) all links as 1 1links
(ii) all links as S 1links
(lll) }l—“z’.\z_'y‘}’\/7-}/8’\'8-\/9

METHOD

as S links Y47Y- as an 1 link
i

(i) A1l I links (ii) All S links (iii) Ya-Y5 I link

all other S links

A) Pr{ i ly 1>1.96V5} L2649 .2051 .2010
: J
J+R
BY Pri i |y, 12,255} .1380 1076 1057
jeR
C) Pri i lv,!1>2.,50/5} .0722 .0569 .0564
jeR
21
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The combined method (iii) works better than does either the
pure I method or the pure S method although the improvements from
(iii) over (ii) are not spectacular. The upper bound ratio of method
(iii) over method (ii) ranged from ,991 for C) to .980 for A).

The answer to D wusing methods (i), (ii) and (iii) respectively
is

(1) 2.383

(i1) 2.283

(iii) 2.275

Example Two. Let (xl,...,xb) - N(0,7) where

O O O
Yol
P

Let the researcher be interested in upper bounds for

6 -
A)  Prf x, >~ 1.96"
. i
i=1
6 .
B) Fr. \i 2.25
i=1
6 t
C) Pri i ‘x>~ 2.50!
. i
i=1
and
6 o )
DY A lower bound for ¢ such that Priv '’ ‘xi; > et <.05
i=1
Clearlv a best tree T' is
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It turns out that while x 1itself is not jointly MTP_ the sub-

2
!

P
I ;

Pl e ! . . .
vectors (Txl ,leﬂh3.,x4=) and (}x3L:x4h xsh:x6f) are each jointly MTPZ.

So it is possible to use an algorithm similar to that of example M-Two
in chapter IV to get an upper bound. We shall call this method (x).

()

First use (A-I1) to get upper bounds for

S
o))

Then use (A-1-C) to give

o2
=~

Below answers to A, B and C are shown using

(i) All links as I links
(ii) All links as S links
(iii) Method (%)
METHOD

(i) A11 1 links (ii) All S links (iii) =

6

A) Pr{ . x,>1.96° L2647 .1518 .1491
i=1
6

B) Pri .. ;xi?>2.25> .1380 .0792 .0784
i=1
6

D) Pr’ ‘xi'»z.sui L0722 .0423 L0471
i=1

23




Again the improvement of method (iii) over method (ii) was not
spectacular. The upper bound ratio of (iij) over (ii) was .995
in C, 990 in case B and .982 in case A.

The answer to D using methods (i), (ii) and (iii) respectively

(i) 2,635
(ii) 2.436

(iii) 2,433

Example Three. This is based on problem E on page 230 of Drapper
and Smith. A linzar regression is developed to predict corn vield
per acre In lowa. Five of the coefficients in the final equation
are 1., Year, 2. Julv Rain, 3. Julv Temperature, 4., August Rain
and 5. August Temperature. Ignoring the constant coefficient b0;
call the five coefficients, bl, b2, b3, b4, b5, and the estimated
coefficients ﬁl, gi, EB. g# and gS respectivelv., The correlation
matrix of g is
= -,1160 1
L4870 . 3445
-.1725 1215 -.0914 1

-.2076 L3362 -.3042 .3339 1

The best tree T  turns out te be




The distribution of b is not MTP, but the distributicii of
L

A ~

b2, b4 and b5 is ?‘ITP2 however.

Let us assume that the researcher wants to have upper bounds for

5
Do T + A ~n S
B) Pr. i, b, ¢ b, #1.96 cp
i=1 i
> 1
B) Proy b, 7o *2.25 G
i=1 i
5 ~
¢) Proy by { b+ 2.50 70
1=1 1

and

D) A lower bound for ¢ such that Pri b, ¢ b+ csr } < .10
i=1 1

o

e

o
|

and also the researcher wants a lower tbtound for ¢ so that
5 4
Pr’ by _(bi‘C“A }: - .10. We can calculate these bounds by using the
i=1 by |
procedure .n oxample M-one section IV with (i) all S links, (ii) all I

~ S, TN M s N
H i3 ¢ ving i © | L—"‘l — :
links or (iii) the following links <:E;/ \ng Eg/ HEE/——Kgé/

.

The upper bounds for A, b and C are

METHOD (1) METHOD (ii)
All I links All S links METHOD (1ii)
5 .
A) Pr: b.¢b.21.96 ~ L2262 L2245 .2156
i=1 1 1 h,
1= i
D - -
BY Pr: - b.¢b :2.25 -, 1164 .1135 L1117
, i i 1
i=1 i
5 -
c) Prf : b.fb.x2.50 c. } L0605 .0589 .0586
(=1 1 1 b
1= i
25
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The upper bounds for D wusing (i), (ii) and (iii) respectively are

(i) 2.319
(ii) 2.310

(iii) 2.306

The probability ratio of method (iii) to method (ii) was .995 in case

C, .984 in Case B and .960 in case A.

Analysis.

In the three examples of section V, the merged methods produced
lower upper bounds for probabilitv than did anv of the single methods
used alone. In all three examples using onlv S links was the best
competitor being from .960 to .995 as efficient. One difficulty
involved with merging the methods is that it is not simple to figure
out "how" to set up the combined links. It would appear difficult
to come up with a simple universal algorithm to do this meaning that
one would have to do this oneself bv making educated guesses as to

which combination of methods to use.
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VI. TABLES OF RESULTS FROM COMBINED (A-I) AND (A-III) METHODS.

At this peoint, we will try to explore, in some systematic fashion,
when combining the methods gives improved results over using any of the
methods singly. For simplicity, Method (A-II) the conditional multipli-
cative method is not being considered. If (A-II) links could be included
in the comhined methods studied in the next few tables one would expect
that even lower upper bounds would be obtained. The methods will be
combined together in the fashion of example M-one in Chapter IV.

Tables A, B and C look at various combinations of § and I 1links
compared to the best of using all S links, or using all 1 1links, for
calculating upper bounds of Pr{iilxié(-c,c)? where n=4,6,10
respectively, under different correlation structures for the links. In

all three tables ¢ is set equal to 1.96 and 2.50 while the best

tree T' is assumed to be a string of the form (xl—x —...-xn).

2
S 1 S S. S 1
In table A, link patterns of the form X =Xo=Xa=X, and Xy "X XK,
S.S_ S 1 1.1 .
are compared to the best of Xy TEH,TREX, and X TR, TRG=X The combined

methods do give better results than deces the pure S method or the conser-

vative assumption of independence when fPi_‘ < .3 for X, linked to Xj

bv the I link. The combined methods do better when ¢ = 2,50 having
upper bound ratio values as low as ,953 compared to pure methods than
they do when ¢ = 1.96 having upper bound ratios by factors as low as

.977 compared to pure methods,

S
In table B, link patterns of xl§x2§x3lx4—x §x and

S S 15§ S. S S S_S§

S
L mNA—X oK, X=X are compared tco the best of x,-X,-Xx,-X,=%_.-X
KT TRTEL TS TR P 2773 5

27




2

and xl£x2£x3zxalxslx6. The combined methods give better results than

do the pure methods when {pijl < .4 for X linked to xj by the I
link. The relative upper bound ratios of the combined methods to the
pure methods were somewhat lower (better) when n=6 than when n= 4. When
n=6 the ratio of upper bound combined/best uoper bound pure methods were

as low as .955 for ¢ = 1.96 and as low as .985 for c¢ = 2,50.

In table C, the link patterns of :

W) xoxIx Sk Ix Sk Ik Sx Ix Sy
17 %2 7X3TX, TRy TR TRG TR0

(l) \(§ § ixg Ixé _I.X §X §x
1) X =% ,)=Xg=X =X, X6 7*77787 %97 10

(iii) x §x §K §x §x lx §x §x §x §x
1772773774756 77778 79 710

are compared to the best of

S S S S S S S 55
X TRTRITR TR TR TR 7T 9T 10

and

o1 11 1. I I
X T TRTR TRGTRGTR TR TN 970

The combined methods give better results than do the pure methods
when }P_jr < ,8 for c =1.96 and Ipij! < .6 for ¢ = 2.50. The
13— hl
probability rativ of combined method/best pure method were as low as

.928 for c¢=1.96 and as low as .977 for c¢=2.50.

Summarizing tables A, B and C the following tendencies were observed:

28
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1. The combined methods were better with respect to the pure
methods as n became larger. It is felt that this will continue

to be true for larger values of n than were looked at here.

2. For |P_.| not too close to zero where x, is linked to

13 i

xj by an I 1link in the combined method, the combined methods

became better with respect to the pure methods as ‘Pij| became

smaller.
j 3. The combined methods were better with respect to the pure
methods for the smaller value of ¢ = 1.96 versus the larger value
J of ¢ = 2.50. It is felt that this will hold in general for all
r values of c.
} The question remains as to whether there are applications where

it is worth the extra effort to compute the merged results to get
1

the lower upper bounds than are given by the pure methods.
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TABLE A

UPPER BOUNDS FOR Pr{ E Xi¢(—c,c)} OBTAINED FOR N=4,
i=1

WHEN THE BEST TREE IS A STRING Xy ~Xy=X37X, BY USING
DIFFERENT COMBINATIONS OF S AND I LINKS

Correlations along the various links c =1.96 c = 2.50
Best of Smallest Pijsl Best of Smallest Pij=I
%)=, X, Xq Xy=X, all S and Rest are S all S and Rest are S

1 all I all I
)

.9 .5 .9 L1314 .1357 .0355 .0365
] .8 .3 .8 .1469 .1501 .0397 .0405
1 .9 b .9 L1340 .1357 .0360 .0365
p .8 A .8 L1495 .1501 L0402 .0405
: .6 4 .6 .1684 .1675 .0453 L0451

.9 .3 .9 .1358 L1357 .0362 .0365

.8 .3 .8 L1513 .1501 L0405 .0405
1 .7 .3 .7 L1621 L1600 L0432 L0432
4 .6 .3 .6 .1703 .1675 L0451 L0451
) .9 .9 .2 L1372 L1362 L0365 .0365

.9 W2 .9 L1372 L1357 L0365 .0365

.9 .1 .9 L1379 L1357 .0366 .0365

.8 .1 .9 .1455 L1430 .0387 .0385

.5 .5 .5 1721 L1731 L0457 L0464

.3 LA .5 L1747 L1731 L0487 L0464

A LA A .1799 L1779 L0487 L0474

.3 .3 .3 L1854 L1811 L0487 .0480

.3 .2 .3 L1854 L1811 .0487 .0480

.2 .2 .2 L1854 .1837 .0487 L0484

4
Note for N=4 the upper bound for Pr! - xié(—c,c)7 given bhv the
i=1

conservative independence assumption is
(i) .1854 for ¢ = 1.96:

(ii) .0487 fer c = n.50:
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TABLE B

n
UPPER BOUNDS FOR Pr{.\,lei,é(-c,c)} OBTAINED FOR N=6,
1=

WHEN THE BEST TREE IS A STRING x
USING DIFFERENT COMBINATIONS OF S AND

Correlations along the various links

. . . . .
N O 0 WO WO

Fas

w w 0 @

. . . . . . - . . .
w W 00 ~N &~ U~ 00 v W

3

Xomx % -x % -x Best of
374 4 75 576 All S and
all 1
.5 .9 .9 L1723
L4 9 .9 L1749
A .8 .8 . 2057
.4 .7 .9 .2010
o4 .5 .6 .2499
iy A ya .2665
.3 .7 .8 .2183
.8 .3 .8 .2075
.3 .3 .3 . 2649
.1 .3 .3 L2649

1

Rest are S

c = 1.96
Smallest P, .=1

.1733
.1733
.2011
.1970
.2401
.2545
. 2107
.2019
. 2607
. 2607

6

Note for N=6 the upper bound for Pr{ i,

conservative independence assumption is

(1)  .2649 for c = 1.96:

(ii) .0722 for ¢

]

2.50:

31

i=1

xié(-c,c)} given by the

“X,—X,—-X . =X_-X, BY
2 73 "4 75

6

LINKS

Best of

2.50
Smallest P, . =1

All S and Rest are s1J

all I

.0475
.0479
.0562
.0549
.0669
.0702
.0594
.0566
.0722
.0722

.0482
.0482
.0563
.0554
.0666
.0698
.0590
.0564
0711
.0711
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VII. TERMINOLOGY

X - is an nxl vector of random variables with a N(0,y) distribution

Pij ~ is the correlation between Xy and x.

A1 - is the event Xy is not in the interval (—ci,ci)

Si - is a set of integers representing corresponding numbered events
from AI’AZ""’Ai—l or equivalently corresponding numbered
varlaples from xl,xz,...,xi_1

(mAan) - is the minimum of m and n

1 Pr{-} - is the probability that {*} occurs
X T - is a tree connecting the events Al,AZ,...,An or equivalently
1
# the variables X aXgsene X
€5 ~ is a directed link from %, to x, or equivalently from
eiJ
1 A to A, e. X 4 X
J i J & i ]

§ link - an S link from X4 to Xj indicates that the upper bound
operation which will be performed between these two variables
(events) is of the intersection subtraction (Theorem A-I) tvpe.

1 M link - an M link from X, to xj indicates that the upper bound
operation which will be performed between these two variables
(events) is of the conditional multiplicative (Theorem A-I1) type.

I link - an I 1link from X, to Xj indicates that the upper btound
operation which will be performed between these twu variables
(events) is of the conservative independent subunit (Theorem A-III)
tvpe.

n

- an upper bound to Pr: Ai}.
] i=1

4

AR - Pr'A B rmeans the probabilicv of A given B.

S
I
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VIII. APPENDIX.

Below is presented the theorem to find the "best" tree with
which to apply method (A-I) or method (A-II) for .1e case m=2.

Note that amaximal tree is one which has the maximal number of links

connecting n elements while forming no loops, (n-1 1links).

Theorem AP-1, Let x "~ N(O,I and let Pij be the correlation
coefficient between Xy and xj. Let T be any maximal tree

connecting the individual components of x. Let OT be the order

statistics of ipij’ for eijET. Set up a tree T' by performing

the following process n-1 times: Link Xy to x, for the 1i,j

which maximize !Piji among all unlinked 1i,j whose linking does

not create a circuit. Then this tree will have the following property

0.y, > (OT)j for all other trees T and all j=1,...,n.

'3 —
Proof. The reader is referred to Hoover (1986) or Kruskal (1956).

Remark: Since Sidak's theorem gives that Pr(Ai“Aj) is a nondecreasing

' the above theorem implies that T' 1is the best tree

function of ?P.j
on which to applv methods (A-I) and (A-II). Note than when using a

combined method for any given situation, T' may not be the best tree,

but should still be a good tree to use.
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