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DIFFERENT ALGORITIS FOR OBTAINING UPPER BOUNDS TO

UfLTIVARIATE NORMAL AREAS OUTSIDE OF ORIGIN

CENTERED RECTANGLES USING JOINT

MARGINAL PROBABILITIES

By

Donald R. Hoover

I. INTRODUCTION.

Upper bounds for multivariate normal probability areas outside of

rectangles centered at the origin are of interest due to their applica-

tions in producing conservative unbiased simultaneous confidence

intervals and hypothesis tests. Unfortunately, it is often not compu-

tationallv practical to integrate multivariate normal area over

dimensions n > 4 and obtain these probabilities exactly. The method

commonly used to determine uppor bounds foT normal probabilities

of these regions is based on the conservative assumption of indepen-

dence as given in the following theorem suggested by Dunn (1958) and

preyed by Sidak (1967).

Theorem I-1. Let x - N(O,-) and let A. be the event x.(-c.,c.).

Then

n n n n
Pr{ - A.. 7 PrjA - -Pr, A.f > I - " PrA.

i=1l i=l 1 i=l 1 - i=1  1

Since 1967, three different approaches have been taken which enable

n

one to obtain lower upper bounds for the Pr{ A.} than those given by

i=l 1
Theorem 1-i. These approaches require that Z be known and integration



over joint m-variate densities be possible for some m: 1 < m < n

to obtain Pr(Ail A. ... A. }. These three approaches are described
1 2 Im

in chapter II, and compared in chapter III. They are combined together
n

in chapter IV to produce lower upper bounds for Pr{i I A. than are

obtained from using any one approach alone. In chapter V examples of

combining these methods are given and in chapter VI selected tables

n
of upper bounds for Pr{ i Ai) given different combinations of the

i=l12

three approaches are shown. Chapter VII has a descriptive summary of

the terminology used in this report and can be uned for quick reference.

...1/._ _

VI
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II. NEW APPROACHES FOR UPPER BOUNDS.

Approach I. Intersection Subtraction

This theorem was first proven for m = 2 by Hunter (1976)

and later extended to m > 2 by Hoover (1987). The theorem is

Theorem A-I. Let x be a n- 1 vector distributed N(O,), y

be any permutation 7(.) of the elements of x, and A. be the1

event Y. . (-c )c(i))" Let 1 < m < n and let s. be a set
I -(i) 1

of size (M-1 A i-l) of integers 1,2.... i-l. Then

n

Pr" xi (-cic)
i=l 11

n

Pr.X A1 + PriA. - Pr'A. i A.]

i=2 1 s i

n C
PrA + Pr'A.[ A.]

i=2 j s

Proof.

n n
Pr x i (-ci,ci) - Pr ," i Y 'i -c - (i ) 'c 7

i
M

n n i-i
= Pr (A.) = PrA I + Pr{A. [ A.] c )

i=l ii-2 i 1 j-

nn
Pr-A + PrA. [ A.] c  Pr{.A + PrA-Pr [ A,]

- P i2 1i=2 1 1jcs.

Remarks.

1) To implement this theorem requires being able to determine

Pr"A. , [ , A. ]C, which requires being able to integrate over m

1

dimensional marginal distributions.
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2) For m 2 the above theorem is equivalent to Hunter's

Theorem which is: Let x be N(O,Z). Let - be any maximal

tree connecting the x. and forming no circuit and e. . be edges1 1]

on this tree then

n
PrI X i (-c i  )' <

i=l11 1c _

Pr{xiV(-c,ci)) - 7 Pr{xiO(-ci,c i ) xj (-cj,cj) .
1 11 i 1 J 3e,..T13

3) This theorem still leaves unsolved how to choose the "best"

permutation -(-) of x. and sets s. to give the lowest upper
1 ]

n
bound for Pr' x.g(-c.,c.) . At least one "best" permutation set

i=l i 1 1

s. exists since there are a finite number of permutations and sets

s. For the case m = 2 this is equivalent to finding the best tree

T for the theorem mentioned in remark 2. This is possible to Ao:

the procedure is given by Theorem AP-l in the Appendix.

4) This approach is distribution free. The theoLem is true for

all unions of any collection of events A.: i = 1,...,n. The fact that
1

A. was vi(-c c ) where v. " NkO,i) and -,') is a permu-

tation of 1,...,n; was not used in the proof. The next two approaches

will be less general.

Corollary A-IC. Group Subtraction Overlap.

Let sI and s2 be sets of integers from {1,...,n}.

Let be the upper bound fnr PrL i A .

Let bo he the upper bound for PrI .) A.i.
iEs 2

I

Let s3 be the intersection of the sets s1 and s2 .



Then

Pr{ u A.} < l+ 2 -Pr{ 1j A.}
iE(slus 2 ) i ics 3 1

Proof.

Pr{ A.) = Pr, A} + Pr{ t A - Pr{( J A.) ( t A.)}1 i j "

ic(s 1 s 2 ) icsI is2 iEs1 ilES2

< Pr{ ., A.}+Pr{ A.}-Pr{ A.

1 1

-- is a2 i (sls 2 )

- ] + 2 1 r .
i~s

CS3

Approach II. Conditional Multiplicative Approach.

The following theorem is a corollary of a theorem from Glaz and

Johnson (1984).

Theorem A-1i. Let x be an n, 1 vector distributed N(C,7) where

all off diagonal elements of -DZ'D are nonnegative for some D,

where D is a diagonal matrix with elements +1. Let v be any

permutation --(-) of the elements of x and A. be the event~ 1

y iE(-c(i), c(i) ). Let 1< m _ n and let s. be a set of size

(m-lAi-l) of integers i,2,...,i-I for i = 2,... ,n.

Then

n n
PrI, x. I (-c ,ci)1 - 1 - PrA"' Ac '1 i,: S}

i=l 11i=l 1 s.
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Proof. Part One.

n n n

Pr{ xie(-ci,ci)j = l-Pr{ () ,xic(-c.,ci)} = 1-Pr{ ( (yiC(-c c(
i=1 i=l 1=1

n
= 1- i r~ c-c (. jYC£ c2(..) ) j=l,..,i-1}

1=1 P{i (-c (i),c(i) (-c (j) . ... .

Part Two. By a theorem in Karlin and Rinott (1980)

(a) lvy has an MTP2  distribution when xtN(O,T) and the

elements of -DY- D are nonnegative where D is any diagonal matrix

with elements + 1.

(b) v.(-c ) for all i
-  vyc[ 0 c -  ) for all i and

these are monotone sets of the same type.

It hence follows from (a), (b) and theorem 2.3 part (1) in Glaz and

Johnscn (1984) that

Pr-v E(-c y (-c c ))for all jes.) <i -(i) T (j)' -(j) i -

Pr{.vi (-cT,c(i) y -C(), (j)C ~ ,..il

which implies that

n

Pr v .(-c ,c (.) v i (-c .,c ) for all js.i -i(i) -) ' (j)-r(j) 1 -

n

Pr~v -(-c 0~(c )v.z(-c c , j1.. '" l i -j' C ( i ) J(j ) Q(
i= 1

See Karlin and Rinott 1980 for a definition of MTP 2 .
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which when applied to the result of part one implies

n n
Pr' x, xi (-ci c )" < I- Pr'YiC - c ))y(-c E: ()) jCs

i ~ l -- = l - i ' C ( i ) Q ( ) : (

n
=1- E Pr{Ac u A} .

i=l jes ]
1

Remarks.

1) To implement this theorem requires being able to determine
c, A

Pr"Ai js Acl which requires being able to integrate over m

dimensional marginal distributions.

2) For ..-2 the above theorem is equivalent to the following:

Let x - N(O,7) where the off diagonal elements of -DZD are

nonnegative when D is some diagonal matrix with elements +1.

Let I be an\ maximal tree connecting the x. and forming no circuit1

WL)OG let x I be a terminal mode of this tree and let all connections

be directed toward xI . Let e ij be the directed edge connecting x. to

x. i.e. (x. x.) and let Ac be the event x.c(-c i ,ci). Then

n
Pr xi(-ci,c)} > 1 -PrAI c  7 Pr.A c 'A i l .

i=l 1 1e. .T ' 1

3) As in Theorem A-I for m=2 the best tree T can be found using

the procedure of theorem AP-1 in the Appendix. F(-r m > 3 it is harder

to find the "best" permut tion -() and sets s. to get the lowest

possible upper bounds from this method.

4) This theorem is not distribution free it depends highly on the

fact that x1, is MITP and that intervals of the form [0,c.) are monotone
21

of the same type.
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Approach III. Independent Subunit Conservative Bounds.

Theorem A-Ill. (Khatri 1970. Proved by Bechner 1987). Giv'en x N(0)

and ' ,IW2J ... {WFI are disjoint collections of x. such that

F
1, {Wf} f Xl,X 2 ... . x n

f=l

Then

n F
P , i (-ilci i . tr x i (-ci~c i)}

i=l f=l x SW1

which implies

n F
Pr, xXt(-c.,c.i -- i i.

1~ 1 f'l xi F

Proof. The proof in Khatri's article was incorrect. It has come to my

attention that the theorem has been subsequently proven by Bill Bechner

at the University of Texas Austin but the proof has not been published yet.

Remarks.

1) By itself, this theorem is not any superior to the Dunn-Sidak

method but, as we shall see later, is useful when combined with the two

previous approaches mentioned in this chapter.

2) This theorem is highly nondistribution free and can be used

only on convex symetric probability regions centered at the origin

(or compliments of such regions) involving densities where f(x) = f(-x).

Corollary A-IIIC. Given x N(O, -) and {NI",{W 2 },...{Wr ) are

disjoint collections of the xi  such that

F
f= ixlx 2 ... xn

f=l

8



and f is an upper bound for Pr. x i(-ci ci Then

n F
Pr{ 1 xi((-ci,ci 1- ( 1- 1f)

i=l 1f=l

Proof.

B\ Thm. A-Ill
,n F

1 c < 1r{ - r

f= 11

ilf=l iEW f

F

f=l

by repeattd application
of the distributive
multiplication inequality



II. COMPARING THE METHODS.

Theo'ems A-I and A-Il have been presented in a way to enable us

to use m dimensional marginals for m - 2. To keep the statements

and proofs of the theorems simple for the remainder of this technical

report m = 2 will be assumed whenever theorems A-I and A-III are used.

All of the results in this chapter could be extended to comparable

results for m > 3.

Sinc- there are several different methods to use, the question

arises as to under which conditions is one method better than the

others (i.e., gives closer bounds). This question is explcred further

in the present chapter.

Thereom C-i. Let x and A. be as described in Theorems A-I, A-1I

and A-Ill. Let n 2 then (i) the intersection subtraction method

(Theorem A-I) upper bound is exactly the same as the conditional multi-

plicative i.nethod (Theorem A-Il) upper bound and is exact. (ii) '.hen

the correlation is non zero, the Dunn-Sidak upper bound result is

inferior to the upper bound of theorems A-I and A-Il.

Proof. (i) ",he A-1 upper botind for Pr-\A A i s Pr ,A r+Pr
1 2 -

Pr. A A which equals Pr1.,\1 :AA' bA - elementary axioms of probabilit-.

The A-I upper bound for Pr(AIA 2 " is

l-PrtAcl Pr Ac \C l-PriA ' = PrA
1 21' 1 2' 1

(ii) Theorem I in Sidak (1967) and its proof show that Pr{ I A 2) is

a monotonicnllv decrcasinc function of the abso Iut.. 's]u of the corrc li-

tion coefficient for fixed variances - 1 and where again A. =Pr -. i (-c..c.)
1 2
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Theorem C-2. Let x and Ai l i=l,... ,n be as described in

theorems A-I, A-II and A-Ill. For n > 2, assuming m = 2 and that

the conditions are met for the conditional multiplicative (A-II)

upper bound, then for any upper bound given by either overlap subtrac-

tion (A-I) or by Dunn-Sidak (I-1) there exists an equal (or superior

if Z is not diagonal) upper bound given by (A-II).

Proof. First. For a given directed tree T with edges e.. and the

root at x as described in remark 2 of theorem (A-II),

the (A-I1) upper bound is

Pr(Ac Ac)
Cr C

I - [Pr(A) (A ]= 1 - Pr(A)
e..*T e..cT Pr(A.)
i j1 ]

Pr(AC)Pr(Ac.) n
C i 3 C

I - Pr(A )c T Pr=\i - E Pr(A.)
-e..IT Pr(A c )  i=1

by theorem l] 1

I in Sidak
(The inequality is strict if 7 is not diagonal)

- Dunn-Sidak upper bound

Second. For a given directed tree I with edges e.. and the root at

X as described in remark 2 of theorems (A-Il) and (A-I) . Let T, be

the tree connecting the first two elements in T and T. be the subi

tree o 'I connecting the first i elements in 'I i=3,...,n. Let

(A-I). and (A-II). be the A-I and A-II upper bounds for Pr (A.).
i 1 t :- have

1Then by theorem C-I we have

11io = Al~



Now Where x3 is the third element of the

ttree and j. is the item

(A-I)3 = (A-I)2 + Pr(A3) - Pr(A r)A in T2 to which x 3 is
3 3  IT2  connected.

= (A-I)2 + Pr(AX3 A 2.
3 -IT2

- - [l-(A-1)2 -Pr(A nAT )]
3 J

c c
Pr(A c  )-Pr(A nA. )

>1i- [[l-(A-I) 2]]
Since --- Pr(A c )
(1-(A-1)2) .(A jT) c rT 2

Pr(A c  nA c )

3
= 1 [][-(A-1)2]. Pr(c

Pr(A. )

S1 -ll(A-I11)]• Pr (Ac A . )]

Since 3 f 2

3

Thus (A-) 3  (A-If )3 .

Pollowing this proof inductively expressing (A-1) 4 and (A-11) 4 in terms of

4 4

(A-I) 3 and (A-II) 3 and x. the fourth element of tree T, we will Let (A-I).
34

(A-1I), etc. until obtaining (A-I)n (A-II) for an " n 2. But I = T and thus
4 n n n

the upper bound from using A-I on I is higher than the upper bound

from using A-II on I which completes the proof.

12



1heorem C-3. Let T be as described in remark 2 of theorems A-If

and A-Ill and let c2 and c. be constant. If maxP. ! is bounded
i T

by some value less than one then as n -* , the Sidak-Dunn assunption

of independence eventually produces a better upper bound tor

n
Pr{ k) A. r

i=l

than does the intersection subtraction method (A-I) and in fact for n large

enough, (A-I) will produce an upper bound for

n
Pr( . A.

i=l 1

which is larger than 1.

Proof. The intersection subtraction method upper bound is

, Pr A. - Pr:A. - A.
- 1 e.. T

e]iJ

Pr,A t " 4 [Pr-A. -Pr{A. -A.}] >
- 1 ] -

e. .cT .
*By Theorem 1 of Sidak since P_ is

i3

bounded below 1, PrA. :-Pr{AKA.1 1 ]-

r> 0 for all i and j. See footnote below.
n

Pr A 1 + e = PriA. +(n-l)ri> 1 1-7 (1-PrKA. ) = independence
+el upper bound

1] s for n large enough
for some

I " 0

Since c. and 2 are constant and max P..' is bounded b some value1 i T 1

lea,< than one, it follows that Pr.A. k for k some constant and b"
1 1' 1

Theorem 1 in Sidak that PrIA. A. k2 for k2 
< kI ' Therefore,

[Pr{Ai}-Pr{A.'lA.}] > 7 for some constant ri > 0.

13



Conclusion.

Theorem C-2 shows that whenever it applies, the conditional multi-

plicative (Theorem A-II) alwavs gives ti ,hter upper bounds than do

either the intersection subtraction (Theorem A-I) or the Sidak-Dunn

(Thereom I-i) methods. Hence (A-II) should be used in preference

to (A-I) and (I-1) to obtain upper bounds whenever the data is jointly

MTP 2. Theorem C-1 implies that for small n, the intersection sub-

traction method (A-I) gives tighter upper bounds than does the Dunn-

Sidak method (I-1). Theorem C-3 implies that as n gets larger, the

Dunn-Sidak (I-1) upper bounds tend to become superior to those of the

intersection subtraction method (A-I) for cases with the same c.,

and ,P. [ bounded away from one. The Dunn-Sidak method has been

compared with the intersection subtraction method in more detail

(see Hoover (1986)).

14



IV. COMBINING THE APPROACHES.

The three methods A-I, A-II and A-Ill can be combined together

n
to give lower upper bounds to Pr{i x.4(-c.,c)} than could be

il1 1 1

obtained by using any of these methods, or the Dunn-Sidak Theorem alone.

In fact, whenever Z is nondiagonal, there will exist some combina-

tion of A-I, A-II and A-Ill which gives a lower upper bound to

n
Pr{i xi (-ci,ci)} then does the currently used Dunn-Sidak method.

It would be nice to be able to, for a given situation, determine the

best combination of A-I, A-II and A-Ill in terms of giving the lowest

n
upper bounds for Pr!L xi0(-ci.,ci)} Unfortunately in most cases

this would be computationallv impractical to do. Nevertheless it

is possible to develop procedures which combine the methods in ways

that produce good results.

Example M-one.

At this point, a description and example of how the three methods

can be used together should be given. Let us assume x is an 8 1

vector with a N(O,() distribution and that a directed tree with the

following links has been set up

x 
4

x < x 2  - x 3 - x 7 - x8

x
5

x6

We now define three types of links

S - Intersection subtraction (A-I)

M - Conditional multiplicative (A-II)

I - Conservative independent subunit (A-1I1)

15



These links correspond to which method is being used. We can now assign

these link types to such links on the tree for instance

x4

SS

S I M S
X,1  x 2 -x3 *- X 7  X 8

+M

5

x6

The first step we wish to take is to identify the continuous sets of

variables connected by M links and calculate the upper bounds for

Pr' t A i  where A. is as defined in Theorem A-TI. In the above example
set 1

M M M
there is only one such sat x6 - x5 - x3  x The (A-II) upper

bound for

Pr, (A). is *l-[Pr -c-cPrAA "PrA A * Pr AA]
i3,5,6,7 7 3 5 3 65

bv repeated applications of A-II.

Note the order that (A-Il) was applied does not matter. For instance if

we took x6  x 5 x3 M x7 to get
J

- * i, I c , -. c c ' . ' c 1A; j

Pr' (A.): < l-[PrA7:'PrrA A7I'Pr!A5A

i=3,5,6,7 1 - -

the reader can check that ** gives the same value as *

So let ' be the (A-Il) upper bound for Pr{ i A.}
i=3,5,6,7

The next step is to use Theorem (A-I) to compute upper bounds

using those calculated in the first step and incorporatin the S

links. In the above example this will give us

16



Pr{ j (Ai)I < Pr{A } + Pr{A 2 } - Pr{A nA 2 } by theorem (A-I)
i=1,2

and

Pr{ U (A )I < + Pr{A 4 + Pr{A S -Pr{A 'IA 3 -PrA -,A 7 by a

i=3,5,6,7,4,8 4 8 4 3 8 7

slight modification of Theorem (A-I)

Let 11 be the upper fo,,nd for Pr{ U (A.)} which in this case
i=1,2

was Pr{A I+Pr{A2}-Pr!A1A 2  and let 2 be the upper bound for the

Pr{ ' (Ai which was derived above.

i=3,5,6,7,4,8

The last step is to incorporate the I link between x3 and x2

by using corollary (A-IIIC) to give us the upper bound for

8

Pr", (A i i -(1-- 1) (1-1 2 )

It should be noted that for real cases where a tree has been determined,

assignment of S and I links is arbitrary, whereas M links can be

assigned only if the joint distribution of the entire group connected

by M links meets the MTP,2 conditions of theorem (A-11).

It should also be mentioned that the M links were handled first

in step 1 because theorem (A-II) can only be used with M links.

There is no way to incorporate other types of links into the results.

The S links were then incorporated before the I links were since doing

so gives superior results (lower upper bounds).

17



Example M-two.

This is another, different approach which could be used to

combine the methods together to obtain an upper bound. Let us

assume x is a 4x i vector with a N(O,E) distribution and

that a directed tree with the following links has been set up

XI 1  x 2  x 3 4 x 4

Let Pr{A.} have the usual definition for i = 1,..., 4 and assume1

that the (;Xlx 2IIx 3 1) are jointly MTP, and the (!x2 ,x3 I,1x 4I)

are jointly MTP 2  but (x !Ix 2 K x3 LIx 1) is not jointly MTP

Then by Theorem (A-II) an upper bound for Pr{AIA 2 -A3  is

1-[P Ac'Pr ' C }-c /Pr Acl.Pr{A2 ,A3}/Pr{Ac}]

1l- 2I1' 1 2 3' r

and by Theorem (A-II) an upper bound for Pr{A 2 -A3 A4 I is

-[Pr{Ac Pri 32c /Pr-Ac} PrcCAI/Pr{A'}

Using and 2 along with corollary A-IC and

S1  AI,A 2,A 3 ; S2 = A2,A39A4; S3  A 2 A 3;

S1  S2 =A AI,2 A A

givcs:

4

Pr A 1i 2 - Pr-rA2 A3'
i=l i-1 2 ~

CC cl

Note Pr[AC A C i
j Pr{Ac}

18



It would be nice if it were possible to find the best tree T

and method combination set up which gave the lowest upper bounds.

To do so would require a quadratic program which, except for small

n would be computationally impractical to solve.

It might be possible to develop a "good" procedure to combine

the three approaches in such a way to give a lower upper bound

than does the Dunn-Sidak method when - is not diagonal and hopefully

give an upper bound which is close to the lowest possible upper bound

achievable from any procedure combining the methods.

The author believes that there is one narLicular situation where

n
one can find the lowest upper bound for PrI A. possible from com-

i=l '

bining the three procedures and show that this method is indeed the

lowest possible upper bound. That situation is when the absolute

values of all the elements in x (i.e. Ix 'x x, I.... n) are

jointly MTP 2 .

Hypothesis I-1. Let x -- N(O,-) if lx is also jointly MTP i.e.

2

for some diagonal matrix D with elements +1 such that the off

diagonal elements of -DID are all nonnegative, then the upper bound

n n
for Pr{ A. or Pr," x i.(-ci,ci)} given by (A-I) from using

i l 1l 1 n

any tree T is lower than the upper bound for Pr{i ixi(-c.,c.)l
i'i 1 1 1

given from using any combination of A-I, A-IC A-I, A-III and

A-IIIC on that same tree T.

The proof would be quite complicated since there are so many

way's to combine the different methods together which must be considered.

19



Given that hypothesis M-l is true, then to get the lowest

n
possible upper bound for Prj A from any combination of the

i

three approaches, we use the (A-If) approach entirely on T' the

best tree derived in remark 2 of theorem (A-Il) and theorem (AP-i)

in the Appendix.

20



V. EXAMPLES OF APPLYING THE COMBINED .METHODS.

Example One. Consider the MA(5) model. Let x. be jid N(O,1) and
1= 5 T h e P 5 -j.'

let y_ = . Then P X max(5LjJI 0) and a y
J i= j+i =y1 5 y

Let the set R = -[yY 2 ,Y3 ,Y7 ,Y8 ,Y9
} and suppose the researcher

wants to know upper bounds for

A) Pr{ 'j j > 1.96 75}
jER

B) Pr{ l yj > 2.25 I'}
jtR

C) Pr{ . > 2.50 ¢
j tR 

5

D) A lowcr bound for c such that Pr , ' > c < .10

Clearly the best tree I' is vl -Y2-v -v - 9 and

P12 P2 3  P7 8  P 8 9  .80 while P3 7 = 20. It can be shon that

for any continuous group of size 3 or more on T' that there is no MTP 2

density so we are dealing only with S and I links. Below answers to

A, B and C are shown using the procedure of example M-one in chapter iV with

(i) all links as I links

(ii) all links as S links

(iii) v 1- 2 ,V 2-1 3 ,v 7 -y 8 ,v 8 -v 9 as S links y3-y- as an i link

METHOD

(i) All I links (ii) All S links (iii)y3-y7 I link

all other S links

A) Prf. y >1.96v5- .2649 .2051 .2010
j R

B) Pr" , I.K2.25V'} .1380 .1076 .1057

C) Pr{ ! yjK>2 .50/ } .0722 .0569 .0564
jCR

21



The combined method (iii) works better than does either the

pure I method or the pure S method although the improvements from

(iii) over (ii) are not spectacular. The upper bound ratio of method

(iii) over method (ii) ranged from .991 for C) to .980 for A).

The answer to D using methods (i), (ii) and (iii) respectively

is

(i) 2.383

(ii) 2.283

(iii) 2.275

Example Two. Let (xI .... Ix6) N(0,7) where

1

.9 1

.9 .9 1

.9 .9 .9 1

.5 .9 .9 .9 1

.3 .5 .9 .9 .91

Let the researcher be interested in upper bounds for

6
A) Pr. x. '  1.96"

i=l

6
B) Pr, x. 2.25

i i

6
C) Pr{ !x . .50

i=1

and
6

D) A lower hound for c such that Pr' lx. > c' < .05
i=l 1 -

Cleariv a best tree I' is
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Xl-X 2 -X 3 -X 4 -X 5 -X 6

It turns out that while x itself is not jointly MTP2 the sub-

vectors ( ' 1 x "'x x) and (- . are each jointly ATP2

So it is possible to use an algorithm similar to that of example M-Two

in chapter IV to get an upper bound. We shall call this method (*).

(*) First use (A-II) to get upper bounds for

4 6

Pr x. " c and -Pr! x. c,
i=l 2 i=3

Then use (A-I-C) to give

6 4

Pr{ x. +:-Pr, x. ci-l] 2I

Below answers to A, B and C are shown using

(i All links as I links

(ii) All links as S links

(iii) Method (*)

... T Il)D

(i) All I links (ii) All S links (iii) *

6
A) Pr{ :. 1.96- .2640 .1518 .1491

i=l1

6
B) Pr{ .x.:>2.25 .1380 .0792 .0784

1 11

6
0) Pr' x, '2.5(7 .0722 .0423 .0L21

1
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Again the improvement of method (iii) over method (ii) was not

spectacular. The upper bound ratio of (iij) over (ii) was .995

in C, .990 in case B and .982 in case A.

The answer to D using methods (i), (ii) and (iii) respectively

is

(i) 2.635

(ii) 2.436

(iii) 2.433

Example Three. This is based on problem E on page 230 of Drapper

and Smith. A linear regression is de'eloped to predict corn yield

per acre in towa. Five of the coefficients in the final equation

are 1. Year, 2. Julv Rain, 3. July Temperature, 4. August Rain

and 5. August Temperature. Ignoring the constant coefficient bO;

call the five coefficients, hl, b2, b3, b4, b5, and the estimated

coefficients hi, b2, ;3, b4 and b5 respectively. The correlation

matrix of b is

-.1160 1

.4870 .3445

-.1725 .1215 -.0914 1

-.2076 .3362 -.3042 .3339 1

The est tree 1 turns out to he

A

1 ' 3 2 5.-



The distribution of b is not MTP 2 but the distributizi, of

b?, b 4 and b 5  is MTP 2 however.

Let us assume that the researcher wants to have upper bounds for

5
A) Pr-, b. b. + 1.96 "

5
B) Pr: - b I ' D + 2.25 b1 i~ --- b.

i~l 1

5
C) Pr" bb + 2.50

and
5

D) A lower bound for c such that Pr' b + c:7 .10

and also the researcher wants a lovt-r b'und for c so that
5

Pr ' L (b i c-, ), -_ .10. I e can calculate these bounds by using the

procedure . example '-I-one section IV with (i) all S links, (ii) all I

S I M I- M I-

links or (iii) the following links b b -4 b - b b

The upper bounds for A\, B and C are

.I EHOD) (i) METHOD (ii)

All I links All S links IETHtD) (iii)

A) Pr- b.:Lb.I , Q .2262 .2245 .2156

1

B) Pr{( b..j2.25 - .1164 .1135 .1117
1 i b1

5
C) Pr-' b.b.2.50 .0605 .0589 .0586

i i b
i2l
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The upper bounds for D using (i), (ii) and (iii) respectively are

(i) 2.319

(ii) 2.310

(iii) 2.306

The probability ratio of method (iii) to method (ii) was .995 in case

C, .984 in Case B and .960 in case A.

Analysis.

In the three examples of section V, the merged methods produced

lower upper bounds for probability than did any of the single methods

used alone. In all three examples using only S links was the best

competitor being from .960 to .995 as efficient. One difficulty

involved with merging the methods is that it is not simple to figure

out "how" to set up the combined links. It would appear difficult

to come up with a simple universal algorithm to do this meaning that

one would have to do this oneself by making educated guesses as to

which combination of methods to use.
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VI. TABLES OF RESULTS FROM COMBINED (A-I) AND (A-Ill) METHODS.

At this point, we will try to explore, in some systematic fashion,

when combining the methods gives improved results over using any of the

methods singly. For simplicity, Method (A-I1) the conditional multipli-

cative method is not being considered. If (A-II) links could be included

in the combined methods studied in the next few tables one would expect

that even lower upper bounds would be obtained. The methods will be

combined together in the fashion of example M-one in Chapter IV.

Tables A, B and C look at various combinations of S and I links

compared to the best of using all S links, or using all I links, for

n
calculating upper bounds of Pr{ x.t(-c,c)} where n=4,6,10

i~l 1

respectively, under different correlation structures for the links. In

all three tables c is set equal to 1.96 and 2.50 while the best

tree T' is assumed to be a string of the form (x-x 2 -...- x ).

S IS SS I
In table A, link patterns of the form x -x 2-x 3-X 4 and x -x 2-x 3-x 4

S SS II I
are compared to the best of XI-x 2 -X 3 -X 4 and x-1 X 2 -X 3 -x 4 . The combined

methods do give better results than does the pure S method or the conser-

vative assumptioi of independence when !P.. , .3 for x. linked to x.

by the I link. The combined methods do better when c = 2.50 having

upper bound ratio values as low as .953 compared to pure methods than

they do when c = 1.96 having upper bound ratios by factors as low as

.977 compared to pure methods.

In table B, link patterns of X-X2 -X 3 -X 4 -X 5 -x 6  and

S S S I S S S S S S
X1 -x2-x3 -x 4-x 5-x 6 are compared to the best of x 1 -X 2 x 3 -X4-x 5-X 6
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II Ill

and x1-X 2 -X 3 -x 4 -x 5 -x 6 . The combined methods give better results than

do the pure methods when pij I < .4 for x, linked to x. by the I

link. The relative upper bound ratios of the combined methods to the

pure methods were somewhat lower (better) when n= 6 than when n
= 4 . When

n = 6 the ratio of upper bound combined/best uDper bound pure methods were

as low as .955 for c = 1.96 and as low as .985 for c 2.50.

In table C, the link patterns of :

S(i) X1-x2-x 3 -x 4 -x 5 -x -x 7 -x8x9-x10

( S SI SI I5 S 9 S

are compared to the best of

S S Ss x I S S S
x -x -- x -x-x -X -X -X -X -X

1 2 3 4 4 6 7 '8 9 10

The combined methods give better results than do the pure methods

when :P.. I .8 for c = 1.96 and P j .6 for c = 2.50. The

probability ratio of combined method/best pure method were as low as

.928 for c= 1.96  and as low as .977 for c= 2.50.

Summarizing tables A, B and C the following tendencies were observed:
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1. The combined methods were better with respect to the pure

methods as n became larger. It is felt that this will continue

to be true for larger values of n than were looked at here.

2. For IPj, not too close to zero where x. is linked to

x° by an I link in the combined method, the combined methodsJ

became better with respect to the pure methods as Pij i became

smaller.

3. The combined methods were better with respect to the pure

methods for the smaller value of c = 1.96 versus the larger value

of c = 2.50. It is felt that this will hold in general for all

values of c.

The question remains as to whether there are applications where

it is worth the extra effort to compute the merged results to get

the lower upper bounds than are given by the pure methods.
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TABLE A

UPPER BOUNDS FOR Pr{ n x. (-c,c)Y OBTAINED FOR N=4,
i=l 1

WHEN THE BEST TREE IS A STRING xl-x 2 - x 3 -x 4 BY USING

DIFFERENT COMBINATIONS OF S AND I LINKS

Correlations along the various links c = 1.96 c = 2.50

Best of Smallest P..=I Best of Smallest P..=1

XI-x 2  x2 -x 3  x 3 -x 4  all S and Rest are S1 3  all S and Rest are S1 3

- all I all I

.9 .5 .9 .1314 .1357 .0355 .0365

.8 .5 .8 .1469 .1501 .0397 .0405

•9 .4 .9 .1340 .1357 .0360 .0365

.8 .4 .8 .1495 .1501 .0402 .0405

.6 .4 .6 .1684 .1675 .0493 .0451

.9 .3 .9 .1358 .1357 .0362 .0365

.8 .3 .8 .1513 .1501 .0405 .0405

.7 .3 .7 .1621 .1600 .0432 .0432

.6 .3 .6 .1703 .1675 .0431 .0451

.9 .9 .2 .1372 .1362 .0365 .0365

.9 .2 .9 .1372 .1357 .0365 .0365

.9 .1 .9 .1379 .1357 .0366 .0365

.8 .1 .9 .1455 .1430 .0387 .0385

5 .5 .5 .1721 .1731 .0457 .0464

.5 .4 .5 .1747 .1731 .0487 .0464

.4 .4 .4 .1799 .1779 .0487 .0474

.3 .3 .3 .1854 .1811 .0487 .0480

.3 .2 .3 .1854 .1811 .0487 .0480

2 .2 .2 .1854 .1837 .0487 .0484

'4

Note for N=4 the upper bound for Prr x.g(-c,c)} given b the
i=1 3-

conservative independence assumption is

(i) .1854 for c = 1.96:

(ii) .048- for c = 2.50:
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TABLE B

n
UPPER BOUNDS FOR Pr{ L x. (-cc)) OBTAINED FOR N=6,i~l '

WHEN THE BEST TREE IS A STRING x-x2-x 3--x5-x6 BY

USING DIFFERENT COMBINATIONS OF S AND I LINKS

Correlations along the various links c = 1.96 c = 2.50

Best of Smallest P. .=I Best of Smallest P. =I
X 1 X 2 x2-3 x3-4 4-5 x5-6 All S and Rj All S and Rest are S

all I all I

.9 .9 .5 .9 .9 .1723 .1733 .0475 .0482

.9 .9 .4 .9 .9 .1749 .1733 .0479 .0482

.8 .8 .4 .8 .8 .2057 .2011 .0562 .0563

.9 .7 .4 .7 .9 .2010 .1970 .0549 .0554

.6 .5 .4 .5 .6 .2499 .2401 .0669 .0666

.4 .4 .4 .4 .4 .2665 .2545 .0702 .0698

.8 .7 .3 .7 .8 .2183 .2107 .0594 .0590

.8 .8 .8 .3 .8 .2075 .2019 .0566 .0564

.3 .3 .3 .3 .3 .2649 .2607 .0722 .0711

.3 .3 .1 .3 .3 .2649 .2607 .0722 .0711

6
Note for N=6 the upper bound for Pr x .given by the

conservative independence assumption is

(i) .2649 for c = 1.96:

(ii) .0722 for c = 2.50:
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VII. TERMINOLOGY

x - is an nxl vector of random variables with a N(O,Z) distribution

P.. - is the correlation between x. and x.1j 1 j

A - i the event x. is not in the interval (-ci,c i )1 111

S. - is a set of integers representing corresponding numbered events1

from AI2, ... ,Ai 1 or equivalently corresponding numbered

variables from xlx 2,... ,xI

(mA n) - is the minimum of m and n

Prf.} - is the probability that {.} occurs

T - is a tree connecting the events AA 2,...,An  or equivalently

the variables xlx 2, ...,xn

e - is a directed link from x. to x. or equivalently from

e.,
A to A. e.g. x . x.
i 1 1 j

S link - an S link from x. to x. indicates that the upper bound
1 ]

operation which will be performed between these two variables

(events) is of the intersection subtraction (Theorem A-I) type.

N link - an N link from x. to x. indicates that the upper bound1 ]

operation which will be performed between these two variables

(events) is of the conditional multiplicative (Theorem A-Il) type.

I link - an I link from x. to x. indicates that the upper bound1 j

operation which will be performed between these twu variables

(events) is of the conservative independent subunit (Theorem A-Ill)

type.

n

- an upper bound to Pr{ A.

A F - PrA B, rians th,- probabilityo A aiven B.
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VIII. APPENDIX.

Below is presented the theorem to find the "best" tree with

which to apply method (A-I) or method (A-II) for .>e case m=2.

Note that amaximal tree is one which has the maximal number of links

connecting n elements while forming no loops, (n-i links).

Theorem AP-l. Let x N(O,Z) and let P.. be the correlation
11

coefficient between x. and x. Let T be any maximal tree1 ]

connecting the individual components of x. Let 0T be the order

statistics of Pij for e ij.T. Set up a tree T' by performing

the following process n-i times: Link x. to x. for the i,j

which maximize P.. among all unlinked i,j whose linking does

not create a circuit. Then this tree will have the following property

(0 ,) (0 ) for all other trees T and all j=l,...,n.

Proof. The reader is referred to Hoover (1986) or Kruskal (1956).

Remark: Since Sidak's theorem gives that Pr(Ai.A j) is a nondecreasing

function of P. . the above theorem implies that T' is the best tree

on which to apply methods (A-I) and (A-Il). Note than when using a

combined method for any given situation, T' may not be the best tree,

but should still be a good tree to use.
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